text
stringlengths
2
806k
meta
dict
The present invention relates to a gate circuit, a semiconductor integrated circuit device, a method of fabrication thereof, a semiconductor memory and a microprocessor, or more in particular to a BiCMOS gate circuit, a semiconductor integrated circuit device and a method of fabrication thereof, a semiconductor memory and a microprocessor suitable for operation with low voltage supply (low voltage source) and low consumption power. The present invention also relates to a semiconductor integrated circuit device including at least a bipolar transistor having a high-concentration buried layer and a method of fabrication thereof. A prior art system comprising at least a bipolar transistor combined with a MOS transistor is disclosed in IEEE Journal of Solid-State Circuits, Vol. 26, 1991, pp. 150 to 153. Also, the prior art systems relating to a semiconductor integrated circuit include JP-A-54-67384 and U.S. Pat. No. 4,862,240. A prior art system relating to a semiconductor integrated circuit device having at least a bipolar transistor is disclosed, for example, in "Nikkei Micro Device", February 1990, pp. 53 to 54, published by Nikkei McGRAW-HILL. According to this system, an integrated circuit device having a bipolar transistor generally comprises an NPN transistor, for example, in which N.sup.+ ions constituting the collector thereof are partially buried in the substrate, and P.sup.+ ions are buried in such an arrangement as to surround the N.sup.+ ions to isolate them electrically from other devices.
{ "pile_set_name": "USPTO Backgrounds" }
Stents are used in a wide array of bodily vessels including coronary arteries, renal arteries, peripheral arteries including iliac arteries, arteries of the neck and cerebral arteries as well as in other body structures, including but not limited to arteries, veins, biliary ducts, urethras, fallopian tubes, bronchial tubes, the trachea, the esophagus and the prostate. Stents are typically balloon-expandable, self-expanding or a hybrid of the two. Balloon expandable stents may be made from a wide array of biocompatible materials including, for example, stainless steel. Self-expanding stents may also be made from a wide range of materials including biocompatible shape-memory materials including metals and polymers. An example of a suitable shape-memory metal is Nitinol. In spite of the myriad of stent designs, there remains a need for novel stent designs as the technology of stent delivery progresses and as stents are employed with increasing prevalence in a variety of regions of the body. As an example of the former, with the ever-increasing demand for stents to treat bodily vessels, there has been a demand for more flexible and trackable stents and stent delivery systems. One of the most significant recent changes to the stent delivery system involves the use of thin-walled balloons. This change has resulted in earlier cone deployment of the balloon which creates an inclined plane resulting in an inward axial force to the stent. The inward force, in turn, results in increased foreshortening of the stent upon deployment. Although a number of stents have been developed that are said to resist foreshortening, novel stent designs that generally resist foreshortening and in particular resist foreshortening when delivered on the newer thin walled balloons, are desirable. As an example of the latter, in the area of aneurysm stenting, it is desirable for the stent to have relatively low radial strength to avoid dilating and rupturing the aneurysm. Standard techniques for reducing radial strength, however, typically result in stents which are not visible under fluoroscopy without the addition of radiopaque materials to the stent. The addition of radiopaque materials to the stent may alter the profile of the stent in the regions of the radiopaque material and may complicate the production of the stent. Thus, there is a need for novel aneurysm stents which are of low radial strength and which are visible under fluoroscopy. All US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety. The invention in various of its embodiment is summarized below. Additional details of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to the positioning of a transducer over a magnetic medium and in particular over a data track on a magnetic disk through the detection of previously recorded position or servo information. Such position information may comprise a so-called "tri-bit" servo pattern including magnetically encoded circular tracks on the magnetic disk having a transducer in close proximity therewith for detecting the information carried by the tracks. Circuitry connected with the transducer provides a position error signal (P.E.S.) of different value depending on the position of the transducer with respect to the magnetic tracks, and this position error signal is supplied to servo actuator and control mechanism for moving the transducer into a particular desired position with respect to the tracks. In this position, the transducer corresponds with a data track that is either detected by this transducer or a transducer mechanically connected with and movable with this transducer, so that the data may be read from the data track (or fresh data may be written on this data track) in this position of the transducer. The tri-bit servo pattern is disclosed in the IBM Technical Disclosure Bulletin publication of April 1974, pages 3757-3759 and comprises magnetic patterns, portions or segments encoded on a magnetic disk in concentric tracks. The magnetic segments are in pairs or long and short segments, and the ends of long and short segments on alternate tracks are disposed on the same radius or radial line of the disk. The long and short segments are magnetically encoded the same along this radius or radial line and thus provide magnetic flux reversals circularly on each track. A servo transducer positioned over the tracks experiences flux reversals as each junction between magnetic segments passes the transducer gap, and the polarity and amplitude of the resulting pulse vary with the polarity and amplitude of the flux reversal causing them. The circuitry connected with the servo transducer and producing a position error signal generally includes peak detection circuits for determining the relative amplitudes of the peaks of the signal from the servo tranducer and in one way or another comparing these amplitudes so as to determine whether the servo transducer (and the data transducer if this is a separate transducer) is aligned with the desired data track. In order that the relative amplitudes of the servo peaks may be accurately determined, these peaks should be spaced time-wise with disk rotation so that they do not interfere with each other and so that the leading and trailing ends of the peaks do not overlap adjacent peaks. In order to obtain such spaced pulses, a relatively wide band width is required to accommodate many harmonics of the fundamental frequency detected by the servo transducer; and a relatively slow sampling rate, with a correspondingly small number of magnetic patterns on the disk, is obtained. The rotatable data storage apparatus disclosed in U.S. Pat. No. 3,936,876 is an example of a magnetic track following servo system utilizing the tri-bit servo pattern. In the structure of this patent, a separate servo transducer effective on the lower side of a magnetic disk is used; and the servo transducer is mechanically coupled with a pair of data transducers effective on the upper surface of the disk. The servo circuitry disclosed in this patent includes a preamplifier receiving the servo signals from the servo transducer and supplying an output to a detector. The detector provides a position error signal the amplitude of which is dependent on the distance that the servo transducer is off of a guide path, and the detector includes a pair of demodulators that are responsive to the peaks of signals supplied from the servo transducer so as to provide the position error signal at the output of the detector. This position error signal is used by means of a compensator and a driver circuit so as to energize a voice coil which moves the servo transducer to correct its position. Peak detection of a servo transducer output signal has also been used in connection with other servo patterns and in particular with a pattern in which similarly magnetized servo track portions of adjacent tracks are not in edge alignment radially of the disk and in particular in which short and long similarly magnetized servo track portions are centrally disposed radially of the disk. Since peak detection is used, the same disadvantages apply, namely, unduly wide band width with a great number of harmonics required to produce the distinctive signal peaks and a relatively slow sampling rate. One such system is disclosed in U.S. Pat. No. 3,534,344, and the position information is recorded in successive tracks on a separately dedicated disk. Each of the servo tracks contains the spaced set of paired flux reversals, and the sets of flux reversals repeat every other track so that one separately identifiable set of flux reversals will occur in the odd tracks and another separately identifiable set of flux reversals occurs in the even tracks. These are sensed by the servo transducer; and, when the servo transducer is exactly centered over adjacent odd or even tracks, the signal strength from the two adjacent tracks are equal. The peaks of the output signal of the servo transducer caused by adjacent tracks are integrated, and the integrated wave forms are then rectified by half-wave rectifiers and are then applied to peak detectors. Due to the use of these peak detectors, the peaks of the output signal of the transducer must be well spaced as above noted. The transducer positioning systems of U.S. Pat. Nos. 3,893,180 and 3,959,820 also use the same servo pattern as is used by the apparatus of U.S. Pat. No. 3,534,344 in which similarly magnetized long and short servo track portions of adjacent servo tracks are centrally located with respect to each other. In the system of U.S. Pat. No. 3,893,180, the signal strength of each servo output response is first identified, and the peak amplitudes of the responses are thereafter separately measured and separate signals are produced indicative of the major peak amplitudes. The separate signals are thereafter combined so as to indicate whether the signal strength of either response dominates over the other. The servo responsive system of U.S. Pat. No. 3,959,820 analyzes the output servo signal and defines two separate data tracks for each and every individual track of position information traversed. The circuitry of this patent uses a positive peak detector and a negative peak detector for analyzing the servo transducer output signal. The same disabilities apply to the structures of these two patents, since they both rely on peak detection for determining the position of the servo transducer.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to faucet assemblies for dispensing beverages. Faucets are commonly used to tap and dispense beverages that are stored in pressurized containers or pipe lines. These faucets, however, need to be cleaned at regular intervals to maintain suitable sanitary conditions. Typically, cleaning a faucet involves taking the faucet off of a beverage source, disassembling a handle or actuator from the faucet, taking the faucet apart, cleaning individual components of the faucet by soaking the components in solution and brushing the components, reassembling the faucet, and reinstalling the faucet on the beverage source. This process is very time-consuming for a user.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a sports apparatus whose degree and direction of stiffness and flexibility may be varied or dynamically controlled. 2. Discussion of Related Art In recent years, sports equipment manufacturers have increasingly turned to different kinds of materials to enhance their sporting equipment. In so doing, entire lines of sports equipment have been developed whose stiffness or flexibility characteristics are but a shade different from each other. Such a shade of difference, however, may be enough to give the individual equipment user an edge over the competition or enhance sports performance. The user may choose a particular piece of sports equipment having a desired stiffness or flexibility characteristic and, during play, switch to a different piece of sports equipment that is slightly more flexible or stiffer to suit changing playing conditions or to help compensate for weariness or fatigue. Such switching, of course, is subject to availability of different pieces of sports equipment from which to choose. That is, subtle changes in the stiffness or flexibility characteristics of sports equipment may not be available between different pieces of sports equipment, because the characteristics may be fixed by the manufacturer from the choice of materials, design, etc. Further, the user must have the different pieces of sports equipment nearby during play or they are essentially unavailable to the user. Turning to various types of sports, it can be seen how the lack of adjustability in stiffness and flexibility may adversely affect optimum performance of the player. Hockey Hockey includes, but is not limited to, ice hockey, street hockey, roller hockey, field hockey and floor hockey. Hockey players may require that the flexure of the hockey stick be changed to better assist in the wrist shot or slap shot needed at that particular junction of a game or which the player was better at making. Players may not usually leave the field to switch to a different piece of equipment during play. Younger players may require more flex in the hockey stick due to lack of strength; such flex may mean the difference between the younger player being able to lift the puck or not when making a shot since a stiffer flex in the stick may not allow the player to achieve such lift. In addition, as the younger players ages and increases in strength, the player may desire a stiffer hockey stick, which in accordance with convention means the hockey player would need to purchase additional hockey stick shafts with the desired stiffness and flexibility characteristics. Indeed, to cover a full range of nuances of differing stiffness and flexibility characteristics, hockey players would have available many different types of hockey sticks. Even so, the hockey player may merely want to make a slight adjustment to the stiffness or flexibility of a given hockey stick to improve the nuances of the play. Such would not be possible unless the multitude of hockey sticks included those having all such slight variations in stiffness and flexibility needed to facility such nuances. U.S. Pat. No. 4,348,113 reveals insertion of juxtaposed mainstays into cavities of a shaft of a hockey stick to help the stick withstand excessive damage resulting from wear caused by abrasion as the butt side of the hockey blade scrapes or hits the ice. U.S. Pat. No. 5,879,250 reveals insertion of a core into a shaft of a hockey stick to help the stick stronger and more durable to withstand high strains during the course of play. A series of grooves are formed in the core in an attempt to attain a desire center of equilibrium. Tennis Tennis players also may want some stiffness adjustability in their tennis rackets and to resist unwanted torsional effects caused by the ball striking the strings during play. The torsional effects may be more pronounced in the case where the ball strikes near the rim of the racket rather than the center of he strings. Thus, it would be desirable to lock in the stiffness characteristic close to the rim as opposed to just at the handle end. U.S. Pat. No. 4,105,205 reveals one or more rotatable beams of rectangular cross section arranged within a cavity of the tennis racket for radically changing its stiffness. U.S. Pat. No. 5,409,216 reveals a shaft in the form of a double head ends for improving the grip on the handle, which may change the stiffness or flexibility of the racket due to a change in orientation of the double head ends relative to the racket head. U.S. Pat. No. 3,833,219 reveals spacer discs in a tennis racket, each disc having a width that exceeds its thickness. The spacer discs, if made of metal, may be made in varied weights and thickness to allow for adjusted handle weight as well as for adjusted grip sizes. Lacrosse Lacrosse players use their lacrosse sticks to scoop up a lacrosse ball and pass the ball to other players or toward goal. The stiffness or flexibility of the lacrosse stick may affect performance during the game. Players may tire so some adjustment to the flexibility of the stick may be desired to compensate. With conventional lacrosse sticks, such adjustment is not available. Other Racket Sports Other types of racket sports also suffer from the drawback of being unable to vary the stiffness and flexibility of the racket during the course of play to suit the needs of the player at that time, whether those needs arise from weariness, desired field positions, or training for improvement. Such racket sports include racquetball, paddleball, squash, badminton, and court tennis. For conventional rackets, the stiffness and flexibility is set by the manufacturer and invariable. If the player tires of such characteristics being fixed or otherwise wants to vary the stiffness and flexibility, the only practical recourse is to switch to a different racket whose stiffness and flexibility characteristics better suit the needs of the player at that time. Golf Golf clubs may be formed of graphite, wood, titanium, glass fiber or various types of composites or metal alloys. Each varies to some degree with respect to stiffness and flexibility. However, golfers generally carry onto the golf course only a predetermined number of golf clubs. Varying the stiffness or flexibility of the golf club is not possible, unless the golfer brings another set of clubs of a different construction. Even in that case, however, the selection is still somewhat limited. Nevertheless, it is impractical to carry a huge number of golf clubs onto the course, each club having a slight nuance of difference in flexibility and stiffness than another. Golf players prefer taking onto the course a set of clubs that are suited to the player's specific swing type, strength and ability. Skiing, Snowboarding, Snow Skating, Skiboarding Skis are made from a multitude of different types of materials and dimensions, the strength and flexibility of each type differing to a certain extent. Skis include those for downhill, ice skiing, cross-country skiing and water-skiing. Other types of snow sports devices include snowboards, snow skates and skiboards. Beginners generally require more flex and, as they progress in ability, much less. Skiers generally do not carry with them a multitude of different types of skis for themselves use during the course of the day to suit changing skiing conditions or to compensate for their own weariness during the day. The same holds true for those who use snowboards, snow skates and skiboards. U.S. Pat. No. 3,300,226 reveals elongated bars in skis. Each bar may be rotated to a desired orientation to vary the stiffness and flexibility of the skis. The bars have a width that exceeds their thickness. U.S. Pat. No. 4,221,400 reveals set screws at one end of the skis used to keep the bars in desired orientations within the skis. Ski Boots Cross country and telemark skiing boots attach to the ski via a binding at the toe and have a free heel that allows the skier to stride on the snow in a motion similar to walking. The boots (or shoes) have flexible soles to allow a greater range of motion. Telemark bindings have a cable that runs around the heel of the boot to provide holding power, but also acts to exert pressure from the skier into the ski. Performance in cross country and telemark skiing can be greatly affected by the amount of pressure that is exerted by the skier through the boot/shoe into the ski. Different boots have different sole stiffness that skiers use to suit their particular style and needs. Telemark skiers further change the amount of pressure that is transmitted into the ski by adjusting the tension on the cable. More tension will result in stiffening the sole of the boots and thus increase the pressure and control that the skier has over the ski. More sole stiffness provides more pressure which is needed for more control in steeper or icier conditions. Less stiffness reduces the pressure to allow for a smoother glide and more comfort in easier, flatter and softer snow conditions. It would be desirable to allow the skier to quickly and easily change the stiffness of the boot sole and thus change the amount of pressure that is to be transmitted into the ski, thereby altering the ski performance. Snowboard Bindings Snowboarders use a binding system attached to the snowboard that incorporates a highback, which entails resting the back of the rider's boot against a brace-like structure. This structure is typically 8-15 inches high and its purpose is to provide leverage from the rider's leg into the snowboard, thus affecting turning and edging power and control the rider has over the board. Additionally, some step-in type binding systems don't have this leverage device attached to the binding but incorporated into the snowboard boot itself. Regardless, each type of binding uses some method of stiffening the back of the boot to improve control. It would be desirable to allow the rider to fine tune the degree of stiffness and thereby change the amount of force and leverage the rider transmits into the snowboard and thus vary the degree of control the rider has to suit certain conditions. For soft snow, the rider may want to have more flexibility so as to allow to board to float. For icier conditions, the rider may want to stiffen the highback to provide greater leverage and power, which results in greater edge control. Bicycle Shoes Bicycle specific shoes are rigid and attach to bicycle pedals usually through a binding or clip mechanism that prohibits the shoe from slipping off the pedal. The shoe is positioned on the pedal so the ball of the foot is directly over the pedal. The rider's foot flexes as the pedal moves through its range of motion and the rider depends on his/her foot and ankle strength to effect additional pressure onto the pedal and thus increase the speed or power delivery. It would be desirable to supplement the rider's own ankle and foot strength by making the sole of the shoe stiffer and increasing the leverage the rider has on the pedal. Preferably, riders will be able to adjust the stiffness of the shoe sole according to their strength, road/course conditions. Running Shoes, Training Shoes, Basketball Shoes The transmission of the shoe wearer's strength (power) from their legs into the ground is directly affected by the sole stiffness of the shoe. Runners may gain more leverage and thus more speed by using a stiffer sole. Basketball players may also affect the height of their jumps through the leverage transmitted by the sole of their shoes. If the sole is too stiff, however, the toe-heel flex of the foot is hindered. It would be desirable that the shoe wearer have the ability to tailor the sole stiffness to his/her individual weight, strength, height, running style, and ground conditions. Preferably, the shoe wearer may tailor the stiffness of the shoe sole to affect the degree of power and leverage that is to be transmitted from the wearer into the ground. Batting Sports such as baseball, softball, and cricket use bats to strike a ball. The batter may want to select a bat that is more stiff or flexible, depending upon the circumstances of play. Conventional bats only permit the batter to choose from among a variety of bats of different weights and materials to obtain the desired stiffness or flexibility. However, adjusting the stiffness or flexibility characteristics for a given bat is not feasible conventionally. Further, there is no practical way conventionally to determine which batting flexure and stiffness is optimal for batters with a single batting device. Polo Polo players use mallets during the course of the polo match. Changing the stiffness or flexibility characteristics is only available by exchanging for a different mallet with the desired characteristics. U.S. Pat. No. 3,612,121 reveals a reinforcing rib within a hollow handle of a hand tool mallet (as opposed to a polo mallet). The rib has a width that is greater than its thickness. Sailboating and Sailboarding Masts of sailboats and sailboards support sails, which are subjected to wind forces. These wind forces, therefore, act through the sails on the mast. The mast may be either a rigid or flexible structure, which may be more desirable under certain sailing conditions. If the mast is flexible, tension wires may be used to vary the tension of the mast. Otherwise, the flexibility and stiffness characteristics of mast are generally fixed by the manufacturer, making it impractical to alter the mast flexibility or stiffness in different directions to suit changes in wind direction or the needs of the sailor. Canoeing, Rowboating and Kayaking Paddles for canoes, row boats, and kayaks are subjected to forces as they are stroked through water. The flexibility or stiffness of the paddles, while different depending upon its design and materials, is fixed by the manufacturer. Thus, a rower who desired to change such characteristics would need to switch to a different type of paddle. Carrying a multitude of different types of paddles for use with a canoe, row boat or kayak, however, is generally impractical for the typical rower from the standpoint of cost, bulk and storage. Pole Vaulting Pole vaulters use a pole to lift themselves to desired heights. The pole has flexibility and stiffness characteristics fixed by the manufacturer. The pole vaulter must switch to a different pole if the characteristics of a particular pole are unsatisfactory. Fishing Rods Fishing rods are flexed for casting out a line. The whip effect from the casting is affected by the stiffness or flexibility of the rod. Depending upon the fishing conditions and the individual tastes of the user, the user may prefer the rod to be either more flexible or more stiffer to optimize the whip effect of the cast. U.S. Pat. No. 3,461,593 reveals elongated inserts in a fishing rod that may be rotated or twisted to a desired orientation to vary the stiffness and flexibility of the rod. The inserts have a width that exceeds their thickness and may be configured into any of a variety of different geometric shapes. As defined in this application, sports equipment covers any type of rod, stick, bat, racket, club, ski, board, mast, pole, skate, paddle, mallet, bicycle frame support bar, scuba fin, footwear, exercise machine or weight bench that is used in sports. The sports equipment flex either (1) to strike or pick up and carry an object such as a ball or puck (hockey, lacrosse, batting, golf, tennis, etc.), (2) to carry a person (pole vaulting, bicycle frame support bar), (3) to cast out a line (fishing rod), (4) to engage a frictional surface (such as skis or footwear against the ground, snow or water or scuba fins against the water), or (5) to respond to forces (such as the wind forces against a sail or muscular forces exerted when using an exercise machine or weight bench).
{ "pile_set_name": "USPTO Backgrounds" }
Image contour detection is fundamental to many image analysis applications, including image classification. Many conventional image contour detection methods are highly accurate. However, these conventional methods are computationally intensive and require extensive processing time and costs. While these conventional image contour detection methods are sometimes beneficial because they are so precise, not all applications require such precision. Further, the extensive processing time and costs make these computationally intensive image contour detection methods impractical for many image analysis applications, such as image classification of a large collection of images. Same numbers are used throughout the disclosure and figures to reference like components and features, but such repetition of number is for purposes of simplicity of explanation and understanding, and should not be viewed as a limitation on the various embodiments.
{ "pile_set_name": "USPTO Backgrounds" }
Parkinson's disease, which has been known as a refractory disease, is caused by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The disease is a fatal geriatric disease, since it frequently occurs and gradually causes chronic movement disorders. Therefore, it is necessary to develop a method for treating the disease. Until now, there have been known treatments such as drug therapy using several drugs, and surgery, which implants a deep brain stimulator. However, drug therapy has short term-effects, including side effects after continuous administration, thereby not being easily applied. Furthermore, surgical therapy for Parkinson's disease imposes physical and economic burdens on the patient. Accordingly, an alternative treatment for Parkinson's disease is absolutely needed. Recently, cell replacement therapy, in which depleted or damaged cells can be replaced with new healthy ones, has been considered as an effective treatment for the disease. In particular, as studies on human stem cells have rapidly developed, many studies for using the stem cells to restore damaged tissues or cells which are hard to be repaired have been actively conducted widely in several applications. More specifically, since adult stem cells, which are used to restore damaged brain and neural tissues, are hard to obtain and supply, a study has been actively conducted on the differentiation of brain and neural cells from embryonic stem cells. Embryonic stem cells can be isolated from the inner cell mass of the blastocyst during the embryonic development stage, and can proliferate indefinitely in an undifferentiated state under specific culture conditions. Furthermore, since embryonic stem cells are pluripotent, they can differentiate into every cell type according to conditions. Therefore, embryonic stem cells can be a source of cells used in cell therapy of all kinds of the tissues. Cell replacement therapy for Parkinson's disease has been studied for a long time. However, cell replacement therapy using human embryonic stem cells has lately been studied, and many research institutes worldwide are currently engaged in this research. The current studies on human embryonic stem cells are described in the following publications: Human embryonic stem cells were induced to differentiate into neural precursors and various types of neurons (Su-Chun Zhang et al., 2001). The efficiency of generating dopaminergic neurons was increased by coculturing human embryonic stem cells with PA6 cells and then adding a glial cell derived neurotrophic factor, GDNF (Kimberley et al., University of Colorado, USA, 2004). It was confirmed that dopaminergic neurons were generated from embryonic stem cell aggregates by coculturing human embryonic stem cells with a stromal cell, PA6 cell, and the dopaminergic neurons generated a dopaminergic neuron specific marker. Unfortunately, it was reported that after transplantation, only a small portion of the cells generated were the dopaminergic neurons, and other type of cells still remained (Zeng et al., National Institute on Drug Abuse, USA, 2004). Embryonic stem cell aggregates were confirmed to differentiate into dopaminergic neurons in serum-free suspension culture without any other factors, in which the neurons released dopamine to respond electrophysiologically, and even after transplantation, the cells released dopamine (Schulz et al., BresaGen Inc. 2004). Human embryonic stem cells were induced to form a cluster of neural progenitors using a different stromal cell, MS5 cell, and then various growth factors and differentiation-inducing factors were added, so that 70% or more of the neurons were differentiated into dopaminergic neurons (Perrier et al., Sloan-Kettering Institute, 2004). A behavior disorder caused by Parkinson's disease was found to be improved, in which neural progenitors derived from human embryonic stem cells were transplanted into a Parkinsonian rat, and the transplanted cells spontaneously were differentiated into dopaminergic neurons (Tamir et al., Hadassah University Hospital, Israel, 2004). In Korea, there are a few research institutes that are engaged in the study on the differentiation of dopaminergic neurons from human embryonic stem cells. It was published that almost 20% of neurons derived from Human embryonic stem cells were differentiated into dopaminergic neurons with various differentiation-inducing factors, in which function of the differentiated cells and other makers, however, were not be confirmed, the efficiency was lower than that in other publications, and the survival rate after transplantation was not reported (Sepill Park et al., Maria Infertility Hospital, 2004). Human embryonic stem cells were cocultured with PA6 stromal cells, so as to differentiate into neural progenitors. The neural progenitors were cultured in the form of a spherical neural mass or a single cell with a combination of differentiation factors, thereby differentiating into dopaminergic neurons. Unfortunately, the differentiation efficiency and the result after transplantation were not impressive (Sanghoon Lee, et al., Hanyang University, Korea). Even though many research institutes worldwide are currently engaged in the research, there are still problems in that the efficiency of generating pure dopaminergic neurons from total cells is very low, and the survival rate and functionality after transplantation have not been improved. Therefore, the present inventors have established a method for obtaining neural progenitors, neurons, and pure dopaminergic neurons from embryonic stem cells with high efficiency of 80% or more, in which the cells at the stage of neural progenitor are subcultured to produce a large number of progenitors, neurons, and dopaminergic neurons, thereby completing the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention pertains to the conversion of picture information on a motion picture film into a video signal and, more particularly, to a film scanning apparatus commonly known as a telecine scanner, which is used for playback of a motion picture film for television production and programming. 2. Background Art A telecine scanner is ordinarily balanced "open gate" prior to scanning a motion picture film. This requires that the telecine scanner be adjusted so that when there is no film or filters in the light path from the light source through the film gate of the scanner to the image pickup devices, the red, green and blue video signal outputs are of equal amplitude. The equal signal amplitudes define a reference level corresponding to white light input, or some equivalent to white light input. Ordinarily the gain controls of the video amplifiers coupled to the image pickup devices are adjusted to produce such equal amplitudes, which are sometimes referred to as "100% video" output levels. "Open gate" balancing is especially adapted for motion picture print film, since equal amounts of the positive-reading density information in the film will thereafter affect light transmission equally in each color. Motion picture print film, moreover, has been traditionally preferred for telecine scanning because positive prints, besides being readily available, are already color balanced for direct viewing and require fewer color corrections than a negative film. However, the making of a positive film print from the original negative film requires at least one extra processing step, which results in some degradation of the image as well as color saturation of the resulting print relative to the negative. It would, consequently, be desirable to use a negative film . . . as well as a positive film . . . directly in a telecine scanner. A direct substitution of a negative film for a positive film is ordinarily unpromising since a negative film has an inherent base density that provides unequal transmission for like components of red, green, and blue light input to the negative film. The base density includes, in the case of negative film, the density of unexposed areas of the film, including the densities of the support and suspending gelatin, the fog density produced on development without exposure, and the unequal densities in red, green, and blue due to the inherent color mask used in a negative film to cancel unwanted dye absorption. This overall unequal density distribution becomes the point from which net densities produced by exposure and development are measured. The base density (also called the minimum density or "D-min.") of a negative film, for example, is about 0.3 units in red, 0.6 units in green and 0.9 units in blue. Such a typical negative material, therefore, blocks light transmission by about 50 % in red, 75% in green and 88% in blue--without any image information yet in the film. The penalty for balancing a telecine scanner "open gate" is thus taken out in signal to noise for negative film, that is, signal to noise performance is reduced by a factor of 2 in red, by 4 in green, and by 8 in blue when scanning a negative film. This is clearly unacceptable. Prior art attempts to correct for this imbalance generally depend upon either equalization of the light transmission of the negative film in red, green, and blue by adding filters into the light path (see, for example, U.S. Pat. No. 4,009,489), or by electronic matrixing of the red, green, and blue signals (see "The Interface of Color Negative Film and Telecine," by Karel Staes and Walter Markie, SMPTE Journal, March 1983, pp. 303-307), or by some combination of both (see "FDL60-An Advanced Film Scanning System," by Dieter Poetsch, SMPTE Journal, March 1984, pp. 216-227). Color equalization filters are inserted into the light path during film scanning so as to reduce red and green light transmission to match the blue light transmission of the negative film. When this method is utilized for a typical negative film, the video output signal amplitude is greatly reduced from its original "100% video" level. In order to restore the level needed for video processing, the gain of the image pickup amplifiers is uniformly increased, thus raising the typical noise level in the output signal. Alternatively, if optical equalization filters are not used, the individual gains of the image pickup amplifiers must be increased by different amounts, also increasing noise. In U.S. Pat. No. 4,009,489, the output video signals are balanced for negative scanning by inserting optical equalization filters into the light path that optically match the red image light output to the green image light output. Then the electrical gain of only the blue light channel is increased in order to balance the output video signals. A "100% video" level is then restored by increasing the illumination. A related technique was disclosed in the Poetsch article (SMPTE Journal. March 1984). On changeover to negative film scanning (from positive print scanning), a cyan correction filter is inserted into the light path to correct for the orange mask in negative film. The black-and-white levels of the RGB signals are then adjusted for different negative materials. Apart from the problem of handling the base density of negative film, a telecine scanner has to process films which are not primarily designed for the spectral sensitivities of its pickup devices, sometimes using imperfect light sources and less than ideal receptors. Electronic masking is used to correct for these factors. In the Poetsch article, a switchable RGB matrix provides the choice of two positions for positive film material and negative film material. Electronic masking oftentimes also attempts to correct for the mask dyes it "sees" in negative film. In the Staes and Markie article (SMPTE Journal, March, 1983), special matrix coefficients are developed to further eliminate the film mask. Conventional telecine scanners thus treat negative scanning as an adjunct of positive scanning. Correction is attempted by either increasing the gain of the preamplifier section (with or without correction filters added) or by increasing the amount of electronic matrixing, or by both. Merely increasing gain inevitably reduces the signal in relation to noise. More matrixing means more signal contribution in each color channel from the other color channels, i.e., more cross-channel "noise". It is clear that color negative motion picture film is not currently processed in the most effective way in a telecine scanner.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to cables made of twisted conductor pairs. More specifically, the present invention relates to twisted pair cables for high-speed data communications applications. With the widespread and growing use of computers in communications applications, the ensuing volumes of data traffic have accentuated the need for communications networks to transmit the data at higher speeds. Moreover, advancements in technology have contributed to the design and deployment of high-speed communications devices that are capable of communicating the data at speeds greater than the speeds at which conventional data cables can propagate the data. Consequently, the data cables of typical communications networks, such as local area network (LAN) communities, limit the speed of data flow between communications devices. In order to propagate data between the communications devices, many communications networks utilize conventional cables that include twisted conductor pairs (also referred to as “twisted pairs” or “pairs”). A typical twisted pair includes two insulated conductors twisted together along a longitudinal axis. The twisted pair cables must meet specific standards of performance in order to efficiently and accurately transmit the data between the communication devices. If cables do not at least satisfy these standards, the integrity of their signals is jeopardized. Industry standards govern the physical dimensions, the performance, and the safety of the cables. For example, in the United States, the Electronic Industries Association/Telecommunications Industry Association (EIA/TIA) provides standards regarding the performance specifications of data cables. Several foreign countries have also adopted these or similar standards. According to the adopted standards, the performance of twisted pair cables is evaluated using several parameters, including dimensional properties, interoperability, impedance, attenuation, and crosstalk. The standards require that the cables perform within certain parameter boundaries. For instance, a maximum, average outer cable diameter of 0.250″ is specified for many twisted pair cable types. The standards also require that the cables perform within certain electrical boundaries. The range of the parameter boundaries varies depending on the attributes of the signal to be propagated over the cable. In general, as the speed of a data signal increases, the signal becomes more sensitive to undesirable influences from the cable, such as the effects of impedance, attenuation, and crosstalk. Therefore, high-speed signals require better cable performance in order to maintain adequate signal integrity. A discussion of impedance, attenuation, and crosstalk will help illustrate the limitations of conventional cables. The first listed parameter, impedance, is a unit of measure, expressed in Ohms, of the total opposition offered to the flow of an electrical signal. Resistance, capacitance, and inductance each contribute to the impedance of a cable's twisted pairs. Theoretically, the impedance of the twisted pair is directly proportional to the inductance from conductor effects and inversely proportional to the capacitance from insulator effects. Impedance is also defined as the best “path” for data to traverse. For instance, if a signal is being transmitted at an impedance of 100 Ohms, it is important that the cabling over which it propagates also possess an impedance of 100 Ohms. Any deviation from this impedance match at any point along the cable will result in reflection of part of the transmitted signal back towards the transmission end of the cable, thereby degrading the transmitted signal. This degradation due to signal reflection is known as return loss. Impedance deviations occur for many reasons. For example, the impedance of the twisted pair is influenced by the physical and electrical attributes of the twisted pair, including: the dielectric properties of the materials proximate to each conductor; the diameter of the conductor; the diameter of the insulation material around the conductor; the distance between the conductors; the relationships between the twisted pairs; the twisted pair lay lengths (distance to complete one twist cycle); the overall cable lay length; and the tightness of the jacket surrounding the twisted pairs. Because the above-listed attributes of the twisted pair can easily vary over its length, the impedance of the twisted pair may deviate over the length of the pair. At any point where there is a change in the physical attributes of the twisted pair, a deviation in impedance occurs. For example, an impedance deviation will result from a simple increase in the distance between the conductors of the twisted pair. At the point of increased distance between the twisted pairs, the impedance will increase because impedance is known to be directly proportional to the distance between the conductors of the twisted pair. Greater variations in impedance will result in worse signal degradation. Therefore, the allowable impedance variation over the length of a cable is typically standardized. In particular, the EIA/TIA standards for cable performance require that the impedance of a cable vary only within a limited range of values. Typically, these ranges have allowed for substantial variations in impedance because the integrity of traditional data signals has been maintained over these ranges. However, the same ranges of impedance variations jeopardize the integrity of high-speed signals because the undesirable effects of the impedance variations are accentuated when higher speed signals are transmitted. Therefore, accurate and efficient transmissions of high-speed signals, such as signals with aggregate speeds approaching and surpassing 10 gigabits per second, benefit from stricter control of the impedance variations over the length of a cable. In particular, post-manufacture manipulations of a cable, such as twisting the cable, should not introduce significant impedance mismatches into the cable. The second listed parameter useful for evaluating cable performance is attenuation. Attenuation represents signal loss as an electrical signal propagates along a conductor length. A signal, if attenuated too much, becomes unrecognizable to a receiving device. To make sure this doesn't happen, standards committees have established limits on the amount of loss that is acceptable. The attenuation of a signal depends on several factors, including: the dielectric constants of the materials surrounding the conductor; the impedance of the conductor; the frequency of the signal; the length of the conductor; and the diameter of the conductor. In order to help ensure acceptable attenuation levels, the adopted standards regulate some of these factors. For example, the EIA/TIA standards govern the allowable sizes of conductors for the twisted pairs. The materials surrounding the conductors affect signal attenuation because materials with better dielectric properties (e.g., lower dielectric constants) tend to minimize signal loss. Accordingly, many conventional cables use materials such as polyethylene and fluorinated ethylene propylene (FEP) to insulate the conductors. These materials usually provide lower dielectric loss than other materials with higher dielectric constants, such as polyvinyl chloride (PVC). Further, some conventional cables have sought to reduce signal loss by maximizing the amount of air surrounding the twisted pairs. Because of its low dielectric constant (1.0), air is a good insulator against signal attenuation. The material of the jacket also affects attenuation, especially when a cable does not contain internal shielding. Typical jacket materials used with conventional cables tend to have higher dielectric constants, which can contribute to greater signal loss. Consequently, many conventional cables use a “loose-tube” construction that helps distance the jacket from unshielded twisted pairs. The third listed parameter that affects cable performance is crosstalk. Crosstalk represents signal degradation due to capacitive and inductive coupling between the twisted pairs. Each active twisted pair naturally produces electromagnetic fields (collectively “the fields” or “the interference fields”) about its conductors. These fields are also known as electrical noise or interference because the fields can undesirably affect the signals being transmitted along other proximate conductors. The fields typically emanate outwardly from the source conductor over a finite distance. The strengths of the fields dissipate as the distances of the fields from the source conductor increase. The interference fields produce a number of different types of crosstalk. Near-end crosstalk (NEXT) is a measure of signal coupling between the twisted pairs at positions near the transmitting end of the cable. At the other end of the cable, far-end crosstalk (FEXT) is a measure of signal coupling between the twisted pairs at a position near the receiving end of the cable. Powersum crosstalk represents a measure of signal coupling between all the sources of electrical noise within a cable entity that can potentially affect a signal, including multiple active twisted pairs. Alien crosstalk refers to a measure of signal coupling between the twisted pairs of different cables. In other words, a signal on a particular twisted pair of a first cable can be affected by alien crosstalk from the twisted pairs of a proximate second cable. Alien Power Sum Crosstalk (APSNEXT) represents a measure of signal coupling between all noise sources outside of a cable that can potentially affect a signal. The physical characteristics of a cable's twisted pairs and their relationships to each other help determine the cable's ability to control the effects of crosstalk. More specifically, there are several factors known to influence crosstalk, including: the distance between the twisted pairs; the lay lengths of the twisted pairs; the types of materials used; the consistency of materials used; and the positioning of twisted pairs with dissimilar lay lengths in relation to each other. In regards to the distance between the twisted pairs of the cable, it is known that the effects of crosstalk within a cable decrease when the distance between twisted pairs is increased. Based on this knowledge, some conventional cables have sought to maximize the distance between each particular cable's twisted pairs. In regards to the lay lengths of the twisted pairs, it is generally known that twisted pairs with similar lay lengths (i.e., parallel twisted pairs) are more susceptible to crosstalk than are non-parallel twisted pairs. This increased susceptibility to crosstalk exists because the interference fields produced by a first twisted pair are oriented in directions that readily influence other twisted pairs that are parallel to the first twisted pair. Based on this knowledge, many conventional cables have sought to reduce intra-cable crosstalk by utilizing non-parallel twisted pairs or by varying the lay lengths of the individual twisted pairs over their lengths. It is also generally known that twisted pairs with long lay lengths (loose twist rates) are more prone to the effects of crosstalk than are twisted pairs with short lay lengths. Twisted pairs with shorter lay lengths orient their conductors at angles that are farther from parallel orientation than are the conductors of long lay length twisted pairs. The increased angular distance from a parallel orientation reduces the effects of crosstalk between the twisted pairs. Further, longer lay length twisted pairs cause more nesting to occur between pairs, creating a situation where distance between twisted pairs is reduced. This further degrades the ability of pairs to resist noise migration. Consequently, the long lay length twisted pairs are more susceptible to the effects of crosstalk, including alien crosstalk, than are the short lay length twisted pairs. Based on this knowledge, some conventional cables have sought to reduce the effects of crosstalk between long lay length twisted pairs by positioning the long lay length pairs farthest apart within the jacket of the cable. For example, in a 4-pair cable, the two twisted pairs with the longer lay lengths would be positioned farthest apart (diagonally) from each other in order to maximize the distance between them. With the above cable parameters in mind, many conventional cables have been designed to regulate the effects of impedance, attenuation, and crosstalk within individual cables by controlling some of the factors known to influence these performance parameters. Accordingly, conventional cables have attained levels of performance that are adequate only for the transmission of traditional data signals. However, with the deployment of emerging high-speed communications systems and devices, the shortcomings of conventional cables are quickly becoming apparent. The conventional cables are unable to accurately and efficiently propagate the high-speed data signals that can be used by the emerging communications devices. As mentioned above, the high-speed signals are more susceptible to signal degradation due to attenuation, impedance mismatches, and crosstalk, including alien crosstalk. Moreover, the high-speed signals naturally worsen the effects of crosstalk by producing stronger interference fields about the signal conductors. Due to the strengthened interference fields generated at high data rates, the effects of alien crosstalk have become more significant to the transmission of high-speed data signals. While conventional cables could overlook the effects of alien crosstalk when transmitting traditional data signals, the techniques used to control crosstalk within the conventional cables do not provide adequate levels of isolation to protect from cable to cable alien crosstalk between the conductor pairs of high-speed signals. Moreover, some conventional cables have employed designs that actually work to increase the exposure of their twisted pairs to alien crosstalk. For example, typical star-filler cables often maintain the same cable diameter by reducing the thickness of their jackets and actually pushing their twisted pairs closer to the jacket surface, thereby worsening the effects of alien crosstalk by bringing the twisted pairs of proximate conventional cables closer together. The effects of powersum crosstalk are also increased at higher data transmission rates. Traditional signals such as 10 megabits per second and 100 megabits per second Ethernet signals typically use only two twisted pairs for propagation over conventional cables. However, higher speed signals require increased bandwidth. Accordingly, high-speed signals, such as 1 gigabit per second and 10 gigabits per second Ethernet signals, are usually transmitted in full-duplex mode (2-way transmission over a twisted pair) over more than two twisted pairs, thereby increasing the number of sources of crosstalk. Consequently, conventional cables are not capable of overcoming the increased effects of powersum crosstalk that are produced by high-speed signals. More importantly, conventional cables cannot overcome the increases of cable to cable crosstalk (alien crosstalk), which crosstalk is increased substantially because all of the twisted pairs of adjacent cables are potentially active. Similarly, other conventional techniques are ineffective when applied to high speed communications signals. For example, as mentioned above, some traditional data signals typically need only two twisted pairs for effective transmissions. In this situation, communications systems can usually predict the interference that one twisted pair's signal will inflict on the other twisted pair's signal. However, by using more twisted pairs for transmissions, complex high-speed data signals generate more sources of noise, the effects of which are less predictable. As a result, conventional methods used to cancel out the predictable effects of noise are no longer effective. In regards to alien crosstalk, predictability methods are especially ineffective because the signals of other cables are usually unknown or unpredictable. Moreover, trying to predict signals and their coupling effects on adjacent cables is impractical and difficult. The increased effects of crosstalk due to high-speed signals pose serious problems to the integrity of the signals as they propagate along conventional cables. Specifically, the high-speed signals will be unacceptably attenuated and otherwise degraded by the effects of alien crosstalk because conventional cables traditionally focus on controlling intra-cable crosstalk and are not designed to adequately combat the effects of alien crosstalk produced by high-speed signal transmissions. Conventional cables have used traditional techniques to reduce intra-cable crosstalk between twisted pairs. However, conventional cables have not applied those techniques to the alien crosstalk between adjacent cables. For one, conventional cables have been able to comply with specifications for slower traditional data signals without having to be concerned with controlling alien crosstalk. Further, suppressing alien crosstalk is more difficult than controlling intra-cable cross-talk because, unlike intra-cable crosstalk from known sources, alien crosstalk cannot be precisely measured or predicted. Alien crosstalk is difficult to measure because it typically comes from unknown sources at unpredictable intervals. As a result, conventional cabling techniques have not been successfully used to control alien crosstalk. Moreover, many traditional techniques cannot be easily used to control alien crosstalk. For example, digital signal processing has been used to cancel out or compensate for effects of intra-cable crosstalk. However, because alien crosstalk is difficult to measure or predict, known digital signal processing techniques cannot be cost effectively applied. Thus, there exists an inability in conventional cables to control alien crosstalk. In short, conventional cables cannot effectively and accurately transmit high-speed data signals. Specifically, the conventional cables do not provide adequate levels of protection and isolation from impedance mismatches, attenuation, and crosstalk. For example, the Institute of Electrical and Electronics Engineers (IEEE) estimates that in order to effectively transmit 10 Gigabit signals at 100 megahertz (MHz), a cable must provide at least 60 dB of isolation against noise sources outside of the cable, such as adjacent cables. However, conventional cables of twisted conductor pairs typically provide isolations well short of the 60 dB needed at a signal frequency of 100 MHz, usually around 32 dB. The cables radiate about nine times more noise than is specified for 10 Gigabit transmissions over a 100 meter cabling media. Consequently, conventional twisted pair cables cannot transmit the high-speed communications signals accurately or efficiently. Although other types of cables have achieved over 60 dB of isolation at 100 MHz, these types of cables have shortcomings that make their use undesirable in many communications systems, such as LAN communities. A shielded twisted pair cable or a fiber optic cable may achieve adequate levels of isolation for high-speed signals, but these types of cables cost considerably more than unshielded twisted pairs. Unshielded systems typically enjoy significant cost savings, which savings increase the desirability of unshielded systems as a transmitting medium. Moreover, conventional unshielded twisted pair cables are already well-established in a substantial number of existing communications systems. It is desirable for unshielded twisted pair cables to communicate high-speed communication signals efficiently and accurately. Specifically, it is desirable for unshielded twisted pair cables to achieve performance parameters adequate for maintaining the integrity of high-speed data signals during efficient transmission over the cables.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a video input and output device which inputs video data for transmission from camera and outputs video data to a monitor in a freeze-frame video phone over a standard telephone line which transmits and receives freeze-frame video data, in appropriate intervals, between the users. In the Nippon TTC standard for freeze-frame video phone, the grey levels for a pixel is 16, 32 or 64. However, it is insufficient for good video image quality. Also, in the freeze-frame video phone available on market, the video image quality can be easily disturbed when the object slightly moves because several frames are used just for one video image.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention Implementations of various technologies described herein generally relate to seismic data processing. In particular, various technologies described herein relate to a method for separating interfering signals in seismic data. 2. Description of the Related Art For many years, seismic exploration for oil and gas has been conducted by use of a source of seismic energy and the reception of the energy generated by the source by an array of seismic detectors. The source of seismic energy may be a high explosive charge or another energy source having the capacity to deliver a series of impacts, vibrations or seismic waves to the earth's surface. Seismic waves generated by these sources travel downwardly into geological formations in the earth's subsurface and are reflected back from strata boundaries and reach the surface of the earth at varying intervals of time, depending on the distance traveled and the characteristics of the subsurface traversed. These returning waves are detected by the sensors, which function to transform such seismic waves into electrical signals that represent features of geological formations. The detected signals are recorded for processing using digital computers. The processing then generates seismic data which can be analyzed to determine the presence or absence of probable locations of hydrocarbon deposits.
{ "pile_set_name": "USPTO Backgrounds" }
Gas turbine engines generally include a compressor to pressurize inflowing air, a combustor to burn a fuel in the presence of the pressurized air, and a turbine to extract energy from the resulting combustion gases. The turbine may include multiple rotatable turbine blade arrays separated by multiple stationary vane arrays. The turbine blades are coupled to a rotor disk assembly which is configured to rotate about an engine axis. The turbine blades and vanes, as well as the rotor disk assembly, are subject to relatively high temperatures. Accordingly, compressed air from the compressor section is channeled to the turbine section where it can be directed through the rotor disk assembly and cool various components of the rotor disk assembly.
{ "pile_set_name": "USPTO Backgrounds" }
Certain diseases or conditions may be treated, according to modern medical techniques, by delivering a medication fluid or other substance to the body of a patient, either in a continuous manner or at particular times or time intervals within an overall time period. For example, diabetes is commonly treated by delivering defined amounts of insulin to the patient at appropriate times. Some common modes of providing insulin therapy to a patient include delivery of insulin through manually operated syringes and insulin pens. Other modern systems employ programmable fluid infusion devices (e.g., insulin pumps) to deliver controlled amounts of insulin to a patient. A fluid infusion device suitable for use as an insulin pump may be realized as an external device or an implantable device, which is surgically implanted into the body of the patient. External fluid infusion devices include devices designed for use in a generally stationary location (for example, in a hospital or clinic bedside environment), and devices configured for ambulatory or portable use (to be carried or worn by a patient). External fluid infusion devices may establish a fluid flow path from a fluid reservoir or cartridge to the patient via, for example, a suitable hollow tubing, needle, or other type of fluid conduit. A fluid infusion device can be implemented with a rotary micropump mechanism that accurately delivers a precise volume of fluid with each revolution or cycle. The inlet of the micropump is connected to a fluid source such as a reservoir, and the outlet of the micropump is connected to a fluid delivery conduit that leads to the body of the patient. Under normal operating conditions, the micropump draws fluid from the fluid source (via a vacuum or suction action) and then delivers a predictable volume of fluid with each cycle. It is desirable to reliably and accurately detect at least two conditions, for purposes of alerting the user and/or to otherwise control the operation of the fluid infusion device in a responsive manner. One of these “fault” conditions is a downstream occlusion in the fluid delivery path (e.g., a blockage downstream from the outlet of the micropump). Another “fault” condition is an upstream occlusion (e.g., a blockage located before the inlet of the micropump). In this regard, an empty fluid reservoir can be considered to be an upstream occlusion because continued operation of the micropump in the presence of an empty reservoir does not result in the normally expected delivery of fluid. Accordingly, it is desirable to have a fluid infusion device and related operating methodologies that effectively detect upstream and/or downstream occlusions in the fluid delivery pathway associated with a rotary micropump. In addition, it is desirable to provide an improved rotary micropump having certain features and functionality that facilitate the detection of upstream and/or downstream occlusions in the fluid delivery pathway. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a portrait drawing apparatus for allowing patterns of the eyes, nose and other facial parts to be selected and combined as desired in order to draw a portrait. 2. Description of the Related Art Conventional portrait drawing apparatuses generally comprise a display unit that displays portrait image data, a memory unit that stores facial part pattern data, and an input unit used to determine the facial parts with which to draw a portrait. As shown in FIG. 7, the display unit comprises a display screen 81 having a facial part name display area 83 and a portrait drawing area 82. The facial part name display area 83 displays such facial part names 84 as the eyes, nose, mouth, eyebrows, ears, hair, facial contour, mustache, wrinkles and sideburns with which to construct a likeness. The portrait drawing area 82 is an area in which the operator draws a portrait using the facial parts whose names are listed in the area 83. With the conventional portrait drawing apparatus, the operator selects appropriate facial parts from the facial part names 84 in the facial part name display area 83, and arranges suitably the selected facial parts in the portrait drawing area 82. More specifically, the operator first determines the facial part with which to construct the portrait (step 91 in FIG. 8). When the facial part (e.g., the nose) is selected, candidates of the selected facial part are displayed successively in the "nose" position of the portrait drawing area 82 in FIG. 7 (step 92) The operator then selects one nose from among the candidates successively overwritten in the "nose" position of the portrait drawing area 82, the selected nose best representing the characteristic of the model's nose (steps 94 and 95). With the nose thus selected and positioned, other facial parts still need to be selected (NO in step 96). Thus step 91 is reached again, and another facial part is selected (steps 92 through 95). In this manner, the remaining facial parts are selected and positioned. When all facial parts have been selected (YES in step 96), the drawing of the portrait comes to an end. One disadvantage of the prior art portrait drawing apparatus is this: because each facial part needs to be selected from all those previously stored candidates of the part, the candidates being displayed successively in a predetermined order, it takes time for the operator to select the most likely candidate. In addition, the operator must be fully cognizant of the model's facial characteristics in order to make suitable decisions on the facial part candidates displayed. The more facial parts to be determined, the more time required to draw the portrait.
{ "pile_set_name": "USPTO Backgrounds" }
In the related art, a remote control signal learning device which stores a remote control signal transmitted from a remote controller, and performs a predetermined operation if the same remote control signal as the stored remote control signal is received, is known. Since a digital optical signal which is used as a remote control signal is configured by an infrared ray, sunlight or light from a fluorescent lamp becomes noise, and erroneous learning in the remote control signal learning device may occur. Accordingly, Patent Literature 1 describes that a leader pulse of a remote control signal is detected, a non-signal period is predicted from the leader pulse, and the remote control signal is not acquired during the period (pause period). According to the invention of Patent Literature 1, the operation prevents acquisition of a noise signal inserted during the pause period.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a solid electrolyte gas sensor using a solid electrolyte material such as zirconia ceramic. The present invention also relates to a process of producing a joined body of a ceramic member and a crystal of a hard-to-sinter oxyacid salt such as a sulphate or a carbonate. The present invention also relates to a process of producing a hard-to-sinter oxyacid salt such as a sulphate and a carbonate joined to a ceramic member. 2. Description of the Related Art Because of their high ion conductivity, solid electrolyte materials are advantageously-used in gas sensors. For example, zirconia ceramic, which has a oxygen ion conductivity sufficient for an oxygen gas sensor, is actually used as a sensor for detecting an oxygen concentration. FIG. 1 shows an oxygen gas sensor comprising zirconia ceramic, in which a tube 104 of zirconia ceramic has electrodes 105 and 106 on the inner and outer side walls thereof, respectively, to detect an electromotive force between the electrodes 105 and 106 while a selected gas is allowed to flow through the tube 104. This oxygen gas sensor detects an oxygen gas concentration by measuring an electromotive force generated between both sides of the wall of the zirconia ceramic tube 104 because of migration of oxygen ions through the zirconia ceramic wall when oxygen concentrations are different on both sides of the wall. Therefore, to improve the detecting efficiency of the gas sensor, the ion conductivity must be improved, so that a gas sensor using a solid electrolyte is actually operated while being heated at several hundreds of degrees centigrade. Thus, a gas sensor using a solid electrolyte material need be heated to an elevated temperature when operated, so that the shown oxygen gas sensor has a nichrome wire heater 107 surrounding and heating the zirconia ceramic tube 104. The numeral "108" denotes a thermocouple. This causes a first problem that a gas sensor is large and is complicated in structure. Sulphates, carbonates, nitrates, etc., have a poor sinterability and are difficult to form into a sintered body or, if sintered, have a poor durability, although they are used to make various devices including solid state gas sensors. Moreover, crystals of these salts, when produced by heating to a liquid and subsequent cooling to a solid, involve cracks induced by a change in the crystal structure occurring upon a phase transformation at a specific temperature. Such cracks are detrimental to those devices that need a hermetic seal. Sulphates, carbonates, nitrates, etc., are easily decompose to form SOx, COx, NOx, etc. at elevated temperatures and decompose by reaction with water at room temperature. Therefore, gas sensors using these salts are too fragile to be applied in practical use. Nevertheless, there is known a solid state gas sensor having a zirconia ceramic base on which auxiliary electrodes of a hard-to-sinter oxyacid salt such as a sulphate or a carbonate are provided. Zirconia ceramic has a conductivity for oxygen ions and thus functions as a solid electrolyte when heated at an elevated temperature ranging from about 550.degree. C. to about 1500.degree. C., so that the difference between oxygen gas concentrations prevailing on the both sides of a zirconia ceramic base or substrate induces oxygen ion conduction through the base thickness to generate an electromotive force between opposite sides of the base. A gas sensor operates by measuring the thus-generated electromotive force. FIG. 2 shows a sensor structure in which a sodium sulphate layer 206 is joined to the upper surface of a zirconia ceramic base 205 and a reference electrode 207 and a detecting electrode 208, both of platinum, are provided on the lower surface of the base 205 and the upper surface of the sodium sulphate layer 206. This structure is different from the aforementioned gas sensor in that an auxiliary electrode 206 of sodium sulphate is provided on the zirconia ceramic base 205 to detect sulphur dioxide and other sulphur oxides. To produce the above-recited gas sensors, it is important to form a crystal of a sulphate or a carbonate on a base. However, sulphates, carbonates, nitrates, etc. are not only hard to sinter but also easily decomposed and can hardly be applied in actual devices. The above-mentioned second problem must be solved in order to form a crystal of a hard-to-sinter oxyacid salt such as a sulphate on, and joined to, a ceramic base such as zirconia ceramic. There is also a third problem that, when a layer of a sulphate or the like is joined to a base of zirconia ceramic or other ceramic, interaction acting across the joint interface is week because the ceramic base has a smooth surface, so that the joined layer easily exfoliates from the base. To solve this problem, the base surface is roughened or scratched to provide an increased strength of the joint between a sulphate layer and the base. However, this does not provide a sufficient solution because thermal shocks such as repeated heating and cooling readily cause exfoliation.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a ceramic laminate material or compositional graded ceramic for use in the production of ion and/or electron conducting ceramic products. 2. Description of the Related Art Perovskite ceramic material in oxygen separation membranes, have the general formula: EQU A.sub.x A'.sub.x' A".sub.x" ByB'.sub.y' B".sub.y" O.sub.3-.delta.' wherein x+x'+x"=1, and PA1 y+y'+y"=1, and PA1 .delta. is a number, which renders the composition charge neutral. Those materials are known from U.S. Pat. No. 5,240,473. Dense ceramic membranes comprising a non-perovskite material represented by the formula: EQU (Sr.sub.1-y M.sub.y).sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. having electron conductivity and oxygen ion conductivity are known from U.S. Pat. No. 5,580,497. High oxygen ion conductivity of ceramic materials comprising a superstructural form of the cubic perovskite structure, with the general chemical formula: EQU A.sub.x A'.sub.x' B.sub.y B'.sub.y' O.sub.2.5 has been reported in the scientific literature. It has been observed that perovskite materials with high oxygen conductivity exhibit poor structural stability and high thermal expansion at low oxygen partial pressures leading to limitations when these materials are used in separation of oxygen. In practice a compromise between high oxygen conductivity or high stability must be accepted (cf. "Dimensional Instability of Doped Lanthanum Chromites in an Oxygen Pressure Gradient", P. V. Hendriksen, J. D. Carter and M. Mogensen, in Proceedings of the fourth international Symposium on Solid Oxide Fuel Cells, Ed. by M. Dokiya, O. Yamamoto, H. Tagawa and S. C. Singhal, The Electrochemical Society Proc. Vol. 95-1, (1995)934; "Dimensional Instability and effect chemistry of doped lanthanum chromites", P. H. Larsen, P. V. Hendriksen and M. Mogensen, Journal of Thermal Analysis, Vol. 49, (1997), 1263; and "Lattice Expansion induced strains in solid oxide fuel cell stacks and their significance for stack integrity", P. V. Hendriksen and O. Joergensen, in "High Temperature Electrochemistry: Ceramics and Metals". Proceedings of the 17th Risoe International Symposium on Materials Science (1996), 263).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to signal measurement systems and, more particularly, to generating trigger definitions in a signal measurement system. 2. Related Art Analyzers and testers are commonly available to assist in the development, manufacturing and troubleshooting of complex digital electronic/software devices and integrated circuits having incorporated therein microprocessors, random-access memories (RAM), read-only memories (ROM), and other circuits. Such analyzers and testers, generally referred to as signal measurement systems include logic analyzers, digital oscilloscopes, protocol analyzers, microprocessor emulators, bit error rate testers, network analyzers, among other instruments. Logic analyzers in particular have emerged for this purpose and are commercially available from a number of vendors, such as Hewlett-Packard Company, Tektronix, Inc., and others. Logic analyzers are digital data acquisition instruments that allow an operator to acquire and display digital signal data from a large number of logic signals (xe2x80x9csignalsxe2x80x9d), such as those that travel over address, data and control lines of a device under test (DUT). A device under test may include one or more separately packaged devices such as those noted above as well as other circuits and devices. The signals are acquired from the device under test on hardwired lines referred to as channels. The channels may be physically assembled into groups commonly referred to as pods. The received signals are sampled and digitized to form signal data. Digitizing typically includes comparing a voltage magnitude of each logic signal sample to a reference voltage to determine the logic state of the signal. Sampling may occur at one of a number of selectable rates, depending on the frequency at which the sampled signals change logic states. The resultant signal data are stored, under the control of a sampling clock, in a signal data memory generally having a fixed size. The data are typically stored in a sequential manner such that consecutive signal samples are stored in consecutive memory locations. Due to the quantity of signal data, signal data memory is commonly implemented as a wrap-around buffer. Selection of the signal data to be subsequently presented on a display is determined by an operator-defined trigger specification. The trigger specification (also referred to as a trigger set-up) is specified generally by a trigger definition, and a number of parameters collectively referred to herein as trigger control parameters or, simply, trigger controls. The trigger definition identifies the occurrences that result in signal data being stored. The trigger controls identify the characteristics of the captured signal data including, for example, the relative position of the occurrence defined by the trigger definition and the signal data to be stored. A predetermined quantity of signal data occurring before and after the specified occurrence is then stored in memory for subsequent analysis. A trigger definition, also referred to as a trigger sequence, is comprised of one or more trigger sequence levels. Each sequence level may include any number of trigger branches each of which sets forth a branch condition that causes the logic analyzer to execute the action defined in that trigger branch. Such execution results in the storage of signal data or further processing of a subsequent sequence level. The final branch condition that causes the acquisition of signal data is commonly referred to as a trigger condition. Branch conditions are specified by the occurrence of one or more events. An event is defined as an occurrence of certain characteristics or properties of a signal, such as a rising or falling edge of a signal, a logic high or logic low signal state, etc. Events may also be defined based on internal resources, such internal timers, counters, etc. Typically, a branch condition specifies a number of events that occur simultaneously or in a relative time sequence. After the trigger specification is specified, the operator can perform a measurement; that is, initiate acquisition of signal samples. When signal data capture is initiated, the signal data is compared to the specified trigger definition. When the trigger definition is satisfied, signal data is captured in accordance with the specified trigger controls and stored in signal data memory. Subsequently, the signal data memory may be sequentially accessed and signal data memory displayed. Constructing a trigger definition can be very complicated and time consuming. Conventionally, trigger definitions are expressed in an esoteric trigger programming language. Learning such a programming language is often difficult; proficiency often requires many years of practice. However, even with such proficiency and knowledge, formulation of even simple trigger definitions still requires considerable time and effort due to the complexity of the programming language. In other words, such programming languages, although suited for development of complicated trigger definitions, are burdensome to developing simple and complicated trigger definitions alike. The present invention is an integrated trigger function display system and methodology for trigger definition development in a signal measurement system having a graphical user interface. The present invention contemporaneously displays one or more trigger function names and an associated trigger function descriptor describing a trigger function identified by the associated trigger function name. The trigger name is displayed in a trigger name display region of a display window that concurrently displays a plurality of trigger function names. The descriptor is contemporaneously displayed in a trigger descriptor region of the display window so as to be visually-associated with the associated trigger name by the operator. A trigger definition is comprised of one or more trigger functions. Each trigger function is a graphical representation of an underlying one or more trigger primitives. A trigger primitive is translated into a form suitable for controlling the signal measurement system. Trigger primitives comprise one or more trigger branches used to form a sequence level of the trigger definition. For a selected trigger function, either the trigger function or its underlying trigger primitives are displayed in a trigger definition region of the display window for editing by the operator. Preferably, multiple such trigger functions or primitives may be selected and displayed in a trigger definition region on the display window simultaneously or sequentially to form a desired trigger definition. A number of aspects of the invention are summarized below, along with different embodiments of each of the summarized aspects. It should be understood that the embodiments are not necessarily inclusive or exclusive of each other and may be combined in any manner that is non-conflicting and otherwise possible, whether they be presented in association with a same or different aspect of the invention. It should also be understood that these summarized aspects of the invention are exemplary only and are considered to be non-limiting. In one aspect of the invention, an integrated trigger function display system for trigger definition development in a signal measurement system having a graphical user interface is disclosed. The trigger function display system is constructed and arranged to contemporaneously display in a visually-associated manner a trigger function name and an associated trigger function descriptor. The trigger function name identifies an associated trigger function while the descriptor provides additional description of the trigger function identified by the associated trigger function name. The trigger name is displayed in a trigger name region of a display window that concurrently displays a plurality of trigger function names. The descriptor is displayed in a trigger descriptor region of display window. In one embodiment, a trigger definition region is contemporaneously displayed in the display window for editing by the operator. For a selected trigger function, either a trigger function display or one or more underlying trigger primitives comprising the selected trigger function is displayed. In one embodiment, the integrated trigger function display system includes a trigger function resource library including a plurality of predefined trigger function objects. Each trigger function object includes a trigger function name, one or more trigger primitives, and a corresponding trigger function display for representing one or more trigger primitives on the graphical user interface, and a trigger function descriptor associated with the trigger function object. The library also includes a trigger definition maintenance module constructed and arranged to maintain copies of selected trigger function objects that form a current trigger definition and to convert the selected trigger functions to a trigger primitive form for subsequent translation to a form suitable for capturing signal data in the signal measurement system. In another aspect of the invention, a trigger development system for trigger definition development in a signal measurement system having a graphical user interface is disclosed. The trigger function display system is constructed and arranged to contemporaneously display in an operatively integrated and visually-associated manner, a trigger name display region, an associated trigger function descriptor and a trigger definition region. A trigger function name is displayed in the trigger name display region. An associated trigger function descriptor describing a trigger function identified by the associated trigger function name is displayed in the descriptor display region. A trigger function is displayed in a trigger definition region of display window for editing, wherein a trigger function is generated in the trigger definition display window in response to an operator selection on the trigger function name display region or the trigger descriptor display region on graphical user interface. In a still further aspect of the invention, a trigger display system for trigger definition development in a signal measurement system having a graphical user interface is disclosed. The trigger display system displays a trigger name region having names corresponding to electable trigger functions and a trigger definition region including a first trigger definition comprising a plurality of selected trigger functions displayed in corresponding sequence levels, one or more of multiple sequence levels designated to comprise a user-created trigger function wherein the operator-created trigger function is configured to be a selectable trigger function and wherein selection of user-created trigger function results in inclusion of one or more sequence levels in a second trigger definition. In another aspect of the invention, a method for providing a trigger development environment in a signal measurement system that acquires signal data in accordance with a trigger definition is disclosed. The signal measurement system includes a graphical user interface and a data storage unit. The method includes a step of: a) displaying contemporaneously on the graphical user interface a trigger name region having a plurality of trigger function names displayed therein, each trigger name identifying an associated trigger function, and a trigger descriptor region operatively coupled to the trigger names display region and having a first trigger function descriptor displayed therein, wherein the trigger function descriptor is visually associated with an identified one of plurality of trigger function names displayed within trigger names display region. In one embodiment, step a) further includes the step of: 1) displaying in trigger descriptor region a second trigger function descriptor visually associated with a second of plurality of trigger function names in response to a user identification of second trigger function name. In another embodiment, step b) includes the steps of: 1) receiving one or more availability factors, each availability factor providing information indicative of a current measurement scenario; 2) determining which the libraries contain trigger functions qualifying for a current measurement scenario; and 3) retrieving one or more trigger functions from qualifying trigger function libraries. In another embodiment, step d) includes the steps of: 1) receiving an operator selection of a described sequence level relative to which a desired trigger function is inserted; 2) select a desired trigger function from plurality of trigger functions displayed in trigger function name display region; and 3) incorporating selected trigger function in accordance with an operator insert instruction. In another aspect of the invention, a method of creating a trigger function for use in a trigger development environment in a signal measurement system that acquires signal data in accordance with a trigger definition is disclosed. The method includes the steps of: a) creating a trigger definition having a plurality of trigger functions; b) receiving an operator selected two or more of the plurality of trigger functions; and c) including two or more trigger functions in a second trigger definition. In a further aspect, a method of providing a trigger development environment in a signal measurement system is disclosed. The method includes the steps of: a) creating a display window having three regions; b) creating a list of trigger function names in a first of the three regions; c) creating a descriptor region having at least one descriptor visually-associated with a corresponding one of the list of trigger function names in a second of the three regions; and d) creating a trigger definition where a selected trigger name from the list of trigger names results in a display of a corresponding trigger function in a third of the three regions. Various embodiments of the present invention provide certain advantages and overcome certain drawbacks of the conventional techniques. Not all embodiments of the invention share the same advantages and those that do may not share them under all circumstances. Further features and advantages of the present invention as well as the structure and operation of various embodiments of the present invention are described in detail below with reference to the accompanying drawings. In the drawings, like reference numerals indicate identical or functionally similar elements. Additionally, the left-most one or two digits of a reference numeral identifies the drawing in which the reference numeral first appears.
{ "pile_set_name": "USPTO Backgrounds" }
Semiconductors are widely used in integrated circuits for electronic devices such as computers and televisions. These integrated circuits typically combine many transistors on a single crystal silicon chip to perform complex functions and store data. Semiconductor and electronics manufacturers, as well as end users, desire integrated circuits which can accomplish more in less time in a smaller package while consuming less power. However, many of these desires are in opposition to each other. For instance, simply shrinking the feature size on a given circuit from 0.5 microns to 0.25 microns can increase power consumption by 30%. Likewise, doubling operational speed generally doubles power consumption. Miniaturization also generally results in increased capacitive coupling, or crosstalk, between conductors which carry signals across the chip. This effect both limits achievable speed and degrades the noise margin used to insure proper device operation. One way to diminish power consumption and crosstalk effects is to decrease the dielectric constant of the insulator, or dielectric, which separates conductors. Probably the most common semiconductor dielectric is silicon dioxide, which has a dielectric constant of about 3.9. In contrast, air (including partial vacuum) has a dielectric constant of just over 1.0. Consequently, many capacitance-reducing schemes have been devised to at least partially replace solid dielectrics with air. U.S. Pat. No. 5,103,288, issued to Sakamoto, on Apr. 7, 1992, describes a multilayered wiring structure which decreases capacitance by employing a porous dielectric with 50% to porosity (porosity is the percentage of a structure which is hollow) and pore sizes of roughly 5 nm to 50 nm. This structure is typically formed by depositing a mixture of an acidic oxide and a basic oxide, heat treating to precipitate the basic oxide, and then dissolving out the basic oxide. Dissolving all of the basic oxide out of such a structure may be problematic, because small pockets of the basic oxide may not be reached by the leaching agent. Furthermore, several of the elements described for use in the basic oxides (including sodium and lithium) are generally considered contaminants in the semiconductor industry, and as such are usually avoided in a production environment. Methods described in the '288 patent for creating multilayered wiring structures using porous dielectrics show that all wiring levels which will eventually contain porous dielectric must be formed before any porous dielectric layer is completed. Such radical departures from standard production techniques have often proven to contain many hidden barriers to practical and timely implementation, such that an otherwise good idea (i.e. porous dielectrics) may never see production unless simplifying innovations are made.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a nonvolatile memory device and a method of manufacturing the same. 2. Description of the Related Art A nonvolatile semiconductor memory (NVSM) is categorized into a floating gate type or a metal insulator semiconductor (MIS) type in which two or more kinds of dielectric layers are stacked. A floating type NVSM functions as a memory using potential wells, and an erasable programmable read only memory (EPROM) tunnel oxide (ETOX) structure is being widely used as a flash electrically erasable and programmable read only memory (flash EEPROM). An MIS type NVSM functions as a memory using trap sites that exist between a dielectric layer and a bulk or between dielectric layers. Typically, the MIS type NVSM can be classified into a metal-oxide-nitride-oxide-silicon (MONOS) type, a silicon-oxide-nitride-oxide-silicon (SONOS) type, and the likes. FIG. 1 is a cross-sectional view of a conventional NVSM having a MONOS or SONOS type structure. Referring to FIG. 1, a source region 16S and a drain region 16D are disposed in a semiconductor substrate 11 and separated apart from each other. A tunnel oxide layer 12, a charge trapping layer 13, a blocking oxide layer 14, and a gate electrode 15 are sequentially stacked on a channel region 17 interposed between the source and drain regions 16S and 16D. Insulating spacers 18 are formed on the sidewalls of the stacked structure. The tunnel oxide layer 12 is formed of thermal oxide, the charge trapping layer 13 is formed of silicon nitride, and the blocking oxide layer 14 is formed of oxide using wet oxidation or chemical vapor deposition (CVD). In the case of the MONOS type, the gate electrode 15 is formed of a metal. In the case of the SONOS type, the gate electrode 15 is formed of doped polysilicon. The programming and erasing of the conventional NVSM will be described now. At the outset, during programming, if a sufficiently high positive (+) voltage is applied to the gate electrode 15, electrons emitted from the semiconductor substrate 11 tunnel the tunnel oxide layer 12 and are injected into the charge trapping layer 13. In this case, the blocking oxide layer 14 disposed on the charge trapping layer 13 prevents the electrons injected in the charge trapping layer 14 from leaking into the gate electrode 15 and also prevents injection of holes from the gate electrode 15 into the charge trapping layer 13. The electrons, which are injected into the charge trapping layer 13 through the tunnel oxide layer 12, are trapped in a bulk trap of the charge trapping layer 13 or in an interfacial trap between the charge trapping layer 13 and the blocking oxide layer 14, and a threshold voltage increases. During erasing, by applying a negative (−) voltage to the gate electrode 15, the trapped electrons are emitted to the semiconductor substrate 11 so that a threshold voltage is reduced to the same value as before programming. In recent years, with the developments in nanotechnologies, much research into the use of an NVSM and a 2-bit-per-cell NVSM using nano-crystals has been conducted. FIG. 2 is a cross-sectional view of a conventional NVSM using nano-crystals. Referring to FIG. 2, a source region 26S and a drain region 26D are disposed in a semiconductor substrate 21 and separated apart from each other. A tunnel oxide layer 22, a charge trapping layer 23, a blocking oxide layer 24, and a gate electrode 25 are sequentially stacked on a channel region 27 interposed between the source and drain regions 26S and 26D. Insulating spacers 28 are disposed on the sidewalls of the stacked structure. The charge trapping layer 23 is formed of clusters or dots having a size of several to several tens of nm, namely, nano-crystals 23NC. A method of manufacturing the charge trapping layer 23 formed of the nano-crystals 23NC is disclosed in the following two papers. (I) “A Silicon Nanocrystals Based Memory by Sandip Tiwari et al., Appl. Phys. Lett. 68(10) p. 1377(1996)”: A tunnel oxide layer having a thickness of 1.1 to 1.8 nm is formed on a semiconductor substrate in which source and drain regions are disposed. Nanocrystals having a diameter of 5 nm, which constitute a charge trapping layer, are formed on the tunnel oxide layer by a space of 5 nm using a CVD apparatus. The density of the nanocrystals is about 1×1012/cm−2. A 7-nm blocking oxide layer is formed on the charge trapping layer, and a gate electrode is formed on the blocking oxide layer. (II) “Fast and Long Retention-Time nano-Crystal Memory by Hussein I. Hanafi et al., IEEE Trans. Electron Device, Vo1. 43, p. 1553(1996)”: A 5 to 20-nm oxide layer is formed on a semiconductor substrate. A high concentration of Si or Ge ions are implanted into the oxide layer and supersaturated. In this case, the ions are implanted with about 5 KeV and a dose of about 5×1015 ions/cm2. The doped oxide layer is annealed in an N2 atmosphere at 950° C. for 30 minutes, thereby growing Si or Ge nano-crystals in the oxide layer to a diameter of 5 nm. A source region and a drain region are formed in the semiconductor substrate and separated a predetermined distance apart from each other, and a gate electrode is formed on a portion of the oxide layer corresponding to a channel region interposed between the source and drain regions. The conventional NVSMs using nano-crystals have the advantages of the foregoing conventional MONOS or SONOS type NVSMs. Also, charges, which are injected into nano-crystals of a charge trapping layer, cannot easily move between the nano-crystals. Accordingly, in comparison with the conventional MONOS or SONOS type NVSMs, NVSMs using nano-crystals can suppress lateral diffusion of charges, be effectively embodied as 2-bit-per-cell NVSMs, and be easily downscaled. However, when a conventional NVSM using nano-crystals is embodied as a 2-bit-per-cell memory, it is very difficult to scale down the NVSM to a nanoscale or terascale ultrahigh-integrated device. For example, to manufacture a 2-bit-per-cell device, charges are partially injected into charge trapping layers adjacent to source and drain regions. In the case of a short channel, both a superposition effect and a lateral diffusion of charges occur during the injection of the charges, thus disturbing 2-bit-per-cell operations of the NVSM. To solve this problem, channel length should be maintained above a predetermined value. In this case, it is impossible to further scale down NVSMs and further increase the integration density thereof. Accordingly, the foregoing conventional NVSMs using nano-crystals cannot meet the requisitions of the next-generation semiconductor technologies, such as low voltage, subminiature size, ultrahigh integration, high performance, and high reliability.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a gas regulating valve, more particularly to a gas regulating valve which is capable of regulating the amount of gas flowing from a gas source to a gas consuming device. 2. Description of the Related Art A conventional gas feed valve includes a main body that is formed with a valve mounting portion. The valve mounting portion is confined by an inner wall surface that surrounds an axis. The inner wall surface is formed with a radially disposed gas inlet bore that is adapted to be connected to a gas source and is further formed with an axially extending gas outlet bore that is adapted to be connected to a gas consuming device. A tubular valve member is received in the valve mounting portion, is rotatable about the axis, and has inner and outer valve surfaces. The inner valve surface surrounds the axis and defines a gas passageway that is fluidly communicated with the gas outlet bore. The outer valve surface is in sliding contact with the inner wall surface of the valve mounting position. The valve member is formed with a large gas feed orifice and at least a small gas feed orifice through the inner and outer valve surfaces. The gas feed orifices are angularly spaced apart from each other and are in fluid communication with the gas passageway. When the valve member is rotated so as to register the large gas feed orifice with the gas inlet bore, the amount of gas flowing from the gas inlet bore into the gas outlet bore through the gas passageway is at a maximum. When the valve member is rotated so as to register the small gas feed orifice with the gas inlet bore, the amount of gas flowing from the gas inlet bore into the gas outlet bore through the gas passageway is at a minimum. When the valve member is rotated so as to register both the small gas feed orifice and a portion of the large gas feed orifice with the gas inlet bore, the amount of gas flowing from the gas inlet bore into the gas outlet bore through the gas passageway is between the maximum and minimum values. Although the aforementioned conventional gas feed valve achieves the purpose of regulating the amount of gas flowing from the gas source to the gas consuming device, gas flow can only be controlled among maximum, intermediate and minimum values.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to color video projection systems and particularly to a single light valve panel color projection display. Projection television (PTV) and video color display systems, especially rear projection display systems, are a popular way to produce large screen displays, i.e. picture diagonal of 40 inches or greater, as the projection method provides displays which are lighter, cheaper, and in many cases, superior in brightness and contrast, than non-projection based displays. Direct view cathode ray tube (CRT) based systems still dominate non-projection display technology, especially for, 9 inch to 30 inch color displays. In unit and dollar volume, the major market for all such displays is the consumer market. Size, cost, brightness, contrast and to a lesser extent, resolution are important characteristics of consumer designs. Because large direct view CRT based displays are heavier, bulkier, and more expensive, projection consumer displays dominate in sizes over forty inches. Consumer projection technology has been dominated by a system employing three small monochrome type CRTs, one each for the red, green and blue portions of the image, and three projection lenses. These systems employ complex electronic circuits to distort the rasters of the images on at least two of the CRTs so that the composite projection image is converged. Effecting the proper adjustment of the electronics to obtain the converged image is a time consuming, tedious process. Further maintaining the quality of the convergence in the system after it has been set up at the factory remains an issue. CRT based projection systems require a stable, source of high voltage, with the attendant requirement of giving careful attention to avoiding excess X-ray generation. The CRTs and projection lenses are not inexpensive components, so the requirement of using three of each add substantially to the cost of the systems. In three CRT-three lens PTV systems, there is also a tendency for the image to change color depending on the horizontal viewing angle--a phenomenon called "color shift". Color shift can be partially controlled by using special projection screen designs. These designs require meeting difficult production tolerances for screen registration and thickness. If not for the requirement of controlling color shift, it would be much easier to design and produce projection screens to provide optimal distribution of light. With a view toward the advantages of projection systems over direct view, but also some disadvantages, which were just detailed, engineers have been seeking alternative means of designing projection display systems. Accordingly, patents have issued and products have been produced employing three, matrix addressed, small light valve panels, most commonly TFT (thin film transistors) array LCD panels, instead of CRTs. These systems require only a single projection lens, if the light from three LCD panels are combined via the use of dichroic filters, a.k.a. dichroic mirrors. Convergence of the images is obtained by precision adjustment of the alignment of two of the panels. Initial interest in such displays has been their compactness when employed for front projection, and excellent contrast. These LCD panels are costly components, and consequently these LCD projectors cost more than CRT based projectors. The present invention also differs from "single panel" designs which employ special light valve panels in which separate sub-pixels are used to modulate respective primary colors. Such color panel technologies have three limitations: firstly, the requirement for sub-pixels limits the effective image resolution. Secondly, white light falls on each of the sub-pixels, but only the color of the light for which the sub-pixel is designed is usable--the remainder is wasted. Thus a two-thirds loss of efficiency results. A further loss in efficiency is caused by the reduced effective aperture of the panel for a given polychrome resolution capability--because of the presence of the sub-pixels with attendant masks and traces. Thirdly, state of the art panel resolution is lower, or the panel cost is higher, because of using subpixels.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to push buttons for pressurized aerosol containers for atomizing liquids. More particularly, it relates to containers of this type which contain a liquid product to be discharged wherein the ejection of the liquid product is effected under the influence of the pressure of a propulsive gas (for example, nitrous oxide or carbon dioxide) which is soluble in the liquid to be atomized (alcohol or water--either in pure form or in a mixture--can form the main constituents of the liquid). When the user opens the liquid discharge opening by depressing or tilting the push button, the liquid which is saturated in propulsive gas rushes through the push button under the action of the internal pressure of the propulsive gas and is atomized by the distribution opening of the push button and by the elastic force of the propulsive gas dissolved in the liquid to be vaporized. When the pressure exerted on the push button is reduced, a non-vaporized jet of liquid is frequently produced and there may even be an overflow on the push button. Thus, the user who operates his atomizer notices the following phenomena: by actuating the control member (push button) he discharges a finely divided jet of liquid. When pressure is no longer applied to the control member an undivided jet of liquid and an overflow on the push button are produced. The resultant effect is disagreeable. 2. Description of the Prior Art Numerous devices have been developed to obviate the above disadvantage such as valves which ensure that gas is present on termination of use to discharge under pressure the liquid contained in the push button and to ensure total vaporization.
{ "pile_set_name": "USPTO Backgrounds" }
The processes of LPD technology use the following chemical formulae: EQU H.sub.2 SiF.sub.6 +2H.sub.2 O=6HF+SiO.sub.2 EQU H.sub.3 BO.sub.3 +4HF=BF.sub.4 +H.sub.3 +2H.sub.2 O at 40.degree. C. or lower temperature A. The advantages of LPD-SiO.sub.2 are as follows: (1) The equipment used for LPD is simpler and cheaper than that of a vacuum system and also can be used on larger wafers to grow SiO.sub.2. PA1 (2) The growth conditions can be easily controlled. PA1 (3) The growth temperature is lower than that of thermal Oxide or CVD. This advantage can help maintain the complete structure of the chip and the features of the devices. PA1 (4) There is low thermal stress and good gap fill capability. PA1 (5) There is less leakage of current density. PA1 (6) There is high dielectric breakdown strength. PA1 (7) Using the film can simplify the production process, lower the cost, and enhance packing density when applied in the integration of the production process. PA1 (8) the optionally to photoresist. PA1 (1) a "Mask" material to prevent the expansion and distribution of impurities, PA1 (2) insulator between devices, e.g., field oxide or trench isolation, PA1 (3) dielectrics between multi-metal layers, PA1 (4) VIA formation, PA1 (5) as single "Mask" to finish twin retrograde well structure of CMOS, PA1 (6) LDD (Light Doped Drain) oxide spacer width design. PA1 1. The simple pretreatment method of silicon by nitric acid can assist the growth of LPD-SiO.sub.2. PA1 2. It is not necessary to have a previous high-temperature deposited oxide film on the wafer, which makes the fabrication of an IC more flexible. PA1 3. This method can enhance the deposition rate of SiO.sub.2 and shorten the length of time of the IC fabrication process. PA1 4. The less stress produced inside the LPD-SiO.sub.2 film can increase the IC's reliability. PA1 5. The deposited LPD-SiO.sub.2 film has a smaller dielectric constant which can decrease parasitic capacitance to improve the IC speed. B. The applications of LPD-SiO.sub.2 in the manufacturing process of integrated circuits are:
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention A technique disclosed in the present specification relates to a network apparatus which is capable of being connected to a network and with peripheral devices, and controls accesses to the peripheral devices from terminals on the network. More particularly, the technique relates to a network apparatus which is capable of reserving an access right to a peripheral device that is not yet connected to the apparatus, from one of the terminals on a network, and prevents the peripheral device from being accessed from other terminals on the network after the device has been connected to the apparatus. 2. Description of the Related Art Peripheral devices that are connected to an apparatus connected to a network and not having direct connection to the network are widely known. Such peripheral devices can be accessed from terminals on the network. In such peripheral devices, USBs and RS232Cs for example are often used as interfaces. In general, peripheral devices directly connected to a network can be accessed from plural terminals simultaneously through the network. However, each of the peripheral devices connected to the apparatus via a USB or the like only allow one-to-one access between the device itself and the apparatus accessing the device. In this specification, a peripheral device which makes one-to-one access between the device itself and an apparatus connected therewith is referred to as “single-access peripheral device” or, simply, “peripheral device”, in regards to the characteristic of such “peripheral device” not being able to accept simultaneous accesses from plural terminals. In addition, the term “access” as used in the specification refers to the transmission, e.g. sending and receiving, of data to and from a peripheral apparatus. In other words, “access” refers to communication between peripheral apparatus and terminal. Such peripheral devices are each connected with a terminal capable of being connected to a network, and can be utilized by the other terminals on the network via the connected terminal; however, each of the peripheral devices cannot be accessed from plural terminals simultaneously and therefore, when the user of one terminal accesses the peripheral device, the users of the other terminals cannot access the peripheral device. For example, when the peripheral device is a scanner, there may be a case where a user inserts a document into the scanner, and while the user goes back to the place where his/her terminal is set, another user may operate the scanner before the initial user utilizes the scanner. To deal with such undesirable condition, Japanese Patent Application Publication No. 2001-236301 discloses an apparatus to which peripheral devices can be connected, and allows an access right reservation to one of the peripheral device for the user of the terminal. In the following, an apparatus capable of being connected to a network and to which peripheral devices can be connected is simply referred to as “network apparatus.”
{ "pile_set_name": "USPTO Backgrounds" }
This application is a continuation-in-part of application Ser. No. 749,907 filed June 28, 1985, now abandoned. This invention relates to products for absorbing aqueous fluids and, in particular, products for absorbing body fluids. The invention is specifically directed toward compositions for producing crosslinked polyelectrolytes which compositions are usable in commercial products for absorbing aqueous liquids and are particularly useful in producing absorbent composite materials which are coated or impregnated with such compositions and subsequently treated so as to produce a composite material incorporating polyelectrolyte which is crosslinked in situ. Highly absorbent crosslinked polyelectrolytes and methods for preparing the same are already known. U.S. Pat. Nos. 3,669,103 and 3,670,731 teach the use of these materials in diapers and dressings. U.S. Pat. Nos. 2,988,539; 3,393,168; 3,514,419 and 3,557,067 teach methods of making such absorbents and, in particular, are related to making water swellable crosslinked carboxylic copolymers that are either crosslinked during copolymerization or crosslinked after polymerization and then neutralized to result in pendant ionic moieties capable of imparting water retention properties to a finished material. Further, the process of incorporating such polyelectrolytes or their monomeric precursors into a substrate such as a fibrous web or a cellular, i.e. foam, material and then crosslinking in situ, is also known. Published European Patent Office Application 81302086.4 discloses impregnating a fibrous web with a solution of monomers, with or without crosslinking agents and then irradiating such impregnated web to polymerizing and/or crosslink in situ. U.S. Pat. Nos. 4,076,673; 3,980,663; 4,071,650 all exemplify teachings of preparing solutions for coating substrates which subsequently may be treated to produce in situ crosslinked polyelectrolytes. Unfortunately, these foregoing suggestions suffer from several drawbacks when it is contemplated to translate such suggestions into commercial processes. Suggestions directed toward irradiation techniques, when scaled to commercial proportions, require large capital investment for irradiating equipment such as, for example, an electron beam device, and, concommitantly, consume large quantities of energy for carrying out such processes. Additionally, in order to obtain high conversion of monomer to polymer, such irradiation technique requires still more energy input and also tend to over crosslink the polymer resulting in a decrease in absorption capacity. Those suggestions relating to preparing compositions comprising polyelectrolytes and crosslinking agents and then applying such composition to a substrate are also fraught with problems on a commercial level. A major drawback to such systems is the limited shelf life of the impregnating or coating concentration. Almost immediately upon mixing the polyelectrolyte with the crosslinker, a reaction begins that leads to gel formation. Once gelled the composition can no longer be used. Accordingly, a commercial process must, to utilize such suggestions, apply the components i.e., the polyelectrolyte and the crosslinker, in separate steps and hence suffer the concommitant inconvenience as well as the likelihood of locally applied non-uniform proportions of these components. The problem is compounded when such commercial processes are designed to impregnate a substrate with excess composition and then recirculate to reuse the excess. Such a system will be encountered when attempts are made to impregnate a fibrous or cellular web with vacuum deposition techniques such as are common in the art of producing bonded non-woven fabrics. In such a process, of necessity, the active components are intermixed and gelling follows. Accordingly, there is a need for providing a commercial process for in situ crosslinking of polyelectrolytes to make absorbents, and especially superabsorbents. The most pertinent prior art reference, Gross, U.S Pat. No. 4,079,029, discloses one possible way of doing this, involving: a solution useful to form water swellable articles of a carboxylic synthetic polyelectrolyte upon curing which comprises 1. a solvent selected from the group consisting of water, lower alcohols and mixtures thereof, 2. about 5 to about 60% by weight based on (1), of a crosslinkable carboxylic copolymer which contains in the copolymer (A) about 25 to about 98% by weight based on the total weight of the copolymer of an alkali metal salt of an olefinically unsaturated monocarboxylic acid; PA1 (B) about 2 to about 50% by weight of an olefinically unsaturated monocarboxylic acid; PA1 (C) about 25 to about 60% by weight of an alkyl ester of an olefinically unsaturated monocarboxylic acid and PA1 (D) about 0.3 to about 5.0% by weight of crosslinking units of an N-substituted acrylamide or methacrylamide having the formula H.sub.2 C.dbd.CR--C(O)--NHCH.sub.2 --O--R.sup.1 wherein R is selected from hydrogen or methyl and R.sup.1 is hydrogen or an alkyl group of 1-8 carbons. PA1 (a) a carboxylic polyelectrolyte monomer; PA1 (b) a reactive self crosslinking monomer having the formula: ##STR2## wherein R is selected from the groups consisting of H or CH.sub.3, n is selected from the group consisting of zero or the integers 1 to 5, and X is selected to be a group capable of reacting through self condensation or with carboxylic acid by condensation or ring opening; and PA1 (c) a hydrophobic monomer. The Gross patent specifically listed the following as examples of the N-hydroxymethyl or N-alkoxymethylene acrylamides or methacrylamides usable there: N-methoxymethyl acrylamide, PA0 N-propoxymethyl acrylamide, PA0 N-isopropoxymethyl acrylamide, PA0 N-ethoxymethyl acrylamide, PA0 N-methylol acrylamide, PA0 N-butoxymethyl acrylamide, and PA0 N-tertiary butoxy methyl acrylamide, PA0 N-isobutoxymethyl acrylamide, PA0 N-octyloxymethyl acrylamide, PA0 N-methoxymethyl methacrylamide, PA0 N-propoxymethyl methacrylamide, PA0 N-isopropoxymethyl methacrylamide, PA0 N-ethoxymethyl methacrylamide, PA0 N-methylol methacrylamide, PA0 N-butoxymethyl methacrylamide, PA0 N-tertiary butoxy methyl methacrylamide, PA0 N-isobutoxymethyl methacrylamide, and PA0 N-octyloxymethyl methacrylamide. In said Gross U.S. Pat. No. 4,079,029, the method of making water swellable films involves starting with the above composition of the polyelectrolytes having a pH range from 7 to 9 which subsequently is acidified by adding organic or inorganic acids to a pH range 3 to 6 and spread on a flat plate or roller of metal, plastic, or other impervious substrate and heated to a temperature greater than 30.degree. C. to crosslink the polyelectrolyte and drive off the excess water and/or alcohol. The film is then peeled off the plate or roller by a scraper to recover the intact film for subsequent storage or use. The present invention takes an opposite approach from said Gross patent, by starting with polyelectrolytes having an acid pH range and then increasing the pH (in contrast to Gross which starts with polyelectrolytes having a basic pH range and then decreasing the pH). The present invention uses a broader (but overlapping) reactive self crosslinking monomer than does Gross. It was defined in the parent application Ser. No. 749,907 of this application as one having the formula: ##STR1## wherein R is H or CH.sub.3, n is 0 or 1-5, and X is a group capable of reacting through self condensation or with carboxylic acid by condensation or ring opening, preferably wherein X is glycidyl, N-methylol, N-methylol alkyl ether having alkyl groups of 1-4 carbons, blocked isocyanate, N-methylol urethane, or aziridine. Of the above possible definitions of X, said Gross patent discloses X=N-methylol and X=N-methyol alkyl ether having alkyl groups of 1-4 carbons, and thus overlapped to that extent only. [The overlap is omitted from the claims of this CIP application] The Gross patent calls for a polyelectrolyte involving a copolymer having 4 different monomeric units, designated above as 2A., B., C. and D. Applicant's comparable polyelectrolyte at first appears different by involving a copolymer having only 3 different monomers, by lacking monomeric unit 2B which Gross defines as "about 2 to about 50% of an olefinically unsaturated monocarboxylic acid". However, under certain pH conditions (e.g. at pH5) Applicant's monomer comparable to Gross' monomeric unit 2A . . . "an alkali metal salt of an olefinically unsaturated monocarboxylic acid" exists in equilibrium with the free acid, so that some of Applicant's polyelectrolytes overlap with those of Gross under certain limited conditions. The presence of free carboxylic acid is a function of the pH of the polymer solution. At pH=5 about 50% of a polyacrylic acid polymer is in the acidic form. However, by increasing the pH to 9 all of the acid groups are converted to the carboxylate salt. The crosslinking reaction, described in Gross U.S. Pat. No. 4,079,029 will not take place unless the pH is reduced to below pH=6. This is described in column 3 lines 27-28, and is reflected in the Gross Patent Claim 2B as a free carboxylic acid, 2% to 50% by weight. In the present invention, in contrast to Gross, the best mode of making the superabsorbent involves increasing the pH to 9 with ammonium hydroxide solution, followed by drying and crosslinking. If this is done with sodium hydroxide, no crosslinking takes place (as demonstrated in Example II below) and no superabsorbent is formed. Additionally, a significantly more absorbent polymer is made from the pH=9 solution as compared to the pH=5 (see examples I, II below). Thus, a key difference between this invention of this application and Gross U.S. Pat. No. 4,079,029, is, that here the solution, from which an absorbent polymer is prepared, should have a pH greater than 7, preferably 9, and that at least 50% (by mole) of the neutralizing base must be ammonium hydroxide. The alkaline pH also increases the shelf life of the solution in the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
Hydraulic clutches generally include pressurized hydraulic fluid for actuation of the clutch. One or more seals are implemented to maintain hydraulic pressure and ensure optimal clutch performance. Some hydraulic clutches implement a lip seal for such purposes. The lip seal is preferably installed without rolling over during the installation process in order to create an effective seal and thereby maintain hydraulic clutch pressure.
{ "pile_set_name": "USPTO Backgrounds" }
A low pressure CVD method has been widely used in forming thin films in the course of fabricating semiconductor devices, e.g., IC, LSI or the like. Such process includes deposition of a boron doped silicon film on a substrate. In the past, diborane (B2H6) used to be utilized in doping boron into a silicon film by using a low pressure CVD apparatus (such as shown in FIG. 1). A boat holding a plurality of wafers vertically stacked is arranged to be loaded into a reaction furnace, and a reaction gas including diborane is introduced into the bottom region of the furnace. The reaction gas is propagated through the upper region, depositing thin films on the substrates. Such arrangement yields rather unfavorable intra-wafer non-uniformities in film thickness and specific resistance of, e.g., about 10 to 20% throughout all the regions from top to bottom. Furthermore, inter-wafer non-uniformity in specific resistance between the bottom region and the upper region of the CVD apparatus at uniform temperature is even worse to be, e.g., about 30 to 40%. These inter-wafer non-uniformities can be reduced by having a deliberate temperature gradient across the regions or raising a film forming temperature, but raising the growth temperature may poly-crystallize films, which may result in sharp rise in the specific resistance thereof. As a viable alternative, boron trichloride (BCl3) is employed as a doping gas instead of diborane (B2H6), thereby considerably reducing the intra-wafer non-uniformity in film thickness. Referring to FIG. 2, there is shown a comparison of the intra-wafer non-uniformity of thickness of boron doped polysilicon films, wherein B2H6 gas and BCl3 gas are varied as boron sources, respectively. (in both cases monosilane (SiH4) gas is fixed as a silicon source) The y-axis represents intra-wafer non-uniformity in film thickness of the boron doped polysilicon in percentage and the x-axis represents the location of the wafer in the boat, in terms of the slots (see FIG. 1). As can be clearly seen from FIG. 2, boron trichloride BCl3 provides a better intra-wafer uniformity in the film thickness than the diborane B2H6. Even in the case of using BCl3 as a doping gas, however, uniformity in the intra-wafer uniformity in the film thickness still ranges from about 5 to 6% in the bottom region (i.e., the region ranging from slot Nos. 11 to 36 in FIG. 1), which is still inadequate for use in a semiconductor device. Accordingly, there has been a continuous search for a way to improve the intra-wafer uniformity of the film thickness. The inter-wafer uniformity in the specific resistance of the boron doped polysilicon film is considerably improved by replacing diborane B2H6 with boron trichloride BCl3 as a source of boron. For instance, boron doped polysilicon formed by using monosilane SiH4 and boron trichloride BCl3 under the condition of a partial pressure of SiH4 at about 63.4 Pa and a partial pressure of BCl3 at about 3.2 Pa, wherein the flat film forming temperature ranges from about 400 to 420° C., yields the inter-wafer non-uniformity of the specific resistance thereof amounting to about 10%, which is also inadequate for use in a semiconductor device requiring non-uniformity to be less than 3%. One of the major factors attributing to the inter-wafer non-uniformity in the specific resistance is the spatial non-uniformity in the partial pressure of boron trichloride BCl3 in the reaction furnace. More specifically, portions of boron trichloride BCl3 and monosilane SiH4 that are respectively supplied into the reaction furnace are spent in forming thin films on the wafers and the rest is exhausted out of the reaction furnace, during which boron trichloride BCl3 is consumed at a different rate from that of monosilane SiH4, thereby resulting in a non-uniform partial pressure of boron trichloride BCl3 within the reaction furnace. Accordingly, it is of a practical concern to provide a condition for obtaining uniform inter-wafer specific resistance, e.g., irrespective of partial pressure of boron trichloride BCl3.
{ "pile_set_name": "USPTO Backgrounds" }
Such methods and treatment apparatuses are known in the state of the art. In particular in the field of ophthalmology, such methods and treatment apparatus are used for procedures with which defective vision is corrected. The cuts can be used for example to modify the cornea such that defective vision is remedied. For example, methods are known in which a volume of the cornea is isolated and removed in order to modify the curvature and thus the imaging properties of the cornea to correct defective vision. The creation of cuts on the eye is likewise necessary in cataract surgery. Within the framework of this surgery, a cloudy crystalline lens is removed. For this removal, it is advantageous to first section the lens in the lens bag, with the result that it can be removed through a small lateral access opening created surgically. In these fields of use, as well as in other applications, optical radiation acts inside the material, for example the tissue, which is transparent to the optical radiation. Non-linear processes are usually used which require a focussing of treatment radiation, usually pulsed laser radiation, into the material, i.e. underneath the surface of the material. The creation of a cut then occurs by shifting the position of the focus in the material. It should be understood for the purposes of this description, that the shift of the focus does not necessarily require that radiation is also emitted into the focus at this time. In particular when pulsed laser radiation is used, the focus is continuously moved and laser radiation pulses are only emitted at certain times during the focus movement. Nevertheless the corresponding lens systems or pieces of device for focus movement generally move continuously, which is why the term “focus shift” here is also understood to mean the corresponding shift of the point at which optical radiation would be focussed even if such radiation is momentarily not emitted, e.g. between two laser pulses. The accurate focussing of the laser radiation, i.e. a geometrically strongly delimited focus, is of great importance for non-linear effects, as only then can the necessary power densities in the material be achieved. This applies both to non-linear processes in which an individual focus already results in an interaction and to processes in which several laser radiation pulses which are emitted one after the other interact in order to achieve a material-cutting effect. In this regard, approaches are also known in which laser radiation pulses are emitted at several overlapping focus spots and only the interaction of the several laser radiation pulses in the overlap area leads to material cutting. The necessary precise focussing of the laser radiation is understandably impaired by the material through which the laser radiation is guided. Since, as already mentioned, the focus lies inside the material when cuts are to be created in the material, cuts can obviously be generated with this principle as a rule only in a direction contrary to the main direction of incidence of the laser radiation, thus from posterior to anterior when used on the eye. Otherwise, parts of the material in which material has already been cut, thus the cut has been already partially constructed, would disrupt the passage of the laser radiation and thus the desired precise focussing. In other words, areas of the cut that are deeper in relation to the direction of incidence of the optical radiation must be cut before areas of the cut that are higher can be created. A further problem which occurs with in the creation of cuts by guiding a focus along a path is the speed of the creation of cuts. The focus is usually deflected by means of scanning device. The deceleration, re-positioning or acceleration of the scanning device can substantially prolong the creation of cuts. When used on the eye, not only is this onerous for a patient, as the surgical procedure lasts longer, the expenditure that must be met for precautions against unintended eye movements also increases with the increasing time required for the creation of cuts. This problem is particularly great when a sectioning of transparent material is to be carried out, thus crossing cuts are required. Because of the crossover points and the fact that the cuts must be constructed in layers contrary to the direction of incidence of the radiation, the deceleration, re-positioning and acceleration of the scanning device leads to a very great prolonging of the creation of cuts. Although approaches are known in the state of the art for carrying out the deflection movements as continuously as possible, thus for dispensing with deceleration and acceleration processes for the deflection device as far as possible (cf. DE 102008027358 A1), these approaches are limited to quite particular cut geometries and in particular are not useful for sectioning material with crossing cuts.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a fixing assembly for an interface card, and in particular to a screw-less fixing assembly for an interface card. 2. Description of Prior Art With the advancement of science and technology, computers have played an important role in daily life of modern people. Thus, various interface cards are developed for personal computers and computer systems (e.g. servo computers) to thereby support or expand the functions of the computer system. Conventionally, the interface card is fixed to a support by screws, thereby fixing the interface card to a computer casing. However, since the interface card is an exchangeable component in the computer system, a user may frequently detach the interface card from the computer casing according to practical demands. Thus, fixing the interface card by screws makes the user inconvenient to carry out the detachment of the interface card because he/she needs a tool (such as a screw driver) to loosen the screws. The screws may be lost after detachment. Even, the screw may fall in the computer casing to cause a short circuit therein. On the other hand, tens of interface cards may be usually mounted in a large-sized computer casing. It takes a lot of time and labor hours for the user to detach every interface card by loosening the screws. Of course, the time and labor hours for assembling the plurality of interface cards in a large-sized computer casing will be also increased. Therefore, for the industry in this field, it is necessary to develop a screw-less fixing assembly whereby a user can rapidly detach a plurality of interface cards from the computer casing or attach them thereto. Therefore, it is an important issue for the present inventor to solve the above-mentioned problems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Disclosure The present disclosure generally relates to laboratory animal husbandry, bedding, and enrichment; particularly the automation and manufacture thereof; particularly for rodents. 2. Description of the Prior Art Nesting material has been identified as the best ‘environmental enrichment’ for improving animal wellbeing, health, productivity, and scientific data quality in mice. Existing nesting enrichments are either easily dispensed, but are unsuitable for building nests (and are generally ignored by mice); or allow good nest-building, but are very difficult to handle and cannot be automatically dispensed. Given the need of automation in the industrial scale of mouse husbandry, current mouse enrichment is largely limited to nesting enrichments that mice don't use, or enrichments such as shelters which can be detrimental to mouse wellbeing. The known environmental enrichments are additions to husbandry that allow animals to cope with stressors and challenges in the captive environment (Olsson & Dahlborn 2002; Garner 2005; Würbel & Garner 2007). As a result of reduced psychological and physiological stress, enrichments improve the wellbeing, comfort, health, and productivity, of animals; and in the case of lab animals, improve the quality and validity of data they yield. (Benaroya-Milshtein et al. 2004; Garner 2005; Benaroya-Milshtein et al. 2007; Würbel & Garner 2007). Accordingly enrichment is now generally required for laboratory animals in the US (Institute of Laboratory Animal Resources (ILAR) 2010). In the case of mice, nesting material has emerged as the most effective enrichment in terms of mouse wellbeing (Olsson & Dahlborn 2002). Other enrichments, particularly shelters, are widely used (e.g. www.bio-serv.com). However shelters, in particular, often induce territoriality and aggression, and so can inadvertently introduce stress, impair wellbeing, and increase the variability of animals (Barnard et al, 1996; Olsson & Dahlborn 2002; Howerton et al. 2008). Shelters induce aggression in part because they are highly valued, so while they are of benefit to singly housed mice; they are a liability for group housed animals. However they are a specific case of a more general issue—which is that just because a cage looks enriched to humans, doesn't mean that it is to an animal. In fact the vast majority of commercially available mouse enrichments have never been studied scientifically to assess their efficacy or whether they might have unexpected consequences. Another excellent example can be found in mouse nesting enrichments. Until recently the predominant nesting enrichment was the ‘Nestlet’, a square of compressed cotton that can, in theory, be shredded by the mouse to make a nest. However mice often fail to make use of Nestlets; and in fact mice provided with Nestlets build no better nests than mice provided with an equal weight of additional bedding (Hess et al. 2008). Mice in the wild build nests by weaving fibrous materials (such as grass, or straw) into a compact and rigid scaffolding, to hold layers of insulating softer materials. Mice process nesting materials extensively to generate the properties required. Thus, when preparing ‘scaffolding’ materials they chew along the material fraying out individual fibers to aid adhesion when the materials are eventually woven together. Similarly, they chew and fray insulating and lining materials into an expanded ‘fluff’ (Van Oortmerssen 1971; Latham & Mason 2004). Thus while Nestlets may provide a suitable material for these inner layers, they are useless without a suitable structural material. Accordingly, when Nestlets are compared against a shredded paper product that does allow the construction of a ‘scaffolding’ mice build far better nests with this alternative material (‘Eco-bedding’, www.fibercorelle.com) (Hess et al. 2008). Furthermore, when provided with a mix of Eco-bedding and tissue paper, mice use the Ecobedding to build a scaffold, and line the nest with tissue paper (Hess et al. 2008). Nests probably benefit mice in captivity for two reasons. First, like shelters, they probably serve a psychological function as a place of refuge from the perceived threats of predation inherent in the close interaction of mice with their human caretakers. Second, work in our lab has shown that mice are cold stressed under normal laboratory conditions, that mice adjust nest structure to ambient temperature (building better nests in colder temperatures), that nests (built with Eco-bedding) reduce radiative heat loss by about 5° C., and that feed conversion (the weight of food eaten per g of body weight gained) is reduced up to 5-fold (unpublished data, and: Gaskill et al. 2009a; Gaskill et al. 2009b). Thus mice without nests are metabolically, physiologically, and behaviorally abnormal—with consequences (aside from the massive increase in food consumption) including effects on body composition, growth and reproduction, and metabolically dependent processes such as pharmacodynamics. Aside from the obvious scientific benefits, food is one of the major costs in mouse housing. However, the complex nature of nest-building behavior, and the complex mixture of materials it requires, presents three key challenges to providing nesting material which have limited its adoption in the industry: a) Identifying a material that mice can and will use effectively to build nests; b) Ease of handling, standardization of the amount of material provided, and automation of cage provisioning; and c) Unintended negative consequences, particularly poor ammonia control, and difficulties in cage cleaning. Existing materials represent a poor trade-off between these concerns. As outlined above, Nestlets, are standardized and easily handled, but are a very poor nest-building material, and are often ignored by mice. Eco-bedding, allows mice to build excellent nests, but is hard to handle and standardize (it is typically loose-packed in bulk and must be measured and dispensed by hand), and can present difficulties in cage cleaning (particularly because it can clog older vacuum systems used in large facilities). Mice can build surprisingly good nests with pine shavings, given enough time to process the material, but pine shavings are a notoriously poor choice for ammonia control. In fact, driven largely by concerns over ammonia control, the industry is generally moving towards bedding materials that provide less thermal and physical comfort (such as corn-cob), further magnifying the need for a suitable nesting enrichment. Cage cleaning problems are limited to well-understood defects in vacuum system design (e.g. narrow tube diameter, tight tube corners, and long tube runs), are readily solved, and are not addressed here[j1]. Ideal materials have already been identified—namely long shredded paper strips, potentially combined with other softer materials such as facial tissue paper (referred to as ‘tissue paper’ herein). There is therefore an unsatisfied need for the handling, standardization and dispensing of nesting material on an industrial scale.
{ "pile_set_name": "USPTO Backgrounds" }
Trifluoroethylene (HFO-1123), which has a low global warming potential (GWP), is greatly expected in recent years as a new refrigerant which may replace difluoromethane (HFC-32) and 1,1,1,2,2-pentafluoroethane (HFC-125) which are greenhouse gases. In this specification, abbreviated names (e.g. refrigerant numbers) of halogenated hydrocarbon compounds are described in brackets after the compound names. As the case requires, the abbreviated names are employed instead of the compound names. Heretofore, a method for producing such HFO-1123 from 1,1,1,2-tetrafluoroethane (HFC-134a) which is a relatively inexpensive material has been known. For example, Patent Document 1 discloses a method of subjecting HFC-134a to dehydrofluorination using a metal fluoride as a catalyst. Further, Patent Document 2 discloses a method of reacting HFC-134a with a metal hydroxide such as calcium hydroxide. However, by the method disclosed in Patent Document 1, the degree of conversion of HFC-134a is low. Further, the method disclosed in Patent Document 2 has the following problems. (1) Calcium hydroxide has a high adhesion property between particles, and the particles are likely to be solidified to clog a part of the reactor. (2) In the reaction of calcium hydroxide with HFC-134a, the amount of water formed as a by-product tends to be large, and accordingly a load of moisture removal process tends to be heavy before the obtained HFO-1123 is used as a refrigerant. (3) When calcium hydroxide is used for the reaction with HFC-134a, side reaction of HFO-1123 with a large amount of water formed as a by-product tends to occur and a carboxylic acid fluoride and a carboxylate are generated, thus decreasing the yield of HFO-1123. Therefore, for production of HFO-1123 useful as a new refrigerant which replaces greenhouse gases by using HFC-134a which is an inexpensive material, an efficient production method has been desired in which the degree of conversion of HFC-134a and the yield of HFO-1123 are high, clogging of the reactor is less likely to occur and the load of the moisture removal process is light, and problems such as a decrease in the yield of HFO-1123 will not arise.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a valve actuating method for opening and closing intake valves and exhaust valves in internal combustion engines while suspending the operation of the some of these valves to keep them in the closing positions in response to the state of operation of the engine. Hitherto, such an internal combustion engine has been known as having at least three valves including intake and exhaust valves on each cylinder, wherein all of the three valves are actuated in high-speed operation of the engine to increase the output power from the engine, while, in the low or medium operation of the engine, a part of the intake or the exhaust valves are held in the closed state and made to suspend the operation to increase the output power in the low and medium speed regions. This type of engine incorporates a valve actuating mechanism having a valve operation suspending function for suspending at least one of the intake and exhaust valves. FIG. 1 shows such a valve actuating mechanism having a valve operation suspending function, incorporating a hydraulic lifter as a retaining means. In FIG. 1, a reference numeral 1 denotes a cam, 2 denotes an intake valve or an exhaust valve, 3 denotes a rocker arm, and 4 denotes a hydraulic lifter i.e. the retaining means supporting the fulcrum of the rocker arm. The hydraulic lifter 4 includes a hollow plunger, i.e. a supporting member, which engages at its upper end with the fulcrum of the rocker arm 3, a casing 8 slidably accomodating the plunger 5 with a high-pressure chamber 6 defined at the lower side of the plunger 5 and provided at the lower end thereof with an oil discharge port 7 for discharging oil from the high-pressure chamber 6, a check valve 9 disposed in an opening between the hollow 5a in the plunger 5 and the high-pressure chamber 6 and adapted for preventing pressurized oil from flowing back into the hollow 5a from the high-pressure chamber 6, and oil supply passages 10a and 10b for supplying the hollow portion 5a of the plunger 5 with oil. The check valve 9 has a ball valve 11 biased by a spring 13 in a retainer 12 and seated on a valve seat formed around the opening. A spring 14 for upwardly biasing the plunger 5 is disposed in the high-pressure chamber 6. A discharge limiting valve 15 is adapted to limit the discharge of the oil from the oil discharge port 7. The discharge limiting valve, accomodated by the casing 8, has a valve seat formed in a passage 16 leading to the outside of the casing 8, a ball valve 17 biased by a spring 19 in a retainer 18 so as to be seated on the valve seat, and a push rod 21 driven by a solenoid 20 to push the ball valve 17. A reference numeral 22 denotes an intake or exhaust manifold, 23 denotes a valve guide an 24,25 denote valve springs. In the normal operation of this valve actuating mechanism, the rocker arm 3 makes a rocking motion around the fulcrum supported by the plunger 5 of the hydraulic lifter 4 to open and close the valve 2 in each rotation of the cam 1. The hydraulic lifter 4 can maintain the clearance in the valve actuating mechanism zero to afford a silent and maintenance-free operation. As the solenoid 20 is energized as necessitated, the push rod 21 is moved to the left as viewed in the drawings to push the ball valve 17 so that the passage 16 is opened to relieve the oil from the high-pressure chamber 6 so that the plunger 5 supporting the fulcrum of the rocker arm 3 is lowered when the cam 1 takes the lifting position, because the force of the spring 14 for upwardly biasing the plunger 5 is smaller than the force of the valve springs 24,25. Therefore, the rotation of the cam 1 causes only up and downward movement of the rocker arm 3 so that the valve 2 is held in the closed position to suspend its operation. With the conventional valve actuating mechanism explained above, it is possible to increase the output power of the engine in the low and medium speed range of the engine operation by suspending the operation of a part of the valves. The plunger 5 in the hydraulic lifter 4, however, makes an up and downward reciprocal motion by the action of the rocker arm 3 and the spring 14 following up the operation of the cam 1 even during the suspension of operation of the valve. Thus, the engine is obliged to make a wasteful work for driving the plunger 5 uselessly overcoming to force of the spring 14. In addition, during the reciprocal motion of the plunger 5 mentioned above, the oil is made to flow into and out of the high-pressure chamber 6 through the passage 16 in the discharge limiting valve 15. This state tends to cause a generation of the bubbles in the oil due to a phenomenon called cavitation. If there is any bubble remaining in the high-pressure chamber 6, the hydraulic lifter 4 cannot perform its function to make the fulcrum 3 of the rocker arm 3 rigid. Furthermore, the bubbles produced by the cavitation contain an ozonic air which tends to promote the corosion of mechanical parts.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a image data transmission system, a video server unit, and a client unit used for a video on demand (VOD) system in which image data (video) are transmitted through a network. 2. Description of the Related Art Recent years have seen significant advances in the area of high speed networks and information compression techniques, and image data transmission is becoming increasingly popular. In this situation, the VOD system, which enables users to watch favorite videos and films in any location, including homes and offices at any desired time, is expected to be popularized as one of the more important applications in the age of multimedia applications. In a conventional VOD system, the ATM (Asynchronous Transfer Mode) is applied to the transmission of image data and the UDP (User Datagram Protocol) is used as a protocol for the transmission of image data. However, the problem of data loss of the image data transmission before a client unit displays the image, does not take into account the image data transmission according to the ATM and the UDP protocol. If the loss of image data in the transmission is caused because of, for example, insufficient capability of the client unit, the image to be displayed becomes disordered and awkward, which is an undesirable problem.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an apparatus for and a method of ladle refining which is a secondary refining process of molten steel. Quality demands for steel products have lately become more and more stringent as steel application technologies have advanced and diversified and, as a consequence, needs for production of high purity steels have further increased. In response to the needs for high purity steel production, many apparatuses for hot metal pretreatment and secondary refining have been newly constructed at steelmaking plants. As apparatuses for secondary refining in particular, vacuum refining apparatuses such as RH, DH, and the like, and electric arc-heating slag refining apparatuses typically such as LF are commonly used for purposes of degassing and inclusion removal of molten steel. For producing high purity steels such as bearing steels, treatment processes combining the LF, RH, and the like, as needed, are also commonly practiced. However, there is a certain limit to refining capacity for removing inclusions in case of an apparatus such as an RH vacuum refining apparatus, wherein a vacuum refining treatment is performed by inserting an immersion tube into molten steel in a ladle and sucking up the molten steel into a vacuum chamber through the immersion tube, because: slag is not sufficiently reformed since a force to agitate the molten steel in the ladle is weak and the slag on a molten steel surface outside the immersion tube is not sufficiently agitated, and, as a result, the molten steel is re-oxidized by highly oxidizing slag; and the molten steel is re-oxidized also by a reaction between iron oxides contained in skulls deposited in the vacuum chamber and the molten steel in the vacuum chamber. Methods to lower an oxidizing capacity of slag by a combined use of an LF apparatus and the like are commonly practiced for the purpose of preventing steel re-oxidatipn by the slag and consequent deterioration of purity of molten steel. But these methods have problems of protracted processing time and increased production costs caused by greater heat loss, wear of refractories, etc. resulting from a long processing time. In view of these problems, as measures of conventional technologies to effectively accelerate reaction between slag and molten steel under a vacuum by directly reducing atmospheric pressure on the molten steel surface in a ladle, a VOD process, a VAD process, an SS-VOD process and the like have been developed. As methods to directly reduce atmospheric pressure on the molten steel surface in a ladle, there are a method to expose the ladle in its entirety to a reduced atmospheric pressure by placing the ladle inside a decompression vessel capable of accommodating the entire ladle, and another method to reduce atmospheric pressure on the molten steel surface in a ladle by using the ladle itself as a lower decompression chamber and having an upper decompression chamber tightly coupled to a top of the ladle. Both methods have problems in that the equipment is complicated and that, owing to their structural restrictions, it is impossible to inject a great amount of agitation gas for preventing molten steel or slag from splashing. Thus, these methods have not been widely used for reasons of productivity, equipment cost and maintenance. From the above viewpoints, as an invention to improve a method of exposing an entire ladle to a reduced atmospheric pressure by placing the ladle inside a vacuum/decompression vessel capable of accommodating the entire ladle, Japanese Unexamined Patent Publication No. H9-111331 discloses a method capable of coping with molten steel splashing and slag foaming during vacuum processing and reducing a processing time by installing an inner tube having a sufficiently large free board inside a vacuum chamber. However, this method is a method to refine steel by placing an entire ladle inside a vacuum chamber which is divided into upper and lower sections and whose inner diameter is larger than an outer diameter of a top end of the ladle, and uses facilities such configured so that a lower end of the inner tube is tightly coupled to a top end of the ladle, or is immersed in slag and molten steel in the ladle. For this reason, it is feared that, during vacuum refining, attachment and/or detachment of the inner tube to/from the ladle may become impossible owing to skulls caused by splashes of the molten steel, or the molten steel is contaminated by the skulls in the case that the inner tube is immersed in the molten steel in the ladle. Further, this method has another problem of difficulty in securing a temperature of molten steel when processing time is prolonged. As a method to reduce atmospheric pressure on a molten steel surface in a ladle by using the ladle itself as a lower decompression chamber, and tightly coupling an upper decompression chamber to atop of the ladle, disclosed in Current Advances in Materials and Processes, Vol. 3, No. 1, 1990, p250 (published by the Iron and Steel Institute of Japan) is a method to prevent splashes generated on the molten steel surface by gas injected through a ladle bottom from directly contacting a coupling portion (ladle sealing portion) between the ladle and the upper decompression chamber by installing an inner lid at an upper part of the ladle, and to prevent splashes from flying over the inner lid and contacting the ladle sealing portion by installing a shielding board at the upper part of the ladle. This method, however, has problems in that the attachment and/or detachment of the inner lid may be rendered impossible by skulls formed by the molten steel splashes and that a refractory cost of the shielding board itself becomes significant since the molten steel splashes also adhere to it. Further, there is another problem in that workability is poor because the inner lid and the shielding board have to be attached and detached at every vacuum treatment cycle. The present invention provides a ladle refining apparatus capable of easily solving the problems of the conventional technologies, and a ladle refining method using the apparatus. The present invention is, namely, an apparatus for and a method of ladle refining capable of efficiently producing high purity steels and significantly improving thermal tolerance by: radically improving operational difficulties and contamination of molten steel, which have constituted the problems of conventional ladle refining methods, through suppressing skull deposition caused by splashing of molten steel; and, at the same time, performing molten steel agitation, slag reforming and degassing efficiently. The present invention is a vacuum/decompression refining apparatus to refine molten steel in a ladle by directly coupling a vacuum/decompression chamber 2, not having at its lower end an immersion tube to be immersed into molten steel 4 in a ladle 1, to an upper part of the ladle and reducing internal pressure of the vacuum/decompression chamber, and by agitating the molten steel in the ladle through injection of inert gas into the ladle. The apparatus is characterized in that: the upper part of the ladle is tightly coupled to the vacuum/decompression chamber to form a sealed structure; the vacuum/decompression chamber has a shaft portion; an inner diameter of the shaft portion is smaller than an inner diameter of a top end of the ladle but not smaller than the projected diameter of a bulging portion 7 of the molten steel surface in the ladle formed by agitation gas injected into the ladle; and a height from a surface of the molten steel in the ladle to a top of the vacuum/decompression chamber is 5 m or more. Further, the present invention is a vacuum/decompression apparatus characterized in that: a lower end of vacuum/decompression chamber 2 is provided with a cylindrical appendage 9. The cylindrical appendage has an inner diameter equal to or larger than a projected diameter of a bulging portion of molten steel in ladle 1, and an outer diameter equal to or smaller than the inner diameter of the top end of the ladle. Also, a lower end of the cylindrical appendage extends lower than a top of the ladle but is not immersed in the molten steel in the ladle. Furthermore, the present invention is a vacuum/decompression apparatus capable of heating molten steel 4 and maintaining a temperature in a vacuum/decompression chamber by installing a burner 10, which discharges flame from its lower end, by burning fuel and oxygen gas, inside vacuum/decompression chamber 2. The present invention is, further, a steel refining method using the aforementioned vacuum/decompression apparatus, characterized by constantly maintaining a temperature of an inner wall of the vacuum/decompression chamber at 1,000xc2x0 C. or higher, during continuous operations, by the flame discharged from the lower end of the heating burner 10. Yet further, the present invention is a ladle refining method characterized by refining molten steel, when using the vacuum refining apparatus, in a manner that an amount of slag on a surface of the molten steel in the ladle satisfies the following expression: 0.010xe2x89xa6H/hxe2x89xa60.025, where, H is a thickness of the slag in the ladle and h is a depth of a molten steel bath in the ladle. In addition, the present invention is a ladle refining method characterized by controlling pressure in a vacuum/decompression chamber to 760 to 500 Torr when heating molten steel by adding Al to molten steel and burning the added Al by supplying oxygen gas.
{ "pile_set_name": "USPTO Backgrounds" }
Conventional microfluidic LC columns are manufactured to fine tolerances in an attempt to effect reproducible separations of compounds or the like, especially closely related compounds. Since microfluidic LC columns are formed having very small dimensions, for example, inner diameters ranging from 75 to 500 microns, columns intended to have the same volume may nevertheless exhibit a degree of variability with respect to each other. For example, two columns may each be configured to have a volume of 0.3 mm. However, machining errors can result in a column volume difference between these two columns, which can impact the reproducibility of chromatographic results.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention is directed to a composition provided in the form of a soft paste, in particular to a cosmetic composition which can be used for making up the lips, or as a composition for treating the hair and/or the lips. Cosmetic compositions which can be applied to the lips as treatments or make-up products, such as lip color compositions, generally contain fatty substances and waxes, and optionally contain additives and pigments. Such compositions which are presented in the form of a soft paste and which are capable of being applied after collecting with the aid of an applicator, for example a brush, are in particular known. These compositions may contain waxes which confer on them notable qualities with regard to the consistency, unctuosity and retention of the applied film. In order to introduce relatively large quantities of waxes into these compositions, a preparation process was proposed which consisted of preparing the mixture of the constituents, heating the mixture to a temperature where the waxes are at least partially melted, and then subjecting the mixture to a blending operation during at least part of its cooling. Crystallization of the waxes in a form which allowed the production of a soft and easily removable paste was thus observed. It was found, however, that some waxes did not make it possible to obtain a cosmetic composition having optimum and constant cosmetic qualities during their storage, in particular when this storage was performed, even partially, at a temperature greater than a customary temperature of the order of 20-25xc2x0 C. Indeed, depending on the nature of the waxes present in the composition, it was possible to observe, in some cases, a modification of the viscosity of the composition which could result in substantial hardening of the composition and in problems of application. An object of the present invention is to overcome these disadvantages and to provide a cosmetic composition having optimum cosmetic qualities during the whole of its storage, inter alia, a viscosity which is practically constant over time, regardless of the temperature, or the temperature changes, to which it is subjected. One subject of the present invention is therefore a cosmetic composition provided in the form of a soft paste and comprising a fatty phase in which one or more waxes are present, the composition being characterized in that at least 95% of the waxes have a temperature at the onset of melting which is greater than or equal to 50xc2x0 C. Another subject of the invention is a process for the preparation of such a cosmetic composition, in which at least a portion of the various constituents of the composition, including the waxes, is heated to a temperature at which the waxes melt at least partially. The remainder of the constituents are added where appropriate and then the mixture obtained is blended during at least part of its cooling. The present invention allows the production of compositions which remain stable over time, that is to say, whose viscosity remains practically constant. These compositions possess a novel soft texture and exhibit, after application, high retention and high brilliance. The composition according to the invention therefore comprises a fatty phase in which one or more waxes may be present, it being necessary for at least 95% of the waxes to have a temperature at the onset of melting which is greater than or equal to 50xc2x0 C. xe2x80x9cTemperature at the onset of meltingxe2x80x9d is understood in the present description to mean the temperature at which a wax begins to melt. This temperature can be determined by DTA (differential thermal analysis) which makes it possible to obtain the thermogram (or the melting curve) of the wax considered. The temperature at the onset of melting corresponds to the temperature at which a notable change in slope can be observed in the thermogram. The melting point, for its part, represents the minimum point of the thermogram. Without being limited by the present explanation, it can be assumed that the change in viscosity observed during the storage of some cosmetic compositions is linked to the modification in the form in which the waxes crystallize. Indeed, during the manufacture of the composition of the present invention, the waxes are crystallized in a certain form which will allow the production of a soft paste. During a substantial rise in temperature during their storage, the waxes may melt at least partially, and then recrystallize in a form different from the initial crystalline form. This second form no longer allows a soft paste to be obtained but is capable of leading to a paste with a higher viscosity and therefore with a more rigid consistency. Thus, by choosing at least 95% of the waxes present in the composition from those waxes having a temperature at the onset of melting greater than or equal to 50xc2x0 C., a composition can be obtained whose viscosity remains constant. Preferably, waxes are used whose temperature at the onset of melting is greater than 65xc2x0 C. It is also preferable to choose 100% of the waxes from those whose temperature at the onset of melting is greater than or equal to 50xc2x0 C. The waxes capable of being used in the present invention, that is to say which make it possible to maintain a viscosity of the cosmetic composition constant, may be of any type, in particular, of inorganic, animal, plant or synthetic origin. There may preferably be mentioned Carnauba wax, some polyethylene waxes, and some microcrystalline waxes, such as that sold by Tisco under the name xe2x80x9cTisco Wax 88xe2x80x9d. These waxes may be used alone or in the form of a mixture. These waxes may also be used in a mixture with waxes whose temperature at the onset of melting is less than 50xc2x0 C.; it being understood that these second waxes cannot represent more than 5% by weight of the total waxes. The composition according to the invention preferably comprises, in total, 10-60% by weight of wax relative to the final weight of the composition. More preferably, the composition comprises 15-35% by weight of wax relative to the final weight of the composition. The fatty phase may, in addition, comprise other fatty constituents such as oils. There may preferably be mentioned: mineral oils such as paraffin oil or liquid paraffin; animal oils such as perhydrosqualene or arara oil; vegetable oils such as sweet almond, calophyllum, palm, castor, avocado, jojoba, olive or cereal germ oil; esters of lanolic acid, oleic acid, lauric acid, stearic acid or myristic acid, for example; alcohols such as oleyl alcohol, linoleyl or linolenyl alcohol, isostearyl alcohol or octyl dodecanol; acetylglycerides, octanoates, decanoates or ricinoleates of alcohols or of polyalcohols. These fatty constituents preferably represent 40-90% by weight of the composition, and more preferably 65-85% by weight of the composition. In a known manner, there may be added to the composition according to the invention a pulverulent colouring agent such as carbon black, chromium or iron oxides, ultramarines, manganese pyrophosphate, ferric blue, titanium dioxide, pearlescent agents, which are generally used in the form of a mixture with coloured pigments, or certain organic colorants, which are generally used in the form of a mixture with coloured pigments or which are commonly used in the cosmetic industry. These colouring agents are preferably present in a quantity 0 to 20% relative to the total weight of the composition. Inorganic or organic pulverulent fillers may also preferably be added in a quantity of 0 to 40% relative to the total weight of the composition. These pulverulent fillers may preferably be chosen from talc, micas, kaolin, zinc or titanium oxides, calcium or magnesium carbonates, silica, spheric titanium dioxide, glass and ceramic beads, metallic soaps derived from carboxylic acids having 8-22 carbon atoms, nonexpanded synthetic polymer powders, expanded powders and powders of natural organic compounds such as cereal starches, crosslinked or otherwise. There may also preferably be added any additive customarily used in the cosmetic industry, such as antioxidants, perfumes, preservatives, as well as cosmetic and/or pharmaceutical active agents such as vitamin derivatives, essential fatty acids, sphingocerils, fat-soluble sunscreens, anti-inflammatory agents or oily plant extracts, or even fat-soluble polymers, and/or silicone oils and/or gums such as dimethylpolysiloxanes. These additives are preferably present in an amount of 0-10% by weight relative to the total weight of the composition. In order to prepare the composition according to the invention, it is possible to first prepare a premix comprising at it least a portion of the various constituents of the composition, including at least the wax according to the invention, to heat this premix at a temperature at which the wax melts at least partially, to add, where appropriate, the remainder of the constituents, and then to blend the mixture obtained during at least part of its cooling down to room temperature. It was indeed found that when the mixture is blended during at least part of its cooling, so as to create shearing regions, a composition is obtained which is presented in the form of a homogeneous and soft paste. It would seem, however, without being limited to this explanation, that under these conditions, the wax crystallizes in the form of fine crystals, which would explain that the composition remains in the form of a soft paste. The heating operation may be carried out according to any known technique. The blending operation may be carried out, for example, in a roll mill incorporating two rolls rotating in opposite directions between which the paste passes, or alternatively in a mixer-extruder which makes it possible to obtain a paste of highly constant quality in a reproducible manner. Furthermore, it is possible, by adapting the outlet die of the mixer-extruder, to package the composition on-line at the outlet of the die. In a preferred embodiment of the invention, the mixing, heating and/or blending/shearing, or even cooling, operations are performed in one or more extruders arranged in succession one after the other; more preferably, the operations are performed in a single twin-screw extruder. Indeed, the composition obtained after extrusion has a special smoothness, and offers some sensation of sliding when it is applied to the skin; while avoiding the appearance and the sensation of oily fat. The conditions under which the extrusion may be carried out are described in Patent Application FR-A-2715306, whose disclosure is fully incorporated in the present application by reference. A composition for topical use is thus obtained which may be applied to the skin and/or to the lips as a make-up product, a lip color composition for example, or as a treatment product. The composition of the invention is in the form of a soft paste. The viscosity of the composition of the invention can be measured. This is not the case, for example, for compositions in the form of a stick. The dynamic viscosity, at 25xc2x0 C., preferably ranges from 3 to 35 Pa.s, measured with the aid of a CONTRAVES TV rotational visometer, equipped with an MS-R4 moving body, at a frequency of 60 Hz. The invention is illustrated in greater detail in the following examples, in which the percentages are given by weight relative to the composition. The viscosity measurements were carried out at 25xc2x0 C., with the aid of a Contraves rotational viscometer equipped with an MS-R4 moving body. The measurements of the melting characteristics of the waxes were performed by DTA (differential thermal analysis) under the following conditions: heating from 25 to 110xc2x0 C., at a rate of 1xc2x0 C./minute.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a defect management method for a recording medium, a recording medium drive, and a recording medium therefor and, more particularly, to a defect management method in which a primary temporary defect management area and a secondary temporary defect management area are recorded on the recording medium. 2. Description of the Related Art Defect management is the process of rewriting data stored in a user data area of a disc in which a defect exists to a new portion of the user data area, thereby compensating for data loss caused by the defect. In general, defect management is performed using linear replacement or slipping replacement. In linear replacement, the user data area in which a defect exists is replaced with a spare data area having no defects. In slipping replacement, the user data area with the defect is slipped and the next user data area having no defects is used. Both linear replacement and slipping replacement are, however, applicable only to discs such as a DVD-RAM/RW, on which data can be repeatedly recorded and recording can be performed using a random access method. In the case of write once read many (WORM) storage media (hereinafter referred to as “write once recording media”), data cannot be rewritten to the same position since the recording capacities of these media are limited. Therefore, effective defect management is required, and many efforts have been made to developing a defect management method for write once recording media, using a recording medium drive. The defect management for write once recording media is performed using a verify-after-write method. More specifically, a recording medium drive records data in specified units on a write once recording medium, and then verifies the recorded data so as to detect the position of a portion of the medium in which a defect exists. Next, the drive rerecords the data recorded in the portion having the defect in a spare area. Next, the drive creates a Temporary DeFect List (TDFL) that describes the positions of the area having the defect and the spare area that is a substitute for the area having the defect, and creates temporary defect management information (TDDS) specifying the recording position of the TDFL. The combination of the TDFL and the TDDS is called a Temporary Defect Management Structure (TDMS). Next, the drive stores the created TDFL or TDDS in a memory and records the stored information in a Temporary Defect Management Area (TDMA) of the write once recording medium when the amount of information stored in the memory reaches a predetermined level. The TDMS is updated whenever data is recorded on the write once recording medium. The write once recording medium is finalized when data cannot be further recorded thereon or a user does not want to further record data thereon. During the finalizing of the write once recording medium, a TDMS lastly recorded in the TDMA is copied to a Defect Management Area (DMA). The defect management performed by the recording medium drive on a write once recording medium is, however, abnormally discontinued when a power supplied to the recording medium drive is interrupted due to an abnormal event such as, for example, a power failure. For example, the recording medium drive may undergo a power shortage prior to recording a TDFL or a TDDS, which is created during data recording on the write once recording medium, in a TDMA. In this case, the TDMS will not be successfully updated. Further, when the write once recording medium is reloaded into the recording medium drive after restoration of a power supply, the drive is not capable of checking whether the defect management has been abnormally terminated or not.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention is directed to methods and apparatus for recovering representative connate samples taken from low permeability, high pressure formations. 2. Description of the Prior Art A goal of earth formation testing is to obtain representative samples of fluids extracted from the formation. In order to control the pressure drop from the formation pressure to the sample chamber, previous techniques for extracting a fluid sample include the use of passive, fixed chokes to meter water exiting from the back side of a piston while the sample is received on the top. Assignee's Modular Dynamics Formation Tester, also known as the MDT, a mark of Schlumberger, uses throttle valves at the sample chamber inlet to control pressure drawdown in the flowline. However, the MDT does not control the pressure once the fluid passes the throttle valve. The sample chamber with the throttle valve is also used as the water receiver for multi-sample bottles to control the flow rate; however, this combination is unable to achieve sufficiently low flowrates to prevent flow line pressure from dropping below the bubble point. Reservoir engineers use wireline formation testers to obtain pressure profiles, formation fluid samples and permeability indicators--information that is crucial during exploration and development of oil and gas fields. Wireline formation testers have been used to collect formation fluid samples. The instant invention improves the quality of samples by using techniques and apparatus for downhole fluid analysis which include: a system for discarding contaminated fluids before taking samples, identifying the fluid flowing from the formation and limiting the drawdown pressure by using precision flow control methods, i.e., very low flow rates (e.g., 1 cc/sec) at very high pressures (up to 20,000 psi). Proper reservoir management requires formation pressure measurements in a wide range of conditions. Formation pressure measurements taken within a well can be plotted versus true vertical depth to produce a pressure profile. Formation pressure is obtained by withdrawing a small amount of fluid from the formation to generate a short transient test. The pressure response is then recorded during shut-in until it stabilizes. A major problem which occurs in low-permeability reservoirs is the relatively high drawdown that occurs during sampling. In some cases, this drawdown lowers the flowing pressure below the bubblepoint pressure at which gas is liberated from the solution, thereby producing an unrepresentative sample. In gas condensate reservoirs, the sampling pressure may be lower than the dew point pressure and liquid may remain in the formation while the gas escapes, again providing a nonrepresentative sample. The instant invention offers surface control of drawdown pressure, a feature that allows pretests and sampling in tight reservoirs and avoids large drawdowns. A major difficulty that commonly occurs when sampling with wireline testers is contamination by deep filtrate invasion during drilling. In the instant invention, properties of the fluid entering the flowline are constantly monitored from the surface using resistivity or temperature and/or optical properties measurements. The formation fluid that enters the tools is returned to the wellbore until a sample is judged to be representative of the formation. This desired fluid sample is then diverted into the sample chambers, allowing the collection of high-quality samples. Furthermore, several samples can be taken during a single run into the hole, thus, several zones can be sampled in a single trip, resulting in rig-time savings. For the foregoing reasons, there is a need for an apparatus and method which provides a high quality, representative formation sample at a low sample rate in a high pressure, low permeability well.
{ "pile_set_name": "USPTO Backgrounds" }
A. Field of the Invention The present invention relates generally to timing circuitry, and more particularly, to circuitry for high frequency clock alignment and switching. B. Description of Related Art Synchronous circuits are circuits that perform operations in step with a clock signal. For example, a clock source can be used in conjunction with a communication bus to provide a synchronous communications link between a sourcing device and one or more receiving devices. In a source synchronous communications link, the source device provides a source clock signal that the receiving device uses to synchronize the reading of data from the communications link. Designs for mission critical systems must provide reliability. Redundancy can be built into a mission critical system to increase reliability. For example, redundant timing signals may be used in high performance telecommunications systems, such as high performance network routers. Such systems may include systems that have redundant, high frequency clock signals that receive and transmit data over optical carriers such as those conforming to the OC-48 or OC-192 synchronous optical network standard. In these systems, when an error is detected in the active clock, the redundant clock is switched to take over the role of the active clock. Problems can arise when switching between high-frequency primary and redundant clock signals and when initially turning on the high-frequency clock signal. The high frequency of the clocks can make it difficult for the receiving system to obtain acquisition (xe2x80x9clockxe2x80x9d) of the newly activated clock, because of the low phase-noise requirement of the high frequency clocks. Additionally, the high-frequency clock must filter jitter from the input reference clock signal. Finally, switch-over between the two clock signals may cause glitches. Accordingly, there is a need in the art to be able quickly lock onto a new clock signal or a newly switched high-frequency clock signal while reducing jitter and glitches caused by clock signal cross-over. Systems and methods consistent with the present invention address this and other needs through the use of a multi-loop phase locked loop. More particularly, a first aspect of the present invention is directed to a redundant clock system comprising a number of elements, including input clock signals and a multiplexer connected to receive the input clock signals and a control signal. The multiplexer outputs one of the input clock signals as a reference clock signal in response to the control signal. Additionally, a phase locked loop circuit is connected to receive the reference clock signal from the multiplexer. The phase locked loop circuit includes a first loop filter and a second loop filter. The first loop filter has a first bandwidth for initially locking onto the reference clock signal. A second loop filter has a second bandwidth, less than the first bandwidth. The second loop filter corrects for jitter in the reference clock signal after the first loop filter has locked onto the reference clock signal. A second aspect of the present invention is directed to a circuit for removing jitter from a high frequency clock signal. The circuit includes a lock detection component, a first loop filter, a second loop filter, a switch, and a voltage controlled oscillator. The first loop filter receives a signal based on phase differences between the reference clock signal and the feedback clock signal and has a first predetermined bandwidth. A second loop filter receives the signal based on phase differences between the reference clock signal and the feedback clock signal and has a second predetermined bandwidth lower than the first predetermined bandwidth. The switch selects, based on the lock detection signal from the lock detection component, either the first loop filter or the second loop filter as the active loop filter. A third aspect of the present invention is directed to a method of generating a clock signal based on one of a number of input clock signals. The method includes selecting one of the input clock signals as a reference signal and generating a first signal based on phase differences between the reference clock signal and a feedback signal. First and second loop filters process the first signal. The first loop filter is designed to lock the feedback signal to a reference clock signal. The second loop filter reduces jitter in the locked signal.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an image output apparatus which is implemented in the form of a digital combined system that unites features of a copier, a facsimile machine, a printer or the like. In particular, it relates to an image output apparatus that has image storage means for storing image data which has once undergone an output process for reuse.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, in internal combustion engines mounted to vehicles, air-fuel ratios of respective cylinders (cylinder-by-cylinder air-fuel ratios) are calculated on the basis of an output of an air-fuel ratio sensor provided to an exhaust manifold, through which exhaust gases from the respective cylinders flow, as described in, for example, JP-B2-2684011. Here, air-fuel ratios are subjected to feedback control for each cylinder on the basis of air-fuel ratios of respective cylinders. A cylinder or cylinders being abnormal in air-fuel ratio are detected on the basis of air-fuel ratio feedback correction terms of the respective cylinders. Besides, in recent years, internal combustion engines mounts variable valve lift devices, which vary lift of intake valves and exhaust valves, and variable valve timing devices, which control opening and closing timings. The variable valve lift devices and the variable valve timing devices are for the purpose of an enhancement in intake efficiency, an enhancement in output, reduction in fuel consumption, reduction in exhaust emission, or the like in internal combustion engines mounted to vehicles. Variable valve lift devices are various in construction such that valve lifts of multiple cylinders are varied together by a single hydraulically driven variable valve lift device. Alternatively, electromagnetically driven valves are provided to each cylinder to independently vary valve lift for each cylinder. An abnormality diagnosis system for detection of abnormality is also demanded of such respective devices, similarly to other air-fuel ratio control systems. In the abnormality diagnosis system disclosed in JP-B2-2684011, a cylinder or cylinders being abnormal in air-fuel ratio are detected on the basis of air-fuel ratio feedback correction terms of respective cylinders. Here, the cause for abnormality in air-fuel ratio of the cylinder or cylinders is considered to be based on abnormality in a fuel system such as fuel injection valves, abnormality in an air system, abnormality in an ignition system, or the like. Therefore, even when a cylinder or cylinders being abnormal in air-fuel ratio can be detected, the cause for abnormality in air-fuel ratio of the cylinder or cylinders is unclear. Accordingly, in the abnormality diagnosis system disclosed in JP-B2-2684011, even when variable valve lift devices fail to cause abnormality in air-fuel ratio of the cylinder or cylinders, the cause of the abnormity cannot be determined to perform an appropriate fail-safe processing. Besides, with hydraulically driven variable valve lift devices, valve lifts of multiple cylinders are varied by a single variable valve lift device. In case of an increase in number of cylinders, it is difficult to ensure a sufficient hydraulic drive pressure with a single variable valve lift device. Therefore, cylinders are divided into multiple cylinder groups, so that variable valve lift devices, which are hydraulically driven independently, are provided to each cylinder group. In a system having multiple variable valve lift devices, only a variable valve lift device of one cylinder group may become abnormal. Accordingly, an abnormality diagnosis system is demanded, such that the abnormality diagnosis system can determine which variable valve lift device of cylinder groups is abnormal. When the abnormality diagnosis system disclosed in JP-B2-2684011 is applied to such system having multiple variable valve lift devices, the following problems may arise. In the system, air flowing through a single intake pipe is distributed to respective cylinders through intake manifolds of the respective cylinders. Therefore, when variable valve lift devices in one of cylinder groups fail, and an intake air quantity of the fault cylinder group is disturbed, intake air quantities of the other normal cylinder groups are disturbed. As a result, not only an abnormal cylinder group but also normal cylinder groups are disturbed in air-fuel ratio, so that a cylinder or cylinders being abnormal in air-fuel ratio may be erroneously detected. Hereupon, sensors may be provided to variable valve lift devices of respective cylinder groups for respectively detecting lift and hydraulic pressure, so that it may be determined that which variable valve lift device of the cylinder groups is abnormal on the basis of outputs from the sensors. However, sensors for detection of lift and hydraulic pressure need to be newly provided, and cost may be increased. In abnormality diagnosis of variable valve timing devices described in JP-A-9-88643, an intake air quantity Q1 is detected just before the start of abnormality diagnosis, and is stored in memory, subsequently, abnormality diagnosis is started. In abnormality diagnosis, variable valve timing devices are forcedly driven, and an intake air quantity Q2 is detected for calculation of a variation (Q1–Q2) of an intake air quantity before and after the start of abnormality diagnosis. By comparing the calculated value with an abnormality threshold, normality/abnormality of the variable valve timing devices is determined. However, in the abnormality diagnosis system disclosed in JP-A-9-88643, abnormality diagnosis is not executed as long as a predetermined abnormality diagnosis execution condition is not met in an engine operation. Accordingly, even when abnormality is caused in variable valve timing devices, the abnormality may not be early detected. As a countermeasure, it is conceivable to relax the abnormality diagnosis execution condition to increase a frequency, in which abnormality diagnosis is executed in engine operation. In a method of abnormality diagnosis disclosed in JP-A-9-88643, variable valve timing devices are forcedly driven. However, when the frequency, in which abnormality diagnosis is executed, is increased, harmful influences, such as torque shock caused by forced driving of variable valve timing devices are increased. As a result, operability becomes worse. Hereupon, instead of forced driving of variable valve timing devices, it is conceivable to monitor the behavior of an engine rotating speed, an intake air quantity, and the like in engine operation to early detect an abnormal behavior. However, with engines having multiple intake efficiency varying means, which vary the intake efficiency, such as variable valve timing devices, variable valve lift devices, and the like, even when an abnormal behavior in intake air quantity and the like is detected in engine operation, it cannot be determined that which of multiple intake efficiency varying means is abnormal.
{ "pile_set_name": "USPTO Backgrounds" }
Systems and methods for retrieving information stored in a matrix database or structured database for extracting accommodations between entities on the basis of similar properties between the entities is known. The term matrix database in the content here means that each entity has one or more properties that are organized in categories. For example, in the category of “music band” stored the music band that each entity likes and in the category of “books” stored the name of the book, author of the book etc that each entity liked or read. These systems are based on data that will be fed into the system database in a categorical manner such that a user can find entities with a certain property by knowing the properties of each entity in the database. Predetermined terms used in the following description are provided to help understanding the present invention and the use of the predetermined terms may be modified into different forms without departing from the spirit of the present invention. The term structured database refers to data that resides in a fixed field within a record or file. This includes data contained in relational databases and spreadsheets. Structured data depends on creating a data model—a model of the types of data that will be recorded and how they will be stored, processed and accessed. This includes defining what fields of data will be stored and how that data will be stored: data type (numeric, currency, alphabetic, name, date, address) and any restrictions on the data input (number of characters; restricted to certain terms such as Mr., Ms. or Dr.; M or F). The term unstructured data refers to those things that can't be so readily classified and fit into a neat box: photos and graphic images, videos, streaming instrument data, webpages, pdf files, PowerPoint presentations, emails, blog entries, wikis , word processing documents etc. The term semi-structured data refers to a cross between the two. It is a type of structured data, but lacks the strict data model structure. With semi-structured data, tags or other types of markers are used to identify certain elements within the data, but the data doesn't have a rigid structure. For example, Emails have the sender, recipient, date, time and other fixed fields added to the unstructured data of the email message content and any attachments. Extensible Markup Language (XML) and other markup languages are often used to manage semi-structured data. The term semantic web refers to web pages contain enough self-describing data that machines will be able to navigate them as easily as humans do. This let computers better assist us in answering questions and managing our ever more complicated world. Some of the semantic web technologies are the resource description network (RDF), web ontology language (OWL), semantic web rule language (SWRL), SPARQL Protocol and RDF query language (SPARQL), Semantic application platforms, and statement-based datastores such as triplestores, tuplestores and associative databases. The concept of the social semantic web subsumes developments in which social interactions on the Web lead to the creation of explicit and semantically rich knowledge representations. The Social Semantic Web can be seen as a Web of collective knowledge systems, which are able to provide useful information based on human contributions and which get better as more people participate. The Social Semantic Web combines technologies, strategies and methodologies from the Semantic Web, social software , the Web 2.0 and Web 3.0. The term RDF is a family of World Wide Web Consortium (W3C) specifications originally designed as a metadata data model. It has come to be used as a general method for conceptual description or modeling of information that is implemented in web resources, using a variety of syntax notations and data serialization formats. The term Web 2.0 in the content of the present application refers to several major themes, including Asynchronous Java script and XML (AJAX), social networking, folksonomies (also known as collaborative tagging, social classification, social indexing and social tagging), lightweight collaboration, social bookmarking, and media sharing. The term web 3.0 in the content of the present application refers to an Internet-based services that collectively include semantic web, microformats, natural language search, data-mining, machine learning, recommendation agents, and artificial intelligence technologies which emphasize machine-facilitated understanding of information in order to provide a more productive and intuitive user experience. Web 3.0 is an environment consisting of intelligent web-based semantic applications, where the web is a database of information published via reusable formats such as XML, RDF and other micro formats. Web 3.0 may bring the realization of the semantic web, where meaning can be extracted from data representations such as hypertext and utility driven by meaning. U.S. Pat. No. 8,386,499 discloses systems and methods for modeling relationships between entities on a network using data collected from a plurality of communication channels including social data, spatial data, temporal data and logical data within a W4 Network. The W4 Network personalizes and automates sorting, filtering and processing of W4COMN communications delivered or requested to be delivered using personalized value-based ranking and encoding of data, which is modeled from the point-of--view (POV) of any specific user, topic or node in the W4 Distributed graph. The W4COMN is a collection of users, devices and processes that foster both synchronous and asynchronous communications between users and their proxies. POV modeling supplies comparative value services to users which entail individuated data models to be aggregated and used in customization and personalization forecasting for each user and their associated data management needs. One object of the present invention is to understand the position(s) or opinion(s) of a predetermined public of entities regarding to a specific issue, in particularly understanding who are the influencers entities who are the influenced entities and who are the entities in the public that have the potential to become influenced by others regarding to the specific issue. Yet another object of the present invention is to reduce the ability of the influencer's entities to influence the influenced and potential influenced entities. Yet another object of the present invention is to reduce the number of influenced entities regarding to a specific issue and to reduce the spreading of the influence by the influenced entities on the public that is not part in the influenced entities circle. Yet another object of the present invention is to identify the influencer, the influenced and the potential influence entities and to test and execute actions in the network particularly but not limited to the social network for reducing or increasing the relevant of the particular issue, to reduce or to increase the spreading intensity of the particular issue among the public. In addition another object of the present invention is to measure and estimate the success of the actions taken regarding to the particular issue and the entities. Yet another object of the present invention is to automatically collect and analyze data of public in a small and large scale for example up to millions of entities.
{ "pile_set_name": "USPTO Backgrounds" }
Lighting devices comprising LED modules are increasingly used for lighting applications, such as for home environments. Such lighting devices are usually produced by assembling a plurality of components having different functions, such as a high power LED module (i.e. the light source), a Printed Circuit Board (PCB) containing e.g. an electronic driver for the LED module, optics, housing, and heat-sink if required. A good thermal coupling between the LED module and the housing or the heat-sink is one of the key requirements in order to achieve a good thermal behavior of the LED module. In fact, in usual LED modules efficiency decreases for increasing operating temperature, because the forward voltage may decrease with increasing junction temperature. Moreover, the lifetime of the LED modules may be longer for lower operating temperatures, because aging usually depends strongly on the junction temperature. A good mechanical contact between the LED module and the housing or the heat-sink is beneficial in order to achieve a good thermal coupling. In some prior-art arrangements such thermal contact between the LED module and the housing or heat-sink is achieved by assembling the components with screws. Such screws fix and urge the PCB of the light source against the housing or heat-sink in order to ensure thermal contact. However, such arrangements may provide additional costs, because additional mechanical components (e.g. screws or washers) may be required, and a complex manual or automatic assembling process with its associated assembling time may be necessary.
{ "pile_set_name": "USPTO Backgrounds" }
Gas turbines include a rotor and rotating disks that are attached to the rotor, and airfoils that are positioned at the outer diameter of the disks. These components are surrounded by a turbine casing. Typically, a turbine casing is made in two segments, an upper turbine casing segment and a lower turbine casing segment, split on a horizontal centerline to facilitate assembly and provide access to the rotor and internal stationary portions of the turbine. The segments are normally connected through a bolted flange at their horizontal joint and act to contain the working fluid while maintaining the working fluid in intimate contact with the blade elements. The upper turbine casing segment may be installed between a compressor discharge casing (CDC) and exhaust casing vertical joints during gas turbine maintenance. The fit for the casing is tight and the structure is hung as it is installed. There are occasions, including in the manufacturing phase and during maintenance when the upper casing segment will require lifting. To facilitate lifting, the upper casing segment is fitted with lifting lugs to allow the component to be raised and moved. The level continuous installation of the upper casing segment is a difficult task. The installation is usually carried out without specialized tools and generally requires significant manpower. The improper installation of the upper casing segment may cause quality issues such as galling and damage to the flange, distortion to the casing and bolting, as well as improper crane loading.
{ "pile_set_name": "USPTO Backgrounds" }
Within modern enterprises, large numbers of individuals and organizations are present each having different functions, organizational associations, group affiliations, and the like. A directory service can provide a repository of information about the individuals, organizations, services, affiliations and resources within an enterprise according to a particular structure that facilitates management and communication within the enterprise. In an enterprise network environment for example, a directory service can identify network users, installed software, installed hardware, permissions, and the like. Subsequent access to information can be accomplished without particular knowledge of certain aspects such as physical location or the like. In order to provide a more uniform and wide ranging standard, access to directory information for example in complex heterogeneous computer networks is governed by standards such as those established by the International Telecommunications Unions (ITU). One such standard is the so-called directory access protocol (DAP) specified under the X.500 standard and also the international standards organization (ISO) under the ISO/IEC 9594 standard. The above noted standards provide a universal structure for electronic directories of, for example, nodes in an enterprise so that the information can become part of a global directory available to anyone in the world having access to the Internet. In accordance with X.500, a directory system agent (DSA) hosts a hierarchical database for storing the directory information for expeditious search and retrieval of information with multiple DSAs capable of being interconnected. Clients or users can access directory information through the use of an application known as a directory user agent (DUA). In a typical installation, a DUA can provide a capability for simple inquiries and can also include more features such as a graphical user interface (GUI) or the like. A directory system protocol (DSP) is also specified to control interaction between DSAs, and DUAs and DSAs such that an end user can access information in the directory without needing to know the exact location of that specific piece of information. In accordance with X.500, each site is only responsible for its local Directory portion and as a result, updates and maintenance can be done instantly. Directory services under X.500 further provide powerful searching facilities that allow users to construct arbitrarily complex queries. Directory services under X.500 are further provided using a single homogeneous namespace to users such as under domain name service (DNS). Directory services under X.500 are defined using a structured information framework that allows for local extensions. Still further, X.500 compliant directory service can provide resident applications that require directory information, such as e-mail applications, automated resources locator applications, and special-purpose directory tools with access to huge amounts of information in accordance with a uniform structure. Since fully featured X.500 directory can be complex to implement, the lightweight directory access protocol (LDAP) was developed to provide less complex implementation. LDAP is a TCP/IP-based version of DAP primarily for use on the Internet. While much of the functionality of DAP is preserved, LDAP can be configured to query data from various proprietary and open X.500 directory services. While LDAP compliant directory services can provide standard interaction between clients having queries and other LDAP compliant servers, problems can arise in that based on the structure of the directory information tree, navigation of entries or changes to the hierarchical structure becomes difficult. It is understood that directory services applications, and particularly user interface applications or GUIs, are typically programmed using object-oriented methodologies since object-oriented languages allow reusability and scalability of code. As will be appreciated, object-oriented GUI applications are programmed using objects. In the context of object-oriented programming, an object is a data-centric construct or abstraction that can be used to define and control the operation of the application in terms of fundamental units. For example, in an object oriented application for managing a doctor's office, one type of object might include a “patient” object. The patient object then consists of data associated with the patient such as address and account data and operations performed on the data such as billing operations and account management operations. A typical object includes a collection of operations or methods and data or attributes that can be unique to the object and that define a set of behaviors that the object can perform or behaviors that can be performed on the object. The class of an object defines a group characteristic of an object based on one or more common properties shared by the group. For example a patient object is of the class patient. Another class of object might include “caregiver.” An instance of the object would be a particular patient object or caregiver object corresponding to an individual patient or caregiver. A class definition can define methods for constructing new object instances and also for determining the behavior of each instance of the object, which define how each instance behaves. The class definition also includes attributes that define particular features of an instance of an object such as a salary. Object-oriented applications can include objects that may generally be divided roughly into three object types: model objects, view objects, and controller objects. Model objects generally handle operations such as manipulating data. View objects are used to support graphical presentation such as the content and operation of the GUI. Lastly, controller objects can be used handle interaction between model objects and view objects including input from external input devices such as keyboards and pointing devices. In connection with view objects, container objects can be used to represent data in structures such as folders, drawers, and file cabinets normally associated with a GUI. Views in an LDAP directory services environment include sets of attribute information associated with an LDAP directory entry that are available to be “viewed,” for example, by a particular software application, a user, or the like. Views can be filtered depending on access permission levels or on organizational function and can be limited or expanded based on parameters such as permission levels, organizational functions, and the like. As described, an attribute is a value that describes one characteristic of an object, which can have many attributes associated with it. In a large enterprise, as people are added, move and depart from organizations, and as organizations change and are added or removed from an enterprise, attributes associated with objects in the enterprise change. In view of the above explanations, problems can arise in that, as new attributes are added to objects within a directory, or as new container objects are added to represent changes to the enterprise, they may not be readily available to certain views within available within the enterprise. Accordingly, when changes occur to the actual structural hierarchy of the directory in terms of container objects and attributes, changes to the view should also occur. Such changes can be difficult to represent particularly in real time. In security environments, such as PKI environments, the need to accurately reflect the current state of the directory in terms of container objects further amplifies the need for rapid directory updates since failure to accurately represent the network state can lead to vulnerabilities that can be exploited. While a general background including problems in the art are described hereinabove, with occasional reference to related art or general concepts associated with the present invention, the above description is not intending to be limiting since the primary features of the present invention will be set forth in the description which follows. Some aspects of the present invention not specifically described herein may become obvious after a review of the attendant description, or may be learned by practice of the invention. Accordingly, it is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only in nature and are not restrictive of the scope or applicability of the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
Examples of known supply air terminal devices of this kind are described in SE-B-7613876-7, SE-B-77043362-8, SE-B-7810734-9, U.S. Pat. No. 4,537,118 and EP-A-0 337 971, all in the name of Lind. Other known solutions utilize air distribution filters which produce a laminar inflow. However, such solutions do not result in satisfactory admixture with surrounding air. The filters also become clogged and must be replaced at regular intervals. Such solutions are therefore both complicated and expensive. Other examples of the earlier standpoint of techniques are found in WO 90/02912 (Papula Rein Lathela), DE-C-4 428 655 (Erwin Muller) and in DE-C-4 026 529 (H. Kranlz-TKT)
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a support device for a dentist's drill. Tooth drilling or milling operations are normally performed by guiding the drill freehand. This technique is imprecise and leaves room for errors which become critical if the milling of the teeth is performed as part of the preparation for a prosthesis, which consists of milling the tooth (or teeth) in such a way as to cut them down to the shape of a conical stump over which the dental prosthesis is fitted. In this type of operation it is essential that high precision be guaranteed in forming the conical walls of the teeth. Support devices for dentist's drills have previously been proposed which make it possible to set the working axis of the drill in a predetermined direction and maintain the working axis constantly parallel to itself during use. Examples of such devices are contained in documents U.S. Pat. No. 3,083,462, U.S. Pat. No. 2,801,469 and FR-A-2 166 240. From the German document DE-A-3 500 921 there is known a device having an articulated arm with two articulated quadrilateral devices disposed in series with one another, connected to a fixed support base by means of a hinged joint and carrying attachment means for a dentist's drill.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a calculation processing device of a resolver signal. More specifically, the present invention relates to such a resolver signal calculation processing device capable of detecting a rotary position with high precision and with employment of a simple arrangement. 2. Description of the Related Art Conventionally, this sort of the resolver signal calculation processing device is known from, for instance, an arrangement made of an R/D (resolver/digital) converter and a peripheral appliance thereof as indicated in FIG. 2. While a resolver 1 is required so as to detect a rotary angle (rotation angle), hardware 2 such as a microcomputer or a DSP (digital signal processor) is needed in order that a resolver signal corresponding to an angular signal output from this resolver 1 may be utilized in a motor control operation and the like. In such a conventional resolver signal calculation processing device, the resolver 1, a resolver interface 1A such as the R/D converter, and the hardware 2 such as the microcomputer or the DSP are separately arranged. It should be noted that as the resolver interface 1A, the following digital interface means for interfacing with the hardware 2 such as the microcomputer or the DSP may be employed, namely, a parallel I/O (input/output) interface, a parallel bus interface, a serial interface, an encoder-equivalent pulse interface, and the like. Since the conventional resolver signal calculation processing device is arranged as described above, the below-mentioned problems occur. That is to say, since the resolver interface 1A is independently arranged with respect to the hardware 2, such a dedicated interface (not shown in the figure) used to connect the hardware 2 to the resolver interface 1A must be necessarily provided within this hardware 2 such as the microcomputer or the DSP. Therefore, since this dedicated interface is employed in the hardware 2, there are demerits as to the calculation processing speed and the noise-proof characteristics. Also, since a total number of components employed in this conventional device is increased, the reliability thereof is deteriorated. Furthermore, there are other problems in that the mounting space becomes bulky, and the manufacturing cost of the entire system is increased. The present invention has been made to solve the above-explained problems, and therefore, has an object to provide a calculation processing device of a resolver signal, in which both an R/D converter corresponding to a resolver interface, and hardware such as a microcomputer or a DSP are arranged in an integral form, and thus, a processing speed, a noise-proof characteristic, and reliability can be improved while a manufacturing cost thereof is reduced. To achieve the above-explained object, a calculation processing device of a resolver signal according to an aspect of the present invention is characterized in that a resolver signal output from a resolver is digitally converted by a resolver interface into a digital rotary angle signal; the digitally-converted rotary angle signal is processed by a central calculation processing unit; and the resolver interface is provided within the resolver signal calculation processing device. Also, in the resolver signal calculation processing device, the resolve interface is directly connected via an internal bus to the central calculation processing unit. Furthermore, the resolver interface is arranged by an R/D converter.
{ "pile_set_name": "USPTO Backgrounds" }
Wear-resistant, polycrystalline diamond compacts (“PDCs”) are utilized in a variety of mechanical applications. For example, PDCs are used in drilling tools (e.g., cutting elements, gage trimmers, etc.), machining equipment, bearing apparatuses, wire-drawing machinery, and in other mechanical apparatuses. PDCs have found particular utility as superabrasive cutting elements in rotary drill bits, such as roller-cone drill bits and fixed-cutter drill bits. A PDC cutting element typically includes a superabrasive diamond layer commonly known as a diamond table. The diamond table is formed and bonded to a substrate using a high-pressure/high-temperature (“HPHT”) process. The PDC cutting element may be brazed directly into a preformed pocket, socket, or other receptacle formed in a bit body. The substrate may often be brazed or otherwise joined to an attachment member, such as a cylindrical backing. A rotary drill bit typically includes a number of PDC cutting elements affixed to the bit body. It is also known that a stud carrying the PDC may be used as a PDC cutting element when mounted to a bit body of a rotary drill bit by press-fitting, brazing, or otherwise securing the stud into a receptacle formed in the bit body. Conventional PDCs are normally fabricated by placing a cemented carbide substrate into a container or cartridge with a volume of diamond particles positioned on a surface of the cemented carbide substrate. A number of such cartridges may be loaded into an HPHT press. The substrate(s) and volume(s) of diamond particles are then processed under HPHT conditions in the presence of a catalyst material that causes the diamond particles to bond to one another to form a matrix of bonded diamond grains defining a polycrystalline diamond (“PCD”) table. The catalyst material is often a metal-solvent catalyst (e.g., cobalt, nickel, iron, or alloys thereof) that is used for promoting intergrowth of the diamond particles. In one conventional approach, a constituent of the cemented carbide substrate, such as cobalt from a cobalt-cemented tungsten carbide substrate, liquefies and sweeps from a region adjacent to the volume of diamond particles into interstitial regions between the diamond particles during the HPHT process. The cobalt acts as a catalyst to promote intergrowth between the diamond particles, which results in formation of a matrix of bonded diamond grains having diamond-to-diamond bonding therebetween, with interstitial regions between the bonded diamond grains being occupied by the solvent catalyst. The presence of the solvent catalyst in the PCD table is believed to reduce the thermal stability of the PCD table at elevated temperatures. For example, the difference in thermal expansion coefficient between the diamond grains and the solvent catalyst is believed to lead to chipping or cracking of the PCD table during drilling or cutting operations, which consequently can degrade the mechanical properties of the PCD table or cause failure. Additionally, some of the diamond grains can undergo a chemical breakdown or back-conversion to graphite via interaction with the solvent catalyst. At elevated high temperatures, portions of the diamond grains may transform to carbon monoxide, carbon dioxide, graphite, or combinations thereof, causing degradation of the mechanical properties of the PCD table. One conventional approach for improving the thermal stability of PDCs is to at least partially remove the solvent catalyst from the PCD table of the PDC by acid leaching. In another conventional approach for forming a PDC, a sintered PCD table may be separately formed and then leached to remove the solvent catalyst from interstitial regions between bonded diamond grains. The leached PCD table may be simultaneously HPHT bonded to a cemented carbide substrate and infiltrated with silicon and cobalt from the substrate in a separate HPHT process. The silicon may infiltrate the interstitial regions of the leached PCD table from which the solvent catalyst has been leached and react with the diamond grains to form silicon carbide. The cobalt may also infiltrate the interstitial regions of the leached PCD table from which the solvent catalyst has been leached to form a bond with the cemented carbide substrate. PDCs sold under the trade name Terracut were fabricated by the foregoing process. Despite the availability of a number of different PDCs, manufacturers and users of PDCs continue to seek PDCs that exhibit improved toughness, wear resistance, thermal stability, or combinations thereof.
{ "pile_set_name": "USPTO Backgrounds" }
Many surgical procedures require accurate cuts of bone. For example, in mandibular reconstruction surgery, deficient or infectious portions of the mandible may be removed from the patient and replaced with bone graft. In some instances, a surgeon performing mandibular reconstruction surgery typically makes several cuts on the mandible to properly fit a bone graft. To make an accurate cut, the surgeon may use a resection guide to guide the motion of the resection tool toward the bone. The resection guide can also be used to cut a bone portion from other anatomic locations of the patient in order to harvest bone grafts. As discussed above, resection guides are typically used to make accurate cuts on the patient's anatomy. Although many resection guides have been developed over the years, it is still desirable to produce resection guides that are specifically designed for a particular patient in order to enhance cutting accuracy.
{ "pile_set_name": "USPTO Backgrounds" }
In the electronic equipment and telecommunications industries there is a wide-spread need to make electrical connections between components, often on a small scale. For instance, it is necessary to make electrical connections between printed circuit boards or liquid crystal displays by connecting an array of closely-spaced, side-by-side pads, on each respective component. Electronic components are often arranged in computers or the like with extreme space restrictions. Therefore, it is often necessary for the electrical connectors to be flexible. Accordingly, flexible conductive tapes having closely spaced parallel, conductive stripes, that extend the entire length of a flexible insulated support, are in widespread use in the electronic equipment and telecommunications industries. Known conductive tapes include conductive stripes consisting of: (a) conductive inks, (b) thin metal wires, or (c) stripes of thin metal films, e.g., deposited through a mask or selectively etched to provide the desired conductor width and spacing. Thin metal stripes, are typically covered with an anisotropic conductive adhesive to electrically connect the conductive stripes to an array of terminal pads on a printed circuit board, liquid crystal display, or the like. There are disadvantages inherent in each of the three presently known conductive tape constructions. Conductive tapes that use conductive inks as the conductive stripes typically have an undesirably high resistance. The manufacture of conductive tapes using thin metal wires for the conductive stripes requires drawing the metal wires down to size and attaching the wires to a flexible insulating support. Known methods are typically difficult and expensive. Production of thin metal films usually requires vapor deposition. The stripes are made by either masking during vacuum deposition o by selectively etching the metal films after deposition, for example, by means of photolithographic techniques. The rate at which metal films are deposited in vacuum metalization processes often makes it economically unattractive to increase the thickness of the metal stripes to a thickness sufficient to provide the desired low resistance pathways. In presently known electrical conductor tapes, the conductor tape is often constructed such that the spacing of the individual conductive stripes is the same as that of the terminal pads to which it is intended to be bonded. Accordingly, when the bonds are made between the conductive stripes and an array of terminal pads, it is necessary that absolute registration be maintained between the stripes and the pads during bonding. The fine pitch of many arrays of terminal pads makes such registration very difficult. Thus, it is often necessary to use magnifying devices when bonding the conductive tape to the terminals. However, if the pitch of the electrical conductors is so fine that one or more conductors will contact a terminal pad during bonding, absolute registration will not be necessary. It will still be necessary, in most applications, to maintain a generally parallel alignment to prevent cross-over connections. Therefore, there is a need for a universal, flexible, conductive connector tape, adapted to provide electrical connection between two arrays of closely-spaced conductive pads. There is also a need for a connector tape with a plurality of conductors, regularly-spaced longitudinally in the conductive tape, having a sufficiently fine pitch so that absolute registration is not necessary in most applications. There is a further need for a conductive tape which provides low resistance paths, bonds firmly to an array of terminal pads, and is relatively simple and economical to manufacture. There is a further need for a method by which various connector tape constructions can be made, that are adapted to bond to an array of terminal pads by means of adhesive, conductive-adhesive, and/or solder bonds.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a tablet automatic packing machine, and more particularly to an information input device for a tablet automatic packing machine capable of easily and directly storing tablet information in a memory chip installed to the tablet automatic packing machine and updating/reading the tablet information in/from the memory chip at a user side. 2. Description of the Related Art Generally, tablet automatic packing machines serve to dispense corresponding tablets based on prescription data and to automatically pack them based on a dose of tablet. The construction of such a table automatic packing machine is described in detail with reference to FIG. 1. FIG. 1 is a cross-sectional view illustrating a state in which tablet cassettes are collected in a tablet automatic packing machine according to the prior art. As shown in the drawing, the tablet automatic packing machine 50 includes a plurality of shelves on the upper side of a case 52 shaped as a frame. Each of the plurality of shelves has a plurality of cassette supporters 60 installed thereon for mounting a plurality of tablet cassettes 70, respectively. The case 52 has a hopper 56 thereunder, which collects tablets discharged from the plurality of cassettes 70 through the plurality of cassette supporters 60. The hopper 56 has a packing assembly 57 thereunder, which packs the collected tablets based on dosage units. Here, the packing assembly 57 includes a printing unit for printing information on each packing paper on which user should note instructions for taking the tablets, and a heater 58 for heat-sealing openings of the packing papers. FIG. 2 is a view illustrating a state in which tablet cassettes are installed to cassette supporters for the prior art tablet automatic packing machine. If the prior art tablet automatic packing machine determines that the quantity of tablets in a tablet cassette 20 is less than a predetermined value, a tablet cassette tag label 20a attached to one side of the tablet cassette 20 indicates tablet depletion therein in a light emission fashion. Here, a user separates a corresponding tablet cassette from a corresponding tablet supporter 10 and refills corresponding tablets therein. After wards, the user inserts the refilled tablet cassette 20 into the cassette supporter 10 based on recognition of the tablet cassette tag label 20a and the cassette supporter tag label 10a. FIG. 3 is a cross-sectional view illustrating a state in which a tablet cassette is separated from a cassette supporter for a tablet automatic packing machine according to the first embodiment of the prior art. The tablet cassette 70 has a rotor 72 for guiding and dispensing corresponding tablets, which is installed therewithin, a memory chip 75 and a socket 77 electrically connected to the memory chip 75, which are installed on the lower surface of the table cassette 70. The tablet cassette supporter 60 includes a motor 64 for rotating the rotor 72, which is installed therewithin, and a tablet discharging unit 62 for discharging tablets. The tablet discharging unit 62 includes a tablet discharging hole formed therein and a sensor unit 66 formed around the tablet discharging hole. The sensor unit 66 includes a light reception unit 66a and light emitting unit 66b such that they can perform a sensing operation for tablets discharged through the discharging hole. Also, the tablet cassette supporter 60 includes a connector 67 installed on the upper surface thereof. A passage 54 for downwardly dispensing tablets discharged from the cassette supporter 60 through the tablet discharging unit 62 is formed in the inside of the case 52. In the case that the table cassette 70 is coupled to the tablet cassette supporter 60, the socket 77 mounting the memory chip 75 thereon is connected to the connector 67 of the tablet cassette supporter 67 such that tablet information stored in the memory chip 75 can be transmitted to a controlling unit (not shown) of the tablet automatic packing machine. Therefore, since a memory chip 75 storing information of tablets contained in a tablet cassette 20 can be connected to a connector of any of the tablet cassette supporters, the tablet cassette and the tablet cassette supporter need not to be assembled so that their tag labels are consistent with each other. FIG. 4 is a cross-sectional view illustrating a state in which a tablet cassette is separated from a cassette supporter for a tablet automatic packing machine according to the second embodiment of the prior art. The configuration of FIG. 4 employs the same reference numerals as those of FIG. 3 with respect to the same elements. Since a socket 68 electrically connected to a memory chip 65 is directly mounted on the tablet cassette supporter 60, the tablet cassette 70 must be coupled to the tablet cassette supporter 60 while their tag labels are consistent with each other. Before the tablet automatic packing machines constructed as described above are sold, information of tablets to be contained in the tablet cassettes, such as tablet information, tablet cassette identification number, tablet name, sensitivity/minimum sensing time/sensing period etc. of a sensor for sensing tablet discharge, is recorded in each of the memory chips installed in the automatic packing machines by an exclusive input device. However, as a variety of new tablets have been developed, tablet information must be frequently updated or newly stored in the memory chips. However, there is no known separate input device for storing/updating tablet information to the respective memory chips. Therefore, if there is a need to update information stored in the respective memory chips of the respective cassette supporters, the prior art tablet automatic packing machine must be sent to the manufacturer or a sales agency. Accordingly, the prior art tablet automatic packing machine has disadvantages in that the update procedure is complicated, and update of tablet information stored in the memory chip is delayed. Also, since it must be sent to the manufacturer or a sales agency to update tablet information, the dispenser cannot dispense the tablets according to prescription data using the prior art tablet automatic packing machine because it is being updated. Also, the prior art tablet automatic packing machine doesn't provide the user with the convenience of being able to easily confirm tablet information stored in the memory. In addition, if it is difficult to recognize tablet information through tag labels 10a and/or 20a attached to a cassette supporter 10 and/or tablet cassette 20, the user must find, one by one, the cassette supporter 10 having a memory chip storing corresponding information of tablets contained in the tablet cassette 20.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method of manufacturing a structural element having a metal wall of generally tubular shape with at least two segments that are not in axial alignment, and it also relates to a tubular metal-walled structural element suitable for being made in a very wide variety of shapes and for a very wide variety of applications. In numerous industrial sectors, it is necessary to have structural elements of generally tubular shape, that comprise successive segments that are not in axial alignment, and that are of cross-section that is more or less complex in shape, and in particular that is polygonal. Such structural elements may be curved or may present successive segments that are rectilinear in angular dispositions, for example extending at right angles to one another, when providing structural elements in the form of square or rectangular frames. In certain applications, it is necessary to have frames presenting high stiffness and mass that is as low as possible, with these two conditions generally being difficult to reconcile when making frames by assembling together tubular section members of polygonal section. In order to assemble and weld together the sides of the frame at its corners, it is necessary to use tubes having walls of sufficient thickness. As a general rule, it is difficult to make frames by assembling tubes together, e.g. tubes of square section, if they have wall thickness that is less than 1 millimeter (mm). In certain applications, for example in making metal doors, it can be desirable not only to obtain good stiffness and mass that is as light as possible, but also to obtain qualities making the door appealing to the eye, for example when the door is used in a building where a particular decorative style is implemented. Under such circumstances, it can be necessary to provide framework structures with different sides presenting sections of various shapes. It is therefore necessary to have tubes with sections of different shapes and possibly shapes that are most unusual. This makes the construction of such doors very expensive. In certain industries, for example the automobile industry, the aviation industry, or the ship-building industry, structural elements or xe2x80x9cchordsxe2x80x9d are used that are light in weight, that have tubular metal walls, that are complex in shape, and that may be curved or even looped back onto themselves in order to constitute an annular piece. Such structural elements whose tubular structure serves to obtain savings in weight must be built in a manner that is extremely stiff and strong. In order to make such complex structures, it is generally necessary to assemble together a large number of pieces that have previously been shaped by a forming and/or cutting-out method. Assembling pieces together to make a structure of complex shape, and to do so with good precision both in shape and in dimensions, is an operation that is expensive, and the various welds used to build the assembly must be inspected thoroughly. In addition, when the metal material used is difficult to weld, such as aluminum and its alloys, it is even more difficult and expensive to make complex structures, and it may be necessary to use assembly methods that are difficult to implement in order to avoid the presence of welding. When making structural elements from flat materials such as metal sheets, blanks are generally cut out and assembled together by being welded along their edges, which generally requires the use of jigs and supports for holding the blanks in their assembly position. Such structures are therefore complex to make and require the use of tooling that is expensive. In addition, in certain circumstances, it is not even possible to use a jig placed in a hollow portion of the tubular structure because the shape of the structure would prevent the jig from being removed after the structure has been assembled and welded together. The object of the invention is thus to propose a method of manufacturing a structural element having a metal wall of generally tubular shape comprising two segments that are not in axial alignment, which method is simple to implement and of limited cost, and makes it possible to make structures that are complex in shape, stiff, and lightweight, out of any metal material. For this purpose, the method comprises the steps of: cutting out at least one plane blank from a sheet of metal material, the blank having a main part having the developed shape of the segments of the wall of the structural element, and for each of the segments, at least one overlap and fixing tab, together with at least one additional tab for fixing segments together; folding the cutout blank along a plurality of lines so as to form the wall of the structural element out of folded margins of the main part of the cutout blank; and using welding to fix at least one additional overlap and fixing tab of each of the segments to at least one additional tab for fixing segments together over at least one of a folded margin of the wall of the structural element or a second overlap tab, the at least one additional overlap and fixing tab of each segment and the at least one tab for fixing segments together and the folded margin of the wall or the second overlap tab being maintained to bear resiliently one against the other.
{ "pile_set_name": "USPTO Backgrounds" }
In what is generally known as half-engine operation of an internal combustion engine, half of the cylinders are deactivated by switching off the intake and discharge valves as well as the injection, which allows fuel to be saved in comparison with standard full-engine operation. As an alternative, the half-engine operation also may be realized by deactivating only the injections. However, it must be taken into account then that this causes fresh air to be pumped through the affected cylinders, so that a post-connected catalytic converter is no longer able to convert at an air/fuel ratio of λ=1. For this reason, half-engine operation realized by deactivating the injection for half of the cylinders is implemented only in a configuration where all cylinders of one cylinder bank to which a separate exhaust tract with its own catalytic converter is assigned are suppressed. The other cylinder bank is always fired in full. The crankcase ventilation is usually implemented symmetrically on both cylinder banks. In half-engine operation, however, the crankcase ventilation must no longer take place on the suppressed cylinder bank since the catalytic converter assigned to the suppressed cylinder bank is no longer able to convert the oil and gas mist introduced by the crankcase ventilation, which could lead to an exceeding of the prescribed emission limits. Therefore, an actuator in the form of a shutoff valve is used, which is open in full-engine operation and usually enables a symmetrical feeding of the crankcase ventilation to the two cylinder banks. In half-engine operation, this shut-off valve is closed in order to route the crankcase ventilation only to the not suppressed, completely fired cylinder bank. Depending on the position of the shutoff valve, a different distribution of the crankcase ventilation to the two cylinder banks comes about. Since the exhaust-gas composition in the two exhaust tracts of the cylinder banks is affected to different degrees depending on the position of the shutoff valve, it is desirable to diagnose the function of the shutoff valve.
{ "pile_set_name": "USPTO Backgrounds" }
In electrical discharge machining (EDM), a metal workpiece immersed in a bath of an ionizable dielectric is machined to a desired shape by electrical erosion. That is, an electrode of the required configuration is lowered into the bath, in proximity to the workpiece, and a series of electrical current discharges are generated between the electrode and the workpiece. Each spark or arc discharge between the electrode and the workpiece results in limited erosion (cutting) of the workpiece. With continuing movement of the electrode toward the workpiece, the workpiece is ultimately shaped to the configuration of the electrode. This kind of machining is particularly useful in the cutting of irregular cavities or external configurations, though the technique can be employed for relatively simple and symmetrical shapes as well. Although electrical discharge machining follows the shape of the electrode quite precisely, the cavity or other surface cut into or on the workpiece does not conform exactly to the electrode dimensions, differing therefrom by the length of the arc gap that must be maintained between the electrode and the workpiece during machining. On the other hand, for maximum efficiency in an EDM operation, the erosion rate is preferably not maintained constant. For initial rough shaping, a high working speed is utilized, with arcs of maximum intensity that remove relatively large amounts of metal. For surface finishing, arcs of lesser energy are employed, over a shorter arc path. In a conventional EDM process, the requirement for a change in the length of the arc gap has often necessitated the use of a series of electrodes, all of similar configuration but having dimensions adapted to the particular machine speed at which each was to be used. The expense and difficulty of providing a series of electrodes of this kind is effectively eliminated by the use of orbital electrode supports, particularly as described in Braudeau et al U.S. Pat. No. 3,433,919 issued Mar. 18, 1969. With this technique, the electrode is moved horizontally during the EDM process, particularly during that portion of the machining operation required to provide a final finished surface, in what is usually referred to as an orbital path. The horizontal motion of the electrode may follow a circular path; however, depending upon the configuration of the cut being made in the workpiece and the finish requirements for the machining operation, the transverse or horizontal motion of the electrode may be along an oval path or an irregular path, or may even approach linear reciprocation. Any and all of these types of motion are intended to be included in any reference to "orbital motion" or to an "orbital path" in this specification. In known orbital tool supports, the apparatus for generating the horizontal orbiting motion of the electrodes is usually mounted in direct centered relation on the vertically movable platen or tool support head of a conventional EDM machine, with the electrode supported directly from the orbiter. Machines of this kind are described in the aforementioned Braudeau patent, in Mayer et al U.S. Pat. No. 3,322,929 issued May 30, 1967, and in Bentley et al U.S. Pat. No. 3,135,852 issued June 2, 1964. In other known arrangements, on the other hand, the orbiting head has been mounted on a vertical axis displaced from the machine axis; see, for example, Furze et al U.S. Pat. No. 3,539,754 issued Nov. 10, 1970 and Weber U.S. Pat. No. 3,809,852 issued May 7, 1974. A substantial problem presented in connection with either type of EDM orbiting head, as referred to above, is a lack of dynamic stability, particularly in jobs requiring the use of large electrodes or multiple electrodes. The lack of stability arises from several sources, including the weight of the electrode structure itself, if the electrode is of irregular or eccentric configuration and hence causes eccentric loading of the orbiting tool support structure. A more important source of eccentric loading contributing to dynamic stability, however, arises from the reaction forces occurring in the course of the machining operations. These forces are substantial and they are inherently eccentric, due to the orbital movement of the electrode, which concentrates arcing at successive different horizontal locations in the course of the machining operation. The frequent result of this lack of dynamic stability is difficulty in controlling machining stability and maintaining close tolerances when an orbiting head is used as the electrode support system, particularly on jobs requiring the use of large electrodes or multiple electrodes. The same general considerations are applicable in other machine tools in which orbiting heads may be used, as in electro chemical machining (ECM) systems and in milling machines or other mechanical-cutting machine tools.
{ "pile_set_name": "USPTO Backgrounds" }
Silicon as a device platform is nearing a fundamental limitation to further advances in device miniaturization. Key issues that motivate a new material and device structure include silicon's limited carrier mobility and limits to gate control over the MOSFET (metal-oxide-semiconductor field effect transistor) channel (as measured by metrics such as subthreshold swing and leakage current) as gate lengths and gate oxide thicknesses decrease according to Moore's law. Germanium (Ge) is an ideal material for electronic devices due to its higher carrier mobility compared to those of silicon (Si), and is also considered to be relatively compatible with modern Si CMOS processing. However, because of its 4% lattice mis-match with Si, Ge grown directly onto Si contains crystal defects, such as dislocations, which are detrimental to device performance. In addition to crystal defects, surface roughness is also an artifact of heteroepitaxy that can degrade optical device performance by causing scattering loss. Therefore, the application of Ge films and structures integrated onto Si-based chips will depend on successfully growing smooth, low defect-density Ge films directly onto Si substrates. Two methods previously used to eliminate defects are cyclical hydrogen annealing and defect-necking. Cyclical hydrogen annealing involves growing a film of Ge on Si, then annealing it in an H2 ambient to cause the defects to concentrate at the Si/Ge interface, followed by additional Ge epitaxy. Defect-necking involves selectively growing Ge through an aperture etched through a SiO2 mask so that the defects are intercepted and terminated at the aperture walls. Two specific devices of interest are MOSFETs and field-effect sensors (FESs). In order to enhance the performance of MOSFET devices, the area of the channel covered by the gate relative to the channel's effective cross-section (the area through which the source-drain current flows) has been increased by shaping the channel region into three-dimensional shapes such as fins (FinFETs), beams, and wires, and covering them on two, three, or four sides by the gate electrode, thereby increasing the gate's control over the channel. However, these device structures are obtained by etching, which causes surface roughness and damage that deleteriously affects device performance. In addition, these lithographically patterned structures contain acute angles at which electrical fields can be concentrated. Removing this roughness requires oxidation and removal of the surface and/or a high temperature anneal that smoothes the surface and acute angles. For silicon, this anneal requires temperatures in excess of 1000° C., which possibly jeopardizes the microstructural integrity of the wafer and/or any devices previously fabricated thereon. Germanium-based devices have been developed, but these are mostly planar devices, and do not incorporate annealing for adjusting the shape. Field-effect sensors have been developed with planar and nanowire channels. As the sensors' sensitivity increases with the relative area of the channel surface that is in contact with the sensed medium, planar structures are at a disadvantage. Nanowire channels have the requisite form factor, but growing them in a controllable, massively integratable manner is highly difficult.
{ "pile_set_name": "USPTO Backgrounds" }
Tetraazamacrocycles such as derivatives of cyclam (1,4,8,11-tetraazacyclotetradecane) generate an important interest in many fields such as medicine, especially nuclear medicine; epuration of effluents contaminated with radioactive elements or metals such as lead; catalysis; solid/liquid extraction and liquid/liquid extraction; or detection of traces of metallic cations. The present invention relates to all these fields of applications, especially nuclear medicine. In nuclear medicine, radiopharmaceuticals used as therapeutic agents or as imaging agents often comprise chelates of radioelements. To improve the efficiency of radiopharmaceuticals, a targeting biomolecule may be appended on the chelating moiety in order to induce a site-specific delivery of the radiation, leading to a bifunctional chelating agent (BCA). Obtaining a BCA requires the introduction of an appropriate conjugation group in the structure of the metal chelator, to allow for the bioconjugation prior or after labeling with the radioisotope. The targeting agent may be for example an antibody, an hapten or a peptide. Depending on the nature of the radionuclide, it is for example possible to perform PET imaging (Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomography) or RIT (RadiolmmunoTherapy). For applications in nuclear medicine, the chelate should thus be bioconjugated to a biological vector while trapping the radionuclide to form a stable complex preventing the release of the metal in the organism. Moreover, when using radioactive emitters, the kinetic constraint has to be considered because of the limited half-life of the radionuclide. Dota (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) is a tetra N-functionalized cyclen (scheme 1). In scheme 1, dota is referred to as “H4dota”, the four hydrogen atoms specified before “dota” reflecting the fact that in order to have the four carboxylic acid functions in “COOH” form, the four amines of the macrocycle should be protonated. The same nomenclature is used along the description for macrocycles comprising carboxylic acid functions. Dota is the most used ligand to complex gadolinium (III) for MRI imaging. Dota also enables to complex other metals commonly used in nuclear medicine, such as for example 111In, 68Ga, 149Tb, 213Bi, 212Bi, 212Pb, 64Cu or 67Cu. Derivatives of the dota, are today widely studied (scheme 1). Among the range of potentially useful metals in nuclear medicine, copper has been receiving much interest due to the existence of several radionuclides with different half-life times and emission properties suitable for diagnostic imaging or therapeutic applications. The most interesting nuclides are 67Cu (t1/2=62.0 h, β− 100%, Emax=0.577 MeV) for radiotherapy, and 64Cu (t1/2=12.7 h, β+17.4%, Emax=0.656 MeV, β− 39.6%, Emax=0.573 MeV) for both positron emission tomography (PET) and radiotherapy. Copper exists predominantly as divalent metal cation that prefers donor groups such as amines and anionic carboxylates to form complexes with coordination numbers of 4-6. High coordination numbers are usually preferred, often providing square pyramidal, trigonal bipyramidal or octahedral geometries, so as to entirely surround the metal cation. Within the vast range of acyclic and cyclic ligands successfully used for copper complexation, the family of tetraaza macrocycles with N-appended coordinating arms stands out owing to the efficiency and versatility of its copper chelation. Like copper, gallium prefers high coordination numbers, especially under the form of octahedral geometries and tetraaza macrocycles with N-appended coordinating arms may be used for its chelation. The most interesting nuclide for nuclear imaging is 68Ga (t1/2=68 min, β+100%, Emax=2.921 MeV), for positron emission tomography (PET). The following requirements are commonly admitted in the art as specifications for an optimized chelate intended to be used in nuclear medicine: a) rapid metallation kinetics with respect to the time of the radionuclide half-life, even under the acidic conditions in which most radionuclides are produced; b) a very good thermodynamic stability; c) inertness with respect to other metals, especially Zn2+ which is present in high amounts in the biological medium or as byproduct of radionuclides production such as 64Cu; d) kinetic inertness; e) stability upon reduction in the biological media of the chelated metal, such as for example the stability of copper (I) complex as a reduced form of the initially chelated copper (II). Metallation kinetics (point a) may be determined using UV-visible spectrometry by measuring the increasing intensity of the complex d-d transition band. When possible, i.e. depending on whether the metal is paramagnetic or not, metallation kinetics may also be determined by NMR. Suitable metallation kinetics depends on the half-life of the radionuclide used to form the chelate. Thermodynamic stability (point b) may be evaluated by determining the stability constants of the complexes, especially the association constant K and pK (or log K). Stability constants may be measured by potentiometry or spectroscopies. pM values may be calculated from pK in order to compare thermodynamic stability with corresponding values of other ligands of the prior art. Indeed, pM reflects the amount of ligand not chelated, taking into account the basicity of the ligand. In the present invention, a “very good thermodynamic stability” refers to a thermodynamic stability at least comparable, preferably better than that of the dota chelate formed with the same metal. Inertness with respect to other metals (point c) may be evaluated by determining and comparing the pCu2+ versus pZn2+. Competitive experiments may also be conducted. Especially, excess of zinc necessary to lead to a transchelation may be determined in competitive experiments with zinc. In the present invention, a chelate is considered having a suitable inertness with respect to other metals when it has inertness at least comparable, preferably better than that of the dota chelate formed with the same metal. Kinetic inertness (point d) may be evaluated by measuring metal dissociation upon competition with H+, in acid medium. Especially, half-life of the complex may be determined in presence of H+ at different concentrations and temperatures. In the present invention, a chelate is considered having a suitable kinetic inertness when it is at least comparable, preferably better than that of the dota chelate formed with the same metal. Stability upon reduction (point e) may be evaluated by determining the dissociation of the reduced metal. Dissociation may be measured with cyclic voltammetry in electrochemical experiments. In the present invention, a chelate is considered having a suitable stability upon reduction when it is at least comparable, preferably better than that of the dota chelate formed with the same metal. Chelates with a good thermodynamically stability and a kinetic inertness prevent possible transchelation of the metal when the complex is challenged with biological ligands or bioreductants. It is also important that the chelate and the chelator display good water solubility. As stated above, the commercially available dota is used to complex 64Cu(II), 67Cu(II) and 68Ga(III). However, copper-dota chelates are far from meeting requirements of the above specifications. Due to their good affinity with copper (II), tetraazacycloalkanes derivatives of cyclam, such as for example teta and te2a (scheme 1), were recently used to complex 64Cu or 67Cu for PET or RIT applications. Their suitable N-functionalization can also give them a good affinity toward other metals such as heavy metal or lanthanides and extend their use in these applications with for example 99mTc, 186Re, 188Re, 111In, 68Ga, 89Zr, 177Lu, 149Tb, 153Sm, 212B (212Pb), 213Bi and 225Ac. However, chelates formed from these derivatives of cyclam do not meet all requirements of the above specifications. Therefore, there is a need for new ligands enabling to form chelates meeting all the requirements of the specifications mentioned above. Especially, ligands potentially useful for radiopharmaceuticals should combine a high thermodynamic stability and kinetic inertness of the complexes with a fast metal complexation under mild conditions, as the latter is crucial to take full advantage of the short radioisotope half-life times and allow for use of heat- and pH-sensitive biomolecules. Picolinate arms have been demonstrated to induce strong coordination ability toward transition and post-transition metals when appended on macrocyclic ligands, as well as non macrocyclic ligands. Indeed, picolinate moiety is bidentate: it has a nitrogen atom and an oxygen atom, both capable to participate to the coordination of a metal. Therefore, picolinate derivatives were recently used for the complexation of lanthanides, lead or bismuth (Rodrigez-Rodrigez A. et al. Inorg. Chem. 2012, 51, 13419-13429; Rodrigez-Rodrigez A. et al. Inorg. Chem. 2012, 51, 2509-2521). They were also recently used for the complexation of copper. Orvig et coll. disclosed a derivative of ethylenediamine grafted with two picolinate arms H2dedpa, represented on scheme 2 below for the chelation of copper (Boros et al., JACS, 2010, 132, 15726-33; Boros et al. Nucl. Med. Biol. 2011, 38, 1165-1174). Derivatives of H2dedpa were also proposed, with various bioconjugation groups (Boros et al. Inorg. Chem. 2012, 51, 6279-6284; Bailey et al. Inorg. Chem. 2012, 51, 12575-12589; Boros et al. Nucl. Med. Biol. 2012, 39, 785-794). However, results were quite disappointing, especially for the coordination of Cu(II), for an application in medicine. Indeed, Cu(II) complexes display low kinetic and thermodynamic stability, as well as decreased serum stability (Boros et al. Inorg. Chem. 2012, 51, 6279-6284), thus not meeting requirements b), d) and e) of the above specifications. In a preliminary work, the Applicant proposed a triaza macrocycle with one picolinate and two picolyl pendant arms, Hno1pa2py (scheme 3), which was found to easily form stable and inert copper(II) complexes as well, and additionally resulted in a very efficient radiolabeling with 64Cu (Roger et al. Inorg. Chem. 2013, 21(9), 5246-5259). Despite promising properties, all the requirements of the above-mentioned specifications were not entirely met: the stability of the formed copper chelate with this ligand needs to be improved, in particular upon the reduction of copper (II) to copper (I) in the physiologic media. The Applicant then developed picolinate derivatives of cyclen and cyclam (scheme 3), especially a first generation of monopicolinate derivative of cyclam, Hte1pa (Lima et al. Inorg. Chem. 2012, 51(12), 6916-6927). The corresponding copper chelate gives good results relative to the requirements a)-c) of the specifications. However, inertness in acidic medium, (point d) of the specifications, and inertness with regard to reduction (point e) were not optimized. Therefore, the Applicant conducted research to provide a new ligand comprising picolinate arms, overcoming abovementioned drawbacks, i.e. to improve inertness in acidic medium and inertness in reductive medium, while meeting the other requirements of the specifications mentioned above. Rigid tetraazamacrocycles, known as “cross-bridged chelators”, are the subject of great interest due to the outstanding behavior of their complexes, especially their inertness. Examples of cross-bridged chelators are cross-bridged cyclam derivatives cb-te2a and side-bridged sb-te1a1p or cross-bridged cyclen derivative cb-do2a (scheme 1). Cross-bridged chelators are defined as containing an ethylene (or propylene) bridging unit connecting two nitrogen atoms of the macrocycle in trans position and they have originated some of the most inert copper (II) complexes ever reported. Furthermore, successful radiolabeling and bioconjugation of a few examples have also been achieved. Especially, cross-bridged cb-te2a attracts a great interest since it forms the most inert copper complexes (points d) and e) of above specifications), leading thus to limited if any release of copper in the body. Therefore, the Applicant considered introducing a cross-bridge in Hte1pa, to form the new ligand Hcb-te1pa, in order to improve inertness: However, all constrained bridged chelators described in the art, including Hcb-te2a, are very basic since they are proton-sponges: a proton remains blocked in the macrocyclic cavity due to the structure of the compound, and this proton may not be easily displaced by the metal. This proton-sponge behavior renders metallation kinetics very slow. Drastic conditions are necessary to displace the proton, such as elevated temperatures, which is incompatible when sensible biological vectors are grafted to the chelate to form a bioconjugate. As a consequence, cross-bridged chelators, and especially Hcb-te2a, meet the above mentioned specifications, especially inertness points d) and e), with the notable exception of a very slow metallation kinetics (point a). Therefore, by introducing a cross-bridge in Hte1pa to improve inertness, the Applicant expected a drastic decrease of metallation kinetics, leading to a ligand offering a compromise between good inertness and fast kinetics but not meeting all 5 requirements of the above specifications. As expected, the Applicant demonstrated that, as other cross-bridged derivatives, the Hcb-te1pa ligand of the invention is a proton-sponge (see acido-basic studies—example 5, paragraph B.1). However and unexpectedly, cross-bridging Hte1pa to form Hcb-te1pa and derivatives thereof did not lead to a decrease of metallation kinetic, compared to non-cross-bridged cyclams. On the contrary, the cross-bridged ligand of the invention Hcb-te1pa surprisingly shows a very rapid metallation kinetic, even in acidic conditions. The metallation occurs quasi instantaneously: for example, more than 90% copper is chelated immediately and remaining copper is chelated within a few seconds (see experimental part—example 5, paragraph B.3). To the knowledge of the Applicant, there is no other case reported in the art of a cross-bridged cyclam or cyclen having a rapid metallation kinetic in aqueous acidic medium and the present invention overcomes a strong prejudice of the skilled artisan. Without willing to be linked by a theory, it seems that the pre-organized character of the cross-bridged ligand, which was evidenced in crystallographic studies (FIG. 1), together with the presence of a carbonyl group on the aromatic moiety, might be at the origin of this unexpected behavior. It was observed that the structure of the chelate is close to the structure of the ligand (FIG. 2). The Applicant thus provides a new ligand of formula Hcb-te1pa: and derivatives thereof, especially derivatives functionalized with coupling functions suitable for grafting vectoring groups or derivatives comprising vectoring groups. In a preferred embodiment, the invention relates to ligands of formula (I) wherein n, R1, R2, R3, R4, R5, L1, L2, L3 and L4 are as defined below. Upon complexation with metallic cation, the ligands of the invention lead to chelates meeting the 5 requirements of the above specifications. Especially, properties of copper(II) chelate of Hcb-te1pa are reported in the experimental part below and compared to those of copper(II) chelates of the art, evidencing that the chelate of the invention entirely fulfills specifications. The invention also relates to chelates resulting from the complexation of a ligand of formula (I) with metallic cations. The ligand of formula (I) of the invention presents the advantage of being easily manufactured using a simple chemical synthesis. Moreover, the ligand Hcb-te1pa and derivatives thereof present a competency for diverse radioisotopes useful in nuclear medicine, such as for example 64Cu, 67Cu, 68Ga, 89Zr, 99mTc, 111In, 186Re, 188Re, 210At, 212Bi (212Pb), 213Bi, 225Ac, 90Y, 177Lb, 153Sm, 149Tb or 166Ho. The structure of Hcb-te1pa enables the bio-vectorization of the chelate by the introduction of vectorizing groups on the cyclam core, through N-functionalization and/or C-functionalization. Especially, the cyclam core may be C-functionalized according to the method described in patent application WO2013/072491. Moreover, the carboxylic function of the picolinate arm may also be functionalized. The invention thus encompasses Hcb-te1pa ligand, functionalized and/or vectorized derivatives thereof and corresponding chelates with metallic cations, preferably copper(II) or gallium(III). The chelate of the invention is obtained in aqueous medium, contrary to what is currently done in the art, which is very advantageous for nuclear medicine applications. Besides applications in nuclear medicine, the ligand of formula (I) of the invention may be used for epuration of effluents contaminated with radioactive elements or metals such as lead; catalysis; solid/liquid extraction and liquid/liquid extraction; or detection of traces of metallic cations.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to an electrostatic discharge protection circuit for protecting a semiconductor integrated circuit from electrostatic discharge, and a semiconductor circuit device. 2. Related Art When electric charges generated by electrostatic discharge (ESD) are applied to a semiconductor integrated circuit, elements incorporated in the semiconductor integrated circuit may be damaged. To address this, a technique has been proposed to protect the elements in the semiconductor integrated circuit by providing an electrostatic discharge protection circuit to the semiconductor integrated circuit, and discharging the electric discharges generated by ESD by using the electrostatic discharge protection circuit. FIG. 10 is a diagram showing a configuration of an electrostatic discharge protection circuit proposed by US-A1-2006/0039093. The electrostatic discharge protection circuit shown in FIG. 10 is included in a semiconductor integrated circuit. The electrostatic discharge protection circuit, which is connected to a direct-current power supply (not shown), includes a first power supply line 1100-1 having a power supply voltage potential VDD and a second power supply line 1100-2 having a potential VSS that is lower than the potential VDD. The second power supply line 1100-2 is connected to a frame ground GND. The electrostatic discharge protection circuit also includes a time constant circuit 1101 composed of a resistor 1101a and a capacitor 1101b that are connected in series between the first power supply line 1100-1 and the second power supply line 1100-2. The electrostatic discharge protection circuit also includes a relatively large-sized N-channel transistor 1102 that is connected between the first power supply line 1100-1 and the second power supply line 1100-2. The electrostatic discharge protection circuit also includes three inverters 1103, 1104 and 1105 that are connected in series between a connection node located between the resistor 1101a and the capacitor 1101b and a gate of the N-channel transistor 1102. An ESD event occurs due to electrostatic electricity being charged on the human body or a transporting device during transport of a semiconductor integrated circuit and flowing through the semiconductor integrated circuit. At first, the first power supply line 1100-1 has a potential equal to that of the second power supply line 1100-2. It is assumed here that, as an ESD event, positive ESD surge is applied to the first power supply line 1100-1 relative to the second power supply line 1100-2. Electric charges generated by the ESD surge are charged into the capacitor 1101b via the resistor 1101a. Here, the value of an RC time constant determined by the resistance value of the resistor 1101a and the capacitance value of the capacitor 1101b is large enough that an input-side node of the inverter 1103 is maintained at ‘L’ level during a time period corresponding to the RC time constant. In a state in which the input-side node of the inverter 1103 is maintained at ‘L’ level, the gate of the N-channel transistor 1102 is at ‘H’ level via the inverters 1104 and 1105. Accordingly, the N-channel transistor 1102 is brought into an ON state. In this way, as a result of the surge current escaping through the N-channel transistor 1102, it is possible to prevent high voltage from being applied between the first power supply line 1100-1 and the second power supply line 1100-2. Note that the gate potential of the N-channel transistor 1102 decreases together with the ESD surge. However, the electrostatic discharge protection circuit shown in FIG. 10 is problematic in that the proportion of a circuit area occupied by the capacitor and the resistive element needs to be increased in order to increase the RC time constant. FIG. 11 is a diagram showing a configuration of an electrostatic discharge protection circuit proposed by JP-A-2009-182119. The electrostatic discharge protection circuit shown in FIG. 11, which is connected to a direct-current power supply, includes a first power supply line 1200-1 having a predetermined first potential and a second power supply line 1200-2 having a second potential that is lower than the first potential, as well as a time constant circuit 1210 that includes a capacitor 1212 on the first power supply line 1200-1 side and a first N-channel transistor 1214 on the second power supply line 1200-2 side having a negative threshold voltage, which are connected in series between the first power supply line 1200-1 and the second power supply line 1200-2, an inverter 1220 whose input side is connected to a connection node 1216 located between the capacitor 1212 and the first N-channel transistor 1214 and whose output side is connected to a gate of the first N-channel transistor 1214, and a field effect transistor 1240 that is connected between the first power supply line 1200-1 and the second power supply line 1200-2, whose gate is indirectly connected to the connection node 1216 located between the capacitor 1212 and the first N-channel transistor 1214, and that conducts electricity in response to an increase in the potential of the gate by an increase in the potential of the connection node 1216. Upon receiving the occurrence of an ESD event, the potential of the connection node 1216 located between the capacitor 1212 and the first N-channel transistor 1214 having a negative threshold increases sharply, and ‘L’ level is output from the inverter 1220. The ‘L’ level is input into the gate of the first N-channel transistor 1214. Accordingly, the value of on-resistance of the first N-channel transistor 1214 is large, and thus the first N-channel transistor 1214 functions as a high resistor that constitutes, together with the capacitor 1212, a RC time constant circuit. Also, the ‘L’ level is indirectly input into the gate of the field effect transistor 1240, and the field effect transistor 1240 is thereby brought into an ON state, which allows the surge current due to the ESD event to escape. As described above, in the invention of JP-A-2009-182119, the N-channel transistor is in the ON state only during a time period corresponding to the value of RC time constant determined by a product between the value of the capacitor 1212 and the value of on-resistance of the N-channel transistor 1214 (for example, a value on the order of several MΩ by input of the ‘L’ level), and the surge current due to the ESD event is discharged during that time period. The electrostatic discharge protection circuit shown in FIG. 11 is a circuit invented by improving the problems of the electrostatic discharge protection circuit shown in FIG. 10. Although the capacitor size can be reduced, the electrostatic discharge protection circuit shown in FIG. 11 is problematic in that the first N-channel transistor 1214 is a depression type transistor, and thus a step of performing channel doping is required, causing an increase in the cost. Also, in both FIGS. 10 and 11, the ON time of the N-channel transistor connected between power supply lines is determined by the RC time constant. Therefore, a problem arises in that if ESD events occur sequentially in a short time, for example, electric charges generated by electrostatic discharge are further injected during storage of electric charges into the capacitor, the N-channel transistor is brought into an OFF state while the N-channel transistor is not sufficiently discharged, and the potential increases to cause electric charges to flow into an internal circuit, which may result in breakdown. Also, in the electrostatic discharge protection circuit shown in FIG. 10, there are three inverters between the capacitor 1101b and the N-channel transistor 1102 connected between the power supply lines. In the electrostatic discharge protection circuit shown in FIG. 11, there are two inverters between the capacitor 1212 and the N-channel transistor 1240. In both of the electrostatic discharge protection circuits, there is a problem in that because it takes time from the reception of the occurrence of an ESD event until the N-channel transistor is turned on, electric charges flow into the internal circuit, which may result in breakdown.
{ "pile_set_name": "USPTO Backgrounds" }
Conventional anthraquinone blue dyes such as C. I. Disp. Blue 56 have been used to dye polyesters for a long time. However, they have several deficiencies such as: low hue intensity which incurrs extra costs for the dyeing process; tendency to easily contaminate other fibers than those to be dyed; likelihood of uneven dyeing; and, particularly, they are complexed with a metalic ion to form a metalic salt. DE 3,821,338 Al discloses an improved blue dye composition which comprises the compounds of formulae (A), (B), (C) and (D): ##STR3## wherein R', R", R"' and R"" respectively represent an alkyl, arylalkyl, alkoxyalkyl, hydroxyalkyl, chloroalkyl or alkenyl group; X represents Cl or Br; PA1 Y represents a cyano or nitro group; PA1 Y.sub.1 represents an alkyl, arylalkyl or alkoxyalkyl group; and PA1 Q represents an alkyl, aryl or alkoxy group. The dye composition disclosed in the above German patent application, while successful in improving some of the above-mentioned disadvantages, still possesses various defects. For instance, release of the dye may occur during a continuous, high temperature dyeing process; the degree of exhaustion tends to be low; discoloration may occur during the permanent setting and ironing process of polyesters; and wash fastness is also poor. Further, in the process of dyeing a polyester and cotton fiber blend, the contamination is relatively high, and, therefore, the inherent color does not appear sufficiently after the completion of dyeing the blend, which may require another step of reducing/cleaning process employing a strongly toxic material. In addition, the dye composition of the above-mentioned German patent application comprises a component having an alkoxy group (which is hydrophilic); accordingly, affinity of the dye with polyester (which is hydrophobic) is low, resulting in a substantial loss of the dye.
{ "pile_set_name": "USPTO Backgrounds" }
Projectiles fired from conventional military weapons often carry energetic payloads made up of nested components and subcomponents, one within another. Energetic payloads often include explosives that may be initiated by physical impact with a target. These payloads undergo tremendous dynamic stresses during acceleration within either a smooth or rifled barrel of the weapon. If the nested components are not solidly in contact with each other during this acceleration, spontaneous ignition of the energetic components can become a real possibility. Such stresses also occur during deceleration for projectiles designed to penetrate within a target before detonation. Consequently, precise component tolerances of such payloads and projectiles are required. Even with the best design and assembly controls, some tolerances between components and subcomponents exist such that finite spaces can develop between components during handling and field operational conditions. It is often virtually impossible to prevent formation and inclusion of small internal void spaces and undetectable cracks in the explosive charge body which can lead to system failure in the event of an unanticipated shock load. Furthermore, some energetics loading processes are prone to periodically yield cracks or voids. Traditional thermal cycling and field use also may create cracks consequently requiring surveillance programs on the polymeric components as the polymers age. Therefore there is a need for a projectile payload assembly process that prevents, in advance, development of such spaces within the payload and projectile.
{ "pile_set_name": "USPTO Backgrounds" }
In the world today, among business executives and others working in industrial concerns in particular, speed, economy and reliability are of prime priorities in carrying out assignments to be executed. In many cases, time is money, and many persons make money simply by reason of services rendered, and wasted time cannot be tolerated. It is beyond doubt that nobody will challenge the stark fact that a writing instrument, a pen or a pencil in particular, structured in a composite form to accommodate other services in addition to writing purposes, is an indispensable tool in daily life, particularly in the office. One can find a variety of writing instruments such as pens, pencils, ball pens and the like in a stationery shop anywhere, each model being presented to cater to the consumer's needs or with emphasis placed predominantly on the appearance or embellishing trimming effects, but which much too often prove of little practical advantage to the use thereof, especially as regards writing performance or ease of disposition. Writing instruments as manufactured by the industry still remain inadequate and this state rightly accounts for the objective of the revolutionary breakthrough in execution that will combine both ease of writing and ease of disposition in one composite embodiment.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention Embodiments of the invention generally relate to video screen capture and, more specifically, to techniques for providing a server-side video screen capture. Description of the Related Art There is a growing desire to capture the output generated as software applications run. One of the most popular forms of output to capture is the video data produced by an application for display to an end-user. The video data can be used to demonstrate features of the software application. The use of such video data to demonstrate features of software applications has become commonplace in the software industry. A video clip provides details that would be difficult to convey in written instructions alone. For instance, an end-user could create a video tutorial to share a difficult red-eye reduction technique in a photo-editing software application. The technique could involve some intriguing steps that are hard to describe without a visual demonstration. The video clip would show the video data of the photo editing software as the end-user demonstrates exactly how to perform the red-eye reduction technique. Typically, a video capture application captures the video data of the target application. The video capture application reads and stores the video frames from the video buffers of the target application while running alongside the target application on the desktop computer of the end-user. The video capture application stores the video data as a video clip on the desktop computer. If the end-user wants to share or publish the video clip, the end-user typically uploads the video clip to an online server for storage and publication. Although these video capture applications can create the video clip, these applications typically consume significant processing resources. The consumption of processing resources can affect the performance of the desktop computer detrimentally. Furthermore, a typical video clip file may be very large, which may consume a significant amount of storage space on the desktop computer. The consumption of storage space may prove especially problematic if the desktop computer runs out of storage space. Running out of storage space may jeopardize the integrity of the video capture as well as applications and data on the desktop computer. Further, if the end-user uploads the video clip, the upload process could consume a significant amount of network bandwidth and take a long time. The bandwidth consumption could affect the network performance and the long upload time could delay the sharing or publication of the video clip. As the foregoing illustrates, what is needed in the art are application output capture systems that use less of the computer and network resources available to an end-user.
{ "pile_set_name": "USPTO Backgrounds" }
Diabetes mellitus is a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent) and/or in which insulin is not effective (Type 2 or non-insulin dependent). In the diabetic state, the victim suffers from high blood sugar, which can cause an array of physiological derangements associated with the deterioration of small blood vessels, for example, kidney failure, skin ulcers, or bleeding into the vitreous of the eye. A hypoglycemic reaction (low blood sugar) can be induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-lowering agent accompanied by extraordinary exercise or insufficient food intake. Conventionally, a person with diabetes carries a self-monitoring blood glucose (SMBG) monitor, which typically requires uncomfortable finger pricking methods. Due to the lack of comfort and convenience, a person with diabetes normally only measures his or her glucose levels two to four times per day. Unfortunately, such time intervals are so far spread apart that the person with diabetes likely finds out too late of a hyperglycemic or hypoglycemic condition, sometimes incurring dangerous side effects. It is not only unlikely that a person with diabetes will take a timely SMBG value, it is also likely that he or she will not know if his or her blood glucose value is going up (higher) or down (lower) based on conventional method. This inhibits the ability to make educated insulin therapy decisions. A variety of sensors are known that use an electrochemical cell to provide output signals by which the presence or absence of an analyte, such as glucose, in a sample can be determined. For example, in an electrochemical cell, an analyte (or a species derived from it) that is electro-active generates a detectable signal at an electrode, and this signal can be used to detect or measure the presence and/or amount within a biological sample. In some conventional sensors, an enzyme is provided that reacts with the analyte to be measured, and the byproduct of the reaction is qualified or quantified at the electrode. An enzyme has the advantage that it can be very specific to an analyte and also, when the analyte itself is not sufficiently electro-active, can be used to interact with the analyte to generate another species which is electro-active and to which the sensor can produce a desired output. In one conventional amperometric glucose oxidase-based glucose sensor, immobilized glucose oxidase catalyses the oxidation of glucose to form hydrogen peroxide, which is then quantified by amperometric measurement (for example, change in electrical current) through a polarized electrode.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention Embodiments of the present invention are generally directed to systems and methods for biasing a bus, and more particularly to systems and methods for biasing a bi-directional differential bus. Discussion of Related Art Recommended Standard 485 (RS-485) and the related Telecommunications Industry Association/Electronic Industries Alliance standard 485 (TIA/EIA-485) have become an industry standard serial communication interface for multipoint, bi-directional, differential data transmission due to their relatively low cost, high noise rejection, and fast data rates, even over relatively long cable lengths. RS/TIA/EIA-485 interfaces are used to implement the physical layer for data transmission in various standard and proprietary automation protocols, including Modbus™ and Profibus™. FIG. 1 illustrates a typical implementation of a communication network using an RS/TIA/EIA-485 bus. As shown, the communication network or bus 100 includes a plurality of nodes 110a, 110b, 110c, 110d (Nodes 1-N) that are interconnected by a pair of wires 130a, 130b. Each of the nodes includes at least one associated processor (not shown) that is capable of communicating with other nodes on the network or bus 100. The nodes 110a-d may be any device capable of communicating over the network or bus 100, such as a computer system, a control system, an intelligent UPS, cooling equipment, various types of factory automation equipment, etc. In a typical implementation the wires 130a, 130b are twisted (i.e., a twisted pair of wires) to improve noise immunity. Each of the nodes 110a-d has an RS/TIA/EIA-485 interface that includes a RS/TIA/EIA-485 transceiver 120a, 120b, 120c, 120d having a differential transmitter 122a-d and a differential receiver 126a-d. It should be appreciated that rather than using a transceiver (e.g., an integrated circuit that includes both a differential transmitter and a differential receiver), separate differential transmitters and receivers may be used. Each differential transmitter 122a-122d includes a non-inverting terminal 123a-d and an inverting terminal 124a-d, and similarly, each differential receiver 126a-d includes a non-inverting terminal 127a-d and an inverting terminal 128a-d. Data is transmitted by each differential transmitter 122a-d as a difference in voltage levels between the non-inverting terminal 123a-d and the inverting terminal 124a-d of the respective differential transmitter 122a-d. Similarly, data received by each differential receiver 126a-d is interpreted by the receiver based upon the difference in voltage levels between the non-inverting terminal 127a-d and the inverting terminal 128a-d of the respective differential receiver 126a-d. Where the difference in voltage between the non-inverting terminal 127a-d and the inverting terminal 128a-d of the respective differential receiver 126a-d is greater than approximately 200 mV, a mark (i.e., a logic 1) is received, and where the difference in voltage between the non-inverting terminal 127a-d and the inverting terminal 128a-d of the respective differential receiver 126a-d is less than approximately −200 mV, a space (i.e., a logic 0) is received. In a transceiver that is specifically designed for half-duplex communication, the non-inverting terminal of the differential transmitter may be electrically connected to the non-inverting terminal of the differential receiver, and the inverting terminal of the differential transmitter electrically connected to the inverting terminal of the differential receiver, as shown in FIG. 1. In such a transceiver, a pair of output pins are provided, with pin A (termed the ‘non-inverting pin’) corresponding to Tx+/Rx+ and with pin B (termed the ‘inverting pin’) corresponding to Tx−/Rx−. It is noted that this description of what voltage level represents a mark or a space, and which pins are denoted A or B conforms to industry standard usage. In the actual RS/TIA/EIA-485 standards, pin A is denoted the ‘inverting pin’ and corresponds to Tx−/Rx−, pin B is denoted the ‘non-inverting pin’ and corresponds to Tx+/Rx+, a mark is received when the voltage difference B−A is greater than approximately 200 mV, and a space is received when the voltage difference B−A is less than approximately −200 mV. For the remainder of this document, the industry standard usage applies. Although the network topology shown in FIG. 1 is for half-duplex communication, RS/TIA/EIA-485 may also be used for full-duplex communication. In such a full-duplex communication network, each node would be interconnected using two twisted pairs of wires, one twisted pair for Tx+ and Tx−, and the other twisted pair for Rx+ and Rx−. In a typical RS/TIA/EIA-485 communication network, and as illustrated in FIG. 1, the ends of the network or bus 100 are terminated with a resistor 140, 142 connected between each wire 130a, 130b of the twisted pair. The value of each termination resistor 140, 142 is based upon the characteristic impedance of the pair of wires 130a, 130b, and a typical value for standard twisted pair wiring is about 120 Ohms. The presence of the termination resistors 140, 142 at the ends of the network reduces reflections that can be caused by fast driver edges, and also reduces noise sensitivity due to the lower impedance. As known to those skilled in the art, during those periods of time in which the communication network or bus 100 is idle (i.e., when no node is actively transmitting data over the RS/TIA/EIA-485 bus), the bus may drift into an indeterminate state in which the voltage difference between the A and B pins of a differential receiver drops below the specified 200 mV range. Where this occurs, the differential receivers on the bus can pass false traffic to the devices to which they are connected, and may saturate the bus. To prevent this situation, it is common to fail safe one of the nodes on the bus (typically the master node) to bias the bus to a known state in the absence of any node actively driving the bus. As shown in FIG. 1, this is typically done by electrically connecting one of the wires 130a to a supply voltage (e.g., 5 V) via a pull-up resistor 150, and connecting the other wire 130b to ground via a pull-down resistor 152. The values of the pull-up and pull-down resistors may vary, dependent upon the number of nodes on the network or bus, but typical values for the pull-up and pull-down resistors range from about 680 Ohms to about 750 Ohms. Many device manufacturers understand the importance of using termination resistors at the ends of the network as well as the importance of fail safe biasing using pull-up and pull-down resistors at one of the devices on the network. However, because no device manufacturer necessarily knows where their device may be used, how many other devices may be interconnected (a RS/TIA/EIA-485 bus may support up to 64 nodes or more), and which of those devices may already have been configured with pull-up and pull-down transistors, there remain a great many instances in the field where the bus is improperly biased. Various approaches have been taken to deal with this issue, including doing nothing and simply accepting a certain amount of bus noise, providing jumpers or DIP switches on each device to permit a user to apply an appropriate bias, providing a little bit of bias in each device in the hope that, when interconnected with other devices that may each provide a little bit of bias, an appropriate bias is provided, etc.
{ "pile_set_name": "USPTO Backgrounds" }
Computation systems based upon adaptive learning with fine-grained parallel architectures have moved out of obscurity in recent years because of the growth of computer-based information gathering, handling, manipulation, storage, and transmission. Many concepts applied in these systems represent potentially efficient approaches to solving problems such as providing automatic recognition, analysis and classification of character patterns in a particular image. Ultimately, the value of these techniques in such systems depends on their effectiveness or accuracy relative to conventional approaches. In a recent article by Y. LeCun entitled "Generalization and Network Design Strategies," appearing in Connectionism in Perspective, pp. 143-155 (Elsevier Science Publishers: North-Holland 1989), the author describes five different layered network architectures applied to the problem of optical digit recognition. Learning in each of the networks was attempted on pixel images of handwritten digits via inherent classification intelligence acquired from the back-propagation technique described by D. Rumelhart et al., Parallel Distributed Processing, Vol. I, pp. 318-362 (Bradford Books: Cambridge, Mass. 1986). Complexity of the networks was shown to increase finally to a hierarchical network having two levels of constrained feature maps. Performance of the hierarchical network exceeded that of the less complex networks. Moreover, it was postulated that the multiple levels of constrained feature maps provided additional control for shift invariance. While the hierarchical network described above appears to have advanced the art of solving the character recognition or classification problem, it is equally apparent that existing systems lack sufficient accuracy to permit realization of reliable automatic character recognition apparatus.
{ "pile_set_name": "USPTO Backgrounds" }
There is known a suspension of a vehicle seat (cf., SU, A, No. 662,384) in which protection against vibration is ensured by adjusting the dynamic rigidity of resilient elements of the shock absorber. The resilient elements are made of lengths of a multicore cable having ends thereof secured between a support base and a movable shell secured on a post to be capable and a movable shell secured on a post to be capable of rotation about its own axis. The resilient elements are characterized by dynamic rigidity of a magnitude equal to the magnitude of the static rigidity. Variations in the angle of turn of the shell relative to the base lead to a change in the inclination angle of the cable lengths and dynamic rigidity of the resilient elements of the shock absorber. Reduced dynamic rigidity of the resilient elements results in a reduction in the natural frequency of oscillations of the support of the vehicle seat. Due to the equality in the magnitudes of the dynamic and static rigidity of the resilient elements, adjustment of the dynamic rigidity influencing the efficiency of protection of the driver against vibrations of the vehicle gives rise to variations in the static rigidity of the resilient elements determining the static sagging of the support of the vehicle seat. Therewith, reduced dynamic rigidity of the resilient elements ensuring a more efficient protection against vibrations causes a reduction in the static rigidity of the resilient elements and consequently a more pronounced static sagging of the vehicle seat due to the weight of the operator. Therefore, there is a conflict between the preferred reduction in the natural frequency of oscillations of the shock absorber for attaining a more reliable protection against vibrations and the magnitude of the allowable static sagging. Protection of the operator against vibrations of the vehicle he drives is thus limited by the allowable static sagging of the support element of the vehicle seat. There is also known a suspension of a vehicle seat (cf., SU, A, No. 1,357,625) having the form of an adjustable vibrations insulator or absorber comprising a bearing plate to which the vehicle seat is secured, a first base mounted on the floor or the vehicle, mechanical resilient elements secured about the outer perimeter of the first base between the first base and bearing plate. Arranged in parallel with the mechanical resilient elements at the first base to extend vertically in line with its axis of symmetry is an electrodynamic exciter made up of a fixed system in the form of a magnetic circuit having an annular clearance and secured at the first base, and a movable system in the form of coils arranged in the annular clearance of the magnetic circuit. The static rigidity of the suspension is determined by the rigidity of the resilient elements, whereas the dynamic rigidity is determined by the rigidity of the resilient elements and rigidity imparted by the electrodynamic exciter, which can be either positive or negative depending on the flow of the direct current passing through the coils. The natural frequency of oscillations of the vehicle seat suspension can be increased if the rigidity imparted by the electrodynamic exciter is positive, or reduced if the imparted rigidity is negative. However, such an adjustment of the dynamic rigidity irrespective of the static rigidity is possible only when in the initial position prior to energizing the coils assume a definite position relative to the clearance in the magnetic circuit of the electrodynamic exciter, viz., the coils must be arranged in symmetry relative to a horizontal plane extending through the midpoint of the clearance of the magnetic circuit. In this case, during oscillations the upper and lower coils are caused to be alternately forced to the clearance of the magnetic circuit to a magnitude equalling the amplitude of oscillations whereby a pushing force is produced which is proportional to the relative displacement between the first base and bearing plate, i.e., a pushing force equivalent to the dynamic rigidity of the suspension. In the absence of oscillations the coils are brought out of the clearance of the magnetic circuit whereby they fail to provide a continuous pushing force which would be equivalent to the static rigidity. However, this manner of adjusting the rigidity of the vehicle seat suspension is possible only when under the action of the weight of the operator the static sagging of the suspension determined by the static rigidity of the resilient elements is such that the coils assume the heretofore described initial position. As the rigidity of the resilient elements is a constant, the required static sagging according to the known expression .delta.=P/k, where .delta. is the static sagging, P=mg is the gravity force, m is the mass of the driver, and k is the static rigidity of the vibrations insulator, is preset only for an operator of a certain weight. If the weight of the operator is other than that for which the seat is adjusted, the static sagging of the suspension is also different from the specified, and the coils fail to assume the required initial position. Therewith, one of the coils in the initial position accommodates in the clearance of the magnetic circuit, and as it is energized by a direct current source it produces a pushing force in the absence of vibrations in the vehicle. Depending on the flow of electric current, this pushing force acts to additionally compress or expand the resilient elements thereby changing the static sagging of the suspension, i.e., the effect of this pushing force is equivalent to the static rigidity of the resilient elements. In view of the aforedescribed, the dynamic rigidity of the suspension can be adjusted without changing the static rigidity of the resilient elements only for an operator of definite weight. The weight of the drivers can vary within a wide range, and therefore the capability of adjusting the dynamic rigidity of the vehicle seat suspension is inherently limited to result in less efficient protection of the driver against vibrations of the vehicle.
{ "pile_set_name": "USPTO Backgrounds" }
In processing semiconductor devices in the microelectronics industry, wire bonding is a widely used, well-established method of chip interconnection with external circuitry. FIG. 1 shows a side view of a conventional apparatus for forming wire bonds. In a conventional wire bonding process used with interposer or other carrier substrates, the back side, or non-active side, of a semiconductor die or chip 10, such terms being used interchangeably in the industry, is firmly attached to a suitable substrate or package bottom 20. The chip 10 is conventionally bonded to the substrate 20 using either an organic adhesive, a glass, or a metal-alloy reflow process generally shown as adhesive layer 30. Additional chips 10 may be subsequently attached on top of the first chip 10 using additional adhesive layers 30 between each chip 10 of the resulting chip stack. The chip 10 and substrate 20 are positioned on a processing block 40 of a wire bonding apparatus in contact with either the die back for a board-on-chip (BOC) confirmation or the substrate for a chip-on-board (COB) configuration. A wire bonding operation is then carried out, wherein conductive wires 50 are extended between and fused at each end thereof to bond pads 60 on chip 10 and to bonding sites 70 on the surface of the substrate 20 by a wire bonding capillary, typically using thermocompression bonding, ultrasonic bonding, or a combination of ultrasonic and heat in combination with compression, sometimes referred to as “thermosonic bonding.” In order to raise the temperature of the bond pads 60 and bonding sites 70 to an operating temperature wherein wire bonding may be rapidly and reliably affected, the processing block 40 is conventionally heated. In such a configuration, processing block 40 is typically known as a “heater” block, which conductively heats all of the substrate 20 and the chip 10, including the bonding pads 60 and bonding sites 70. The wire bonding operating temperature varies depending on the specific application. For example, the wire bonding operating temperature for thin small-outline packages (TSOPs) may be generally between 200° C. and 230° C., while for fine ball grid array (FBGA) packages the wire bonding operating temperature may generally be about 150° C. Heating the chip to the elevated temperatures necessary to adequately heat the bonding pads may potentially damage the chip by overheating. Indeed, the elevated temperatures introduce thermo-mechanical stress on the active die surface and the integrated circuitry thereof. With the continuous reduction in size and thickness of semiconductor chips in order to meet packaging requirements, adverse effects of these thermo-mechanical stresses are significantly increased when such a relatively fragile chip is heated. Moreover, when chips are stacked one on top of another, as in a stacked, multi-chip package (MCP), the ambient temperature at the top chip layer is significantly lower than the ambient temperature at the lower layer or layers when the sole preheating source is the processing block, due to the thermal gradient of the chip stack. Thus, semiconductor chips in the lower layer or layers must be subjected to undesirably high temperatures in order for the bond pads in a higher layer or layers of chips to reach the required wire bonding operating temperatures. The increased temperature in the lower layer or layers introduces even more thermo-mechanical stresses in those lower layers. Furthermore, the material used in adhesive layer 30 to attach one or more chips 10 to the substrate 20 may in some instances have voids, or air pockets, when it is applied. This is the case with so-called “skip cure” adhesives, which are also termed “b-stage” adhesives and are desirably not fully cured until the chip package is encapsulated, as in a transfer molding process. Such voids may generally be driven out during encapsulation of the semiconductor chip or chips and at least a portion of the substrate 20 when such an adhesive material between a chip and the substrate or between two stacked chips is subjected to the high molding pressures common to such transfer molding processes. However, if such an adhesive material is exposed to excessively high temperatures for an extended duration, or repeatedly, prior to encapsulation, premature cross-linking of the adhesive material takes place, which permanently traps the voids. The trapped voids may cause the device to later fail, exhibiting the so-called “popcorn” effect wherein the gas trapped in the voids expands and compromises the encapsulant envelope. In addition, repeated heating for wire-bonding a multi-chip stack may cause the adhesive material and substrate to outgas contaminants onto the in-process package, which may adversely affect downstream assembly processes Some approaches have been developed to heat the bond pads and bonding sites in addition to, or as an alternative to, using a heater block. Several of these approaches use a flood-type infrared radiation source to heat the semiconductor die and the substrate from above instead of from below. However, shining such an infrared radiation onto the entire top surface or even a substantial portion of the top surface of the semiconductor die still undesirably subjects a substantial portion, if not the entire die, to heating. Such generalized application of heat subjects the active die surface and the integrated circuitry thereof to the same undesirable heat-induced thermo-mechanical stresses that are caused by heating from the bottom using a heater block and may, as with the prolonged or repeated use of a heater block, prematurely cross-link the die-attach adhesive material and cause undesirable outgassing from the adhesive material and the substrate. In other approaches, a laser is used to heat a single bond pad from above. However, using a single laser requires that each bond pad be heated and immediately bonded. Such a process requires a multiplicity of steps including turning on the laser, heating the bond pad, turning the laser off, bonding the wire, moving the laser to a subsequent bond pad, turning the laser on, heating the bond pad, turning the laser off, bonding the wire, etc. Such a method of heating the pad then bonding, heating the next pad then bonding, etc., requires many steps and may slow down the wire bonding method. In addition, if the laser is mispositioned just a little from the target bond pad, the laser may radiate the semiconductor die, causing damage to the integrated circuitry in the semiconductor die from the intense heat emitted by the laser. To enable the manufacturing of wire-bonded semiconductor devices without subjecting these devices to potentially damaging heat while also protecting the adhesive used to attach the chip to the substrate from premature cross-linking, it would be desirable to develop a wire bonding method and apparatus for effectively limiting areas heated on a chip to substantially those areas including the bond pads and without subjecting an entire chip to substantial and repeated heating.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an apparatus for removing textile articles from supported dispositions on the posts of support members, the textile articles being tubes or tubes having textile strand material built thereon. Tubes of the type on which textile strand material is built typically have an elongate shape and a hollow interior. Numerous transport systems have been proposed for transporting such tubes with the tubes either in an empty status (no textile strand material thereon) or in a condition in which textile strand material has been built on the tube and several of these transport systems include support members each for individually supporting a tube in a separate disposition from the other tubes. The support members may be interconnected to one another for simultaneous advancing movement of the support members and one example of this type of transport system arrangement is a plurality of textile article support members mounted to a flexible endless member at uniform spacings therealong. Another transport system arrangement includes independently movable support members, each capable of individually supporting a tube in an upright disposition thereon, and a device for advancing the independent support members along a travel path. Both in those transport system arrangements in which the support members are interconnected together and those transport systems in which the support members are independently movable, the support members each include a cylindrical post having a diameter selected in relation to the inside diameter of the hollow interior of a tube for snug receipt of a tube inserted over the post of a support member. At various stages during the processing of a textile article, the textile article, which may be an empty tube or a tube having textile strand material built thereon, must be removed from the support member on which it is supported and this textile article removal process necessarily includes axially moving the textile article along and beyond the post on which it is supported. Various textile article removal devices have been proposed. For example, in Japanese Patent Document 49-26531, a textile article removal device is disclosed for removing textile articles supported in upright dispositions on posts uniformly mounted along the extent of an endless belt. In this known textile article removal device, a pair of oppositely moving endless belts are disposed adjacent the travel path of the textile articles and the pair of oppositely moving endless belts form an opening therebetween. As each supported textile article is advanced along the travel path to a position adjacent the opening, the post on which the textile article is supported is displaced in a direction transverse to the travel path to thereby effect movement of the supported textile article into the opening until the textile article is frictionally engaged at generally diametrically opposite locations by the pair of oppositely moving endless belts of the textile article removal device. The oppositely moving endless belts then draw the engaged textile article off the post on which it is supported with the advancing movement of the post being temporarily halted during the drawing off of the textile article. Following removal of the textile article from the post, the advancing movement of the other textile articles continues while the removed textile article is transported by the oppositely moving endless belts of the textile article removal device to a chute along which the textile article slides to a collection container. U.S. Pat. No. 4,674,636 to Sekitani et al discloses a textile article removing device operable to remove textile articles from support members of the type which are movable independently of one another. In this known textile article removal device, the individual support member on which each textile article is supported is temporarily stopped at a removal location and a pair of opposed engaging surfaces such as, for example, an endless belt and a roller, are moved toward one another to frictionally engage a supported textile article therebetween. Once frictionally engaged between the opposed engaging surfaces, the textile article is drawn off from its associated support member and the now-empty support member is subsequently advanced beyond the removal location. In both of the known textile article removing devices just described, the advancing movement of the textile articles must be temporarily halted each time a support member is advanced into the removal location so that the respective textile article at the removal location can be frictionally engaged and drawn off of its associated support member. The start of a textile article removal operation must therefore be coordinated with the advancing movement of the textile articles in cycles of stopping and re-starting the advancing movement of the textile articles. This correspondingly limits the rate at which textile articles can be removed from their associated support members. Accordingly, the need still exists for improvements in the expeditious removal of textile articles from support members and particularly in minimizing interruptions in the advancing movement of textile articles during the removal operation.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field This invention generally relates to the data processing field. More specifically, this invention relates to configuring computer systems in a networked computing environment. 2. Background Art Since the dawn of the computer age, computer systems have become indispensable in many fields of human endeavor including engineering design, machine and process control, and information storage and access. In the early days of computers, companies such as banks, industry, and the government would purchase a single computer which satisfied their needs, but by the early 1950's many companies had multiple computers and the need to move data from one computer to another became apparent. At this time computer networks began being developed to allow computers to work together. Networked computers are capable of performing tasks that no single computer could perform. In addition, networks allow low cost personal computer systems to connect to larger systems to perform tasks that such low cost systems could not perform alone. Most companies in the United States today have one or more computer networks. The topology and size of the networks may vary according to the computer systems being networked and the design of the system administrator. It is very common, in fact, for companies to have multiple computer networks. Many large companies have a sophisticated blend of local area networks (LANs) and wide area networks (WANs) that effectively connect most computers in the company to each other. Most existing computer networks have a client-server architecture, where one or more server machines service requests from client machines (such as desktop computer systems). Computer networks are typically managed by one or more “system administrators.” A system administrator is responsible for making sure the network runs smoothly. This means that a system administrator typically is responsible for many tasks, including: making hardware upgrades, installing new software on servers, installing software on client machines, setting security parameters for network resources, etc. One complication for system administrators is that many modem networks include computer systems that run different operating systems, commonly referred to in the art as “platforms”. Each platform has its own unique operating system. As a result, the tools for configuring a client computer system are platform-specific. For example, if a system administrator works on a network that includes International Business Machines Corporation (IBM) zSeries computers, IBM iSeries computers, and IBM pSeries computers, the system administrator will have to learn the platform-specific management tools to set system settings for each of these three platform types. Another complication is that the system settings for each platform may vary in number, type, and name. This requires a system administrator to keep track of which system setting on one platform corresponds to a similar system setting on a different platform. With the complication of many platforms on a network, resulting in different systems settings and different tools for changing those system settings, a system administrator has a difficult job, indeed. Without a mechanism and method for administrating computer system settings for different platforms in a common, uniform way, the computer industry will continue to suffer from inefficient ways of administrating the system settings of computer systems on computer networks.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a system assembly for detecting the amount of a reducing agent, such as ammonia, and the amount of a pollutant, such as nitrogen oxide, in an exhaust gas, to an arrangement for the selective catalytic reduction of pollutants in an exhaust gas, to an exhaust gas aftertreatment system and to a process for detecting the amount of reducing agent and the amount of pollutant in an exhaust gas. Exhaust gases resulting from the fuel combustion in a vehicle have to be aftertreated for minimizing the pollutant emission. For example, the emission of nitrogen oxides is to be avoided because they not only lead to irritation and damage of the human respiratory organs but are also held responsible for acid rain and for smog. Pollutants of this type can be removed from the exhaust gas in a targeted manner by selective catalytic reduction. For this purpose, a reducing agent, such as ammonia, is introduced into the exhaust gas, the amount of dosed reducing agent corresponding to the estimated amount of pollutants in the exhaust gas. The exhaust gas that is enriched with the reducing agent will then pass through a catalyst in which the pollutants react with the reducing agent and are converted to neutral substances, such as water and nitrogen. However, if the reducing agent dose is too low, pollutants will remain in the exhaust gas after the reaction. If it is too high, reducing agent will remain in the exhaust gas, which is also undesirable because ammonia, for example, is also harmful to health and the environment. A pollutant sensor, such as a nitrogen oxide sensor, can supply an output signal for estimating the pollutants situated in the exhaust gas emerging from the catalyst. On the basis of this output signal, the required reducing agent dose can be better adjusted. However, the pollutant sensor is cross-sensitive to the reducing agent, so that the information concerning the pollutant amount and the information concerning the reducing agent amount are mutually mixed in the output signal. The pollutant amount and the reducing agent amount can therefore not be determined from the output signal in a mutually separate manner. Since the amount of pollutant in the exhaust gas cannot be determined directly, the control of the selective catalytic reduction is conventionally intrusive. In this case, a system imbalance is forced, and the reducing agent dose is adjusted based on the reactions measured by the pollutant sensor. However, the intrusive control process will lead to an operation of the entire system that is not optimal, which results in an unnecessary emission of pollutants and/or reducing agents with the exhaust gas. High-expenditure computation algorithms are required for processing the output signal from the pollutant sensor. It is therefore an object of the invention to provide a system assembly for detecting the amount of reducing agent and the amount of pollutant in an exhaust gas, which technically can be more easily implemented and nevertheless furnishes improved measuring results. This and other objects are achieved by a system assembly for detecting the amount of reducing agent and the amount of pollutant in an exhaust gas, having a first pollutant sensor, which is cross-sensitive to the reducing agent, for emitting a first measuring signal proportional to the amount of pollutant in the exhaust gas for use in front of a filtering device for the selective reducing of the reducing agent or the pollutant in the exhaust gas, and a second pollutant sensor, which is cross-sensitive to the reducing agent, for emitting a second measuring signal proportional to the amount of pollutant in the exhaust gas for use behind the filtering device The invention is based on selectively filtering, after a first measuring of the pollutant amount, either only pollutant or only reducing agent from the exhaust gas, and then carrying out the measurement again post-filtering. Assuming that the unfiltered constituent in the exhaust gas has remained constant, two independent measuring values are present for computing the reducing-agent fraction and the pollutant fraction in the exhaust gas. The computation itself is linear and therefore can technically be implemented very easily. According to the invention, a system assembly for detecting the amount of reducing agent and the amount of pollutant in an exhaust gas therefore has a first pollutant sensor which is cross-sensitive to the reducing agent, is provided for emitting a first measuring signal proportional to the amount of pollutant in the exhaust gas, and is suitable for a use in front of a filtering device for reducing the reducing agent or the pollutant in the exhaust gas. Furthermore, the system assembly has a second pollutant sensor, which is cross-sensitive to the reducing agent, for emitting a second measuring signal proportional to the amount of pollutant in the exhaust gas and which is provided for use behind the filtering device. By processing the two measuring signals, the reducing agent fraction and the pollutant fraction in the exhaust gas can be measured separately from one another. As a result of the linear processing of the signals, the system assembly permits a particularly simple control while the overall system has a short reaction time to changes. The system assembly may contain a computation device for determining the amount of pollutant and the amount of reducing agent based on the difference of the measuring signals from the first and second pollutant sensor. The pollutant may be nitrogen oxide; the reducing agent may be ammonia; and the exhaust gas may be a lean exhaust gas. The system assembly may have a filtering device which is provided for filtering the pollutant or the reducing agent. In a vehicle having an installed Diesel particulate filter provided for oxidizing the reducing agent, this diesel particulate filter can be used directly as a filtering device for filtering the reducing agent, whereby the system assembly according to this aspect of the invention can be implemented in a particularly simple and cost-effective manner in a conventional vehicle. According to one aspect of the invention, it is particularly advantageous to completely remove one of the constituents from the exhaust gas after the first measurement, so that, during the second measurement, the unfiltered constituent can be inferred directly from the measuring signal after the filtering, and only a single computation will be required for determining the filtered constituent. The invention also provides an arrangement for the selective catalytic reduction of pollutants in an exhaust gas, having a system assembly according to the invention for detecting the amount of pollutant and the amount of reducing agent in the exhaust gas at the output of the arrangement. The arrangement has an injection mechanism which is provided for injecting the reducing agent into the exhaust gas at the input of the arrangement based on a dosing amount as a function of the measuring signals of the sensor. The arrangement further has a catalyst which is provided for reducing the pollutants in the exhaust gas based on the reducing agent. Since the system assembly according to the invention separately outputs the amount of pollutant and of reducing agents in the exhaust gas, the pollutant fraction in the exhaust gas cannot only be adjusted directly, the control can also take place in the state of equilibrium of the overall system. Thus, an optimal dosing of the reducing agent is possible for a maximal reduction of the pollutants without having to provide intrusive control. The measured reducing agent fraction in the exhaust gas and, therefore, the computed optimal dosing of the reducing agent, allows conclusions concerning the condition of all technical components cooperating with respect to the exhaust gas flow. By means of a standardized optimal dosing, which can be predefined, for example, by the manufacturer, it can be determined in a particularly simple manner that the overall system is functioning properly when the computed optimal dosing corresponds to the predefined standard. Deviations from this standard can therefore be used as a basis for recognizing or even correcting hardware malfunctions. Furthermore, the measured reducing agent fraction in the exhaust gas also permits an improved on-board diagnosis of the exhaust gas purification in a coasting operation of the vehicle. Although, as experience shows, the reducing agent cannot be completely removed from the exhaust gas in every case by the controlled system in the coasting operation, this is not harmful to a corresponding zero point adjustment during the control, because the system assembly according to the invention is capable of indicating the reducing agent fraction in the exhaust gas as an absolute value. Finally, the measured reducing agent and pollutant fraction in the exhaust gas also makes it possible to more precisely determine the control efficiency, whereby the overall system can be operated more efficiently. The injection mechanism can be provided for increasing the dosing amount for the reducing agent when a rise in the amount of pollutant is measured, and for lowering the dosing amount for the reducing agent when a rise in the amount of reducing agent is measured. The control loop may also have a processing apparatus for the mathematical processing of the dosing amount. For adjusting the dosing amount, the processing apparatus may be provided such that the amount of reducing agent and the amount of pollutant in the exhaust gas are minimized at the output of the arrangement. As an alternative or in addition, the processing apparatus may be provided for averaging the dosing amount over time. The standardized optimal dosing amount during the operation can thereby be adapted to aging phenomena of the hardware in the overall system. The processing apparatus may also be provided for the independent processing of the dosing amount for different operating ranges of the arrangement. The invention also provides an exhaust gas aftertreatment system with the arrangement according to the invention. The system has a catalyst, particularly a diesel oxidation catalyst for oxidizing pollutants in the exhaust gas from an engine, particularly a diesel engine, which is provided for the combustion of a fuel mixture, particularly a lean fuel mixture. The arrangement according to the invention is provided in this system for minimizing nitrogen oxides in the exhaust gas from the catalyst. In particular, exhaust gases resulting from the combustion of a lean fuel mixture can be freed of nitrogen oxides in a particularly effective manner. The invention also provides a process for detecting the amount of reducing agent and the amount of pollutant in an exhaust gas. The process is composed of the steps of emitting a first measuring signal proportional to the amount of reducing agent and to the amount of pollutant in the exhaust gas, filtering the exhaust gas by reducing the reducing agent or the pollutant in the exhaust gas, and emitting a second measuring signal proportional to the amount of reducing agent and to the amount of pollutant in the filtered exhaust gas. Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to explosive devices, and particularly high pressure explosive devices that can be activated by electrical pulse or ignited by shock. 2. Background of the Art Explosive devices are used in a wide range of industry and commerce. The very nature of explosives as they have been known for centuries makes them inherently dangerous. Attempts have been made to make them safer. U.S. Pat. No. 6,540,175 describes an airborne countermine system comprising: at least one munitions dispenser element, a plurality of countermine munitions initially contained within said dispenser element, each of said munitions containing means for guiding said munitions to a predetermined coordinate location, and positioning the same for descent along a substantially vertical axis; means for initiating axial rotation to said countermines during vertical descent; each of said munitions containing a plurality of incendiary darts; means for opening said munitions during descent to radially distribute said darts using generated centrifugal force for individual vertical descent to a target area. The Patent describes high temperature incendiary fill to allow large amounts of chemical energy to be released over short periods of time. The dart high temperature incendiary fill employs an active ignition system to shock the fill up to reaction. High temperature incendiary fill candidates include titanium-boron-Teflon™ with CTBN as the binder, titanium-boron-Teflon™ with Viton®A as the binder, titanium-boron with ammonium perchlorate with Viton®A as the binder, aluminum potassium perchlorate with Viton®A as the binder and aluminum iron oxide with Viton®A as the binder. Viton®A is fluoropolymer elastomer that comes in many different variations of ingredients and properties. It includes copolymers of Tetrafluoroethylene, ethylene and ethers. These fills and high explosive fills may be employed in the countermine dart. The problem experienced with trying to package high temperature incendiary or explosive fills in small diameter countermine flechettes or darts is that it is difficult to ignite the fill in small calibers and maintain high velocity burn rates even in perforated fill designs. End-burners, as compared to perforated fill designs, burn at even slower burn rates and the ability to maintain the burn, due to heat transfer losses during the burn to the case of the countermine dart, is difficult. The use of an active ignition system overcomes all of these design issues allowing any one of a number of high temperature incendiary high explosive fills to be employed. The exact geometry of a high temperature incendiary countermine dart incorporates the cavity generating design features allowing hydrodynamic cavitation and terradynamic cavitation to be employed in high-speed penetration of soil and water, and an active ignition system to allow the dart fill to be shocked to reaction using a high temperature incendiary fill. The darts would also incorporate a staggered tail system to allow maximum number of darts to be packaged in the countermine munitions dispensing system. U.S. Pat. No. 5,859,383 describes an innovative, safe, explosive device. The device has many potential fields of utility, including, but not limited to mining, oil exploration, seismology, and particularly to shaped charges. These shaped charges may be used as a well perforation system using energetic, electrically-activated reactive blends in place of high explosives. The reactive blends are highly impact inert and relatively thermally inert until activated. The proposed system requires no conventional explosives and it is environmentally benign. The system and its components can be shipped and transported easily with no concern for premature explosion. It also needs no special handling or packing. The performance in oil and gas well perforation can be expected to exceed that of conventional explosive techniques. The device is a shaped charge capable of projecting a mass which can perforate a solid object, said shaped charge comprising: a) a casing, b) an electrical connection means though said casing, c) a reactive mass within said casing, wherein said reactive mass is electrically conductive along its entire length, and said casing encloses said reactive mass, said reactive mass comprising an electrically conductive reactive material in association with an oxidizing agent. A preferred composition and method comprises an electrically conductive reactive mass comprises a distribution of aluminum metal and an oxidizing material which will oxidize said aluminum metal at a temperature of at least 1000 degree K. and activating said electrically conductive reactive mass with a pulsed electrical charge of at least 1 kJ/gram of aluminum in less than 20 microseconds. U.S. Pat. No. 6,357,356 (Rim et al.) relates to an electric blasting device using aluminum foil, the objective of which lies in providing an economical and safe electric blasting device. In line with this objective; a portion of the outer conductor of the cable is removed, and the aluminum foil is inserted therein in order to electrically connect the inner and outer conductors. Between the aluminum foil and the inner conductor, water, an insulator, and a Teflon® polytetrafluoroethylene polymer tube are inserted. When pulse high-current is made to flow, the aluminum foil changes into the condition of plasma. The aluminum therefrom and water react to generate explosive power. The invention uses commercialized aluminum foil, in addition to having a short scattering distance of the fragments. It also allows a low-vibration blasting due to the short reaction time therein. U.S. Pat. No. 5,436,791 describes a perforating gun using an electrical safe arm device and a capacitor exploding foil initiator device. The capacitor exploding foil initiator device having a capacitor connected in parallel to a bleed resistor which are connected across an exploding foil initiator by an over-voltage gap switch. When a voltage of the capacitor reaches a breakdown voltage of the switch, the energy stored in the capacitor is discharged through the switch to the exploding foil initiator which initiates a detonator cord thereby detonating the shaped charges of the perforating gun. U.S. Pat. No. 6,389,975 describes a switching circuit incorporating a Field Effect Transistor (FET), two series dual-tap gas tube surge arrestors, and high-voltage resistors as part of a high voltage switch of a fireset for initiating an exploding foil initiator (EFI). Until energizing the FET via a firing command, an operating voltage of 1000 V is held off by a combination of the surge arrestors and high-voltage resistors. Upon receipt of a firing signal, a 28 V source is used to energize the FET that, in turn, decreases the voltage across the one surge arrestor connected directly to ground and increases the voltage across the other surge arrestor. Upon reaching the breakdown voltage of the ionizable gas within the second surge arrestor, the gas ionizes, becomes electrically conductive, and dumps the second surge arrestor's voltage across the first surge arrestor. This causes the first surge arrestor to also break down. Both surge arrestors are now conducting. Thus, the 1000 V source is free to energize the remainder of the circuit, discharging a 0.20 micro(f) capacitor through the EFI. The breakdown of both arrestors occurs in nanoseconds, enabling an almost instantaneous initiation signal. Explosive materials are known to be ignited in different ways. Typically, explosive materials have been ignited by flame ignition (e.g., fuses or ignition of a priming explosive), impact (which often ignites a priming explosive), chemical interaction (e.g., contact with a reactive or activating fluid), or electrical ignition. Electrical ignition may occur in two distinct ways, as by ignition of a priming material (e.g., electrically ignited blasting cap or priming material) or by direct energizing of an explosive mass by electrical power. U.S. Pat. No. 5,351,623 describes a device which safely simulates the loud noise and bright flash of light of an explosion. This device consists of an ordnance case which encloses a battery, an electronic control module, a charging circuit board, a bridge head, and a shock tube dusted with aluminum and an explosive. The electronic control module provides a time delay between initial activation of the device and the time when the device is ready to create a shock wave. Further, this electronic control module provides a central control for the electronics in the simulator. The charging circuit board uses the battery to charge a capacitor. Passing the voltage stored in the capacitor through the wires of the bridge head causes the explosive and the aluminum in the shock tube to react. This reaction produces a loud noise and bright white flash of light which simulates an explosion. One other aspect of explosive devices which has been of great concern is the danger of premature detonation of the device or charge. The highly energetic release of the compositions used for providing explosions has usually been attended by a high degree of sensitivity or a low initiation threshold for the explosive reaction. Attempts at alternative energy sources for explosive devices have led in many directions, including the electrical ignition of metals in water. W. M. Lee, Metal/Water Chemical Reaction Coupled to a Pulsed Electrical Discharge, J. Appl. Phys. 69 (10), 15 May 1991 describes how capacitor stored energy is transferred to a wire conductor surrounded by a mixture of a reactive metal powder and water. The current explodes the small wire conductor and initiates a chemical reaction in the mixture. The chemical reaction in the mixture was direct reaction of the aluminum metal and the water as2Al+3H2O goes to Al2O3+3H2 to provide the energy for the investigation of explosive sources. T. G. Theofanous, X. Chen and P. Di Piazza, Ignition of Aluminum Droplets Behind Shock Waves in Water, Phys. Fluids 6 (11), November 1994, pp. 3513-15 describes the reaction of gram quantities of molten aluminum with water under sustained pressure pulses of up to 40.8 Mpa in a hydrodynamic shock tube. Conditions are identified under which the thermal interaction develops into chemical ignition and total combustion events in the aluminum-water explosion. Electrically triggered explosive devices are not per se novel. Electrical current has been used for more than one hundred years to ignite detonators, as for example with TNT or dynamite charges. Electrical signals are also used with modern explosive devices, including Explosive Bridge Wires and their membrane equivalents. Explosive bridge wires are thin wire(s) placed adjacent to an explosive charge. The wire(s) or membranes (exploding foil initiators) are very thin and have very low mass relative to the total mass of the charge (considerably less than 1% by weight). These films or wire(s) are placed adjacent to the explosive mass, and are electrically connected to a charge generator. The charge causes the wire to burst, creating a shock wave into and through the explosive material which initiates or enhances the explosive effect of the charge. The products of the reaction may react with the burst wire or foil in a redox reaction. The nature of explosions and ignitions also varies according to different needs. For example, some ignitions (as described in U.S. Pat. No. 6,540,175) are seeking high temperature ignitions to initiate thermal reactions in proximity to the ignition of the incendiary fill. Other explosive materials seek to provide high pressures to impact and act on materials in close proximity to the blast. Each of these different techniques among ignition types and explosion effects requires differentiation among the materials used and the ignitions provided in the practice of the technologies. All of the above cited references are incorporated herein by reference for all of their teachings relating to the field of explosives, activators, detonators, electronics, materials and the like.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to magnetic random access memory, and more particularly to a multi-bit magnetic random access memory device and a method for writing to and for sensing the multi-bit magnetic random access memory device. 2. Description of the Related Art Rapid growth in digital information generation is likely to face a new wave of explosion in high density memory demand due to the growing popularity of mobile devices. Magnetic random access memory (MRAM) is one of the most promising candidates to provide energy efficient and non-volatile memories. The most attractive advantages of MRAM are that the mobile device retains the current state of work when powered down, and, additionally, longer battery run-times can be provided for mobile devices from notebook computers to cell-phones, since non-volatility enables MRAM chips to consume less power than conventional Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM). MRAM operates on the principle of storing data bits using magnetic charges instead of electrical charges as used by DRAM and SRAM. In the related art, an MRAM is known where one bit of information is stored in a magnetic multilayer cell, which comprises both magnetic and non-magnetic layers. As shown in FIG. 9, in its simplest form, a magnetic multilayer memory cell 90 includes four layers. These layers include an antiferromagnetic layer 91, and two ferromagnetic layers 92, 93 separated by a non-magnetic spacer layer 94. The non-magnetic spacer layer 94 may either be conductive or non-conductive. In a memory having a conductive spacer, a spin-valve element is created, while a memory having a non-conductive spacer layer produces a magnetic tunnel junction (MTJ) magnetoresistive element. One of the ferromagnetic layers 93 is exchange-coupled to the antiferromagnetic layer 91, effectively pinning the orientation of magnetization in the ferromagnetic layer 93. This ferromagnetic layer 93 is known as the pinned layer. When an external magnetic field is applied to such a cell, the magnetization of the other ferromagnetic layer 92, the so-called free layer (the non-pinned layer), will react to the field. Sensing or reading the information stored in the cell is based on a magnetoresistance effect. The electrical resistance of such a multilayer cell 90 depends on the relative orientation of the magnetization in the two ferromagnetic layers 92, 93. In this case, there is low resistance when both magnetization orientations are in parallel (P) alignment and high resistance when they are in antiparallel (AP) alignment. The building block of the MRAM architecture is its crossed-wires structure, where a magnetic element is located at the intersection point of two orthogonal wires. The writing or addressing process of an MRAM cell is accomplished by applying two orthogonal magnetic field pulses, generated by sending an electrical current, down the wires. The two wires are often referred to as the word line (Hy field, along the short axis of the magnetic element) and the bit line (Hx field, along the long axis (or easy axis) of the magnetic element). The strength of the magnetic fields applied are such that one field alone cannot switch the magnetization of a magnetic element, but rather it requires the combination of both magnetic fields from the word and bit lines, for cell selectivity. However, the present cell writing technology relies on applying a long magnetic field pulse, tens of nanoseconds, long enough for the magnetization to reach the final equilibrium state. This method of writing is also known as the quasistatic writing which is not only slow but also not energy efficient. Also, in such a memory having a multilayer cell structure, there is a limitation of memory density. In most cases, only one bit of information can be stored at the cross-point (the intersection point of the two orthogonal wires) in the MRAM architecture. Recent attempts have been made to overcome this limitation of memory density. For example, U.S. Patent Publication 2003/0209769 to Nickel et al. discloses an MRAM device having a multi-bit memory cell. In particular, each memory cell includes two magnetoresistive devices connected in series. Each of the two magneto-resistive devices has sense layers with distinctly different coercivities and, therefore, requires different writing currents. Thus, write operations can be performed selectively on the two magneto-resistive devices. Each multi-bit memory cell has four logic states with different resistance values in each state. This allows for storage of more data than a related art single-bit memory cell, which has only two logic states. U.S. Pat. No. 5,930,164 to Zhu also discloses a magnetic memory device having four logic states and an operating method thereof. The memory device of Zhu includes a multi-bit system accomplished by stacking two or more memory cells on top of each other separated by a thick conductive layer to prevent magnetic coupling between memory cells. In Zhu, each memory cell comprises a free magnetic data layer to store one bit of information, a hard magnetic layer as a reference layer, and a barrier layer between the free and hard magnetic layer. Essentially, each memory cell is an independent MTJ device. The memory cells have distinct coercivities, therefore allowing independent cell writing by one or two magnetic fields. For sensing or reading process, these memory cells have different Magnetoresistance (MR) ratios, therefore creating four resistance states for sensing of multi-bit information. The writing method, however, relies on a quasistatic writing method which is not only slow, but also not energy efficient. U.S. Pat. No. 5,703,805 to Tehrani et al. discloses a method for detecting information stored in an MRAM cell having two magnetic layers with different thicknesses. In the Tehrani et al. device, there are two magnetic data layers separated by a non-magnetic spacer. Each magnetic data layer can store one bit of information. A writing process for this device uses differing coercive forces for the two magnetic data layers, hence, independent writing is possible using a quasistatic method. A quasistatic writing method relies on applying a long magnetic field pulse of several nanoseconds that is long enough for the magnetization of a cell to reach a final equilibrium state. As noted above, this method of switching is not only slow, but also not energy efficient. Further, the reading process of the Tehrani et al. device is very complex since six magnetic fields are required to determine the state in each data layer separately. This creates a slow and inefficient reading process. Finally, U.S. Pat. No. 6,590,806 to Bhattacharyya discloses a device having two magnetic data layers separated by a pair of antiferromagnetically coupled magnetic layers. The two free magnetic data layers have distinct coercivities and hence, independent writing is possible. The Bhattacharyya device has four resistance states depending on the magnetic configuration of the free data layers to the antiferromagnetically coupled layers. Therefore, the reference layer for the magnetoresistance effect are the pair of antiferromagnetic coupled layers. This means that if this device is to be used for additional data layers, each data layer requires one pair of antiferromagnetic layers, providing for a complicated device structure. Also, the device relies on the conventional quasistatic writing method. Further, the manufacturing process of related art MRAM devices has only been known to produce low yields of the memory due to high sensitivity to cell defects, which causes domain nucleation, and hence, wide switching field distribution.
{ "pile_set_name": "USPTO Backgrounds" }
Light emitting devices such as light emitting diodes or laser diodes using Group III-V or II-VI compound semiconductor materials implement light with a variety of colors such as red, green and ultraviolet light based on thin film growth technologies and development of device materials, implement white light by using phosphor materials or combining two or more colors and have advantages such as low power consumption, semi-permanent lifespan, high response speed, safety and eco-friendliness, as compared to conventional light sources such as fluorescent lamps and incandescent lamps. Accordingly, an application range of such a light emitting device has been extended to transmission modules of optical communication systems, light emitting diodes as replacements for cold cathode fluorescent lamps (CCFLs) constituting backlights of display devices such as liquid crystal displays (LCDs), and white light emitting diode lighting devices as replacements for fluorescent lamps or incandescent lamps, vehicle headlights and traffic lights. A light emitting device package has a configuration in which a first electrode and a second electrode are disposed in a package body, and a light emitting device is disposed on the bottom of the package body and is electrically connected to the first electrode and the second electrode. FIG. 1 is a sectional view illustrating a conventional light emitting device package. The light emitting device package 100 includes a package body 110a, 110b or 110c to form a cavity structure and a light emitting device 140 disposed on the bottom of the cavity. A heat dissipation portion 130 may be disposed in a lower part of the package body 110a, 110b or 110c and the heat dissipation portion 130 and the light emitting device 140 may be fixed through a conductive adhesion layer. A molding portion 150 disposed in the cavity protects the light emitting device 140 while surrounding the same. The molding portion 150 may include a phosphor 160. Light of a first wavelength region emitted from the light emitting device 140 may excite the phosphor 160 and light of a second wavelength region may be emitted from the phosphor 160. FIG. 2 shows the region A1 or A2 of FIG. 1 in detail. A wire 145 may contact the light emitting device 140 in the region A1 and contact an electrode pad 70 in the region A2. The wire 145 thinly and lengthily droops down to form a stitch shape in the region represented by S1 in FIG. 2A and the region represented by S2 in FIG. 2B. As shown in FIG. 2A, the wire 145 contacts the electrode pad 70 to form a stitch and as shown in FIG. 2B, the wire 145 contacts a via hole electrode 80 provided in the package body 110b to form a stitch. Although FIGS. 2A and 2B illustrate embodiments of the region A2 of FIG. 1, the wire 145 may contact the electrode pad or the via hole-type electrode provided on the light emitting device 140 in the region A1 of FIG. 1. However, the conventional light emitting device package has the following problems. In the case of the wire bonded as shown in FIG. 2B, a portion of the surface of the via hole electrode 80 may be depressed and, thus, the stitch of the wire may not be completely bonded to the via hole electrode.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, global warming comes into problem with the increase of carbon dioxide emissions, and the suppression of CO2 discharged becomes an important issue in the iron industry. As to such an issue, the operation with a low reduction agent ratio (abbreviated as low RAR, total amount of a reducing material blown through tuyeres and coke charged from a top of the furnace per 1 ton of pig iron) is driven forward in the recent blast furnace operations. Since coke and pulverized coal are mainly used as a reducing material in the blast furnace, in order to attain the low reduction agent ratio and hence the suppression of carbon dioxide emissions, it is effective to replace coke or the like with a reducing material having a high hydrogen content ratio such as waste plastic, LNG, heavy oil or the like. Patent Document 1 discloses a technique wherein a solid reducing material, a gaseous reducing material and a combustible gas are simultaneously blown with a plurality of lances to promote the heating of the solid reducing material in a combustion field of the gaseous reducing material. In this technique, it is said that the combustion rate of the solid reducing material can be improved to suppress the generation of unburned powder or coke breeze to thereby improve the air permeability and decrease the reduction agent ratio. Patent Document 2 discloses a technique wherein a lance is multiple-tube type and, for example, a solid reducing material is blown through an inner tube and a combustible gas is blown from a gap between inner tube and middle tube and a gaseous reducing material is blown from a gap between middle tube and outer tube. Further, Patent Document 3 discloses that a plurality of small-size tubes are arranged around a main tube of the lance in parallel.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a desoldering tool of the type comprising a heated desoldering tip of which the bore is connected via a suction tube to the front end of an elongated tin collecting container with the rear end being connected via a vacuum tube to a vacuum source. In such desoldering tools the solder caused to melt with the aid of the desoldering tip is sucked off through the bore of the desoldering tip and a suction tube which opens into the front end of an elongated tin collecting container of which the other end is connected to a vacuum source in order to suck the molten solder through the desoldering tip and the suction tube into the tin collecting container, in the path of which a baffle plate is usually arranged against which the extracted tin strikes, an air permeable filter being arranged behind the baffle plate. In such desoldering tools the tin collects in the tin collecting container and there is a danger that the tin in the tin collecting container, due to the thermally conductive connection to the suction tube and the desoldering tip and the vicinity to the heating element of the desoldering tool, will be held partially in molten state and drip back through the suction tube and interrupt the vacuum. To avoid this dripping back, it is known to make the suction tube bent and allow it to open into the front end face of the tin collecting container. However, such a bent suction tube easily becomes clogged and is difficult to clean.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to panel fasteners, and more particularly, to an improved two-part, resilient fastener for releasably fastening together two apertured panels. There is a continuing need in industry for new and improved fasteners capable of fastening together apertured panels. For example, in the automobile industry, fasteners of this type are commonly used for attaching a trim panel, such as that covering the inside of a vehicle door, to an apertured metal panel forming part of the body of the vehicle. In automobile and other applications of this type, the fasteners typically must meet many requirements. For example, because a large number of the fasteners are usually used at spaced intervals to secure the panels and because of cost considerations in general, the fasteners must be economical to manufacture. Yet, the fasteners must serve to hold the panels firmly and securely together so as to prevent loosening or rattling of the panels under vibration. In many applications, particularly automobile applications, the fasteners must also permit one of the panels to be released from the other, such as when the vehicle requires repair, and then to be fastened together again securely and in accurate alignment after the repair. Preferably, the fasteners should permit such release and replacement without the need for special tools. In addition, the fasteners should be capable of accommodating production tolerances in the positioning and size of the apertures in the panels and in the thickness of the panels themselves, while permitting the panels to be accurately aligned relative to one another and securely attached. The fasteners should also be easy to install in the panel apertures, preferably being capable of installation by automated machines of the kind now commonly found on many modern day vehicle assembly lines. Finally, it is at least desirable, and in many cases necessary, that the fasteners seal the apertures in the panels after they are fastened together so as to prevent the leakage of moisture or the like through the apertures in the assembled product. A wide variety of fastener designs and constructions have been used and proposed heretofore which meet one or more of the above requirements. Examples of such prior fasteners are disclosed in the following patents: U.S. Pat. Nos. 3,029,486; 3,119,476; 3,213,506; 3,249,973; 3,271,059; 3,550,217; 3,577,603; 3,678,797; 3,745,612; and 3,771,275; British Pat. Nos. 1,113,757; 1,129,250; 1,316,472; 1,543,321; and 1,570,108. As can be appreciated from the referenced patents, two-part fasteners are common which comprise a stud member that engages in an aperture in one of the panels, and a socket member that engages in an aperture in the other of the panels. The stud member and socket member are then snapped, press-fit or otherwise joined together to fasten the panels to one another. Typically, the aperture sealing function is performed by a resilient flange formed integrally with the stud member of the fastener, which flange covers and seals the aperture when the stud member is engaged in its associated panel.
{ "pile_set_name": "USPTO Backgrounds" }
Transfection agents, such as lipid aggregates comprising cationic lipid components have been used to deliver large anionic molecules, such as nucleic acids, into certain types of cells. See Felgner et al., Nature 337:387-388 (1989); Proc. Natl. Acad. Sci. USA 84:7413 (1987). These agents are not, however, universally effective in all cell types. In many cases, cationic lipids alone are not effective or are only partially effective for transfection. Moreover, these methods do not work for all cell types, often require relatively complex protocols and are inconvenient. It is apparent, therefore, that new and improved methods for introducing macromolecules, and particularly nucleic acids, into cell, are greatly to be desired. In particular, improved methods for introducing nucleic acids into a wider variety of cells, and particularly into primary cells, are greatly to be desired.
{ "pile_set_name": "USPTO Backgrounds" }
The invention involves an electric fence network, consisting of branches, preferably running horizontally and vertically, connected to each other in the form of a network. The branches are made of a non-conducting material and are provided with an electrical conductor. Alternatively, the branches may be constructed directly as an electrical conductor. The conductor can be connected to a voltage-conducting terminal (post) of an electric fence device. Network-like electric fences of this type, are constructed with various grid widths, preferably to confine sheep, chickens, rabbits, pigs, and other small animals. In the prior art all horizontal branches, possibly with the exception of the lowest branch, are provided with an electrical conductor, in particular as a twisted cable, or are directly constructed as such, so that the individual conductors, connected in parallel, can be connected to the voltage-conducting post of an electric fence device. In order to have an especially effective grounding, it is also known therein to twist the lowest branch with an electrical conductor that functions as a ground conductor. A problem with this construction according to the prior art is that with severe fouling by growth encrustation or with a deep snow cover, the voltage in the electric fence drops sharply. Thus, it is not infrequent that on account of the growth encrustation or the electrical conduction across the snow cover, a voltage impulse of, for example, 9000V will only have available a voltage impulse of 3500V on the spot for a confinement effect. From European patent publication EP O 610 490, an electric fence is already known consisting of a network of non-conducting branches, which are connected to each other in a relatively complex manner. This network is passed through in a wave-like manner by at least two electrical conductors of high electrical conductivity, which are phase-shifted by 180.degree.. This known network has a complex construction, which makes its manufacture expensive, and furthermore, the distribution of the voltage-conducting conductor is not optimal.
{ "pile_set_name": "USPTO Backgrounds" }
Bragg gratings are structures with a periodic variation in the refractive index that are usually formed in optical components such as holograms, waveguides, and optical fibers. These structures reflect a narrow spectral and angular bandwidth of light that is determined by the average refractive index of the grating, and the spatial period of the refractive index variation. The fraction of incident light that is reflected by Bragg gratings is determined by the magnitude of the refractive index variation and by the number of refractive index periods included in the structure. Reflectivity greater than 99% can be obtained in Bragg structures that have only 100 μm to 300 μm thickness or optical path length and have refractive index changes near 0.002. Accordingly, the spectral bandwidth required by a particular application is accounted for by the appropriate choice of hologram thickness, or in the case of waveguides by the optical path length. The spectral bandwidth of the reflected light decreases as the number of refractive index periods increases. Accordingly the spectral bandwidth required by a particular application is easily accounted for by appropriate choice of hologram thickness. A 300 μm thick Bragg grating, for example, with a reflectivity at 500 nm that is greater than 99%, will have a spectral bandwidth that is less than 0.4 nm, full width half maximum (FWHM). This combination of high reflectivity over narrow spectral bandwidth has several interesting applications. Bragg reflection gratings, for example, are used in optical communication as stabilizers for pumped lasers, narrowband wavelength division multiplexing (WDM) add/drop filters, and gain-flattening filters. Additional applications include narrowband filters for laser protection, Raman spectroscopy, wireless optical communication, and light detection and ranging systems (LIDAR). In these applications a signal is carried by light of a specific wavelength. It is, therefore, often necessary in such devices to improve their signal-to-noise ratio (SNR) by isolating the signal beam wavelength from polychromatic background light. Typical uses of airborne LIDAR systems include the detection of submarines and mines, environmental monitoring, and ocean bottom mapping. The signal to noise of LIDAR systems is inversely proportional to the line width of the filter employed, and is directly proportional to the level of detection of the desired wavelength. Two related problems can limit the direct use of a single narrow-spectral-bandwidth, reflection hologram to select the desired signal beam. First, reflection of light outside the desired spectral bandwidth can be achieved by changing its incident angle to match the desired Bragg condition of the hologram. However, if this off-wavelength reflected light is allowed to reach the detector of any device employing a holographic filter, the SNR will be reduced. In addition, signal light that is incident outside of a relatively narrow band of incident angles will not be reflected and the detected signal strength will be less than the total signal striking the filter. Further, increasing the thickness of a reflection hologram, or, for example, the optical pathlength of a waveguide, narrows the spectral bandwidth but also reduces the angular field of view.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an electrical connector, and more particularly to an electrical connector used for a mobile phone or other electrical devices for mounting of a camera module. 2. Description of the Prior Art With the rapid development of the technology of wireless communication and advanced technology of electronics, the electronic consumer products such as mobile phone, Personal Digital Assistant (PDA) etc., are designed to comply with miniaturization trend and multiple functions such as mounting a camera thereon to meet a user's need. As a result, the requirement of socket connectors used in such equipments is correspondingly demanding. An electrical connector for receiving an electrical component comprises an insulating housing having a receiving room, a plurality of contacts insert-molded with the housing, and a top shell and a bottom shell together covering the housing. The top shell consists of a pair of U-shaped metal frames defining a pair of opposite first walls and a second wall connecting the two first walls. Several grounding strips and fastening strips extend from the top of the second wall into the receiving room. A resilient strip extends from the top of the first wall into the receiving room. A pair of tabs protrudes on the two sides of the resilient strip adjacent to the top of the first wall, and the housing has a corresponding assembling groove engaging with the tabs for fastening the top shell onto the housing. However, one problem of above said connector is that each metal frame of the top shell engaged with the housing only by means of the tabs and two assembling grooves so that a holding force between the top shell and the housing is inadequate and the quality of the products may not be guaranteed as the top shell may come adrift or even separate from the housing. Hence, an improved electrical connector is desired to overcome the disadvantages of the prior art.
{ "pile_set_name": "USPTO Backgrounds" }
Biodegradable polymers having a sustained-release property are useful as matrices for microcapsules, etc. to be employed for encapsulating physiologically active substances. As such biodegradable polymers, there are known, for instance, polylactic acid and a copolymer of lactic acid and glycolic acid (e.g. JP-A-11/269094). These biodegradable polymers are used just as produced by conventional synthetic procedures. However, it has been found that such polymers produced by ring-opening polymerization are small in the terminal carboxyl group content and have poor utilization as sustained-release matrices. Because of this reason, attempt has been made to subject biodegradable polymers of high molecular weight to hydrolysis for making their weight-average molecular weights suitable and then use as a matrix for sustained-release preparations. The polymers obtained by hydrolysis and subsequent water washing are, however, apt to cause initial burst and therefore not suitable for sustained-release matrices, even when said polymers have proper weight-average molecular weights and terminal carboxyl group contents. Further improvement is thus demanded.
{ "pile_set_name": "USPTO Backgrounds" }
Treatment of bulky, refractory cancers using adoptive transfer of tumor infiltrating lymphocytes (TILs) represents a powerful approach to therapy for patients with poor prognoses. Gattinoni, et al., Nat. Rev. Immunol. 2006, 6, 383-393. A large number of TILs are required for successful immunotherapy, and a robust and reliable process is needed for commercialization. This has been a challenge to achieve because of technical, logistical, and regulatory issues with cell expansion. IL-2-based TIL expansion followed by a “rapid expansion process” (REP) has become a preferred method for TIL expansion because of its speed and efficiency. Dudley, et al., Science 2002, 298, 850-54; Dudley, et al., J. Clin. Oncol. 2005, 23, 2346-57; Dudley, et al., J. Clin. Oncol. 2008, 26, 5233-39; Riddell, et al., Science 1992, 257, 238-41; Dudley, et al., J. Immunother. 2003, 26, 332-42. REP can result in a 1,000-fold expansion of TILs over a 14-day period, although it requires a large excess (e.g., 200-fold) of irradiated allogeneic peripheral blood mononuclear cells (PBMCs, also known as mononuclear cells (MNCs)), often from multiple donors, as feeder cells, as well as anti-CD3 antibody (OKT3) and high doses of IL-2. Dudley, et al., J. Immunother. 2003, 26, 332-42. TILs that have undergone an REP procedure have produced successful adoptive cell therapy following host immunosuppression in patients with melanoma. Current infusion acceptance parameters rely on readouts of the composition of TILs (e.g., CD28, CD8, or CD4 positivity) and on fold expansion and viability of the REP product. Current TIL manufacturing processes are limited by length, cost, sterility concerns, and other factors described herein such that the potential to commercialize such processes is severely limited, and for these and other reasons, at the present time no commercial process has become available. There is an urgent need to provide TIL manufacturing processes and therapies based on such processes that are appropriate for commercial scale manufacturing and regulatory approval for use in human patients at multiple clinical centers.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a novel optically active compound having a .delta.-valerolactone ring in the structure thereof, and a liquid crystal composition comprising the same. 2. Description of the Related Art Liquid crystals currently used in a liquid crystal display are classified into the nematic phase, and since they are of the light-receiving type, are featured by a freedom from eye fatigue and a very small power consumption. Nevertheless, these liquid crystals have problems such as a low response speed and an impossibility of viewing the display depending upon the viewing angle. Display devices and printer heads using a ferroelectric liquid crystal having advantageous characteristics similar to those of the nematic liquid crystal, such as the property of not causing eye fatigue and a small power consumption, and having a high response speed and high contrast characteristics comparable to those of a light-emitting type display element, have been studied. The ferroelectric liquid crystal was reported of its existence for the first time by R. B. Meyer et al. in 1975 [J. Physique, 36, L-69 (1975)]. This ferroelectric liquid crystal has a chiral smectic C phase (hereinafter referred to as "Sm*C phase"), and a typical example of the ferroelectric liquid crystal is p-decyloxybenzylidene-p'-amino-2-methylbutyl cinnamate (hereinafter referred to as "DOBAMBC") represented by the formula: ##STR1## In the above-described DOBAMBC and most of the ferroelectric liquid crystals proposed thereafter, however, the range of temperature showing the ferroelectric property (the range of temperatures wherein the Sm*C phase is present) is very narrow, and these liquid crystal materials cannot be practically used alone. Therefore, attempts have been made to expand the range of temperatures showing the Sm*C phase to the lower and higher temperature sides, taking room temperature as the center, by mixing a variety of ferroelectric liquid crystals. A ferroelectric liquid crystal having a larger spontaneous polarization than heretofore proposed ferroelectric liquid crystals is desired for a printer head for which a very short response time is required. An object of the present invention is to provide an optically active compound which is chemically stable, is not colored and has a good optical stability and which gives a liquid crystals composition having a large spontaneous polarization when the optically active compound is incorporated in a liquid crystal composition, and a liquid crystal composition comprising the compound.
{ "pile_set_name": "USPTO Backgrounds" }
With the development of information technology, more and more image or video files with a vivid and intuitive display effect are used as substitutes for traditional text files to record and transmit information, and the amount of information is getting bigger and bigger. Since the data amount of images and videos is very great, the storage and transmission thereof are quiet inconvenient, thus an effective compression on the data is necessary for either storage or transmission. Image compression is an application of data compression technology to digital images. Its purpose is to reduce redundant information in image data so as to store and transmit data in highly effective formats, which has great significance in rapid transmission and real time processing of digital image information on the network. The reason why image data can be compressed is that there exists redundancy in the data. Redundancies in image data can be mainly classified into spatial redundancy caused by the correlations between adjacent pixels in an image, temporal redundancy caused by the correlations between different frames in an image sequence, and spectrum redundancy caused by the correlations between different color planes or spectral bands. The purpose of data compression is to reduce the data redundancies so as to reduce the number of bits required for representing the data. In image compression applications, the ideal compression is a compression with an effect of low image capacity and high image quality (definition), which can be realized by choosing a suitable output format according to the characteristics of an image. Image formats used in the Internet mainly include GIF format, PNG format and JPG format, wherein JPG format is a lossy compression format, it is suitable for compression and storage of images having complicated colors such as landscape images, but can lead to loss of image data; GIF format and PNG format are image compression formats based on color pallet technology, and the number of colors adopted when an image is compressed with GIF and PNG formats is a very important compression parameter. As far as a GIF or PNG formatted image is concerned, the file size of the image can be effectively reduced with the display effect thereof kept substantially unchanged by appropriately adjusting the number of colors of the image. At present, images are generally compressed according to a predetermined number of colors, rather than the numbers of colors suitably selected based on the characteristics of the images, in computer image conversion. Under such a circumstance, images having different or even very different numbers of colors are compressed according to a same predetermined compression parameter rather than the actual numbers of colors of the images, which leads to either a case where the number of colors is set too high and thus the compression efficiency is not high, or a case where the number of colors is set too low and thus the display effect is not good, therefore, the file size and the display effect of the compressed images cannot be well balanced.
{ "pile_set_name": "USPTO Backgrounds" }
A typical photograph album may have a construction like a book or loose-leaf binder with pages of paper onto which the photographs are mounted by various techniques. For example, an adhesive may be used to directly mount the photographs to the album pages, transparent retaining envelopes may be used, or corner mounts glued to the pages may hold the photographs. In these typical albums, the pages themselves add to the bulk of the album and, in addition, such albums may be costly, particularly when sold fully assembled. A more desirable photograph album for a majority of applications has minimal excess size and weight beyond that which the photographs themselves contribute. The photograph album should be relatively inexpensive to manufacture and assemble, and the purchaser should have the option of whether to buy the photographs fully assembled in the album. The photograph album should also be available in kit form so that the purchaser may prepare his or her own albums. Photograph albums have been developed in the prior art in an attempt to provide a lightweight and inexpensive album. For example, U.S. Pat. No. 3,116,738 to Wentges, discloses a photograph album having leaves holding photographs with fastening edges stacked together, one above the other. An elastic band is used to secure the leaves together by fitting into slots formed in opposing edges of the leaves. U.S. Pat. No. 4,530,176 to Rejwan similarly discloses an album using an elastic band to secure a stack of leaves together in a plastic binder. Unfortunately, an elastic band may be stretched beyond its elastic limit or may be easily separated from the binder and lost. A further disadvantage of the elastic band is that it is not amenable to automated assembly. Typically, the elastic band must be manually stretched and fitted to the stacked leaves during assembly of the photograph album. The assignee of the present invention, in an effort to overcome the limitations of the elastic band, has developed and marketed a photograph album wherein fixed end pieces are positioned on opposite ends of an elongate backbone member. The album is disclosed in U.S. Pat. No. 5,040,216 to Policht. The fixed end pieces engage corresponding slots in opposing edges of the leaves holding the photographs. The stacked leaves must be flexed for insertion into or removal from the album. Despite advancements and improvements in the art, there still exists a need for a lightweight and inexpensive photograph album that may be quickly and easily assembled, disassembled, and reassembled. In addition, assembly of the album should be capable of being readily implemented using automated equipment.
{ "pile_set_name": "USPTO Backgrounds" }
A photolithographic tool is a machine for applying a pattern onto a substrate, in particular a desired portion thereof. Such machines can be used, for example, in the fabrication of integrated circuits (ICs). In such cases, it could be considered that a pattern on a mask or reticle is used to form a pattern for a single IC layer. This pattern can be imaged onto a target site (e.g. including one or more pins) of a substrate (e.g., a silicon substrate). In particular, in the field of light-emitting diode (LED) manufacturing, a pattern of dense holes is first imaged onto a patterned sapphire substrate. Compared with stripes, the imaging of dense holes or circular pillars is much more difficult and tends to suffer from a much reduced depth of focus (DoF). Therefore, the photolithographic process is imposed with very high requirements on focal plane control. On the other hand, in contrast to silicon wafers, patterned sapphire substrates are hard in nature and tend to have significant warpage, which contribute to further reductions in the useful DoF (UDoF). With an insufficient UDoF, defocus arising from errors in the focal plane control by the photolithographic system may lead to a degree of inhomogeneity of the pattern image on the substrate that is beyond a tolerable range, which is manifested as a macro effect that portions of the pattern image on the substrate have varying degree of brightness even under the same lighting conditions, i.e., a phenomenon that “inconsistency” or “color differences” can be perceived with the naked eye. As the naked eye is very sensitive to such “inconsistency” or “color differences”, visual inspection serves as an important check in the production line. Therefore, the control of various process parameters, especially the focal plane, is posed with highly demanding requirements. Referring to FIG. 1, a conventional illumination system employs a light-homogenizing design based on a quadrilateral light-homogenizing rod 10. FIG. 2 shows conventional quadrilateral masks 20 which can be put together into a whole. However, the illumination system and the masks are primarily used for laser annealing, and cannot be used for the fabrication of LED devices. The existing photolithographic tools for the exposure of patterned sapphire substrates are associated with a low yield, poor adaptability and unsuitability for mass production due to lens design cost, control system design and other reasons.
{ "pile_set_name": "USPTO Backgrounds" }
Cable operators and vendors, such as Big Band, Motorola, Cisco, and Imagine Communications, have developed and are further refining systems to measure bit/bandwidth demand or “pull” by cable consumers and allocate capacity within a cable plant node on a real-time dynamic basis. These types of systems are referred to as “switched digital video” systems. Switched digital video (“SDV”) systems are being implemented to resolve growing consumer demand of cable bit/bandwidth. With hundreds of possible television channels and an increasing number of high-definition (“HD”) channels, cable service providers are being stretched to the limits of their network capacity in order to provide uninterrupted, quality service to their subscribers. In addition to audio and video data transmitted for television services, many providers also package Internet, Video-on-demand and digital telephone services to subscribers—all within the same cable infrastructure. To accommodate the increased demand for bits/bandwidth, cable providers limit the transmission of a particular channel until it is requested by a subscriber. For example, a certain channel is not constantly broadcast out a home, or neighborhood. When a subscriber tunes to that channel on the digital set-top box, a signal is sent to the cable provider to “turn-on” the channel. The provider then transmits the stream of data containing that channel's video and audio through the cable to the set-top box and on to the subscriber's television. Should a second subscriber in the same service area call up that same channel, the stream is forwarded on to that set top box eliminating the need for a second stream of the same channel. The transmission speeds of signals over the cable lines is fast enough that the subscriber is unaware that seconds before tuning to that station, the station was not being broadcast at all. Hybrid SDV systems provide for the more popular channels such as broadcast networks and popular networks (e.g. ESPN, CNN, etc.) to be constantly broadcast to a home, while less popular channels would be handled in much the same way as a video-on-demand (VOD) session except that instead of having the characteristics of a unicast (only one-to-one) transmission, it would have the characteristics of a multicast transmission (2nd, 3rd, etc. viewers of a program channel would be joined to the stream initiated into the node by the 1st viewer). Thus, more popular channels would always be available while channels which are switched would only be available (similarly to VOD) when bandwidth is available. Further, as the cable plant is transmitting both the Moving Picture Experts Group (MPEG) data (for typical video programming) and Internet Protocol (IP) data, some vendors and cable operators are designing for bandwidth to also be dynamically allocated on a shared basis between IP uses and MPEG uses. Current switched digital video systems are designed to alleviate and overcome bandwidth transmission limitations from the consumer on a “pull” basis (i.e., dynamically allocating bandwidth based upon subscriber usage and demand). There remains an untapped resource for advertisers and cable providers alike in adapting a dynamic bandwidth allocation protocol on a “push” basis to opportunistically exploit the gaps or holes in the available bandwidth. That is, dynamically allocating'additional, unused bandwidth to certain channels for the inclusion of additional services, such as advanced advertising and content delivery
{ "pile_set_name": "USPTO Backgrounds" }
High-speed data communication integrated circuit (IC) dies are known to include both drivers and receivers. The driver of one such IC connects to the receiver of another via one or more signal transmission lines. Both the driver and receiver circuits include termination elements that attempt to match the characteristic impedance of the transmission line to the output impedance of the driver and input impedance of the receiver, as impedance mismatches degrade signal quality and consequently reduce communication speed and reliability. Some conventional communication systems employ control systems that calibrate the impedance of on-chip termination elements for improved impedance matching. For a detailed discussion of one such system, see U.S. Pat. No. 6,418,500 entitled “Feedback Control for Termination Adjustment,” which issued on Jul. 9, 2002, to Gai et al. Some high-performance communication systems employ current-mode switching for improved speed performance. Such systems include current-mode drivers, which convey digital signals by modulating current between values representative of different logic levels. The levels of current used to express logic levels are carefully calibrated and controlled to obtain rapid switching and low power consumption. The following issued patents describe conventional circuits for calibrating the drive current for current-mode drivers: U.S. Pat. No. 5,254,883 entitled “Electrical Current Source Circuitry for a Bus,” which issued on Oct. 19, 1993, to Horowitz et al., and U.S. Pat. No. 6,462,591 entitled “Semiconductor Memory Device Having a Controlled Output Driver Characteristic,” which issued on Oct. 8, 2002, to Garrett et al. The aforementioned calibration techniques for setting and maintaining appropriate termination resistances and drive currents work well in many applications. High-speed circuits are in a very competitive market, however, and must achieve ever greater performance levels to satisfy customer demand. There is therefore a need for area- and power-efficient communication circuits that exhibit improved speed performance.
{ "pile_set_name": "USPTO Backgrounds" }
(1) Field of the Invention The present invention relates to a vehicle body structure of an automobile. (2) Description of the Related Art In vehicle body frames of automobiles, with a view to securing safety, the rigidity of a part of a vehicle body where occupants ride is increased by adopting a framework in which side-frames which extend in a longitudinal direction of the vehicle body and cross members which are joined to the side-frames from a transverse direction of the vehicle body are combined together. For example, such a vehicle body frame is disclosed in JP-A-10-314869. In addition, with a view to increasing the safety with respect to impacts to sides of a vehicle or side-impacts, vehicle body frame structures are adopted in which side sills are disposed in parallel alongside the side-frames on the outside thereof, and impact absorbing members are provided between the side-frames and the side sills so disposed. Normally, the impact absorbing members are, for example, members of a hollow cross section which are adapted to be deformed earlier than the cross members when an impact force of a predetermined value or greater is inputted sideways to the side sills. Impact energy exerted sideways on the side sill is absorbed by virtue of the deformation of the relevant member, so that the impact force so exerted is lessened. On the other hand, cost reductions are demanded in vehicle body frames as well as other parts of the automobiles. However, since the structure in which the impact absorbing members are additionally provided between the side-frame members and the side sill members increase the number of components associated with the vehicle body frame, there is a problem that a cost-related burden is increased.
{ "pile_set_name": "USPTO Backgrounds" }
In many fields of engineering a local conglomeration of completely different kinds of electrical and electronic equipment is required to exchange information which thus requires networking in a sometimes complicated manner. For instance, in motor vehicles, sources of audio signals such as radio receivers, cassette recorders or CD players require, on the one hand, connecting together and, on the other, to audio sinks such as amplifier speaker combinations. It may prove useful to also incorporate audio equipment which formerly formed a separate system, such as car phones in such a system. In addition, there is a trend towards increasingly complex control and monitoring of vehicle functions. Of the innumerable possibilities in this respect, here merely monitoring the function of external lights on the vehicle or the inflation pressure or measuring and/or controlling the engine speed or the turbocharging pressure is cited. For this purpose extensive wiring connections are necessary between the individual components. Even when, as intended, many items of equipment and functions are controlled and handled by a vehicle computer, the problem of the many wires and the length thereof remains. Also of disadvantage is the fact that many of the known components are unable to directly communicate with each other. For instance, to prompt the audio system to output a recorded text as a warning via the speakers, in the case of a reduction in tire inflation pressure, the expense involved until now was prohibitive. A great many other examples of networking vehicle components have already been stated which, however, have only been realized in part, such as a standardized transfer of audio data, on the one hand, or control data, on the other, each via a separate network of shielded wiring. Employing a bus system, although desirable, is hampered by major difficulties as regards the necessary bus arbitration and the resulting time losses. Since users of the most different kinds have to be connected to the common bus line which is required to handle a data thruput, to transfer two-channel digital audio data in addition to control and measurement data, for example, conflicting transfer requirements can hardly be avoided. The object forming the basis of the invention is to achieve a universal system for the exchange of audio and control data between many and varied items of electrical and electronic equipment via a bus system which is reliable, cost-effective and exceptionally powerful. This object--as far as the method is concerned--is achieved by the features of claim 1 of the invention. The features of a bus system suitable for implementing the method according to the invention as well as a corresponding hardware interface are disclosed by claims 5 and 8. The achievement according to the invention offers a wealth of advantages. By all items of equipment to be connected to each other being circuited in series by a single bus line, wiring can be saved and the circuiting simplified. Using fiber optic cables for data transfer achieves, on the one hand, complete freedom from noise whilst, on the other, greatly reducing weight and saving material which in vehicle applications involving the use of very many electrical and electronic components is particularly significant. Digital transfer places only minor requirements on the quality of the optical transfer medium and the electrooptical converters used and thus the costs thereof are slight. Since the transfer distances involved are short, low-cost plastic fiber optic cables can be employed. Due to the interfaces permitting standardization allowing the same type of interface module to be used, the electronics can also be realized at low cost. This eliminates complicated bus arbitration since each user has its own transmit channel and control data can be transferred monodirectional on each section of the fiber optic cable. This channel dedication permits optimum use to be made of available user channel capacity, since no capacity whatsoever must be reserved for bus arbitration. Apart from this, channel dedication permits exceptionally straight-forward user software coupling. In the preferred embodiment of the bus system the series circuit of the users is a closed ring according to claim 10. Receiving control data can then be acknowledged according to claim 3 by a specific bit in the signal sequence being modified or removed. Since the modified signal sequence is returned to the transmitting interface via the closed ring bus system, this interface is directly informed whether its assigned control data channel is again available. In accordance with claim 3 the AES3-1985 standard is used as the transfer format. This standard was created in coordination with the European Broadcasting Union as an internationally standardized protocol for digital audio transfer which is already used in conjunction with CD players and makes a single data channel available to the user which can be employed to transfer control data, for example. The fact that only a single data channel is available shows that this format is not actually intended for use in a bus system. The bus system according to the invention suffices with a signal channel due to the time multiplexing on the bus line. Apart from this, there is no problem in operating the bus system according to the invention with its own standard; however, using an international protocol facilitates communication with users such as CD equipment, using this protocol. The remaining subclaims relate to further advantageous embodiments of the invention. The invention is not only suitable for application in automobiles but also in particular in aerospace vehicles due to the low weight of the data transfer circuitry. In addition, networking stationary video, audio, telephone and data processing systems is also possible by means of the bus system according to the invention to reduce the volume of the circuit connections formerly necessary.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a drum type washing machine and a vapor generator thereof, and more particularly, to a drum type washing machine capable of automatically generating vapor by using a water level detecting sensor and capable of injecting wash water into a drum by injecting the generated vapor in the drum with a high pressure or by using a high vapor pressure and a vapor generator thereof. 2. Description of the Conventional Art FIG. 1 is a schematic section view showing a drum type washing machine in accordance with the conventional art. As shown, the conventional drum type washing machine 10 comprises: a cabinet 11 for forming an appearance; a tub 12 arranged in the cabinet for storing wash water; a drum 13 rotatably arranged in the tub 12 for washing and dehydrating laundry; and a driving motor 14 arranged at a rear side of the tub 12 and connected to a rotation shaft 13a of the drum 13. However, in the drum type washing machine, a device for forcibly circulating wash water is not installed thus to consume a large quantity of water for laundry, and a sterilizer is not installed thus not to be able to sterilize laundry.
{ "pile_set_name": "USPTO Backgrounds" }
Power received from a power grid is generally used as power that is to be supplied to an electric load in a consumer's facility. In recent years, it has been proposed that power of a power storage apparatus provided in the consumer's facility is also used. For example, a technology has been proposed (Document 1: JP 2012-191736A) in which a charging/discharging plan of a battery (storage battery), installed in an electric vehicle, that is controlled by a charging/discharging controller is created based on a home power demand prediction, an electric vehicle usage plan, and the like. A solar power generator is also used in the technology described in Document 1. A prediction value of a power demand, a prediction value of a power generation amount of the solar power generator, and the electric vehicle usage plan are used to create the charging/discharging plan. The charging/discharging plan is created such that the battery is charged with late-night power in the middle of the night, power is supplied from the battery early in the morning, and power discharged from the battery decreases as an amount of power generated by the solar power generator increases. Furthermore, the charging/discharging plan is created such that the battery is not charged in the case where the electric vehicle is not present, and when the electric vehicle is connected in the evening, the battery discharges in accordance with an increase in the demand of the electric load (load). Also, a technology (Document 2: JP 2010-233362A, for example) is proposed in which, using a storage battery for storing power to be used for a building and a power supply control means, charging of and discharging by the storage battery is controlled such that power is economically supplied to the building. A solar power generator is also used in the technology described in Document 2. In the technology described in Document 2, a charging/discharging schedule of the storage battery is created so that power is economically supplied to the building. The charging/discharging schedule of the storage battery is created so as to be the most economical based on predictions with respect to an amount of power to be supplied from a distribution board, an amount of power to be generated by the solar power generator, an amount of power to be supplied from the solar power generator or the power storage device to a power provider, and the like. Also, Document 2 discloses creating the charging/discharging schedule by acquiring information of a unit price for purchasing power and a unit price for selling power and considering the information acquired in order to take economic efficiency into consideration. In the technologies described in Documents 1 and 2, the charging/discharging schedule of a storage battery is created in units of days. That is, control of charging of and discharging by the storage battery is performed in a fixed period, namely a day. That is, a configuration is adopted in which the object is to achieve a reduction in the amount of power to be received from the power grid or the compensation for the power to be received from the power grid in a fixed period, namely a day. On the other hand, there are cases in which the object cannot be sufficiently achieved in a schedule created in units of days such as a case in which the amount of power consumed in an electric load greatly changes day by day, or a case in which the amount of power to be received from the power grid is required to be reduced in a specific period due to a demand response.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to amplification circuits and, more particularly, to feedback arrangements for such amplification circuits. 2. Description of the Prior Art The use of feedback in signal amplifiers is well known to control the linearity and signal level of the output signal. In order to provide signal feedback, it has been necessary to connect a signal sensing circuit to the output of the amplifier and then feed the derived or sensed signal back to the amplifier input. Such sensing circuits constitute a load on the amplifier output which makes the feedback signal sensitive to the amplifier output level and may introduce frequency sensitivities in the feedback signal. Moreover, the need to supply the feedback signal as well as the output signal from the amplifier increases the requirements for amplifier gain and level handling capacity. These disadvantages become particularly acute when amplifiers are fabricated in integrated circuit form where size and frequency dependencies become especially critical.
{ "pile_set_name": "USPTO Backgrounds" }
This invention is directed to a grain dryer and more particularly to an unload rotor assembly for a grain dryer. In order to store grain for a long period of time, it is necessary to dry the grain to a condition in which it is less subject to molding or other deterioration. Numerous types of grain dryers have been designed that utilize a rotor assembly to sweep grain deposited on a grain shelf floor toward a hopper for removing the grain from the drying column. With present rotor assemblies it is difficult to provide a uniform depth clearance between the floor and the wiper blades on the sweep arm especially at larger diameters. This may lead to wear on the floor and the wiper. Also, present rotor assemblies may catch on seams in the floor. Therefore, there is a need in the art for a rotor assembly that addresses these problems. An object of the present invention is to provide a rotor assembly that operates more efficiently. Another object of the present invention is to provide a rotor assembly that is less susceptible to wear. A still further object of the present invention is to provide a rotor assembly that prevents overloading of the motor that powers the rotor. These and other objectives will be apparent based on the following description.
{ "pile_set_name": "USPTO Backgrounds" }
Software applications may be sold and distributed using a variety of models. One example of a model that is sometimes used to distribute applications, or apps, targeted to mobile devices and other computing devices is an application marketplace model. In this model, software developers may submit their applications to be published in an online application marketplace, and the marketplace may provide an interface that allows users to browse or search for the published applications. When a user identifies an application that he or she wishes to obtain, the application marketplace may generally facilitate the transaction. For example, in the case of a free application, the application marketplace may simply provide the application for download to one or more of the user's devices. In the case of a paid application, the application marketplace may provide the application for download, and may also provide services related to collecting payment from the user and compensating the software developer. Application marketplaces may typically be operated by organizations that are trusted by both the software developers and the users to handle any such application transactions appropriately.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to methods and apparatus for producing electrical energy. Particularly, the present invention is directed to an electrochemical fuel cell that produces electricity by irradiating an electrode of the fuel cell with a light source. 2. Description of Related Art A variety of fuel cell devices are known in the art for generating electric power. Of such devices, most include graphite anodes and cathodes comprising a finely dispersed platinum catalyst. For example, a phosphoric acid fuel cell (PAFC) is a power generation cell which employs a porous electrolyte layer of silicon carbide matrix for retaining concentrated phosphoric acid. The electrolyte layer is interposed between carbon-based electrodes (an anode and a cathode) to form an electrolyte electrode assembly, sometimes referred to as a membrane electrode assembly (“MEA”). The membrane electrode assembly is then interposed between electrically conductive bipolar plates. The electrolyte electrode assembly and the bipolar plates form a single fuel cell for generating electricity by reacting a fuel such as hydrogen with oxygen across the electrolyte. A single fuel cell as described generally herein has an electrical power output of about 0.8 volts. To raise the voltage of the electrical output, a fuel cell stack can be formed by arranging any desired number of fuel cells in electrical series on top of one another. Since the bipolar plates are electrically conductive, current flows through the stack via the end plates. Another type of fuel cell device is a solid polymer electrolyte fuel cell which employs a membrane electrode assembly including electrodes separated by a polymer ion exchange membrane (proton exchange membrane or PEM). Similarly, the membrane electrode assembly and the bipolar plates make up a unit of the power generation cell. Once again, a predetermined number of the power generation cells can be stacked together to form a fuel cell stack having a desired output voltage. In the fuel cell stacks, a fuel gas such as a hydrogen-containing gas is supplied to the anode. The anode includes a catalyst that induces a chemical reaction of the fuel gas to split the hydrogen molecule into hydrogen ions (protons) and electrons. The hydrogen ions move toward the cathode through the electrolyte, and the electrons flow through an external circuit to the cathode, creating a DC electric current. The fuel cell should be operated at or near an optimum temperature for the performance of power generation. Generally, fuel cells known in the art operate at temperatures significantly above ambient or room temperature (e.g., 75° F.). The optimum temperature for operation can vary with each type of fuel cell system. For example, a phosphoric acid fuel cell is operated in the temperature range of 120° C. to 200° C., and a solid polymer electrolyte fuel cell is operated in the temperature range of 60° C. to 90° C. In order to maintain the temperature of the power generation cells in the desirable temperature range, various cooling systems have been adopted. Typically, the power generation cells are cooled by supplying coolant such as water to a coolant passage formed in the bipolar plates of the fuel cell stack. Generally, fuel cells provide an environmentally clean alternative to energy production from fossil fuel combustion. The electrochemical efficiency of a fuel cell (currently≈65%) handily exceeds that of internal combustion engines (<30%). However, in spite of recent increases in the prices of crude oil and natural gas, fossil fuel combustion continues to hold a significant economic advantage over fuel cells. The high cost of fuel cell energy production is attributable to the need for addition of expensive catalysts (platinum) to accelerate the oxidation of the fuel (hydrogen) at the anode and the reduction of oxygen at the cathode. The slow oxygen reduction reaction alone accounts for the largest limitation to the fuel cell efficiency, even in the presence of platinum catalyst. The demand by dioxygen molecules (O2) for electrons during reduction at electropositive metal electrodes forces the electrostatic potential of the metal to wander negatively (referred to as a large negative overvoltage) before giving up the electrons needed by oxygen. Because the output power of a fuel cell is defined by the product of the cell potential (V) and current (I), i.e., P=VI, a drop in the potential lowers the power output and the cell efficiency linearly. Typically, a platinum-catalyzed hydrogen fuel cell operates at moderate current levels at cell voltages close to +0.75 volts instead of the thermodynamic equilibrium cell voltage of +1.23 volts. This amounts to an overvoltage of −0.48 volts below the thermodynamic voltage, thus limiting the efficiency to near 60%. Experiments probing alternatives to platinum catalysis of the electroreduction of oxygen continue to define a vigorous area of research. Nonetheless, platinum remains the best known electrocatalyst of the oxygen reduction reaction. In recent years, advances in fuel cell utility have relied upon improved methods for dispersing the platinum catalyst only at the active sites of graphite electrodes. The total amount of platinum needed to sustain operational currents was thereby reduced, along with the overall cost of fuel cells. However, the fundamental limitation caused by the overvoltage problem still persists. Thus, there remains a compelling need in the art for a fuel cell that is more electrochemically efficient and/or more cost effective than known fuel cells. There is also a continuing need for a fuel cell system that can be operated at lower temperatures, such as at room temperature. The present invention provides a solution for these problems.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a semiconductor laser driving circuit for driving a semiconductor laser used for recording and reproducing in an optical recording and reproducing apparatus. 2. Description of the Prior Art FIG. 6 shows a conventional semiconductor laser driving circuit. When effecting using an optical recording and reproducing apparatus, an output beam of a semiconductor laser 1 is switched on and off in response to a recording signal. In particular, a current flow to the semiconductor laser 1 is switched on and off by means of a differential switching circuit composed of PNP transistors 2a and 2b. A current source 5 sets a peak value of a switching current applied to the semiconductor laser. A recording signal input 3 is supplied to the base of the PNP transistor 2a, and resistors 4a and 4b are connected to the base of the PNP type transistor 2b to set a threshold. The current flowing to the semiconductor laser is differentially switched in response to the recording signal output 3. The semiconductor laser 1 shown in FIG. 6 has a cathode thereof connected to a metal case due to the structure of the semiconductor laser device or in order to perform heat radiation efficiently. The metal case of the semiconductor laser is usually grounded to a metallic part of an optical head to be equal in potential to the ground terminal of the driving circuit. In order to switch the semiconductor laser 1 whose cathode is grounded as above, the differential switching circuit is a current discharging type, and thus it is required to be composed of PNP type transistors. With the structure as shown above, however, a switching operation having both a large magnitude of current back as 100 to 200 mA and a switching speed cannot be easily realized by means of PNP type transistor devices. This is because in the p-type semiconductor it is difficult to attain a switching characteristic responsive to a large magnitude of current at a high speed from the viewpoint of the device structure. As a result, with a P-type switching device, if a recording signal is inputted at a high speed of about 50 Mbps, the necessary high speed switching of the semiconductor laser is not possible even if a differential switching structure is employed.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The invention relates in general to a key structure, and more particularly to a key structure with lightweight and thinning design and a portable computer using the same. Description of the Related Art In a conventional key structure, an elastic member provides a recovery elastic force for a key cap supported by a scissor structure to restore the key cap to its pre-pressing position. However, the scissor structure, being hard to assemble and having a longer pressing stroke, is not suitable to the keyboard with thinning design. Meanwhile, when the key cap is pressed, the downward force is transmitted to a thin film circuit board formed of bi-layer circuits by the elastic member. However, if the downward force is insufficient, it is difficult to make the bi-layer circuits come into contact, and the sensitivity will be poor. Besides, the key structure cannot be stored to reduce the structural height when the key structure is not in use. Under the current trend of ultra-thinning design of the portable computer, there is a strong need to develop a new key structure whose overall height is reduced when the portable computer is closed.
{ "pile_set_name": "USPTO Backgrounds" }
A SAW device typically comprises two sets of interdigital electrodes, formed at opposite ends on a surface of a piezoelectric crystal or other suitable substrate. Conventional photolithographic and etching techniques are used to produce the electrode pattern. When a radio frequency (RF) voltage is applied to the electrode pair on one end of the device, a Rayleigh surface acoustic wave is generated that propagates over the substrate, toward the other pair of electrodes, on which is developed a corresponding RF voltage. Since the surface acoustic wave propagates by mechanical deformation of the crystal and structure in the region between the pairs of electrodes, any material applied as a coating on that region of the substrate can affect certain characteristic parameters of the surface acoustic wave, such as its amplitude, velocity, and phase. Furthermore, when the material is exposed to a chemical substance, e.g., a vapor, these parameters change as the chemical substance is absorbed by the material coating the substrate. The change in mass of the coating resulting from its absorption of the chemical substance causes a proportional change in the phase of the RF signal output from the electrodes that are excited by the surface acoustic wave. Similarly, the amplitudes of the surface acoustic wave and of the output signal change in proportion to the amount of the chemical substance that is absorbed, although the sensitivity of the device to such change with respect to amplitude of the output signal is much less than with respect to frequency. By selecting the material coating applied to the substrate, which is typically an organic polymer, for its characteristic solubility in a desired chemical substance, the SAW device can be used to detect that specific chemical substance. Since other operating parameters, such as ambient temperature, may effect the signal output from the chemical sensor SAW device, it is preferable to compare a signal output from a reference SAW device formed on the same substrate (but coated with a material that does not absorb chemical substances). Since both the reference and chemical sensor SAW devices are exposed to the same environment, any difference between their output signals is indicative of absorption of a chemical substance by the one SAW device. SAW devices used for detecting chemical substances in the manner described above are known in the art, as exemplified by the disclosure of U.S. Pat. No. 4,312,228. Such devices are commercially available from a company that pioneered their early development, Microsensors Systems, Inc., Fairfax, Va. To construct a chemical detector that can sense more than one substance using presently available SAW devices, a plurality of SAW sensors are normally employed, each sensor including a different organic polymer coating selected for its solubility in a different chemical substance or group of chemical substances. Detection of a specific chemical substance is effected by analyzing the signals produced by the plurality of different SAW devices when exposed to an unknown substance, matching the pattern of responses from all the sensors to a set of known patterns. Prior art SAW chemical sensors have generally relied only on the change in the frequency of the output signal, when exposed to an unknown substance, and not on changes in amplitude. As the number of different chemical substances of interest increases, so does the required number of different SAW sensors needed to identify a particular substance from the variety of substances that might be present. For certain applications, the cost and complexity of such a chemical substance detector may be excessive. In consideration of the preceding problem, it is an object of the present invention to provide a SAW sensor for detecting a plurality of different chemical substances. A further object is to provide a SAW sensor in which both a frequency change and an amplitude change in the output signal, resulting from exposure of the sensor to a chemical substance is used in detecting and identifying the substance. Yet a further object is to provide a SAW sensor in which a range of surface acoustic wave frequencies are generated to detect different chemical substances, where the sensitivity of the material coatings on the sensor to different chemical substances varies and the range of frequencies applied to a specific material coating is selected to compensate for the variation in sensitivity. Still a further object is to minimize errors in determining changes in phase in the SAW sensor when it is exposed to a chemical substance, where such errors result from phase ambiguity. These and other objects and advantages of the invention will be apparent from the attached drawings and the Description of the Preferred Embodiments that follow.
{ "pile_set_name": "USPTO Backgrounds" }