text
stringlengths
2
806k
meta
dict
Persons living in remote locations, such as ranches having a large amount of fenced acreage, experience considerable inconvenience in continually having to stop to open and close gates. This problem is particularly acute in areas where an individual must cross a large number of fenced-in sections in order to reach his destination. Although an automatic gate opening device can solve the inconvenience of opening and closing a large number of gates at remote locations, there are a number of practical and economic difficulties in utilizing such gate openers. In particular, it is very common for the fencing on which the gate is to be installed to have wooden posts which have deteriorated with age. In such cases, it is often necessary to construct a custom-built gate frame to be used in conjunction with the gate opener. Construction of such a frame tends to be very costly and time consuming. Furthermore, once such a frame has been constructed and a gate opener has been installed thereon, the user must bear the additional expense of having commercially available power routed to the gate opener. A gate opener overcoming the above mentioned difficulty with regard to power is shown in U.S. Pat. No. 4,416,085, which is owned in part by applicant and by this reference incorporated for all purposes. The gate opener shown in said patent is operated by a hydraulic cylinder controlled by a bi-directional gear pump with the cylinder comprising a rod connected to a pivotal linkage which is operable to open and close the gate. A solar power system is provided to maintain a battery in a charged state to provide power for the system. Various other types of gate or door opening devices have been designed in the past to utilize hydraulic cylinders and a mechanical linkage. A typical device is shown in U.S. Pat. No. 3,936,977 issued to Runft, et al., which has a double acting power cylinder. A pivotal interconnecting linkage is utilized to open a door in response to the movement of a piston within the cylinder. Other types of gate opening devices have utilized a ram such as that shown in U.S. Pat. No. 3,500,585 to Vollmar. Further examples of gate opening devices are shown in U.S. Pat. No. 3,645,042, issued to Bolli; U.S. Pat. No. 2,592,891 issued to Hall; and U.S. Pat. No. 4,231,190 issued to Tieben.
{ "pile_set_name": "USPTO Backgrounds" }
There are a variety of situations in which a human operator has to answer a set of discrete questions given a corpus of documents containing information pertaining to the questions. One example of such a situation is that in which a human operator is tasked with associating billing codes with a hospital stay of a patient, based on a collection of all documents containing information about the patient's hospital stay. Such documents may, for example, contain information about the medical procedures that were performed on the patient during the stay and other billable activities performed by hospital staff in connection with the patient during the stay. This set of documents may be viewed as a corpus of evidence for the billing codes that need to be generated and provided to an insurer for reimbursement. The task of the human operator, a billing coding expert in this example, is to derive a set of billing codes that are justified by the given corpus of documents, considering applicable rules and regulations. Mapping the content of the documents to a set of billing codes is a demanding cognitive task. It may involve, for example, reading reports of surgeries performed on the patient and determining not only which surgeries were performed, but also identifying the personnel who participated in such surgeries, and the type and quantity of materials used in such surgeries (e.g., the number of stents inserted into the patient's arteries), since such information may influence the billing codes that need to be generated to obtain appropriate reimbursement. Such information may not be presented within the documents in a format that matches the requirements of the billing code system. As a result, the human operator may need to carefully examine the document corpus to extract such information. Because of such difficulties inherent in generating billing codes based on a document corpus, various computer-based support systems have been developed to guide human coders through the process of deciding which billing codes to generate based on the available evidence. Despite such guidance, it can still be difficult for the human coder to identify the information necessary to answer each question. To address this problem, the above-referenced patent application entitled, “Providing Computable Guidance to Relevant Evidence in Question-Answering Systems” (U.S. patent application Ser. No. 13/025,051) discloses various techniques for pointing the human coder to specific regions within the document corpus that may contain evidence of the answers to particular questions. The human coder may then focus initially or solely on those regions to generate answers, thereby generating such answers more quickly than if it were necessary to review the entire document corpus manually. The answers may themselves take the form of billing codes or may be used, individually or in combination with each other, to select billing codes. For example, an automated inference engine may be used to generate billing codes automatically based on the document corpus and possibly also based on answers generated manually and/or automatically. The conclusions drawn by such an inference engine may, however, not be correct. What is needed, therefore, are techniques for improving the accuracy of billing codes and other data generated by automated inference engines.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a multilayer printed wiring board. It is invariably necessary to make thinner the copper foil on the substrate of a printed wiring board due to current pattern formation technology, in order to realize a super high density circuit by using a conventional printed wiring board. When the copper foil is made thinner, however, the thickness of land on which a through hole plating is provided must be as much thinner. The junction area of the through hole plating and the land becomes small therefore, so that plating is easily peeled off. As a result, the reliability of connection cannot be insured. The reliability of connection between the through hole plating and the land may be assured by making the thickness of copper foil of each laminate thick. However, such a configuration makes the miniaturization of a high density circuit difficult and the overall thickness of the super multilayer substrate becomes very thick. In addition, the drilling of through holes for establishing electrical connection between laminates becomes very difficult due to accuracy requirements. Furthermore, soldering for mounting electrical parts also becomes very difficult. The printed wiring board of the invention permits the accurate forming of a miniaturized high density circuit by using a copper clad laminate in which the thickness of the copper foil at the land formation area is made thicker than the remaining area, as the laminates. This assures high reliability of connection between the through hole plating and the land. The multilayer printed wiring board of the invention is often used in the electrical wiring of electronics devices. The manufacture of a multilayer printed wiring board may be roughly classified into the Subtractive Method and the Additive Method. The Subtractive method is generally utilized for a printed wiring board of which reliability and a high density characteristic are especially required for use in computer and communications equipment. A multilayer printed wiring board manufactured by the Subtractive Method is formed as follows. A predetermined circuit pattern is formed on a copper clad board by an etching process for copper foil. The copper clad board is then sequentially laminated up to the specified layers with pre-preg as a bonding agent in order to form an intermediate layer. The copper clad board is then laminated again with the pre-preg as the surface layer. Thus, a through hole is drilled through the lands of the intermediate layer and the surface layer. Thereafter, the surface circuit pattern is formed and the through hole is plated in order to provide continuation between the surface circuit pattern and the intermediate circuit pattern. The copper clad laminate used for the multilayer printed wiring board may generally be provided by bonding copper foil on a plate substrate of epoxy resin utilizing glass fiber as the core material. Therefore, the circuit pattern is formed on the intermediate layer by providing a photo resist pattern corresponding to a circuit pattern consisting of the land and the circuit conductor on the copper foil of the copper clad laminate and then etching the copper foil. The integration of the multilayer printed wiring board becomes high in density and the miniaturization of the circuit becomes as high in density, so that the clearance of the circuit conductor becomes narrow. As a result, the pattern accuracy of the mask film, produced by art work, requires considerable improvement. Furthermore, a considerable improvement is required in the pattern generation accuracy of the etching process. An ultra-thin copper clad laminate which is just suitable for high density and circuit miniaturization has been often used, recently. The ultra-thin copper clad laminate uses a copper foil having a thickness of 15 micrometers or .mu.m, or less. This is considerably thinner than the existing thickness of 35 .mu.m. This laminate therefore may prevent an overhang phenomenon in the pattern etching process, which occurs in a thick copper foil. Furthermore, since the copper foil itself is very thin, the final thickness after lamination may be considerably thinner than the existing thick copper clad laminate. In the manufacture of an ultra-thin multilayer printed wiring board with 20 to 30 layers by using the existing thick type copper clad laminate, for example, the final thickness becomes as thick as 3 to 5 millimeters or mm. A thick lamination produces a bad effect in the process after laminations. In other words, the through hole drilling process and soldering for mounting parts become difficult. The foregoing explains why ultra-thin copper clad laminate has often been used recently. However, a problem has recently arisen due to the use of ultra-thin copper clad laminate. The problem concerns the reliability of the connection between the land and the through hole, and is emphasized by the thinness of the copper foil. That is, when an ultra-thin copper clad laminate is used, the reliability of the connection between the area exposed to the through hole on the land formed by the ultra-thin copper foil and the through hole plating is drastically deteriorated, since the plating is likely to peel off because the bonding area is very very narrow. The principal object of the invention is to provide a multilayer printed wiring board which is suitable for manufacturing a high density miniaturized circuit pattern and insures high reliability. An object of the invention is to provide a multilayer printed wiring board which assures excellent workability in the through hole drilling process and in the soldering process for mounting parts. Another object of the invention is to provide a multilayer printed wiring board of satisfactorily high density. Still another object of the invention is to provide a multilayer printed wiring board having a miniaturized circuit pattern formed with satisfactory accuracy.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a holding arm for an external motor vehicle mirror with an integrated swivel articulation capable of snapping in in at least one position. A mirror arm mechanism of this type is known from EP 0 641 686 A2. With the swivel articulation shown there, the different snap-in elements are subjected to the force of a helicoidal screw spring in the direction of engagement of the snap-in mechanism. The embodiments shown therein have in common that different axially and radially acting wedge surfaces intermesh on rings or ring segment elements seated within each other in a relatively complex manner. To this extent the known swivel articulation is of complicated design and its assembly is expensive. Furthermore with the known swivel articulation, especially with an embodiment in which different separate ring segments are used to constitute snap-in wedge surfaces, the snap-elements can jam with each other. This would block the swivel articulation which could no longer carry out its safety function, i.e. swiveling back when the external mirror supported by the holding arm impacts an obstacle. Due to blocking or at least due to the sluggishness caused by the interaction of the various internal parts of the swivelling articulation, the manual swiveling of the mirror, e.g. to pass narrow passages, is rendered more difficult. With respect to the state of the art it should be pointed out as a general background that with such holding arms with snap-in swivel articulation, articulation designs are often used where the arm segments emanating from the swiveling articulation are offset relative to each other during snapping in and out of the swiveling articulation. This offset has been compensated for in the past by the elasticity of holding arms of considerable length. Modern, up-to-date mirror designs often have only very short holding arms however, which extend directly in horizontal direction from the vehicle body to the mirror housing. Especially with these designs, the clearance for length compensation is very limited. One solution of this problem is already provided by the above-mentioned EP 0 641 686 A2, however with the above-mentioned disadvantages.
{ "pile_set_name": "USPTO Backgrounds" }
Approximately fifty to seventy percent of all prescription medications in the U.S. are taken incorrectly. The effects of this prescription misuse account for 3.1 million nursing home admissions each year. More patients in the U.S. die each year from medication mismanagement than from AIDS and automobile accidents combined, and it is estimated that 125,000 deaths per year are caused by improper use of prescription drugs. One of the major problems in taking prescribed daily medications emanates from patients having to take more than one medication in the form of pills or tablets. A principal concern is determining whether all medications are in compliance with the prescribed daily regimen. Many times this concern is compounded by the requirement that portions of the different medications must be taken at different times during the day. The fear of taking improper dosages of prescribed medication can be particularly acute in the elderly, many of whom have some degree of mental dementia and can easily be confused as to whether they have taken all of their medications at the correct time. Some patients have difficulty sorting out the medications prior to taking them and taking the medication in a timely manner. Providing medications to disabled or incapacitated individuals can also be complicated because one caregiver may oversee the medication of many patients. One solution to the problem of taking multiple medications is to pre-package the multiple medications so that users can take the pre-packaged medications at a predetermined time. Generally, these methods of pre-packaging medications are targeted to patients that may lack maturity or mental capacity to take the correct medications at the correct time. F or example, young children in a school or campground, and elderly individuals in elder care centers, or nursing homes are target groups for the pre-packaging of medications. Some of the pre-packaged medications are placed in a small plastic bag, which may be easily misplaced. Other pre-packaged medications are placed in sealed cups that are difficult to open. Although multiple prescription filling systems are available, e.g. the McKesson PACMED system, these systems have limited capabilities. For example, these filling systems fail to assemble a multiple prescription order that can be easily transported and administered. Additionally, these filling systems fail to effectively organize the multiple prescription medications. Furthermore, the filling systems fail to organize the multiple prescription containers. Further still, the filling systems fail to provide a compliance packaging solution.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field This disclosure relates generally to web application security and in particular to a method and system for decomposing a web application into protected components. 2. Background of the Related Art Cross-Site Scripting (XSS) is a web application vulnerability that allows malicious users to inject code into pages that are viewed by other users. In many classifications, it is recognized as a top web application vulnerability class. The most severe consequences of XSS issues are that attacker is able to make a legitimate user's browser perform operations that change application state on behalf of that user, or that make a user's browser disclose private data. There are several known methods to protect against an XSS attack. One approach is referred to an input filtering. This approach involves checking web application input for malicious data and rejecting or filtering it as needed. The input filtering method, however, cannot guarantee full protection, and it may be overly aggressive (to the point of being useless) if input data is used by web application in multiple contexts (e.g. HTML and Java Script). An alternative approach is to use client-side protection, whereby users equip their browsers with extensions that automatically detect attack attempts. The client-side approach, however, does not work properly with some types of XSS attacks, especially persistent XSS where injected code is not passed through input parameters. Yet another approach, and one which is the best known solution, is referred to output escaping. XSS attacks happen when the application fails to escape its output and an attacker put HTML and/or Javascript on the site, which code then runs in the site visitors' web browsers. Output escaping stops this happening by making sure that the application never sends commands (HTML) when it only intends to send plaintext. This approach is designed to ensure that content rendered by the application contains a code (even if the code is input). To be implemented successfully, however, this solution requires significant attention from developers and an active approach from test teams. The above described techniques show that, even with significant effort, it is difficult to eliminate XSS completely. The problem is exacerbated if the web application is created with software from different vendors. Yet another solution is generally referred to as sandboxing of content in different domains. One available version of this approach is implemented in iGoogle, by which users can design a personalized web page. The primary goal of sandboxing is to separate page elements coming from different vendors into separate domains and to merge them on one page with inline frames using standard HTML iframe tags. This approach takes advantage of the web browser's native origin policy constraints. It isolates page parts from each other as well as from a parent page. Although widely used, the technique has proven difficult to adopt for use with regular applications as it requires splitting applications into parts and then merging those parts back together. Such work is time-consuming and creates support issues, as the page needs to be separated according to security requirements as opposed to its logical structure. The techniques disclosed herein address these and other deficiencies of the known prior art.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a hitch mechanism for coupling an implement tongue to the draft links of a vehicle hitch. It can be difficult for a lone operator to connect an implement to a tractor drawbar. This is because the lone operator must leave the tractor cab, lift and position the implement tongue and then insert the drawbar pin. The task is simplified if a second person can assist, but the second person must perform his task in the relatively hazardous area between the tractor and the implement. Existing drawbar pickup systems are expensive and/or perform only with certain machine combinations. Conventional three-point hitches have the ability and the capacity to perform a drawbar pickup function. Therefore, it would be desirable to provide a pickup type hitch system which could utilize this capability.
{ "pile_set_name": "USPTO Backgrounds" }
Humans have been decorating their nipples from time immemorial by attaching decorative jewelry thereto. A common way to do this is to pierce the nipples and then insert a thread in the resultant hole. However, few individuals today are willing to undergo such treatment just to wear jewelry. Moreover, there are few facilities where one can have nipples pierced safely. In addition, once the nipple is pierced a retaining device has to be worn at all times, since nipple perforations can heal within 24 hours if left open. Such retaining devices may not be desirable to be worn at certain times. The danger of infection is another serious drawback. Furthermore, if the retaining device is a ring worn in the pierced nipple, it could get caught and it might cause serious harm to the wearer. U.S. Pat. No. 4,625,526, Milawski, discloses a nipple decoration device which basically is a pressure pad earring shaped and designed so that it will fit over the nipple of the wearer. The device contains springs within the body of the ring which compress two opposing pads that are to be placed around the nipple. All of the references cited in the prosecution of U.S. Pat. No. 4,625,426, Milawski, relate to pressure pad earrings. The major disadvantage of this approach to a decorative device to be hung from the nipple is the fact that all of these devices rely on opposing pressure pads. The nipple, unlike the earlobe, can change in size and consistency considerably due to temperature, sexual excitation, etc. This can result in the pressure pad type of decorative device becoming loose and being lost and, in addition, would not be comfortable for the wearer.
{ "pile_set_name": "USPTO Backgrounds" }
Color image reproduction methods and systems known in the art capture images on image-receptive media, which can be stored in analog or digital form, and then output as a visual reproduction. For example, color images may be captured on negative film and then reproduced optically or electronically on photographic paper. Images can also be captured on positive photographic materials, known as transparencies, and then viewed directly by projection or back-illumination, or copied onto other transparencies, or printed onto photographic paper. In other cases, color images can be captured by electronic devices, such as video or still CCD cameras, and viewed on monitors or printed using dye sublimation thermal printers. In each case previously cited, these systems are subjected to customer satisfaction criteria and may or may not embody digital tone reproduction manipulation or some form of color enhancement. The systems mentioned above are just some examples of color image reproduction systems. The application of this invention is not limited to the above systems, but can be applied to any system for producing color reproductions, such as the reproduction of reflection original images encoded and stored on a KODAK PHOTO CD.TM. imaging system. One of the important criteria for viewer satisfaction in photographic reproductions is the correspondence between the optical reflectances of objects in the original scene compared to those of the reproduction. Viewers prefer to have high quality images with pleasing tone reproduction and high colorfulness while maintaining good skin tone. Technological advances have been made over the years in photographic films by incorporating more chemical enhancement, and in photographic papers by increasing the paper contrast. Some current methods for making color reproductions produce fairly bright colors and offer reasonable skin tone reproduction; however, there have been limitations on the extent to which color enhancement can be employed. One common problem associated with higher color enhancement films is that the reproduced colors are more saturated while the skin tone reproduction is oversaturated. The resulting reproductions are judged to be inferior to less colorful prints. Moreover, it has not been fully appreciated that the preferred visual reproduction does not usually correspond to the most accurate rendition. Conventional silver halide photographic systems are subject to limitations imposed by optically printing one chemically developed material onto another chemically developable material and do not reproduce the scenes in a way that is preferred to the viewer. More specifically, conventional systems have not produced images having preferred highly saturated colors without adversely affecting desired skin tones. Aside from color enhancement, the quality of image reproductions is also affected by the tone scale or tone mapping employed to reproduce the density variations that make up an image. It has previously been discovered that the use of a preferential tone scale or mapping as described generally in U.S. Pat. No. 5,300,381 issued to J. Buhr and H. Franchino entitled "Color Image Reproduction of Scenes with Preferential Tone Mapping", which is incorporated herein by reference in its entirety, can be utilized to provide a reproduced image that is perceived by the viewer to be a reproduction of the original scene which is preferred to that previously obtainable. The prior improvement in tone mapping has provided a degree of preferred reproduction of color images but the use of tone mapping alone has not enabled the full extent of improvement desired by the viewer. It is a problem to be solved to provide viewer preferred visual reproductions of scenes which exhibit both increased color saturation and pleasing skin tones.
{ "pile_set_name": "USPTO Backgrounds" }
Service providers (e.g., wireless, cellular, Internet, content, social network, etc.) and device manufacturers are continually challenged to deliver value and convenience to consumers by, for example, providing compelling network services and advancing the underlying technologies. One area of interest has been in ways to facilitate users to share content on the existing networks while maintaining user privacy and confidentiality using encryption. Public key cryptography is a widely used to protect data so that only a specific person or a machine can access the data. However, encryption techniques rely upon long and randomly generated keys that typically are mapped to identities using digitally-signed certificates. The management of these certificates and the task of fetching a certificate before encryption become daunting, as the numbers of users and keys increase. On the other hand, users (e.g., commercial advertisers, non-profit fund raisers, end users, etc.) are seeking ways to distribute messages to target recipients without knowing the identities of the target recipients. Consequently, service providers and device manufacturers face the challenge of providing sufficient communication and network resources to support anonymous yet targeted encrypted information dissemination.
{ "pile_set_name": "USPTO Backgrounds" }
Organic-inorganic hybrid materials have been recognized as a new class of advanced materials because of their versatile synthetic approaches and molecular tailing properties.1-10 The present inventors are particularly interested in the hybrid materials for optical applications, such as high refractive index materials, optical waveguides, antireflection films, etc. For such optical applications, the inorganic domains must be well controlled around 20 nm or less to maintain the optical transparence besides their high refractive index characteristics. Polymer-titania hybrid materials have been extensively studied as high refractive index materials, including poly(silsesquioxanes),7-8 poly(methyl methacrylate) (PMMA),9-15 and polyimide (PI)16-18, etc. For controlling the titania domain and maintaining good miscibility with polymer moiety in the hybrid materials, sol-gel processing is commonly employed strategy to prepare such hybrid materials. In these systems, the major challenge is to generate specific intermolecular interaction with each other in order to get homogeneous hybrid optical films. The present inventors have successfully prepared trialkoxysilane-capped PMMA-titania hybrid optical thin films by an in situ sol-gel process.9-10 The prepared hybrid thin films exhibit tunable high refractive index in the range of 1.505-1.876 and very high optical transparence in the visible region. Wang et al further investigated the crystallinity of titania and nonlinear optical behavior after further hydrothermal treatment.11,13 However, the thermal stability of the PMMA moiety is limited and restricted the applications on optoelectronic devices. Replacing the PMMA moiety in the hybrid materials with a highly thermal stable polymer, such as polyimide, may resolve the problem. The formation of polyimides containing titania by the incorporation of titanium alkoxide compounds into the precursor polyamic acid (PAA) has been reported.19 For titanium alkoxide compounds (Ti(OR)4), however, they are very reactive due to the presence of highly electronegative OR groups that render titanium very susceptible to nucleophilic attack and result uncontrolled aggregation. Therefore, a nonhomogeneous distribution of the titania clusters with markedly high concentration and large titania particles with sizes>100 nm, are often observed. In addition, when titanium alkoxide compounds are blend with multifunctional acids of PAA, a fast gelation would occur due to the coordination reaction. To overcome these shortcomings, various approaches to prevent the aggregation and phase separation of titania in the evolving polyimides have been investigated. Chemical modification of titanium with chelating ligands, such as acetylacetone (acac), is one of the commonly employed methods to control the condensation pathway of titanium alkoxide compounds. Various coupling agents, such as 3-aminopropyl trimethoxysilane and 3-methacryloxypropyl trimethoxysilane, are the other ways to stabilize the titanium precursors. These agents are desired to generate the covalent bonding force to connect the organic-inorganic moieties using the heterogeneous condensation (Ti—O—Si). Although polyimides-titania hybrid materials with well-controlled morphologies have been successfully fabricated from the above studies, several drawbacks exist. The additional coupling agents and chelating ligands would still remain in these materials after curing to affect important thermal/mechanical/optical properties. Besides, polyimide-titania materials could be also synthesized using the concept of site isolation.19 The alkoxides of titanium are known to react with carboxylic acids, leading to the replacement of one or more alkoxides by carboxylate groups. Thus, it is reasonable to expect that the titanium precursors would bind to the polymeric backbones. The coordination of polyimide carbonyl groups to the titanium particles could prevent the aggregation of titania. However, note that there is an upper limit (14%) for the titanium concentration due to the multifunctional acid groups of PAA and the coordination number of titanium is greater than one. Over the limited value, a tridimensional gel is formed. In acrylic-titanium polymers, the polymer containing a well-know ratio of acidic functions is used to get the organotitanium acrylate polymers.20-22 An excess of titanium alkoxide compounds should be used to obtain the esterified organotitanium acrylate polymers, which are soluble in the organic solvents. Thus in the present invention, a new synthetic method was developed to prepare synthesize polyimides-nanocrystalline titania hybrid materials with a relatively high titania content.
{ "pile_set_name": "USPTO Backgrounds" }
Generally, transistors of semiconductor devices are classified as NMOS, PMOS, or CMOS according type of channel employed in the transistors. An NMOS type transistor is formed with an N-channel, and a PMOS transistor with a P-channel. In addition, a CMOS (complementary metal oxide silicon) has both NMOS and PMOS, and, thus, both an N-channel and a P-channel are formed therein. To form a CMOS type transistor, an n-well and a p-well are first formed in a horizontal direction on a semiconductor substrate by an ion implantation process, and then shallow trench isolation (STI) is formed. An STI structure prevents a malfunction between neighboring devices by electrically isolating the devices on a semiconductor substrate. A well in a semiconductor substrate is classified as a p-well or an n-well according to the type of ions implanted in the well. A p-well is formed on the semiconductor substrate to form an NMOS structure, and an n-well is formed to form a PMOS structure. Subsequently, a gate oxide layer is formed on the semiconductor substrate, and then a polysilicon layer is formed thereon to form a gate stack. The gate stack forms a gate electrode of the NMOS and the PMOS using a photolithography process and an etching process. Then, n-type dopants and p-type dopants are respectively implanted into the semiconductor substrate using the gate electrode of the NMOS or the PMOS as an implantation mask. Thus, a source/drain region is formed outward of the gate electrode on an active region of the semiconductor substrate. As described above, the NMOS and the PMOS structures are formed in a horizontal direction in a typical CMOS process and, thus, a CMOS circuit occupies a larger area than does an NMOS circuit or a PMOS circuit. As a result, the CMOS circuit has a drawback in terms of integration. The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to the field of lawnmowers. More specifically, the invention comprises a modularized replacement blade which can be attached to a conventional lawnmower shaft. 2. Description of the Related Art The overall design of the gas-powered and electric-powered lawnmower cutting system has remained unchanged in recent decades. The overall design uses an electric or gas motor to turn a shaft which extends in the direction of the ground beneath the motor. The shaft extends through a hole into the blade housing where a blade is attached to the shaft. The motor drives the shaft causing angular rotation of the blade within the housing. Grass that extends above the height of the blade is cut and discharged from the housing. Various lawnmower replacement blades are known in the art. The designs of the replacements blades vary significantly and have been the subject of many U.S. patents. Although great efforts have been made to improve the design of replacement lawnmower blades, these designs have their shortcomings. As an example, most commercially available blades are ineffective at neatly cutting grass when the grass is wet, tall, or thick. The rotation of a conventional blade slows down under these conditions as the lawn provides greater resistance to cutting. This resistance can often escalate as the rotation of the cutting blade continues to slow until the blade eventually stops. The escalation of resistance occurs because, as the blade slows down, the force at which the cut grass is ejected decreases. This results in the accumulation of cut grass in the housing which increases the force required to turn the blade. Even under ideal cutting conditions, conventional blades are ineffective at “cutting” the grass. As a conventional blade begins to dull, more grass is “torn” than “cut.” As the blade strikes the grass, some of the grass is pulled by the blade until it breaks. This “tearing” of the grass results in increased cellular damage to the grass. This often causes the tip of the blade of grass to appear brown. It has also been noted that the increased cellular damage causes the grass to grow more quickly which requires more frequent mowing. It is therefore desirable to provide a replacement lawnmower blade that is more effective at cutting grass when the grass is wet, tall, or thick. It is also desirable to provide a replacement lawnmower blade which will cut the grass without producing excessive cellular damage of the grass blades.
{ "pile_set_name": "USPTO Backgrounds" }
An important aspect of modern power supply design is the need to increase the power density of the power supply since many power applications involve locations in which the size of the power supply relative to its power output is restricted by space considerations. The power train and control circuits in addition to being highly compact must also have high overall efficiency to limit heat creating power dissipation. An illustrative application of a high density power supply is an off-line power supply used to power a laptop computer or similar appliance. Bridge type converters are suitable for such applications since they may be designed to operate resonately, which is an operational mode permitting a very high power density and high power efficiency. The power switching transistors in a half bridge converter have an applied voltage stress half that of the switching transistors in a push-pull converter of comparable power handling capability. Hence the half bridge converter is especially suitable for high input voltage applications such as power converters powered directly from a rectified AC power line or from a power factor correction boost converter powered off the AC line. Synchronous rectifiers are used in power supplies requiring high efficiency since they have little loss in operation. Proper drive circuits must be provided to drive the synchronous rectifier devices. Power supplies are often connected in parallel and without proper drive arrangements a synchronous rectifier of a failed power supply may be improperly biased into operation allowing a reverse feed to power into the power supply.
{ "pile_set_name": "USPTO Backgrounds" }
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions. Currently, wind turbines need to be shutdown during high winds, because operating the turbine in high winds may damage the turbine as a result of the high speed at which the turbine rotates in the high winds. Similarly, other types of turbines can be improved.
{ "pile_set_name": "USPTO Backgrounds" }
Hepatitis C infects 2-3% of the world's population, over 180 million persons, and is a cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma(1). The current standard of care, pegylated interferon plus ribavirin (pegIFN/Riba) combination therapy, is both expensive and poorly tolerated. Treatment efficacy is approximately 50%. Telaprevir and boceprevir, two direct acting antiviral (DAA) protease inhibitors, have recently been approved for clinical use in the US (2). Addition of either of these new agents has the potential to improve sustained virological response in hepatitis C to 65-75%. However, the addition of a DAA to the current standard of care introduces the risk of side effects, including anemia and rash, and failure to achieve Sustained viral response may pose an increased risk of accumulation protease inhibitor-resistant viral strains that may carry over resistance problems to future treatments. None of these current or future treatments appear to provide any benefit to the patient beyond suppression of the virus. Specifically, the liver is not healed even when viral counts are very low, the damage either ceases at the point of suppression, or inflammation and fibrosis may even progress slowly in the presence of a small number of residual viral particles. Hepatic steatosis, the primary accompanying condition of most patients with hepatitis C, continues and may progress even with complete viral suppression, and it is now time to propose that hepatic steatosis must be managed in lock step with the specific anti-viral treatments. Hepatic steatosis is a common diagnosis in populations as a whole, often as frequent as 25% (3). There is no drug therapy for hepatic steatosis at the present time (4), most experts rely on lifestyle counseling alone. Of great concern, hepatic steatosis is a histologic feature in approximately two thirds of liver biopsies of patients with chronic hepatitis C. Until recently, this common finding was not carefully documented, and there were no large longitudinal studies describing the progression of steatosis in chronic hepatitis C or even hepatitis B. In 2009, Lok and colleagues examined changes in steatosis on serial biopsies among chronic hepatitis C patients participating in the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial(5). All 1050 patients in this trial had advanced fibrosis at baseline biopsy and were documented not to have had a sustained virological response to pegIFN/Riba. Most (94%) of these patients had genotype 1 infection. At least one protocol follow-up biopsy was read on 892 patients, and 699 had the last biopsy performed 3.5 years after randomization. Hepatic damage was well advanced at enrollment, as 39% had cirrhosis and 61% had bridging fibrosis; 18%, 41%, 31%, and 10% had steatosis scores of 0, 1, 2, and 3 or 4, respectively. The mean steatosis score decreased in the follow-up biopsies in both the pegIFN/Riba-treated patients and controls with no effect of treatment assignment (P=0.66). A decrease in steatosis score by > or =1 point was observed in 30% of patients and was associated with both progression to cirrhosis and continued presence of cirrhosis (P=0.02). Compared to patients without a decrease in steatosis, those with a decrease in steatosis had worse metabolic parameters at enrollment, and were more likely to have a decrease in alcohol intake, improvement in metabolic parameters, and worsening liver disease (cirrhosis, esophageal varices, and deterioration in liver function). Lok and colleagues (5) concluded that hepatic steatosis recedes during progression from advanced fibrosis to cirrhosis. However, there was no available means to produce a decline in hepatic steatosis in most patients, which then became the primary motivation to discover a means of treating hepatic steatosis as an integral part of treatment of hepatitis C patients. In a further definitive examination of the role of hepatic steatosis on the course of hepatitis C therapy, Briceno and colleagues (2009) examined livers that were to be transplanted into patients with hepatitis C that had already destroyed the original liver (6). The aim of this study was to determine the influence of donor graft steatosis on overall outcome, viral recurrence, and fibrosis progression in orthotopic liver transplantation for hepatitis C virus cirrhosis. One hundred twenty patients who underwent OLT for HCV cirrhosis between 1995 and 2005 were included in the study. Donor steatosis was categorized as absent (0%-10%; n=40), mild (10%-30%; n=32), moderate (30%-60%; n=29), or severe (>60%; n=19). A Cox multivariate analysis for marginal donor variables and a Model for End-Stage Liver Disease index were performed. Fibrosis evolution was analyzed in liver biopsies (fibrosis <2 or > or =2) 3, 6, and 12 months post-OLT and in the late post-OLT period. Fifty-six grafts were lost (46%). The survival of the grafts was inversely proportional to donor liver steatosis: 82%, 72%, and 72% at 1, 2, and 3 years post-OLT in the absence of steatosis; 73%, 63%, and 58% with mild steatosis; 74%, 62%, and 43% with moderate steatosis; and 62%, 49%, and 42% with severe steatosis (P=0.012). HCV recurrence was earlier and more frequent in recipients with steatosis >30% (46% versus 32% at 3 months, P=0.017; 58% versus 43% at 6 months, P=0.020; 70% versus 56% at 12 months, P=0.058; and 95% versus 69% at 3 years post-OLT, P=0.0001). (6). Graft survival was lower in alcoholic liver disease recipients versus HCV recipients when steatosis was >30% at 3, 6, and 12 months post-OLT (P=0.042) but not when steatosis was <30% (P=0.53). A higher fibrosis score was obtained 3 months post-OLT (P=0.033), 6 months post-OLT (P=0.306), 12 months post-OLT (P=0.035), and in the late post-OLT period (P=0.009). The authors concluded that the degree of hepatic steatosis in the new liver greatly influences the recurrence of hepatitis C and its progression in the new liver. In fact, Steatosis affects the success of treatment the second time. Hepatitis C recurrence was more frequent and earlier in recipients of moderately and severely steatotic livers. Fibrosis evolution is more rapid and severe when graft steatosis is >30% (6). As pointed out by Lok as well, there is a need to manage the hepatic steatosis in order to optimize the outcome of antiviral therapy for hepatitis C. Testino and colleagues (2009) examined the influence of improvement in metabolic syndrome (typically associated with steatosis) biomarkers on the response of patients with hepatitis C to pegIFN/Riba (7). They examined baseline biomarkers such as Body Mass Index (BMI), cholesterol, triglycerides (TGs) and hepatic percentage of steatosis in the response to therapy with pegIFN/Riba in patients with recurrent hepatitis C (genotype 1). In this study, 30 consecutive prospectively followed patients diagnosed with recurrent hepatitis C were considered candidates for antiviral therapy. The observed distribution of BMI, cholesterol, TGs and steatosis were confirmed to be normally distributed by the one-sample Kolmogorov-Smirnov Goodness of fit test procedure. Comparison of BMI, cholesterol, TGs and steatosis between non responders (NR), sustained virological responders (SVR) and sustained biochemical responders (SBR) groups were analyzed by ANOVA with a post hoc Bonferroni test and correlation between variables was tested by Pearson test. The multivariate analysis was performed to estimate the chance of response on basis of the above mentioned variables. In patients with abnormal results in at least two out of four steatosis associated variables the chance of no-response was 40 times higher than that of SBR and 96 times than that of SVR (7). On the basis of these epidemiological studies, they argued that diet and exercise therapy should improve BMI, liver histology and, therefore, the response to pegIFN/Riba (7). Indeed this study provides further justification for concomitant use of a treatment for hepatic steatosis in conjunction with a treatment for the hepatitis C virus itself. There is also evidence that management of hepatic steatosis in patients with hepatitis C would be of value in the prevention of hepatocellular carcinoma (HCC). For example, Pekow and colleagues (2007) (8) retrospectively identified 94 consecutive patients with hepatitis C cirrhosis who underwent liver transplantation from 1992 to 2005 and had pathology available for review. Of these, 32 had evidence of HCC, and 62 had no HCC on explant histology. All explant specimens were then graded for steatosis by a single, blinded pathologist. Next, hepatic steatosis, age, sex, BMI, HCV RNA, HCV genotype, Model for End-Stage Liver Disease (MELD) score, chronic alcohol use, and diabetes were examined in univariate and multivariate analyses for association with HCC. In total, 69% of patients in the HCC group and 50% of patients in the control group had evidence of hepatic steatosis (1+) on histology. Odds ratios for the development of HCC for each grade of steatosis compared with grade 0 were as follows: grade 1 (1.61 [0.6-4.3]), grade 2 (3.68 [1.1-12.8]), and grade 3 or 4 (8.02 [0.6-108.3]) (P=0.03 for the trend). In univariate analyses, there was a significant association between increasing steatosis grade (P=0.03), older age (56 years vs. 49 years; P<0.02), higher ALT aspartate aminotransferase (122.5 U/L vs. 91.5 U/L; P=0.005), higher AST alanine aminotransferase (95.8 U/L vs. 57.2 U/L; P=0.002), higher alpha-fetoprotein (113.5 ng/mL vs. 17.8 ng/mL; P<0.001), lower median HCV RNA (239,000 IU/mL vs. 496,500 IU/mL; P=0.02), higher biologic MELD score (21.8 vs. 20.3; P=0.03), and risk of HCC. In multivariate analysis, age (P=0.02), alpha-fetoprotein (P=0.007), and hepatic steatosis (P=0.045) were significantly associated with HCC (8). These authors concluded that in patients with Hepatitis C-related cirrhosis, the presence of hepatic steatosis is independently associated with the development of hepatocellular carcinoma (8). Clearly if the steatosis could be reversed, there is plausible evidence that HCC might be prevented or at least there would be fewer cases that progress to this deadly complication of the combined problem of hepatitis C and hepatic steatosis.
{ "pile_set_name": "USPTO Backgrounds" }
Telecommunications networks currently utilize signaling system 7 (SS7) signaling protocol to effect the exchange of information used to provide advanced intelligent network (AIN) and intelligent network (IN) services, such as number portability (NP) service and toll-free calling service. Such services will be referred to herein as “telecommunications services.” The data required to provide such telecommunications services may be stored in a service control point (SCP). A service may be invoked when a switch that originates a call determines that an IN or AIN trigger exists for the called party number, queries an SCP, and obtains a response including the requested information. While such services are well developed in SS7 networks, such services have not been widely implemented in IP telephony networks, such as SIP networks. SS7 networks are not directly compatible with SIP networks because they each utilize different communications protocols. Communication between such networks may be necessary when a call originated by a SIP device in the SIP network requires information stored within the SS7 network. One conventional method for retrieving telecommunications service information from an SS7 network for a SIP device is described in U.S. Pat. No. 6,785,374. The method includes sourcing a request for transaction capabilities application part (TCAP) information from a SIP proxy within a SIP network. This request is forwarded via a SIP message to an SS7/SIP signaling gateway to request that the SS7/SIP gateway formulate a TCAP query in the SS7 network. The request includes a SIP extension header that identifies the type of query being requested. In response to the request, the gateway transmits a TCAP message to an SCP within the SS7 network. The SCP then processes the request and returns a TCAP response to the SS7/SIP signaling gateway. The SS7/SIP gateway forwards the TCAP response to the originating SIP proxy. One problem with such a technique is that it places the burden on the originating SIP proxy server of determining when to request a specific service from the SS7 network and identifying the service type. For example, in order to request LNP service, the SIP proxy server must be able to recognize that a called number has been ported. Similarly, in order to recognize a call that requires another service, such as toll free service, the SIP proxy server must include service logic that recognizes dialed toll free numbers. Another problem with the method described in the '674 patent is that some calls may require multiple services, and the '674 patent fails to address this issue. For example, a call to an 800 number may result in the 800 number being translated into a routing number that requires number portability processing. Such a call would require the SIP proxy server to include service logic that recognizes the toll free number, the ported number, and that formulates two requests to the gateway for two different queries to the SS7 network. Requiring that SIP proxy server formulate two queries further increases the burden on the SIP proxy server. In addition, requiring that the SIP proxy server recognize and communicate the service request type to the SIP/SS7 gateway requires a non-standard SIP implementation and decreases the universal applicability of the gateway. Accordingly, there exists a need for methods, systems, and computer program products for providing telecommunications services between a SIP network and an SS7 network in an efficient manner and that reduces the burden on SIP devices, such as SIP proxy servers.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to bis(silyl)alkanes represented by the formulas (III), (IV) and (V), respectively, and a method for their preparation. In accordance with the present invention, in order to prepare the bis(silyl)alkanes represented by the formulas (III), (IV) and (V) at the same time, an organic chloride, represented by the formula (I) and having a chloro at each side of its molecule, is first mixed with a hydrogen chloride or an alkyl chloride represented by the formula (II), said alkyl chloride being capable of generating the hydrogen chloride during its reaction, in order to provide a mixture. This result mixture is in turn directly reacted with a metal silicon. ##STR2## wherein R is H or a phenyl, R' is a hydrogen atom or a C.sub.1-4 alkyl and n is an integer ranging from 1 to 4. If described in detail, the present invention provides a novel and improved method for preparation of three types of bis(silyl)alkanes, the first being represented by the formula (III) and having two dichlorosilyls, the second being represented by the formula (V) and having two trichlorosilyls and the third being represented by the formula (IV) and having one dichlorosilyl and one trichlorosilyl, at the same time. In order to prepare these bis(silyl)alkanes, a gaseous mixture prepared by mixing the organic chloride of the formula (I), having a chloro at each side of its molecule, with the hydrogen chloride or the alkyl chloride of the formula (II), said alkyl chloride being capable of generating the hydrogen chloride during its reaction process, is directly reacted with the metal silicon in a fluidized-bed reactor or an agitation reactor at a reaction temperature of 260.degree. C.-370.degree. C. in the presence of copper catalyst. Such bis(silyl)alkanes having the chlorohydrosilyls have a property of easily further reacting with an organic compound having an unsaturated bond. In this regard, they can be used as effective starting materials for preparation of silicon compounds having several types of organic functional groups. 2. Description of the Prior Art U.S. Pat. No. 2,380,995 discloses a known method for preparation of methylchlorosilanes, including dimethylchlorosilane, by direct reaction of a metal silicon with an organic halogen compound in the presence of a copper catalyst as represented by the reaction formula (VI) and this known method has been generally used as a basic technique recently in the silicon industry. ##STR3## From the above direct reaction of the formula (VI), the desired reaction product, dimethylchlorosilane, together with other reaction products, such as methyltrichlorosilane, trimethylchlorosilane, tetrachlorosilane and etc., are prepared. This direct reaction is a complex reaction which also provides additional side products, such as small amount of material having a high boiling point, and in which change of the reaction conditions causes variation of the composition of the reaction products, including the desired reaction product. In this regard, it is necessary to accurately select the reaction condition, such as degree of purity of starting materials, kind and amount of catalyst, kind and amount of cocatalyst, reaction temperature, reaction pressure and type of reactor used, in order to efficiently prepare the desired reaction product, that is, the dimethylchlorosilane, using the above direct reaction represented by the formula (VI). In this direct reaction of a metal silicon with an organic chloride, it has been noted that the reaction can not be efficiently carried out if a catalyst, most preferably copper, is not used. In addition, a metal, such as zinc, aluminum or cadmium, may be used as a cocatalyst of this reaction, as required. This cocatalyst is used in order to not only reduce the reaction start time but also to improve selectivity of the dimethylchlorosilane of the reaction products, that is, the methylchlorosilanes [E. G. Rochow, J. Am. Chem. Soc., 67, 963 (1945)]. When the amount of the copper catalyst used in this direct reaction is increased, there is a problem in that the chlorine content of the reaction products is increased even though the reaction is accomplished in a short time. In this regard, it has been noted that it is good to use the copper catalyst of 10% by weight of the silicon in this direct reaction wherein the silicon is reacted with methyl chloride. It has been reported that the copper, the catalyst of the reaction of the formula (VI), causes a silicon bond of the metal silicon to .eta.-phase Cu.sub.3 Si and this Cu.sub.3 Si of the silicon bond is in turn reacted with the organic chloride [V. S. Fikhtengolts & A. L. Klebanskii, J. Gen. Chem. U.S.S.R., 27, 2535 (1957)]. In order to prepare the .eta.-phase Cu.sub.3 Si, there has been proposed two types of preparation processes, that is, a physical process wherein both copper and silicon are heated to temperatures of 800.degree. C.-1100.degree. C. in the presence of inert gas [P. Trambouze, & B. Imelik, J. Chim. Phys., 51, 505 (1954)] and a chemical process wherein cuprous chloride is reacted with silicon as represented by the reaction formula (VII) [R. J. H. Voorhoeve. & J. C. Vlugter, J. Catalysis, 4, 129 (1965)]. EQU nSi+CuCl.fwdarw.SiCl.sub.4 +Cu.sub.3 Si+Cu+(n-2)Si (VII) Conventionally, the reaction of the silicon with the methyl chloride is a high temperature reaction which is carried out at a high temperature not lower than 300.degree. C. In addition, this reaction is an exothermic reaction. In this regard, the heat of this reaction not only causes the reactants to flocculate with each other but also introduces partial overheating if the excess heat if it is not efficiently removed [A. L. Klebamskii & V. S. Fikhtengolts, J. Gen. Chem. U.S.S.R., 27, 2693 (1957)]. Additionally, if the reaction temperature is higher than a predetermined proper temperature, this reaction results in reduction of the production amount of the desired dimethylchlorosilane as well as introduction of several side reactions. Such a high reaction temperature also causes the methyl chloride, the start material, and the reaction products to be decomposed and, as a result, carbons to be deposited on the silicon surfaces. As a result, silicon activity is rapidly deteriorated [J. C. Vlugter & R. J. H. Voorhoeve, Conf. Accad. Lincei, Alta Tech. Chim. 1961, p 81 (1962)]. In this regard, it is very important to control the reaction temperature in preparation of methylchlorosilanes in accordance with the direct reaction of the formula (VI). In the direct reaction of the formula (VI), three types of reactors, otherwise stated, stationary type, agitation type and fluidized-bed type reactors are generally used. The agitation reactors have an advantage in that its temperature control is more easily carried out in comparison with the stationary reactor. It provides good reactivity since it causes the solid particles to collide with each other and, as a result, refresh their surfaces. Conventionally, since the copper catalyst of this reaction, has a density of three times of the silicon reactant of this reaction, it is very difficult to effectively mix the two materials with each other. In order to overcome this problem, there has been proposed a method wherein the reaction is carried out under the condition that the solids at the bottom of the reactor are forced to move upwards by a spiral agitator and, at the same time, gaseous organic chloride is blown upwards [J. E. Sellers & J. L. Davis, U.S. Pat. No. 2,449,821]. However, this method requires reacting strong corrosive organic chloride with other reactants at a high temperature. In this respect, this method has a problem in that is necessarily requires a reactor having such excellent corrosion resistance that the reactor sufficiently resists the corrosive organic chloride. However, such a reactor can not be easily obtained. Furthermore, it is noted that this method is not proper for mass production of the desired reaction product and continuous reaction process. In order to solve the above problems introduced by the known method such as disclosed in the above U.S. Pat. No. 2,449,821, several type of fluidized-bed reactors have been proposed such as disclosed in U.S. Pat. No. 2,887,502 of B. A. Bluestrin. In this fluidized-bed reactor, silicon and copper are reacted with each other under the condition that methyl chloride is blown upwards and, at the same time, the silicon and the copper are fluidized. This method using the fluidized-bed reactor efficiently removes the heat of reaction and, in this respect, is widely used in preparation of methylchlorosilanes. Meanwhile, it is possible to prepare organic silicon compounds by directly reacting organic material, having at least two halogen atoms bonded thereto, with metal silicon. For example, U.S. Pat. Nos. 2,381,000, 2,381,001 and 2,381,002 disclose that a linear or cyclic chlorosilaalkane is prepared, as represented by the reaction formula (VIII), by reaction of methylene chloride with silicon in a fluidized-bed reactor. However, the prior art including the above U.S. Patents have not reported on accurate yield of the reaction products. ##STR4## In reaction with the metal silicon, the methylene chloride can be reacted with the metal silicon at a relatively lower temperature in comparison with the methyl chloride. However, this reaction, wherein the methylene chloride is reacted with the metal chloride, results in dechlorination as well as dehydrochlorination at a high reaction temperature of about 300.degree. C. since the methylene chloride has an excellent reactivity. In this respect, this reaction produces several types of reaction products. Thus in this reaction, the reactants are decomposed into chlorines and hydrogen chlorides simultaneously with generation of carbons. These carbons are deposited on the surfaces of silicons and this causes the activity of the silicons to be rapidly deteriorated. G. Fritz et al. reported on that when the above reaction was carried out using a fluidized-bed type reactor at a reaction temperature of 320.degree. C., the production amount of the reaction products having high molecular weight is increased [G. Fritz & A. Worsching, Z. Anorg. Allg. Chem., 512, 131 (1984)]. The aforementioned reaction generally produces five kinds of reaction products. Otherwise stated, this reaction produces bis(silyl)alkanes, which are compounds having two dichlorosilyls, two trichlorosilyls or one dichlorosilyl and one trichlorosilyl, a straight chain carbosilane such as 1,3,5-trisilapentane or 1,3,5,7-tetrasilaheptane, a cyclic carbosilane which is a compound having a long substituent at its silicon and a cyclic carbosilane which is a compound having a long substituent at its carbon. This reaction also produces a high-molecular compound similar to molasses or tar. However, it has been noted that no reaction product of the above products has yield higher than 30%, and furthermore, the maximum yield of a reaction product is about 20% at the most [G. Fritz & E. Tatern, "Carbosilanes-Syntheses and reactions", Spring-Verlag, New York, 1986]. G. Fritz et al. reported that in accordance with a reaction of methylene chloride with metal silicon, bis(trichlorosilyl)(dichlorosilyl)alkane having Si--H bond was prepared in the form of side product of 3% [G. Fritz & H. Thielking, Z. Anorg. Allgem. Chem., 306, 39 (1960)]. The present inventors proposed that as represented by the reaction formula (VIIII), trisilaalkane as a reaction product and disilaalkane as a side product were prepared, using an agitation reactor having a spiral agitator or a fluidized-bed reactor, by a direct reaction of silanes having chloromethyl with silicon under the condition that the reaction temperature was controlled not to be higher than 350.degree. C. and, at the same time, the copper catalyst is controlled in its using amount to be 10-15%. In addition, it was noted that the fluidity of the reactants together with the reactivity and selectivity of silicon is improved when spherical fine powder of acid white clay of 5-50% by weight of the silicon was added to the reaction in order to promote the fluidization of the reactants [Korean Patent Appln. No. 91-1055]. ##STR5## wherein R.sup.1, R.sup.2 and R.sup.3 are a methyl or a chloro, respectively. In addition, the present inventors proposed that as represented by the reaction formula (X), two kinds of bis(silyl)methanes were prepared when the compound represented by the formula (II) is used as a source of hydrogen chloride in a reaction of silanes having chloromethyl with metal silicon. The compound of the formula (II) is selected from, for example, 1,2-diethane chloride or hydrogen chloride, propyl chloride, n-butyl chloride and t-butyl chloride. In addition, it is preferred to use organic chlorides, such as hydrogen chlorides or butyl chlorides which are easily decomposed at the reaction temperature in order to generate hydrogen chloride [Korean Patent Appln. No. 91-24243]. ##STR6## wherein R.sup.1, R.sup.2 and R.sup.3 are a methyl or a chlorine, respectively, R is C.sub.1-4 alkyl, H, Cl or CH.sub.2 CH.sub.2 Cl.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a routing device designed to allow two incoming streams of flat objects, particularly streams of mail envelopes, to be grouped together into a single stream, in which device the objects, entering the stream alternately according to which stream they originate from, are transmitted one after another as in the incoming stream. As is known, certain operations in the processing of flat objects within a processing assembly are compatible with object flow rates which are markedly higher than they are in other operations with which they are associated, particularly in the case of an assembly for processing mail envelopes. Thus, for example, the operations of reading addresses, labeling or printing related to these mail envelopes allow a high flow rate along a conveying path, for example of the order of six objects per second. This flow rate cannot be achieved in the de-stacking operations which have to be performed at the headend of the path, because these operations only allow a flow rate which is practically half as high. This means that constructors of assemblies of this kind have to feed an item of treatment equipment, the object flow rate of which is high, from several slower items of supply equipment which are arranged in parallel so that their respective flow rates are summed at the entry to the high flow rate equipment. In a known embodiment, a routing device allows successive flat objects, such as mail envelopes, from one supplier equipment item to be inserted between the flat objects originating successively from another supplier equipment item. To do this, the flat objects of rectangular appearance from each supplier equipment item travel along one of their long sides along conveying paths which join each supplier equipment item to the routing device. The flat objects leaving an equipment item one after another to be conveyed to the routing device are positioned between a broad belt known as the backing belt, against which the flat objects are pressed by one of their large faces and a press belt which is pressed against the backing belt along the length of the conveying path joining the supplier equipment item in question to the routing device. One of the conveying paths followed by the flat objects from one of the supplier equipment items meets the other conveying path followed by the flat objects from the other equipment item at the routing device, and does so at a relatively large angle of incidence xcex1, for example an angle of the order of 45xc2x0. This therefore leads to significant deformation of the flat objects when they pass through the routing device, because for a short moment of time the flat objects from one of the equipment items are bent in half at an angle xcex2=xcfx80xe2x88x92xcex1 which is the complementary angle to the angle of incidence. A solution of this kind is not truly satisfactory because the flat objects subjected to bending at the routing device while they are being conveyed may be damaged if they are not flexible enough or if they contain something really hard. Furthermore, in the latter incidence, it is possible that, in the absence of special steps, the hardware may become jammed and/or damaged. Patent document DE-21 45 270 discloses a routing device with two conveyors which converge symmetrically at a small angle toward a downstream conveyor which has the effect of limiting the inflection of the objects in the zone of convergence. The object of the invention is to propose an even further improved routing device which allows two incoming streams of flat objects, particularly mail envelopes from two supplier equipment items to be grouped together, in which device the flat objects may have very varied thicknesses and hardnesses.
{ "pile_set_name": "USPTO Backgrounds" }
Morning sickness comprises nausea and vomiting, and/or related physical distress, that occurs in pregnant women on or shortly after rising in the morning, especially during the earlier months of pregnancy. Though still called "morning sickness", the onset of nausea in many pregnant women can occur at almost anytime of the day, or it can be substantially constant for days, weeks or even months. For most women, the distress of morning sickness is sufficiently severe that they are essentially incapacitated. Every woman who has suffered through "morning sickness" does not want it to happen again, ever. I have discovered that the application of a continuum of a controlled degree of pressure, utilizing a technique called acupressure, to a particular point or points on the body, will afford the majority of women relief from morning sickness. Acupressure is a technique derived from acupuncture, the original Chinese practice of puncturing the body with needles at predetermined key points or locations to cure disease or relieve pain. Acupressure is a related practice, not involving puncture of the skin, wherein relief from pain may be obtained by applying pressure to selected key points or locations on the human body. One such point, known as the Neiguan point, which is located on the flexor side of the forearm just above the wrist, has been utilized in the practice of acupuncture and/or acupressure as an application point for the alleviation of discomfort and pain. Studies conducted at hospitals in Great Britain to test the efficacy of short term, manual application of pressure to this point on pregnant women have indicated that temporary relief from morning sickness may be obtained in a significant number of cases. Quite recently, elastic bands with pressure applying buttons secured to the elastic have been advertised and sold for use in applying pressure to the Neiguan points on a person's forearms for the purported purpose of alleviating motion sickness. To the best of my knowledge, the concept has not been used prior to my invention to alleviate morning sickness in pregnant women. In particular, elastic bands are too uncomfortable for pregnant women to wear; they are not adjustable; they fit only a limited range of arm sizes, and do not accomodate the weight and size changes many women undergo during pregnancy; they interfere with blood circulation, which of course should be avoided during pregnancy; and they cannot be worn for any extended period of time. In general, therefore, elastic bands are quite unsuited to use during pregnancy.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the simulation of video images originated on motion picture film stocks, from high definition video originated material stored on tape. Film has been the preferred recording medium on which to originate many productions broadcast on television for years because of the sophisticated visual impression provided by the character of film stocks' color response and the general audience familiarity with the appearance resulting from filmed material presented on television; the resulting "look", a product of the photo-chemical process preceding the production of television signals representative of the image stored in the photo-chemical process, differs in several ways from video originated material of an identical photographic subject. Two key ways in which they differ are the focus of this invention: The color and grey scale component value response in each pixel of the resulting image on a television monitor; and the subtle visual impression made by the textured appearance of film grain, which is inherent to images stored within motion picture film emulsion. Though color negative film has the ability to reproduce abundantly more color and grey scale gradients than video originated images, when video images are created from filmed images by means of a standard telecine "flying spot scanner" transfer, an illusion of the entire range of film's color response is maintained. This phenomenon, occurring within the scope of the video medium, provides that constants exist that can define the variation in pixel response between film and video originated images shot under identical lighting conditions, when viewed on video monitors: It is the combination of filmed information as it can be reproduced on a monitor that provides the overall maintenance of the "film look", and each separate color component combination of each pixel of film originated image is in fact available and employed by video originated images, though in response to a different photographic stimulus in almost every case. The video data resulting from a telecine transfer defines filmed images in video terms, so the medium in question is in fact video, and the parameters and actual subtleness of projected filmed images are not the issue. Rather, the video data assigned to a resulting pixel representing a zone of film emulsion is an averaging process provided by video standards and color and grey scale gradients recognized as those registered and visible on standard television receivers. Digital video technology has provided that digital data defines video images and encodes the color and grey component values for each pixel in addressable sequences, able to be "read" and "rewritten" into a store. Therefore, given uniform and predominantly shadow-free lighting and even color temperature during original videotaping, and careful slating of this data for each shot in foot candles and degrees kelvin respectively, digital data logged from pixel response of color data originally stored in film stock emulsion, under the same light intensity and color temperature conditions, can be referenced according to principal videographic variables and inserted in place of the original video color data. This would create an aesthetic comprise that permits approximation of potentially any film stock's anticipated response to the same stimulus represented in video form. Existing technology for the printing industry and digital video provide for scan-sequential and specifically addressed pixel component modifications according to look-up-table data, as the system of the present invention employs, (i.e. U.S. Pat. Nos. 4,727,425; 4,710,806.) New high definition television systems and video projection systems capable of manifesting a high definition compatible number of scanning lines provide the means for executing a process whereby actual film grain within celluloid emulsion can be married with a projected image, and videographed with a loss in image clarity low enough to produce a final result which provides a film "look" to images at an aesthetically acceptable sacrifice to the original high definition integrity of the video images. Present systems strive to simulate film grain appearances digitally, with a result that is visibly different from actual film grain appearances on monitors, following a telecine "transfer." By incorporating the general videography-of-film operating basis of telecine devices, high definition projection and camera units mounted on tracks, with macro lensing, "gen-lock" synched together, matching scan lines to the highest degree possible can capture a complete video frame as it is projected on a grey emulsion surface of optional size. This recreation of a video signal of a high number of scanning lines from a high definition projection would have a resulting actual clarity substantially less than that of the original video material, but with the aesthetic look of film originated images. Present systems for providing an NTSC signal from a high definition signal may be employed at this stage, or the signal may be maintained as as higher definition signal for recording, monitoring or broadcasting. So, for many television applications where film is shot for telecine transfer to video, there are benefits to be gained by employing the system of the present invention. At the production level: a television camera is employed instead of a film camera providing silence; immediate screening of the actual material shot; immediate sound synching; lesser risk of reshoots from screening original material for problems immediately; and no expense of negative film. In post production: processing of film, transfer to video and sound synching are not needed; having shot video, dailies need not be awaited; all shot selections destined for final modification by the "FILMITATOR" system are made in preliminary "off-line" edit sessions, minimizing the actual amount of material submitted for modification and thus time charges as opposed to a film shoot where typically all material must be transferred to tape, at substantial expense, for initial screening; and during modification by this system, a variety of film stock component response and film grain options may be previewed and imparted to the original video material, providing a unique range of new post-production aesthetic effects to video originated material.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention (Technical Field) The present invention relates to radiation curable nail treatment materials and methods of using the same. The invention is also applicable to treatment materials for keratin and proteinaceous surfaces on animals such as claws and hooves. 2. Background Art Note that the following discussion refers to a number of publications by author(s) and year of publication, and that due to recent publication dates certain publications are not considered as prior art vis-à-vis the present invention. Discussion of such publications herein is given for more complete background and is not considered as an admission that such publications are prior art for patentability determination purposes. Light curable nail coatings are disclosed in Billings, U.S. Pat. No. 5,194,292, entitled xe2x80x9cMethod of Drying and Bonding Nail Polishxe2x80x9d (""292 patent); Cornell, U.S. Pat. No. 4,704,303, entitled xe2x80x9cNail Extension Compositionxe2x80x9d (""303 patent); and Guiliano, U.S. Pat. No. 4,682,612, entitled xe2x80x9cNovel Process and Article for Preparing Artificial Nailsxe2x80x9d (""612 patent) which are incorporated herein by reference. The ""292 patent describes a method of protecting common nail polish by applying a light curable clear coating over the polished nail. The ""303 patent discloses a coating composition based on an aliphatic or cycloaliphatic hydrocarbon urethane diacrylate or (meth)acrylate having a molecular weight of 250 to 500 and a viscosity of 5,000 to 30,000 cps. Radiation in the visible region is used to cure the coatings disclosed in the ""303 patent. The ""612 patent discloses an organic solvent-free photocurable composition that has at least one liquid monomer in which an acrylated urethane oligomer is dissolved and crosslinked upon curing. Radiation in the ultraviolet (UV) region is used to cure the coatings disclosed in the ""612 patent. None of the prior art patents disclose the use of a Bisphenol A Diglycidyl Methacrylate (xe2x80x9cBISGMAxe2x80x9d) based urethane resin or a polyether methacrylated urethane in combination with a BISGMA based urethane resin for radiation curable nail coatings. Further, the prior art patents do not disclose the use of a thiol in combination with the BISGMA based urethane resin to reduce photoinitiator levels for photopolymerization. Furthermore, these patents do not disclose the use of vinyl ether or maleimide functional materials alone or in combination with the BISGMA based urethane resin for nail coatings to reduce or eliminate photoinitiator levels for photopolymerization. Nor do any of these patents describe the use of radiation curable materials to produce tough, flexible artificial nail tips using thiol, vinyl ether or maleimide functional materials alone or in combination with BISGMA based urethane resin. Traditional light curable coatings presently known in the art have a tendency to xe2x80x9crunxe2x80x9d during application, due to low viscosity. Consequently, coatings tend to impinge on the cuticle or other unwanted areas, and may also cause all or portions of the coating to disengage from the nail surface over time. A coating is needed which will not run or lift from the nail. Another known problem with traditional light curable nail coatings is associated with the use of urethane resins in the coating formula. Often such urethane resins are made with high levels of toxic catalysts, potentially posing a significant risk of skin sensitization. Furthermore, traditional light curable nail coatings are often associated with the use of acrylates, which are known to pose a significantly higher risk of skin sensitization in the general population than methacrylates. A further problem in known light curable nail coatings is xe2x80x9cleftoverxe2x80x9d photoinitiator by-products formed by photopolymerization. These by-products can cause yellowing of the coating and risk skin sensitization in the general population. A coating is needed which comprises a reduced amount of photoinitiators to reduce yellowing and potentially harmful skin sensitization. Finally, another problem with traditional light curable coatings is that, upon curing, the surface of the coating becomes sticky and rough due to an air-diffused layer, wherein the air inhibits curing. Generally, ethyl alcohol is applied to a coating surface to remove the undesirable air diffused layer. While effective, the alcohol is not preferred due to skin sensitivity. Traditional nail coatings generally include two varieties: polish type, which cure by solvent evaporation, and polymer type, which cure by chemical reaction. If a wearer desires a more natural look, and has strong nails, a polish type material is usually chosen to enhance appearance and add protection. If a wearer has short, weak nails, and desires longer nail enhancements, then a polymer type material, used alone, or in conjunction with artificial nail tips, is suitable. Polymer type materials include, for example, powder/liquid systems and gel systems. Gel systems, in contrast to the traditional polish and polymer-type systems particularly ultraviolet cured gel systems, often comprise a gel that is brushed onto the nails, cured, and shaped to create lifelike artificial nails. Gel systems are relatively easy to use, are applicable in less time, are lightweight on the nail, have no odor (or only minimal odor), are durable, and have a high quality shine. There is a real need in the art for gel systems that can be formulated to provide hard, semi-permanent and soft, removable radiation curable nail coatings (unlike the traditional systems). Gel coatings are needed which may be applied to provide a strong, durable, semi-permanent nail extension on which a clear (or colored) flexible, removable radiation-curable coating is subsequently applied and cured to give a dried coating in two minutes or less, in contrast to traditional nail polish drying by solvent evaporation (which takes from several minutes to hours for complete drying and a smudge-proof surface). Such gel coatings would give a more appealing and defect free appearance which is smudgeproof and may be applied on top of current traditional powder/liquid systems as an attractive alternative to nail polish. Yet another problem with some currently available colored gel topcoatings is that they cannot be removed from semi-permanent nail extensions using simple foil/solvent soak-off procedures at rebalance time. Instead, they must be removed by hand or machine filing and in doing so remove some of the supporting structure beneath them. The nail technician must then recreate this supporting structure at rebalance time in addition to filling in the area of new growth. Therefore, there is a need for an easily removable gel top coating from a nail extension. Some other clear and colored gel nail systems are removable from natural nails and can be used for extending a nail and topcoating a nail. These, however, do not provide for semi-permanent extensions of the nails with removable gel topcoatings. In these types of removable gel systems, the extension is removed from the nail at the same time the gel topcoating is removed with the foil/solvent method, causing the nail technician more time and effort to rebuild the extension before gel topcoating. Overall, a need exists for a material, colored or not, which is easily applied, dries rapidly, does not yellow or cause skin sensitization in the general population, protects the nail more than polish, and can be removed when the wearer desires. Such a material is described in an embodiment of the present invention. In addition, for wearers of artificial nail enhancements, there is a need for a coating, which dries rapidly (almost immediately), doesn""t chip, can be easily removed at a later date for versatility, leaving an intact surface which requires less filing for rebalance. Current artificial nail tips are made from injection molded plastics, which are not entirely compatible with gel nail systems, resulting in delamination of the gel from the tip. Therefore, there is a need for a radiation curable artificial nail tip with good strength, flexibility like a natural nail, and excellent compatibility with gel systems, thereby reducing delamination of the coating from the tip and preventing softening and dissolution of the tips during the soak-off procedure. The radiation curable coatings of various embodiments of the present invention, and aforementioned related disclosures, satisfy such a need. The inventive methods of embodiments of the present invention also help to address this need. The radiation curable nail and/or artificial nail tip coating composition of the present invention comprises a composition comprising: a polymerizable compound preferably a BISGMA urethane resin; a photoinitiator; and, preferably an alternate polymer wherein the composition is of a sufficient viscosity to be applied to natural nails and artificial nail tips. Additionally, photoaccelerators, a coupling agent, and other additives disclosed in the embodiment herein may be incorporated. In the preferred embodiment the composition optionally comprises at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, colorants, dyes, inhibitors, oxygen scavengers, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. In the preferred embodiment the composition preferably optionally comprises at least one polymerizable (meth)acrylate resin and wherein the (meth)acrylate resin optionally comprises a (meth)acrylated urethane resin and wherein the photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. And, the photoaccelerator preferably optionally comprises at least one accelerator selected from the group of aliphatic amines and aromatic amines and wherein the organo-metallic coupling agent optionally comprises at least one coupling agent selected from the group of titanate coupling agents. In an alternate embodiment, the radiation curable nail and/or artificial nail tip coating composition of the present invention comprises photopolymerizable resin blend preferably comprising a polymerizable BISGMA urethane resin; an additional polymer; and a photoinitiator. The composition is preferably of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition preferably but optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, optical brighteners, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. The composition preferably optionally comprises at least one polymerizable (meth)acrylate resin, wherein the (meth)acrylate resin preferably comprises a (meth)acrylated urethane resin. Preferably at least one initiator is selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. The photoaccelerator of the composition optionally comprises at least one accelerator selected from the group of aliphatic amines and aromatic amines. In yet another embodiment, the radiation curable nail and/or artificial nail tip coating composition of the present invention comprises a photopolymerizable resin blend comprising a polymerizable BISGMA urethane resin, a polyol modified (meth)acrylated urethane, and a photoinitiator. The composition should have a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, optical brighteners, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. The composition optionally comprises at least one polymerizable (meth)acrylate resin, wherein the (meth)acrylate resin preferably comprises a (meth)acrylated urethane resin. The photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. The photoaccelerator optionally comprises at least one accelerator selected from the group of aliphatic amines and aromatic amines. In still another embodiment, the radiation curable nail and/or artificial nail tip coating composition of the present invention comprises from approximately 20-99% of a polymerizable BISGMA urethane resin, and a photoinitiator. The composition is strong and durable after curing, and contains a substantial proportion of photopolymerizable resin blend of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, optical brighteners, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. The composition optionally comprises at least one polymerizable (meth)acrylate resin, wherein the (meth)acrylate resin preferably comprises a (meth)acrylated urethane resin. The photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. The photoaccelerator optionally comprises at least one accelerator selected from the group of aliphatic amines and aromatic amines. In yet another embodiment, the radiation curable nail and/or artificial nail tip coating composition of the present invention comprises from approximately 1% to approximately 30% of a polymerizable BISGMA urethane resin, from approximately 1% to approximately 99% of a polyol modified (meth)acrylated urethane, and a photoinitiator. The composition is softenable and removable from the nail by polar solvents, and is of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, dispersion aids, waxes, fillers, nanofillers, organsols, optical brighteners, fibers, and adhesion promoting materials. The composition optionally comprises at least one polymerizable (meth)acrylate resin, wherein the (meth)acrylate resin preferably comprises a (meth)acrylated urethane resin. The photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. The photoaccelerator optionally comprises at least one accelerator selected from the group of aliphatic amines and aromatic amines. In another embodiment, the present invention comprises a method for increasing the soak-off characteristics and susceptibility to polar solvents of the nail coating composition. The method comprises the steps of providing a nail coating composition and adding a polymerizable polyol modified (meth)acrylate urethane resin to the composition. The composition optionally comprises a polymerizable BISGMA urethane resin. In yet another embodiment, the present invention comprises a method of applying a soak-off nail coating composition to a coated nail. The method comprises the steps of preparing and providing a coated extended nail; applying a composition comprising a radiation curable gel coating (which is softenable and removable with polar solvents); and curing the applied composition. The radiation curable gel coating may comprise a polyol modified (meth)acrylate resin or a (meth)acrylate urethane resin. In another embodiment, the present invention comprises a method of preparing and applying a soak-off nail coating for a natural nail or a coated nail. The method comprises the steps of mixing a clear soak-off UV curing gel composition with standard nail polish to provide a colored UV curing soak-off gel composition; applying the prepared UV gel/polish mixture to the natural or coated nail; and curing the composition. Predetermined ratios may be utilized in the mixing step. In yet another embodiment, the present invention comprises a method of removing a soak-off nail coating composition from a coated nail. The method comprises the steps of providing a nail coated with a radiation cured composition, wherein the cured composition may comprise a polyol modified (meth)acrylate polymer or a (meth)acrylate urethane resin; and soaking the coated nail with a solvent, wherein the solvent may comprise a polar solvent. In another embodiment, the present invention comprises a method of removing a soak-off nail coating composition from a coated nail. The method comprises the steps of providing a nail coated with a radiation cured composition, wherein the cured composition may comprise a polyol modified (meth)acrylated urethane, a BISGMA urethane, and a photoinitiator, and soaking the coated nail with a solvent. The solvent may comprise a solvent which may be a polar solvent. In a further embodiment, the radiation curable nail coatings or artificial nail tip coating compositions of the present invention comprise a polymerizable (meth)acrylate resin; functional materials selected from thiol, vinyl ether, cycloaliphatic epoxide, and maleimide functional materials; and a photoinitiator. The composition is of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, dispersion aids, waxes, fillers, nanofillers, organsols, optical brighteners, fibers, and adhesion promoting materials. The composition optionally comprises a (meth)acrylated urethane resin. The photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. In yet another embodiment, the radiation curable nail coatings or artificial nail tip coating compositions of the present invention comprise a polymerizable BISGMA urethane resin; functional materials of thiol, vinyl ether, cycloaliphatic epoxide, or maleimide functionality; and a photoinitiator. The composition is of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, secondary photoinitiators or photosensitizers, photoaccelerators, colorants, dyes, inhibitors, oxygen scavengers, optical brighteners, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. The composition optionally comprises at least one polymerizable polyol modified (meth)acrylate urethane resin. The photoinitiator optionally comprises at least one initiator selected from the group of phosphinates, phosphine oxides, sulfanyl ketones, sulfonyl azides, polymeric morpholinoketones, an alpha-amino from Ciba-Geigy known as CGI 113, and iodonium hexafluorophosphate salts. In another embodiment, the radiation curable nail coatings or artificial nail tip coating compositions of the present invention comprise a composition comprising maleimide, cycloaliphatic epoxide and/or vinyl ether functionality in combination with a polymerizable resin and a photoinitiator. The composition is of a sufficient viscosity to be applied to natural nails and artificial nail tips. The composition optionally comprises a coupling agent and/or at least one additive selected from the group of plasticizers, photosensitizers, colorants, dyes, inhibitors, oxygen scavengers, optical brighteners, dispersion aids, waxes, fillers, nanofillers, organsols, fibers, and adhesion promoting materials. In another embodiment, the radiation curable composition of the present invention comprises a thiol, maleimide, vinyl ether, cycloaliphatic epoxide, and/or (meth)acrylate functionality used alone or in combination along with photoinitiators, photosensitizers, photoaccelerators, coupling agents, plasticizers, inhibitors, oxygen scavengers, optical brighteners, colorants, dyes, dispersion aids, waxes, fillers, nanofillers, organosols, fibers, and adhesion promoting monomers or polymers to prepare pre-formed artificial nail tips for use with radiation curable gel nail coatings. A primary object of the present invention is to provide hard and durable coatings for the cosmetic industry, particularly for the cosmetic nail industry. A further object of the invention is to provide soft, flexible, and removable natural nail coatings for the cosmetic industry, particularly the cosmetic nail industry. A further object of the invention is to provide soft, flexible, and removable coatings, which can be applied to nail enhancements and removed at a later date for versatility, without destroying the underlying structure and reducing the filing necessary at rebalancing time. A further object of the invention is to provide pre-formed nail tips that will not readily delaminate from radiation curable coatings. A primary advantage of the present invention is that the coating materials are of a sufficient viscosity and/or other Theological properties such that the materials do not tend to run into the cuticle or off the nail and onto the finger or toe, etc. or soak-off during common foil/solvent soak-off procedures. Another advantage of the present invention is that the coating materials exhibit a low degree of skin sensitivity. A further advantage of the present invention is that the coating materials do not cause a burning sensation in a user during the curing process. Yet another advantage of the present invention is that the coating materials create less dust in the filing stage of forming the artificial nail. Another advantage of the present invention is that the coating materials of the present invention require reduced or eliminated levels of photoinitiators. Another advantage of the present invention is that coating materials cure to a more tack-free surface, resulting in higher gloss. Other objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. The present invention comprises a variety of radiation curable materials for treating nails. The present invention also comprises a variety of methods for applying these materials. Related methods and compositions are set forth in U.S. patent application Ser. No. 09/466,985, entitled xe2x80x9cPre-Bond Compounds For Radiation Curable Nail Coatingsxe2x80x9d; U.S. patent application Ser. No. 09/466,986, entitled xe2x80x9cRadiation Curable Nail Coatingsxe2x80x9d; U.S. patent application Ser. No. 09/467,127, entitled xe2x80x9cFinishing Compounds for Radiation Curable Nail Coatingsxe2x80x9d; and U.S. patent application Ser. No. 09/912,816, entitled xe2x80x9cRadiation Curable Nail Coatings,xe2x80x9d which are incorporated herein by reference. The stiffness, durability, and toughness of radiation curable nail coatings, in their cured state, varies depending on polymer composition and polymerization initiation. The present invention recognizes that heat generation during curing, coating gloss, nature of the cured surface, and removability also relate to the polymer composition, formulation additives, and the particular photoinitiator system used. Formulas of the present invention allow for a wide range of radiation curable nail coating materials that meet the heat requirements, stiffness, durability, toughness, gloss, and removal needs of most all wearers of artificial nail products. Some of the materials of the present invention are optionally sculptable to form an artificial nail and, once applied, are preferably removable through filing rather than through soaking. Alternatively, other materials of the present invention are preferably removable through soaking rather than through filing. Pre-formed artificial nail tips are typically made from injection molded plastics, e.g., ABS, nylon and acetate. They are typically applied to the fingernail through the use of cyanoacrylate glue. They then must be filed to blend into the fingernail and to roughen the surface for the application of the nail coating. Certain compositions of the present invention illustrate that a stronger bond results from the application of a radiation curable gel coating to a radiation curable pre-formed artificial nail tip. In various embodiments of the present invention, the radiation curable compositions are based on photochemistry described below and in aforementioned related applications. For example, in various embodiments, compositions or materials of the present invention may comprise a photochemical system of phosphinate, amine functional compound, neoalkoxytitanate, and/or a secondary photoinitiator. Throughout this disclosure, the term xe2x80x9cmaterial,xe2x80x9d in singular and/or plural may substitute for composition, e.g., composition of matter. While the compositions of the present invention can include acrylates, methacrylates are preferred because methacrylates are less likely to cause skin sensitization than acrylate formulas. The term xe2x80x9c(meth)acrylatexe2x80x9d as used herein, means methacrylate, acrylate, or mixtures thereof. Ranges for BISGMA urethane resin and (meth)acrylated polyether urethane disclosed herein and in prior, related patent applications are, in some embodiments, suitable for a supporting material that serves to semi-permanently extend a nail. Once applied, such a material is removed by filing rather than by soaking off in a solvent, such as, acetone. Soak-off materials of the present invention comprise resins with or without the use of additives. The term xe2x80x9csoak-offxe2x80x9d refers to the ability to remove a material from a nail with a solvent-based solution, typically in conjunction with a xe2x80x9cwrap,xe2x80x9d for example, but not limited to, an aluminum foil wrap. According to the present invention, it is possible to tailor the characteristics of a soak-off material by varying resin type and resin concentration. In the present invention, the concentration of (meth)acrylated polyether urethane resin in a soak-off material may be higher than in a comparable semi-permanent, non soak-off material. The concentration of BISGMA urethane resin in a soak-off material may be lower than in semi-permanent, non soak-off material. A permanent type resin may be altered through the use of (meth)acrylated polyether urethane resins to give desirable soak-off characteristics. According to the present invention, adjustable parameters include, but are not limited to, (i) blend ratio of BISGMA urethane resin to (meth)acrylated polyether urethane and (ii) molecular weight of (meth)acrylated polyether urethane, which optionally comprise blends of different molecular weight (meth)acrylated polyether urethanes. In the present invention, both semi-permanent and soak-off coating compositions may be altered through the use of thiol, maleimide, or vinyl ether functional materials to reduce photoinitiator levels in the compositions, improve the surface curing, and further decreasing the chance for skin sensitization. In alternate embodiments, pre-formed artificial nail tips are prepared using combinations of any of radiation curable (meth)acrylate, thiol, maleimide, cycloaliphatic epoxide, or vinyl ether functional materials to compliment the radiation curable nail coatings and prevent delamination and remain intact during the soak-off procedure. A key point of the radiation cured artificial nail tips is that they cannot be soaked off. This is particularly important when using the soak-off color on top of a non soak-off system. Currently, these soak-off colors cannot be used with a person who has artificial nail tips because they soften in the foil soak-off process. An alternative method to gluing the radiation cured artificial nail tips on the nail is to use the gel nail coating itself to bond the artificial nail tips onto the natural nail. Therefore, the artificial nail tip is even less likely to delaminate from the coating and the natural nail in normal use, particularly during the foil/solvent soak-off procedure. In the embodiments of the present invention, soak-off materials give rise to a new option for wearers who desire: 1) chip-proof color on their natural nails; 2) protection for new growth; 3) rapid drying to a smudgeproof surface; and/or 4) versatility to easily change color. Furthermore, in a variety of embodiments, soak-off materials used in conjunction with semi-permanent materials give rise to a new option for nail technicians who desire: 1) chip-proof color for their clients; 2) easy color removal at rebalance time; 3) less filing at rebalance; and 4) rapid drying to a smudgeproof surface. Pre-Bond Materials of the ""985 Application The following examples are disclosed in the ""985 application, which is hereby incorporated by reference. The pre-bond material comprises at least one solvent, hydrogenated rosin, and a (meth)acrylate oligomer. Solvents include, but are not limited to, alcohols, ketones, and esters are useful in the pre-bond composition. Useful hydrogenated rosins include, but are not limited to, Foral 85 and Endere(trademark) S from Hercules. The (meth)acrylate oligomers Sarbox 500E50 and Sarbox 600 from Sartomer have been found to be particularly useful with their acid functionality. A preferred composition preferably contains from approximately 50% to approximately 80% solvent, from approximately 10% to approximately 20% hydrogenated rosin, and from approximately 10% to approximately 20% (meth)acrylate oligomer. In actual use, the nail is prepared for the radiation curable nail coating and a thin layer of the pre-bond material is applied. The solvent is allowed to air dry for approximately one minute or as necessary. A tacky surface results to which the radiation curable coating is then applied. More specific procedures will be detailed regarding the application of the radiation curable coating in the examples. Radiation Curable Nail Coating Materials of the ""986 Application The following embodiments are disclosed in the ""986 application, which is hereby incorporated by reference. The present invention also similarly comprises inventive compositions for application to, for example, natural nails, and artificial nail tips. The ""986 application discloses a composition comprising a polymerizable resin material, a photoinitiator, and a photoaccelerator. In a preferred embodiment, the composition comprises between approximately 30 and approximately 98 percent by weight, preferably between approximately 60 and approximately 95 percent by weight of polymerizable resin material; between approximately 0.05 and approximately 10 percent by weight, preferably between approximately 0.1 and approximately 5 percent by weight of photoinitiator; and between approximately 0.1 and approximately 5 percent by weight, preferably between approximately 0.25 and approximately 1 percent by weight of photoaccelerator. In other embodiments, the polymeric material or materials comprises, for example only, (meth)acrylates, and the photoinitiator comprises for example only phosphinates, phosphine oxides and/or sulfanyl ketones (e.g., Esacure(trademark) 1001). in further embodiments, the photoaccelerator comprises aliphatic amines and/or aromatic amines, preferably ethyl 4-dimethylaminobenzoate, butoxyethyldimethylaminobenzoate, octyl-para-dimethylaminobenzoate, and/or dimethylaminoethyl (meth)acrylate. In another embodiment of the ""986 application, the inventive compositions optionally comprise a coupling agent. Compositions comprising between approximately 0.01 and approximately 0.5 percent by weight and preferably between approximately 0.05 and approximately 0.15 percent by weight of a coupling agent are within the scope of the present invention. In one embodiment, the coupling agent comprises an organo-metallic, preferably an organo-titanate coupling agent such as isopropyldimethylacrylisosteroyl titanate, tetraisopropyl(dioctyl)phosphito titanate, neopentyl (diallyl)oxy, tri(dodecyl)-benzene-sulfonyl titanate, and/or neopentyl(diallyl)oxy, trineodecanonyl titanate. In further embodiments of the ""986 application, the composition optionally comprise at least one additive such as, but not limited to, plasticizers, secondary photoinitiators, colorants, dyes, inhibitors, fillers, fibers, and/or adhesion promoting polymers. The composition may comprise between approximately 0 and approximately 50 percent by weight, preferably between approximately 1 and approximately 20 percent by weight of additive. The inventive compositions optionally comprise a plasticizer (such as, but not limited to, phthalates, adipates, and/or sulfonamides), a secondary photoinitiator (such as, but not limited to, camphorquinone, benzildimethylketal, and or benzophenone), a colorant (such as, but not limited to, barium, calcium, or aluminum lakes, iron oxides, talcs, carmine, titanium dioxide, chromium hydroxides, ferric ferrocyanide, ultramarines, titanium dioxide coated mica platelets, and/or bismuth oxychlorides), and an inhibitor (such as, but not limited to, hydroquinone, methyl ether hydroquinone and/or butylated hydroxy toluene), a filler (such as, but not limited to, mineral fillers and/or polymeric fillers), fibers, and an adhesion promoting polymer (such as, but not limited to, methacryloyloxy-ethyl-phthalate). In another embodiment the inventive composition of the ""986 application comprises a BISGMA urethane resin, a polyether, (meth)acrylated urethane resin, a photoinitiator, and a plasticizer. In one embodiment, the composition comprises: between approximately 30 and approximately 90 percent by weight, preferably between approximately 5 and approximately 70 percent by weight, of a BISGMA urethane resin; between approximately 0.5 and approximately 50 percent by weight, preferably between approximately 10 and approximately 40 percent by weight, of (meth)acrylated urethane resin; between approximately 0.05 and approximately 10 percent by weight, preferably between approximately 0.25 and approximately 5 percent by weight, of photoinitiator; and between approximately 0.1 and approximately 5 percent by weight, preferably between approximately 0.25 and approximately 1 percent by weight, of photoaccelerator. In another embodiment, the composition comprises a (meth)acrylated urethane resin having a viscosity greater than 100,000 cps; a photoinitiator (such as, but not limited to, camphorquinone, ethyl 2,4,6-trimethylbenzoyldiphenyl phosphine oxide, benzildimethylketal, and/or benzophenone); and a photoaccelerator (such as, but not limited to, aliphatic amines and/or aromatic amines, preferably ethyl 4-dimethylaminobenzoate, butoxyethyl dimethylaminobenzoate, octyl-para-dimethylaminobenzoate, and/or dimethylamino ethyl methacrylate). In yet another embodiment, inventive compositions optionally comprise a coupling agent, for example but not limited to, between approximately 0.01 and approximately 0.5 percent by weight and preferably between 0.05 and approximately 0.15 percent by weight of a coupling agent. In one embodiment, the coupling agent comprises an organo-metallic, preferably an organo-titanate coupling agent (such as, but not limited to, isopropyldimethylacrylisosteroyl titanate, tetraisopropyl(dioctyl)phosphito titanate, neopentyl (diallyl)oxy, tri(dodecyl)-benzene-sulfonyl titanate, and/or neopentyl(diallyl)oxy, trineodecanonyl titanate). Finally, inventive compositions of the ""986 application optionally comprise at least one additive such as plasticizers, secondary photoinitiators, colorants, dyes, inhibitors, fillers, fibers, and/or adhesion promoting polymers. In one embodiment, a composition comprises between approximately 0 and approximately 50 percent by weight, preferably between approximately and approximately 20 percent by weight, of additive. In another embodiment, an inventive composition optionally comprises a plasticizer (such as, but not limited to, phthalates, adipates, and/or sulfonamides); a secondary photoinitiator (such as, but not limited to, camphorquinone, benzildimethylketal, and/or benzophenone); a colorant (such as, but not limited to, barium, calcium, or aluminum lakes, iron oxids, talcs, carmine, titanium dioxide, chromium hydroxides, ferric ferrocyanide, ultramarines, titanium dioxide coated mica platelets, and/or bismuth oxychlorides); and inhibitor (such as, but not limited to, hydroquinone, methyl ether hydroquinone and/or butylated hydroxy toluene); a filler (such as, but not limited to, mineral fillers and/or polymeric fillers); fibers; and an adhesion promoting polymer (such as, but not limited to, methacryloyloxy ethyl phthalate). Finishing Material of the ""127 Application The following embodiments are disclosed in the ""127 application, which is hereby incorporated by reference. The present invention further comprises a xe2x80x9cfinishingxe2x80x9d material for application to cured polymeric and/or urethane nail coatings. In one embodiment the finishing material comprises at least one solvent and natural oil (e.g., animal and/or vegetable oil). In such an embodiment, for example, the natural oil comprises castor oil. In one embodiment the finishing material comprises: between approximately 50 and approximately 80 percent by weight, of solvent; and between approximately 5 and approximately 40 percent by weight, preferably between approximately 10 and approximately 30 percent by weight, of natural oil. In yet another embodiment, the finishing material optionally comprises a solvent (such as, but not limited to, acetone, ethyl alcohol, ethyl acetate, isopropyl alcohol, and/or methyl ethyl ketone); and a vegetable oil (such as, but not limited to, castor oil). Further, the material optionally comprises at least one fragrance material (such as, but not limited to, lavender oil). The present invention comprises a method to enhance the polished characteristics of a coated nail or nail tip. In one embodiment, the method comprises the steps of: applying a material comprising at least one solvent and a vegetable oil to the coated natural nail or nail tip; and cleaning the coated natural nail or nail tip, preferably with a clean cloth or cotton. The applied material optionally comprises between approximately 30 and approximately 90 percent by weight of solvent (such as, but not limited to, acetone, ethyl alcohol, ethyl acetate, isopropyl alcohol, and methyl ethyl ketone), and between approximately 5 and approximately 40 percent by weight of vegetable oil (such as, but not limited to, castor oil). The applied material optionally comprises a fragrant material (such as, but not limited to, lavender oil). In an additional embodiment, the method comprises the steps of: applying a material comprising at least one solvent, a vegetable oil, and a lanolin material to the coated nail or nail tip; and cleaning the coated nail or nail tip with a clean cloth or cotton. The applied material optionally comprises between approximately 30 and approximately 90 percent by weight of solvent (such as, but not limited to, acetone, ethyl alcohol, ethyl acetate, isopropyl alcohol, and methyl ethyl ketone), between approximately 5 and approximately 40 percent by weight of vegetable oil (such as, but not limited to, castor oil), and between approximately 5 and approximately 30 percent by weight of a lanolin material (such as, but not limited to, PEG-75 lanolin, hydroxylated lanolin and/or hydrogenated lanolin). The applied material optionally comprises a fragrant material (such as, but not limited to, lavender oil). Radiation Curable Coating Composition Methods of the Present Invention The present invention relates to using actinic (e.g., visible and UV) radiation curable compositions to coat artificial nail tips, to extend, strengthen, and coat natural nails, and to prepare pre-formed artificial nail tips for use with radiation curable nail coatings. (Electron beam (EB) or other light beam curable materials are also within the scope of the present invention.) The coating materials are applied to the natural nail or alternatively to the natural nail and a pre-formed nail tip attached to the natural nail (regardless of whether the tip is an injected molded type or a radiation cured type). The compositions of the present invention are capable of reacting with actinic radiation, even when highly colored. The compositions can be formulated in clear, opaque white, translucent and opaque colors. The composition may cure, in preferred embodiments, in less than approximately two minutes with actinic radiation. The compositions of the present invention are polymeric, wherein the term xe2x80x9cpolymericxe2x80x9d or xe2x80x9cpolymeric materialsxe2x80x9d as used throughout the specification and claims is intended to include resins, monomers, oligomers, and polymers. For example, a resin (natural and/or synthetic) is a polymeric material. The term xe2x80x9cresinxe2x80x9d as used throughout the specification and claims, also generally includes xe2x80x9coligomers,xe2x80x9d which are typically molecules having a relatively intermediate molecular mass. In use on a natural nail, a biocompatible solvent-based adhesive resin (pre-bond material) is preferably used to enhance the bond between the radiation curable nail coatings and the natural nail. The natural nails are typically prepared by filing, and then applying a thin coat of the solvent-based adhesive resin (which evaporates to leave a xe2x80x9cstickyxe2x80x9d layer) to the surface of the natural nail, typically beginning at the cuticle area. The radiation curable nail coating is then applied to the adhesive.
{ "pile_set_name": "USPTO Backgrounds" }
At present, Bluetooth function has become a frequently used function in people's daily life and is widely used in smart phones, smart televisions (TVs) and other terminal devices. Among the devices, Bluetooth speakers and earphones are the Bluetooth audio devices which are much more commonly used, and the most of requirements for the audio devices from users are sound quality and volume. A smart TV of which has a Bluetooth function, its volume adjustment becomes more complicated because the TV itself has a volume adjustment function (only for the Bluetooth channel), and the Bluetooth audio device also has its own volume adjustment switch. Currently, to the smart TV with Bluetooth function, when being successfully connected with Bluetooth audio device, the Bluetooth volume can be adjusted by: the user adjusting the Bluetooth channel volume of the TV (via a remote control or a keypad's volume up/down). By this adjustment, the volume's gain value controlled by the TV's IC is adjusted, that is, the volume of the sound sent out by the TV is adjusted. If the volume of the Bluetooth audio device at this time is very small, there will be a limit to the volume change of adjusting the TV, and the range of volume change is small, so the user further needs to manually adjust the volume of the Bluetooth audio device, which results in a poor user experience. In addition, the above-mentioned volume adjustment method still has a defect: when the volume of the Bluetooth audio device is at the maximum value (max), after the TV is connected to the Bluetooth audio device, adjusting the volume gain of the TV through the volume key is prone to cause a distortion.
{ "pile_set_name": "USPTO Backgrounds" }
There is known a radio-controlled watch that adjusts the time by receiving radio signal containing time information from an external time information supply source. As one type of such a radio-controlled watch, a study has been made on a radio-controlled watch that adjusts the time with the use of a signal received from a satellite, such as a Global Positioning System (GPS) satellite (see, for example, Patent Literatures 1 and 2).
{ "pile_set_name": "USPTO Backgrounds" }
Evaporative emissions of fuel vapor from a vehicle having an internal combustion engine occur principally due to venting of the fuel tank of the vehicle. When the vehicle is parked, diurnal changes in temperature or pressure of the ambient atmosphere cause air to waft into and out of the fuel tank. Some of the fuel inevitably evaporates into the air within the tank and thus takes the form of a vapor. If the air emitted from the fuel tank were allowed to flow untreated into the atmosphere, it would inevitably carry with it this fuel vapor. The fuel vapor, however, is a pollutant. For that reason, federal and state governments have imposed increasingly strict regulations over the years governing how much fuel vapor may be emitted from the fuel system of a vehicle. One approach that automobile manufacturers have long employed to reduce the amount of fuel vapor that a vehicle emits to the atmosphere involves the use of a storage canister. In this approach, a tube, often referred to as a “tank tube,” is used to connect the air space in the fuel tank to the storage canister. Inside the storage canister is contained a sorbent material, typically activated carbon, whose properties enable it to adsorb the fuel vapor. Consequently, when air flows out of the tank, the tank tube carries it to the storage canister wherein the fuel vapor is adsorbed into the sorbent material There the fuel vapors are temporarily stored so that they can be burned later in the engine rather than being vented to the atmosphere when the engine is not operating. Due to increasingly stringent air quality standards, improvements are always sought in the art.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a reformation type fuel cell system, which reforms a fuel such as methanol into a hydrogen-enriched fuel gas and takes it, and particularly to a fuel cell system suitable as a power source for an electric vehicle. 2. Description of Related Arts In recent years, various electric vehicles have been developed having a driving motor carried thereon instead of an engine. As one of such types of vehicles, development of a vehicle (hereinafter referred to as xe2x80x9cfuel cell electric vehiclexe2x80x9d) having a fuel cell system as a power source for the driving motor carried thereon has been sharply made. A so-called reformation type fuel cell system has been known as one of such fuel cell systems. An example of the reformation type fuel cell system for use in the fuel cell vehicle will be described with reference to FIG. 7. A fuel cell system 50 depicted on FIG. 7 has a fuel cell 51, in which a hydrogen-enriched gas is supplied to an anode side thereof and air serving as an oxidant gas is supplied to a cathode side thereof to thereby generate electric power. The fuel cell system 50 also has an evaporator 52 which evaporates raw fuel liquid such as water/methanol mixed liquid to form raw fuel gas. To the evaporator 52 is connected a storage tank T for the water/methanol mixed liquid via a pump P, and the raw fuel liquid comprising the water/methanol mixed liquid is supplied to the evaporator 52 by the actuation of the pump P. The raw fuel gas obtained by the evaporation of the raw fuel liquid by means of the evaporator 52 is supplied to a reformer 53. In the reformer 53, the raw fuel gas undergoes a catalytic reformation reaction such as an automatic thermal reaction to produce hydrogen enriched fuel gas. The fuel gas produced in the reformer 53 is supplied to a CO remover 54 at which carbon monoxide by-product produced in the course of the reforming reaction, which is harmful for the fuel cell 51, is removed. The fuel gas from which carbon monoxide is removed by means of the CO remover 54 is then supplied to the anode side of the fuel cell 51. The fuel cell system 50 also has an air compressor 551 and by means of the air compressor 55, the air as the oxidant gas is supplied to the cathode side of the fuel cell 51. The air compressor 55 supplies the air as reforming air required for the reforming reaction (hereinafter referred to as xe2x80x9creforming airxe2x80x9d) to the reformer 53. In the case where the fuel cell electric vehicle having the fuel cell system 50 carried thereon, which has been stopped, is started, the evaporator 52, the reformer 53, and the like are usually cooled. For this reason, in order to exhibit prescribed performances possessed by the evaporator 52 and the reformer 53, a prescribed degree of heat is required for heating them. For this reason, a combustion burner 56 for starting (hereinafter referred to as xe2x80x9cstarting combustion burner) which heats the evaporator 52 and a starting combustion burner 57 for heating the reformer 53 are provided on the conventional fuel cell system 50. After the catalyst layer of the evaporator 52 and the reforming catalyst of the reformer 53 are heated up to prescribed temperatures respectively by means of the combustion burners 56 and 57 for starting, the raw fuel liquid is supplied and the reforming air is supplied in the conventional fuel cell system 50. Since the reforming air is directly introduced into the reformer 53 in the conventional fuel cell system 50, in some cases, the reforming air is not introduced into the reformer 53 in a uniform manner. In this case, differences in the density of the reforming air occurs in the reformer 53, changing the admixture of the raw fuel gas with the reforming air for the worse, which is apt to cause uneven temperatures on the surfaces of the reforming catalyst provided within the reformer 53. Typically, the temperature of the reforming catalyst becomes higher at the portion where the reforming air is concentrated, while the temperature of the reforming catalyst becomes lower at the portion where the reforming catalyst is diluted. Specifically, the oxidation represented by the formula (1), which is an exothermic reaction is accelerated on the portion where the reforming air is concentrated, and due to the heat generated at this time, the temperature of the reforming catalyst is increased. CH3OH+3/2O2xe2x86x922H2O+CO2xe2x80x83xe2x80x83(1) On the other hand, a steam reforming reaction represented by the following formula (2), which is an endothermic reaction, is promoted on the portion where the reforming air is diluted, and the temperature of the reforming catalyst is decreased due to the endothermic reaction. CH3OH+H2Oxe2x86x923H2+CO2xe2x80x83xe2x80x83(2) For this reason, the temperature difference in the reforming catalyst occurs. FIG. 8 shows the relation between the concentration of carbon monoxide in the fuel gas and the temperature of the reforming catalyst. It can be proven from this figure that if the temperature of the reforming catalyst is low, an amount of the total hydrocarbons (THC) becomes unduly high, meaning that the raw fuel gas is passed through with no or insufficient reformation, and the CO concentration becomes low, while THC is decreased according to the increasing of the temperature of the reforming catalyst and the CO concentration has a tendency to be increased. Consequently, with such uneven temperatures of the surfaces of the reforming catalyst, there arises a problem that the raw fuel gas is passed through with no or insufficient reformation to be unreformed fuel gas on the portion where the temperature of the reforming catalyst is low, while the CO concentration becomes high at which the temperature of the reforming catalyst is high. If the amount of unreformed gas is increased, no sufficient amount of hydrogen can be obtained, considering that the power generation in the fuel cell system 51 sometimes has a trouble. On the other hand, if the CO concentration is high, there is a fear of poisoning the fuel cell system 51 with CO. In order to solve such a problem as just mentioned, it could be considered that as shown in an ideal line of FIG. 7 a mixer 58 for mixing the raw fuel gas with the reforming air is separately disposed for the purpose of homogenizing the temperature distribution over the reforming catalyst. However, if such a mixer 58 is disposed, the fuel cell system 50 becomes large-scale, or the pressure loss of the total system becomes large, leading to poor system efficiency. On the other hand, at the time of starting the conventional fuel cell system 50, two starting combustion burners, i.e., the starting combustion burner 56 for warming up the evaporator 52 and the starting combustion burner 57 for warming up the reformer 53, have been utilized. However, the use of many starting combustion burners as described above also leads to enlarge the size of the system, causing the problem of unsuitability for use in the fuel cell system for carrying a vehicle. An object of the present invention is, therefore, to provide a fuel cell system which can appropriately mix the fuel gas in the reformer with the reforming air and which can rapidly operate the evaporator and the reformer at the time of starting the fuel cell system without enlarging the total size of the fuel cell system. According to the present invention, which attains the object described above, there is provided a fuel cell system comprising: a fuel cell in which fuel gas and oxidant gas are supplied to generate power; an evaporator which evaporates raw fuel liquid by a combustion heat obtained by combusting exhaust gas exhausted from said fuel cell to provide raw fuel gas; and a reformer which reforms the raw fuel gas supplied from said evaporator to provide said fuel gas; said fuel cell system further comprising: at least one air introduction member which introduces air for use in the reforming reaction (reforming air) in said reformer; the air introduced from said air introduction member being supplied from said evaporator to said reformer. In the fuel cell system according to the present invention, the reforming air in the reformer is introduced in the evaporator. For this reason, the reforming air is admixed with the fuel cell in a pipe which communicates the evaporator with the reformer; thus, the fuel gas and the reforming air are admixed in a uniform manner. As a result, there is no uneven temperature of surfaces of the reforming catalyst, making it possible to prevent the fuel gas within the reformer from remaining unreformed and to prevent the increasing of the CO concentration. Furthermore, since the reforming air is well admixed with the fuel gas and, thus, no additional device such as a mixer is required to be disposed, the fuel cell system is not enlarged as a whole. Furthermore, according to the fuel cell system of the present invention, air can be previously introduced into the evaporator prior to the supply of the raw fuel liquid at the time of starting the fuel cell system. The use of the air as a thermal medium makes it possible to rapidly warm up the evaporator. The air making use of warming up the evaporator is supplied to the reformer in the state where it remains hot. As a result, since the temperature of the reforming catalyst can be increased through the hot air, there is no need for disposing any starting combustion burner, promoting miniaturization of the fuel cell system as a whole. In one preferred aspect of the fuel cell system of the present invention, a second air introduction member which introduces the air into the evaporator, at the time of starting the fuel cell system is preferably disposed. Comparing the introduction of the air into the evaporator at the time of staring the fuel cell system with that at the time of normal operation except for the starting, a much larger amount of the air is required at the starting, because a large amount of the air serving as the thermal medium is required for rapid warming-up. In contrast, at the normal operation, only a small amount of the air is required (for the reformation), while fine adjustment of the amount of the air is required depending upon the operating situation of the fuel cell system. Consequently, the air introduction member for introducing the air at the normal operation is used to introduce a large amount of air required at the starting only with difficulty, taking into the consideration of the configuration of the air introduction member. For this reason, according the first preferred aspect of the present invention, the second air introduction member for the introduction of the air is separately disposed. (For the purpose of distinguishing from the second air introduction member, the air introduction member of the main configuration is sometimes referred to as xe2x80x9cfirst air introduction memberxe2x80x9d.) When the fuel cell system is started, the air is introduced both from the first air introduction member and the second air introduction member, whereby a large amount of the air required at the starting can be appropriately introduced. In the first preferred aspect of the fuel cell system of the present invention, the second air introduction member is preferably configured so as to introduce the air into the evaporator in an amount larger than that of said first air introduction member. In this preferred embodiment, the air can be introduced into the evaporator from the second air introduction member at starting the fuel cell system, and from the first air introduction member at the normal operation. Accordingly, the first and the second air introduction members may be simply configured, and may be controlled easily. According to the second preferred aspect of the fuel cell system of the present invention, before the raw fuel gas is introduced into the evaporator and after the air introduction from the air introduction member is started, the raw fuel liquid is preferably supplied to the evaporator when at least one of a signal for the evaporator temperature based on the temperature of the evaporator and a signal for the temperature of the reforming catalyst based on the temperature of the reforming catalyst exceeds a prescribed level. According to the third preferred aspect of the fuel evaporator of the present invention, in the first preferred aspect, it is preferred that before the raw fuel gas is introduced into the evaporator and after the air introduction from the second air introduction member is started, air introduction from the second air introduction member is stopped when at least one of a signal for the evaporator temperature based on the temperature of the evaporator and a signal for the temperature of the reforming catalyst based on the temperature of the reforming catalyst exceeds a prescribed level, and the raw fuel liquid is supplied to the evaporator. In the second and third preferred aspects of the present invention, the raw fuel liquid is supplied to the evaporator when either or both of a signal for the evaporator temperature based on the temperature of the evaporator and a signal for the temperature of the reforming catalyst based on the temperature of the reforming catalyst exceeds a prescribed level. For this reason, after the situations for reforming the fuel in the fuel cell system have been ready, the raw fuel liquid is supplied to the evaporator to surely start the production of the fuel gas. Also, according to the present invention, there is provided a fuel cell system comprising: a fuel cell in which fuel gas and oxidant gas are supplied to generate power; an evaporator which evaporates raw fuel liquid by a combustion heat obtained by combusting exhaust gas exhausted from said fuel cell to provide raw fuel gas; and a reformer which reforms the raw fuel gas supplied from said evaporator to provide said fuel gas; said fuel cell system having a configuration that at the time of starting said fuel cell system, air is introduced into said evaporator in an amount larger than that at the time of the normal operation, and the larger amount of the air and the raw fuel liquid are admixed with each other in said evaporator, after which the air having been utilized for warming up said evaporator is transferred to said reformer. According to this configuration, the air can be previously introduced into the evaporator prior to the supply of the raw fuel liquid at starting the fuel cell system. The use of the air as a thermal medium makes it possible to rapidly warm up the evaporator. The air making use of warming up the evaporator is supplied to the reformer in the state where it remains warm. As a result, since the temperature of the reforming catalyst can be increased through the hot air, there is no need for disposing any starting combustion burner, promoting miniaturization of the fuel cell system as a whole.
{ "pile_set_name": "USPTO Backgrounds" }
Tremendous changes have been occurring in the Internet that influence our everyday lives. For example, online social networks and other online communities have become the new meeting grounds. They have been called the new power lunch tables and new golf courses for business life in the U.S. Moreover, many people are using such online social networks and other online communities to reconnect themselves to their friends, their neighborhood, their community, and the world. The development of such online social networks and other online communities touch countless aspects of our everyday lives, providing instant access to people of similar mindsets, and enabling us to form partnerships with more people in more ways than ever before. For example, an increasing number of people are creating and/or visiting network blogs (or web logs). Briefly, a blog is a website where a user may provide commentaries, news, graphics, videos, or the like, in a journal style. Such entries may be on virtually any subject, including food, politics, movies, movie stars, videos, music, gambling, shopping, politics, or even personal online diaries. Blog readers can usually post messages related to one or more entries by blog author. Other online communities include online game systems, e-commerce systems, wikis, messaging systems, or other systems that enable groups of users to interact with each other about a particular website, blog, article, product, service, widget, topic, image, audio content, or the like. Some online communities give a general idea of which web pages, news stories, web searches, or other activity on a particular community is most popular among visitors that particular community. For example, some news websites list the most popular news stories carried on a particular news website. However, a member of multiple online communities generally does not know what is most popular in another community without visiting that online community. If the member participates in a number of communities, the member generally must visit all of the desired communities to obtain the information for each one. However, that information may change quickly at the various communities. There is generally no way for a member of one community to monitor actions occurring in other online communities to which the member belongs. It is with respect to these considerations and others that the present invention is directed.
{ "pile_set_name": "USPTO Backgrounds" }
Disposable towelettes and similar sheet products, sometimes generally referred to as "wipes", which are dispensed from a container, or from individually wrapped packages, have become a fixture in today's society. For example, wipes are used for hygienic purposes as well as routine, nonhygienic cleaning and wiping. The size, shape, thickness, durability, moisture content, and lotion content of the wipe can all be adjusted for a variety of uses, and the versatility of such products has contributed to the popularity of wipes in general. Due to the variety of uses for sheet products such as wipes, they have taken on numerous physical forms, and their dispensing mechanisms have likewise been varied. There are a variety of dispensing mechanisms that involve containers and some that do not. For example, rolls of dry paper towels and toilet paper do not require containers because of their low moisture content. "Dry" sheet products often include lotions or other additives and are not necessarily moisture free. Rather "dry" sheet products are sheets with low moisture content that are generally dry to the touch of an average consumer. Paper towels and toilet paper are generally in the form of rolled continuous sheets with perforations defining the individual leaves. A consumer unrolls the number of leaves that he or she needs and tears them from the roll along the perforations between leaves. Often sheets are premoistened with lotions, cleansing agents or the like. A popular method for dispensing moistened sheets, "wet wipes", is a combination of the perforated roll and the container dispenser. Ribbons of sheets are often perforated, rolled, placed in a rigid container and then lotions and/or cleansing agents are added. For dispensing, individual wet wipes are generally pulled through a small aperture in the container and then tom along the perforations to remove the sheet. Problems with such arrangements can arise as the dispensing aperture is typically small to minimize evaporative loss of moisturizing agent from the products closest to the top. The smaller sized aperture, in turn, requires an increase in force to withdraw the wipe from the dispenser. The increased force can result in premature tearing of perforations between products to be dispensed, or may require designing perforations with increased resistance to tearing, thereby requiring additional force by the user to separate a product for use. Often, two hands are required to extract a treated or "wet wipe" (i.e. one hand to remove a wipe and the other to secure the container while the wipe is being removed from the container and tom from the next wipe). Unfortunately, however, sheet products such as wipes are often needed when only one hand is available (e.g. when cleaning an infant), which makes rolled perforated wipes dispensed from a container an undesirable combination due to the high dispensing forces which may lift the container. Another common form of wipes that is not dispensed from a rigid container includes the individual prepackaged wet wipes often handed out at restaurants or on airplanes. These wet wipes are often folded and placed in individual moisture resistant pouches, then lotion and/or a cleansing agent is added, and the pouch is heat sealed. The consumer tears open the package to use the wipe, and then disposes of both the pouch and the wipe. Typically, this is also a two-handed operation, and there is considerable waste created in the form of the individual pouches, making this method of packaging and dispensing undesirable as well. For generally dry sheets, a known manner of dispensing individual (i.e. pre-cut, interfolded, non-perforated) sheets is through a dispensing container. The dispensing container can be a box with a lid that is opened each time a sheet is needed, it can be a box with a lid and an aperture that individual sheets are pulled through, or it can be a combination of both a lid and an aperture. Generally dry sheets dispensed through a box with an aperture are typically rectangular and interfolded. Tissues and paper towels in restrooms are often dispensed in this manner. As currently practiced, dispensing an interfolded sheet involves pulling one edge of an essentially rectangular sheet away from the dispenser. The interleaved portion of the two sheets serves to pull the adjacent portion of the next sheet due to the interfacial interaction of the two sheets at the overlap area. After the first sheet has been completely pulled through the aperture the two interfolded sheets begin to quickly separate. When the two sheets are completely separated, there should be a sufficient amount of the second sheet extending outside of the dispensing aperture to allow easy subsequent access to the second sheet. The portion of the second sheet remaining above the dispenser is commonly referred to as the "tail". Dry sheets or tissues dispensed in this manner generally have a large overlap area consisting of an entire side of the rectangular sheet interfolded with an edge of the next sheet. However, as moisture is added to a sheet product, the large surface area of overlap often results in excessive interactive forces between the two sheets, causing a second sheet to be dispensed along with the first sheet due to the larger force required to separate the two sheets. Decreasing the surface area of overlap is difficult because this decreases the adhesive force, which controls the amount of the second sheet removed from the dispenser (to provide the "tail" for subsequent dispensing). Currently, sheets that are moist, thick and non-woven, can not be dispensed by interleaving the sheets, as, due to the adhesion between sheets caused by the presence of high levels of moisture, the force required to separate two sheets is so great that multiple sheets are often dispensed with one pull (sometimes called "chaining"). Therefore, the sheets are typically folded individually and stacked one on top of the other and placed in a dispensing container. This dispensing method is less than optimal because there is no convenient tail to grab when a sheet is needed, generally resulting in a more difficult two-handed dispensing procedure. U.S. Pat. No. 5,332,118 to Muckenfuhs (the '118 patent), discloses a series of designs for sheets that can be folded and used in an interleaved pop-up dispensing mechanism without the dispensing difficulties discussed above. The entire disclosure of the '118 patent is hereby incorporated herein by reference. An improved sheet design and method for forming sheet products, as described in the '118 patent, for use in pop-up dispensing applications is provided herein. Methods for cutting continuous ribbons with variable edge geometries have been described in a variety of references. For example, a continuous web can be cut into continuous ribbons by pulling the web over a rotating drum and contacting the web with a rotating blade. The blade can be stationary, which creates a ribbon with straight edges parallel to the machine direction, or it can oscillate in a direction perpendicular to the machine direction to create edges that are at least partially non-parallel to the machine direction. Another method of cutting irregular shapes on the edge of a continuous traveling web is to use a frame to hold multiple cutting devices, which may include water jets, lasers or blades. Multiple frames may also be used for the purpose of cutting shaped fabric pieces or for cutting shaped voids into a continuous fabric web. Another method of cutting a continuous woven web is with heated blades in order to seal the woven edges and to prevent the woven material from unraveling at the edges of the sheet. Automated methods for folding a series of continuous ribbons into a continuous strata of overlapping sheets for use in a pop-up dispensing system are known to the art. Machines of this type have been used for folding continuous ribbons that have edges which are essentially straight and parallel to the longitudinal axis of the ribbons, e.g. tissues. Once the ribbons are interfolded, interleaved continuous stacks are produced, which are cut into blocks suitable for use in a pop-up dispenser. Clearly, prior devices separately teach specific folding means, but continuing enhancement of sheet products for improved pop-up dispensing performance, as well as a better method for economically and efficiently producing such products, has been needed. There is a continuing need for improved sheet products and a method of manufacturing sheets that can be used effectively in a pop-up dispensing system. Further, there is a need for an improved process whereby ribbons can be, overlapped accurately and consistently, folded and cut into sheets for use in a pop-up dispensing system.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field of the Invention This invention relates to a wafer grinding method and a wafer grinding machine. 2. Description of the Related Art With the ever-increasing trend toward higher integration and packaging of semiconductor devices in recent years, semiconductor chips (dies) have been correspondingly reduced in thickness. As a result, the back surface of the wafer is ground by a grinding means before dicing. The surface of the wafer back is ground with a protective tape attached to the front surface of the wafer to protect the circuit pattern formed on the front surface of the wafer. Further, it common practice to polish the back surface of the water that has been ground to remove distortion. With the reduction in wafer thickness, the finish thickness of the wafer requires high dimensional accuracy. Since the finish thickness of the wafer is normally considered to include the protective film; however the thickness variation of the wafer directly affects the finish thickness of the wafer. In view of this, Japanese Unexamined Patent Publication No. 2007-335458 employs the means described below in order to secure the wafer having a target thickness, by accurately measuring the thickness of only the wafer, excluding the protective tape free of the effect of the nitride or the oxide on the back surface of the wafer. Specifically, according to Japanese Unexamined Patent Publication No. 2007-335458, the back surface of the wafer is ground by measuring the total wafer thickness including the protective tape using a contact-type thickness gauge during the rough grinding process and by measuring the thickness of only the wafer using a noncontact-type thickness gauge during the finish grinding process. Once the target finish thickness is reached, the grinding process is ended thereby achieving an accurate target finish thickness. A noncontact-type thickness gauge is described, for example, in Japanese Unexamined Patent Publication No. 2007-113980. According to Japanese Unexamined Patent Publication No. 2007-113980, a hollow cylindrical probe for an eddy current displacement gauge is mounted on the bottom surface of the gauge body, and a coil is arranged at the forward end of the probe. On the bottom surface, a laser radiation unit and a laser light receiving unit of the laser displacement gauge are also arranged on the inside of the hollow cylindrical probe. An AC magnetic field is generated by the coil and an eddy current is induced to a metal plate. The inductance change of the coil due to the eddy current thus induced is detected to calculate the distance L2 from the probe to the metal plate. On the other hand, a laser beam is radiated from the laser radiation unit, and the laser beam reflected on the surface of the coating is detected by a laser receiving unit. The distance L1 between the laser displacement gauge and the coating surface is calculated according to trigonometry. The thickness of the coating is calculated based on distances L1 and L2. During the grinding process; however the environment of the ground surface of the wafer is not stabilized due to the grinding liquid and the grinding sludge, and the use of the noncontact-type thickness gauge during the finish grinding process as described in Japanese Unexamined Patent Publication No. 2007-335458 would make a stable measurement difficult while at the same time fouling the measuring instrument. A measurement conducted while the work is not machined would be affected by the oxide film or the nitride film formed on the back surface of the water, thereby often making it impossible to measure the wafer thickness accurately.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to apparatus for the head-to-tail stacking of articles which are substantially identical in shape and dimensions and which are successively presented to the apparatus with substantially identical orientation. Each article may be a single object or a batch of objects, such as a batch of folded cartons. In the manufacture of packaging cartons a blank is cut, marked with fold lines and at least partially folded so that, when it is ready to be despatched to the factory which will fill it with a product to be packaged, the packaging unit is presented in the most compact form possible. The packaging units prepared in this way generally leave a folding machine or a folding/sizing machine one at a time. However, because of the partial folding, each packaging unit does not have a uniform thickness. In fact, one side is generally thicker than the other, for example the side which is to form a lid and has been folded over by the folding machine. It is for this reason that it is necessary to make provision for a manual operation to invert about half of the packaging units, so that the stacks for despatch, which have been made up head-to-tail, have the same thickness on both sides and thus form very uniform parallelepipeds having at least four mutually parallel edges perpendicular to the general plane of the blanks. It is an object of the invention to propose a new apparatus which makes it possible to carry out, mechanically and reliably, the inversion of half of the folded packaging units and the formation of a stack for dispatch.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to the metal plating of zincated aluminum and, more particularly, to providing an enhanced adhesive and smooth plating by employing an improved zincate solution to treat the aluminum. Metal plating of aluminum is of considerable commercial interest and one application is the preparation of memory disks which are used in a variety of electronic applications such as computer and data processing systems. Aluminum is the preferred substrate for the disk although other suitable metals may be employed. In general, a relatively thin layer of nonmagnetic electroless nickel is applied on the aluminum followed by a thin layer of a magnetic material such as cobalt. A signal is stored on the disk by magnetizing the cobalt layer to represent the signal at a selected moment in time. Typical alloys used for memory disks are Aluminum Association Numbers 5086 and 5586. These disks contain magnesium in an amount of about 4% by weight. Generally, the aluminum disks are about 1.25 to 5 mm. thick and contain, by weight, about 4% to 4.90% magnesium, 0.01% to 0.40% copper, 0.01% to 0.40% zinc, chromium, nickel, iron, silicon and the balance aluminum and inevitable impurities. The completed metal plated disk must be extremely smooth and uniform so as to prevent "crashing" against the magnetizing head of the device which flies extremely close (generally 5-8 microinches) to the disk surface. While the starting aluminum substrate must itself be extremely smooth and flat as described in U.S. Pat. No. 4,825,680, the metal plating of the disk must likewise be smooth and uniform so that the final disk product meets the exacting specifications required of these type products. Unfortunately, however, metal plating of a substrate, and even electroless metal plating, does not necessarily produce a smooth coating. Plating voids, inclusions, bridging and the like are only some of the plating problems which can cause a rough surface which is unacceptable for many applications. Aluminum and its alloys also present additional plating problems because of the rapidity with which they form an oxide coating when exposed to air. As a result, special treatments must be employed when plating on aluminum. These treatments include mechanical treatments; chemical etches, especially acid etches containing iron, nickel, and manganese salts; alkaline displacement solutions, especially those depositing zinc, brass, and copper; anodizing, especially in phosphoric, sulfuric or chromic acids; and electroplating with zinc at low current densities for a few seconds. Of these treatments, the alkaline displacement solutions are generally the most successful commercially. While many metals such as tin can be deposited on aluminum by displacement, zinc is the most common. In this case, the process is known as the zincate process and the following description will be directed to this process for convenience. During the years a number of improvements have been made in the conventional zincate formulation and zincating process, with most of them aimed at accelerating the rate of film formation, and the degree of adhesion and uniformity of the zinc coating produced. A detailed summary of the zincating process may be found in Loch, U.S. Pat. No. 4,346,128, and Saubestre, U.S. Pat. No. 3,216,835, which patents are hereby incorporated by reference. In the conventional zincating process, the aluminum is prepared by alkaline cleaning to remove organic and inorganic surface contaminations such as oil and grease, followed by a cold water rinse. The cleaned aluminum is then sufficiently etched to eliminate solid impurities and alloying constituents which might create voids resulting in bridging of subsequent deposits. After a water rinse, the aluminum is de-smutted to remove metallic residues and aluminum oxides still remaining on the surface. Thorough rinsing is required and then the zincate coating is applied using an immersion zinc bath to prevent re-oxidation of the cleaned surface. This procedure is generally known as a single zincate process. The zinc coating is obtained by immersion of the aluminum part in an alkaline solution containing zincate ions. The amount of zinc deposited is actually very small and depends on the time and type of immersion bath used, the aluminum alloy, temperature of the solution and the pretreatment process. The zinc coating bath also functions as an etching solution and any oxides reformed during the transferring operations are dissolved by the alkaline zincate while depositing zinc onto the aluminum. The general procedure now followed by industry is to double zincate whereby the first zinc film is removed using nitric acid followed by application of a second immersion zinc deposit. Double zincating is a preferred method for plating aluminum and is especially useful on certain difficult-to-plate aluminum alloys to ensure better adhesion of the final metal layer deposit. Despite the acceptance and effectiveness of the zincating processes, the need still exists for an improved process providing both enhanced adhesion and smoothness of the metal plating on the zincated aluminum substrate. Without being limited to theory, it is believed that the properties of the metal plate are directly related to the thickness, uniformity and continuity of the zincate coating with thinner coatings generally providing a smoother and more adhesive metal plating. It is an object of the present invention to provide a method for preparing aluminum substrate articles having extremely smooth metal plated coatings. It is a further object of the present invention to provide an improved single and double zincating process for the metal plating of aluminum, which improved process provides a zincate coating which enables an enhanced adhesive metal plating deposit and metal plating smoothness. It is an additional object to provide improved zincating baths which are used to treat aluminum substrates. Other objects and advantages will become apparent from the following detailed description.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to lids for containers, the lid having a dispensing opening and a closure for the opening. More particularly, the present invention relates to a lid for a container configured to hold a liquid with the lid provided with a sloping cover portion which permits liquid exposed to the outer surface of the cover portion to flow back into the container. Some conventional lids for containers designed to hold liquids, and especially lids for disposable coffee cups that are intended to be carried by the consumer, generally have a rim portion which is configured to engage the upwardly facing mouth of the container, and a cover portion which extends between the rim for sealing the container. Such lids can also have one or more openings formed in the cover portion to permit the liquid to be consumed from the container while the lid is in place on the container. Such openings in the lid are often not resealable in that, once the portion of the lid over the opening has been removed, that portion of the lid is generally not replaceable to reseal that opening. Additionally, in such conventional lids for coffee cups and the like, the cover portion is generally flat and often contains a number of discrete depressions. One problem with such a lid is that, should any of the liquid be splashed or otherwise exposed onto the top surface of the lid, the liquid normally remains on the lid and can be spilled onto the consumer. Other conventional lids for containers designed to hold liquids, and especially lids for disposable coffee cups that are intended to be carried by the consumer, generally have one or more openings formed in the cover portion to permit the liquid to be consumed from the container while the lid is in place on the container, and a separate stopper adapted to reseal the opening which must be assembled to the lid. The assembly of the lid and stopper contributes significantly to the total cost of the whole container to the point that a meaningful economic disadvantage results. Thus, one object of the present invention is to provide a lid for a container in which a resealable opening is provided on one side of the lid to permit liquid to be consumed from the container and to permit the opening to be resealed. Another object of the present invention is to provide a lid for container in which liquid exposed to the outer surface of the lid will flow back into the container when the opening in the container is open. Yet another object of the present invention is to provide a lid for a container in which an integral stopper is provided for permitting resealing of the container thereby avoiding any lid-stopper assembly.
{ "pile_set_name": "USPTO Backgrounds" }
High-throughput sequencing is revolutionizing many fields of biology, including cancer diagnostics, disease monitoring, and environmental analysis. In particular, methods of analyzing mRNA molecules by high-throughput sequencing of reverse transcribed cDNAs can reveal the identify and quantity of transcripts in a biological sample at a given moment in time. Thus, splicing, post-transcriptional modification, gene fusions, mutations, and changes in gene expression can all be monitored by a single method. The input material for commonly used high-throughput sequencing platforms, such as platforms provided by Illumina, Roche Sequencing, Pacific Biosciences, and others, consists of complex libraries of transcriptome-derived DNA fragments flanked by platform-specific adaptors. The standard method for constructing such libraries is entirely in vitro and typically includes one or more, or all, of cDNA synthesis, fragmentation of DNA (mechanical or enzymatic), end-polishing, ligation of adaptor sequences, gel-based size-selection, and PCR amplification. This core protocol may be preceded by additional steps depending on the specific application. However, current methods for generating a cDNA that is tagged on both ends with adapters that are compatible with currently available high-throughput sequencing platforms generally suffer from low yields, lack of reproducibility, high cost, or a combination thereof.
{ "pile_set_name": "USPTO Backgrounds" }
Radio frequency amplifiers use linear amplifiers that are not always “clean,” and in operation, often produce intermodulation distortion. This distortion creates interference at the operating frequencies used by radio frequency, cellular, and other similar communications circuits. As cellular and other communication systems become more important and prevalent, it is necessary to reduce the intermodulation distortion produced in amplifier systems, and especially linear power amplifiers, which play an important part in these systems. Some prior art techniques suppress intermodulation distortion by generating an inverse distortion signal and applying it to the input end of the amplifier. Another prior art technique uses a negative feedback system for negatively feeding back the distortion signals with an output signal at its input end. Other prior art techniques use a feed forward system that extracts the intermodulation distortion signals, and inverts the phase of those signals to cancel the problematic signals. This type of system is widely used in base stations, satellites, and mobile communication systems. This system has high efficiency in suppressing the signals as compared to other types of linear power amplifiers, but is typically complex in structure and large. Sometimes the circuits cause increased power losses. Decreasing intermodulation distortion becomes even more important in multiple carrier linear amplifiers that are operative with multiple carriers in communications systems. Even small amounts of intermodulation distortion can create extreme performance problems.
{ "pile_set_name": "USPTO Backgrounds" }
The prostate gland, which is found exclusively in male mammals, produces several components of semen and blood and several regulatory peptides. The prostate gland comprises stroma and epithelium cells, the latter group consisting of columnar secretory cells and basal nonsecretory cells. A proliferation of these basal cells as well as stroma cells gives rise to benign prostatic hyperplasia (BPH), which is one common prostate disease. Another common prostate disease is prostatic adenocarcinoma (CaP), which is the most common of the fatal pathophysiological prostate cancers, and involves a malignant transformation of epithelial cells in the peripheral region of the prostate gland. Prostatic adenocarcinoma and benign prostatic hyperplasia are two common prostate diseases, which have a high rate of incidence in the aging human male population. Approximately one out of every four males above the age of 55 suffers from a prostate disease of some form or another. Prostate cancer is the second most common cause of cancer related death in elderly men, with approximately 96,000 cases diagnosed and about 26,000 deaths reported annually in the United States. Studies of the various substances synthesized and secreted by normal, benign and cancerous prostates carried out in order to gain an understanding of the pathogenesis of the various prostate diseases reveal that certain of these substances may be used as immunohistochemical tumor markers in the diagnosis of prostate disease. The three predominant proteins or polypeptides secreted by a normal prostate gland are: (1) Prostatic Acid Phosphatase (PAP); (2) Prostate Specific Antigen (PSA); and, (3) Prostate Secretory Protein of 94 amino acids (PSP94), which is also known as Prostatic Inhibin Peptide (PIP), Human Seminal Plasma Inhibin (HSPI), or β-microseminoprotein (β-MSP), and which is hereinafter referred to as PSP94. PSP94 is a simple non-glycosylated cysteine-rich protein, and constitutes one of three predominant proteins found in human seminal fluid along with Prostate Specific Antigen (PSA) and Prostate Acid Phosphatase (PAP). PSP94 has a molecular weight of 10.7 kiloDaltaon (kDa), and the complete amino acid sequence of this protein has already been determined (SEQ ID NO:1). The cDNA and gene for PSP94 have been cloned and characterized (Ulvsback, et al., Biochem. Biophys. Res. Comm., 164:1310, 1989; Green, et al., Biochem. Biophys. Res. Comm., 167:1184, 1990). Immunochemical and in situ hybridization techniques have shown that PSP94 is located predominantly in prostate epithelial cells. It is also present, however, in a variety of other secretory epithelial cells (Weiber, et al., Am. J. Pathol., 137:593, 1990). PSP94 has been shown to be expressed in prostate adenocarcinoma cell line, LNCap (Yang, et al., J. Urol., 160:2240, 1998). As well, an inhibitory effect of exogenous PSP94 on tumor cell growth has been observed both in vivo and in vitro (Garde, et al., Prostate, 22:225, 1993; Lokeshwar, et al., Cancer Res., 53:4855, 1993), suggesting that PSP94 could be a negative regulator for prostate carcinoma growth via interaction with cognate receptors on tumor cells. Native PSP94 has been shown to have a therapeutic modality in treating hormone refractory prostate cancer (and potentially other prostate indications). Metabolic and immunohistochemical studies have shown that the prostate is a major source of PSP94. PSP94 is involved in the feedback control of, and acts to suppress secretion of, circulating follicle-stimulating hormone (FSH) both in-vitro and in-vivo in adult male rats. PSP94 acts both at the pituitary as well as at the prostate site since both are provided with receptor sites for PSP94. It has been demonstrated to suppress the biosynthesis and release of FSH from the rat pituitary as well as to possibly affect the synthesis/secretion of an FSH-like peptide by the prostate. These findings suggest that the effects of PSP-94 on tumor growth in vivo, could be attributed to the reduction in serum FSH levels. Both PSA and PAP have been studied as tumor markers in the detection of prostate disease, but since both exhibit elevated levels in prostates having benign prostatic hyperplasia (BPH), neither marker is specific and therefore they are of limited utility. Recently, it has been shown that PSP94 concentrations in serum of patients with BPH or CaP are significantly higher than normal. The highest serum concentration of PSP94 observed in normal men is approximately 40 ng/ml, while in men with either BPH or Cap, serum concentrations of PSP94 have been observed in the range from 300-400 ng/ml. Because there exists some overlap in the concentrations of PSP94 in subjects having normal prostates and patients exhibiting either BPH or CaP, serum levels in and of themselves are of little value. A major therapy in the treatment of prostate cancer is androgen-ablation. While most patients respond initially to this treatment, its effectiveness decreases over time, possibly because of the presence of a heterogenous population of androgen-dependant and androgen-independent cells to the androgen treatment, while any androgen insensitive cells present would continue to proliferate unabated. Other forms of cancer, which are currently exacting a heavy toll on population are breast cancer in women and cancer of the gastrointestinal tract. Currently, the use of various cancer drugs such as mitomycin, idarubicin, cisplatin, 5-fluoro-uracil, methotrexate, adriamycin and daunomycin form part of the therapy for treating such cancers. One drawback to such a therapeutic treatment is the presence of adverse side effects due to the drugs in the concentration ranges required for effective treatment. Accordingly, it would be advantageous to find a more effective means of arresting the growth of prostate, breast and gastrointestinal cancer cells and tumors, which may be used effectively against both androgen sensitive and androgen insensitive cells. In previous work, described in U.S. Pat. No. 5,428,011, we provided pharmaceutical preparations (i.e., compositions) of native human seminal plasma PSP94 for inhibiting in-vitro and in-vivo cancerous prostate, gastrointestinal and breast tumors. The pharmaceutical preparations included native human seminal plasma PSP94 which could be administered in an appropriate dosage form, dosage quantity and dosage regimen to a patient suffering from prostate cancer. In another embodiment, the pharmaceutical preparation included a mixture of human seminal plasma PSP94 and an anticancer drug which may be administered in an appropriate dosage form, dosage quantity and dosage regimen to a patient suffering from, for example gastrointestinal cancer. PSP94 sourced from human seminal fluid carries with it significant risk of contamination with infectious agents (e.g., HIV, hepatitis (a, b, or c), and other viruses and/or prions). Even with the use of harsh chemical treatment, total eradication of such agents cannot be guaranteed. Additionally, human seminal fluid is found in limited supply, thus making bulk production of PSP94 very difficult. Therefore, the acceptability of human or even xenogeneic sourced PSP94 may be very difficult for both the regulatory authorities and the marketplace. Therefore, the use of recombinant technology for producing PSP94 would represent a significant advancement, as recombinant PSP94 could be produced both free of pathogens and in an unlimited supply. Furthermore, the material would be homogeneous from a single lot source, avoiding batch variation.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a puzzle toy having a plurality of relatively thin puzzle pieces having an image formed on their edges and a puzzle piece holder. U.S. Pat. No. 3,854,726 to Balder discloses a screen photograph puzzle having a number of relatively thin puzzle pieces with edges on which an image is disposed. Each of the puzzle pieces is rectangular in shape. The puzzle pieces are formed by transferring an image, such as a photograph, to a rigid backing, composed of wood or plastic for example, and then cutting the rigid backing with the image formed thereon into a plurality of separate pieces. U.S. Pat. No. 2,491,296 to Beder discloses a puzzle having a plurality of puzzle sticks which may be disposed within a container having a first box portion 22 and a second box portion 24. Each of the puzzle sticks has a side portion on which an image is formed, and when the puzzle sticks are positioned adjacent each other in a predetermined sequence, an entire image is formed. As shown in FIG. 5 of the Beder patent, the puzzle sticks may be disposed in a display position in which the puzzle sticks are positioned within the box portion 22 and in which the box portion 22 is held upright by the box portion 24, with the box portion 22 being disposed in a slot 27 formed in the box portion 22.
{ "pile_set_name": "USPTO Backgrounds" }
Computer attacks are common today. Some examples of computer attacks are buffer overflow attacks, malformed URL attacks, brute force attacks, viruses and worms. Most attacks are malicious in intent. Computer attacks are typically received via a network intranet or Internet interface targeted at the operating system or an installed service. While computer firewalls can prevent some types of malicious attacks they should not be considered a complete solution for stopping a malicious hacker from penetrating a computer on a network. A computer virus is a computer program that is normally harmful in nature to a computer user. Computer viruses are received via several media, such as a computer diskette, e-mail or vulnerable program. Once a virus is received by a user, it remains “dormant” until it is executed by the user (or other program). The main difference of a virus versus a worm is the need for the user or program to execute the virus program for it to spread and infect others. A computer worm is a computer program similar to a computer virus, except that a computer worm does not require action by a person to become active. A computer worm exploits some vulnerability in a system to gain access to that system. Once the worm has infected a particular system, it replicates by executing itself. Normally, worms execute themselves and spawn a process that searches for other computers on nearby networks. If a vulnerable computer is found, the worm infects this computer and the cycle continues. Most computer attacks have a characteristic “signature” by which the attack can be identified. The signature can take various forms depending on the nature of the attack, but typically comprises several consecutive lines of plain text or executable code that are distinctive and appear in the attack. Once a signature is determined for a new computer attack, intrusion detection or intrusion prevention software can be created and distributed to customers. The intrusion detection or intrusion prevention software detects the attack from a network interface card (NIC) or when the attack attempts to pass through a firewall. The detection is by a “key word” search for the signature of the attack. The intrusion prevention or intrusion detection software will then thwart the attack by deleting it or preventing its execution by appropriate command to the operating system. It is important to identify new computer attacks (and their signatures), as soon as possible after the new attack is released. Then, its signatures can be identified and the intrusion prevention or intrusion detection software can be created and distributed to customers. Likewise, it is important to detect a manual attempt to “hack” a victim's server or workstation, whereby a (hacker) person at a remote workstation attempts in real time to gain access to the victim's server or workstation. This typically begins by the hacker entering many combinations of userIDs and passwords, hoping that one such combination will gain access to sensitive software or data in the server or workstation. Hacking can also be facilitated if there is an improper configuration to a server which allows unknown third parties to gain administrative authority to a program or data base. After a hacking, there will usually be some residual evidence in log files or as binary executable code, as deleted or modified system files, etc. A hacker may also transmit exploitation code to the victim's server or workstation, which code automatically exploits vulnerabilities in a victim's server, as would a hacker do manually. For example, a buffer overflow attack exploitation program exploits a vulnerability, typically caused by programmer error, that allows for arbitrary code execution on the target system. As another example, an attacker can inject special machine code into a program variable (usually input by a user) to cause arbitrary code execution in a program. This special code, once given to the program to execute, is placed in the correct area of computer memory, such that the executing program is unaware of the malicious intent of the injected code. There are several classes of buffer overflow, including format string, remote and local. It is important to thwart hackers (as well as viruses and worms). An Intrusion Detection System (“IDS”) is currently known and has a known (i.e. “used”) address to detect known computer attacks by matching key aspects of that attack to a known “signature”. The IDS is associated with an enterprise, and has a list of known signatures of known viruses and worms, and other common attacks. The IDS searches each packet it receives for the known signatures, and thereby detects when the enterprise is being “attacked” by virus, worm or any other attack which has a known signature. When this occurs, the IDS notifies a security operations center (“SOC”), and the SOC will check that the proper anti-virus, anti-worm or other intrusion protection software is currently installed in the enterprise or customer network. While the IDS is effective in safeguarding an enterprise against known “exploits” (for example, computer viruses, worms and exploitation code), it does not identify or safeguard against new exploits for which the signatures are not yet known. A “honeypot” is currently known to collect suspicious Internet message packets. The honeypot is a device such as a server, workstation or embedded device (for example, an old workstation, Single Board Computer (SBC) or de-commissioned server) that has an IP address on the Internet or company intranet, but the IP address is unused, i.e. the device has no function that requires input or service from any other server or workstation, the IP address is not registered with a domain name service, the IP address is not sent or broadcast to any other server or workstation, and the honeypot is not serving any useful function to the enterprise or network (other than gathering information). So, all packets sent to the honeypot are unsolicited and suspect. It is known for a human analyst to analyze all of the packets received by the honeypot to determine their type and whether they represent a known or unknown computer attack. For example, the analyst will determine which packets are harmless broadcast traffic, network administration, or web crawler requests. The analyst will also look for harmful known viruses, worms, and exploitation code contained in the packets. The analyst will also look at residual evidence of hacking in the honeypot (for example, changes to data bases, software, system files, etc.). The analyst will also identify new computer attacks by filtering through network packets (logged by the honeypot) for known attacks. Once known attacks are filtered, the analyst has a smaller set of data to analyze. This smaller set of data is scrutinized for anything suggesting a new attack. Packets must have a purpose or be explained before they are discounted as known or harmless. While the foregoing human analysis of the honeypot process is effective, it is time consuming, requires a computer savvy human to make the analysis and is prone to error. Also, the shear number of packets received by the honeypot delays the detection of new computer attacks, viruses, computer worms and exploitation code. Therefore, an object of the present invention is to facilitate the identification of new computer viruses, worms, exploitation code or other unwanted intrusions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates generally to the field of optoelectronics and more specifically is directed to an integrated assembly for coupling laser diodes or photodetectors to optical fibers. 2. State of the Prior Art Optical interconnection of electronic data and communication systems is of great interest as it offers use of small, relatively lightweight cable, large transmission capacity, long transmission distance, and immunity to electromagnetic noise, compared with electrical cables using metallic conductors. Potential applications include, but are by no means limited to, telephone transmission lines, subscriber television cable service, and interconnection of subsystems in large computer architectures at different packaging hierarchies, such as chip-to-chip, board-to-board, card-cage to card-cage, and inter-cabinet connections. Optical fibers are continuous lengths of finely drawn, highly transparent glass material which can transmit light over long distances. Optical fibers must be interfaced to the electronic circuits which generate and process the electrical signals carried by the fibers. At the transmitter end, the electronic circuits drive light emitting semiconductors, such as laser diodes, which produce light pulses fed into the optical fibers. At the receiving end, the light signals carried by the optical fibers are directed onto photodetectors which convert the optical, i.e. light signals to an electrical signal for further processing by electronic receiver circuitry. Typically, optical fiber transmission lines are made up of bundles of such fibers for carrying parallel data. Data is fed to each optical fiber by a corresponding light emitting element which is electrically modulated such that the light output corresponds to an electrical signal input. The light emitting elements are typically formed on a single semiconductor chip, such as a laser diode array, which may for example have twelve mutually independent laser diode emitters spaced along a line on a common face of the chip. The individual laser diodes of the array are closely spaced to each other and each emits a cone of light. The cones spread out and begin to overlap at a short distance from the laser chip. In order to avoid cross-over and interference between the optical signals, the laser diode emitters must be positioned closely to the end faces of the optical fibers comprising the optical transmission link. The close spacing between the laser diode emitters, coupled with the small diameter of the fiber end faces and even smaller core diameters, requires precise alignment of the diode array in relation to the optical fiber holder, so that a maximum amount of laser light illuminates the corresponding optical fiber core. Misalignment between the laser diode and the fiber core results in wasted laser output and a consequent weakening of the transmitted light signal. Proper alignment of the laser diode array is specially important when single mode optical fibers are employed, due to the very small diameter of the core of such fibers. Multi-mode optical fiber cores are substantially larger in diameter, and alignment of the laser diode array is easier in such case. For the potential of optoelectronic communication to be fully realized improvement is needed in the packaging of the optoelectronic components, particularly the assemblies used for creating the interface between the electrical and optical portions of the system. In particular, improvement is needed in regard to the mounting of the light emitting and photo detector devices and their coupling to the optical fibers in order to improve the efficiency and reliability of the optoelectronic interconnects, and to reduce the cost of current assemblies which rely on discrete, precision machined components, require costly, labor intensive active alignment, and offer inadequate thermal and mechanical stability. One type of widely used optical fiber connector, the MT (Mechanically Transferable) type connectors, has an optical fiber holder where the fibers are captive in channels defined between an upper substrate and a lower substrate. Typically, one substrate has a surface traversed by parallel grooves, each groove having a V-shaped cross-section. A flat surface of the other substrate is joined against the grooved surface to define between the two substrates parallel channels of triangular cross-section. A fiber ribbon or cable containing one or more optical fibers is clamped between the two substrates and individual fibers extend from the cable or ribbon within corresponding channels and terminate at a common plane surface defined by the two substrates, the fiber ends being arranged along a straight line formed by the junction of the two substrates. Each optical fiber has a light transmitting core surrounded by a cladding. The diameter of the fiber is normally 125 microns including the cladding. The core diameter is 62.5 microns for multi-mode fibers, and only 10 microns for single mode fibers. The interior dimensions of the triangular channels are held to very close tolerances so that in cross section the cylindrical fibers make tangential contact with the center of each side surface of the channel. The fiber ends as well as the common plane surface of the substrates are highly polished and flat to facilitate close physical contact with a second similar holder for making an optical connection between two lengths of fiberoptic cable. Alignment of the fiber ends between the two connectors is ensured by precisely machined guide pins on one connector mated to equally precise guide holes in the other connector. This type of optical fiber connector is available from NGK of Japan with the two substrates made of ceramic material, and in a precision plastic version from US Conec Ltd., of Hickory, N.C. Current engineering practice is to mount the light emitting and photo detector elements separately from the optical fiber holder or connector, on a submount which is part of the optoelectronic package containing the transmitter/receiver electronics. The fiber optic connector is mechanically engaged to the housing of the optoelectronic package and is held in alignment with the photo emitter or detector by alignment pins or other mechanical expedient. Such assemblies typically require active alignment, i.e., the laser diode is powered up and adjusted until the light output of the optical fibers is maximized. Prior art optoelectronic couplings and connectors which rely on a combination of structural materials having different coefficients of thermal expansion tend to suffer from thermal instabilities. As different parts of a coupling or connector expand at different rates with temperature changes, the optical alignment between the light emitting device and the optical fibers can be affected, diminishing the power delivered by the light emitting device to the optical fibers and in extreme cases disrupting the optoelectronic link. What is needed is an optoelectronic coupling with thermally stable and mechanically dependable integrated mounting of the laser diode/photo detector and optical fiber holder on a common base. Past efforts in that direction have produced laboratory prototypes with technologies which have proven prohibitive and impractical for manufacture in commercial quantities. In one such prior effort, a number of parallel grooves were chemically etched in the surface of a silicon base, and optical fibers were laid in the grooves and secured in place with adhesive. The groove depth was such that only the fiber cladding was recessed below the silicon surface and the fiber cores remained above surface. A laser diode array was mounted on the silicon base in alignment for illuminating the end surfaces of the optical fiber cores. Power was supplied to the laser diode through metal film electrodes deposited on the silicone base and connected by wire bonding to corresponding electrodes of the laser diode. This assembly, which performs reasonably well under laboratory conditions, is impractical for commercial applications. Firstly, the chemical etching technology needed to make the precisely dimensioned grooves is very difficult to control, and is an expensive process not suited to commercial production. Further, silicon has a rather large coefficient of thermal expansion, which tends to make the assembly thermally unstable, and lacks adequate mechanical strength for field use in connector applications. A continuing need exists for a commercially practical and reasonably priced integrated optoelectronic coupler and connector offering good thermal stability, satisfactory mechanical strength and advantageous electrical properties.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to covers and, more specifically, to a seat cover that will protect the underlying seat from moisture and dirt having a base layer comprising a moisture impermeable material and a top layer of an absorbent material with strategically placed straps providing means for securing the seat cover to a seat. 2. Description of the Prior Art There are other seat covers designed for motor vehicles. Typical of these is U.S. Pat. No. 2,027,947 issued to Wittcoff on Jan. 14, 1936. Another patent was issued to Nielson on Aug. 2, 1983 as U.S. Pat. No. 4,396,227. Yet another U.S. Pat. No. 4,694,511 was issued to Estes, et al. on Sep. 22, 1987 and still yet another was issued on Feb. 9, 1988 to Hunt as U.S. Pat. No. 4,723,814. Another patent was issued to Hinde on Apr. 9, 1991 as U.S. Pat. No. 5,005,901. Yet another U.S. Pat. No. 5,911,476 was issued to Horn on Jun. 15, 1999. Another was issued to Campbell on Sep. 28, 1999 as U.S. Pat. No. 5,957,528 and still yet another was issued on Apr. 18, 2000 to Horn as U.S. Pat. No. 6,050,639. Another patent was issued to Stoll on May 30, 2000 as U.S. Pat. No. 6,067,777. Yet another U.S. Pat. No. 6,338,527 was issued to Toyota, et al. on Jan. 15, 2002. Another was issued to Learning on Dec. 2, 2003 as U.S. Pat. No. 6,655,735 and still yet another was issued on Jun. 9, 2000 to Melone as Canadian Patent No. CA2,255,388.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a method for determining the color and/or composition of a material. The invention further relates to an apparatus for determining color and/or composition of a material. Color is a property of an object which depends on the object, conditions of illumination, and the observer. In general, the light reflected or transmitted by a non-self-luminous object depends on the nature of the light simultaneously incident on the object, and the geometrical relation of the light source and object. The perceived color of the reflected or transmitted light depends additionally on the visual receptivity of the observer, and the geometrical relation of the observer to said light. The apparent reflectance of a non-self-luminous object in a particular geometrical relation to the light source and observer is defined to be the ratio of the spectral power in each wavelength band of the reflected light to the spectral power of the same wavelength band of the incident light: ##EQU1## Similarly, the apparent transmittance of a non-self-luminous object in a particular relation to the light source and observer is defined to be the ratio of the spectral power in each wavelength band of the transmitted light to the spectral power of the same wavelength band of the incident light: ##EQU2## Absorbance is often used instead of transmittance, being the ratio of spectral power in each wavelength band of the absorbed light to the spectral power of the same wavelength band of the incident light. Thus, it is the complement of transmittance: ##EQU3## An alternative definition of absorbance is the logarithm of the absorbance as defined in (3). Absorbance and transmittance are interchangeable by trivial modification of any expression in which one or the other appears. In this specification, where either absorbance or transmittance is used, it is to be understood in each case that the equivalent formulation using the other is tacitly implied and within the scope of the specification. Similarly, while this specification expresses reflectance, transmittance, and other quantities as functions of wavelengths, equivalent expressions as functions of frequency or wave number are also in common use. These quantities can be easily converted between the different formulations. Thus, wherever a quantity is expressed as a function of wavelength, it is to be understood in each case that the equivalent formulations using functions of frequency or wave number are tacitly implied and within the scope of the specification. Clearly, reflectance and transmittance as defined in (1) and (2) have meaning only for wavelength bands in which the incident light has sufficient power to be detectable. Accordingly, rich light sources, having significant amounts of energy at all humanly visible wavelengths, are normally used for measuring them. Since the perceived color of an object depends on so many factors, standardization of definitions is most important for each of the variables. Standards authorities, such as the CIE (Commission Internationale d'Eclairage), have specified generally accepted standard illuminants having particular spectral power distributions, and color measurement devices usually contain means for approximating one or two such illuminants. Such means is often a rich physical light source with specific optical filters. The C, D55, D65, and D75 sources are frequently encountered, but others such as A, D60, F2, etc. may also be found in industrial applications. Similarly, since human observers may match color samples differently depending on the size of the color samples, standard spectral observers have been defined for 2 degree and 10 degree fields of view. Since human vision reduces many wavelength bands in a light spectrum into a three dimensional signal in the retina, color is conventionally expressed as colorimetric quantities having three values. Colorimetric systems in common use include for example CIE Tristimulus; CIE Chromaticity, Lightness; CIE L*a*b*; Hunter L,a,b; Hue Angle, Saturation Value and Dominant wavelength, Excitation purity, Lightness. Under given conditions of illumination and geometry, CIE tristimulus values may be calculated for the standard spectral observers using formulae which are defined by the CIE. These tristimulus values provide a base from which the other colorimetric quantities can be calculated using formulae defined by the pertinent standards authorities. Such formulae are occasionally revised, as the state of the art is improved. Some auxiliary colorimetric quantities are also of importance in appearance specifications. These are also derived from the tristimulus values, with definitions provided by the CIE and other standards authorities. They include for example tint; whiteness index; yellowness index and blue reflectance. The tristimulus values are calculated from the apparent reflectance or transmittance of an object, using the spectral power distribution of the illuminant for which the object's color appearance is to be evaluated. Conventionally, tristimulus values are defined as integrals but are normally evaluated as finite approximations: ##EQU4## where k is a normalization factor, S is the spectral power distribution of the target illuminant, and x, y, z, are the standard observer functions, tabulated at uniform wavelength intervals. In the case that the reflectance data is abridged or truncated, or measured at non-standard wavelength intervals, there are various recommended techniques for interpolation, extrapolation or resampling. Similar equations to (4a-4c) and corresponding methods are used in calculating tristimulus from transmittance spectra. Note that the spectral power distribution of the illuminant used in evaluations (4a-4c) need not be the same as the spectral power distribution of the source used to illuminate the sample during measurement of reflectance or transmittance. It is assumed that the reflectance and transmittance do not depend on the light source. Each industry tends to have a preferred colorimetric system, although there may be regional differences in such preference. For example, Hunter L,a,b is used widely in the papermaking industry in the U.S.A., but rarely elsewhere, as CIE L*a*b is preferred in the papermaking industry in most other regions, and is also used in the U.S.A. The CIE L*a*b values are defined (1976) for photopic conditions as follows: ##EQU5## where X.sub.n, Y.sub.n, and Z.sub.n are the tristimulus values for the illuminant. Photopic conditions exist when the ratios X/X.sub.n, Y/Y.sub.n, and Z/Z.sub.n all exceed 0.008856; otherwise either mesopic or scotopic conditions exist, and the equations used differ from (5a), (5b) and (5c), as described in ASTM test method E308-90, for example. These and other issues of colorimetry are well known per se, and are not further discussed. Measurement of color and evaluation of colorimetric quantities in photopic, mesopic, and scotopic conditions are contemplated by, and within the scope of the present invention. Auxiliary non-colorimetric quantities are of importance in some industries. For example, indices of brightness may be derived from the reflectance spectrum, whereas indices of opacity and transparency may be derived from the transmittance spectrum. Definitions of these and other non-standardized quantities are often industry-specific. However, in their respective fields of application, they are of equal importance to the standardized colorimetric quantities. The foregoing discussion pertains to describing the measured color of a sample. However, in the case that the sample is not opaque, it may be necessary to calculate the color which would be measured from a stack of samples which is thick enough to be effectively opaque. The transmittance of such a stack is obviously zero, so we are concerned only with its reflectance. Often, a sufficient number of substantially identical samples can be stacked, and the measurement made directly thereon. However, in other cases this may not be practical--for instance, if the measurement is made on a moving sheet during manufacture. There are several multi-flux models which allow calculation of the infinite stack reflectance from measurements of sample reflectance and transmittance, and some knowledge of the relative absorbing and scattering power of the sample. One which is in widespread use in sheet forming industries is the Kubelka-Munk two-flux model, for diffuse light fluxes in both directions. Another is the four-flux model, which incorporates directional light fluxes in addition to the diffuse light fluxes. If the quality specification for a translucent material is given in terms of the color of an infinite (or opaque) stack of samples, it is also necessary to perform the inverse calculations to derive a single-layer color from an infinite stack color. Similarly, these techniques can be used to calculate the color which would be measured from a sample of different thickness to the measured sample. In this case, the thickness need not be a multiple of the sample thickness, and may be less than or greater than the sample thickness. Since, in the general case, such calculation need not be for an opaque thickness, both reflectance and transmittance may be so calculated. The equations and methods of multi-flux models, including the four-flux and Kubelka-Munk two-flux models may be found in Volz, H. G., "Industrial Color Testing", VCH, Weinheim Germany, 1995, among others. These models do not incorporate fluorescence or other spectral transformations; they only model absorption and scattering phenomena. The difference in color between two samples, or between a sample and a color specification, can be evaluated on the basis of the available measurements. Customarily, a numerical expression of such a color difference is used to determine acceptability of manufactured items, by comparing that numerical value to the allowable maximum value. Depending on the number and type of color variables measured or specified, more than one method of evaluating color difference may be thus employed. As an example, a commonly used expression for color difference in a colorimetric system is the distance between the co-ordinates of the compared measurements. The CIE L*a*b* color difference is defined (1976) as: EQU .DELTA.E*=[(.DELTA.L*).sup.2 +(.DELTA.a*).sup.2 +(.DELTA.b*).sup.2 ] (6) A refinement of (6) was promulgated in 1994, but is not yet in widespread use in industry. Analogous definitions exist for other colorimetric systems, and specialized methods for evaluating color difference exist in specific industries. It is possible for two different reflectance or transmittance curves to produce identical tristimulus or other colorimetric quantities under specific conditions of the illuminant and observation. However, if the illuminant or observer is changed, the colorimetric quantities will no longer match. This phenomenon is known as metamerism. To avoid source metamerism and field metamerism, the color specification for an object may be supplied in spectral form, as reflectance and/or transmittance curves. In the absence of fluorescence, reflectance curves are invariant with changes to the illuminant. Thus, if the reflectance and transmittance curves match for two samples under one illuminant, they will have matching tristimulus and other colorimetric values under all illuminants and observers. Instrument metamerism is the phenomenon whereby one color measurement device may indicate that a pair of samples match in color, while another color measurement device indicates a color mismatch. Instrument metamerism arises in spectrophotometric devices through differences in source spectrum, polychromator characteristics, number and wavelength of photodetector elements, and internal standards, among others. The color of a non-self-luminous opaque sample is commonly measured by means of spectrophotometers in which a sample is illuminated with a particular rich light source (one having significant energy at all visible wavelengths), usually filtered to approximate a standard illuminant, and the reflected light is measured at several wavelengths in the visible band. The sample may be continuously illuminated, using a constant light source, or intermittently, using a flashing source. In the case of a non-self-luminous translucent sample, the transmitted light may be measured additionally or alternatively to the reflected light by means of a detector on the opposite side of the sample to the illuminant. In other prior art apparatuses, the transmitted light can be reflected back through the sample by a suitable reflector opposite the illuminant such that the detector for transmitted light is on the same side as the illuminant and the detector for reflected light. By suitable means for alternating a reflective white backing with a non-reflective black backing, a device may use a single detector to measure reflected light and reflected light with doubly transmitted light alternately. Estimates of the single layer transmittance and of the infinite stack reflectance may then be derived by suitable calculations. For example, if the black backing is completely non-reflective, then the following Kubelka-Munk equation (given in Wendtland, W. W. and Hecht, H. G., "Reflectance Spectroscopy", Wiley, New York USA, 1966) may be used to estimate the infinite stack reflectance: ##EQU6## where R.sub.white is the reflectance with white backing, R.sub.black is the reflectance with black backing, and R.sub.backing is the reflectance of the white backing. In practice, the reflectance is rarely calculated using (1). Instead, the reflected light is compared to the reflected light obtained when a reference sample of known reflectance is placed in the sample location and illuminated with the same source: ##EQU7## In all these cases of prior art, neither true reflectance nor true transmittance is measured. Rather, the measuring device measures the apparent reflectance and/or the apparent transmittance. This is a consequence of measuring all wavelength bands of the reflected or transmitted light while illuminating with a rich light source. The apparent reflectance of an infinite stack is often calculated from the apparent reflectance of a single layer, and inverse calculations are often performed for apparent reflectance targets, as disclosed by U.S. Pat. No. 5,082,529. This adjustment typically uses methods based on the Kubelka-Munk two-flux model, even in cases where it is inappropriate (e.g. when the instrumental illumination contains a directional radiance, and is not purely diffuse). Whereas the true reflectance and transmittance at each wavelength is at most unity, the apparent reflectance and apparent transmittance may exceed unity due to fluorescence. The process of fluorescence involves absorption of light in a range of wavelengths termed the absorption band, and the emission of part of that absorbed energy as light in an emission band, containing longer wavelengths than the absorption band, but which may partly overlap the absorption band. The efficiency of absorption may vary at different wavelengths in the absorption band. Each wavelength in the absorption band can have a different efficiency of emission at each of the wavelengths in the emission band. If the incident light contains sufficient power in the absorption band of a fluorescent object, the light consequently emitted in its emission band, when combined with light reflected or transmitted in the emission band, can yield an apparent reflectance or transmittance in the emission band which is greater than unity. If there is little or no incident light in the emission band, the apparent reflectance or transmittance in that band may be much greater than unity. Note that, regardless of whether the light absorbed in a fluorescent relation is directional or diffuse, the emitted light will generally be diffuse. In this specification, we shall continue to use the terms "reflected" and "transmitted" to describe respectively the light excident from a sample on the same side as the illumination and on the opposite side, including the effects of fluorescent emission. Note that while the above mentioned multi-flux models incorporate absorption and scattering, they do not incorporate spectral transformations of the kind under discussion here. These processes can be expressed in the following way: ##EQU8## where E(.lambda.,.zeta.) is the apparent emissivity of the sample, being the ratio of light apparently reflected at wavelength .lambda. to the light incident at wavelength .zeta., and U(.lambda.,.zeta.) is the apparent transmissivity of the sample, being the ratio of light apparently transmitted at wavelength .lambda. to the light incident at wavelength .zeta.. The lower limit of each integration, min, is a wavelength below the fluorescence absorption band of the sample; in practical cases, this wavelength is generally 200 nm or higher. Matrix representation of emissivity and transmissivity provide finite approximations: ##EQU9## where E.sub.jk and U.sub.jk are respectively the apparent emissivity matrix and apparent transmissivity matrix, with elements defined for quantum relations between discrete wavelength bands, centered on specific sets of wavelengths .lambda..sub.j, .zeta..sub.k, and .DELTA..zeta..sub.k is the width of the wavelength band centered on .zeta..sub.k. For instance: ##EQU10## Thus, the light apparently reflected from a sample depends on the apparent emissivity matrix of the sample as well as on the light incident on the sample. In the same way, the light transmitted through a translucent sample depends on the apparent transmissivity of the sample as well as on the light incident on the sample. For non-fluorescent samples, the apparent emissivity E.sub.jk is nonzero only for elements where .lambda..sub.j =.zeta..sub.k, and these emissivity values are the reflectance values at those wavelengths. Similarly, the apparent transmissivity U.sub.jk of a non-fluorescent translucent sample is nonzero only for elements where .lambda..sub.j =.zeta..sub.k, and these transmissivity values are the transmittance values at those wavelengths. For fluorescent samples the emissivity and, if translucent, the transmissivity have nonzero values for some elements where .lambda..sub.j &gt;.zeta..sub.k. It is clear from (9a) or (10a) combined with (1) or (8) that for a fluorescent sample, there can be a difference between its apparent reflectance curves measured under different conditions of illumination. The degree to which the apparent reflectance curves differ depends on the degree to which the illuminants differ in their spectral power distribution in the fluorescence absorption and emission bands. The apparent transmittance of a translucent fluorescent sample will depend in an analogous way on the spectral distribution of illuminants, as is obvious from combining (9b) or (10 b) with (2). These phenomena give rise to fluorescent metamerism, in which samples which have identical apparent reflectance and apparent transmittance curves when measured with one rich illuminant can have non-identical apparent reflectance and apparent transmittance curves when measured with another rich illuminant. It is important to note for the purposes of this invention that, although the apparent reflectance and apparent transmittance of a sample will vary with the illumination used in the measuring device, the apparent emissivity and apparent transmissivity are invariant. Similarly, although addition of a fluorescent colorant to a substrate will cause changes .DELTA.R(.lambda.) and .DELTA.T(.lambda.) in its apparent reflectance R(.lambda.) and transmittance T(.lambda.) which will vary with the illumination S(.lambda.) used in the measuring device, the changes .DELTA.E(.lambda.,.zeta.) and .DELTA.U(S.lambda.,.xi.) caused in its apparent emissivity E(.lambda..xi.) and transmissivity U(.lambda.,.xi.) are invariant with illumination. When there are plural absorption-emission relations between different bands, it is possible for fluorescent cascades to exist. In this case, the emission band of a first fluorescent relation is partly or wholly in the absorption band of a second fluorescent relation. Thus, part of the light emitted as a result of absorption in the first absorption band may be emitted in the second emission band, even when there is no incident light in the second absorption band. Such cascades can involve more than two fluorescent relations, and be complex in nature. Methods whereby source metamerism and observer metamerism can be avoided in non-fluorescent materials are well-known. Most of these involve specifying, measuring, and controlling the reflectance spectrum of the material, rather than merely a set of colorimetric quantities. For example, U.S. Pat. No. 4,439,038 uses a least-squares approximation of the reflectance spectrum, while Shakespeare, J. and Shakespeare, T., "An Optimizing Color Controller", proc. TAPPI 1997 PCE&l at Birmingham Ala., 127-135, TAPPI Press, Atlanta USA, 1997 use a reflectance model to optimize colorimetric quantities in addition to the reflectance. U.S. Pat. No. 4,565,444 discloses methods whereby measurements of color are made across the entire width of a sheet without scanning by means of light pipes, or by providing illumination and detection across the entire sheet. U.S. Pat. No. 4,801,809 discloses a similar idea to U.S. Pat. No. 4,565,444, but implements it differently. U.S. Pat. No. 5,082,529 also discloses measurement and control of reflectance, adding Kubelka-Munk-type adjustments for infinite stack calculations. In an attempt to quantify the effects of fluorescence, various modified spectrophotometers have been devised. In general, these employ additional rich light sources or optical filters to approximate each of plural specific illuminants, such as C, D65, F12 or intermittently removing some or all of the near ultraviolet from the approximation to an illuminant such as D65 or intermittently adding a rich ultraviolet illuminant to a specific illuminant such as C or D65. Each of these techniques partly addresses the issue of measuring fluorescent metamerism, but none copes with it in a satisfactory way. Equally, none provides an adequate model for color control in the presence of fluorescent metamerism or for color control which will avoid or minimize the effects of fluorescent metamerism. Removal of near-ultraviolet light from, and addition of near-ultraviolet light to an illuminant are equivalent in that they allow the apparent reflectance to be measured with different amounts of near-ultraviolet light in the illuminant. Thus, the sensitivity of apparent reflectance to near-ultraviolet light can be quantified. However, this technique completely fails to address fluorescence where both absorption and emission occur within the visible range. Similarly, it fails to address fluorescence where both absorption and emission occur within the near-ultraviolet range. Also, since rich near-ultraviolet sources are used, it does not distinguish between the different efficiencies in each quantum relation of a fluorescence from near-ultraviolet to visible. Thus, it cannot provide a model for addition or removal of near-ultraviolet light of different relative spectral distribution than that used in the measuring device. Another consequence is that it cannot provide a model for fluorescent cascades existing in any wavelength bands, whether near-ultraviolet or visible. From colorimetric data alone, it is difficult or impossible to deduce the amounts of different colorants present in a sample, even when the nature of the substrate and colorants is known. However, if reflectance and/or transmittance spectral data are provided in the visible range of wavelengths, it becomes possible in some cases to estimate the amounts of known non-fluorescent colorants present, provided the spectral responses of all colorants are quantified and the reflectance and/or transmittance of the substrate is known. The estimation can be performed, for example, by modification of the control calculations disclosed in the above mentioned article "An Optimizing Color Controller", so that the difference in reflectance or transmittance between the substrate and the sample is optimally fitted by scaled combination of normalized spectral responses of the colorants, hence providing the amounts of colorants present as said scale factors. A different method is disclosed in U.S. Pat. No. 4,977,522 which omits consideration of the substrate, and hence applies only to opaque coatings such as paints. These estimation methods are unreliable if fluorescence is present to a significant degree either in the substrate or in the colorants even if the data covers the fluorescent absorption region as well as the fluorescent emission region, as a result of several of the issues discussed earlier. The discussion thus far has concentrated mainly on the measurement of color and related issues, and colorimetry is concerned only with the range of wavelengths visible to humans. However, in relation to the properties of reflectance, transmittance, and fluorescence, and their effects, the issues raised are not limited to those wavelengths, but are valid over a much wider range. Spectral reflectance and transmittance measurements both inside and outside the visible range are commonly used to determine the composition of samples. U.S. Pat. No. 5,250,811 discloses a method for analyzing the composition of a multilayer web by measuring spectral reflectance in the near infra-red region. This method employs polychromatic illumination, in a similar manner to the polychromatic illumination used in determining color by measurement of reflectance as discussed above, differing only in the wavelength range. U.S. Pat. No. 5,155,546 discloses a method employing spectral reflectance measurements in the visible region for analyzing the composition of rock samples. Also, U.S. Pat. No. 4,602,160 discloses an apparatus for measuring diffuse spectral reflectance and spectral transmittance in the infra-red region, and for analyzing those measurements to estimate the content of specific substances in a material. In these latter two disclosures, the sample to be analyzed is illuminated with monochromatic or nearly monochromatic light at each of several wavelengths bands one at a time, but the measurement of the reflected or transmitted light does not employ a monochromator, although it may employ a filter to exclude wavelengths outside the range to be measured which is substantially the same as the whole gamut of illumination bands. Thus, the reflected or transmitted light measured when the sample is illuminated at wavelength .xi. with a detector uniformly sensitive to wavelengths from .lambda..sub.min to .lambda..sub.max is given by: ##EQU11## A simple modification of these equations is required if the detector is differently sensitive to different wavelengths between .lambda..sub.min and .lambda..sub.max. For non-fluorescent samples, (101a) and (101b) give results substantially identical to (9a) and (9b), and for such samples, it is largely irrelevant whether the single monochromator is used in the illuminator or in the detector. The apparent reflectance and transmittance calculated using (1), (2) or (8) from measurements described by (101a) and (101b) are given by: ##EQU12## For non-fluorescent samples, the apparent reflectance measured in this way is clearly the true reflectance, R(.zeta.)=E(.zeta.,.zeta.), and the apparent transmittance is clearly the true transmittance, T(.zeta.)=U(.zeta.,.zeta.). For fluorescent samples, the reflectance or transmittance calculated from measurements of this type does not exceed unity, but it fails to distinguish between luminescent and non-luminescent contributions to the measurement. This deficiency reduces the amount of information which can be used to determine composition or other properties of the sample from the spectral measurements, and a significant fluorescent emission leads to an error in the calculated reflectance or transmittance. This error leads to an overestimation of the reflectance or transmittance in the fluorescent absorption band rather than in the fluorescent emission band, as would happen in the case of a device employing a detector monochromator with a rich light source. This systematic problem obviously introduces further sources of error in estimating properties or composition of the measured material when fluorescent substances are present. U.S. Pat. No. 3,904,876 discloses a method for determining the amount of ash in paper by measuring the absorption of one or more monochromatic X-ray beams. U.S. Pat. No. 4,845,730 discloses a method which combines infra-red absorption measurements at several wavelengths with an absorption measurement for a monochromatic X-ray beam and measurements of beta ray absorption in estimating the amounts of a base material and two or three other components present in a paper web. The measurements made according to these methods also are described by equations (101a) and (101b), except that a different essentially monochrome detector may be used for each monochrome illumination wavelength. U.S. Pat. No. 5,778,041 discloses a method which employs two polychromatic X-ray beams whose spectral power distribution differ in a particular way, and by measuring the amount of each beam absorbed in passing through a paper web, estimate the amounts of specific substances in that web. A different detector may be employed for each beam, but, monochromators are not employed either on the illuminator or on the detectors. However, filters may be used in controlling the spectral power distributions of the two illuminator beams. Prior art methods also exist for estimation of composition and other properties from reflectance and transmittance spectral measurements by reference to sets of calibration data measured on samples of known properties. These methods are used for reflectance, transmittance, and absorbance spectral measurements, obtained either with a monochromator on the illuminator or on the detector. U.S. Pat. No. 4,800,279 discloses a method using infra-red absorbance spectra of calibration samples of known physical properties to determine those infra-red wavelengths at which the absorbance correlates with a physical property to be quantified, and then estimate that property for a sample from its infra-red absorbance spectrum. U.S. Pat. No. 5,121,337 discloses a method for estimating unmeasured properties such as composition from spectral measurements on a sample, using a model fitted by least-squares fitting, principal components regression, or partial least-squares regression to spectral measurements and measurements of the desired property or composition for a set of calibration samples. U.S. Pat. No. 5,446,681 discloses a method which employs rule-based critera in addition to statistical procedures in the estimation of property or composition from spectral measurements on a sample and spectral measurements on a calibration set of known properties or composition. The above methods for analyzing spectral measurements to estimate composition or other physical properties, and for use of calibration data sets in such methods have a number of common features: i) the spectral data or a simple variant thereof such as its derivative is fitted as a combination of particular component spectral factors which are suitably scaled, (ii) the particular component spectral factors or known combinations thereof are associated with the physical properties or composition variables, (iii) the physical properties or composition variables are calculated using coefficients in a specific relation from the fitting parameters of the associated component spectral factors, and (iv) the particular component spectral factors and coefficients for relations are either known a priori or are derived from calibration data. The reliability of this class of analysis method depends on the extent to which the requisite component spectral factors can be discerned in the measurement, and the extent to which those patterns are invariant both within the calibration data set and between the calibration data and the measurements to be analyzed. The presence of significant amounts of fluorescence, and especially variation in that fluorescence can severely comprise the accuracy and reliability of such analyses based on spectrophotometric or spectroscopic measurements.
{ "pile_set_name": "USPTO Backgrounds" }
Conventional vacuum-operated brake power boosters as a rule have a housing in which there is an axially movable wall which is adapted to be advanced and retracted within the vacuum housing to divide the inner space of the housing into two chambers, i.e., one chamber on each side of the axially movable wall. By means of the two chambers, a pressure difference can be generated on the opposite sides of the movable wall, which pressure difference results in the movable wall being shifted in the direction of the lesser pressure. A vacuum-operated brake power booster of this type furthermore comprises a control valve which is actuated through the brake pedal and which controls the amount of vacuum acting on the one side of the axially movable wall. As a rule, the axially movable wall is connected to the brake master cylinder of a hydraulic braking system of the automotive vehicle in such a manner that when the pressure difference has its effect on the movable wall forcing a movement of the movable wall, brake fluid is displaced from the brake master cylinder into the hydraulic braking system to apply the brakes of the vehicle. In the design of braking systems for automotive vehicles, it is expedient to configure the vacuum-operated brake power booster in a manner so that the brake response phase in which the driver moves the brake pedal and interrupts the connection of flow between the two sides of the axially movable wall by means of the control valve is reduced to a minimum. A brake power booster of the type generally disclosed herein is known from German printed and published patent application 3,042,096 Al. In this a wedge is provided which is seated with play both in the control valve piston and in the control valve body. The wedge is adapted to abut against the housing of the brake power booster in such a way that in the release position of the brake, the vacuum valve seat is lifted a minute distance from the poppet valve. This known brake power booster has the disadvantage that the potential lost motion cannot be completely reduced to zero.
{ "pile_set_name": "USPTO Backgrounds" }
Optoelectronic semiconductor apparatuses often comprise two or more devices which are operated jointly. Such integration of a plurality of devices may, however, complicate testing of the devices during production.
{ "pile_set_name": "USPTO Backgrounds" }
Optoelectronic components are frequently used to illuminate rectangular areas. For example, back-lighting apparatuses are known for flat screens, which have a plurality of optoelectronic components. However, the latter normally have a rotationally symmetrical emission characteristic. Homogeneous illumination of a rectangular area is not possible using optoelectronic components such as these since rotationally symmetrical beam cones cannot be superimposed, simply for basic mathematical reasons, in such a way that the area is illuminated homogeneously. By way of example, if the components are arranged in a hexagonal grid in order to achieve an illumination intensity distribution which is as homogeneous as possible in a central area of the illuminated area, inhomogeneities occur at the edge of the illuminated area. The homogeneity of the illumination at the edge of the illuminated area can be improved by arranging the components in a rectangular grid. The homogeneity of the illumination in the central part of the area is then worse compared to the arrangement in the hexagonal grid, and the illumination intensity distribution has fluctuations which run on the same grid as the arrangement of the optoelectronic components. In order to reduce these inhomogeneities, the components must be arranged at a very short distance from one another. The back-lighting apparatus therefore contains considerably more optoelectronic components than are required to achieve the desired light intensity. Alternatively, the radiation can be output from a back-lighting apparatus through a diffuser plate with high reflectivity and low transmission. This forces multiple scattering to occur within the back-lighting apparatus, and increases the homogeneity of the output light, at the expense of efficiency. Additional optoelectronic components are then required in order to achieve the desired light intensity of the back-lighting apparatus. In another procedure for reducing the inhomogeneities, the beam cones of the components are greatly widened by means of divergent lenses. The homogeneity which can be achieved in this way is, however, inadequate for many applications. Furthermore, this procedure places extremely stringent demands on the manufacturing tolerances and assembly tolerances.
{ "pile_set_name": "USPTO Backgrounds" }
Examples of such a shaft can be found in U.S. Pat. No. 6,203,439 B1, U.S. Pat. No. 6,264,567 B1, or DE 199 59 836 A1. Such a shaft is usually used as cardan shaft to transmit an orbiting and rotating movement of a first element of a hydraulic machine to a purely rotating movement of a second element of a hydraulic machine. An example for such a hydraulic machine is a hydraulic steering unit or a hydraulic gerotor motor. Such a cardan shaft is often named “dog bone” because it has some similarities with a dog bone, i.e. a shaft section having a smaller diameter and two tooth geometries at both ends having a larger diameter. As mentioned above, the cardan shaft is used to transmit an orbiting and rotating movement of a first element to a purely rotating movement of a second element. This requires that the cardan shaft must have the possibility to pivot with respect to both elements during one rotation. This pivoting movement is possible due to the form of the outer tooth curve and due to the form of the bottom curve having a rising slope from the outer end, i.e. from the end opposite said shaft section, in a direction towards the shaft section. In other words, the radius of the bottom curve increases starting from the outer end of the cardan shaft. The second end has a negative slope, i.e. the radius of the bottom curve is decreasing towards the shaft section. When the cardan shaft is used in a hydraulic machine to transmit large torques the tooth geometry tends to wear.
{ "pile_set_name": "USPTO Backgrounds" }
As different users of an application may have different needs, flexible software packages may be customized to meet the needs of many different users. However, the more a standard software package or application is customized by a particular user, the greater the likelihood that the customizations may result in unexpected output when executed by the software application. The likelihood may be further compounded when new users or users with only basic customization needs are presented with a full range of options, well beyond the scope of their understanding and/or needs. Similarly, more experienced users may prefer to be presented with more and/or deeper customization options than the more basic users. Having only one level of presentation for customization options could create inefficiencies for users of varying experience and/or customization preferences.
{ "pile_set_name": "USPTO Backgrounds" }
In the past, anti-inflammatory agents such as steroids have been used for inflammatory reactions arising from abnormal immune response in treatment of immune-related diseases such as rheumatoid arthritis and other autoimmune diseases. These are, however, a symptomatic therapy, but not a fundamental remedy. Furthermore, it has been reported that immune system abnormalities are also involved in the development of diabetes and nephritis, but agents that improve these abnormalities have not yet been developed. On the other hand, it is critical to develop an approach to suppress the immune response for avoiding rejection in transplanted tissues or cells, as well as for treating and preventing various autoimmune diseases. However, immunosuppressants, such as cyclosporin A (CsA) and tacrolimus (TRL) that have been known in the past, are known to show toxicity against the kidney and liver. Although treatments that also use steroids are commonly used for the relief of such adverse reactions, it is presently the case that such agents have not necessarily led to producing a satisfactory immunosuppressive effect without showing any adverse reaction. In light of this background, it has been attempted to find excellent compounds with immunosuppressive effects that are less toxic. As to immunosuppressants, the following compounds are known. (1) Compounds having the general formula (a) disclosed in WO 94/08943 (page 371) {in the above compounds (a), Rx, represents a straight or branched carbon chain which may optionally be substituted with one or more substituents [said chain may contain a double bond, a triple bond, an oxygen atom, a sulfur atom, a group of formula —N(Rx6)— (wherein Rx6 represents a hydrogen atom), an arylene group which may optionally be substituted with one or more substituents, or a heteroarylene group which may optionally be substituted with one or more substituents, and may contain, at the end of said chain, an aryl group which may optionally be substituted with one or more substituents, a cycloalkyl group which may optionally be substituted with one or more substituents, or an aromatic heterocyclic group which may optionally be substituted with one or more substituents], and Rx2, Rx3, Rx4, and Rx5 are the same or different and each represents a hydrogen atom or an alkyl group] are known as immunosuppressants. The above compounds (a) of the prior art contain two oxymethyl groups (—CH2ORx4 and —CH2ORx5) as essential groups substituted on the same carbon atom. The compounds of the present invention, however, contain one —CH2OR3 group and one lower alkyl group as essential groups substituted on the same carbon atom and are different from the compounds (a) in these substituents. (2) Compounds having the general formula (b) disclosed in WO 96/06068 (page 271) [in the above compounds (b), Ry1, Ry2 and Ry3 each represent a hydrogen atom or the like, W represents a hydrogen atom, an alkyl group or the like, Zy represents a single bond or an alkylene group, Xy represents a hydrogen atom or an alkoxy group, and Yy represents a hydrogen atom, an alkyl, alkoxy, acyl, acyloxy, amino, acylamino group or the like] are known as immunosuppressants. The above compounds (b) contain a phenyl group as an essential group in the basic skeleton. The compounds of the present invention contain a heterocyclic group such as a furyl group, a pyrrolyl group, or a pyrrolyl group having a substituent on the nitrogen atom instead of the phenyl group of compounds (b) and are different from the compounds (b). However, compounds having a similar chemical structure to compounds (I) of the present invention have heretofore not been disclosed concretely in that publication. (3) Compounds having the general formula (c) disclosed in WO 98/45249 [in the above compounds (c), RZ1, RZ2, RZ3, and RZ4 are the same or different and each represents a hydrogen atom or an acyl group] are known as immunosuppressants. The above compounds (c) contain two oxymethyl groups (—CH2ORZ3 and —CH2ORZ4) as essential groups substituted on the same carbon atom. The compounds of the present invention, however, contain one —CH2OR3 group and one lower alkyl group as essential groups substituted on the same carbon atom and are different from the compounds (c) in these substituents. In addition, above compounds (c) contain a phenyl group between the —(CH2)2— group and the —CO—(CH2)4 group as an essential group in the basic skeleton. The compounds of the present invention contain a heterocyclic group such as a furyl group, a pyrrolyl group, or a pyrrolyl group having a substituent on the nitrogen atom instead of the phenyl group of compound (c) and are different from the compounds (c). On the other hand, a compound having the general formula (II) of the present invention shown below wherein X represents a sulfur atom is disclosed in WO 02/06268 as a compound wherein the protecting group of the hydroxyl group is a residual group of an ester of phosphoric acid. Furthermore, as to combinations of immunosuppressants, combinations of immunosuppressants such as FTY-720 and cyclosporin A or FTY-720 and tacrolimus are disclosed in Japanese Patent Publication (Kokai) Number Hei 11-80026. In light of this background, it has been desired to find excellent pharmaceutical compositions with immunosuppressive effects that are less toxic.
{ "pile_set_name": "USPTO Backgrounds" }
The Japanese language is written with a combination of Chinese characters called kanji and modified Chinese characters called hiragana and katakana. The system used to input Japanese on mobile phones is based on the numerical keypad. Each number is associated with a particular sequence of kana and, in one embodiment, a button is pressed repeatedly to get the correct kana, while the number of presses determines the row. Marks, punctuation, and other symbols can be added by other buttons in the same way. Kana to kanji conversion is done via other keys After the kana have been input, they are either left as they are, or converted into kanji (Chinese characters). Various techniques have been implemented by mobile phone developers to enable Japanese language input on mobile phones. In touch sensitive phones, Japanese language keyboards provide 12 keys of kanji characters, the selection of one character of which highlights the character as well as four alternatives to the main character which a user can select by sliding their finger from the selected main character to the alternative character. A sub-menu is then presented in the text entry area with additional options.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The invention relates to a process for the preparation of 2-hydroxycarbazoles.
{ "pile_set_name": "USPTO Backgrounds" }
In particular situations people may encounter harmful concentrations of hazardous chemicals. In such situations, it is necessary to wear chemical protective garments of special composition and construction. These protective garments are necessary for providing an effective barrier between the wearer and the chemicals encountered. However, as pointed out in U.S. Pat. No. 4,855,178 (Langley), in addition to providing an effective chemical barrier, materials for chemical protective garments should meet practical requirements for amenability to fabrication by existing methods (e.g., heat bonding of seams) as well as for providing sufficient strength to prevent tearing and the resulting loss of protection. General practice in the protective garment trade is to construct chemical protective garments by seaming together panels of chemical protective garment material. These seams may be formed in a number of ways. The seams may be formed by traditional methods of sewing and then covering the seam with a layer of heat sealing tape. Alternatively, the seams may be formed by heat or ultrasonic welding of the garment material. These seams may utilize adhesives. Suitable chemical protective garment materials must be flexible to allow manipulation during seaming on standard seaming equipment, whether it be by sewing, adhesives or heat sealing. The chemical protective garment materials must also be of a composition that allows the formation of strong sealed seams, whether these seams are sewn and taped, adhesively joined or whether they are welded by heat or ultrasonic energy. In addition, chemical protective garments must be durable in use. The garments must not develop structural failures during use which would expose the wearer to hazardous chemicals. Thus, the chemical protective garment materials and the seams created in constructing the garments must be strong and resistant to structural failure (e.g., the tearing, cracking or shrinking). In many situations, it is not feasible to decontaminate chemical protective garments after exposure to hazardous chemicals. A chemical protective garment contaminated with a hazardous chemical is generally considered as hazardous waste. There is limited space for the storage and burial of hazardous wastes. Chemical protective garments intended for limited-use, should be light in weight to reduce the burden on storage and disposal. Strong, lightweight chemical protective garment materials made from laminates of different materials are known. U.S. Pat. No. 4,272,851 (Goldstein) describes a film of polyethylene that may be laminated to nonwoven chemical protective apparel. U.S. Pat. No. 4,772,510 (McClure) describes a chemical barrier film laminated to a nonwoven substrate using an adhesive. Other laminates having multiple barrier layers are described in U.S. Pat. No. 4,855,178 (Langley); U.S. Pat. No. 4,833,010 (Langley) and U.S. Pat. No. 5,035,941 (Blackburn). Often, each layer of a chemical protective garment material is chosen to impart a specific property to the composite fabric. Some layers provide strength while other layers may be chosen to provide permeation resistance against specific classes of chemicals. Additional layers add weight and stiffness. However, stiff garments are difficult to assemble and reduce the wearer's mobility. There has been a general trend in the protective garment art to add additional layers to chemical protective garment materials to increase and broaden resistance to various classes of chemicals. This adds weight, stiffness and cost to these materials. For example, EP-0 434 572 (Boyer et al.) discloses a six (6) layered chemical protective garment material employing polyvinylidene chloride coated polyethylene terephthalate (PET) as the chemical barrier layer. The material comprises a nonwoven substrate, a layer of polyethylene, an adhesive layer, a layer of polyvinylidene chloride coated PET film, another layer of adhesive, and finally a layer of polyethylene. U.S. Pat. No. 4,920,575 (Bartasis) discloses a multi-layered structure that may contain one or two layers of a polyester film. Other multi-layer films for protective use have been disclosed. For example, Tung, in U.S. Pat. No. 5,250,350, discloses a modified burn characteristic SARANEX® film in the form of a four or five layer film product. Additionally, Boye et al., in U.S. Pat. No. 5,162,148 describe a laminated material comprising a polyolefin nonwoven substrate and a five layer coextruded film with a polyolefin outer layer and an intermediate layer selected from a group comprising ethylene-hydrolyzed vinyl acetate copolymer and polyethylene terephtalate coated with polyvinylidene chloride for manufacturing protective equipment against NBC attacks. Similarly, Smith, in U.S. Pat. Nos. 4,970,105 and 5,082,721, describes a fabric used in the manufacture of protective garments, containers and covers comprising an inner layer of a tear resistant, high tensile strength substrate and film layer comprised of a fusible, meltable, polyhalogenated ethylene resin group bonded on at least one surface of said high modules fabric substrate. Bartacis discloses multilayer structure in U.S. Pat. No. 4,924,525. This reference describes a multilayer film structure having an inner layer of substantially isotactic oriented polypropylene homopolymer sandwiched between a layer of ethylene-propylene random copolymer and a layer of ethylene-vinyl-acetate. The multilayer film structure is then bonded to a two layer polyester substrate using an elastomeric adhesive. In a preferred embodiment, a barrier material having a layer of ethylene-vinyl alcohol is combined with a multilayer film structure to form a composite, which is then combined with the substrate. Additionally, Adiletta, in U.S. Pat. No. 4,865,903 describes a flexible, impermeable, universally chemically resistant composite structure which may be fabricated into protective clothing. The composite structure comprises a fabric substrate and thermally-melt-bonded on both sides thereof, a coated film, which coated film comprises a PTFE film having a thermoplastic flouropolymer coating on both sides thereof. Despite the foregoing disclosures, there is still a need for biological and chemical protective material that can be used in making protective garments, covers, tents and shelters for personnel, equipment and supplies.
{ "pile_set_name": "USPTO Backgrounds" }
This invention pertains to an organic slurry treatment process, which may be used to recover organic matter and nutrients from animal manure slurry, for instance pig slurry, as well as any industrial or agricultural waste with high organic matter and nutrient concentrations. Over the last twenty years, and especially in the last five years due to increased regulatory and public pressures placed upon confined animal feedlots and other high-strength waste generators, extensive research has been done in the US, Europe and Japan to develop various processes to treat high-organic waste streams such as pig slurry. Important patent ed contributions for the treatment animal waste and other high-strength organic waste processes are disclosed in: U.S. Pat. No. 6,346,240 (Moore, Jr.), U.S. Pat. No. 6,221,650 (Rehberger), U.S. Pat. No. 6,007,719 (yoo, et al.), U.S. Pat. No. 5,885,461 (Terault, et al.), U.S. Pat. No. 6,077,548 (Lasseur, et al.), U.S. Pat. No. 6,139,744 (Spears, et al.), U.S. Pat. No. 6,207,507 (White), U.S. Pat. No. 5,013,441 (Goronszy), U.S. Pat. No. 5,277,814 (Winter, et al.), U.S. Pat. No. 6,054,044 (Hoffland, et al.), and U.S. Pat. No. 6,083,386 (Lloyd). There have been several patents granted for processes that utilize conventional and/or patented technologies and/or processes in novel applications, arrangements and/or combinations. For example, within the field of animal waste treatments the following patents cover some of the treatment processes utilizing conventional technologies: electrochemical treatment (U.S. Pat. No. 6,083,377 (Lin et al.)), ozonation (U.S. Pat. No. 6,117,324 (Greene, et al.)), ozone disinfection (U.S. Pat. No. 6,056,885 (Wasinger)), anaerobic fermentation (U.S. Pat. No. 5,282,879 (Baccarani)), psychrophilic anaerobic digestion (U.S. Pat. No. 5,863,434 (Masse, et al.)), microbiological treatment (U.S. Pat. No. 5,707,856 (Higa)), aerobic systems (U.S. Pat. No. 6,136,185 (Sheaffer)), constructed wetlands (U.S. Pat. No. 6,159,371, (Dufay)), inter alia. Other prior art references are listed under xe2x80x98Referencesxe2x80x99 below. The organic slurry treatment process according to the present invention combines patented systems and technologies in a way that creates a novel process to treat organic slurries. The synergies created by the specific sequencing of treatment systems in this process maximize treatment capacity and recovery of organic matter and nutrients for use as organo-mineral fertilizer. Accordingly, the present invention provides a process for treating an organic slurry comprising a mixture of solids suspended in a liquid, colloidal solids and dissolved pollutants such as nitrogen, phosphorus and organic matter, the process comprising: flocculating a slurry stream with anionic polymer or a coagulant, or both, to aggregate suspended and colloidal solids into a floc, to form a flocculated stream; removing flocs from the flocculated stream to form a deflocced stream; feeding the deflocced stream into a high biomass concentration suspended growth system to remove biologically at least a portion of the organic and inorganic nitrogen, and remove by biological luxury uptake at least a portion of the phosphorus, wherein the system comprises: a multi-stage sequence of an anaerobic zone, an anoxic zone, and an aerobic zone, each zone separated with baffles, operating in a biomass recycle pattern from the anoxic zone to the anaerobic zone, and from the aerobic zone to the anoxic zone, with biomass wastage from the aerobic zone; and microfiltration membranes to filter liquid out of the aerobic zone to form a low-turbidity permeate. The approach of the process according to the present invention to organic slurry and manure treatment differs from that of conventional processes, which usually rely on anaerobic digestion. The present organic slurry treatment process is based on effectively separating solids from liquids in the waste slurry stream. Solids are dried and pelletized, and liquid is subjected to physical, chemical, and biological treatment. The treatment of the liquid fraction removes suspended solids, colloidal solids, nitrogen, phosphorus and dissolved organic matter. Advantageously, the process according to the present invention can eliminate the need for anaerobic digestion, waste lagoons and/or land application when treating animal manure slurries. Several treatment steps are required to fully treat organic slurries while recovering their organic and nutrient value. First, for treating organic slurries that have high solids content, once slurry waste has been received stored and mixed, solids are separated, preferably using a centrifugal decanter. Solids capture efficiency can be enhanced by cationic polymer addition. In this step the waste stream is divided into a solids and a liquid fraction. The solids fraction, or cake, retains a significant portion of the total amount of solids, organic matter and phosphorus. The liquid fraction or centrate still maintains some particulate and all colloidal and dissolved pollutants. The solids fraction is dried and pelletized using a direct or indirect continuous heat-drying system and a paddle mixer. This process destroys pathogens and produces hard, uniformly sized and stable pellets for use as organo-mineral fertilizer. On-site drying/pelletizing offers the following advantages: reduces transportation cost, enables heat recovery from the drying process to be used to enhance biological centrate treatment and provides nitrogen-rich condensate. Condensate contains ammonium nitrogen and easily degradable volatile organic matter. The nitrogen present in the condensate in the form of ammonium is recovered using a chemical/physical system consisting of an air stripping packed media tower followed by an acid scrubbing packed media tower. The nitrogen recovered in the form of a concentrated ammonium sulphate solution is used to fortify the nutrient value of the pellets. After ammonium removal, condensate with high dissolved organic matter content is used as a carbon source for denitrification in the biological removal system, as described below. Alternatively, for treating organic slurries having a low solids content, for example wastewater, the slurry need not be separated initially to remove solids but can be treated directly according to the following process steps. Suspended and colloidal solids remaining in the centrate, or in low solids slurry such as wastewater, are removed, preferably using dissolved air flotation thickening (DAFT), preceded by flocculation. This process is enhanced with the addition of anionic polymer and coagulant to the flocculation unit. DAFT effluent is preferably heated to mesophilic temperature, preferably using an indirect tube and shell or plate heat exchanger. Heat for this step is available in return condenser cooling water, which is used to condensate water vapour removed from the solids cake in the drying/pelletizing system. Alternatively, heat can be made available using a water heater operated with liquid or gasfuel. Higher DAFT effluent temperature enhances bacterial metabolism, which increases biological reaction rates in the treatment steps following downstream. Unless the deflocced stream is readily biodegradable, dissolved complex organic matter and volatile solids in the deflocced stream, for example in heated DAFT effluent, are simplified into short-chain volatile fatty acids (VFA) in a pre-acidification anaerobic fluidized bed reactor (AFBR). AFBR effluent feeds the biological nutrient removal (BNR) system. A high VFA to phosphorus ratio in the BNR feed is required for efficient biological phosphorus removal. Acidified effluent from the AFBR, or the deflocced stream if readily biodegradable, and preferably also stripped condensate from the ammonium recovery process, are fed to the BNR, which is designed to biologically remove phosphorus and nitrogen, while consuming organic matter simplified to VFA in the AFBR as carbon source for these processes. Carbon requirements for denitrification and phosphorus removal are supplied by VFA available in acidified effluent supplemented by volatile organic matter present in the stripped condensate. BNR treatment rate and efficiency in this process are maximized using submerged microfiltration membranes along with a multi-stage suspended growth biological nutrient removal system. The synergies brought about by this membrane bioreactor/biological nutrient removal (MBR/BNR) combination enable the system to remove efficiently very high dissolved organic matter, nitrogen and phosphorus loads. Additionally, this combination provides high solids retention time, which introduces process stability, reduces biomass production and enables slow-growing organisms, such as nitrifiers, to establish a healthy population. Heavy metals present in the waste stream are also significantly reduced in this system. The MBR/BNR system comprises a multi-stage Modified Bardenpho configuration with a sequence of at least anaerobic, anoxic and aerobic suspended growth zones, and preferably consists of a five-stage Modified Bardenpho configuration with a sequence of anaerobic, anoxic, aerobic, anoxic and aerobic suspended growth zones. The pattern of biomass recirculation between zones is typical of a conventional University of Cape Town (UCT) process flow. Effective separation of liquid and biomass achieved with microfiltration membranes submerged in the final aerobic zone allows the system to operate with extremely high biomass concentrations and long solids retention times. The liquid passing through the membrane or permeate has no suspended solids, extremely low phosphorus, nitrogen and dissolved organic matter. Microfiltration removes a significant portion of pathogen indicator organisms and produces an effluent with low turbidity. If necessary, the permeate is disinfected using low dosages of ultraviolet radiation prior to reuse as plant service water and discharge. The combination of the five-stage suspended growth sequence, the biomass recycle pattern, and the microfiltration membranes producing permeate from aerobic zone 2 creates a synergistic effect that enables biological removal of high loads of nitrogen, phosphorus and dissolved organic matter contained in any liquid waste with high concentrations thereof.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention pertains to an ammunition gripping device, and more particularly, to a gripping device for handling a variety of soft and irregularly shaped ammunition without damage to the ammunition. Ammunition transfer mechanisms are widely used for rapidly moving ammunition from a plurality of storage areas into guns on ships, aircraft, armored land vehicles and other military equipment. Metal grippers have been used to grasp the ammunition, store it and load it into the breech of a gun. This worked quite well for the older style of metal ammunition cartridges, however, much of the present day ammunition is encased in soft shelled, irregularly shaped cases made of combustible material to reduce the problem of disposing of spent cartridges. An excess of pressure on the case by metal grippers could cause damage to the case and result in a variety of problems.
{ "pile_set_name": "USPTO Backgrounds" }
It is common practice for physicians and surgeons after removing human tissue from the body to place such tissue in a biopsy specimen collection bottle containing fixative to enable processing of the tissue so that a pathologist may render a diagnosis of the tissue. During the rush of surgery or rapid pace outpatient and inpatient biopsies, the surgeon may forget to place the tissue into the biopsy specimen collection bottle, unknowingly lose the specimen, or small specimens may be accidentally disposed of after they are thought to have been placed into a biopsy specimen collection bottle. Further, the physician or surgical team may not carefully examine the biopsy specimen collection bottle to ensure and confirm that staff had placed the specimen in the tissue collection bottle or the submitted specimen is so small it may be difficult to visualize its presence in the biopsy specimen collection bottle. As a result, the pathology labs, not infrequently, receive a biopsy specimen collection bottle with no tissue inside. Reference is made to U.S. Pat. No. 9,091,682, wherein a verification method for confirming the presence of tissue in a specimen bottle utilizing a chromogenic test pad consisting of absorbent paper, and a test pad comprised of a guaiac compound and peroxygen compound is disclosed. The use of a chromogenic test pad comprising guaiac compound and a peroxygen compound as disclosed therein limits the tissue types available for testing and also may confuse an observer as the presence of blood may not be indicative of the presence of other proteins found in other tissue. U.S. Pat. Nos. 4,725,553; 2,838,377; 3,996,006; and 4,175,923 disclose various tests for detecting occult blood in stool using guaiac paper or guaiac substitutes and or various activating substances.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a liquid crystal display device and, more particularly, to an improvement in a semiconductor driving circuit which is mounted on the same. A liquid crystal display panel which constitutes a liquid crystal display device utilizes, as a chamber for the liquid crystal, transparent substrates arranged to oppose each other with the liquid, crystal interposed therebetween. This liquid crystal display panel has a multiplicity of pixels formed in the area of the liquid crystal. Means for producing an electric field is incorporated in each of the pixels to control the optical transmissivity of the liquid crystal of individual pixels. To provide this control, semiconductor driving circuits (hereinafter referred to as driver ICs) for supplying signals (voltages) to the electric field producing means of the respective pixels via signal lines are mounted on the peripheral portion of the liquid crystal display panel. If this mounting is adopted, one of the transparent substrates which constitute the panel is formed to extend beyond the other substrate at a peripheral portion of the liquid crystal display panel, and the driver ICs are mounted on this extended area. Accordingly, interconnecting layers which are connected to the input-side bumps of the driver ICs and interconnecting layers which are connected to the output-side bumps of the, driver ICs and supply signals to the respective pixels are formed in the extended area. The driver ICs are mounted on the extended area by so-called facedown-bonding in which their bumps are connected to the respective interconnecting layers with an anisotropic conductive film (ACF) interposed therebetween. Surface-mount technologies of the aforementioned driver ICs for one of the substrates of the liquid crystal display panel are disclosed for example in Japanese Patent Application Laid-Open JP-A-172385/1987. Bump structures for semiconductor integrated circuit devices are disclosed for example in Japanese Patent Application Laid-Open JP-A-368130/1992 and Japanese Patent Application Laid-Open JP-A 166810/1993.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to an apparatus for making contact between a T/R module and a test device. In this case, T/R module is short for transmit-receive modules, such as those used in particular in active antennas in the RF range. According to the prior art, contact can be made with T/R modules (unit under test) by fitting them in special measurement holders. In these holders, the RF connection to the test environment is made by coaxial plugs and the RF connection to the unit under test is made by adaptors with bonded wires and/or ribbons. The DC supply and the connection for the control signals are provided in a similar manner. Although the bonded connections are removed after a test has been carried out, residues of the connection and visible traces remain on the connecting pads of the units under test. Instead of using this mechanically complex process of making contact with units under test, which leaves traces and residue can, the testing can be carried out with the aid of needle adaptors for low-frequency operations and the DC supply. For this purpose, the radio-frequency signals are supplied with special coaxial test probes (RF probes). Even when contact is made in this way, both the needles and the test probes leave traces (scratches) on the connecting pads when contact is made, which can adversely affect the further processing of the modules (installation in the system by bonded connection). Furthermore, the connecting pads are kept very small, for space reasons and because of the RF technical requirements. In order to ensure reliable contact with the modules for the measurement, both the unit under test and the test probes must therefore be manually visually aligned with one another, independently of one another, with the assistance of a microscope. This quite complex procedure is the only way to ensure that the individual mechanical tolerances of the units under test do not have a disturbing effect on the electrical characteristics of the modules. It should also be noted that the quality of the contact that is made directly affects the quality of the measurement results, and that high-quality contacts can be achieved only by experienced operating personnel. When contact is made in this way, the individual test probes must be aligned individually, typically using optical methods with a microscope, and this is very time-consuming. Furthermore, the quality of the contact made is highly dependent on the capabilities of the operating personnel. German patent document DE 41 07 248 A1 describes a measurement apparatus for a planar circuit, in which the planar circuit is moved with respect to the contact elements of a contact-making unit using a shifting device which has a plurality of inclined planes. Exemplary embodiment of the present invention provide an apparatus for making contact with T/R modules, which overcomes the disadvantages of the contact-making methods described above, in particular with the aim of achieving a high-quality contact, which can be handled easily and can be reproduced well. An exemplary apparatus for making contact between a transmit-receive (T/R) module and a test device for transmission of RF signals, includes a mechanically guided contact-making unit in the form of a frame and having a plurality of contact elements for making contact with the T/R module. A line substrate is arranged rigidly on a side of the contact-making unit facing away from the T/R module. The line substrate is electrically connected to the T/R module, the line substrate is a triplate line, and the RF signals are passed to the test device via the line substrate. One or more register pins for defined alignment of the T/R module with respect to the contact-making unit and a fixing unit for mechanical fixing of the T/R module are also provided. A shifting device with a plurality of inclined planes that convert a shifting movement of the shifting device to a movement of the contact-making unit toward the T/R module at right angles to the shifting direction. When the contact-making unit reaches a defined final position the contact is made with the T/R module via the contact elements in one process. According to the invention, the optical alignment of the unit under test is replaced by mechanical guidance of a contact-making unit, which makes contact with the T/R module to be tested, after reaching a defined final position. The mechanical guidance is provided using a shifting device which has a plurality of inclined planes, wherein the inclined planes convert a shifting movement of the shifting device to a movement of the contact-making unit at right angles to the shifting direction toward the T/R module. The T/R module to be tested is aligned using register pins. A line substrate which is arranged on the contact-making unit makes the connection for the connecting ports of the test device. This line substrate is in the form of a triplate line. The contact-making unit has contact elements (for example spring contact pins) and therefore connects the line substrate to the corresponding contact pads on the T/R module. When contact is made according to the invention, there is no need to individually align the test probes with the unit under test in order to make a secure and reliable connection with the T/R modules. Likewise, there is no need for viewing through a microscope, as required for this purpose. All the required contacts, that is to say not only the radio-frequency signals but also the low-frequency signals or DC signals, can be made securely and at the same time in one process. The apparatus according to the invention means that the quality of the contact made is largely independent of the capabilities of the operating personnel. This ensures that the characteristics of the units under test are reproduced without corruption. A further advantage is also that the connecting elements (for example spring contact pins) themselves leave neither residues nor visible traces on the contact-making surfaces of the module, even after contact has been made with the same unit under test a number of times. In addition, the spring contact pins can be subjected to a large number of contact-making cycles before any evidence of wear can be found on the contacts. A further advantage is that the test station can be calibrated very easily, using the same contact-making principle. The calibration elements that are purpose-made for this purpose have the same design as the line substrate and have triplate lines of different length, which are mounted on a metal mount. The metal mount has an external contour which is approximately the same as that of the unit under test, with the same geometry of the connections as the unit under test. The calibration elements can therefore be inserted into the test holder, just as easily, with contact being made in the same way as with the T/R modules. No additional effort is required for adjustment and alignment, for this purpose. Even the sequence of insertion can be preset by the operator, using the control program. The way in which contact is made according to the invention can be applied without problems to automatic placement and therefore also to automatic testing of relatively large quantities in the course of large-scale manufacture of T/R modules. Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a system for performing an electronic control in open or closed loop. Moreover, the present invention relates to a corresponding method and a control unit performing an electronic control in open or closed loop. In automotive control, different functions may be performed via different controller arrangements, which each have individually adapted control units. Examples may include anti-lock brake and/or vehicle dynamics control systems. One may endeavor to use universally applicable control units which may be used within the scope of different functions. The individual control units may have connected thereto, for example, suitable actuators and/or sensors which, in turn, may include electronics. A further example may include a power-window motor with integrated anti-pinch protection electronics. The connection of the actuators or sensors to the respective control units may be accomplished via specific interfaces which may be generally implemented by suitable driver circuits within the control unit. Moreover, control units may contain further components such as microcontrollers, voltage regulators, and memory devices. A universally usable control unit for control systems is discussed in German Published Patent Application No. 37 38 915. In this context, a universal control unit may be used which may identify the existing system design only after installation because of an external command so as to then store the system design. It may be considered a disadvantage of such a universal control unit that, for ensuring a larger number of control functions, it may need to have correspondingly designed circuit elements and individualized interfaces via which, for example, sensors or actuators may interact with the control unit. The integration of such variant-determining circuit elements and interfaces in one control unit may require a relatively large effort. Due to the potential need for a plurality of connections, moreover, universal control units of that kind may have a relatively large structural size. German Patent No. 42 03 704 discusses the use of a plurality of control units which communicate via a bus. In this connection, a plurality of control units which may be identical in their hardware design may be installed in a vehicle, their specific functions being determined only from outside, depending their specific use. This publication may relate, in particular, to a method for initializing such control units. An object of an exemplary embodiment of the present invention is to provide an electrical system architecture for motor vehicles, in which standardized control units may be largely used, even for implementing different closed-loop and open-loop control functions so as to better ensure in this manner, for example, cost savings and a high flexibility in the use of such control units. According to the exemplary embodiment and/or exemplary method of the present invention, standard control units may now be used even for implementing complex systems to be controlled, and the standard control units may be individualized for specific control functions using externally arranged, variant-determining circuit elements. A high flexibility may be achieved in the design of vehicle electrics architectures since hardware modification may not be required within a control unit, for example, when changing or replacing an actuator or sensor which may interact with the control unit. In this connection, circuit elements which may be understood to be variant-determining may include, in particular, driver circuits or driver modules which may determine the type of the actuator or sensor which may be connected, respectively. The control units may be scalable with respect to the number of their interfaces, their computing power and/or their memory capacity. This measure may permit, in a simple manner, for example, adaptation to the control requirements of a small car which may require about twenty control inputs or outputs, or to those of a more complex vehicle in which about eighty such inputs or outputs may be needed. In an exemplary embodiment of the system according to the present invention, the interfaces may have a standardized section which may be formed in or on the control unit and an individualized section which may be formed such that it may be externally arranged with respect to the control unit. Using this measure, an essentially completely standardized control unit may be provided which may be individualized by connection to suitable individualized interface sections or variant-determining circuit elements such as power drivers, etc. In another exemplary embodiment of the system according to the present invention, the individualized section of the respective interfaces and/or the variant-determining circuit element may be arranged within a cable harness which may. connect the control unit with an actuator or sensor. This measure may permit use of individualized cable harnesses for adapting a control unit to actuators or sensors as a result of which the effort for making available the actual control unit may be reduced. According to another exemplary embodiment, the individualized section of the interfaces may be expediently provided in or on a sensor or actuator. For this purpose, the sensor or actuator may include corresponding plugs. In another exemplary embodiment of the system according to the present invention, provision may be made for at least two control units which may be interconnected via a multiplex line. Via such a multiplex line, different control units may be interconnected in a simple and effective manner.
{ "pile_set_name": "USPTO Backgrounds" }
In order to make a space required for installing a loudspeaker system smaller, there has been a strong voice in the market requesting a flat loudspeaker. A number of new creations have so far been announced for meeting the request. A conventional flat loudspeaker is described below referring to FIG. 9, which shows a cross sectional side view. As shown in FIG. 9, a damper 9, which is provided at a place inner from a magnetic gap 5, is not coupled direct with a voice coil 8, but the outer circumferential edge is connected to a plate 4 while the central portion is connected to a protrusion of a diaphragm 15 coming downward from the central part of the diaphragm. Thus, a cavity made available within the inner circumference of a magnet 2 is utilized as a space 6 for damper amplification. A loudspeaker can be fabricated in a thinner configuration adopting the above-described structure. A magnetic circuit 1 is consisted of a magnet 2, a yoke 3 and a plate 4. Between the yoke 3 and the plate 4 is a magnetic gap 5. A frame 7 is fixed to the yoke 3. Voice coil 8 is connected to the diaphragm 15 at one end, while the other end is adapted to the magnetic gap 5. An edge 10 is connected at the inner circumference with the outer circumferential portion of the diaphragm 15, and the outer circumference of edge is connected with the inner rim section of the frame 7. In assembling the above described conventional loudspeaker, the voice coil 8 has to be inserted to a right position in the magnetic gap 5 in a state where the voice coil 8 was already integrated with the diaphragm 15. Therefore, there is a substantially high possibility that the voice coil 8 is disposed oblique and/or eccentric to the magnetic gap 5. This leads to a possibility for the coil of the voice coil 8 coming in touch with the plate 4 or the yoke 3, which generates abnormal sounds. The present invention addresses the above problem, and aims to present a loudspeaker improving the trade-off between the flat contour and the low rejection rate.
{ "pile_set_name": "USPTO Backgrounds" }
Various materials are known for use in the telecommunications and optical industry for the fabrication of lasers, waveguides, modulators and various other components which otherwise manipulate light. Attempts have been made to arrive at solid-state athermal devices, but such attempts have only been varyingly successful. While a plethora of available glasses have some athermal characteristics, traditional glasses will not sufficiently satisfy the requirements of this invention. Glasses termed “athermal” are commonly used in Fabry-Perot interferometers. These interferometers are often used in high-resolution spectrometers, and as the optical resonator component of a laser. See, e.g. Bass, M. Handbook of Optics: Fundamentals, Techniques, and Design, McGraw-Hill, Inc., New York (1995); Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics, John Wiley and Sons, Inc., New York (1991). The governing equation (from Bach, H. and Neuroth, N., The properties of Optical Glass, Springer, Germany (1995)) for an “athermal glass” intended for use in a Fabry-Perot Interferometer is:ΔOPL=L·ΔT(dn/dT+α·(n−1))  (1) wherein ΔOPL is the change in optical pathlength, L is the length of the glass component, ΔT is the change in temperature, dn/dT is the temperature coefficient of the refractive index, α is the coefficient of thermal expansion, and n is the refractive index of the glass. Furthermore, the Fabry Perot interferometer should exhibit ΔOPL=0 with temperature fluctuation, and the resulting material property requirements for the “athermal glass” (from Bach, infra) are:dn/dT=α(n−1))  (2) Schott Glass Technologies, Duryea, Pa. has developed glasses specifically for this purpose (i.e., Ultran-30™, PSK-54™ and TiF-6™ in Table I; see, e.g. Schott Optical Glass Catalog). These glasses are termed “athermal” because when used in the classic Fabry Perot device, the device itself exhibits athermal behavior. However, the glass per se is not a solid-state athermal component because air gaps are machined or mechanically engineered into the glass to yield the device's overall athermal properties. However, telecommunications companies are currently developing devices that require purely solid-state athermal components (e.g., no air or vacuum is displaced as the material expands or contracts because the optical component is used completely in the solid-state; see FIG. 1. Thus, there is currently a need for specialty materials and devices that exhibit solid-state athermal behavior, e.g., in the telecommunications industry.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to piezoelectric transducer arrangements for ink jet systems and, more particularly, to new and improved ink jet transducer arrangements providing improved performance. Heretofore, electromechanical transducers such as piezoelectric elements designed to provide one movable wall of an ink chamber in an ink jet system have operated either in an extension mode, such as described in the Howkins U.S. Pat. No. 4,459,601, in which a piezoelectric transducer is expanded upon application of a voltage in a direction perpendicular to the wall of the ink chamber, or in a shear mode, as described in the Fischbeck et al. U.S. Pat. No. 4,584,590, in which the transducer forming a wall of an ink chamber is subjected to a field which causes a shear in the transducer member, forcing a portion of the member to move laterally with respect to the plane of the member. Both of those arrangements not only require a relatively high voltage to produce a desired degree of displacement of a transducer forming the wall of an ink jet chamber, but, in addition, they occupy a substantial volume, causing the ink jet heads in which they are used to be relatively large and heavy, thereby requiring significant driving energy in systems in which the ink jet head is reciprocated with respect to a substrate which receives the ejected ink. In addition, because of the relatively large transducer volume required for each ink jet, the spacing of the ink jets in an ink jet array is substantially larger than the desired spacing of the image lines to be produced during printing with the array.
{ "pile_set_name": "USPTO Backgrounds" }
Bathtubs and shower trays, particularly those made of fiber reinforced thermoset plastic or acrylic laminate are susceptible to significant floor flexing making it necessary to provide some sort of support between the underside of the bathtub or shower tray floor and the building subfloor. Various approaches have been tried including a mortar bed, foamed in place expandable polyurethane foam and various types of filler blocks including blocks of polystyrene foam.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a CMOS inverter circuit and more particularly to a CMOS inverter including a compensation circuit which compensates the inverter's low-to-high or high-to-low dynamic input threshold for a range of Vcc. A conventional CMOS inverter 10 is shown in FIG. 1. Inverter 10 includes a pMOS transistor 12 and a nMOS transistor 14. A gate 12g of pMOS transistor 12 is coupled to a gate 14g of nMOS transistor 14. A first flow electrode 12s of transistor 12 is coupled to VCC and a first flow electrode 14s of transistor 14 is coupled to ground. A second flow electrode 12d of transistor 12 is coupled to a second flow electrode 14d of transistor 14. The switching threshold of inverter 10 is dependent on the relative size of transistors 12 and 14 and the supply voltage Vcc. The higher the ratio of pMOS to nMOS, the higher the input threshold. If we assume for a typical circuit that the input threshold is Vcc/2 and that Vcc is allowed to vary from 2.7 to 3.6 volts, the input threshold could then vary from 1.35 to 1.8 volts. This is undesirable, for example, if the input of inverter 10 is a clock pulse specified to ramp from 2.7 to 0 volts with a 2.5 ns slew rate and the design requires the propagation time of the clock signal to be independent of Vcc. Accordingly, it would be desirable to provide a CMOS inverter including circuitry which could control the switching threshold as Vcc varies in order to maintain a substantially constant input threshold.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a line symmetrical graphic arrangement device. More specifically, it relates to a line symmetrical graphic arrangement device capable of automatically arranging input graphics into line symmetrical figures, and modifying the positional relation among a plurality of input graphics so that they may stand in the line symmetrical relation with respect to a certain reference line. 2. Description of the Related Art In such a conventional technique as processing image data by the use of a computer, like a CAD system, image data is processed by, for example, graphic software running on a personal computer. In this kind of the conventional technique using graphic software, such an interface is generally used that a desired function is executed by entering a desired command selected from a menu displayed on a display or the like by the use of input means such as a mouse. Specifically, a desired command is selected from various commands prepared as a menu of "Draw" for drawing graphics, e.g. "Straight Line", "Rectangle", "Parallelogram", "Circle", "Curve", "Locus", "Painting" and "Regular Polygon", and various commands prepared as a menu of "Edit" for editing graphics, e.g. "Copy", "Move", "Delete", "Deform", "Mirror", "Turn" and "Compose". Some commands are entered so as to execute graphical drawing and editing. For example, the "Rectangle" command is selected from the menu of "Draw", and a predetermined entry such as the specification of the location of the rectangle is performed. As a result, a rectangle is displayed on the screen of a display device. In case of entering a line symmetrical graphic by this conventional technique, for example, an operator can draw and enter a desired line symmetrical graphic, with "Grid" displayed on a screen, while confirming the position of coordinates with reference to the displayed grid. Or a line symmetrical graphic can be entered by the use of a command of reversing an entered graphic symmetrically (hereinafter, referred to as "Mirror" command). At this time, a method of entering a line symmetrical graphic by the use of the "Mirror" command will be described with reference to FIG. 23. On a graphic which an operator wants to enter (a house with a gable roof in this example), one side portion 101 thereof with respect to the symmetry axis is only entered at first ((A) in FIG. 23). If "Mirror" command is selected, a sub-command 102 will appears, to specify a method for appointing the graphic he wants to reverse and to specify whether the original graphic is kept or not ((B) in FIG. 23). At this time, when one side portion 101, which has been entered, is specified and the mode "Keep original graphic" is selected ((B) in FIG. 23), another side portion 103 is created symmetrically with respect to the symmetry axis 104 ((C) in FIG. 23), so that the desired symmetrical graphic 105 is obtained ((D) in FIG. 23). In case of arranging a plurality of graphics so as to be in the line symmetric positional relation, the same way as mentioned above can be used. As other conventional technique for processing image data by the use of a computer, for example, "A Method of Recognizing Symmetry of Graphics in a Graphic Recognizing Device" is disclosed in Japanese Patent Laid-Open No. 63-261481. The constitution of the conventional technique described in the same is shown in FIG. 24. As shown in FIG. 24, a graphic recognizing device according to the conventional technique can recognize a drawing drawn by the mnemonic operation method. It has a function for supplementing measures not described in the drawing, and comprises a graphic recognizing device 106, a symmetry segment candidate extracting means 107, a vertical segment setting means 108, an arithmetic means 109, and a graphic information setting means 110. The graphic recognizing device 106 comprises a readout processing unit 111, an image data storing unit 112, a vector processing unit 113, a vector classification processing unit 114, a symbol recognition processing unit 115, a segment discrimination processing unit 116, a character recognition processing unit 117 and a recognition result storing unit 118. An operation of this conventional technique will be described with reference to FIGS. 24 to 27. In the graphic recognizing device 106, a drawing 119, including characters, symbols, center lines and the like, which is entered from the readout processing unit 111, is stored into the image data storing unit 112 as image data. The vector processing unit 113 reads out the image data stored into the image data storing unit 112, performs a polygonal line approximation on the image data, converts the image data into vector data, and enters the data into the vector classification processing unit 114. The vector classification processing unit 114 classifies the entered vector data into a symbol, character, and segment, and supplies each data classified into a symbol, character, and segment to the symbol recognition processing unit 115, the segment discrimination processing unit 116 and the character recognition processing unit 117 respectively. The segment discrimination processing unit 116 further classifies the vector data showing a segment into a shape line, a center line and the like by the type of segment, and stores the result into the recognition result storing unit 118. The symbol recognition processing unit 115 and the character recognition processing unit 117 recognize symbols and characters respectively, so to store the data into the recognition result storing unit 118 with attributes attached thereto according to the recognition result. As shown in the flow chart of FIG. 25, the symmetry segment candidate extracting unit 107 extracts the data on some center lines which are possible to serve as symmetry axes from the recognition result storing unit 118 at first (Step 2501), and computes the number of center lines (Step 2502). As for each of the extracted center lines, the unit 107 checks whether there are any shape lines intersecting the center line, or any shape lines of graphics isolated from the center line (Steps 2503 and 2504). When such a center line exists as mentioned above, the vertical segment setting means 108 and the arithmetic means 109 are used in order to check the shape lines, and the symmetric positional relation among the isolated graphics (Step 2505). A method of judging symmetric condition will be explained with reference to FIG. 26. The vertical segment setting means 108 draws a perpendicular line L2, for example, from an endpoint P2 of a vector to the center line Q1, while the arithmetic means 109 acquires the distance d2 from the endpoint P2 to M1, which is on the perpendicular line L2, and further acquires the distance m2 from M1 to the intersection x2 on the vector C2 where the perpendicular line L2 comes across the vector C2. The difference between the distance d2 and m2 is calculated. If the result satisfies the following formula (1) with regard to the constant threshold level (.DELTA.d/2), the similar calculation will be sequentially performed with regard to the other endpoints P3 and the like of the other vectors. EQU .vertline.d2-m2.vertline.&lt;.DELTA.d/2 (1) When the formula (1) is satisfied as for all the end points P2, P3, etc. and the total value .SIGMA..vertline.dn-mn.vertline. of each difference of the distance satisfies the following formula (2) with regard to the constant threshold level Q, the shape lines are judged to be symmetrical with respect to the center line Q1. EQU .SIGMA..vertline.dn-mn.vertline.&lt;Q (2) As illustrated in FIG. 27, in the routine of judging a symmetry axis and the symmetric positional relation between isolated graphics, the vertical segment setting means 108 draws a perpendicular line L from an endpoint P of a vector to a center line Q2, while the arithmetic means 109 acquires the distance D from the endpoint P to M2 on the perpendicular L, and further acquires the respective distance s and s' from M2 to the respective intersections X and X' on the vectors C and C' coming across the perpendicular line L. The difference between the distance s and D, and the difference between the distance s' and D are respectively computed. If the above formula (1),is satisfied as for the intersection where the difference is smaller, the similar calculation is performed as for the other endpoints. When the total value of the difference of each distance satisfies the above formula (2), the two graphics (isolated figures) are judged to be symmetrical with respect to the center line Q2 (Steps 2505 and 2506). When a shape line having symmetrical relation is extracted after the completion of symmetry judgement as for all the center lines, the graphic information setting means 110 sets up the graphic information of the other party (which is omitted), on the basis of the graphic information of this party, which is attached to the shape line having symmetrical property (Step 2507). The first conventional technique by the use of a graphic software as mentioned above, however, has a drawback in that it is difficult to enter a line symmetrical graphic meeting an operation's intention when the line symmetrical graphic to be entered is complicated. This is why, in the input method of drawing a graphic referring to the grid, an operator should enter the graphic with meticulous care, counting squares of the grid to make each vertex symmetric. Also, in the case of entering a line symmetrical graphic including curve, it is very difficult to symmetrize the curved shapes with the grid only. In the input method by the use of "Mirror" command, it is difficult to grasp the whole figure of a complicated graphic by only one side portion thereof that has been entered, so that an operator cannot draw a desirable line symmetrical graphic meeting as he wants. The second conventional technique by which the shape of an input graphic and the symmetric positional relation are judged, has another drawback in that line symmetry cannot be recognized when the center lines have not been described in the predetermined type of line and when there is no description of the center lines because only the center lines described in the predetermined type of line are regarded as the candidates for the symmetry axes. When there are a lot of center lines described on the input graphic, there exist a lot of candidates for the symmetry axes. Therefore, it takes much time in the process of selecting which symmetry axis candidates to select, which results in decreasing the processing speed.
{ "pile_set_name": "USPTO Backgrounds" }
Single-end tenoning machines generally comprise a rotary cutter fixed in relation to the machine, and a bed for moving a workpiece past the cutter. Such machines have limited capacity as the backing piece has to be changed at the end of each cycle. Patent Specification GB No. 2,125,729A (Boardman) describes an end-forming machine in which a tenoning cutter is moved in a lateral direction to engage one end of each of two workpieces. After one end has been tenoned, a workpiece can be moved longitudinally to a position in which the cutter tenons the other end. The machine still has limited capacity.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a display apparatus, a display panel driver and a display panel driving method, and more particularly relates to a driving technique of a display panel to execute a color reducing process and an enlarging process to image data at a same time. 2. Description of Related Art One of requests to an LCD panel (liquid crystal display panel) installed in a portable terminal is in increase in the number of colors to be displayed. In order to satisfy this request, the LCD driver for driving the LCD panel is needed to deal with a multiple gradation display. One problem lies in increase in a chip size, when the number of the displayable gradations of the LCD driver is increased. In order to increase the number of the displayable gradations, a D/A converter used to drive signal lines is needed to deal with a large number of gradations, and this causes the increase in the chip size. One scheme for suppressing the increase in the chip size that results from the increase in the number of the gradations lies in that the LCD driver includes a color reducing circuit, and a pseudo gradation display is performed to substantially attain the multiple gradation display. For example, Japanese Patent No. 3,735,529 and Japanese Patent Application Publication (JP-A-Heisei, 9-90902) disclose a technique that a color reducing process is executed through error diffusion and further attains the pseudo gradation display by using FRC (frame rate control). Another request to the LCD panel installed in the portable terminal lies in increase in the number of pixels. In recent years, the LCD panel is used that has the number of pixels more than the number of pixels defined by VGA (video graphic array). However, the increase in the number of pixels increases a data transfer amount to the LCD driver from an image processing unit such as CPU or DSP (digital signal processor), and consequently increases consumption of electric power and EMI (electromagnetic interference) of the LCD driver. The inventor considers one scheme to solve the above problems of the increases in the electric power consumption and EMI that result from the increase in the number of pixels, in which the size of an image is selected on the basis of a kind of the image to be displayed (for example, VGA, QVCA (quarter VGA) and the like) and also an enlarging process, namely, a function of enlarging the image is given to the LCD driver. For example, it is assumed that the LCD panel has the number of pixels corresponding to VGA. In displaying the image for which a high quality display is requested such as a photograph, the image data of VGA is sent to the LCD driver, and the image is displayed at a same magnification. On the other hand, in displaying the image in which a relatively low resolution is allowable such as the display screen of a game or mail, the enlarging process is executed such that the image data of QVGA is sent to the LCD driver and then the image is enlarged to twice in both of a horizontal direction and a vertical direction by the LCD driver. The enlargement of the image in the horizontal direction is attained by driving the two pixels arrayed in the horizontal direction in accordance with the same image data, as the easiest manner. The enlargement of the image in the vertical direction is attained by driving the adjacent two scan lines sequentially (or at the same time), in the state that the signal line is driven to a desirable drive voltage. Since such a scheme is used to perform the image display, it is possible to decrease the data transfer amount to the LCD driver and decrease consumption of electric power and EMI. In order to attain the correspondence to the multiple gradation display and the reduction in the consumption of electric power and the EMI at the same time, the color reducing process and the enlarging process are desired to be used at the same time. However, according to the consideration of the inventor, when the color reducing process and the enlarging process are simply combined, there is a possibility of deterioration of the image such as generation of flicker. For example, FIGS. 1A and 1B are diagrams showing an example of operation of the LCD driver, in which although the image of VGA is kept in its original state, the enlarging process to double in a column and a row directions is executed on the image of QVGA. At first, it is assumed that the image data of VGA is supplied in which the gradation values of all of pixels of the image data are 18. In this case, as shown in FIG. 1A, the color reduction image data in which the pixel whose gradation value is 16 and the pixel whose gradation value is 20 are alternately repeated is generated through the color reducing process. Then, the LCD panel is driven in accordance with this color reduction image data. On the other hand, it is assumed that the image data of QVGA is supplied in which the gradation values of all the pixels of the image data are 18. After the color reducing process is executed on the image data of QVGA, when the enlarging process to double in the column and row directions is executed, a matrix of 2×2 pixels in which the gradation value is 20 and a matrix of 2×2 pixels in which the gradation value is 20 are arranged on the LCD panel in a checker-wise pattern, as shown in FIG. 1B. In this way, when the color reducing process and the enlarging process are executed simply at the same time, a spatial frequency of a brightness change falls, thereby generating flicker.
{ "pile_set_name": "USPTO Backgrounds" }
The solid form (i.e., the crystalline or amorphous form) of a pharmaceutical compound can be important relative to its pharmacological properties and development as a viable active pharmaceutical ingredient (“API”). Pharmaceutical products are often formulated from crystalline compounds because crystalline materials may provide higher levels of purity and resistance to physical and chemical instabilities under ambient conditions, relative to amorphous forms. Crystalline forms of a compound may, in some cases, offer advantages over amorphous forms, such as improved solubility, stability, processing improvements, etc., and different crystalline forms (e.g. polymorphs of the compound) may offer greater or lesser advantages over one another. However, crystalline forms of a compound are not predictable, and in fact, are not always possible. It is a well-accepted principle that the formation of a new polymorphic or crystalline form (e.g. a new crystalline salt form) of a compound is totally unpredictable, and until a particular polymorph is prepared, there is no way to know whether it might exist, how to prepare it, or what its properties might be. Bernstein, J. Polymorphism in Molecular Crystals. New York: Oxford University Press, 9 (2002). Unlike a crystalline solid, which has an orderly array of unit cells in three dimensions, amorphous forms lack long-range order because molecular packing is more random. As a result, amorphous organic compounds tend to have different properties than their crystalline counterparts. For example, amorphous compounds often have greater solubility than crystalline forms of the same compound. Thus, by way of example only, in pharmaceutical formulations whose crystalline forms are poorly soluble, amorphous forms may present attractive formulation options. As such, amorphous APIs may be used to improve physical and chemical properties of drugs, such as, for example, dissolution and bioavailability. Solid forms of a compound, including both crystalline and amorphous forms, are of particular interest to the pharmaceutical industry, for example to those involved in the development of suitable dosage forms. If the solid form of the API (e.g. the crystalline polymorphic form or amorphous form) is not held constant during clinical or stability studies, the exact dosage form used or studied may not be comparable from one lot to another. In addition, regulatory agencies require solid form characterization and control of the API for approval. Certain polymorphic forms may exhibit enhanced thermodynamic stability or may be more readily manufactured in high purity in large quantities, and thus are more suitable for inclusion in pharmaceutical formulations. Certain polymorphs may display other advantageous physical properties such as lack of hygroscopic tendencies, improved solubility, and enhanced rates of dissolution due to different lattice energies. As such, finding the right conditions to obtain a particular solid form of the desired API (e.g. a particular crystalline polymorphic form or an amorphous form), with pharmaceutically acceptable properties, is critical to drug development, but can take significant time, resources, and effort. Tacedinaline, 4-(acetylamino)-N-(2-aminophenyl)benzamide, (shown below) is a known API useful for treating and/or preventing a variety of conditions, such as, for example, combating neoplastic diseases, and is recognized as an HDAC inhibitor. For example, tacedinaline has positive indications for the treatment of prostate cancer. The preparation and pharmacologic activity of tacedinaline are described in, for example, U.S. Pat. No. 5,137,918, WO 2009/076234, Gediya, L. K. et al., Bioorganic & Medicinal Chemistry 2008, 16, 3352-3360; and Thomas, M. et al., Bioorganic & Medicinal Chemistry 2008, 16, 8109-8116, all of which are incorporated herein by reference. While therapeutic efficacy is a primary concern for a therapeutic agent such as tacedinaline, as discussed above the solid form of a pharmaceutical drug candidate is also important. For example, each solid form of a drug candidate can have different solid state (physical and chemical) properties. The differences in physical properties exhibited by a different solid form of an API, such as a polymorph of the original compound, can affect pharmaceutical parameters such as storage stability, compressibility and density, all of which may be important in formulation and product manufacturing, and solubility and dissolution rates, which may be important factors in determining bioavailability. Because these practical physical properties can be influenced by the solid form of the API, they can significantly impact the selection of a compound as an API, the ultimate pharmaceutical dosage form, the optimization of manufacturing processes, and absorption in the body. Moreover, finding the most adequate form for further drug development can reduce the time and the cost of that development. It may also be beneficial to identify and characterize additional crystal forms so that they may be recognized if they appear during drug development and/or manufacturing. Obtaining pure solid forms, then, can be extremely useful in drug development, as it generally permits better characterization of the drug candidate's chemical and physical properties. Crystalline forms often have more favorable chemical and physical properties than amorphous forms of the same compound. As such, one or more crystalline forms may possess more favorable pharmacology than amorphous forms or be easier to process, or may have better storage stability. Similarly, one crystalline form may possess more favorable pharmacology, may be easier to process, or may have better storage stability than another, or than an amorphous form, or vice versa. One such physical property is a pharmaceutical compound's dissolution rate in aqueous fluid. The rate of dissolution of an API in a patient's stomach fluid may have therapeutic consequences since it impacts the rate at which an orally administered active ingredient may reach the patient's bloodstream. Another such physical property is thermodynamic stability. The thermodynamic stability of an active ingredient may have consequences on the manufacturing process and storage stability of the API and/or the formulation. A crystalline form of a compound generally possesses distinct crystallographic and spectroscopic properties when compared to other crystalline forms having the same chemical composition. Crystallographic and spectroscopic properties of the particular form are typically measured by one or more techniques such as x-ray powder diffraction (XRPD), single crystal x-ray crystallography, solid state NMR spectroscopy, infrared spectroscopy (IR), or Raman spectroscopy, among other techniques. A particular solid form of a compound may often exhibit distinct thermal behavior as well. Thermal behavior is measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Referenced above, U.S. Pat. No. 5,137,918 describes the synthesis and basic activities of a family of compounds including tacedinaline. The tacedinaline disclosed therein is reported as having a melting point of 243.7° C. Accordingly, there is a need in the art to identify novel solid forms of tacedinaline, particularly those having advantageous chemical and/or physical properties. This invention answers those needs by providing novel solid forms of tacedinaline, including forms having improved properties.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to an orthopedic appliance and, more particularly, to a knee brace. 2. Description of the Prior Art The knee is the largest joint of the body formed generally by the hinge-joint of the thigh-bone (femur) above, the shinbone (tibia) below and the kneecap (patella) in front. That joint, which is capable of more movement than either those of the fingers or the elbows, is subject to many injuries due to its complex structure and the fact that it also has to sustain the greatest stresses since it supports the entire weight of the body and of the upper portion of the leg. Such injuries include a twisting or overextension of the knee joint. All knee injuries require a slow and gradual return to normal activity to avoid a recurrence and permanent crippling. In some instances, the knee must be immobilized to permit healing; in other cases, adequate support must be provided to the knee during the normal activity of the user. The movements which take place at the knee joint are flexion and extension, and, in certain positions of the joint, medial and lateral rotation. The movements of flexion and extension at this joint differ from those in a typical hinge joint, such as the elbow, in that the axis around which motion takes place is not a fixed one, but shifts anteriorly during extention and posteriorly during flexion; and the commencement of flexion and the end of extension are accompanied by rotatory movements associated with the fixation of the limb in a position of great stability. The typical prior art knee brace which permits flexion and extension of the knee includes a structure or framework which encircles the knee and which has a hinged joint. Since that brace forces the knee to move about that hinged joint, the knee is not allowed its normal movement of flexion because the axis around which the movement of the brace takes place is fixed. Additionally, the prior art braces do not allow rotation or the locking home mechanism of the knee joint. Further, it is common for conventional knee appliances to be bulky and uncomfortable to wear. A number of the prior art devices have to be form-fitted to the user's knee. They also do not operate effectively in applying sufficient force on the user's knee due to their lack of three-point fixation.
{ "pile_set_name": "USPTO Backgrounds" }
In a magnetic recording apparatus such as a hard disk apparatus, a plurality of tracks are formed in a concentric manner on a disk-shaped magnetic recording medium so as to record data on the tracks. In this case, a servo signal is formed on each of the tracks to specify the center of the track so as to control the position of a magnetic head adapted to read and write data. Techniques are capable of reducing repeatable runout (hereinafter referred to as “RRO”) caused by the rotation of a magnetic recording medium by using information adapted to compensate for RRO (RRO compensation information) that has been written in advance to part of the servo signal. This RRO compensation information varies from one cylinder to another and from one head to another, thus resulting in an enormous amount of such information to be produced for the entire magnetic recording medium. Therefore, a method is desired for determining the RRO compensation information quickly and with high accuracy. Conventionally, two methods are known to generate the RRO compensation information, namely, a method operable to estimate the RRO compensation information using a control target model and another using repetitive control. Of these, the method using a control target model requires designing a highly accurate model for each hard disk drive, thus resulting in a low productivity due to the need to perform calibration for each hard disk drive. On the other hand, the method using repetitive control leads to a wider disturbance frequency range in which to compensate for RROs. This requires designing a phase-stable repetitive control system suitable for the characteristics of a servo system over a wide frequency range. However, it's not been developed yet that a theoretical method to get such a repetitive control system.
{ "pile_set_name": "USPTO Backgrounds" }
This application claims the priority of Korean patent application Serial No.99-55682 filed on Dec. 8, 1999. 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing thereof, and more particularly to a semiconductor device having ferroelectric memories fit for a highly integrated semiconductor device and a method of manufacturing thereof. 2. Description of the Related Art As well known, the recent trend to fabricate a semiconductor device is towards to a high degree of integration accompanied with a development of material, and improvements of equipments and process techniques and progress of design techniques used for fabricating it. As the semiconductor device is highly integrated, circuit elements manufactured respectively such as a capacitor, a transistor, and a resistor are integrated in one chip. Furthermore, the device in which the circuit elements are organically combined each other, such as a memory, is integrated in one chip. Moreover, as electronic industries are developed, it is required of the memory that is driven at lower voltage than the conventional memory and has a high speed of data process. Therefore, to satisfy the requirement, a large number of memories are developed and used commercially or being developed. The ferroelectrics memory among the memories being developed is expected to substitute for DRAM in the future and is in the progress of development and research since it has advantages that a driving voltage is low, a speed of data process is fast, and durability as well as reliance is high. The ferroelectrics memory uses ferroelectric material having a perovskite structure such as PbTiO3[BT], (Pb, La)TiO3[PLT], Pb(Zr, Ti)O3[PZT], (Pb, La)(Zr, Ti)O3 as a capacitor dielectric film, and write and read data by the spontaneous polarization of the ferroelectrics. That is, when the ferroelectrics is interposed between both electrodes and voltages having different electric potential are applied to each electrode, the ferroelectrics is polarized to a specific direction spontaneously. Read and write of data are performed by using the polarization direction. For example, when the voltage of 5V is applied to an upper electrode and the voltage of 0V is applied to a lower electrode, the ferroelectrics interposed between both electrodes is polarized to the positive potential, thereby writing data xe2x80x9c1xe2x80x9d. Conversely, when 0V is applied to the upper electrode and 5V is applied to the lower electrode, the ferroelectrics is polarized to the-negative potential, thereby writing data xe2x80x9c0xe2x80x9d. In case of data read, when 5V is applied to the upper electrode and 0V is applied to the lower electrode, the output voltage is compared with the reference voltage. If the output voltage is greater than the reference voltage, data xe2x80x9c1xe2x80x9d is read out. On the contrary, if the output voltage is smaller than the reference voltage, data xe2x80x9c0xe2x80x9d is read out. Herein, the output voltage is changed according to the direction of spontaneous polarization of the ferroelectrics. As described above, the ferroelectrics memory is not affected by leakage current since it writes and reads data using the spontaneous polarization instead of a quantity of electric charges stored in capacitor. However, although the ferroelectrics memory has the advantages as mentioned above, DRAM is generally incorporated in the semiconductor device to write and read data. The structure of semiconductor device having a memory like the above will be explained as following. Although it is not shown in figures, a logic circuit area and a memory area are formed on the same plane of a semiconductor substrate with a predetermined area(for example, area ratio 1:1). As described above, when the logic circuit area and the memory area are formed on the same plane, the utilization efficiency of the semiconductor substrate, namely the degree of integration becomes lowered. However such a construction prevents the capacitor from misoperating by a leakage current in spite of the disadvantage. In more detail, the memory has a plurality of unit cells respectively consisting of one transistor and one capacitor and writes data by charging electric charges in the capacitor to correspond to the drive of the transistor. In reading the written data, the memory compares the voltage generated by charges stored in the capacitor with a predetermined reference voltage and determines whether the data stored in the capacitor is xe2x80x9c1xe2x80x9d or xe2x80x9c0xe2x80x9d. For example, when DC voltage is applied to the capacitor, the memory compares the voltage outputted from the capacitor with the reference voltage, and reads out as data xe2x80x9c1xe2x80x9d if the output voltage is greater than the reference voltage. On the contrary, if the output voltage is smaller than the reference voltage, the memory reads out data as data xe2x80x9c0xe2x80x9d. And, when the memory is formed on the upper portion of a logic circuit area to improve a degree of integration, electric charges stored in the capacitor may be lost by the leakage current in the capacitor of unit cells in memory. For instance, electric charges stored in the capacitor may be lost by the leakage current generated when the transistor connected to the capacitor is off or at impurity diffusion area connected to the capacitor. As explained above, when electric charges stored in loss of electric charges is great, the output voltage is lowered than the reference voltage. As a result, data xe2x80x9c1xe2x80x9d is read in the capacitor in which data xe2x80x9c1xe2x80x9d is stored. Accordingly, until a recent date, there has been a problem that logic circuit area and memory should be formed on the same plane of the semiconductor device to assure reliance thereof, which inevitably results in decrease of integration degree. Therefore, an object of the invention is to provide a semiconductor device having the ferroelectrics memory fit for the highly integrated semiconductor device and a method of manufacturing thereof. In order to achieve the object, the semiconductor device according to the present invention comprises: a semiconductor substrate; a logic circuit area formed on the semiconductor substrate, the logic circuit area includes transistors for driving bit lines; and a ferroelectrics memory area laminated on the logic circuit area and including a transistor area and a capacitor area. And also, the semiconductor device further comprises interconnection wirings formed on the logic circuit area and electrically connected to the transistors; bit lines formed on the upper part of the interconnection wirings, and electrically connected to the interconnection wirings; a silicon film formed on the upper side of the bit lines and defining a cell forming area; a transistor area formed on the silicon film and comprising a gate electrode, a source and a drain; and a capacitor formed on each transistor and electrically connected to the source of the transistor. The method of fabricating a semiconductor device according to the present invention comprises steps of forming logic circuit area having interconnection wiring connected to bit line driving transistor on semiconductor substrate; forming bit line electrically connected to the interconnection wiring over the interconnection wiring; forming silicon film connected to the bit line over the bit line and restricting cell forming area; forming transistor consisting of gate electrode, source electrode, and drain electrode on the silicon film; and forming capacitor electrically connected to the source electrode over the transistor. Moreover, another method of fabricating a semiconductor device according to the present invention comprises steps of forming a logic circuit area including interconnection wirings connected to bit line driving transistors on a semiconductor substrate; forming a first layer intermediate insulating film on the entire surface for exposing the upper side of the interconnection wirings; forming bit lines electrically connected the interconnection wirings on the first layer intermediate insulating film; forming a second layer intermediate insulating film on the entire surface after forming the bit lines for exposing the a part of the bit lines; defining a cell forming area by selectively patterning the second layer intermediate insulating film; forming a silicon film on a part of the defined cell forming area, the silicon film is connected to the bit lines; forming a gate insulating film and a gate electrode on the silicon film; forming a source electrode and a drain electrode on the silicon film situated under the both sides of the gate electrode; forming a lower electrode for a capacitor on the entire surface to expose the source electrode; and forming a dielectric film and an upper electrode on the lower electrode.
{ "pile_set_name": "USPTO Backgrounds" }
The invention is related to magnetic tape storage systems for use in data processing systems. More specifically, the invention is concerned with a magnetic tape formatting scheme for facilitating the positioning of read/write heads at a desired location along a tape that carries a magnetic storage medium and the associated logic circuitry for detecting the physical ends of the tape and the location of data records along the tape. A typicl magnetic tape storage system includes at least four essential and basic components: namely, a magnetic tape, a tape transport, data transfer circuitry and control circuitry. The magnetic tape generally comprises a flexible tape-like plastic strip having a thin coating of ferromagnetic material along the surface thereof as a storage medium. The tape transport moves the tape between supporting reels, or spools, in a forward or reverse direction past one or more associated read/write heads in the data transfer circuitry. The data transfer circuitry receives signals from the reading heads and converts them into binary signals for transfer to the data processing system and converts binary signals received from the data processing system into signals for energizing the writing heads thereby to store information on the magnetic tape. The control circuitry responds to commands from the data processing system to control the operation of the other components. This invention is particularly adapted to a class of magnetic tape storage devices in which the tape transport may be driven in a fast access, or "seek", mode for the purposes of positioning a desired record at the read/write heads and in a slower, "read/write", mode during data transfer operations that enable data to be read from or written onto the magnetic tape. In such magnetic tape storage systems, efforts are made to achieve optimum performance in both the seek and the read/write modes. Specifically, it is desired to achieve a maximum spatial signal, or bit, density along the tape for signals that represent the data to be stored and various control information in order to maximize the storage capacity of the tape. However, in practice the maximum density that can be achieved is established by several conflicting operating criteria. For example, while increasing signal density increases the data transfer rate for a given tape speed, the probability of errors during data transfers also increases. It also is desirable to minimize record searching times during the seek mode as no data is being transferred. The faster transport rate achieves this objective, but many times at a rate that exceeds the bandwidth of the data transfer circuits. Several magnetic tape storage systems utilize prerecorded formats on the magnetic tape to facilitate the operation of systems which have both seeking and read/write modes. One such formatting scheme is shown in U.S. Pat. No. 3,387,293. In accordance with the description in that patent, the magnetic tape has plural, parallel tracks. One track, a mark track, contains prerecorded formatting information; another track is a timing track that contains timing information. The mark track defines different areas along the tape including end zones at the physical ends of the tapes and a plurality of intermediate blocks. Each block comprises contiguous frames including plural frames in the middle portion of each block for storing data. In a block the frames on either side of the data frames contain positioning information and control information that facilitate the operation of the system during a seeking mode and during a read/write mode. More specifically, control circuitry utilizes positioning information associated with each block to relatively position the tape medium with respect to the read/write heads. This control circuitry and data transfer circuitry may also include detectors for detecting the end zones corresponding to the physical ends of the magnetic tape and the boundaries of adjacent blocks. Additionally, some magnetic tape systems may further incorporate switching and buffering circuitry for improving the data transfer characteristics between the magnetic tape storage system and the data processing system to which it connects. Another formatted arrangement is depicted in U.S. Pat. No. 3,879,752 that discloses a tape or disk medium in which incoming data from the storage medium contains binary data in discrete records, or blocks, and sector information defining the boundaries between adjacent records or blocks. The sector information is stored at a frequency which is greater than the maximum frequency of the signal produced by the binary data. A frequency discriminating circuit detects the occurrence of each burst of higher frequency signal, thereby to indicate that an area of sector has passed the read/write heads, and generates a sector pulse. Other circuitry uses the sector pulse for ascertaining the position of the medium. Apparently, however, this formatting is limited to a medium that travels at a constant speed as the frequency of the sector information signal is dependent upon the velocity of the medium. Doubling the velocity would double the frequency of the sector information signal. Moreover this invention is disclosed as being applicable to both tape and disk media, and disk media are constant speed devices. One disadvantage of the first formatting scheme is its inefficient use of the overall data storage capacity of the recording medium and the additional read circuitry required to reach each of the timing and mark tracks simultaneously with the data track. A similar system incorporates an optical detector in conjunction with transparent or reflective markers disposed at the physical ends of the magnetic tape. The tape may incorporate a reflective metal element on its surface, have its oxide coating absent at a portion thereof, or possess an arrangement of holes that pass light therethrough. In such a system, the control circuitry knows, directly or indirectly, whether the tape transport has reached the beginning or ending of the magnetic tape and thereby causes the tape control circuitry to take appropriate control action. Expensive optical detectors and associated logic circuitry are obvious disadvantages of this method. Another system incorporates a null signal area, or "gap", as a boundary between adjacent records to identify inter-record positions. When a predetermined threshold signal level is not exceeded by the signal from the read heads, the system assumes that an inter-record position is passing the read/write heads. This method is limited by noise factors concommitant with the transfer of low level electrical signals generally associated with transducers. Thus, the data transfer circuitry becomes more complicated because it must have the capability of discriminating noise signals from valid signals. When multiple speeds are used, either different transducers or different threshold signal levels must generally be employed to sense position data at the relatively higher tape speed. All of these factors increase the costs of the storage system.
{ "pile_set_name": "USPTO Backgrounds" }
The past years have seen a dynamic change in the ability of science to comprehend vast amounts of data. Pioneering technologies such as nucleic acid arrays allow scientists to delve into the world of genetics in far greater detail than ever before. Exploration of genomic DNA has long been a dream of the scientific community. Held within the complex structures of genomic DNA lies the potential to identify, diagnose, or treat diseases like cancer, Alzheimer disease or alcoholism. Exploitation of genomic information from plants and animals may also provide answers to the world's food distribution problems. Recent efforts in the scientific community, such as the publication of the draft sequence of the human genome in February 2001, have changed the dream of genome exploration into a reality. Genome-wide assays, however, must contend with the complexity of genomes; the human genome for example is estimated to have a complexity of 3×109 base pairs. Novel methods of sample preparation and sample analysis that reduce complexity may provide for the fast and cost effective exploration of complex samples of nucleic acids, particularly genomic DNA. Single nucleotide polymorphisms (SNPs) have emerged as the marker of choice for genome wide association studies and genetic linkage studies. Building SNP maps of the genome will provide the framework for new studies to identify the underlying genetic basis of complex diseases such as cancer, mental illness and diabetes. Due to the wide ranging applications of SNPs there is still a need for the development of robust, flexible, cost-effective technology platforms that allow for scoring genotypes in large numbers of samples.
{ "pile_set_name": "USPTO Backgrounds" }
A. Field of the Invention The present invention relates generally to computer networks, and more particularly, to resource management of server computers in a public network, such as the Internet. B. Description of Related Art Network computer servers, such as computers that transmit HTML (HyperText Markup Language) documents to client computing devices on the Internet, may interact and receive data requests from many different end-users. It is frequently important that these computer servers maintain high levels of uptime. For example, if a server for an e-commerce site fails to respond to user requests, the site may lose sales. There are many reasons why a server, or a group of servers, may fail. For example, the server may experience software or hardware errors that cause the server to fail. Additionally, the server may experience resource-related problems, such as too many users trying to simultaneously communicate with the server. Such resource-related problems can be “natural” resource problems in which too many bona fide users are trying to access the system simultaneously or malicious problems such as denial of service (DoS) or distributed denial of service (DDoS) attacks. In a DoS or DDoS attack, a compromised system or a multitude of compromised systems flood a server with incoming messages in an attempt to overwhelm the available server resources. Legitimate users of the server may then be denied service by the server due to the overload of its resources. Accordingly, server system availability is an important concern for network servers, such as Internet servers. Conventional hardware solutions, such as clustering and failover, offer some assurances in this area by offering more resources to the users. However, these solutions can fail when faced with automated DoS and DDoS attacks that simply keep taking resources. Accordingly, there is a need in the art to improve resource management in the face of attacks on system resources.
{ "pile_set_name": "USPTO Backgrounds" }
Recently, development has been made regarding decrease in thickness and weight of a note board type personal computer. In parallel with this development, a polarizing plate used in a device such a liquid crystal display or an organic EL display has been eagerly sought to be increasingly thinner. Particularly, decrease in thickness of a protective film of a polarizing plate has been strongly required. However, it has been proved that a simple decrease in thickness of the polarizing plate protective film produces various problems. One of the problems regards moisture vapor permeation (moisture vapor transmittance). For example, as the thickness of a polarizing plate protective film decreases, the moisture vapor transmittance of the film becomes higher, resulting in lowering of durability of the polarizing plate. There have been proposed several methods in which moisture vapor transmittance is optimized. A film with a lower moisture vapor transmittance improves durability of a polarizing plate employing the film, however, too low moisture vapor transmittance has a defect in that an adhesive is difficult to be dried which is used to adhere a polarizing plate protective film to a polarizing film. Therefore, a polarizing plate protective film with moisture vapor permeation property satisfying both the durability and the drying property is required. A cellulose ester film is used in most of polarizing plate protective films, and moisture vapor transmittance of the polarizing plate protective film employing the cellulose ester film is markedly deteriorated due to decrease in thickness. It is known that the high content of a plasticizer in the polarizing plate protective film improves a moisture vapor transmittance, however, a too high content of the plasticizer in the film causes problem of lowering dimensional stability of the film. A polarizing plate protective film having an excellent moisture vapor permeation property and an excellent film performance is required.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a web of closed cell foamed material made from soft plastic, the foamed material having essentially parallel upper and lower surfaces. Webs of foamed material of the above-mentioned type have long been known in the art. When such webs are prepared from cross-linked polyolefins, they are completely inert, can still be formed after a prior heating, have excellent spring-back elasticity and exhibit a substantial heat insulating capacity. As a result of these properties, webs of closed cell foamed material made from cross-linked polyolefins have found diverse applications in the automotive field, in the field of insulation, in the manufacture of toys, camping equipment, sport articles, packing material, seat coverings, apparel and orthopedic products, advertising and display articles and in the building construction industry. However, these webs of foamed material exhibit the disadvantage of possessing low permeability to heat, moisture and sound and it is difficult, if not impossible, to achieve any degree of control or improvement in these properties. For example, while it may be possible to alter these properties by embedment of suitable materials in the foamed web, the closed cell or closed pore structure of the web prohibits such embedment. Even where it is possible to arrange that the web of foamed material originally contain alterations designed to improve these properties, the application of heat and pressure in forming the finished web results in a densification of the pore structure which frequently disadvantageously affects the originally set properties.
{ "pile_set_name": "USPTO Backgrounds" }
In the swash-plate type compressor, a swash-plate is rigidly secured obliquely to a rotary shaft or is secured obliquely to a rotary shaft in such a manner that its slanting angle is variable. The compression and expansion are carried out by means of rotating the swash-plate which increases or decreases the volume of a partition space within a compressor, depending upon the rotation of the rotary shaft. Such swash plate is caused to slide on a sliding member referred to as a shoe, and reciprocates a piston via the shoe. The cooling medium can therefore be compressed and expanded in the stated space. A salient point in the sliding conditions of a swash-plate is that, during the initial operational period of a compressor, the cooling medium reaches the sliding part prior to the lubricating oil reaching the sliding part; thus the cooling medium has a rinsing effect on the lubricating oil which remains on the sliding part, with the result that the sliding condition is in a dry condition free of lubricating oil. The requirements for the sliding condition of the swash plate are therefore very severe. The sliding properties, which are required for a swash-plate used under the condition described above, are seizure resistance, wear resistance, and the like. Proposals have thus been made to add hard matters into the aluminum material for enhancing the wear resistance, to improve the material of the swash plate, and to subject an iron-based swash-plate to heat treatment or surface treatment for enhancing the hardness and hence wear-resistance. One of the present applicants proposed in Japanese Unexamined Patent Publication No. Sho 51-36611 to bond sintered Cu material on the shoe in the case of an iron-based swash plate. That is, an iron-based swash plate was heretofore subjected to hardening treatment. However, when the material of the opposed member, i.e., the shoe, is an iron-based material, the sliding takes place between identical kinds of materials thereby incurring a problem that a seizure is liable to occur. Sintered copper alloy is used for the opposing material (shoe) opposed to an iron-base swash plate, so as to avoid the above mentioned problem. In addition, it was also proposed to apply tin plating on the iron-based swash-plate so as to avoid the sliding between identical kinds of materials and hence to enhance the seizure resistance. In the ordinary swash-plate type compressor, the cooling medium is sucked into and compressed in the cylinder bores at both sides of a piston. In a recently produced single-side compression type swash-plate compressor, the compression and suction are carried out usually only in the rear (R) side. This swash plate compressor is described with reference to an example of the variable volume type compressor disclosed in Japanese Unexamined Patent Publication No. 6-288,347 filed by one of the applicants. As shown in FIG. 13, the front housing 2 is secured to one side of the cylinder block 1, while the rear housing 3 is secured to the other side via the valve sheet 4. The driving shaft 6 is included in the crank space 5 formed by the cylinder block 1 and the front housing 2 and is rotatably supported by the bearings 7a and 7b. A plurality of the cylinder bores 9 are formed in the cylinder block 1 at a location where they surround the driving shaft 6. A piston 10 is inserted in each cylinder bore 9. A rotor 16 is synchronous rotatably supported by the driving shaft 6 in the crank space. In addition, a sleeve 12 having a spherical surface is slidably supported by the driving shaft 6. A compression spring 13 is provided between the rotor 16 and the sleeve 12 having a spherical surface and forces the sleeve having a spherical surface in the direction toward the rear housing 3. A rotary swash plate 14 is rotatably supported on the outer peripheral surface of the sleeve 12 having a spherical surface. In the condition of the compression spring 13, which is at the maximum shrinkage condition as shown in FIG. 13, the contact surface 14, which is formed aslant on the lower back surface of the rotary swash plate 14, abuts on the rotor 16. Therefore, a further inclination of the rotary swash plate 14 to increase its inclination angle is restrained. Although not shown in the drawing, a further inclination to decrease the inclination angle of the swash plate may be restrained. Semi-spherical shoes 15a, 15b abut on the outer peripheral parts of the rotary swash plate 14. The outer peripheral surface of these shoes 15a, 15b are engaged with the ball-bearing surfaces of the piston 10. Therefore, a plurality of the pistons 10 are coupled with the rotary swash-plate 14 via the shoes 15a, 15b and are capable of reciprocating in each cylinder bore 9, in which the pistons are mounted. The rear housing 3 is divided into the suction space 20 and the exhaustion space 21. The suction port 22 and the exhaustion port 23 are formed through the valve sheet 4 and these ports are opened through the respective cylinder bores 9. The compression space formed between the bearing plate 4 and the piston 10 is communicated with the suction space 20 and the exhaustion space 21 via the suction port 22 and the exhaustion port 23, respectively. That is, the compression is carried out only in the single side of the swash plate, i.e., the rear (R) side. A suction valve is provided in each suction port 22 and opens or shuts the suction port 22 in accordance with the reciprocating movement of the pistons 10. An exhaust valve is provided in each exhaustion port 22 and opens or shuts the exhaustion port 22 in accordance with the reciprocating movement of the pistons 10, while the exhaust valve is restrained by the retainer 24. A control valve (not shown) is provided in the rear housing 3 to adjust the pressure in the crank space 5. In the compressor as constructed hereinabove, when the rotary swash-plate 14 is rotated along with the driving of the driving shaft 6, each piston 10 is reciprocated via the shoes 15a, 15b in the cylinder bore 9, thereby sucking the cooling-medium gas through the suction port 20 into the compression space, compressing the cooling-medium gas and then exhausting it into the exhaustion space 21. Here, the amount of the cooling-medium gas, which is exhausted into the exhaustion space 21, is controlled by means of adjusting the pressure in the crank space 5. In addition, the compressor is provided with the mechanisms K, 17 through 19 which enable the exhaustion amount to be adjusted. With reference to FIG. 14, which shows the essential parts of the above described, single-side compression type swash-plate compressor, the problems of wear in the single-side compression type swash plate compressor are explained. In the compressing process, the compression reaction-force in the cylinder bore is transmitted via the single-head piston 10 and the shoes 15 to the rotary swash plate 14. The shoe 15a at the side of the compression space is subjected to the compression reaction force, with the result that great sliding resistance is generated between the shoe 15a and the rotary 14. Since such sliding resistance results not only in the power loss but also in the wear of the swash plate, countermeasures against such results become necessary. Meanwhile, since the shoe 15b at the opposite side of the compression space is also brought into contact with the rotary swash plate 14, sliding resistance generates due to the relative displacement between them. However, the rotary swash plate 14 is not subjected via the shoe 15b to the compressing reaction-force, and the sliding contact between the shoe 15b and the rotary swash-plate 14 occurs only during the suction process, where the single-head piston 10 moves from the top dead center to the bottom dead center. In the suction process, the piston 10 is accompanied by the rotary swash-plate 10 via the shoe 15b, and, the force necessary for accompanying the swash-plate 10 is less than the force required in the compression process. The sliding resistance between the shoe 15b and the rotary swash-plate 14 is accordingly slight. Since the tin plating applied on an iron-based swash-plate of the single-side compression type swash-plate compressor is soft, a problem that arises is insufficient wear-resistance. Furthermore, although a hard element added to an aluminum alloy enhances wear resistance, a problem that arises is insufficient seizure resistance of the swash plate at the compression-space side.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a steel cord for reinforcing rubber articles such as pneumatic tires, industrial belts and the like. More particularly it relates to rubber articles and their steel cord having enhanced rubber penetration property, enhanced resistance to cut separation indicating tire durability, and good resistance to BES (belt edge separation). The invention also particularly relates to pneumatic radial tires using such steel cord. 2. Description of the Prior Art Products reinforced with steel cords are liable to suffer from corrosion of the steel filament caused by water entering the products and thereby the durability and life of the products are lowered. For example, when steel cords used in a belt of a tire have a void and the tire tread are subjected to damage reaching the belt, water entering the belt spreads along the longitudinal direction of the cord through the voids in the steel cords. As a result, rust formed due to water also diffuses and the adhesion between rubber and steel cord is lowered at that portion. Finally, separation phenomena occurs. In order to prevent such corrosion propagation, there is proposed a cord structure in which rubber can sufficiently penetrate into the inside of the cord through gaps between adjacent metal filaments by vulcanization under pressure. Japanese Patent Application Laid-open Nos. 8208/1985 and 1790/1984 disclose one of the above-mentioned cord structures, a so-called "1+5 structure" cord composed of one core filament and five sheath filaments, having gaps between sheath filaments and rubber and can easily penetrate into the gaps. Further this cord can be produced by one-step twisting and thereby the productivity is high. Indeed the average sheath gaps are sufficient in such a cord structure, but deviation occurs in the arrangement of sheath filaments and there are formed attaching portions of the filaments resulting in forming of portions where rubber does not penetrate due to a fluctuation in the manufacturing procedure. The objects of the present invention are to provide a steel cord having remarkably enhanced rubber penetration property by changing the structure of a core filament and good resistance to BES, and to provide a pneumatic radial tire using the same.
{ "pile_set_name": "USPTO Backgrounds" }
During angioplasty procedures it is often necessary to exchange one dilatation catheter for another. To do so requires manipulation of lengthy exchange wires, which is time consuming and awkward to the extent that two operators are required. A current approach to dealing with this is the "monorail" system wherein a dilatation catheter has a structure such that only the distal portion of the catheter tracks a guidewire. Examples of such systems are described in Yock, U.S. Pat. Nos. 5,040,548 and 5,061,273, Bonzel, U.S. Pat. No. 4,762,129, and Kramer, U.S. Pat. No. 5,135,535, all of which are incorporated herein by reference. In the known monorail systems the pushing force on the dilatation catheter is eccentric to the guidewire, such that there is not total responsiveness in the system as the operator attempts to manipulate the dilatation catheter along the guidewire. This can cause binding and failure to move the catheter through tortuous arterial segments and tight stenoses. Furthermore, in these systems/designs, the guidewire lumen is positioned coaxially within a balloon that is attached to the catheter shaft at the proximal and distal ends of the balloon. This arrangement allows the balloon to compress along the guidewire lumen, increasing in profile, and thereby also causing binding and failure to move the catheter. Dependent upon the clinical application, balloons of varying lengths may be required. In addition to the time and expense required to develop and qualify separate balloons for each application, as the balloon length increases the tendency for binding increases. Thus, there is a need for a monorail type system wherein there will be co-linear design between a push wire and the guidewire and a parallel arrangement between the balloon and the guidewire lumen, resulting in more positive tracking and facilitated passage through tortuous arterial segments and tight stenoses, as well as simplified methods of manufacture.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates generally to medical implant systems. In particular, the invention relates to a tool to endovascularly deliver and deploy a medical implant, such as a replacement heart valve. Aspects of the invention may also be used to deliver and deploy other medical implants and to deliver those implants percutaneously, endoscopically, laparoscopically, etc. Medical devices may be implanted within patients' bodies for a variety of medical purposes. Many implants can be delivered in a minimally invasive manner, such as through percutaneous access to the patient's vasculature, through an existing orifice, etc. For example, replacement heart valves may be endovascularly delivered to a patient's heart, as described in more detail in U.S. patent application Ser. No. 10/982,388; U.S. patent application Ser. No. 10/746,120, filed Dec. 23, 2003; and U.S. patent application Ser. No. 10/870,340, filed Jun. 16, 2004. Multiple implant operations may need to be performed during the minimally invasive delivery and deployment of a medical implant; the prior art is replete with handles and actuators for these purposes. Replacement heart valves may be delivered endovascularly to the patient's heart from an entry point far from the patient's heart. For example, replacement aortic valves can be delivered retrograde (i.e., against the blood flow) from an insertion point near the patient's groin through the femoral artery and the aorta. Any physician-operated actuators used to deliver, deploy, retrieve or otherwise operate the replacement valve or its components must perform their operations over this distance. In addition to any expansion of the valve and/or anchor from a deployment shape or self-expanded shape to a deployed shape, these operations may include expansion of the replacement valve against the inward force of the tissue in and around the patient's native valve. Each of these operations could require the delivery of an expansion force from the external actuator to the implant. Other possible valve replacement procedure operations controlled by external actuators include detachment of the delivery tool from the implant after a successful placement procedure, collapsing and moving an implant to a more desirable implant location, and retrieval of the implant back into a delivery tool catheter or sheath.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an axial piston machine in general, and more particularly to an axial plunger pump for use in a high-pressure cleaning device. European Pat No. 02 42 550 describes a high-pressure cleaning device which includes an axial plunger pump with a wobble drive. The wobble drive has a wobble member which is rotatable about an axis of rotation and a swash plate which is rotatably supported by the wobble member and extends at an inclination to the axis of rotation. A plurality of plungers bear upon one end face of the swash plate so that operation of the wobble drive together with the swash plate drives the plungers by performing a wobbling rotary motion which is converted in oscillations of the plungers in axial direction. The wobble member is securely fixed on a motor shaft, and a ball bearing is positioned axially next to the wobble member and arranged on the motor shaft for radially supporting the motor shaft, with the ball bearing having an outer ring which is supported by a housing of the high-pressure cleaning device. The ball bearing is configured as angular-contact ball bearing so that axial loads as a result of plunger accelerations are not transmitted into the motor shaft but via the wobble member to the angular-contact ball bearing and from there into the housing. A drawback of this conventional axial plunger pump is the necessity to separately mount the wobble member and the angular-contact ball bearing to the motor shaft so that the overall assembly of the wobble drive becomes increasingly complicated and labor-intensive.
{ "pile_set_name": "USPTO Backgrounds" }
Acoustic detectors are commonly used to detect and indicate attempts to break into premises. The most common acoustic detector is a glass breakage detector. The detector generates an alarm signal when the sound of a breaking window is detected. Typically, the detectors are remotely mounted from the protected glass and are attached to a ceiling or a wall. The location of the detector is dependent on the size of the protected area and a number of other mounting restrictions that are manufacturer specific. The detectors rely on detecting the sound of breaking glass by sensing one or more known frequency components associated with the sound of breaking glass. When the glass breakage detector is installed, it is typically tested to ensure proper functionality. Additionally, it is tested to customize the detector for a given location, such that acoustic properties of the proximate environment are compensated for by a sensitivity adjustment to optimize the sensing range of the detector. Various common objects found in an indoor location can affect the performance of the detector, such as carpet, ceiling tiles, walls and/or floors, due to the reflection and absorption of frequency components. To test the detectors, a glass break simulator is used to simulate the glass breakage. For example, U.S. Pat. No. 5,341,122 describes a glass breakage simulator capable of generating different frequency components indicative of broken glass. However, to adjust the level of sensitivity of the detector, an installer needs to open the detector each time the level must be changed. In practice, the sensitivity adjustment can occur several times, requiring the installer to manually adjust the sensitivity each time by changing a switch setting inside the detector. Since each installation is different, the installer would have to climb a ladder and open the detector multiple times before achieving the proper sensitivity level. This adjustment process is time consuming and cumbersome. Because the process is cumbersome, installers will often not optimize the range for the given site, leading to a less than ideal installation. Accordingly, there is a need to be able to test the detector and adjust the sensitivity of the detector without requiring substantial effort by an installer.
{ "pile_set_name": "USPTO Backgrounds" }
a) Field of the Invention The present invention relates to material and methods of using a composite stock material structurally defined sheet, with a continuous and non-uniform surface embedded with and enveloping low signature particulate material which conforms to the contour of a non-planar surface. More particularly, the present invention relates to a thermo-mechanically-worked composite polymeric matrix sheet embedded with and enveloping low signature functional material and transfer coated with adhesive for the permanent retrofitting attachment onto vehicles. b) Description of the Prior Art It is advantageous for modern military vehicles to be afforded a facile method and means for reducing and eliminating both radar and optical signatures to avoid detection. A low signature response, for purposes of this invention, is defined as a contrary indication of and the minimum possible spectral signature of vehicle presence when subjected to radio-frequency signals and optical detection. Radio-frequency signals (RF), for the purpose of this invention, includes signals in the range between the UHF band (30 to 300 MHz) and Ku band (26 to 40 Ghz) inclusive. The problem with utilizing paint on military vehicles to minimize visual detection is that it is too thin to contain an effective quantity of low signature RF material. The prior art on vehicle coating teaches about polymeric films with pigment. Dobashi, et. al., U.S. Pat. No. 5,643,676, disclose a coating of a colored polyolefin film and a pressure sensitive adhesive layer. This non-shrink film is but a temporary coating for protection during vehicle transit. The prior art on vehicle coating teaches about thermally deformable and thermoforming polymeric films with paint/pigment. Hartman, U.S. Pat. Nos. 5,030,513, 5,030,514, and 5,242,751, discloses paint composite articles comprising thermally and vacuum deformable carrier films having an adhesive layer on one surface and a paint layer on the other surface. Knop, et. al., U.S. Pat. No. 5,538,576, disclose a paint carrier film with an adhesion enhancer applied during original equipment manufacturing of the vehicle body part. Berner, et. al., U.S. Pat. No. 5,387,304, disclose a carrier film, coated on one side with paint and on the other with an adhesive, applied by thermoforming to the automotive body part. Pata, U.S. Pat. No. 5,034,077, and Benson, et. al., U.S. Pat. No. 4,913,760, disclose paint-coated polymeric films which are applied by vacuum thermoforming the films to the vehicle body part. The problem with this prior art is that the polymeric film must be applied to the vehicle body part using molds and under vacuum at the factory. In the prior low signature art a paint additive and component was disclosed by Hubbard, U.S. Pat. No. 5,506,053. Hubbard is only a component of paint, and paint is too thin to contain an effective quantity of low signature RF material. The RF coatings disclosed in the prior art do not all function to reduce the RF signature. Munro, et. al., U.S. Pat. No. 5,215,824, disclose an RF-transparent blanket. Amore, et. al., U.S. Pat. No. 5,373,306, Bogorad, et. al., U.S. Pat. No. 5,283,592, and Lepore, et. al., U.S. Pat. No. 5,373,305, disclose RF-transparent sunshield films. The polyimide film being utilized is not a shrink-film.
{ "pile_set_name": "USPTO Backgrounds" }
The utilization of torque limiting clutches to protect interengaged engines and driven equipment is now well known. However, such torque limiting clutches and associated control systems have typically been of a nature as to be specifically tailored to both the engine and the driven equipment and without adaptation to change parameters during operation as a consequence of operational characteristics actually sensed during operation. Indeed, prior art systems have not been given to change at all once the system is configured, rendering such systems substantially inflexible to adapting to varying operational conditions. Further, the prior art has not sought to integrate the torque limiting clutch and control system with the system as a whole, such that the torque setting of the clutch may be set automatically to match the torque capability of the engine or the drive system. Indeed, the prior art has not seen the wisdom of interconnecting the torque limiting clutch and its control system to the SAE J1939 CAN Bus Network of the equipment, so that the clutch and its control system are an integral part thereof and can be adjusted as a function of the system as a whole. The prior art is further devoid of a structure or a technique for monitoring the operating temperature of the torque limiting clutch friction pack such that the energy absorption can be monitored during operation and clutch disengagement can be entertained at a time sufficient to prevent premature failure. Prior art torque limiting clutch control systems have not been given to maximizing the effective operation of the clutch to prevent overload conditions by providing a constant monitoring of the operating conditions of the clutch to determine the amount of energy absorbed thereby and to immediately disengage the clutch when a predetermined energy threshold is exceeded. Clutch failures with associated cost and downtime have typically been incident to power transmission devices in the past because of the absence of this capability. The prior art specifically appears devoid of an adaptive system in which change in clutch pressure, with a consequent change in the clutch torque setting, can be effected on the fly, when it is determined that the clutch slippage is not appropriate and efficient torque protection is not being obtained. Moreover, known systems do not allow for increases or decreases in clutch pressure to alter clutch operation, as needed, to ensure the effective operation of the system when anomalies in operation are encountered. Another shortcoming of existing torque limiting clutch control systems is the absence of ancillary sensors that can anticipate operational problems and force the disengagement of the clutch or shutdown of the equipment prior to the occurrence of an otherwise damaging event. There simply is a void in the art of a fully adaptive torque limiting clutch control system configured for implementation between an engine and a piece of driven equipment, that ensures the effective operation of that equipment while simultaneously ensuring the protection thereof.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention In assembling micro-optic structures and in particular those utilizing fiber optic waveguides, it is often necessary to control relative spatial alignments with extremely fine precision. Some optical components use optical fibers having a core region that carries a beam of light that is of the order of 10 microns in diameter (and even smaller in some cases). In order to assemble such a component the optical fibers have to be manipulated with a precision level on the order of {fraction (1/10)}th of a micron. 2. Prior Art In the past, optical fiber components have been assembled using known 3-axis ball-bearing positioners. Anyone who has attempted to achieve stable alignment using single-mode optical fiber with such known kinds of positioners equipped with micrometer actuators will attest to the lack of required precision. Crossed roller and ball type stages inherently require preload which generates motional friction and have a resolution limit set by the randomness of the required drive force due to dust and surface variations associated with the frictional interfaces and the limited stiffness of actuator mechanisms. Other designs of positioners offer frictionless movement with the use of flexure-based designs but often at the expense of overall mechanical stiffness. A single parallel cantilever pair will generate an arc-error in its trajectory. What is commonly done is to combine two cantilever pairs into a compound cantilever stage so as to have one compensate the other and provide perfect linear motion. Compound cantilever stages are very large for their available travel as conventional designs consist of two separate compound stages that are effectively joined at a centerline to maintain high off-axis stiffness. An example of such a positioner mechanism is shown in U.S. Pat. No. 4,686,440, issued Aug. 11, 1987 to Hatamura et al., in FIGS. 12 and 13. One of the objects of this invention is to provide a compound cantilever stage that is much smaller than the conventional design. The majority of 3-axis positioning equipment is made up by staging single axis units one on top of each other using angle plates. This results in a structure that has diminished resolution and stiffness as one moves progressively further from the mounting frame of reference. In many designs the stiffness of the overall unit is inadequate to resist the forces required to operate the actuators. In these cases the operator must use a touch and release method where the signal is adjusted and the operator then has to release the actuator to witness the result. Another downfall of a 3-axis positioner made up of three individual orthogonally arranged stages is the fact that the actuators are also arranged in an XYZ configuration, i.e. each has an axis perpendicular to the other two actuators, making prolonged use strenuous due to the required hand movements. An inherent limitation to the resolution of nearly all positioning systems lies in the use of what can be termed simple axial actuators. A micrometer head or a complex piezo micrometer head are examples of simple actuators as they produce a displacement that is used to control the movement of a translation stage in a direct ratio. For example, a 1 micron movement of the shaft of said actuator is used to produce a 1 micron movement of the corresponding translation stage. As a result all motional errors such as hysteresis or randomness of movement inherent in the actuator itself are passed on directly to the translation stage. The requirement for sub-micron resolution also necessitates the requirement for differential micrometer stages and stepper-motor driven lead screw drives in order to achieve the necessary resolution since a single thread micrometer under hand control cannot be easily adjusted at such fine a resolution. The general trend towards increased resolution and stability in positioning equipment has been driven by the increased use of small-core single-mode optical fibers over the larger core multimode optical fibers which require less precision in alignment manipulation. In order to remove the effect of operator induced forces a number of sub-micron resolution remote driven motor driven stages have emerged on the market. Even with fully automated positioning systems where a scan routine is carried out under computer control, some level of operator intervention is required for handling and loading the individual elements to be assembled. In many labor intensive assembly applications the cost of an automated system cannot be justified and would not be considered if an appropriate mechanical positioner were available. Copending U.S. patent application No.671,143 as aforesaid, which is hereby incorporated by reference, describes and claims a 3-axis positioning device ideally suited for, but not limited to, the assembly of single-mode fiber optic components. The invention of this earlier application allows for all of the actuators to be placed in a common orientation to reduce hand fatigue and improve adjustment efficiency. That invention teaches a structure that provides for both coarse and fine movement while using a simple adjustment screw and a single micrometer head for each of at least two axes of movement. The structure also allows for the fine movement control to be a fraction of the travel of the micrometer head while increasing movement resolution. Another aspect of the invention of this earlier application includes means of translating motion from one axis of movement to another. In addition that invention teaches a linear compound flexure stage that provides for large travel and perfect linear motion with high stiffniess. In its ideal form that invention can provide for operator insensitive adjustment when aligning single-mode optical fibers with a resolution limit that is comparable to a closed-loop piezo driven translation stage. The invention of the aforesaid copending application is a significant improvement over a conventional stacked 3-axis unit as the operator adjustment forces act only on a single stiff linear translation stage instead of the sum of the total of all stages. It is then possible to realize a positioning device that can operate under hand control at resolution and stiffness levels required for single-mode fiber optic alignments wherein the operator does not influence the measured optical signal level during adjustment of the unit. It is also possible with that invention to implement linear motor drive on the second and third axes without affecting the overall sensitivity to hand adjustment forces. Another aspect of the aforesaid copending application is an orthogonal drive conversion system which serves to isolate the holding means of a positioner from manual forces applied to it. Another advantage of this orthogonal drive conversion is that it allows micrometer type actuators to be all aligned in one direction, thus decreasing operator strain. Yet another aspect of the positioner of the aforesaid copending application is a compound cantilever stage that is one-half of the conventional design; the latter being a design which uses two separate compound stages that are effectively joined at a centerline to maintain high off-axis stiffness. Traditionally the one half arrangement is not used as the intermediate frame of reference would move in response to external loads placed on the system and limit off-axis stiffness. It can be shown however, that if the intermediate frame in a compound cantilever stage were to be forced to move one-half of the overall displacement, then high stiffness can be achieved while requiring only one half of the conventional compound cantilever design. An aspect of this earlier invention was to provide a forcing or control means to set the displacement of the intermediate frame of reference of a compound cantilever stage to one half of the output displacement. In its preferred form said control means is a beam connected to the parts by frictionless elastic elements. In the copending application the compound cantilever stage was claimed in relation to rectilinear movement; since that application was concerned with a 3-axis positioner, only rectilinear motion was required. However, the present invention is concerned with a positioner having a mechanism capable of angular movements, and which mechanism can be combined with the mechanism of the copending application to make a positioner which moves an object such as an optical fiber with four, five or six degrees of freedom. The preferred form of the positioner has mechanism similar to that of the copending application for providing rectilinear motion in X, Y and Z axes; and in addition provides structure mounted on the movable support of the earlier positioner and which provides angular movement about one or more of the same three axes. Where angular motion is about two or three axes, these are preferably coincident. These angular adjustments are achieved, as are the rectilinear movements of the earlier stages, by use of flexures which eliminate friction and play or looseness of joints. It has been found that a compound cantilever stage somewhat similar in principle to that used for rectilinear movement in the three stage positioner can also be used to connect stages which move angularly relative to each other. In accordance with this aspect of the invention, a positioning device includes: a first support; a movable support restrained for movement relative to said first support with one degree of freedom and carrying holding means for an object to be positioned; an intermediate support which is connected to said first support by a pair of first spaced flexible elements of substantially equal length and which is connected to the movable support by a pair of second spaced flexible elements also of substantially equal length, said first and second flexible elements being oppositely arranged and being dimensioned so that arc errors in the movement of the intermediate support caused by bending of said first flexible elements are substantially compensated by arc movements of said second flexible elements to produce a desired movement of the movable support, an actuator connected to cause movement of the movable support relative to the first support with bending of said flexible elements; and control means connecting said first support, said intermediate support and the movable support so that the degree of movement of the intermediate support is one half that of the movable support. The reference to the movable support xe2x80x9ccarrying holding meansxe2x80x9d is not limited to the case where holding means are directly mounted on the movable support; it includes an indirect mounting on the movable support via further adjustment stages. Although in the preferred embodiments the flexible elements of each first or second pair are equal in length to each other, reasonable accuracy is possible with differences in these lengths of 5 or 10%. Where, as in the copending application, the desired movement of the movable support is rectilinear, then all of the first and second flexible elements are of the same length, and preferably of the same stiffness. Slight differences in stiffness are however not of concern, due to the presence of the control means. Where the desired movement of the movable support is angular motion about a fixed axis, then the first and second flexible elements may be radial elements all having the same radial dimensions, i.e. having the same inner and outer radii, and again preferably having the same stiffness. However, in the case of angular motion, other arrangements are possible, and for example the second flexible elements may be displaced radially outwardly relative to the first such elements, with the second elements also having greater radial length than the first elements. As in the copending application, the control means may be a rigid member connected by further flexible elements to the first support, the intermediate support, and the movable support. Also, as before, in the case of rectilinear movement of the movable support and intermediate support, the control means is preferably a rigid member connected to the intermediate support at a position midway between its connections to the first support and the movable support, so as to ensure that the movement of the intermediate support relative to said first support is one-half that of the movable support. As indicated, the movable support may have angular motion about an axis, in which case the xe2x80x9cdegree of movementxe2x80x9d of the intermediate support will be one-half the angle of movement of the movable support. In this case the flexible elements extend radially with respect to said axis when the movable support is in one position within its range of movement, and the control means is a rigid member connected to the intermediate support at a position chosen such that the angular movement of the intermediate support relative to the first support is the desired one half that of the movable support. The rigid member is preferably connected to the first support, the intermediate support, and the movable support by flexible elements connected to these parts at points which lie on a line extending radially with respect to the said stationary axis. The aforesaid copending U.S. application described, with reference to FIGS. 5 to 11, control mechanisms for controlling movements in the X and Y directions by means of actuators mounted on a mounting plate held by the first, or Z axis, rectilinear stage and which were both parallel to the Z direction actuator. These mechanisms, which are also used in the preferred embodiment of the present positioner for the X and Y stages, are convenient for the operator and prevent hand forces undesirably affecting the X and Y adjustments. In a 6 axis positioner in accordance with of the present invention it is desirable that the three angular position actuators also be mounted on the first or Z axis stage and be parallel to the other actuators. However this requires somewhat complex linkage to ensure that there is little or no cross-coupling between the either the X and Y translational movements and the angular adjustments, nor between the first or second stage angular adjustments and the later stage angular adjustments. In other words it is required that later angular adjustment stages can be controlled by mechanisms isolated from movements in the earlier stages. To take a simple case, it is required that where a positioning device has a first support and a second support connected to the first support by means allowing lateral movement of the second support relative to the first support in the X axis direction, for example, and where a third support is mounted for angular movement on the second support about a pivot axis, the actuating means for causing angular movement of the third support relative to the second support should operate while being substantially unaffected by movement of the second support at least in the X direction. In accordance with this further feature of the present invention, the actuating means for this situation includes an axially movable control link extending in a direction generally perpendicular to the X axis and having an inner end arranged to be moved axially relative to the first support by an actuator mounted on the first support, the control link being flexibly connected at its inner and outer ends respectively to the first and second supports, the control link having its outer end connected to a control mechanism mounted on the second support, and in which the control mechanism includes: a) restraining means for causing the outer end of the control link to move laterally with the second support in the direction of the X axis while allowing said outer end to move axially relative to said second support, and b) motion conversion means for converting axial movement of the control link outer end relative to said second support into movement of a moment arm part of the third support so as to cause angular movement of said third support relative to the second support about the pivot axis. The control mechanism is such that if lateral movement of the second support relative to the first support occurs in the X axis direction without axial movement of the inner end of the control link relative to the first support, the moment arm part remains substantially stationary relative to the second support. The reference above to the X direction is of course arbitrary; the same considerations apply if motion of a second support relative to a first support occurs in the Y direction. Where this mechanism is applied to the first angularly movable stage which is mounted on the third or last stage of the linear 3 axis positioner, the control mechanism has to take into account that the first and second supports as defined in the preceding paragraphs, which here would be the first and third stages of the 3 axis positioner, are connected primarily by flexible elements providing parallel linkages so that when the second support moves in either the X or Y direction, movements of points on the second support relative to the first support occur in arcs having equal radii determined by the effective lengths of the flexible elements. In this case the control link preferably has an effective length equal to the effective lengths of these flexible elements, which are themselves of equal length for the X and Y movements, so that the control link swings in unison with the flexible elements and so that movements of the second support in the X or Y directions do not change the relationship between the outer end of the control link and the second support. The motion conversion means may include a bell crank having an inner end connected to the outer end of the control link, with an outer end of the bell crank being arranged to transmit force to said moment arm part. Pivotal movement of the bell crank is isolated from movement of the second support relative to the first support in the X direction, or in the Y direction if the latter movement is present. Where a bell crank is used, this may be pivotally mounted on a fulcrum fixed to the second support. Alternatively, the bell crank may be indirectly mounted on the second support, and may have a first arm connected both to the outer end of the control link and to a second link also connected to the first support, with the control and second links forming a first parallelogram linkage, a second arm of the bell crank being connected to the second support by third and fourth links forming a second parallelogram linkage operating perpendicularly to the first. With this arrangement, the rotational position of the bell crank relative to the second support is isolated from movements of said second support relative to the first support both in the X direction and in directions off-set or perpendicular to the X direction. This is particularly useful for the second or yaw stage of angular movement, which is mounted on the roll stage, since the roll stage moves not only with the swinging movements provided by the flexible elements connecting the Y and X movement stages, but also has circumferential movement about the axis of the roll stage which is slightly off-set from the swinging motion which characterizes the usual X direction. The manner in which movement is transmitted from the actuators to the inner end of the control link may be similar to the mechanism used in the three axis positioner of the aforesaid copending application, in that the inner end of the control link may be held by a lever member located at one end by fulcrum means and at its other end by the respective actuator. Also, the fulcrum means may include an adjustment screw arranged to provide movement of the lever independent of the movement of the actuator. A further feature of this invention relates to magnetic means used to reduce the forces needed to move the positioner parts against the restraining forces of the various flexible elements. In positioning devices using flexible elements in place of bearings or sliding joints, there are conventionally trade-offs between having sufficient ease of movement, on the one hand, and having, on the other hand, sufficient rigidity to ensure accuracy of movement. Another aspect of the present invention is the provision of magnetic means to counteract stiffniess of flexible elements without reducing accuracy of movement. In accordance with this aspect of the invention, in a positioning device including: a first support; a second support movably mounted on said first support and constrained to move relative thereto with one degree of freedom, said second support carrying holding means for an object to be positioned; and at least one pair of resilient, flexible elements connecting said first and second supports and capable of flexing in response to movements of the second support relative to the first support to provide a restoring force when displaced from an initial position at which the restoring force is a minimum, there are provided magnetic means acting between said supports, said magnetic means being positioned to counteract said restoring force when the second support is moved from said initial position, whereby the force required to move the second support against said restoring force is reduced by magnetic forces produced by said magnetic means. The magnetic means may only partially counteract the restoring spring forces of the flexure elements, so that the second support would still tend to move to a stable central position in the absence of any actuator, as it would without the magnetic means. While the magnets may counteract all of the spring forces, the arrangements of this invention differ from known bistable mechanisms using magnets in which the magnets overcome the restoring forces and cause the mechanism to move between opposed end positions, in that here the magnetic surfaces do not contact each other and do not normally apply very strong forces which would hold the parts in extreme positions. The magnetic means may include magnets having axes aligned obliquely to a direction of relative movement between the one support and the second support, these magnets being arranged so that the amount of relative movement between said latter parts may be greater than the maximum gap between said magnets. Where the magnets are aligned obliquely in this manner, they may be provided symmetrically about an axis which is parallel to the direction of movement, so that the net forces provided by the magnets are solely in the direction of said movement. Additionally, the magnets may also be arranged symmetrically about an axis which is perpendicular to the direction of movement, the magnets being all aligned with sides of a rhombus. Alternatively, the magnetic means may include magnets located respectively on said one support and on the second support and positioned so that like poles of said magnets lie directly opposite to each other when the movable support is in its initial position. The magnetic means may include two or more pairs of magnets. Where two pairs of magnets are used, one pair may have opposed north poles and one pair may have opposed south poles, the two pairs being close enough that when the second support has been displaced from its initial position the north pole of one magnet on the second support may be attracted to the south pole of a magnet on the first support so that there are attractive as well as repulsive forces assisting in counteracting the forces in the flexible elements. Where three pairs of magnets are used, one magnet of each pair being on the first support and the other magnet of each pair being on the second support, the pairs of magnets may include a central pair having opposed poles of a first polarity and which lie directly opposite each other when the second support is in its initial position, and two outer pairs of magnets having opposed poles of a second polarity which also lie directly opposite each other when the second support is in said initial position, said magnets being positioned so that a magnet of the central pair is attracted to a magnet of an outer pair on movement of the second support from its initial position.
{ "pile_set_name": "USPTO Backgrounds" }
Personal Information Devices include the class of computers, personal digital assistants and electronic organizers that tend both to be physically smaller than conventional computers and to have more limited hardware and data processing capabilities. PIDs include, for example, products sold by Palm, Inc. of Santa Clara, Calif., under such trademark as Pilot, and Pilot 1000, Pilot 5000, PalmPilot, PalmPilot Personal, PalmPilot Professional, Palm, and Palm III, Palm V, Palm VII, as well as other products sold under such trade names as WorkPad, Franklin Quest, and Franklin Convey. PIDs are generally discussed, for example, in U.S. Pat. Nos. 5,125,039; 5,727,202; 5,832,489; 5,884,323; 5,889,888; 5,900,875; 6,000,000; 6,006,274; and 6,034,686, which are incorporated herein by reference. PIDs typically include a screen and data processor, allowing the PID user to operate a substantial variety of application relating to, for example: electronic mail, a calendar, appointments, contact data (such as address and telephone numbers), notebook records, a calendar, expense reports, to do lists: or games. PIDs also often include substantial electronic memory for storing such applications as well as data entered by the user. Due to their substantial variety of applications and uses, personal information devices are becoming increasingly widely used. One increasingly popular application of personal information devices is their ability to share information with other properly equipped personal information devices, wirelessly and otherwise. For example, many types of user information such as electronic mail, calendar events, appointments, contact data, and the like exist in the form of digital data files stored within the memory of the personal information device. When equipped with communications hardware/software, the data files embodying the user information can be easily transferred from one personal information device to another. For example, one such application involves the transferring of electronic “business cards” from one personal information device to another, allowing their respective users to easily exchange contact information. The popularity of information sharing between PIDs and other types of electronic devices is gaining with the increasingly widespread adoption of wireless forms of communication. Wireless communication allows users, via their respective devices, to always be in touch with one another. For example, instant messaging applications are very popular on desktop computer systems. Instant messaging allows users to instantly contact one another when they're both online. A similar scenario is envisioned where users are both carrying wirelessly connected PIDs. Accordingly, several prior art solutions are emerging which address the popularity of wireless instant messaging type schemes. These solutions enable a wirelessly connected PID to receive messages, e-mail, notifications, or the like from other wirelessly connected PIDs or other types of computer system platforms (e.g., desktop machines connected to messenger services, cell phones, and the like). Unfortunately, these prior art solutions do not address the problem of unsolicited notifications, unprioritized notifications, unsolicited e-mail, and other types of “spam” which exploit the wireless functionality of a user's PID. For example, many users have experienced frustration when unsolicited e-mail and/or unsolicited notifications appear within their mail browsers or instant messenger services. Currently, many wireless notifications/messages carry the same priority, and are thus treated the same by the PID. For example, users may want to distinguish regular notifications (e.g. for stock alerts) from emergency notifications (e.g., your patient is in need of critical care). There currently exists no viable method which allows a user to distinguish between wanted messages/notifications and unwanted spam Thus, many users may, for example, turn wireless notification functionality off in order to prevent unauthorized/unsolicited use. The lack of message prioritization is a serious drawback to prior art wireless notifications/messaging schemes. Although wireless PDA devices provide service providers with the ability to push notifications to the user when a pre-defined event takes place, there is no viable method for differentiating between “regular” alerts and “emergency” alerts. For example, a user could configure the PID to filter regular alerts while allowing emergency alerts to be displayed. For example, in a case where a surgeon is attending a concert, she may want to turn off notification of “regular” alerts but allow for the notification of “emergency” alerts. She will also want to have control over who can send her “emergency” alerts. Considering a case where a service provider offers an earthquake alert service, which notifies the subscribers of the arrival of an earthquake giving them a few precious seconds in which they can act before the earthquake hits. A person subscribed to this service and attending a meeting may choose to ignore “regular” notifications but will want to view this “emergency” alert. The prior art provides no method for differentiating between such regular notifications and emergency notifications. The prior art provides no method for ensuring a user that a so-called notification is not simply spam (e.g., “buy this product now at a 20% off sale!”). The prior does not provide any mechanism or scheme for authenticating and authorizing the content service provider to issue such priority differentiated messages. Thus, what is required is a method for differentiating between such regular notifications and emergency notifications. What is required is a method for ensuring a user that a so-called notification is not simply spam. Additionally, what is required is a method and system for authenticating and authorizing the content service provider to issue such priority differentiated messages. The present invention provides a novel solution to the above requirements.
{ "pile_set_name": "USPTO Backgrounds" }
Wafer-level packaging is the technology of packaging one or more electronic modules as part of a wafer, in contrast to the conventional method of slicing the wafer into individual circuits and then packaging them. Reconstructed wafers, including high density electronic devices, are typically formed by fabricating a silicon wafer with embedded electronic modules (e.g., chip scale components) using a molding process. Most embedded chip scale components, referred to as electronic modules, include various circuitry contained within a housing and electrical contacts along one surface or another of the housing. During the molding process, the desired chip scale components (i.e., dies) are typically oriented on a mounting surface with the electrical contacts facing upward or downward relative to the mounting surface. Integrated ultra-high density (iUHD) manufacturing and packaging processes are reconstructed wafer-level packaging processes that allow for miniaturization of electronic components. Such processes typically involve placement of individual dies face down on a mounting surface, such as an adhesive film, prior to a molding process. A cavity wafer can be created by patterning and etching a standard silicon (Si) wafer. The one or more cavities formed in the wafer can be configured to accept buried components. The cavity wafer can have a plurality of fillports, which can be distributed in each of the cavities. The cavity wafer can be placed over the dies and low coefficient of thermal expansion (CTE) encapsulant can be injected into the cavities through the fillports to surround the die. Following encapsulation, the adhesive film can be removed to reveal a planar surface on the reconstructed wafer. Multilayer interconnect can then be fabricated on both sides of the core using standard wafer fabrication techniques. FIG. 1 shows one embodiment of a molding process for wafer-level packaging 10 using a conventional custom cavity wafer. One or more dies 17 can be placed on a film 11. A cavity wafer 12 can be placed over the dies. The cavity wafer can have one or more frontside cavities 13, 14, 15. A piston 18 forces down the upper part (the film 11, the dies 17, and the cavity wafer 12) of the package into a liquid encapsulant 16. Before the molding process starts, a molding chamber (not shown) where the molding process is performed can be evacuated. As pressure is applied by the piston 18, the encapsulant 16 can flow through fillports 131, 132, 133 of the cavities 13, 14, 15. The liquid encapsulant 16 can reach the cavities and surround the dies 17. Gaskets 19 can serve as mechanical stops to avoid applying too much pressure, e.g., to the level that the dies contact the walls of the wafer cavities. It can be desirable to leave space between the dies and the walls of the wafer cavity of at least about 50 μm to allow the encapsulant 16 to flow between the dies and the walls of the wafer cavity and surround the dies completely. Spacing less than about 50 μm can, in some embodiments, be too narrow to allow particles of the encapsulant 16 to flow without restriction. Once the mold has been pressurized, heat can be applied to the wafer-level packaging to cure the liquid encapsulant 16. When the liquid encapsulant 16 is cured, the film 11 can be removed, along with excess encapsulant. FIGS. 2A-2D illustrate a cross-sectional view of conventional custom cavity wafer design. A standard silicon (Si) wafer, shown in FIG. 2A, can be etched to form fillports and cavities, as shown in FIGS. 2B and 2C. After encapsulant flows through the fillports, the encapsulant can fill the fillports and the cavities as shown in FIG. 2D. Due to a CTE mismatch between the encapsulant and the silicon wafer, bowing of the wafer can occur when heat is applied to cure the encapsulant 16. In order to control the amount of wafer bow, backside cavities can be etched in some embodiments, as shown in FIG. 2C. These backside cavities can create oppositely-directed bowing forces that can balance those created on the frontside of the wafer. A group of dies can form a module in which the dies are electrically connected by the iUHD process, as shown in FIG. 2E. Conventionally, cavities are created for each module 21, 22 by etching into the wafer 20, as shown in FIG. 2F. The layout of each module can vary and a custom cavity wafer can be required for each module design. In the conventional approach, since separate cavities are formed for each module, large gaps are formed between modules that consume valuable real-estate of the wafer. In addition, cavity wafer design that is specific to module design prevents fabrication of the cavity wafer until a corresponding module design is complete. This limitation creates issues with production schedules because each cavity wafer is essentially a custom component.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a tapered roller bearing which is preferably used in an automotive pinion shaft supporting apparatus as in a differential and a transaxle and in a transmission of a vehicle or the like, and an automotive pinion shaft supporting apparatus which uses the tapered roller bearing. In recent years, there has been increasing a demand for improvement in fuel economy of motor vehicles, and in association with the demand, there is expressed a desire to reduce the running torque of tapered roller bearings which are used to support rotational shafts of transmissions and differentials installed on those motor vehicles. In these situations, as a method of reducing the running torque of a tapered roller bearing, there is a method of reducing the rolling friction of a tapered roller bearing by crowning rolling contact surfaces of tapered rollers and raceway surfaces of inner and outer rings. As the method like this, as is described in Patent Document No. 1 below, there is proposed, for example, a method in which raceway surfaces are crowned in an arc-shape fashion so as to realize a reduction in running torque, or, as is described in Patent Document No. 2 below, there is also proposed a method in which rolling contact surfaces of rollers and raceway surfaces which are brought into contact therewith are crowned to a shape which approximates to a logarithmic curve. In the conventional examples, the performance of the tapered roller bearing was attempted to be enhanced by specifying the shape of the crown imparted to the raceway surface or the rolling contact surface by a numerical value. However, there had been no attempt to grasp the crown as quantity so as to specify the crowning amount so imparted to thereby reduce the running torque of the tapered roller bearing. Patent Document No. 1: JP-A-2003-130059 Patent Document No. 2: JP-A-2001-65574 Incidentally, when the tapered roller bearing is used in an automotive pinion shaft supporting apparatus in a differential of a motor vehicle, for example, a preload is imparted to the relevant bearing for the purpose of securing rigidity and the like. The extent to which the preload is imparted to the tapered roller bearing is generally determined based on as an indication the value of an assembly torque which is measured as the running torque of the tapered roller bearing when it is assembled onto the automotive pinion shaft supporting apparatus. However, it is often the case that this assembly torque varies. In the even that the assembly torque varies, there may occur in a case where the preloading cannot be imparted accurately, leading to a risk that a preload that is imparted to the relevant bearing varies. In the event that the preload that is imparted to this bearing varies, leading to a case where the preload is imparted to exceed an extent to which it should be, it constitutes a cause for a shorter life of the tapered roller bearing. On the other hand, in the event that the extent to which the preload is imparted becomes short, as a result, the rigidity of the tapered roller bearing becomes insufficient, and gear noise is generated. Furthermore, there has been caused a risk that the running torque is increased in use of the tapered roller bearing.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates generally to functionalized carbosilane polymers and photoresist compositions containing the same. 2. Description of Background Dry 193 nm resist materials are generally limited to indices of refraction near or below 1.7. It has been predicted that using a high refractive index resist in immersion lithography can significantly enhance the depth of focus, exposure latitude and mask error enhancement factor (MEET) at numerical apertures (Nas) >1.0. The higher the refractive index, the greater the enhancements. It is expected that immersion lithography at 193-nm complemented by techniques such as double exposure would be the main lithography solution for 32-nm node manufacturing. This will place stringent requirements on 193-nm photoresists, among others. Several polymers having a retractive index n as high as 1.9 have been identified as potential candidates. These materials include thioacrylates and thiazolines, but share the property of having a high sulfur content. Unfortunately, however, the 193-nm absorption of these polymers has also progressively increased with the increase in sulfur content and has made them unsuitable for photoresist applications. Some of the polymers that have been prepared for resist applications have absorbance values [A=(α10/μm)] greater than 5. A few functional polycarbosilanes have been reported previously. For, example, Interrante et. al., (I. L. Rushkin and L. V. Interrante, Macromolecules, 1996, 29, 5784) have reported the synthesis of several functional polycarbosilanes including a phenol containing polycarbosilane. The US patents and patent publications listed below have also reported the use of functional polycarbosilanes for various applications: U.S. Patent Publication No. 2005/0042538 to Babich et al; U.S. Pat. No. 7,172,849 to Babich et al.; U.S. Pat. No. 6,660,230 to McGill et al.; U.S. Pat. No. 7,157,052 to McGill et al.; U.S. Patent Publication No. 2007/0003440 to McGill et al.; U.S. Patent Publication No 2006/0063905 to Nakagawa et al.; and U.S. Patent Publication No. 2007/0020467 to Nakagawa et al. Babich et al, describe polycarbosilanes with cross-linkable pendant groups for hard-mask applications. McGill et al. describe the use of fluoroalcohol containing polycarbosilanes for analytical and purification applications. Nakagawa et al. have reported the synthesis and utilization of polycarbosilanes for insulating films. None of the publications or patents mentioned above describes the use of polycarbosilanes for photoresist applications, or polycarbosilanes with acid functionalities. Furthermore, no report has attributed higher refractive index to polycarbosilanes. Accordingly, there remains a need for high refractive index polymers suitable for use in photoresist compositions employed in immersion lithography.
{ "pile_set_name": "USPTO Backgrounds" }
Theft of costly portable possessions, such as new high-tech golf clubs with titanium heads and graphite shafts, is increasing at an alarming rate. For example, the theft of titanium golf clubs from golf equipment shops is so frequent that titanium golf clubs are locked up independently of the other equipment in the store. To substantiate this fact are the numerous news stories depicting golf shop burglaries in which only the titanium or other exotic golf clubs have been stolen. Many golf club manufacturers register golf clubs at the factory, and track the golf clubs by manual systems that are proprietary to the manufacturer. Typically this method requires the eventual owner of the clubs to fill out and send in a registration form and/or questionnaire. Because this manual tracking method is usually entirely dependent on the golf club owner, it is not always reliable. Handguns present a similar tracking problem. Even though gun stores are traditionally more secure than golf shops, theft from guns stores is still a common occurrence. Probably even more common is the theft of firearms during house burglaries. All modern guns are stamped with a unique serial number by the manufacturer. For any gun sold at a gun shop, the serial number of the gun and name of the purchaser must be recorded in a database. However, when a gun is stolen, the serial number of the stolen handgun can be modified or ground off the gun. Once this occurs, future identification of the gun is almost impossible. The art known to the inventor of this device is unsophisticated. For example, U.S. Pat. No. 1,914,781 to Mattern, Jr. et al., U.S. Pat. No. 1,942,122 to Reach, and U.S. Pat. No. 1,830,936 to Faith all teach using an end-cap or similar device attached to the grip end of the golf club for identification, ornamentation, or protection. None of these inventions uses hidden instrumentality or electronic transmitters for identification or tracking purposes. This type of system does not provide a means for tracking the object after purchase. However, there are many products that are protected by electronic security systems. For instance, it is well known to provide security systems in commercial environments, such as retail establishments, libraries, and motor vehicles. For example, in retail establishments, retail items that are easily stolen are often times “tagged” with a magnetic element. If someone tries to remove the “tagged” item from the premise an alarm will sound. The only way to prevent the alarm from sounding is to remove or demagnetize the tag at the check-out station. As mentioned above, often times manufacturers stamp or etch serial numbers on products such as golf clubs, guns, computers, stereos, personal water craft, boats and other valuable products that can be easily stolen. To circumvent someone from grinding off the serial number, such an identifying mark is often placed in a location that is hidden from casual observation. This is common practice on automobile components to serve as a deterrent in the trafficking of stolen car parts. However, it is still possible for someone to find and alter or remove the manufacturer's serial number, thus making ownership of the component hard to determine and almost impossible to track. None of the prior art that the inventor is aware of provides for a method that not only helps determine ownership of a product, but also provides for the capability of determining when and where a product was used. A product of this type could be very beneficial in products such as golf clubs, handguns, airbags, personal watercraft, boats, computers and camcorders. It would therefore be possible for the owner or manufacturer to know when or where the product was used. Therefore, a need exists for an anti-theft device to either locate stolen possessions or track portable possessions, such as golf clubs, handguns airbags, personal watercraft, boats computers and camcorders. The device of the invention would also be able to provide and record in a database useful information about the portable possessions, such as the name of the owner, date of purchase, where they have been, or other information deemed appropriate.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention generally relates to: a method for cleaning a humor replacing circuit formed by interconnecting medical instruments (such as, a membrane type plasma separator, a selective plasma component absorber, and a membrane filter); a joint for forming the circuit; and a medical instrument container used in the circuit. The method, the joint, and the medical instrument container are used for medical treatment (such as, dialysis or plasma replacing therapy). 2. Description of the Relevant Art As shown in FIG. 1, a humor replacing circuit 1 used for medical treatment (such as, dialysis or plasma replacing therapy) is usually formed by interconnecting medical instruments (such as, a membrane type plasma separator 2, a selective plasma component absorber 3, and a membrane filter 4) through ducts 5. After the entire humor replacing circuit 1 has been cleaned, a desired treatment (such as, dialysis or plasma replacing therapy) is effected. In this circuit, it is essential to shut bubbles out while the circuit is being assembled and cleaned. Two methods have thus been made available so as to provide a humor replacing circuit 1, while preventing undesired bubbles from entering. One of the methods repeats the sequential operation of connecting a duct 5 to a medical instrument, while releasing air and cleaning, one by one, so as to complete the assembling of all the ducts and the medical instruments. The other method employs dummy tubes 6, as shown in FIGS. 2 through 5. This method includes the steps of: interconnecting the ends of ducts 5, between which a medical instrument is to be interposed, through a dummy tube 6 to form a circuit whose components communicate with one another; air-releasing and cleaning the entire circuit outright; and then replacing the dummy tubes 6 with medical instruments, while being careful not to have bubbles enter the circuit. FIGS. 2 to 5 show a conventional method of replacing the selective plasma component absorber 3 with a dummy tube 6. First, as shown in FIG. 2, the ends of ducts 5 interposing the dummy tube 6 are clamped by forceps 7. Then, as shown in FIG. 3, one of the ducts 5 is connected to an outlet port 3b by insertion with the absorber 3 being inverted. If the outlet port 3b is not filled with a filling solution (such as, a sodium citrate aqueous solution), the connecting operation is performed by replenishing physiological saline by an injector 8, while keeping bubbles from entering. As shown in FIG. 4, the duct 5 is inserted to an inlet port 3a for connection, while inverting the absorber 3 back to the normal position. Physiological solution may similarly be replenished, if necessary. As the final step, the forceps is taken out to remove clamping, as shown in FIG. 5, in order to complete the operation of replacing the dummy tube 6 with the absorber 3. However, the method of sequentially assembling the humor replacing circuit, while releasing air and cleaning the circuit components one by one involves the operation of connecting the ducts one by one while being careful not to have bubbles enter the circuit; thereby, entailing extremely cumbersome and careful work since there are many points of connection in the above-described conventional method. As a result, the burden of the operator becomes intolerable which results in connecting errors or the like. These are, consequently, the drawbacks and shortcomings of the conventional method. On the other hand, the method employing the dummy tubes 6 allows the entire circuit to be cleaned outright, but involves the operation of connecting the dummy tubes 6 to the predetermined portions of the ducts 5; thus, still requiring complicated preparatory work which is also a shortcoming. This invention is therefore provided in order to overcome the above-described problems. Accordingly, the object of this invention is to provide: a method of cleaning an entire humor replacing circuit by simply operating the switching valves of the joints connected to the ends of the ducts; a joint that can be readily replaced and connected to medical instruments; and a medical instrument container. In order to achieve the above objects, a first aspect of this invention is applied to a method of cleaning a humor replacing circuit formed by interconnecting medical instruments (such as, a membrane type plasma separator, a selective plasma component absorber, and a membrane filter). The method includes the steps of: assembling a cleaning circuit by connecting a joint having a two-way switching valve body to an end of a duct for interconnecting the medical instruments; connecting a pair of connected joints by a bypass so that the joints confront each other; interposing a medical instrument (such as, the membrane type plasma separator or the selective plasma component absorber) between the confronting joints, and switching the two-way switching valve body to such a position so as to allow the bypass to communicate with the joints; carrying out a first cleaning of the entire circuit under such a condition; and carrying out a second cleaning and priming by switching the two-way switching valve body to the other position. A second aspect of this invention is directed to a method that includes the steps of: preparing a joint having connecting ends of an inlet and an outlet of a medical instrument, connecting ends of two ducts for interconnecting the medical instruments, a two-way switching valve body, and a bypass capable of communicating with the two ducts; switching the two-way switching valve body to one position to cause the two ducts to communicate with each other through the bypass; carrying out a first cleaning of the entire circuit under this condition; switching the two-way switching valve body to the other position to cause the two ducts to communicate with the medical instrument; and carrying out a second cleaning and priming under this condition. A third aspect of the invention is directed to a joint for a humor replacing circuit for interconnecting a medical instrument (such as, a membrane type plasma separator, a selective plasma component absorber or a membrane filter). A body of the joint includes: a connecting end for connecting a medical instrument; a connecting end for inserting an inlet or an outlet of the medical instrument; and a connecting end of a bypass for interconnecting a pair of joints corresponding to the inlet and the outlet of the medical instrument. The joint body has a two-way switching valve body that is slidable therewithin, the two-way switching valve body allowing the three connecting ends inside the joint body to be switched. A fourth aspect of this invention is directed to a joint having a body which includes: a two-way switching valve body arranged so as to be slidable therewithin; connecting ends for inserting an inlet and an outlet of a medical instrument; connecting ends of two ducts for interconnecting the medical instruments; and a bypass capable of communicating with the two ducts through the two-way switching valve body. A fifth aspect of this invention is directed to a medical instrument container for accommodating a medical instrument (such as, a membrane type plasma separator, a selective plasma component absorber or a membrane filter) used in a humor replacing circuit for medical treatment (such as, dialysis or plasma replacing therapy). The container is arranged so that the horizontal level of the container is as high as that of an inlet and an outlet of the medical instrument. This invention includes the connection of a joint having a two-way switching valve body to the end of a duct that interconnects medical instruments, and the further interconnecting of two such connected joints respectively corresponding to the inlet and the outlet of a medical instrument through a bypass. Therefore, by switching the switching valve body, the ducts communicate with each other through the bypass interconnecting the joints; thereby, allowing the entire humor replacing circuit to be cleaned. In addition, a desired humor replacing circuit can be conveniently formed by merely inserting a medical instrument to the connecting ends of each pair of joints. Another aspect of this invention is directed to the connection of two ducts and the inlet and the outlet of a single medical instrument to a joint having a two-way switching valve body and a bypass, the two ducts interconnecting medical instruments. By setting the two-way switching valve body to one of the positions, the two ducts can communicate with each other through the bypass; thereby, allowing all the ducts belonging to the humor replacing circuit to be subjected to a first cleaning. Further, by setting the two-way switching valve body to the other position, the two ducts can be connected to the inlet and the outlet of the medical instrument, respectively; thereby, allowing the entire circuit throughout the medical instruments to be subjected to second cleaning and priming. These and other features of the invention will be understood upon reading of the following description along with the drawings. It is noted that the same reference numbers used in the above-described conventional method and apparatus are used for designating various parts or components of this invention.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an optical recording medium comprising a phase-change recording material which is optically changeable by the application thereto of a light beam so as to carry out recording, reproducing, and overwriting of information, and more particularly to a phase-change optical recording medium capable of recording information with high density at high recording linear velocity. In addition, the present invention also relates to a recording method and apparatus for the above-mentioned phase-change optical recording medium by a Constant Angular Velocity (CAV) system or a Constant Linear Velocity (CLV) system which is achieved by dividing the recording area of the recording medium into a plurality of sections in the radial direction of the recording medium. 2. Discussion of Background To reproduce or record information in an optical disc with high density by using a laser beam, there is conventionally known the overwriting mode in which recording marks are formed in the optical disc by the application of a plurality of short-length pulse trains as disclosed in Japanese Laid-Open Patent Application 3-185628. However, the above-mentioned overwriting mode has the drawback that the laser power becomes partially insufficient. More specifically, in the case where the optical disc is rotated at a constant number of revolutions, the relative speed of the laser spot is not constant between a recording area at the inner circumference of the disc and that at the outer circumference thereof, viewed in a radial direction of the disc. In such a case, the laser power becomes insufficient in the area where the relative speed of the laser spot is fast. Furthermore, there will occur a new problem that design of the circuit becomes difficult. To solve the above-mentioned problems, there is a proposal in Japanese Laid-Open Patent Application 6-12674. This proposal is that when an input signal with a particular wave form, for example, an eight to fourteen modulation signal (EFM signal) is given to an optical disc, the wave form of laser is modulated depending upon the linear velocity. More specifically, the laser is modulated into a short-length train of pulses when the linear velocity is slower than a predetermined value (L0); and the laser is modulated into one pulse which is made slightly shorter than the corresponding recording mark when the linear velocity is faster than the aforementioned value (L0). There is an increasing demand for development of a phase-change optical recording medium and a recording method therefor, which will be able to achieve high-density recording such that the recording capacity thereof is the same or more than that of DVD-ROM, and attain high-speed recording at a linear velocity of 2 times or more (about 7 m/s or more) that of the nominal speed for the DVD-ROM. However, when such an optical recording medium is subjected to the above-mentioned CAV or CLV recording method, it is conventionally known that good recording characteristics cannot be obtained with respect to jitter value by slightly shortening the input pulse width. On the contrary, when the aforementioned conventional method, as proposed in Japanese Laid-Open Patent application 6-12674, of modulating laser into a short-length train of pulses at the lower linear velocity side, good results can be produced. It is considered that, in Japanese Laid-Open Patent Application 6-12674, the above-mentioned recording method is employed because the optical disc employs a composition close to a compound of Ge2Sb2Te5. However, when recording is carried out using the modulated laser with the pulse width being fixed so as not to be deformed at the higher linear velocity side, the pulse width becomes too short in the recording area of the lower linear velocity side, that is, at an inner circumference of the recording medium. In this area, there is a tendency of impairing the jitter value due to insufficient recording power. It is considered that such a phenomenon is also caused by the composition of a recording layer for use in the optical recording medium. Accordingly, it is a first object of the present invention to provide a phase-change optical recording medium free from the above-mentioned conventional drawbacks, capable of achieving high-density recording such that the recording capacity thereof is the same or more than that of the DVD-ROM, and attaining high-speed recording at a recording linear velocity in the range of 3.0 to 20 m/s. A second object of the present invention is to provide a recording method for the above-mentioned phase-change optical recording medium. A third object of the present invention is to provide a recording apparatus for the above-mentioned phase-change optical recording medium. The above-mentioned first object of the present invention can be achieved by an optical recording medium for recording information, comprising a phase-change recording layer comprising Sb and Te as essential elements therefor, to which is added at least one element selected from the group consisting of Ag, Au, Cu, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, N, P, Bi, La, Ce, Gd, and Tb, the recording layer being capable of assuming an amorphous phase changed from a crystalline phase by the application of a laser beam thereto, thereby optically recording information. In the above-mentioned optical recording medium, the Sb and Te, and at least one element selected from the aforementioned group constitute a eutectic phase-change material, with Sb and Te serving as the main components therefor, and at least one element serving as an additional component in an atomic percentage of 17% or less in the eutectic phase-change material. It is preferable that there is a difference in reflectance of 30% or more between (a) the crystalline phase and (b) the amorphous phase formed by the application of the laser beam to the crystalline phase at a recording linear velocity ranging from 3 to 20 m/s. The second object of the present invention can be achieved by a method for optically recording information, using an optical recording medium comprising a phase-change recording layer comprising Sb and Te as essential elements therefor, to which is added at least one element selected from the group consisting of Ag, Au, Cu, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, N, P, Bi, La, Ce, Gd, and Tb, the recording layer being capable of assuming an amorphous phase changed from a crystalline phase by the application of a laser beam thereto, thereby optically recording information by forming recording marks therein, wherein when the recording marks are formed in the optical recording medium, a light emission wave of the laser beam is converted into a recording pulse train comprising a plurality of on-pulses and each off-pulse subsequent to the on-pulses, with a recording frequency xcexd (xcexd=1/Tw where Tw is a window width) being continuously changed corresponding to the location of each of the recording marks in the radial direction of the recording medium, either in the direction from an inner circumference towards an outer circumference of the recording medium, or in the direction from the outer circumference towards the inner circumference of the recording medium. The third object of the present invention can be achieved by a recording apparatus for recording information comprising laser beam driving circuit means for carrying out a recording method for optically recording information, using an optical recording medium comprising a phase-change recording layer comprising Sb and Te as essential elements therefor, to which is added at least one element selected from the group consisting of Ag, Au, Cu, Zn, B, Al, Ga, In, Si, Ge, Sn. Pb, N, P, Bi, La, Ce, Gd, and Tb, the recording layer being capable of assuming an amorphous phase changed from a crystalline phase by the application of a laser beam thereto, thereby optically recording information by forming recording marks therein, wherein when the recording marks are formed in the optical recording medium, a light emission wave of the laser beam is converted into a recording pulse train comprising a plurality of on-pulses and each off-pulse subsequent to the on-pulses, with a recording frequency xcexd (xcexd=1/Tw where Tw is a window width) being continuously changed corresponding to the location of each of the recording marks in the radial direction of the recording medium, either in the direction from an inner circumference towards an outer circumference of the recording medium, or in the direction from the outer circumference towards the inner circumference of the recording medium, a plurality of on-pulses having a pulse width comprising (1) a pulse width portion fixed with an identical time constant (T), and (2) a pulse width portion determined by multiplying the window width (Tw) by a constant, signal generation means for generating a signal corresponding to the time constant, and signal transmission means for transmitting the signal to the driving circuit means.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to methods and inorganic compositions, such as polyvalent metal silicates and polyvalent metal carbonates, for inhibiting the formation, deposition, and/or adherence of scale deposits on substrate surfaces in contact with a scale-forming aqueous system. The scale deposits may be alkaline earth metal scale deposits, such as alkaline earth metal carbonate scale deposits, especially calcium carbonate scale deposits, or alkaline earth metal oxalate deposits. The present invention may be advantageously used to prevent scale in a variety of processes such as kraft pulping processes. 2. Discussion of Background Scale build-up is a serious problem in many industrial water systems, such as cooling towers, heat exchangers, evaporators, pulping digesters, washers, and in the production and processing of crude oil-water mixtures, etc. The build-up of scale deposits reduces the efficiency of heat transfer systems, interferes with fluid flow, facilitates corrosive processes and harbors bacteria. Calcium carbonate, generated in various processes, is one of the most commonly observed scale formers in industrial water systems. This scale is an expensive problem in many industries, which causes delays and shutdowns for cleaning and removal. In particular, most industrial waters contain metal ions, such as calcium, barium, magnesium, aluminium, strontium, iron, etc. and several anions such as bicarbonate, carbonate, sulfate, oxalate, phosphate, silicate, fluoride, etc. When combinations of these anions and cations are present in concentrations which exceed the solubility of their reaction products, precipitates form until product solubility concentrations are no longer exceeded. For example, when the concentrations of calcium ion and carbonate ion exceed the solubility of the calcium carbonate reaction products, a solid phase of calcium carbonate will form. Solubility product concentrations are exceeded for various reasons, such as partial evaporation of the water phase, change in pH, temperature or pressure, and the introduction of additional ions which form insoluble compounds with the ions already present in the solution. As these reaction products precipitate on the surfaces of the water carrying system, they form scale or deposits. For boiler systems and similar heat exchange systems, the mechanism of scale formation is apparently one of crystallization of scale-forming salts from a solution which is locally supersaturated in the region adjacent the heating surface of the system. The thin viscous film of water in this region tends to become more concentrated than the remainder of the solution outside this region. As a result, the solubility of the scale-forming salt reaction product is first exceeded in this thin film, and crystallization of scale results directly on the heating surface. In addition to this, a common source of scale in boiler systems is the breakdown of calcium bicarbonate to form calcium carbonate water and carbon dioxide under the influence of heat. For open recirculating cooling water systems, in which a cooling tower, spray pond, evaporative condenser, and the like serve to dissipate heat by evaporation of water, the chief factor which promotes scale formation is concentration of solids dissolved in the water by repeated evaporation of portions of the water phase. Thus, even a water which is not scale forming on a once-through basis usually will become scale forming when concentrated a multiple number of times. Also as disclosed in U.S. Pat. No. 3,518,204 to HANSEN et al., the disclosure of which is herein incorporated by reference in its entirety, water supplies employed as cooling media frequently contain silts such as bentonitic or kaolinitic minerals. During use of such silt containing waters in these systems, the silts react or associate with other impurities which are present in the water such as calcium and magnesium which are commonly referred to as xe2x80x9chardnessxe2x80x9d. As a consequence of such reaction or association, a precipitate is formed and precipitated upon the surfaces of the system containing the water. Such depositions may build up to the extent that flow through the system is reduced or halted, and the system must be shut down for costly cleaning. In addition, when such deposition occurs on heat transfer surfaces, heat exchange is reduced with a corresponding loss in process efficiency. Scaling in kraft pulping processes occurs by a different mechanism as a result of the presence of organic ligands. Black liquor generated in the kraft pulping digester contains a very high content of organics such as lignin, fatty/rosin soaps, hemicelluloses, etc. Lignin fragments formed during pulping, specifically those containing adjacent hydroxyl groups on an aromatic ring, have a high tendency to interact with calcium (originally from tree) to greatly increase its solubility in black liquor. As the temperature increases (e.g., the temperature found near the tube wall of an evaporator or cooking heater), the pH has a tendency to decrease, especially if the residual active alkali is low. As a consequence, calcium ions can be displaced from the lignin by hydrogen ions, and react with carbonate ions thus producing calcium carbonate scale. In addition to lignin, there are many different organic species that complex calcium in the black liquor. Any of these organic species, whose ability to complex with calcium depends on the pH being in the normal pH range of black liquor, will contribute to calcium carbonate scaling by releasing ionic calcium as the temperature increases. Therefore, as long as some of the aforementioned organic compounds are present and sufficient calcium is available, a liquor will have the capacity to deposit calcium carbonate scale. In addition to calcium and carbonate, black liquor normally contains a number of other ions such as sodium and sulfate which can precipitate and form scale. In the paper industry, alkalinity from alkali digesting solution and from dissolved solids from the wood chips, results in an increased alkalinity of the black liquor, often reaching pH""s of 12-13 and even higher. Under high pH conditions, the precipitation of calcium carbonate is especially difficult to control. Acid is often added to lower the pH to prevent calcium carbonate scaling. In the papermaking process, calcium oxalate scale often forms on process equipment during the bleaching/delignification of pulp by chlorine, caustic soda, chlorine dioxide, hypochlorite and peroxide. Usual areas of scale build-up are on washer drum face wires; in washer vats; in stock lines and pumps; in filtrate tanks, lines, and pumps; on extraction screens; and in treatment towers. The formation of calcium oxalate scale provides an economic hardship on mills principally because of lost production due to decreased bleaching/delignification efficiency and equipment downtime associated with the removal of scale. In the oil industry, the formation of insoluble calcium salts is also a problem in the secondary recovery of oil from subterranean formations by processes in which water is introduced into injection wells and forced through the underground formations to cause oil to be produced in a producing well. This type of process is usually referred to as a waterflood system. In view of the above, scale formation and deposition are generated by the mechanisms of nucleation, crystal growth, and aggregation of scale-forming particles. Various approaches to reducing scale development include inhibition of nuclei/crystal formation, modification of crystal growth, and dispersion of the scale-forming particles. Chelating or sequestering agents have been commonly used to prevent deposition, precipitation and crystallization of calcium carbonate in water-carrying systems. Other types of chemicals which have been actively explored as calcium carbonate scale inhibiting agents are threshold inhibitors. Threshold inhibitors include water soluble polymers, phosphonates, and polyphosphates (e.g., U.S. Pat. No. 5,182,028 to BOFFARDI et al., the disclosure of which is herein incorporated by reference in its entirety, discloses sodium hexametaphosphate and monofluorophosphate). Such chemicals are effective as scale inhibitors in amounts considerably less than that stoichiometrically required. Water soluble polymers, including groups derived from acrylamide, maleic acid, vinyl acetate, vinyl alcohol, and acrylic acid have been used to control calcium carbonate deposition. For instance, such polymers are disclosed in U.S. Pat. No. 5,282,976 to YEUNG; U.S. Pat. No. 5,496,914 to WOOD et al.; U.S. Pat. No. 4,008,164 to WATSON et al.; U.S. Pat. No. 3,518,204 to HANSEN et al.; U.S. Pat. Nos. 3,928,196 and 4,936,987 to PERSINSKI et al.; U.S. Pat. No. 3,965,027 to BOFFARDI et al.; U.S. Pat. No. 5,441,602 to HARRIS et al.; U.S. Pat. No. 5,580,462 to GILL; and U.S. Pat. No. 5,409,571 to TOGO et al., the disclosures of which are herein incorporated by reference in their entireties. Polyallylamines having phosphonic, carboxylic, or sulfonic groups are also used as scale control agents as disclosed in U.S. Pat. No. 5,629,385 to KUO and U.S. Pat. No. 5,124,046 to SHERWOOD et al., the disclosures of which are herein incorporated by reference in their entireties. Additionally, a number of anionic polyelectrolytes, such as polyacrylates, polymaleic anhydrides, copolymers of acrylates and sulfonates, and polymers of sulfonate styrenes, have been employed. Examples of polyelectrolytes are disclosed in U.S. Pat. No. 4,640,793 to PERSINSKI et al.; U.S. Pat. No. 4,650,591 to BOOTHE et al.; U.S. Pat. No. 4,457,847 to LORENC et al.; U.S. Pat. No. 5,407,583 to GILL et al.; and U.S. Pat. No. 4,671,888 to YORKE, the disclosures of which are herein incorporated by reference in their entireties. Polyepoxysuccinic acid for inhibiting the formation and deposition of scale in aqueous systems is disclosed in U.S. Pat. Nos. 5,062,962 and 5,147,555 to BROWN et al., the disclosures of which are herein incorporated by reference in their entireties. Phosphonate based compounds are extensively used as calcium carbonate scale control agents. Examples include ether diphosphonate (U.S. Pat. No. 5,772,893 to REED et al., and U.S. Pat. No. 5,647,995 to KNELLER et al., the disclosures of which are herein incorporated by reference in their entireties), hydroxyethylidene-1,1-diphosphonic acid, amino tri(methylene phosphonic acid), aminomethylene phosphonates (U.S. Pat. No. 4,931,189 to DHAWAN et al., the disclosure of which is herein incorporated by reference in its entirety), N,N-bis(phosphonomethyl)-2-amino-1-propanol (U.S. Pat. No. 5,259,974 to CHEN et al., the disclosure of which is herein incorporated by reference in its entirety), methylene phosphonates of amino-terminated oxyalkylates (U.S. Pat. No. 4,080,375 to QUINLAN, the disclosure of which is herein incorporated by reference in its entirety), polyether polyamino methylene phosphonates (EP 0 516 382 B 1, the disclosure of which is herein incorporated by reference in its entirety), and ethanolamine N,N-dimethylene phosphonic acid (U.S. Pat. Nos. 2,917,528 and 2,964,549 to RAMSEY et al., the disclosures of which are herein incorporated by reference in their entireties). Additionally, it is known that certain inorganic polyphosphonates would prevent precipitation when added in amounts less than the concentrations needed for sequestering or chelating, as disclosed in U.S. Pat. No. 2,358,222 to FINK et al. and U.S. Pat. No. 2,539,305 to HATCH, the disclosures of which are herein incorporated by reference in their entireties. U.S. Pat. No. 3,960,576 to CARTER et al., the disclosure of which is herein incorporated by reference in its entirety, discloses that inorganic-silicate-based compositions also comprised of an organic phosphonate and carboxy methyl cellulose are useful for inhibiting corrosion of metal surfaces. MANAHAN, Environmental Chemistry, pp. 183-213 (1991), the disclosure of which is herein incorporated by reference in its entirety, with particular attention directed to pp. 193-195, discloses use in environmental chemistry of sodium aluminum silicate minerals or zeolites as water softeners. The softening of water by aluminum silicate minerals and zeolites is based on ion-exchanging properties of the minerals. The divalent cations, which are responsible for water hardness, are replaced by sodium ions contained in the aluminum silicates, and then removed by filtration. An example of a micaceous mineral which has been used commercially in water softening is glauconite, K2(MgFe)2Al6(Si4O10)3OH12. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 24, pp. 367-384 (1984), the disclosure of which is herein incorporated by reference in its entirety, discloses that deposits are usually controlled with dispersants and scale inhibitors in cooling and process water. Among the dispersants mentioned are polymers and copolymers, for example, poly(acrylic acid) and its salts, acrylamideacrylic acid copolymers and poly(maleic acid). xe2x80x9cDeactivation of Calcium Scaling Liquorsxe2x80x9d, The Members of the Paper Institute of Paper Chemistry, Project 3234, Report Three, pp. 88-119 (November 1977), the disclosure of which is herein incorporated by reference in its entirety, discloses adding reagent grade calcium carbonate at 1% loading in most experiments and at 5% and 20% in a few other experiments, to function as a seed in the liquor as a deposition surface for calcium carbonate. ADAMS, xe2x80x9cLow-Cost Evaporator Upgrades Boost Performance, Reduce Scalingxe2x80x9d, Pulp and Paper, pp. 83-89 (February 1999), discloses a salting method which involves adding sodium sulfate to control scaling. CA 2,229,973 discloses a method of inhibiting black liquor in evaporators, wherein the liquor is heat-treated to precipitate calcium carbonate. This document discloses that no calcium carbonate needs to be added to the liquor to be heat-treated. EP 0 916 622 discloses a process for preventing scale formation in a paper-making process, wherein calcium sulfate or calcium oxalate are added as a seed to prevent formation of calcium sulfate scale or calcium oxalate scale, respectively. Further, it is known to use clays such as talc and bentonite in paper making for fillers, pitch control, and retention and drainage control. In filler applications, talc or bentonite may be added in an amount which is typically relatively high. In pitch control applications, talc or bentonite may be added before the washer and after the digester. At this position, the temperature of the aqueous system is relatively low. The use of talc and bentonite for pitch control is discussed in BOARDMAN, xe2x80x9cThe Use of Organophilic Mineral Particulates in the Control of Anionic Trash Like Pitchxe2x80x9d, TAPPI Proceedings (1996), the disclosure of which is herein incorporated by reference in its entirety. In particular, this article discloses using two pounds per ton of montmorillonite. It is known that pitch deposits may sometimes include calcium carbonate. In retention and drainage control, it is believed that bentonite and a high molecular weight cationic polymer (e.g., molecular weight of about 1xc3x97106 to 10xc3x97106) may be added just before the headbox. For instance, it is believed that 3-10 lb of bentonite/ton of oven dried fibers may be added near the headbox which would result in about 15-50 ppm of bentonite in the aqueous system for a 1 wt % aqueous paper furnish. It is believed that the aqueous system just before the headbox typically has a pH of about 5 to 8.5 and a temperature of about 40xc2x0 C. to 60xc2x0 C. As an example, U.S. Pat. No. 4,753,710 to LANGLEY et al. teaches that the bentonite particle size after swelling is preferably at least 90% below 2 microns. The present invention is directed to preventing scale formation and/or deposition, such as alkaline earth metal scale deposition, especially calcium carbonate scale deposition, or alkaline earth metal oxalate scale deposition. The present invention is also directed to providing inorganic compounds, such as polyvalent metal silicates and polyvalent metal carbonates, that can effectively prevent scale formation and/or deposition. The present invention is further directed to providing a family of compounds that can effectively prevent scale formation and/or deposition on surfaces, such as metallic and plastic surfaces, in contact with a scale-forming aqueous system. In accordance with one aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, wherein the aqueous system has a pH of at least about 9, and wherein a mean particle size of the anti-scalant is less than about 3 microns. In accordance with another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-sealant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, and wherein the aqueous system has a pH of at least about 9; and adding dispersant to the aqueous system. In accordance with still another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate, wherein a mean particle size of the anti-scalant is less than about 3 microns. In accordance with yet another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate; and adding dispersant to the aqueous system. In accordance with another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system of a pulping mill, comprising: at least one of adding and forming anti-scalant in the aqueous system at at least one of before a pulping digester and at a pulping digester, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate. In accordance with still another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system of a pulping mill, comprising: at least one of adding and forming anti-scalant in the aqueous system at at least one of immediately before a bleach plant stage and at a bleach plant stage, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate. In accordance with yet another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises at least one of magnesium aluminum silicate, hydrated magnesium aluminum silicate, calcium bentonite, saponite, sepiolite, magnesium carbonate, ferrous carbonate, manganese carbonate, dolomite, hectorite, amorphous magnesium silicate, and zinc carbonate. In accordance with a further aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises polyvalent metal carbonate, wherein a mean particle size of the anti-scalant is less than about 3 microns. In accordance with another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system such that an amount of anti-scalant in the aqueous system is up to about 1000 ppm, wherein the anti-scalant comprises polyvalent metal carbonate; and adding dispersant to the aqueous system. In accordance with yet another aspect, the present invention is directed to a method for inhibiting scale deposits in an aqueous system, comprising: at least one of adding and forming anti-scalant in the aqueous system, wherein the anti-scalant comprises at least one of polyvalent metal silicate and polyvalent metal carbonate; and adding at least one protein to the aqueous system. In accordance with still another aspect, the present invention is directed to a composition comprising: at least one of polyvalent metal silicate and polyvalent metal carbonate; at least one protein; and wherein a weight ratio of the at least one polyvalent metal silicate and polyvalent metal carbonate to the at least one protein is from about 50:1 to 1:1. In one aspect, the anti-scalant comprises polyvalent metal silicate and comprises at least one of sodium montmorillonite, magnesium aluminum silicate, talc, hydrated magnesium aluminum silicate, calcium bentonite, saponite, sepiolite, sodium aluminosilicate, hectorite, and amorphous magnesium silicate. In another aspect, the anti-scalant comprises polyvalent metal carbonate and comprises at least one of calcium carbonate, magnesium carbonate, ferrous carbonate, manganese carbonate, dolomite, and zinc carbonate. For example, the anti-scalant may comprise ground calcium carbonate. As another example, the anti-scalant comprises ground calcium carbonate and sodium montmorillonite. In still another aspect, the anti-scalant has a specific surface area of about 10 to 1000 m2/g. In another aspect, the scale comprises alkaline earth metal scale. In this regard, the scale may comprise at least one of calcium carbonate and calcium oxalate. In yet another aspect, the aqueous system may have a concentration of Ca+2 of about 10 to 500 ppm and a concentration of CO3xe2x88x922 of about 100 to 30,000 ppm prior to addition of the anti-scalant. As another example, the aqueous system may have a concentration of Ca+2 of about 10 to 500 ppm and a concentration of oxalate of about 0.1 to 10,000 ppm prior to addition of the anti-scalant. In another aspect, the aqueous system has a temperature of about 25xc2x0 C. to 500xc2x0 C. In still another aspect, the aqueous system is at a pressure of about 80 to 1500 psi. In a further aspect, the anti-scalant is at least one of added and formed one of before and in at least one of a cooling tower, heat exchanger, evaporator, pulping digester, pulp washer, and pulp bleaching equipment. In yet another aspect, the aqueous system involves one of papermaking, mining, textile making, auto making, food processing, steel making, water treatment, and petroleum processing. In still another aspect, at least one additional anti-scalant is added to the aqueous system. In another aspect, at least one protein is added to the aqueous system. In a further aspect, the scale comprises calcium carbonate, the anti-scalant has a specific surface area of about 10 to 1000 m2/g, the aqueous system has a pH of about 9 to 14, the aqueous system has a concentration of Ca+2 of about 10 to 500 ppm and a concentration of CO3xe2x88x922 of about 100 to 30,000 ppm prior to addition of the anti-scalant, and the aqueous system has a temperature of about 25xc2x0 C. to 500xc2x0 C. In another aspect, up to about 10 ppm of coagulant is added to the aqueous system. In still another aspect, the anti-scalant is removed from the aqueous system by using at least one of a clarifier, flotation cell, settling tank, filter, centrifuge, and osmosis device. In some aspects, the aqueous system has a pH of about 2 to 12. As another example, the aqueous system has a pH of about 2 to 14. In another aspect, the aqueous system is oxidative. In yet another aspect, the scale comprises at least one of calcium oxalate and calcium carbonate, the anti-scalant has a specific surface area of about 10 to 1000 m2/g, the aqueous system has a pH of about 2 to 12, the aqueous system has a concentration of Ca+2 of about 10 to 500 ppm prior to addition of the anti-scalant, also prior to addition of the anti-scalant the aqueous system has at least one of a concentration of oxalate of about 0.1 to 10,000 ppm and a concentration of CO3xe2x88x922 of about 100 to 30,000 ppm, and the aqueous system has a temperature of about 25xc2x0 C. to 500xc2x0 C. In some aspects, the anti-scalant has a mean particle size less than about 100 microns. In another aspect, the at least one protein comprises soy protein. In yet another aspect, the composition also includes water and wood pulp. The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. All percent measurements in this application, unless otherwise stated, are measured by weight based upon 100% of a given sample weight. Thus, for example, 30% represents 30 weight parts out of every 100 weight parts of the sample. Unless otherwise stated, a reference to a compound or component, includes the compound or component by itself, as well as in combination with other compounds or components, such as mixtures of compounds. Before further discussion, a definition of the following terms will aid in the understanding of the present invention. xe2x80x9cNucleation initiator/promoterxe2x80x9d: substance which initiates and promotes nucleation and precipitation of polyvalent metal silicate or polyvalent metal carbonate in the solution phase. xe2x80x9cWater hardnessxe2x80x9d: amount of magnesium and calcium ions in an aqueous solution. As an overview, the present invention relates to methods and inorganic compositions for inhibiting the formation, deposition, and adherence of scale deposits on substrate surfaces in contact with a scale-forming aqueous system. The scale deposits may be alkaline earth metal scale deposits, such as alkaline earth metal carbonate scale deposits, especially calcium carbonate scale deposits, or alkaline earth metal oxalate scale. The preferred anti-scalants of the present invention include polyvalent metal silicates and polyvalent metal carbonates. The polyvalent metal silicate or polyvalent metal carbonate may be crystalline or amorphous. The polyvalent metal silicates and polyvalent metal carbonates may have functional groups such as carboxylic, sulfonate, sulfate, and phosphate. For example, the functional groups may be obtained by treating a polyvalent metal silicate or polyvalent metal carbonate with an organic or inorganic compound having a functional group such as carboxylic, sulfonate, sulfate, and phosphate. Examples of these compounds include polymers such as polyacrylate and polyacrylic acid, and surfactants such as alkylbenzene sulfonate, alkylbenzene sulfate, and alkylbenzene phosphate ester. Polyvalent metal silicates include clays. Clays are naturally occurring hydrous aluminosilicates with a 2- or 3-layer crystal structure which has ion substitution for aluminium, examples of such ion substitutes include magnesium, iron, and sodium. Alkali and alkaline earth elements may also be constituents of clays. Hydrogen is usually present as hydroxyl in the structure and as water both within the structure and absorbed on the surface. These substitutions create a wide diversity in chemical composition within the broad general class of phyllosilicates or layer silicates. It is well known that relatively small differences in the chemical composition of clays can greatly influence their chemical and physical properties. All phyllosilicates contain silicate or aluminosilicate layers in which sheets of tetrahedrally coordinated cations, Z, such as ions of magnesium, aluminum, and iron, of composition Z2O5, are linked through shared oxygens to sheets of cations, which are octahedrally coordinated to oxygens and hydroxyls. When one octahedral sheet is linked to one tetrahedral sheet, a 1:1 layer is formed as in kaolinite; when one octahedral sheet is linked to two tetrahedral sheets, one on each side, a 2:1 layer is produced as in talc and pyrophyllite. Structural units that may be found between aluminosilicate layers are sheets of cations octahedrally coordinated with hydroxyls, as in chlorites, and individual cations which may or may not be hydrated, as in smectites, bentonites, vermiculites, and micas. Some 2:1 layer silicates swell in water, ethylene glycol, and a wide range of similar compounds by intercalation of molecules between 2:1 layers. Polyvalent metal carbonates include various combinations of polyvalent metals and carbonates. Preferred examples of the polyvalent metal include calcium, magnesium, iron, manganese, and zinc. For instance, alkaline earth metal carbonates include calcium carbonate mixed with magnesium carbonate. The polyvalent metal silicates and polyvalent metal carbonates may be synthetic or naturally occurring. Examples of synthetic polyvalent metal silicates and polyvalent metal carbonates include precipitated calcium carbonate and silica-derived products such as magnesium silicate, aluminosilicate, magnesium aluminum silicate, etc. As discussed in more detail below, various particle sizes, surface areas, pore size diameters, and ion exchange capacities of synthetic polyvalent metal silicates and polyvalent metal carbonates can be made commercially. Preferred examples of the anti-scalants of the present invention are listed in the following non-limiting list which is not intended to be an exhaustive list: NATURAL POLYVALENT METAL SILICATES AND METAL CARBONATES POLYVALENT METAL SILICATES sodium montmorillonite (bentonite) magnesium aluminum silicate smectite clay colloidal attapulgite clay talc (hydrous magnesium silicate) hydrated magnesium aluminum silicate (e.g., smectite clay) calcium bentonite saponite (magnesium bentonite) sepiolite POLYVALENT METAL CARBONATES calcium carbonate ground calcium carbonate magnesium carbonate ferrous carbonate manganese carbonate dolomite SYNTHETIC POLYVALENT METAL SILICATES AND METAL CARBONATES POLYVALENT METAL SILICATES sodium aluminosilicate hydrated Na-A type zeolite mordenite zeolite synthetic amorphous precipitated silicate magnesium aluminum silicate synthetic hectorite (synthetic magnesium silicate) amorphous magnesium silicate POLYVALENT METAL CARBONATES calcium carbonate precipitated calcium carbonate magnesium carbonate zinc carbonate ferrous carbonate manganese carbonate In selecting other anti-scalants which may be useful in the present invention, compounds with an aluminosilicate backbone tend to function as anti-scalants. Further, the selection of other anti-scalants may be based upon how the anti-scalants of the present invention are hypothesized to function. While not wishing to be bound by theory, the present invention may involve one or more of the following mechanisms, depending upon the type of anti-scalant. For some anti-scalants, the mechanism of the present invention may involve ion exchange similar to the ion exchange involved in water softening. For instance, sodium ions could be exchanged for calcium ions, so as to reduce the concentration of calcium ions in the aqueous system to reduce precipitation of calcium compounds. It is believed that reducing the calcium concentration also slows the growth rate of calcium based crystals, such that the crystals which are formed tend to be smaller and more uniform. Smaller crystals are more stable in the aqueous phase and are less likely to precipitate on the equipment. According to another hypothesized mechanism, the anti-scalant of the present invention may function as a nucleation initiator/promoter. Thus, the anti-scalant of the present invention may function as a seed. For instance, the scaling compound may precipitate on the anti-scalant instead of precipitating on the equipment. The nucleation initiator/promoter may be inorganic. Although other compounds may function as nucleation initiator/promoters, it is particularly believed that ground calcium carbonate functions as a nucleation promoter/initiator. According to still another hypothesized mechanism, the anti-scalant of the present invention may function through surface adsorption. Although surface adsorption may be involved in the ion exchange and nucleation mechanisms described above, surface adsorption may be an independent mechanism. For instance, in surface adsorption it is not necessary for a separate solid phase to be formed on the surface of the anti-scalant. In view of the above, it is hypothesized that the anti-scalant of the present invention may function as at least one of an ion exchanger, a nucleation promoter/initiator, and a surface adsorber, depending upon the anti-scalant. The above listed anti-scalants may also be used in combination with each other. It was surprisingly found that some combinations of the above-listed anti-scalants resulted in synergism. In particular, combinations of sodium montmorillonite with either ground calcium carbonate or magnesium aluminum silicate yield unexpected results. Regarding the combination of calcium carbonate and sodium montmorillonite, the weight ratio of calcium carbonate to sodium montmorillonite is preferably about 0.1:1 to 20:1, more preferably about 0.5:1 to 7:1, and most preferably about 1:1 to 4:1. Thus, the amount of calcium carbonate in the combination of calcium carbonate and sodium montmorillonite, with respect to a total amount of anti-scalant, is preferably about 10 wt % to 95 wt %, more preferably about 30 wt % to 90 wt %, and most preferably about 50 wt % to 80 wt %. Accordingly, the amount of sodium montmorillonite in the combination of calcium carbonate and sodium montmorillonite, with respect to a total amount of anti-scalant, is preferably about 5 wt % to 90 wt %, more preferably about 10 wt % to 70 wt %, and most preferably about 20 wt % to 50 wt %. Concerning the combination of magnesium aluminum silicate and sodium montmorillonite, the weight ratio of magnesium aluminum silicate to sodium montmorillonite is preferably about 0.1:1 to 20:1, more preferably about 0.5:1 to 7:1, and most preferably about 1:1 to 4:1. Thus, the amount of magnesium aluminum silicate in the combination of magnesium aluminum silicate and sodium montmorillonite, with respect to a total amount of anti-scalant, is preferably about 10 wt % to 95 wt %, more preferably about 30 wt % to 90 wt %, and most preferably about 50 wt % to 80 wt %. Accordingly, the amount of sodium montmorillonite in the combination of magnesium aluminum silicate and sodium montmorillonite, with respect to a total amount of anti-scalant, is preferably about 5 wt % to 90 wt %, more preferably about 10 wt % to 70 wt %, and most preferably about 20 wt % to 50 wt %. The particle size of the anti-scalant is preferably small. More specifically, depending upon the anti-scalant, the mean particle size of the anti-scalant is preferably less than about 100 microns, more preferably less than about 10 microns, most preferably less than about 3 microns, with ranges of preferably about 0.01 to 10 microns, more preferably about 0.1 to 5 microns, and most preferably about 0.1 to 3 microns. When calcium carbonate is formed in situ, as described below, the particle size is preferably about 0.01 to 10 microns, more preferably about 0.01 to 5 microns. Further, for alkaline earth metal carbonates, including ground calcium carbonate, the mean particle size is preferably less than about 2 microns, more preferably less than about 1 micron, and most preferably less than about 0.5 micron, with a range of about 0.1 to 2 microns. In this application, particle size is measured by dynamic light scattering at 25xc2x0 C. in aqueous solution. One reason that the particle size of the anti-scalant should be small is to increase the specific surface area. Depending upon the anti-scalant, the specific surface area of the anti-scalant is preferably about 10 to 1500 m2/g, more preferably about 50 to 1000 m2/g. For example, zeolites available from Zeolyst International, Delfziji, the Netherlands can be synthesized with a specific surface area in the range of about 400 to 950 m2/g. In this application, surface area is measured by measuring a low temperature (77K) nitrogen isotherm, from which the surface area is calculated using BET equations. In this regard, the particle size and surface area of the anti-scalants of the present invention may be adjusted by milling, grinding, or by adjusting temperature, pH, pressure, or other chemical/physical parameters of the environment in which it is made. With regard to calcium carbonate, depending on the milling process and dispersants added to the limestone starting material, different particle sizes and specific surface areas of ground calcium carbonate particles can be generated. Dispersants are used to control the viscosity, particle size, and stabilize the ground calcium carbonate slurry, which is typically about 75 wt % of solids. In this regard, dispersants stabilize particles from coming together so that particle size distribution is lowered. The following dispersants can be used but are not limited to: anionic polymers (e.g., polyacrylates, polysulfonates, polymaleates, lignosulfonates), nonionic polymers (e.g., polyvinyl alcohols, polyvinyl acetates, ethoxylate/propoxylate (EO/PO) block copolymers), cationic polymers (e.g., polyethylene imines, polyamines), anionic surfactants (e.g., dialkyl sulfosuccinates, alkyl phosphates, alkyl ether sulfates), cationic surfactants (e.g., fatty amine salts, alkyl quaternary amines), nonionic surfactants (e.g., sorbitan alkanoate, ethoxylated sorbitan alkanoate, alkyl phenol ethoxylate, fatty alcohol ethoxylate). The scale inhibition effect of the anti-scalants of the present invention may also be enhanced by the presence of dispersants such as those noted above. Although the dispersants may be pre-mixed with the anti-scalant, such as during the milling process, the dispersant may also be added to the aqueous system separate from the anti-scalant of the present invention, either before or after the anti-scalant of the present invention. As an example, when calcium carbonate is formed in situ, as discussed in more detail below, it is preferred that a dispersant, such as those discussed above, e.g., polyacrylate, is also added. When a dispersant is used with the in situ formed calcium carbonate, a synergistic effect often results. For example, depending upon the pH, temperature, calcium concentration, and carbonate concentration, blends of precipitated calcium carbonate to dispersant at weight ratios of preferably about 50:1 to 1:1, more preferably about 20:1 to 1:1, and most preferably about 10:1 to 1:1, are often several times more effective than the individual components. The scale inhibition effect of the anti-scalants of the present invention may also be enhanced by the presence of at least one protein. Although the protein may be pre-mixed with the anti-scalant, the protein may also be added to the aqueous system separate from the anti-scalant of the present invention, either before or after the anti-scalant of the present invention. Examples of proteins which may be used in combination with the present invention include soy protein such as xe2x80x9cSoyprotein 3230xe2x80x9d protein and xe2x80x9cSoyprotein 4950xe2x80x9d protein, both available from Central Soya, Fort Wayne, Ind. It has been found that xe2x80x9cSoyprotein 4950 #1097-1xe2x80x9d protein, which is xe2x80x9cSoyprotein 4950xe2x80x9d protein that has been treated with enzyme for 30 minutes, and which is available as available from Central Soya, Fort Wayne, Ind., may improve the scale inhibition effect of the anti-scalants of the present invention. When a protein is used with the anti-scalant of the present invention, an unexpected and surprising synergistic effect may result. For example, blends of anti-scalant of the present invention and protein at weight ratios of anti-scalant to protein of preferably about 50:1 to 1:1, more preferably about 20:1 to 1:1, and most preferably about 10:1 to 1:1, are often several times more effective than the individual components. For instance, mixtures of ground calcium carbonate and either xe2x80x9cSoyprotein 3230xe2x80x9d protein or xe2x80x9cSoyprotein 4950 #1097-1xe2x80x9d protein are often several times more effective than the individual components. Depending upon the type of anti-scalant, the ion exchange capacity of the anti-scalant may be an important variable. For anti-scalants which may involve ion exchange for preventing scaling, such as zeolites, the ion exchange capacity is preferably at least about 0.1 meq/g, more preferably at least about 0.5 meq/g, and most preferably about 1.0 meq/g, with ranges typically of about 0.1 to 10 meq/g, more typically about 0.5 to 8.0 meq/g, and most typically about 1.0 to 8.0 meq/g. In contrast to some of the anti-scalants of the present invention, the ion exchange capacity of ground calcium carbonate is not important when the ground calcium carbonate is used to seed out calcium carbonate. When calcium carbonate is used as the anti-scalant, it is preferred that ground calcium carbonate is used. Ground calcium carbonate can be produced by either dry or wet grinding of a feed rock in which the calcium carbonate species are usually divided into chalk, limestone, and marble. In the dry method, after screening to remove large particles, the feed rock may be dried such as in a rotary dryer and milled such as in a ball, roller, or hammer mill. The finest particles are typically air classified from the bulk material, with the coarse particles returned to the mill for further milling. This method is used for chalk fillers that are easily crumbled and typically produce coarse particles of 5 to 10 microns. Wet grinding, after crushing and ball milling, is more typical for the production of ground calcium carbonates from limestones and marbles. Flotation is used in this process to remove the contaminants, resulting in a high brightness of the finished product. Products having a median particle size less than 2 microns are usually wet ground in media or sand mills. Dispersants, such as those discussed above, are usually added during the grounding process to form a high solids slurry of the ground calcium carbonate. The level of impurities in the ground calcium carbonate is typically at least about 0.5 wt %, more typically at least about 0.8 wt %, and most typically at least about 1 wt %, with a range of typically about 1 to 2 wt %. The inhibition of scaling by ground calcium carbonate relative to precipitated calcium carbonate was unexpected and surprising. While not wishing to be bound by theory, it is hypothesized that the non-porous structure of ground calcium carbonate is more effective than the porous structure of precipitated calcium carbonate. It is believed that the pores of the precipitated calcium carbonate slow the diffusion of aqueous calcium carbonate to the surface of the calcium carbonate, such that precipitation of aqueous calcium carbonate on precipitated calcium carbonate is slow relative to the ground calcium carbonate. Many of the above-described anti-scalants are commercially available. Additionally, it is possible to form some of the above-described anti-scalants in situ. For example, calcium carbonate, magnesium carbonate, amorphous aluminum silicate, and ferric carbonate may be made in situ. There are several ways to make calcium carbonate in situ which may function as an anti-scalant in accordance with the present invention. For example, one can purge CO2 into an aqueous solution which contains calcium ions, e.g., cooking liquor or bleach plant filtrate. As another example, calcium ions, e.g., from calcium salt, can also be added to an aqueous solution containing carbonate ions, e.g., cooking liquor or bleach plant filtrate. In yet another example, calcium carbonate can be produced via the reaction of CaO with carbonate ions, e.g., calcium carbonate may be made by the causticizing reaction in the Kraft mill recovery system in which slaked lime (CaO) reacts with carbonate ions (via sodium carbonate) to form NaOH and calcium carbonate. When the anti-scalant of the present invention is formed in situ, it was surprisingly found that some combinations of known anti-scalants with the in situ formed anti-scalants resulted in synergism. In particular, synergistic results occur when precipitated calcium carbonate, i.e., calcium carbonate that was formed in situ, is combined with known anti-scalants such as polyacrylic acid, polymaleic acid, copolymers of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, and copolymers of acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid, and phosphorous compounds such as nitrilotrimethylenephosphonic acid, hydroxy-ethylidenephosphonic acid, phosphonobutanetricarboxylic acid, and sodium hexametaphosphate. To avoid degrading the effectiveness of the anti-scalant of the present invention, the pH of the known anti-scalant is preferably above about 8, more preferably above about 9, and most preferably above about 10, prior to adding the anti-scalant of the present invention. In this regard, polyvalent metal carbonates, such as calcium carbonate, typically start to dissolve at pH less than 7, and polyvalent metal silicates become ineffective at low pH due to protonation of hydrogen ions. To maximize effectiveness, the weight ratio of precipitated calcium carbonate to conventional anti-scalant is preferably about 10:1 to 100:1, more preferably about 4:1 to 8:1, most preferably about 6:1. The amount of anti-scalant added to the aqueous system depends upon such variables as the temperature, the pH, and the presence of other compounds. Regarding temperature, higher temperatures usually require higher amounts of anti-scalant. The effect of changes in pH on the amount of anti-scalant required depends upon the type of anti-scalant. Similarly, the effect of the presence of other compounds on the amount of anti-scalant depends on the other compound. For instance, compounds containing magnesium and iron may act as poisons such that more anti-scalant would be necessary. In contrast, compounds such as lignin function as enhancers such that less anti-scalant is necessary. In view of the above, the anti-scalant is added to the aqueous system at a concentration of preferably about 1 ppb to 10 ppm, more preferably about 1 ppb to 7 ppm, and most preferably about 1 ppb to 5 ppm, per ppm of water hardness. Thus, the anti-scalant is added to the system at a concentration of up to about 50 ppm, more preferably up to about 75 ppm, even more preferably up to about 95 ppm, even more preferably up to about 200 ppm, even more preferably up to about 500 ppm, and most preferably up to about 1000 ppm, with ranges of preferably about 1 to 1000 ppm, more preferably about 1 to 500 ppm, and most preferably about 1 to 200 ppm. The aqueous system to which the anti-scalant is added may contain metal ions, such as ions of calcium, barium, magnesium, aluminum, strontium, iron, etc. and anions such as bicarbonate, carbonate, oxalate, sulfate, phosphate, silicate, fluoride, etc. The scale which is intended to be prevented by the present invention may be formed by any combination of the above-noted ions. For example, the scale may involve a combination of calcium carbonate and calcium oxalate. The scale typically comprises at least about 90 wt % of inorganic material, more typically at least about 95 wt % of inorganic material, and most typically at least about 99 wt % of inorganic material. In aqueous systems having calcium ions and carbonate ions to which the anti-scalant may be added, prior to the addition of the anti-scalant, the [Ca+2] is usually present at about 10 to 500 ppm, more usually about 20 to 300 ppm, and most usually about 50 to 200 ppm. Moreover, prior to addition of the anti-scalant, the [CO3xe2x88x922] in such systems is usually present at about 100 to 30,000 ppm, more usually about 500 to 25,000 ppm, and most usually about 1000 to 20,000 ppm. In aqueous systems having calcium ions and oxalate ions to which the anti-scalant may be added, prior to the addition of the anti-scalant, the [Ca+2] is usually present at about 5 to 600 ppm, more usually about 10 to 500 ppm, even more usually about 20 to 500 ppm, and most usually about 30 to 400 ppm. Moreover, prior to addition of the anti-scalant, the [oxalate] in such systems is usually present at about 0.1 to 10,000 ppm, more usually about 1 to 5000 ppm, and most usually about 5 to 1000 ppm. The aqueous system may also include other additives and compounds. For instance, the polyvalent metal anti-scalants of the present invention may be used with other anti-scalants such as those discussed in the Background of the present application, such as phosphates, acrylates, phosphonates, epoxysuccinic anhydrides, sulfonates, and maleates. The amount of other anti-scalant to be combined with the anti-scalant of the present invention depends upon the system conditions as well as the types of anti-scalants. The weight ratio of other anti-scalant to the anti-scalant of the present invention is preferably from about 1:100 to 100:1, more preferably about 1:30 to 30:1, and most preferably about 1:10 to 10:1. Although the anti-scalants may be added separately to the aqueous system, with the anti-scalant of the present invention added before or after the other anti-scalant, it is preferred that the anti-scalants are pre-mixed prior to addition to the aqueous system. The procedures for using the anti-scalants together should preserve the physical/chemical properties of the blends when mixing, e.g., the pH of the other anti-scalant is preferably above about 8, more preferably above about 9, and most preferably above about 10, for the reasons discussed above. Other examples of additives include surfactants (e.g., ethoxylate/propoxylate (EO/PO) block copolymers, alkyl phenol ethoxylates, dialkyl sulfosuccinates, alkyl phosphates, alkyl ether sulfates, ethoxylated sorbitan alkanoates, fatty amine salts, fatty alcohol ethoxylate, and silicon based surfactants), dispersants such as those discussed above, pulping aids (e.g., AQ (anthraquinone), polysulfide, and the surfactants mentioned above), bleaching agents (e.g., enzymes, hydrogen peroxide, chlorine dioxide, hypochlorite, oxygen, ozone, and chelating agents such as EDTA (ethylenediamine tetraacetic acid), as well as flocculation, coagulation, and clarification polymers in system purge programs, as discussed in more detail below, e.g., effluent treatments, recovery boilers, clarifiers, filters, flotation cells, cleaners, and screens. The aqueous system to which the anti-scalant is added may be at an elevated temperature. For instance, the temperature of the system may typically be about 25xc2x0 C. to 500xc2x0 C, more typically about 70xc2x0 C. to 500xc2x0 C., even more typically about 80xc2x0 C. to 200xc2x0 C. When the anti-scalant is added to a digester, the temperature of the aqueous system is usually about 150xc2x0 C. to 175xc2x0 C. When the anti-scalant is added at a chip chute pump prior to the digester, the temperature of the aqueous system is usually about 80xc2x0 C. to 110xc2x0 C. The anti-scalants of the present invention work under various pH conditions. In particular, the anti-scalants of the present invention preferably work at a pH from about 2 to 14, more preferably about 3 to 14, and most preferably about 4 to 14, such as 10 to 14. As noted above, changes in pH may cause scaling. In this regard, the anti-scalants of the present invention work under acidic conditions against some forms of scale, such as oxalate scales. For oxalate scaling, the aqueous system to which the anti-scalant is added often has a pH less than about 7, such as about 2 to 7, even more usually about 3 to 7. For instance, the pH in a typical bleach plant stage is usually about 2 to 12, more usually about 2 to 7, and even more usually about 2.5 to 5. For carbonate scaling, the aqueous system to which the anti-scalant is added often has a basic pH, more usually a pH of at least about 9, with ranges of usually about 5 to 14, more usually about 9 to 14, even more usually about 10 to 13. In this regard, bleaching sequences in paper production generally occur at high pH, such as typically about 9 to 14, more typically about 10 to 12. The aqueous system to which the anti-scalant is added may be under oxidative conditions. The ability of the anti-scalants of the present invention to function under oxidative conditions is important because bleaching conditions are often oxidative. Furthermore, oxidative conditions often degrade known anti-scalants. The oxidative conditions may be a result of hydrogen peroxide or chlorine dioxide. The hydrogen peroxide may be present at a level of about 100 to 10,000 ppm, more typically about 200 to 2000 ppm, even more preferably about 240 to 750 ppm. The chlorine dioxide may be present at a level of about 200 to 10,000 ppm, more typically about 500 to 3000 ppm, even more typically about 600 to 1100 ppm. The aqueous system to which the anti-scalant is added may be under atmospheric conditions or under pressure. For instance, the pressure is typically about 14 to 1500 psi, more typically about 80 to 1500 psi. When the aqueous system comprises a digester of a paper mill, the pressure at the digester is typically about 125 to 150 psi. When the aqueous system comprises a boiler, the pressure at the boiler is typically up to about 1500 psi. When the anti-scalant is not formed in situ, to ensure that the anti-scalant is adequately dispersed in the aqueous system, the anti-scalant is preferably added in the form of a water-based slurry. Depending upon the anti-scalant, the water-based slurry may comprise less than about 5 wt % of anti-scalant, less than about 2 wt % of anti-scalant, at least about 40 wt % of anti-scalant, at least about 50 wt % of anti-scalant, at least about 60 wt % of anti-scalant, or at least about 75 wt % of anti-scalant. For example, for ground calcium carbonate, if the amount of calcium carbonate is less than about 75 wt %, it may precipitate out of the slurry. As another example, for bentonite, if the amount of bentonite is greater than about 5 wt %, it is difficult to pump. Examples of the systems to which the anti-scalant may be added include industrial water systems preferably having water throughputs of at least about 10 gpm, more preferably at least about 20 gpm, and even more preferably at least about 1000 gpm. Examples of industrial water systems of the present invention include cooling towers, heat exchangers, evaporators, pulping digesters, pulp washers, and pulp bleaching equipment. The industrial water systems may be involved in mining (e.g., ore washing under alkaline conditions), textiles (e.g., cooling towers, heat exchangers, washing processes), automotive (e.g., cooling towers, heat exchangers), food processing (e.g., processing equipment, clarification, aeration, sterilization, and breweries), steel making (e.g., cooling towers, heat exchangers), water treatment (e.g., water purification), and petroleum (e.g., in the production and processing of crude oil-water mixtures). In particular, scale deposition in a digester in kraft pulp manufacturing can be controlled in accordance with the present invention. It follows that the run length of the digester can be extended to achieve improvements in productivity, uniform quality of pulp, and a reduction in energy loss. Further, troubles arising from scale deposit are greatly diminished, which makes a valuable contribution to improvement of operating efficiency. The addition point of the anti-scalant may be at or before where scale may be formed. For example, the anti-scalant may be added before a pulping digester or at the pulping digester. As another example, the anti-scalant may be added immediately before or in bleaching plant equipment. When the anti-scalant is added before the pulping digester, it is often added after or during mechanical treatment of the wood chips. For instance, the anti-scalant may be added after a chip bin, at a wood chip chute pump, at a cooking liquor heater pump, or at an in-line drainer. When the anti-scalant is added directly to the digester or other systems, the addition point may be targeted to where the anti-scaling is needed most. For instance, the anti-scalant may be added in the cooking zone of the digester. The anti-scalants of the present invention perform better than known anti-scaling polymers under many conditions. In addition to adequate or improved performance, the raw material cost of the polyvalent metal silicates and polyvalent metal carbonates is significantly lower than that of the known anti-scalants. Therefore, an advantage of the present invention is cost-effectiveness. Once the anti-scalant has been used, e.g., after the pulp leaves the digester or after the bleaching process is completed, it may be preferred that the anti-scalant be removed from the system, e.g., the cooking liquor or the bleaching liquid. The removal of the anti-scalant depends upon the system and may involve mechanical and/or chemical separation techniques. The mechanical separation may be by devices such as clarifiers, flotation cells, settling tanks, filters (pre-coat and cloth covered), centrifuges, and osmosis devices. The chemical separation may involve use of clarifying aids, which may involve combining or reacting organic or inorganic chemicals with solids to form large masses that tend to separate rapidly. High molecular weight organic water soluble polymers are widely used as coagulants. Coagulant polymers may be cationic (e.g., polydiallyldimethylammonium chloride (polyDADMAC), polyamines), anionic (e.g., polyacrylamides, polyamides, polyacrylic acids), and nonionic (e.g., polyethylene oxide, polyvinyl alcohol). The amount of coagulant polymer is preferably up to about 10 ppm, more usually up to about 5 ppm, and most usually up to about 0.5 ppm. The coagulant polymers may have a molecular weight greater than about 1xc3x97106, with a usual range of about 1xc3x97106 to 10xc3x97106. Inorganic compounds such as alum hydroxide and iron hydroxide can also be used as coagulants.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an apparatus and method for aerodynamic levitation. More specifically, the invention pertains to an apparatus and method for aerodynamic levitation of a liquid drop using a profile generator to configure the velocity profile of the air flow impinging upon the liquid drop. The invention has application for containerless processing of materials. This is especially true for small size samples such as those for prototype applications. The invention also has usefulness as an analytical tool to study the properties of liquid materials. One example of such an analytical use is the determination of the thermal conductivity of a molten material. Although there may be a number of applications for levitation techniques, one principal use of levitation techniques is for containerless processing. This may be due, at least in part, to the availability of orbital space environments where containerless processing can be of advantage. In space, there exists a reduction of gravitational force which significantly reduces the hydrostatic pressure, buoyant forces, natural convection and sedimentation that occurs in an earth bound environment. Because of its nature, containerless processing can take advantage of such an environment. However, because a truly zero-gravity environment cannot be completely realized in an orbiting space craft due to accelerations associated with space craft, trajectory alterations, atmospheric drag and movement of astronauts within the vehicle, it is still necessary to spatially localize the material using externally generated forces. Levitation techniques are able to generate these external forces. These levitation techniques, which are useful for containerless processing, provide the ability to manipulate materials without physical contact with a container. Because of the absence of this contact, containerless processing eliminates container-induced contamination and heterogeneous nucleation. Some of these techniques have the inherent characteristic to melt and levitate the material at the same time. Oftentimes, this is not a desirable feature because of the advantage of separating the levitation and melting functions. Containerless processing has been used for the manufacture of ceramics, such as shown and described in U.S. Pat. No. 4,966,737 to Werner et al. entitled "Method And A Device For Manufacturing A Powder Of Amorphous Ceramic Or Metallic Particles". This patent describes the use of an acoustic levitation field acting with an inert cooling gas in the area in front of the nozzle projecting a substance in the liquid state. The inert cooling gas cools the liquid material while in a levitated state. Levitation techniques have also been utilized to isolate a sample from its surroundings for spectrometric measurements at very high temperatures as shown and described in U.S. Pat. No. 4,958,126 to Brevard et al. entitled "Probe For Magnetic Resonance Spectrometric Measures At Very High Temperatures". This patent concerns a probe for a spectrometer resonator for very high temperatures that uses a laser bean focused on a sample as a means to heat the sample. The sample is levitated in the interior volume of the resonator. Levitation techniques used to produce products were also shown and described in U.S. Pat. No. 4,929,400 to Rembaum et al. entitled "Production Of Monodisperse Polymetric Microspheres". In this patent larger size microspheres can be produced by the levitation of larger sizes of droplets of polymerizable material during the polymerization by radiation. U.S. Pat. No. 4,378,209 to Berge et al. shows a gas levitator used in containerless processing. The gas levitator supports the material as the levitator axis is rotated from vertical to horizontal to inverted to vertical. This levitator can be used on earth at any angle of inclination with respect to an earth reference and in space. As previously mentioned, this invention has application as an analytical tool for low-gravity processes. In the past, persons have tried to study low-gravity processing of materials. The National Aeronautics and Space Administration has utilized various vehicles to study containerless processing. NASA has utilized the KC-135 Air Force cargo plane which achieves a low-G state for 25 seconds by flying a prescribed parabolic trajectory. NASA has also utilized an F-104 aircraft which flies a parabolic trajectory and attains a "free fall" period of about 60 seconds. Beginning in 1975, NASA conducted space processing applications with the help of the rocket program in order to provide short duration, for example, five to seven minutes, flight opportunities for research in a low-gravity environment. A convenient and economic device for the study of low-gravity solidification of materials is a drop tube. A drop tube is ideally suited for investigations of super-cooling and free fall solidification of high temperature refractory metals and alloys. One such drop tube is located at NASA's Marshall Space Flight Center. This drop tube consists of a ten centimeter inside diameter, about one hundred fifty feet long, stainless steel tube. A bell jar is at the top and contains an apparatus that melts and releases the material. The tube and bell jar are vacuum tight and may be evacuated or back-filled with various gases during an experiment. A pyrometer and infrared detectors provide a thermal history of the melted sample as it drops and solidifies in the tube. Viewing and instrumentation ports are located on each floor. A sample is decelerated and caught by a detachable catcher at the bottom of the tube. This apparatus provides up to about 4.2 seconds of free fall time. In regard to various levitation techniques, there are four basic levitation techniques. These techniques are electromagnetic levitation, electrostatic levitation, acoustic levitation, and aerodynamic levitation. This invention pertains to aerodynamic levitation. But, in order to provide a background for the invention, there follows a brief discussion about each of the previous three levitation techniques. Electromagnetic levitation techniques only provide for the melting and levitation of electrically conductive materials in a containerless environment. Early research on this technique attempted to eliminate crucible contamination of samples and provide studies of reactive high melting point metals. In this method, the levitating force and heating power are produced by the induction of eddy currents in a metallic sample by an alternating electromagnetic field. This technique may be used in a high vacuum environment. However, this technique requires the simultaneous melting and levitation of the material. Electrostatic levitation techniques can levitate and manipulate materials in a high vacuum. An electrostatic levitator operates on the principal of a feedback controlled by electrostatic force. A CCD camera monitors the object's position and a minicomputer provides a real-time air signal that is used to adjust the main electrostatic force between the electrodes. A more detailed description of electrostatic levitation is found on pages 34-35 of the article by M. Barmatz entitled "Overview of Containerless Processing Technologies" published in Materials Processing in the Reduced Gravity Environment of Space by Elsevier Science Publishing Company, Inc., Guy E. Rindone, Editor (1982). This technique also simultaneously couples the levitation and melting functions. Any material, whether it be a conductor or insulator, magnetic or non-magnetic, may be levitated by acoustic forces. Acoustic levitation techniques require a gas medium for the propagation of the sound waves. Acoustic forces are associated with non-linear phenomena. Non-linear acoustic theory predicts that in high intensity standing wave sound fields, samples with densities which are large when compared to the surrounding gas will be positioned at acoustic pressure nodal positions which correspond to the minimum of the force potential well. A more detailed discussion of acoustic levitation techniques as found at pages 29 through 33 of the paper "Overview of Containerless Processing Technologies" by M. Barmatz. Referring now to aerodynamic levitation, one of the earliest works in the atmospheric sciences which used aerodynamic levitation was that of Blanchard, (Blanchard, C., "The Super-Cooling, Freezing and Melting of Giant Water Drops At Terminal Velocity and Air", Proceedings of the First Conference on the Physics of Cloud and Precipitation Particles, Woods Hole, Massachusetts, pages 233-247, Sep. 7-10, 1955). In this research, the levitation of liquid droplets was achieved in a square wind tunnel which discharged to the environment. According to the article, this tunnel arrangement was able to levitate samples, which were unrestrained in the horizontal plane, for many minutes. The primary purpose of this apparatus was to observe the melting and freezing of water drops. A number of attempts by other researchers have been less than fully successful in the aerodynamic levitation of liquid droplets. Several efforts, notably by Nordine and Atkins (Nordine, P. C. and Atkins, R. M., "Aerodynamic Levitation of Laser-Heated Solid and Gas Jets", Review of Scientific Instruments, 53 (9), pages 1456-1464, Sep., 1982) and Coutures et al. (Coutures, J. P., Rifflet, J. C., Billard, D. and Coutures, P., "Contactless Treatments of Liquids In a Large Temperature Range By An Aerodynamic Levitation Device and Laser Heating", Sixth European Symposium on Material Sciences Under Microgravity Conditions, Dec., 2, 1986) have attempted to use single or multiple jets for levitation. As long as solid spheres are used, jet levitation can be effective. See Krispin, F., Williamson, J. W., Strauss, A. M., "Jet Levitation of Spherical Shapes for Microgravity Research", 38th Congress of the International Astronautical Federation. On the other hand, past attempts to use jets for liquid levitation have not met with complete success. Others have attempted to levitate liquid aluminum droplets and solid uranium samples. Winborne, D. A., Nordine, P. C., Rosner, D. E., and Marley, H. F., "Aerodynamic Levitation Technique For Containerless High Temperature Studies in Liquid and Solid Samples", Metallurgical Transactions B, Volume 73, pages 711-713, Dec., 1976. In an effort to utilize jet levitation, Rush et al. developed a constricted-tube air levitator. However, stable melting of the samples was not achieved. Rush, J. E., Stephens, W. K., and Ethridge, K. C., "Properties of a Constricted-Tube Air Flow Levitator", Materials Processing In The Reduced Gravity Environment Of Space, pages 131-138, Edited by Guy Rindone, Elsevier Science Publishing Company, New York, N.Y. 1982. In 1982 Ethridge et al. reported the results of a collimated holed structure gas jet levitator used to levitate hollow glass microballoons. Ethridge, E. C. and Dunn, S. L., "Air Jet Levitation Furnace System For Observing Glass Microspheres During Heating and Melting", Materials Processing In The Reduced Gravity Environment Of Space, pages 121-130, Edited by Guy Rindone, Elsevier Science publishing Company, New York, N.Y. 1982. Nordine and Atkins have also done work in jet levitation as reported in 1982. Nordine, P. C. and Atkins, R. M., "Aerodynamic Levitation of Laser-Heated Solids and Gas Jets", Review of Scientific Instruments, 53 (9), pages 1456-1464, Sep., 1982. Thus, in view of the importance of containerless processing through levitation techniques, there is a need to develop both an improved apparatus and a method for aerodynamic levitation. In view of the difficulty associated with the levitation of liquid drops, there is a special need to provide an improved apparatus and method for the containerless processing of liquid drops. It is further important to provide an improved apparatus and method for the levitation of liquid drops that does not possess an inherent characteristic to melt the material. There is a need to use aerodynamic levitation in the area of aerodynamic interactions between gas flows and liquid drops. There is a further need to use aerodynamic levitation in the area of mass transfer reactions. There is a need to use aerodynamic levitation in the areas of droplet coalescence and droplet deformation.
{ "pile_set_name": "USPTO Backgrounds" }
Field The present methods generally relate to solving computational problems using a quantum processor via a compressed sensing technique. Superconducting Qubits There are many different hardware and software approaches under consideration for use in quantum computers. One hardware approach employs integrated circuits formed of superconducting material, such as aluminum and/or niobium, to define superconducting qubits. Superconducting qubits can be separated into several categories depending on the physical property used to encode information. For example, they may be separated into charge, flux and phase devices. Charge devices store and manipulate information in the charge states of the device; flux devices store and manipulate information in a variable related to the magnetic flux through some part of the device; and phase devices store and manipulate information in a variable related to the difference in superconducting phase between two regions of the phase device. Many different forms of superconducting flux qubits have been implemented in the art, but all successful implementations generally include a superconducting loop (i.e., a “qubit loop”) that is interrupted by at least one Josephson junction. Some embodiments implement multiple Josephson junctions connected either in series or in parallel (i.e., a compound Josephson junction) and some embodiments implement multiple superconducting loops. Quantum Processor A quantum processor may take the form of a superconducting quantum processor. A superconducting quantum processor may include a number of qubits and associated local bias devices, for instance two or more superconducting qubits. A superconducting quantum processor may also employ coupling devices (i.e., “couplers”) providing communicative coupling between qubits. Further detail and embodiments of exemplary quantum processors that may be used in conjunction with the present methods are described in U.S. Pat. Nos. 7,533,068, 8,008,942, US Patent Publication 2008-0176750, US Patent Publication 2009-0121215, and PCT Patent Publication 2009-120638 (now US Patent Publication 2011-0022820). Adiabatic Quantum Computation Adiabatic quantum computation typically involves evolving a system from a known initial Hamiltonian (the Hamiltonian being an operator whose eigenvalues are the allowed energies of the system) to a final Hamiltonian by gradually changing the Hamiltonian. A simple example of an adiabatic evolution is:He=(1−s)Hi+sHf where Hi is the initial Hamiltonian, Hf is the final Hamiltonian, He is the evolution or instantaneous Hamiltonian, and s is an evolution coefficient which controls the rate of evolution. As the system evolves, the s coefficient s goes from 0 to 1 such that at the beginning (i.e., s=0) the evolution Hamiltonian He is equal to the initial Hamiltonian Hi and at the end (i.e., s=1) the evolution Hamiltonian He is equal to the final Hamiltonian Hf. Before the evolution begins, the system is typically initialized in a ground state of the initial Hamiltonian Hi and the goal is to evolve the system in such a way that the system ends up in a ground state of the final Hamiltonian Hf at the end of the evolution. If the evolution is too fast, then the system can be excited to a higher energy state, such as the first excited state. In the present methods, an “adiabatic” evolution is considered to be an evolution that satisfies the adiabatic condition:{dot over (s)}|1|dHe/ds|0|=δg2(s)where {dot over (s)} is the time derivative of s, g(s) is the difference in energy between the ground state and first excited state of the system (also referred to herein as the “gap size”) as a function of s, and δ is a coefficient much less than 1. The evolution process in adiabatic quantum computing may sometimes be referred to as annealing. The rate that s changes, sometimes referred to as an evolution or annealing schedule, is normally slow enough that the system is always in the instantaneous ground state of the evolution Hamiltonian during the evolution, and transitions at anti-crossings (i.e., when the gap size is smallest) are avoided. Further details on adiabatic quantum computing systems, methods, and apparatus are described in U.S. Pat. Nos. 7,135,701 and 7,418,283.Quantum Annealing Quantum annealing is a computation method that may be used to find a low-energy state, typically preferably the ground state, of a system. Similar in concept to classical annealing, the method relies on the underlying principle that natural systems tend towards lower energy states because lower energy states are more stable. However, while classical annealing uses classical thermal fluctuations to guide a system to its global energy minimum, quantum annealing may use quantum effects, such as quantum tunneling, to reach a global energy minimum more accurately and/or more quickly than classical annealing. It is known that the solution to a hard problem, such as a combinatorial optimization problem, may be encoded in the ground state of a system Hamiltonian and therefore quantum annealing may be used to find the solution to such a hard problem. Adiabatic quantum computation is a special case of quantum annealing for which the system, ideally, begins and remains in its ground state throughout an adiabatic evolution. Thus, those of skill in the art will appreciate that quantum annealing methods may generally be implemented on an adiabatic quantum computer, and vice versa. Throughout this specification and the appended claims, any reference to quantum annealing is intended to encompass adiabatic quantum computation unless the context requires otherwise. Quantum annealing is an algorithm that uses quantum mechanics as a source of disorder during the annealing process. The optimization problem is encoded in a Hamiltonian HP, and the algorithm introduces strong quantum fluctuations by adding a disordering Hamiltonian HD that does not commute with HP. An example case is:HE=HP+ΓHD; where Γ changes from a large value to substantially zero during the evolution and HE may be thought of as an evolution Hamiltonian similar to He described in the context of adiabatic quantum computation above. The disorder is slowly removed by removing HD (i.e., reducing Γ). Thus, quantum annealing is similar to adiabatic quantum computation in that the system starts with an initial Hamiltonian and evolves through an evolution Hamiltonian to a final “problem” Hamiltonian HP whose ground state encodes a solution to the problem. If the evolution is slow enough, the system will typically settle in a local minimum close to the exact solution The performance of the computation may be assessed via the residual energy (distance from exact solution using the objective function) versus evolution time. The computation time is the time required to generate a residual energy below some acceptable threshold value. In quantum annealing, HP may encode an optimization problem and therefore HP may be diagonal in the subspace of the qubits that encode the solution, but the system does not necessarily stay in the ground state at all times. The energy landscape of HP may be crafted so that its global minimum is the answer to the problem to be solved, and low-lying local minima are good approximations. The gradual reduction of Γ in quantum annealing may follow a defined schedule known as an annealing schedule. Unlike traditional forms of adiabatic quantum computation where the system begins and remains in its ground state throughout the evolution, in quantum annealing the system may not remain in its ground state throughout the entire annealing schedule. As such, quantum annealing may be implemented as a heuristic technique, where low-energy states with energy near that of the ground state may provide approximate solutions to the problem. Quadratic Unconstrained Binary Optimization Problems A quadratic unconstrained binary optimization (“QUBO”) problem is a form of discrete optimization problem that involves finding a set of N binary variables {xi} that minimizes an objective function of the form: E ⁡ ( x 1 , … ⁢ , x N ) = ∑ i ≤ j N ⁢ ⁢ Q ij ⁢ x i ⁢ x j where Q is typically a real-valued upper triangular matrix that is characteristic of the particular problem instance being studied. QUBO problems are known in the art and applications arise in many different fields, for example machine learning, pattern matching, economics and finance, and statistical mechanics, to name a few.
{ "pile_set_name": "USPTO Backgrounds" }
The present disclosure relates to a biopsy device for sampling a specimen from a biological tissue. A biopsy is a process of sampling a specimen from a biological tissue of a lesion of a patient who may be suffering a disease such as cancer or the like and inspecting the sampled specimen. In the biopsy, an operator samples the specimen from the biological tissue while visually observing the affected area or sampled region through an endoscope. In order to make a conclusive diagnosis of a disease on the basis of a biopsy, it is preferable for the operator to diagnose as many biological tissues as possible for higher diagnostic accuracy. Generally, however, since the biopsy instrument includes forceps and a needle, it is difficult to sample an amount of tissue required for a diagnosis from the patient in a single piercing process. JP-T-2004-517706 discloses a device including a helical tissue receiving element and a severing element for severing a tissue in cooperation with an outer circumferential surface of the helical tissue receiving element for the purpose of efficiently sampling a specimen from a biological tissue. The device disclosed in JP-T-2004-517706 may appear to allow the tissue receiving element to sample a large amount of tissue in one sampling action. However, since the tissue receiving element is slender and helical, it is not sufficiently rigid. Therefore, when an operator attempts to pierce a biological tissue to secure the device in position with respect to the biological tissue, the operator finds it difficult to quickly pierce the biological tissue with a piercing spike and firmly secure the piercing spike of the device in place. This problem manifests itself when the biological tissue to be pierced is a soft tissue such as a liver or a lung. Inasmuch as the piercing spike is not securely held in position, the piercing spike may be dislodged while the operator is attempting to sample a specimen, and hence the operator may be unable to sample a specimen efficiently.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to communication systems. More particularly, the present system relates to the cell or packet switching, assembly and disassembly associated with cell or packet switched networks. Various systems have been adopted to carry digitally-encoded signals for communication applications, such as, telephone, video, and data services. These systems are often connection-oriented transmission systems, such as, asynchronous transfer mode (ATM) systems, frame relay systems, X.25 systems, or other transmission systems. Connection-oriented systems (e.g., ATM systems) have been employed in private and public communication systems or networks (e.g., wide area networks (WANs)) to transfer packetized signals (e.g., data cells or protocol data units) across communication lines, such as, telephone lines, cables, optical fibers, air waves, satellite links, or other communication media. Cell based networks transfer data units of a constant length, while packet based networks transfer data units of variable length. Therefore, the term packet used herein refers to variable sized data units, as in IP networks or frames as well as in Ethernet or token ring networks. Generally, ATM systems are comprised of nodes or elements which communicate information in cells between each other to ultimately transfer information from a source to a destination. The node or element can be an ATM switch, a port or edge device, computer equipment, communication device, or any apparatus for relaying information. Each of the data cells communicated in an ATM system contains headers identifying the connection and also contains a payload providing the information being transmitted and received. During the transfer of the cells throughout the network to the destination, the headers may be changed to indicate the path that the cell is following to reach the receiving equipment. ATM systems are typically coupled to telephones, modems, other networks, or other communication devices through a port or edge device. The port or edge device receives data cells from the ATM system and transforms these into data units and provides the data units to the systems coupled thereto. Additionally, the edge device receives data units from the systems coupled thereto and provides data cells representative of the data units to the ATM system. Thus, the edge device can provide translation and routing functions, such as adaptation, segmentation, and reassembly operations to interface the systems coupled to it to the ATM system. The edge device often must adapt the data cells of the ATM system to the formats of the systems coupled thereto. The edge device can be an adapting network interface card, an adapting switch, an adapting concentrator, an ATM desktop device, a router access multiplexer, or other interface device. ATM systems generally include the capability of distinguishing between cell generating, cell terminating, and cell switching elements in the ATM network. The generation or segmentation of data packets into cells on the data source side of an ATM network as well as the reassembly of cells into data packets on the data destination side of an ATM network can be performed by a segmentation and reassembly (SAR) device. U.S. Pat. No. 5,768,275, issued on Jun. 16, 1998, to Lincoln et al., entitled xe2x80x9cController for ATM Segmentation and Reassembly,xe2x80x9d the disclosure of which is incorporated herein by reference, discloses one such SAR device. Conventional SAR devices segment packets received from an attached processor (as a source of communication) into cells. Such SAR devices also reassemble received cells and forward them to the attached processor (as a destination for communication). The content of the cells is stored in buffers. The SAR device has a pool of free buffers in a free buffer queue. When a data packet is received by the SAR device from one of the input ports, the SAR device reads a free buffer and buffer descriptor from a free buffer pool. The SAR device writes the data packet information into the free buffer and writes the buffer descriptor to a reassembly status queue. The processor (as a destination of the communication) reads the buffer descriptor from the reassembly status queue, processes the data contained in the buffer, and writes the buffer and buffer descriptor back to the free buffer pool. For data transmission, the processor (as a source of communication) writes communication data to buffers and writes their corresponding buffer descriptor to the transmit queue. The SAR device segments the buffers, transmits the cells, and then returns the buffers to the processor by writing the buffer descriptors to a segmentation status queue. The processor reads the buffer descriptor and makes the corresponding buffers available for future transmission. Conventionally, the switching of cells in an ATM system is performed by an ATM switch. An ATM switch routes cells from any of its input ports to any of its output ports. Furthermore, the ATM switch modifies the header information of each cell to indicate the path that the cell is following to reach its destination. Conventional ATM systems do not integrate cell generating, cell terminating, and cell switching operations into one element in the ATM network. Thus, there is a need for the integration of segmentation, reassembly, and switching functions into one device or element in the ATM system. Further, there is a need to combine the operations of cell generation or termination and cell switching. Even further, there is a need for a node in the ATM network to be able to perform as a communication source, destination, and switch. Even further, there is a need for a node at the interface between ATM networks and packet based networks to perform switching between any combination of packet and cell ports, segmenting of packets into cells, and reassembling cells into packets. One embodiment of the invention relates to a communication system for communication of data packet or cells associated with a packet or cell switched network. The system includes a plurality of ports and a switching segmentation and reassembly device. The ports communicate data packets or cells to and from at least one communication source (e.g. an attached processor) and at least one destination. The switching segmentation and reassembly device routes data packets or cells to and from the ports and the at least one destination. The switching segmentation and reassembly device further switches data packets or cells between ports. Another embodiment of the invention relates to a communication apparatus for communication of data packets or cells associated with a packet or cell switched network to a plurality of ports. The apparatus includes an interface, a memory, and a segmentation and reassembly block. The interface couples the plurality of ports to the communication apparatus. The memory stores the content of data packets received from the plurality of ports and information on virtual channels to the plurality of ports. The segmentation and reassembly block assembles data packets, processes data from memory, writes the buffer descriptor corresponding to the received data packet to memory for future transmission, segments data packets, and transmits data packets to the corresponding destination port. Another embodiment of the invention relates to a method for communication of data packets or cells associated with a packet or cell switched network in a communication system from a source physical device to a destination physical device. The method includes receiving a data packet or cell including a header and payload from the physical device; assigning the data packet or cell received to a connection identifier; making necessary changes to data packet or cell header; segmenting received packets into cells; reassembling received cells into packets; and communicating data packet or cells to the destination physical device as indicated by the connection identifier.
{ "pile_set_name": "USPTO Backgrounds" }
There are known a laminator that pressure-bonds a film containing a photosensitive material (a photoresist) onto one side or each of both sides of a substrate with use of a pair of pressure-bonding rolls. The laminator supplies the substrate into between the pair of pressure-bonding rolls and also supplies the film onto at least one surface of the substrate, sandwiches the substrate and the film between the pair of pressure-bonding rolls, and heats the substrate while causing the pair of pressure-bonding rolls to apply a predetermined pressing force toward a substrate side, thereby pressure-bonding the film onto the substrate. The substrate with the film pressure-bonded thereon in this manner is exposed to light, by which a conductive pattern or the like is formed on this substrate. Generally, a pressing force to the pressure-bonding rolls is applied to bearing housings that support bearings provided at both ends of the pressure-bonding rolls, with use of an actuator, such as an air cylinder. This commonly used laminator leads to application of the pressing force to the both ends of the pair of pressure-bonding rolls toward the substrate side. Therefore, when a relatively thick substrate is processed, a bending moment (hereinafter referred to as a first bending moment) is generated on the pair of pressure-bonding rolls with edges of both ends of the substrate serving as supports As a result, the pressure-bonding rolls are each deformed into such an arch shape that a center thereof is distanced farther away from the substrate than the both ends thereof. This deformation results in uneven application of the pressing force from the pressure-bonding rolls to the substrate and the film in a direction in which the pressure-bonding rolls extend. Under such environments, there is developed a technique that allows the pressure-bonding rolls to apply the pressing force so as to generate a second bending moment in an opposite direction from the first bending moment at the same time as generating the first bending moment (for example, the following patent literatures, PTLs 1 and 2). According to this technique, the first bending moment and the second bending moment cancel out each other's influence causing the bending of the pressure-bonding rolls, which can reduce the deformation of the pressure-bonding rolls to thereby improve the unevenness of the pressing force. Further, another possible method is to form each of the pressure-bonding rolls in such a manner that an outer diameter thereof is increasing from the both ends toward the center, thereby establishing even contact between a shape of the arched deformed pressure-bonding roll and shapes of the substrate and the film to improve the unevenness of the pressing force. The roll shaped in this manner is called a crown roll.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method and apparatus for delivering an order to a home and utilizing credit information to verify and accept payment for the order. In another respect, the invention relates to a method and apparatus for verifying credit information on site at the door of a home contemporaneously with the delivery of an order. A wide variety of products are delivered to the home or business of a recipient and paid for when the product is delivered to the home or business. Pizza, chicken and other foodstuffs are ordered from a vendor by telephone and the vendor delivers the foodstuff to the home of the individual who placed the order. Office supplies and various other goods are ordered by a business from vendors, who then deliver the goods directly to the business. A particular problem which has long existed in such home or business delivery systems is that there is no ready way to verify at the time the goods are delivered credit information which the recipient of the delivered goods uses to pay for the goods. This is particularly the case when a vendors routinely delivers goods to a great many "one-time" recipients for which a vendor does not maintain an account, simply because maintaining an account is not practical or cost effective. In such deliveries to "one-time" recipients, the individual delivering the goods often must accept credit cards, check guarantee cards, and other credit information at face value because there is no practical way to evaluate on site the creditworthiness of such information. Accordingly, it would be highly desirable to provide an improved method and apparatus for delivering goods to a home or business, the improved method permitting a delivery person to verify the creditworthiness of a credit card, bank guarantee card or other credit information provided by the recipient of the goods while the delivery person stands at the door of the home or business of the recipient to deliver goods to the recipient. Therefore, it is a principal object of the invention to provide an improved method and apparatus for delivering goods to a home or business and for, while at the door of the home or business, verifying the creditworthiness of a credit card, bank guarantee card, or other credit information provided to the delivery person by the recipient of the goods. Another object of the invention is to provide an improved method and apparatus for the home delivery of goods which, after a delivery person has left his vehicle, utilizes data entered by the delivery person at the door of the residence of the recipient of the goods, utilizes an airborne transmission of the data entered, and utilizes a cellular telephone line to contact a host computer to validate credit information provided the delivery person by the recipient of the goods. A further object of the invention is to provide an improved method and apparatus for the home delivery of goods which can, contemporaneously with the delivery of goods to a recipient, provide the recipient with a printed receipt confirming delivery of the goods and the recipient's validated payment for the goods.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to catheters for use in conjunction with specialized medical devices, such as embolic filtering systems used when an interventional procedure is being performed in a stenosed or occluded region of a body vessel to capture embolic material that may be created and released into the vessel during the procedure. Additionally, the present invention can be used in conjunction with other medical delivery catheters utilized in body vessels. Numerous procedures have been developed for treating occluded blood vessels to allow blood to flow without significant obstruction. Such procedures usually involve the percutaneous introduction of an interventional device into the lumen of the artery, usually through a catheter. One widely known and medically accepted procedure is balloon angioplasty in which an inflatable balloon is introduced within the stenosed region of the blood vessel to dilate the occluded vessel. Stents also are widely known devices which can be inserted into the patient's arterial system to provide scaffolding in the area of a stenosis in the artery. In these procedures, enhanced blood flow should resume in the dilated artery. Unfortunately, when a stenting or angioplasty procedure is performed in a highly vulnerable artery, such as the carotid artery, there is always a possibility that plaque could break away from the area of stenosis and enter the bloodstream. The deposits or plaque may also rupture and form blood clots or thrombi that can completely obstruct blood flow in the affected artery or break free and travel, emboli, to another part of the body. If either of these events occurs, the individual may suffer a myocardial infarction if the artery or arteries affected perfuse the heart or a stroke if the artery or arteries affected supply blood to the brain. If the artery or arteries affected supply blood to a limb or appendage, gangrene could possibly result. If the artery or arteries affected supply blood to the kidney or the kidneys, renal ischemia, infarction or renal failure could possibly result. Medical devices have been developed to attempt to deal with the problem created when debris or fragments enter the circulatory system during vessel treatment. One technique which has had some success include the placement of a filter or trap downstream from the treatment site to capture embolic debris before it reaches the smaller blood vessels downstream. The placement of a filter in the patient's vasculature during treatment of the vascular lesion can reduce the presence of the embolic debris in the bloodstream. Some prior art expandable filters are attached to the distal end of a guide wire or guide wire-like member that allows the filtering device to be placed in the patient's vasculature. The guide wire allows the physician to steer the filter to a downstream location from the area of treatment. Once the guide wire is in proper position in the vasculature, the embolic filter can be deployed to capture embolic debris. These embolic filtering devices usually utilize a restraining sheath to maintain the expandable filter in its collapsed position. Once the proximal end of the restraining sheath is retracted by the physician, the expandable filter will move into its fully expanded position. The restraining sheath can then be removed from the guide wire allowing the guide wire to be used by the physician to deliver interventional devices, such as a balloon angioplasty catheter or a stent delivery catheter, into the area of treatment. After the interventional procedure is completed, a recovery sheath can be delivered over the guide wire using over-the-wire or rapid exchange techniques to collapse the expanded filter (with the trapped embolic debris) for removal from the patient's vasculature. Both the delivery sheath and recovery sheath should be relatively flexible to track over the guide wire and to avoid straightening the body vessel once in place. While a filter can be effective in capturing embolic material, the filter still needs to be collapsed and removed from the vessel without causing any of the trapped embolic material from escaping from the filtering portion. During the recovery step, there is a possibility that trapped embolic debris can backflow through the inlet opening of the filter and enter the bloodstream as the filter is being collapsed. Additionally, as the recovery catheter and filter device are being simultaneously removed from the patient, the catheter must remain properly disposed over the filter to maintain it in the collapsed position. If the restraining sheath should somehow retract off of the expandable filter, it is possible that the filtering portion could re-deploy as the devices travel through the patient's vasculature. Such an occurrence is not desired and could cause unwanted trauma to the body vessel, release of captured emboli into the body vessel, and/or compromised filter basket integrity. Various types of recovery catheters can be utilized to perform the recovery step. Some catheters are full-length which use a long restraining sheath that extends from the area of treatment to an area outside of the patient. These catheters, however, usually require a long length guide wire to be utilized. Moreover, when full-length sheaths are used for recovery, more time is usually needed to remove or advance the sheath along the guide wire. For this reason, recovery catheters utilizing rapid-exchange technology have been developed. A rapid-exchange recovery catheter only utilizes a short section of sheathing at its distal end to capture the deployed filter. The remaining proximal portion of recovery catheter can be made from an elongate component, such as a mandrel, a guide wire or tubing. This type of recovery catheter does not require a long length guide wire and is usually can be advanced much quicker along the guide wire than a full-length catheter. Removal of a rapid-exchange catheter is usually much faster as well. Regardless of whether the recovery catheter is a rapid-exchange type or a full length sheath, the distal end of the recovery catheter must remain in place over the collapsed filter device to prevent backflow of captured embolic debris. Since both the recovery catheter and guide wire are usually being removed simultaneously during the recovery step, the recovery catheter cannot be retracted faster than the guide wire since such a movement could cause the recovery catheter to retract from the filter device which again can cause the problems addressed above. For this reason, it would be advantageous if the recovery catheter and guide wire could some how be locked together to permit only simultaneous movement of these components. What is needed then is a reliable recovery sheath that minimizes the risk that the restraining sheath can somehow be removed from the filtering portion during recovery. The recovery catheter should be relatively easy for a physician to use and should provide an effective means for retrieving the device without releasing any captured embolic debris into the body vessel. Moreover, it would be advantageous if the catheter can be advanced and removed from the guide wire in relatively quick fashion. The invention disclosed herein satisfies these and other needs.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to method of and apparatus for supplying and transferring electronic components. More particularly, the invention relates to a method and apparatus for supplying and transferring electronic components in an automatic inserting machine by which electronic components having leads are inserted into receiving openings of a printed circuit board. Separated pieces of electronic component web carriers obtained by cutting and separating those which are selected as required from a plurality of electronic component web carriers and each having one electronic component, hereinafter referred to as "separated piece", are received and held by pallets and transferred to an inserting assembly in a subsequent process. A chuck may be utilized, for example, for gripping the electronic component. The prior art of this application is disclosed in the U.S. patent application Ser. No. 553,681 filed Nov. 21, 1983 now U.S. Pat. No. 4,610,280. The supply and transfer apparatus of said prior art comprises a plurality of pallets, each for receiving and holding one electronic component. An endless conveying mechanism conveys the pallets in an intermittent fashion on a substantially horizontal plane. A supply unit selectively supplies electronic components to the pallets. The present invention is intended to improve the prior art.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, implementation of “cloud-based” services, high-performance computing (HPC) and other activities employing data centers and the like have seen widespread adoption. Under a typical data center installation, a large number of servers installed in server chassis and server racks are interconnected in communication using network links (e.g., Ethernet) and various switching mechanisms, such as switch blades/modules and “top-of-rack” (ToR) switches. In some installations, additional links, such as InfiniBand or Fibre Channel, may used for storage and other purposes. Data centers commonly employ a physical hierarchy of compute, network and storage shared resources to support scale out of workload requirements. The de facto control plane to manage such compute, networking and storage shared resource is Ethernet and the network protocol for manageability is TCP/IP based. Each shared resource typically has a management controller to provide manageability access point and addressed via IPv4 or IPv6 addresses. Data centers generally implement VLANs (Virtual Local Area Networks) to separate control plane traffic from the data plane traffic. A hierarchical architecture for the controllers in the control plane is required to prevent multiple management agents from providing conflicting commands to a management controller. For example, an Application Performance manager wants a Sled controller to turbo-up node power, but a Tray level power manager wants to limit tray level power consumption at the current levels. Currently, there is no automated mechanism available to discover management controller hierarchy, even when a physical containment hierarchy is well defined. It is highly desired that each management controller in the controller hierarchy automatically “learn” of all controllers in its chain of command both at higher and optionally lower levels. This is a fundamental requirement to coordinate manageability actions. The controller hierarchy can be established within a limited physical scope using separate physical connectivity. Such an approach imposes hardware requirements and is not scalable to support dense form factor requirements of today's data center.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a switchable finger lever of a valve train of an internal combustion engine, comprising an outer lever and an inner lever extending between the arms of this outer lever. Both levers can pivot relative to each other and one of the levers has on its bottom side a contact area for a head of a support element. In the region of this contact area there runs a longitudinal recess for a coupling means, which can be brought into engagement in some sections with a driving area on an end side of the other lever when the levers are coupled. At least one contact area for a large lift cam is applied to an upper side of the finger lever. Such a finger levers emerge from U.S. Pat. No. 5,544,626 which is considered as a class-forming patent. This is described as a disconnecting lever, wherein when coupled, its coupling means viewed in the longitudinal direction of the lever can be displaced inwards under a driving area of a pivoting inner lever. The coupling means extends above a contact area for a support element in the outer lever. It is to be recognized that in the coupling area, flat engagement structures are provided. In addition, the coupling means are provided with a separate anti-rotation device. Several disadvantages are inherent in the previously mentioned construction. The flattened section on the coupling means as well as the correspondingly flat driving area on the bottom side of the inner lever require unnecessary machining expense and thus increase the costs for mass production. In addition, it is clear that the separate anti-rotation device also has an unfavorable effect on the total costs of the previously mentioned finger lever. However, a particular disadvantage in the finger lever just cited is that due to the coupling elements with a fixed orientation, coupling is always realized at the same contact position. Thus, in the operation of the finger lever it is to be taken into account that grooves are formed in this fixed contact position little by little and it possibly also leads to undesired deformation or formation of indentations in this region.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an infant warming apparatus and, more particularly, to an examination/procedure light that is integrated into an infant care apparatus. In the care of newborn infants, there is an infant warmer apparatus that is used to provide warming of the infant and to supply the necessary heat to maintain the infant at a predetermined temperature. The infant warmer basically comprises a planar surface on which the infant is positioned and which planar surface normal includes side guards to keep the infant safely within the confines of the apparatus. Infant warmers normally also have a overhead radiant heater that is located above the infant and which thus radiates energy in the infrared spectrum to impinge upon the infant to maintain the infant at the desired temperature. With infant warmers, since the infant is otherwise totally exposed to the surroundings, there is almost unlimited access to the infant by the attending personnel to perform various procedures on that infant. A typical infant warmer is shown and described in U.S. Pat. No. 5,474,517 of Falk et al as prior art to that patent. Since there is such wide open access to the infant, the infant warmer is normally used where there is some intervention or procedure to be carried out on the infant while resting on the planar surface. Since some, if not all, of such procedures are delicate, it is normally necessary to have some source of illumination of the infant so that the attending personnel can have sufficient light to view the infant as a whole, or to concentrate the light on a localized region of the infant in carrying out the procedure. Accordingly, with infant warmers, there is generally a procedure light that is separately and independently provided with an infant warmer and which is either set up to be a free standing light or is affixed to the infant warmer in some manner as an add-on to the infant warmer. Such lights are also mounted so as to be movable so that the beam of light can be moved to the particular location on the infant where the light is needed. Alternatively, there is disclosed in U.S. Pat. No. 6,413,205 of Finny, a light that is mounted in the overhead housing of an infant warmer, however, the light of the Finny patent is a fixed light having no apparent means of moving the light beam to a specific location and also, there is no means disclosed where the light beam of the Finny patent can be focused between a broad beam and a smaller, focused beam. Accordingly, it would be advantageous to have a integrated mounting for the procedure light so that the procedure light can be centrally located and can be built into the infant warmer and which may also be manually movable, omnidirectionally, by the user as well as being focusable so that the user can broaden or narrow the beam of light.
{ "pile_set_name": "USPTO Backgrounds" }