text
stringlengths 2
806k
| meta
dict |
---|---|
Gas-filled display devices have come into wide use, and these devices are generally of three types, D.C. devices, A.C. devices, and quasi A.C. devices. In D.C. devices, the panel electrodes are disposed within the gas filling of the panel; in A.C. devices, all of the electrodes are insulated from the gas filling by a glass coating; and, in quasi A.C. devices, there is a combination of electrodes, both in contact with and insulated from the gas filling by means of a glass coating formed thereon. When devices of the A.C. and quasi A.C. types are engineered, various factors including the various thermal coefficients of expansion must be taken into account, and, in selecting glasses for coatings, factors to consider are the thermal coefficient of expansion, light transmissivity, and softening temperature.
Up to the present time, glasses suitable for use in various types of display panels have all included lead. As is well known, lead is an undesirable element to have present in the manufacturing process. These lead glasses are readily degraded by thermal processing during fabrication operations and by high electric fields such as those encountered during device operation. In addition, the use of lead-bearing glasses presents a potential environmental and personnel health problem, and this requires complex and expensive protective measures to alleviate.
The present invention provides a new lead-free glass composition which is usable in display panels and the like devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a synchronizing signal extracting apparatus for a display device for projecting high quality television pictures.
In the conventional NTSC system television signals, the horizontal synchronizing signal is a negative polarity pulse inserted on the black level side of the picture signal. On the other hand, studio standards of a high quality television system prescribe that the horizontal synchronizing signal is take the form of the so-called ternary value synchronizing signal which comprises two pulses of a negative and positive polarity. The present invention relates to a synchronizing signal detaching apparatus which is capable of correctly reproducing the ternary value synchronizing signals.
FIG. 1 is a block diagram of the conventional synchronizing signal extracting apparatus. In FIG. 1, reference denotes 101 a current amplifying circuit for amplifying composite signals including a ternary value synchronizing signal and a picture signal, 102 denotes a peak clamping circuit for securing the negative peak of the output of the current amplifying circuit 101 to a constant direct current level, and 103 denotes a voltage comparing circuit for outputting a prescribed voltage when the output of the peak clamping circuit 102 is lower than a reference value.
By the above-described construction, positive polarity synchronizing signals are obtained in the output of the voltage comparing circuit 103. FIGS. 2(a)-(d) depict voltage waveforms of each portion of the conventional synchronizing signal extracting apparatus. The operation of the conventional synchronizing signal extracting apparatus of FIG. 1 will be described below with reference to FIG. 2.
The composite signal a of FIG. 2(a) is amplified in the current amplifying circuit 101 and is inputted to the peak clamping circuit 102. As the negative peak of the ternary value synchronizing signal is clamped to 0 V, the output of the peak clamping circuit 102 is provided as shown in FIG. 2(b). When the signal "b" is inputted into the voltage comparing circuit 103, this electric potential of the signal is compared with a voltage comparison reference potential for and the comparison result is output as shown in FIG. 2(c). As shown in FIG. 2, although the signal "c " contains the so-called pedestal portion, the level of the pedestal may be made have a potential of zero if the reference potential of the voltage comparison is adjusted each time, so that the output of the voltage comparing circuit 103 includes only the positive polarity pulses as shown in FIG. 2(d). A point at which each output pulse in FIG. 2(d) drops to the 0 potential is used as the synchronizing reference of the high quality television receiver image receiving device.
In, the synchronizing signal extracting apparatus of the conventional embodiment, it is necessary to adjust the comparative reference potential of the voltage comparing circuit to obtain the synchronizing reference of the high quality television image receiving device. Accordingly, if a variation of the reference potential and an output variation of the peak clamping circuit are present, the width of the output pulse becomes narrower when the waveform of the input synchronizing signal losses its sharpness due to the capacitive component of the signal transmission path, with a disadvantage resulting in that the pedestal portion is contained in the output as shown in FIG. 2(c) to prevent the synchronizing reference from being reproduced. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the art of welding dissimilar tubes end to end and more specifically to a welding ring designed to effect that desired union.
2. Description of the Prior Art
The present practice of end joining tubes or pipes composed of dissimilar grades or compositions and having unequal inside diameters is both time consuming and expensive.
When it is necessary to weld a higher grade tube having a thinner wall end to end to a lower grade tube having a thicker wall, various involved fabricating steps must be carefully followed in order to prepare the ends of the two tubes for the reception of a welding ring.
It should be noted that if high temperature and/or high pressure service requirements are contemplated for the welded tubes, it may be unsafe to machine the lower grade tube to any great extent. To do so, is to court possible tube failure.
The involved prior practice requires the following steps: first, the higher grade tube must be internally upset. To accomplish this, a tube end is heated to a sufficiently softened state. The hot tube end is then placed in a die of the desired contour whereupon axial pressure is applied to the tube. After the tube has assumed the proper shape, it is allowed to cool. Finally, the tube is heat treated to remove any residual stresses.
The second step entails boring the internal upset end of the higher grade tube to conform its inner periphery to that of the lower grade tube. The upset is machined to an appropriate taper to effect a properly aligned seating surface for a symmetrical welding ring to be inserted between the two tubes. A similar taper is provided on the lower grade tube end. In addition, a weld groove is machined along the end faces of both tubes to provide a circumferential notch for subsequently deposited weld beads.
The third step involves inserting the symmetrical welding ring between the two tapered end surfaces whereupon weld beads are then deposited about the joint in the usual manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to cryostat construction and in particular it is related to the construction of cryostats which are employable in nuclear magnetic resonance (NMR) imaging systems and/or which contain superconducting coils which are cooled by a coolant fluid such as liquid helium. The present invention more particularly relates to a configuration of supporting ties which exhibit reduced cross-sectional area since thermal contraction stresses normally present have been effectively eliminated by the present configuration.
A cryostat is a containment vessel designed to thermally isolate its interior from exterior ambient temperature conditions. To achieve the desired degree of thermal isolation, multiple nested vessels may be employed with each vessel being designed to function at one of a sequence of temperatures, with the interior temperature being the coldest. In order to provide the desired thermal isolation and yet at the same time provide a cryostat which may be readily transportable, even when filled with coolant, minimal mechanical contact between the various inner and outer cryostat vessels is required. Accordingly, a system of ties may be employed. These ties preferably comprise a low thermal conductivity material such as titanium or a glass fiber and epoxy composite. For example, a system of ties may include a set of at least three ties disposed on each end of an annular vessel. Each tie extends transversely from the outer vessel to an interior annular vessel thus providing a mechanical connection between the circumference of the outer vessel and the circumference of the inner vessel. A system of such ties is more particularly described below. However, the introduction of cryogens into the cryostat produces changes in dimension as a result of thermal contraction of the tie material and of the vessels themselves. Accordingly, ties have been required to have larger cross-sections to compensate for the thermal stresses that are present, in addition to stresses due to weight alone and stresses that arise from cryostat transport. However, it is generally undesirable to have a tie exhibiting a cross-sectional area larger than is necessary because of increased thermal conduction through the tie between the interior and exterior cryostat vessels. Accordingly, if the thermal contraction stresses could be eliminated, supporting ties could be employed which exhibit reduced cross-sectional areas and therefore provide greater thermal isolation for the inner cryostat vessel. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to disk drives for computer systems. More particularly, the present invention relates to a disk drive employing coarse position feedback from a mechanical position sensor to improve format efficiency.
2. Description of the Prior Art
FIG. 1A shows an exploded view of a prior art disk drive comprising a disk 2 rotated by a spindle motor 4, and a head 6 coupled to a distal end of an actuator arm 8 which is rotated about a pivot 10 by a voice coil motor (VCM) in order to actuate the head 6 over the disk 2. The disk 2, spindle motor 4, head 6, actuator arm 8, and VCM are enclosed in a head disk assembly (HDA) comprising a base 9 and a cover 11. The VCM comprises a voice coil 12 coupled to the base of the actuator arm 8 and one or more permanent magnets attached to a yoke 14. When the voice coil 12 is energized with current, the resulting magnetic flux interacts with the magnetic flux of the permanent magnets to generate a torque that rotates the actuator arm 8 about the pivot 10. A tang 16 attached to the actuator arm 8 interacts with a crash stop 18 to limit the stroke of the actuator arm 8, and also provides a latching mechanism (e.g., using a magnet) to maintain the actuator arm 8 in a latched position while the disk drive is powered down. Alternatively, the actuator arm 8 may be parked on a ramp located at the outer periphery of the disk 2 when the disk drive is powered down.
Servo sectors 210-21N are written to the disk 2 to define a plurality of radially-spaced, concentric servo tracks 23 as shown in the prior art disk format of FIG. 1B. The servo tracks 23 define a number of data tracks, wherein each data track is partitioned into a plurality of data sectors and the servo sectors 210-21N are considered “embedded” in the data sectors. Each servo sector (e.g., servo sector 214) comprises a preamble 25 for synchronizing gain control and timing recovery, a sync mark 27 for synchronizing to a data field 29 comprising coarse head positioning information such as a servo track number, and servo bursts 31 which provide fine head positioning information. The coarse head position information is processed to position a head over a target data track during a seek operation, and the servo bursts 31 are processed to maintain the head over a centerline of the target data track while writing or reading data during a tracking operation.
The servo sectors 210-21N reduce the format efficiency by consuming disk space that could otherwise be used for the data sectors. In addition, as the number of servo tracks is increased in order to increase the tracks per inch (TPI), the servo track address size increases due to the increased number of bits required to identify each servo track. Consequently, the servo sectors 210-21N consume even more disk space per data track as the TPI increases.
There is, therefore, a need to improve the format efficiency of a disk drive by reducing the size of the servo sectors and therefore the amount of disk space consumed by the servo sectors. | {
"pile_set_name": "USPTO Backgrounds"
} |
1.Field of the Invention
The present invention relates to a device for controlling expansion of an air bag apparatus.
2. Description of the Related Art
Japanese Laid-open Patent Publication (unexamined) No. 10-31590discloses a device for controlling expansion of an air bag apparatus having a plurality of inflaters. This device includes an acceleration sensor for detecting an acceleration of a passenger compartment and a crash sensor located at a front portion of a vehicle body and having a switching mechanism that closes an electric circuit in the event of a collision above a predetermined level. The device determines based on a signal from the acceleration sensor whether or not the inflaters should be operated, and also determines the operation modes of the inflaters according to the degree of the collision within a predetermined time after the electric circuit has been closed, making it possible to optimize the operation of the inflaters.
As in the device of the above-described construction, the general practice is such that whether the inflaters should be operated is determined based on the signal from the acceleration sensor. From the viewpoint of operating the air bag apparatus at an early stage, it is preferred that a criterion for determining the necessity of operating the air bag apparatus be set to the lowest possible value (acceleration).
However, such setting cannot deal with a recent tendency of wheels toward increase in size. More specifically, as shown in FIG. 4, if a wheel 101 (phantom line depicts a conventional wheel) runs up onto a curb 102 or the like, there is a possibility that the acceleration sensor detects an acceleration signal for expanding the inflaters notwithstanding that no collision has occurred, resulting in erroneous operation of the air bag apparatus.
The present invention has been developed to overcome the above-described disadvantages.
It is accordingly an objective of the present invention to provide a device for controlling expansion of an air bag apparatus, which is capable of positively preventing erroneous operation of the air bag apparatus that may occur when an automotive vehicle runs up onto a curb or the like.
In accomplishing the above and other objectives, the device according to the present invention includes a first acceleration sensor mounted in a passenger compartment for detecting an acceleration thereof, a second acceleration sensor mounted in a front portion of a vehicle body, and a control unit electrically connected to the first and second acceleration sensors so that signals from the first and second acceleration sensors are inputted to the control unit. When a first value derived from a signal detected by the first acceleration sensor has exceeded a first criterion and when a second value derived from a signal detected by the second acceleration sensor has exceeded a predetermined value greater than the first criterion, the control unit outputs an operation signal for operating the air bag apparatus.
By this construction, in the event of a collision, because a very large impact force is applied to the front portion of the vehicle body, not only the first value exceeds the first criterion, but the second value also exceeds the predetermined value. As a result, the control unit actuates the air bag apparatus appropriately. On the other hand, If a shock is applied to the vehicle body due to a run-up of a wheel onto a curb or the like, and even if the first acceleration sensor outputs a signal that allows actuation of the air bag apparatus, the second acceleration sensor does not output the operation signal. The reason for this is that the operation signal from the second acceleration sensor is set so as not be outputted until a further greater shock is applied to the vehicle body, thus preventing erroneous operation of the air bag apparatus.
Advantageously, the control unit outputs the operation signal regardless of the presence or absence of the signal detected by the second acceleration sensor, when the first value has exceeded a second criterion greater than the first criterion.
This construction ensures appropriate actuation of the air bag apparatus under the condition in which the air bag apparatus should normally be actuated unless the second acceleration sensor is out of order (in the event of failure) or in which the air bag apparatus cannot be actuated by reason that the second acceleration sensor cannot detect the predetermined acceleration, although it is in good order (in the event of, for example, a rear end collision or a collision in which the vehicle rushes under a large vehicle).
The second criterion is so set as to be greater than the predetermined value. By so setting, the device according to the present invention can distinguish a shock caused by the run-up onto a curb or the like from a shock caused by a vehicle collision, making it possible to prevent erroneous operation of the air bag apparatus and guarantee appropriate actuation of the air bag apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
It has been the object of many horseshoe designers and farriers to provide a horseshoe which is hoof-friendly and which mimics to some extent the movement of a horse's hoof when the horse is walking or running, especially on a hard surface. Various attempts have been made over decades to obviate the rigidity of conventional metallic horseshoes by introducing nonmetallic or composite elements that provide selected degrees of flexibility and resilience. It is desirable to provide a simple unitary, somewhat flexible construction for the horseshoe, and it also desirable to provide a horseshoe with an advantageous stabilizing feature, especially for race horseshoes.
It has however been found that the prior art horseshoe designs which provide resilience invariably have a composite construction, or use several parts and components, and do not offer simplicity, reliability or cost effectiveness. Those prior art horseshoes which by design use predominantly resilient material, are generally less durable (-shorter life-) than the conventional rigid metallic designs which might however restrict hoof-expansion and thus create increased stress in the hoof and legs of the horse, particularly during racing.
Despite the availability of horseshoe designs providing shock absorption, flexibility and such features, there is still a need for a horseshoe design which is characterized by simplicity, economy, controlled-splaying and including a stabilizing feature to assist race horses when they negotiate curves on a race track. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to crimping apparatus and particularly to crimping apparatus for crimping or swageing selected pins of a microcircuit module to form a flattened portion of the pin intermediate its length, thereby providing a standoff for mounting the module at a predetermined distance from a printed circuit card or other module support means.
2. Description of the Prior Art
A known type of crimping apparatus to be subsequently described in detail and which is illustrated in the accompanying drawings, includes a plurality of crimping jaws operated by orthogonally located slides and arranged to close on selected pins extending from a microcircuit module, and to form swaged or crimped portions of the pins, commonly known as "butterflies" or "butterfly wings". The jaws are driven by relatively slender arms on either side of a slide member, and the parts are provided on two crisscross levels so that a first and second lower pair of arms drive two sets of jaws and a third and fourth upper pair of arms drive two sets of jaws. These parts are subject to wear and adjustments for wear, including driving the jaws beyond contact to compensate for a sloppy fit between the arms and slides, will ultimately cause buckling of the arms and fatigue failure. Buckling is also caused by the fact that the driving force is transmitted along a line of motion below the level at which the work (crimp) is done. The parts are difficult to adjust for lost motion and wear. | {
"pile_set_name": "USPTO Backgrounds"
} |
a) Field of the Invention
The present invention relates to manufacture of insulating films, and more particularly to a method of manufacturing semiconductor devices having planarized insulating films.
b) Description of the Related Art
Requests for high integration and high speed operation of semiconductor IC devices are increasing more and more. In order to highly integrate semiconductor elements and operate them at a high speed, it is necessary to layout a number of semiconductor elements in a small chip area and in some cases interconnect elements by multi-level wiring patterns by increasing the number of wiring layers. It is desired to narrow the width of each wiring pattern. However, a wiring pattern with a narrow width becomes higher than a wiring pattern with a broad width if both the wiring patterns should have the same resistance.
The surface of a chip having such multi-level wiring layers becomes extraordinarily irregular, so that not only the step coverage of a wiring layer formed thereover is degraded but also the precision of photolithography is lowered. Therefore, planarization technique plays a more important role in planarizing surfaces of underlie films such as an interlevel insulating film, prior to forming multi-level wiring layers thereon.
Reflow of glasses having a softening point lowered by additive impurities, such as phosphorous silicate glass (PSG), boron silicate glass (BSG), and boron phosphorous silicate glass (BPSG), is known as one of such insulating film planarization techniques. Glass reflow technique requires a relatively high temperature so that its use is restricted to some applications, and cannot be applied to semiconductor chips having wiring layers with low heat resistance such as Al or a highly precise impurity profile.
Lower temperature planarization technique has been desired. Silicon oxide film deposition technique by reacting tetraethoxy silane (TEOS) with ozone, can be used at a relatively low temperature and has a self-planarization function of reducing steps of the surface of an underlie layer. Although a region between convexities having a relatively narrow span can be efficiently filled with an ozone-TEOS oxide film, the planarization performance is lowered at a region between convexities having a wider span.
A spin-on-glass (SOG) silicon oxide film can be formed by spin-coating liquid phase silicon compound such as polysilazane at a room temperature and curing it. This method has a good planarization performance because of use of liquid phase silicon compound.
It is difficult to sufficiently planarize a stepped surface of a substrate by an ozone-TEOS oxide film, if convexities formed by a wiring pattern or other patterns have a broad span.
In forming a silicon oxide film through SOG, polysilazane is spin-coated on the surface of a substrate, and then is cured in an aqueous (water) vapor atmosphere to replace N atoms of silazane bonds in polymer with O atoms. During curing in an aqueous vapor atmosphere, water contents permeate into wiring patterns under the SOG film so that the patterns become easy to be corroded; In addition, rapid replacement of N atoms with O atoms generates heat. Although this heat does not corrode wiring patterns, the patterns may be destroyed and locally narrowed. A current density at a narrowed wiring pattern increases, and electromigration becomes likely to occur. If destruction is large, the wiring pattern may be broken away. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to information access.
2. Description of Related Art
Conventional network information systems allow information from nodes of interest to be sampled by a query node. Responding to a query consumes network bandwidth, power and other resources. As the number of nodes in the network increases, resources consumed in responding to a query tend to increase based on the number of nodes in the network. The process is repeated as the requested information from the interesting node traverses the network on its return to the query node. These inefficiencies consume scarce network resources and delay the information transfer between information producers and information consumers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
This disclosure relates generally to computer systems, and more specifically, to analyzing modules executed in a computer system.
2. Related Art
Prior to implementing a semiconductor design on silicon, a software representation of the design can be generated to simulate the operation of components in the design. Semiconductor designs often include a variety of components that perform designated processing functions. Debugging software modules of multi-component devices can require examining and analyzing long failure traces. The failure analysis can be further complicated by sharing data among different memory modules including different levels of cache memory in systems with multiple processing components. Although the various processing components track transactions locally, the transactions are not tracked among the various components in the rest of the system.
In order to trace failures in multiprocessor systems, existing techniques require the user to tediously track through each component during debug to determine where the failure occurs. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a process for producing formed structures using specific forming solutions comprising aromatic polyamides.
2. Description of the Related Art
Aromatic polyamides--also known as aramids--are known fiber-forming materials of high chemical resistance. Aramid fibers are notable in particular for good mechanical properties, such as high strengths and moduli.
Aramids are usually produced by solution polycondensation of dichlorides of aromatic dicarboxylic acids with aromatic diamines and either formed directly from the solution or precipitated from the solution and converted by renewed dissolving in a suitable solvent into a forming solution. The polycondensation gives rise to hydrogen chloride, which is unwelcome in the forming stage and is usually bound by neutralizing the reaction solution with a base. Usually the forming solution has salts for enhancing the solubility of the aramid added to it or such salts are formed as a consequence of the neutralization of the reaction solution.
It has also already been attempted to produce formed aromatic polyamide structures from salt-free forming solutions.
For instance, DE-B-2,204,075 describes forming solutions which consist of an aromatic polyamide consisting mainly of meta units and a specific N-alkyllactam as solvent.
Furthermore, DE-B-2,225,735 describes a process for preparing homogeneous forming solutions wherein an aromatic polyamide consisting of mainly meta units is suspended in N-methylpyrrolidone (NMP) in the absence of salts within a certain temperature range and dissolved in the NMA by heating to a certain temperature range. EP-A-522,418 discloses a process for producing solvent-spun aramid fibers. The processes for which concrete descriptions are given involve the use of forming solutions which are obtained by polycondensation of monomers to give the aramid and subsequent addition of neutralizing agent. These forming solutions are then directly spun.
There continues to be a need for processes for producing formed structures wherein forming solutions can be used in forming processes directly and without further process measures following the polycondensation of the aramid.
It has now been found that certain para-aramids can be polycondensed in specific solvents and directly converted into formed structures without a neutralization step. This omission of the neutralization step means an appreciable facilitation of process management, since a process stage can be dispensed with. It was further found that unneutralized solutions of certain para-aramids in certain solvents are stable over certain temperature ranges and that these solutions have significantly better filtering properties than corresponding neutralized solutions. | {
"pile_set_name": "USPTO Backgrounds"
} |
A superconductive cable has at least one electrical conductor made of a special material, which enters the superconductive state at a sufficiently low temperatures. The electrical resistance of a correspondingly constructed conductor thereby tends towards zero. Suitable materials are for example YBCO (yttrium-barium-copper oxide) or BiSCCO (bismuth-strontium-calcium-copper oxide). Sufficiently low temperatures for such material to achieve the superconductive state lie, for example, between 4 K and 110 K. Suitable refrigerants are for example nitrogen, helium, neon and hydrogen or mixtures of these substances, respectively in the gaseous or liquid state. Cold-dielectric and warm-dielectric superconductive cables are known.
In a cold-dielectric superconductive cable, the conductor is enclosed by a dielectric consisting of layers of insulating material, in which a liquid refrigerant is present as an impregnating medium in the dielectric. Such a cable is distinguished in that very high powers can be transmitted in the high-voltage range. It consists for example of the conductor as an inner conductor and a screen or return conductor arranged concentrically therewith, which are separated and kept apart by a dielectric (insulation). The individual superconductive elements of such a cable consist, for example, of strips comprising superconductive material such as YBCO or BiSCCO, which are wound close together with a long pitch around a support in mutually insulated concentric layers (EP 0 830 694 B1). A corresponding cable is enclosed by a cryostat, which carries the refrigerant and consists of two concentric metal tubes insulated from one another by vacuum insulation.
Warm-dielectric superconductive cables have a conductor which is arranged directly in such a cryostat carrying the refrigerant. The dielectric and the screen or return conductor are fitted over the cryostat. In such a cable as well, the conductor consists of mutually insulated concentric layers of strips comprising superconductive material lying close together.
This structure of the conductor also applies to the known superconductive AC cable according to DE 197 19 738 B4, which was mentioned in the introduction. The conductor of this cable consists of circular wires made of oxidic superconductive materials. The wires are arranged in a plurality of concentric layers around a tube. The layers are mutually insulated. The insulating interlayers between the individual layers of the wires are intended to improve the current distribution in the conductor. However, they entail additional outlay on material and for production of the conductor. Furthermore, the conductor therefore has a relatively large diameter which also leads overall to larger dimensions of the cable. | {
"pile_set_name": "USPTO Backgrounds"
} |
The micro bubbles have a diameter of 10 to several ten μm when just produced. That is, the micro bubbles are very small in comparison to air bubbles normally developed in water. Such air bubbles are about a few millimeters in diameter. Being so extremely small, the micro bubbles will adsorb fine contaminants and make them rise to the water surface. Thus, the micro bubbles are used in marine-product washing, water purification, etc.
As a typical micro-bubble generator, a swirling type micro-bubble generator is disclosed in the brochure of the International Publication No. 00/69550. The swirling type micro-bubble generator includes a container having a bottomed cylindrical internal space, a pressurized liquid inlet formed open in a part of the container wall tangentially of the cylindrical-space circumference, a gas inlet formed open in the bottom of the cylindrical space and a swirling gas-liquid mixture outlet formed open in the top of the cylindrical space.
Also, the Japanese Published Unexampled Patent Application No. 2003-205228 discloses a swirling type micro-bubble generator including a cone-shaped container having a conical internal space, a pressurized liquid inlet formed open in a part of the container wall tangentially of the cylindrical-space circumference, a gas inlet formed open in the bottom of the cylindrical space and a swirling gas-liquid mixture outlet formed open in the top of the cylindrical space.
Further, a swirling type micro-bubble generator is disclosed in the Japanese Published Unexampled Patent Application No. 2000-447. The micro-bubble generator includes a structure to swirl a liquid flow under pressure into a circular chamber, a structure to form a swirl-up flow at the periphery of a gradually divergent covered cylinder provided above the liquid flow introducing structure, a structure formed inside the periphery of the cylinder to form a swirl-down flow, a swirling cavity formed at the middle of the swirl-down flow generating structure to have a negative pressure under centrifugal/centripetal separation, a structure formed in the negative-pressure swirling cavity to form a down-swirling gas vortex tube by expanding and taping the flow, and a structure in which the gas vortex tube rushing into and out of a central back-flow hole is forcibly discontinued to generate micro bubbles.
However, the above conventional micro-bubble generator cannot easily be designed small or large and connected directly to an existing apparatus using the micro bubbles since the components thereof are not disposed linearly. The size of air bubbles generated depends upon the amount of the gas introduced into the liquid but cannot accurately set since the feed rate has to be adjusted intuitively.
Accordingly, it is desirable to overcome the above-mentioned drawbacks of the related art by providing a micro-bubble generator that can be designed small or large for direct connection to an existing equipment using micro bubbles, a vortex breakdown nozzle and vane swirler, suitable for use with the micro-bubble generator, a micro-bubble generating method and a micro bubbles-applied apparatus using the micro-bubble generator.
The foregoing and other problems in the related art will become apparent from the following description. | {
"pile_set_name": "USPTO Backgrounds"
} |
Selectively removing or depositing materials on a semiconductor wafer to form integrated circuit structures from wafers is well known in the art of semiconductor processing. Removal of material from a semiconductor wafer is typically accomplished by employing some type of etching process, such as, reactive ion etching or atomic layer etching. Depositing material on a wafer may involve processes such as chemical and physical vapor deposition (CVD/PVD), molecular beam epitaxy (MBE) or atomic layer deposition (ALD). In semiconductor processing, other plasma-based or emitting processes such as implantation are also known and optically monitored. All such processes are tightly controlled and are performed in environmentally controlled process chambers. Because exact amounts of material are to be deposited onto or removed from the surface of a wafer, the deposition or removal progress must be continually and accurately monitored to detect the precise state of a particular process and when the process should be further controlled or modified. A common control result is to stop a process. This result and its associated time is called the endpoint. Various sensors, such as optical sensors, are used to monitor semiconductor processes.
Optically monitoring processes within a chamber is commonly used for determining the processing status, processing state conditions, or endpoint, for an ongoing process. Monitored processes include semiconductor etching, deposition, implantation and other processes where film thickness and plasma/wafer emission monitoring is applicable. Additionally, chamber conditions independent of or combined with the wafer conditions, may be monitored. Depending on the process, various algorithms may be employed for deriving parameters from the optical signal intensities, typically related to chemical species signatures that are useful in assessing the state of the semiconductor process and the processed wafer, detecting faults associated with the process, chamber or other equipment and even the condition of interior surfaces of the plasma chamber. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application is a continuation-in-part of application Ser. No. 07/297,763, filed Jan. 17, 1989, now U.S. Pat. No. 4,968,534.
1. Field of the Invention
This invention relates to an apparatus and process for chemically impregnating paper and other non-woven web, and is more particularly concerned with an apparatus which applies a vacuum to the web, then delivers a chemical solution to the web in a preselected pattern, to alter or to enhance the physical characteristics of the web.
2. Description of the Prior Art
Manufacturers of products made of a non-woven web, such as paper and paperboard, have long known the desirability of treating the web with a chemical to create or enhance desired features in the product. For example, in the manufacturing of containers designed to hold liquid, such as paper milk cartons, it is essential to treat the container with a chemical sealant in order to make the carton impervious to the liquid. Other web products are chemically treated to increase their stiffness or strength. In packaging for containers or bottles, such as paper containers for soda or beer, portions of the container, but not necessarily the entire container, must be strengthened. These portions include the high stress areas such as the tops and bottoms, the heel areas, and integral carrying handles and fingerholes. In other applications, it is desirable to increase the tensile strength or tear resistance at certain areas, but not at others. These include web packaging that is intended to be opened by tearing the package in a selected area.
When, for example, the areas around the fingerholes, integral handles, or corners in a paperboard carton blank need to be reinforced, it is more economical to chemically strengthen these selected areas, only, thus conserving chemicals and so reducing per unit treatment cost. In other situations, it even can be detrimental to treat the entire web. For example, in some applications the quality of stiffness may be desirable on flat surfaces, but not in areas which must be scored to form the finished product. Applying a chemical stiffener to areas prior to their being scored, might cause these areas to crack or fracture along the score-line when folded.
Web such as cloth or paperboard have been chemically treated, or impregnated, with a variety of methods and devices utilized to impregnate the web with chemicals such as dyes, bleaches, sealants, resins, and other finishing compounds. It should be understood that the term "impregnate" as used herein, refers only to the chemical treatment or application of the chemical into the web. It is not intended that the term "impregnate" imply to what degree the web is exposed to the chemical, that is, either complete saturation of the web or decorative printing or surface coating of the web. Chemical treatment of the web can be accomplished by treating the surface of the web using a gravure press, or by using blade coating, roller coating, flexographic, silk screening or stenciling methods commonly known in the printing industry. The degree of impregnation of the web fibers using these methods is usually not as pronounced as using methods which include either relatively long exposure of the web to a chemical bath, or vacuum preparation prior to chemical treatment.
In some prior art devices, the web is driven through a chamber, and the chemical, or impregnant, is delivered under pressure to the web. For example, in U.S. Pat. No. 4,588,616 the web is fed under a mandrel which is received in a saddle block to define a chamber with a geometrically convergent zone. As the web passes through the zone, the chemical saturant within the zone is forced under pressure into the web. Another device similar in design and function is disclosed in U.S. Pat. No. 4,411,216. U.S. Pat. No. 4,702,943 discloses chemical saturization under pressure, and also incorporates a stencil which is driven in the direction of and at the same linear speed as the web. The stencil is intended to separate selected portions of the web from a pressurized reservoir, or bath, of saturant. In this device, however, there is a possibility that unintended portions of the web could become saturated, because the stencil is exposed to the entire pressurized bath, and therefore, intimate contact of the stencil to the web is absolutely critical. This reference also discloses a device which utilizes both high and low pressure to force saturant into the web. The combination of both high and low saturant pressurization zones allows for relatively increased saturation of selected areas of the treated web. In a continuation-in-part of this reference, U.S. Pat. No. 4,740,391, the device disclosed therein also utilizes selectively aligned grooves which define even lesser pressurized saturation zones, which further reduce the amount of saturation of the web exposed to these areas. The entire web, however, is exposed to the saturant in this embodiment, when a stencil is not used. Further, the dividing line between the saturated portion and unsaturated portion of the web is abrupt. As discussed herein, the method of the present invention allows for selected degrees of impregnation and, where desirable, permits the impregnation of an area to either taper off in degree, or to end abruptly.
Other devices which deliver pressurized chemical to a web also subject the web in a prior step to a partial vacuum, in order to remove air which is held within the web. It has long been known that removing the air on the surface of and within the web allows for a higher degree of web impregnation during the treatment step. U.S. Pat. No. 3,644,137 broadly discloses the concept of subjecting the web to a partial vacuum prior to exposing the web to the chemical. U.S. Pat. No. 4,590,099 discloses an apparatus which includes a chamber divided by seals to define a low pressure preparation zone and a high pressure treatment zone. The web is subjected to the partial vacuum in the low pressure zone, and then is subjected to the pressurized saturant for the saturation of the web. The device utilizes squeeze rollers to complete an air lock to the high pressure zone, and to squeeze excess liquid from the web. The entire web is saturated in this device.
In U.S. Pat. No. 3,797,281, a different device is employed to impart a vacuum to a web prior to impregnation. The vacuum box and impregnant box, or liquor box, are juxtaposed above the web, and the chemical or impregnant is applied through a dispensing slot, as opposed to subjecting the web to a bath. A rubber sealing belt is utilized to contain the vacuum around the web. This device, however, impregnates the entire web and does not employ any means to apply the chemical to selected areas, only.
The general concept of selective application of chemical to a web is disclosed in U.S. Pat. No. 4,617,223. While this reference discusses many advantages of selective application, no specific apparatus is disclosed in detail. The method disclosed utilizes a printing or screening apparatus such as a flexographic printing process, gravure printing or stenciling.
While the prior art devices discussed disclosed various methods for saturating and impregnating a web, none discloses a highly efficient device capable of subjecting the web to a partial vacuum, then impregnating the web in a preselected pattern only. The present invention overcomes the limitations of the prior art of both printing devices and saturating devices, and further is capable of selectively treating large quantities of web per unit time in this manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
Wearable systems can integrate various elements, such as miniaturized computers, cameras, input devices, sensors, detectors, image displays, wireless communication devices as well as image and audio processors, into a device that can be worn by a user. Such devices provide a mobile and lightweight solution to communicating, computing and interacting with one's environment. With the advance of technologies associated with wearable systems as well as miniaturized electronic components and optical elements, it has become possible to consider wearable compact cameras for capturing the wearer's experiences of the real world.
By orienting the wearable camera towards the same general direction as the wearer's point of view, media representing a real world experience of the user can be captured. The captured media may include video, audio, and still frame images. In some cases, the media may be captured continuously. In other cases, the media may be captured based on inputs from the wearer. | {
"pile_set_name": "USPTO Backgrounds"
} |
Most restaurants individually have mobile food ordering options available to a user via the internet or a mobile phone application. Additionally, telematics devices are known and used in the art to provide various telematics information to users regarding their location, direction of travel, velocity, route, and/or destination. Additionally, there is a vast wealth of insurance information that includes locations and instances for previous accidents and previous insurance claims.
Accordingly, it would be desirable to provide mobile food ordering systems and methods for safe and fast mobile food ordering using a hands-free system from a determined list of prioritized restaurants that incorporates restaurant information, telematics information, and insurance information. It would be desirable to include telematics information and restaurant information to locate restaurants; prioritize the restaurants based on the user preferences, telematics information, and restaurant information; and facilitate the ordering of the food and the electronic payment for the food. Additionally, it would be desirable to integrate the vast wealth of insurance information regarding accidents and claims to further enhance the mobile food ordering methods and systems by providing safe routes and healthy recommendations to the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a wheel simultaneous brake mechanism and a caster rotation preventing mechanism and more particularly, it relates to a wheel simultaneous brake mechanism and a caster rotation preventing mechanism which always work on the safe side and have a simple constitution.
2. Description of the Background Art
A conventional wheel stopping apparatus is disclosed in Japanese Unexamined Patent Publication NO. 60-240566, for example. According to the conventional wheel stopping apparatus, wheel stopping mechanisms are provided at two rear wheels in a baby carriage and they are constituted so as to be moved together by a wire. Both wheel stopping mechanisms can be operated at the same time by operating an operating member provided at either one of the two rear wheels.
The conventional wheel stopping mechanism is constituted as described above. Although both wheel stopping mechanisms can be operated at the same time by operating one operating member, little consideration is given to a case where the operating member is broken or a wire or the like connected to the operating member is cut. In addition, there is a problem that a constitution of the wheel stopping mechanism is complicated and the number of parts is large so that the cost is increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for regenerating a plating composition which is suitable for depositing at least one a first metal on a substrate as well as to a regeneration apparatus for regenerating said composition which is suitable for depositing said at least one a first metal on said substrate. Such methods and apparatus are used to regenerate compositions which are suitable for the generation of a metal film such as a nickel, cobalt, or tin film on a substrate, like a plastic, ceramic, glass, and/or metallic part by electroless, i.e., autocatalytic plating of metal.
2. Brief Description of the Related Art
Metal deposition is well-known since decades and has first been used to plate metallic parts like tubings, fittings, valves, and the like. These metal deposits were formed using electrolytic deposition employing an external current source and providing the electric current to the parts and to a counter electrode being in contact with a plating composition.
To plate metal on plastics and on other electrically non-conducting substrates as well as plating metal on parts having isolated metallic regions thereon which cannot be electrically contacted individually, electroless plating was developed. In this case a plating composition is used which contains ions of the metal to be plated and a reducing agent which is capable of reducing the metal to be plated. Such electroless plating compositions have extensively been investigated and used in industry. Electroless plating compositions suitable to plate copper contain, in addition to a copper salt and complexing agents for copper ions, formaldehyde as the reducing agent. These solutions are highly alkaline. Electroless plating compositions suitable to plate nickel contain, in addition to a nickel salt and complexing agents for nickel ions, a hypophosphite salt or the acid thereof, dimethylamine borane, a borohydride, or a hydrazinium salt as the reducing agent. When a hypophosphite salt or the acid thereof is used as the reducing agent, phosphorous will be incorporated into the nickel deposit which might be as much as 12 at.-% of the deposit. When dimethylamine borane or a borohydride salt is used as the reducing agent, boron will be incorporated into the nickel deposit, which might be as much as 5 at.-% of the deposit. When a hydrazinium salt is used as the reducing agent, the nickel deposit may essentially be made of pure nickel, eventually containing a small amount of nitrogen (S. Yagi, K. Murase, S. Tsukimoto, T. Hirato, Y. Awakura: “Electroless Nickel Plating onto Minute Patterns of Copper Using Ti(IV)/Ti(III) Redox Couple”, J. Electrochem. Soc., 152(9), C588-C592 (2005)).
For electroless plating of nickel which is virtually free of any impurities, a nickel plating composition containing, in addition to nickel sulfate, titanium chloride (TiCl3) as a reducing agent has been proposed (M. Majima, S. Inazawa, K. Koyama, Y. Tani, S. Nakayama, S. Nakao, D.-H. Kim, K. Obata: “Development of Titanium Redox Electroless Plating Method”, Sei Technical Review, 54, 67-70 (2002); S. Nakao, D.-H. Kim, K. Obata, S. Inazawa, M. Majima, K. Koyama, Y. Tani: “Electroless pure nickel plating process with continuous electrolytic regeneration system”, Surface and Coatings Technology, 169-170, 132-134 (2003); S. Yagi et al., ibid.).
M. Majima et al., ibid. report that the electroless nickel plating compositions contain nickel sulfate, trivalent titanium chloride, trisodium citrate, nitrilotriacetic acid and an amino acid. The pH of the composition is 8-9 and is adjusted using ammonium hydroxide. Bath temperature is 50° C. The deposition rate is reported to be in a range of from about 0.1 to about 0.2 μm/h. The experiments to show feasibility of nickel deposition were performed using a urethane foam. This resulted in a porous nickel (Celmet) that can be used as a current collector for batteries. The urethane foam was pretreated prior to electroless nickel deposition by contacting the foam with Pd which was absorbed as a catalyst by the sensitizer-activator process.
S. Yagi et al., ibid. report performing nickel deposition on minute patterns on silicon semiconductor devices which have lines and spaces which are as small as 160 nm. The plating composition is similar to that of M. Majima et al.
S. Nakao et al., ibid. additionally report that the deposition rate decreased with increasing the plating time when the concentration of trivalent titanium ions is not controlled. Such decrease would be attributed to a trivalent titanium ion concentration decrease with time because of, in addition to consumption due to the nickel deposition, spontaneous oxidation with dissolved oxygen in the solution. In order to keep the deposition rate constant by keeping the concentration of trivalent titanium ions constant, the deposition solution was subjected to electrolytic regeneration. An apparatus for such regeneration was shown to comprise the plating bath as a catholyte and a sodium sulfate solution as an anolyte and a liquid connection therebetween comprising an ion-exchange membrane.
U.S. Pat. No. 6,338,787 B1 further mentions that tin, cobalt, and lead could also be deposited and that, apart from trivalent titanium, also cobalt, tin, vanadium, iron, and chromium could be used as the reducing agents. This document specifies the ion-exchange membrane of a preparation tank to be an anion exchange membrane. Furthermore, U.S. Pat. No. 6,338,787 B1 reports that an activation process is used to prepare the plating bath which comprises using an electrode as an anode which may be made from the same metal as that of the metal which is deposited. Since the metal ions can be supplied to the plating bath by an anode dissolving reaction in the anode chamber simultaneous with activation of the plating bath by a cathode reaction in the cathode chamber, the composition of the bath can be easily regenerated. A first apparatus is shown which comprises the cathode and anode, wherein the cathode is made from platinum-coated titanium and the anode is made from nickel. In order to suppress nickel deposition on the cathode, its area is kept low so that the electrical current density at the cathode is set greater than the limit electrical current density of nickel electrodeposition. U.S. Pat. No. 6,338,787 B1 also reports using a carbon electrode which is activated with an oxidative process thus more securely preventing deposition of the deposition metal on this electrode during the activation step. A second apparatus is also shown which comprises a cathode chamber with a cathode and an anode chamber with an anode, these two chambers being separated from each other by an anion exchange membrane. The cathode chamber is connected to a plating tank and the anode chamber is connected to an anode liquid tank. The anode liquid is dilute sulfuric acid. In this case, both cathode and anode are made from carbon felt. If a nickel foil was used as the cathode instead, much less efficiency was achieved. Further, U.S. Pat. No. 6,338,787 B1 reports that nickel being deposited on the cathode can be dissolved into the plating bath if this electrode is used as an anode in the next process of activation of the bath.
It has turned out that the plating rate of the plating bath of U.S. Pat. No. 6,338,787 B1 is very low. For example 0.6 μm of nickel are deposited on a Pd-activated ABS resin plate within 2 hours. Such plating rate is too low for most industrial purposes such as manufacture of printed circuit boards, IC substrates, and the like. Furthermore, it also turned out that metal concentration in the plating bath steadily increases due to the use of an anode which is made from the metal to be deposited. Therefore, steady-state conditions cannot be achieved easily. Furthermore, it also turned out that plating out of the metal to be deposited in the regeneration cell occurs easily, if the plating bath is tuned to fast plating. This behavior is detrimental because the ion selective membrane separating the anode and cathode compartments can easily be destroyed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an improved electrically conductive current collector suitable for use in high temperature applications in the presence of corrosive environments.
More particularly this invention relates to an electronically conductive current collector or current collector/container for use in energy conversion devices such as the sodium-sulfur battery.
Still more particularly this invention relates to two methods for preparing electronically conductive rutile titanium dioxide which is ideally suited for use in the current collector of the invention.
2. Prior Art
There are a number of electrical applications involving various energy conversion devices in which the current collector of the device is exposed to an extremely corrosive environment. For example in energy conversion devices of the type comprising a molten cathodic reactant such as sodium polysulfide, the selection of a suitable current collector as well as a suitable container has been a source of considerable concern.
Previously, one of the prime candidates to date for use as a current collector material or current collector/container for such devices has been certain noncorrosive metals. However, metal systems, both pure and alloyed, often exhibit the phenomenon of severe plastic deformation under stresses. Such stresses are common in energy conversion devices due both to forces applied to the system from external sources and forces arising within the system, including those from expansion and contraction under thermal cycling as the system operates. Furthermore, the high operating temperature of such systems restricts the use of any metal whose melting point or point of plastic deformation approximates such temperatures, without respect to application of the aforementioned forces. For this reason and because of severe corrosion problems, many metals are not practical for use in such high temperature or corrosive (oxidative) environments.
Since the thermodynamic stability of ceramic materials such as oxides and sulfides in the presence of corrosive environments is well established and since it is also known that the thermodynamic stability of such materials is maintained to temperatures much higher than is compatible for metal systems, it has been suggested to employ a ceramic coating on the metal load bearing element of the aforementioned metallic current collector or container. Where a metal system operates as the load bearing element and includes such a protective covering separating the metal from the corrosive substance, the selection of a suitable covering must be made from materials which (1) are noncorrosive and impermeable to the corrosive substance, (2) adhere well under conditions of thermal cycling and (3) have sufficient electronic conductivity.
Often times a thermal expansion mismatch between the attached metal and ceramic covering results in fractures, microcracks and eventual spalling of the ceramic coating from the metal load bearing member. In addition to the limitations caused by mechanical incompatibility, considerable difficulty in applying the ceramic coating has been experienced. Conventional methods of application such as anodizing, for example, often result in an insulative rather than a conductive coating. In summary, the concurrent development of the requisite noncorrosive character, good adherence, and adequate conductivity in a coating which will be mechanically compatible under recurring cycles of thermal expansion has long presented a difficult challenge in this field of art.
In view of the above discussed inherent limitations of current collecting systems comprising a metal load bearing element with a corrosion resistant ceramic coating, the use of corrosion resistant ceramic per se has been suggested. However, the vast majority of useful ceramics are electrical insulators, thus making them unsuitable for current collection purposes. The utility of ceramics as insulative material is disclosed, for example, in Kummer, et al U.S. Pat. No. 3,404,035, which discusses the use of ceramics as a containing member in an electrical conversion system. This insulative character, in fact, is incorporated as an essential element for enabling effective operation of the system (FIG. 1).
Kummer, supra, also discloses the use of a metal covering in combination with insulative ceramic (FIG. 4); however, this application does not relate to the present invention. Kummer's use of a metal covering is necessitated because of the fragile nature of the ceramic chosen for the system, i.e., glass. The metal functions solely as a protective covering for the glass and is not a part of the electronically conductive circuit. Not only does the metal not function as a current collector, but the glass with which it is used is not operable as an electronically conductive medium. Instead, Kummer uses conventional graphite cathode or anode means to close the circuit of the energy conversion device.
A limited class of ceramics are known to be conductive in the metallic sense, but are not economically attractive. A larger class of ceramics can be made moderately conductive, but with conductivities which are much less than metals. Consequently, a current collector constructed of an electronically conductive ceramic of the latter group will exhibit a much higher resistance than that of a similarly shaped metal current collector.
It is therefore an object of this invention to provide a current collector and/or container which possesses the concurrent characteristics of being (1) noncorrosive and impermeable to corrosive substances (2) electronically conductive and (3) mechanically stable when subjected to thermal cycling. | {
"pile_set_name": "USPTO Backgrounds"
} |
Footwear can be constructed with simple or complex structures. Simple “flip flop” sandals can be formed of a one piece sole cut from foamed rubber or plastic sheet stock with one or two straps attached to hold the sole to the wearer's foot. Other sandals can be formed with a one or two layer sole and again one or more simple straps. Clogs and the like can be formed with a one piece molded or carved sole, in some cases with the carving or molding extended to create an integral “upper” which can serve to affix the sole to the wearer's foot. Molded and carved clogs and like items of footwear are commonly extremely rigid and inflexible.
More complex footwear constructions often involve an outsole which in use contacts the ground, and an insole, which contacts the sole of the wearer's foot and often a midsole located between the outsole and insole to provide shape and structure to the footwear item. One or more straps and/or an upper are affixed to the sole as just described. This more complicated sole construction is more expensive and in certain settings relatively inflexible and not particularly comfortable but offers advantages of providing a defined structure to the article while being relatively adaptable to the wearer's feet.
A variety of United States Patents describe footwear articles and the materials and configurations of their construction. These patents include, for example, the following: U.S. Pat. No. 1,053,442, issued Feb. 18, 1913 to Rouse; U.S. Pat. No. 1,964,705 issued Jun. 26, 1934 to Pellhofer; U.S. Pat. No. 2,590,648 issued Mar. 25, 1952 to Pitz; U.S. Pat. No. 4,290,212 issued Sep. 22, 1981 to Matsson; U.S. Pat. No. 4,400,894, issued Aug. 30, 1983 to Ehrlich; U.S. Pat. No. 4,573,457 issued Mar. 4, 1986 to Parks; and U.S. Pat. No. 6,065,230 issued May 23, 2000 to James each of which discloses articles of footwear which have a sole rendered flexible by one or more joints located in the ball of the foot region. Other United States Patents of interest include the following: U.S. Pat. No. 2,669,036 issued Feb. 16, 1954 to Isreal; U.S. Pat. No. 5,481,814 issued Jan. 9, 1996 to Spencer and U.S. Pat. No. 3,742,625 issued Jul. 3, 1973 to Famolare each of which shows articles of footwear having a bendable joint in the mid arch region. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a nail driving gun, more particularly to a nail driving gun with a shock-absorbing member.
2. Description of the Related Art
FIGS. 1 and 2 illustrate a conventional nail driving gun that includes a gun housing 1 defining a nail discharging passage 21, a nail cartridge 2 connected to the gun housing 1 for supplying nails (not shown) one at a time into the nail discharging passage 21, and a solenoid 3 mounted in the gun housing 1 and including a coil member 31 which is fixed to the gun housing 1, and a magnetic core 32 which is magnetically attracted by the coil member 31 to move into the latter when the solenoid 3 is actuated and a current from a power source (not shown) passes through the coil member 31. A striking pin 322 extends from the magnetic core 32 into the nail discharging passage 21 for expelling the nail out of the nail discharging passage 21 upon actuation of the solenoid 3. An urging member 332 urges the magnetic core 32 so as to restore the latter to its normal position once the solenoid 3 is deactivated. The solenoid 3 is activated by pulling a trigger 41 to connect electrically the coil member 31 to the power source through a control circuit 42.
The conventional nail driving gun is disadvantageous in that since the coil member 31 and the magnetic core 32 are magnetically attracted to each other upon actuation of the solenoid 3, and since the coil member 31 is fixed to the gun housing 1, a pulling force (FN) resulting from the attraction is formed and is applied to the coil member 31 upon actuation of the solenoid 3, which results in a shock on the gun housing 1, which, in turn, results in deviation of the nail expelled from the nail driving gun and unstable and uncomfortable operation of the nail driving gun. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to hydrogenated amorphous silicon materials, and, in particular, it relates to a method of making hydrogenated amorphous silicon films which are characterized by an improved stability to metastable degradation and useful in amorphous silicon devices.
2. Description of the Related Art
An amorphous silicon device, such as a silicon solar cell, is comprised of a body of hydrogenated amorphous silicon (a-Si:H) material, which can be formed in a glow discharge of silane or other chemical vapor deposition techniques. Such cells can be of the type described in U.S. Pat. No. 4,064,521 entitled: Semiconductor Device Having a Body of Amorphous Silicon, issued to D. E. Carlson on Dec. 20, 1977. Amorphous hydrogenated silicon based device technology is currently the leading candidate for large area, low-cost photovoltaic applications.
For solar cells, the basic device structure is a single p-i-n junction or an n-i-p junction in which all layers are traditionally amorphous and are made in a continuous plasma deposition process. The substrate of the solar cell can be made of glass or a metal, such as aluminum, niobium, titanium, chromium, iron, bismuth, antimony or steel. A metallic contact can be formed on the back of the substrate.
However, since its discovery in 1977, a distinct disadvantage in application of these materials in devices has heretofore been the problem of light-induced metastability of the a-Si:H films themselves. See, Staebler, D. L. and Wronski, C. R., Appl. Phys,. Lett., 31, 1977, 292. Briefly, the exposure of device-quality a-Si:H films to light or excess carriers results in an increase in the density of neutral threefold-coordinated dangling-bond (DB) defects by one to two orders of magnitude. The excess in defects reduces carrier lifetimes and photoconductivity in the films which sharply limits the usefulness of a-Si:H as an inexpensive semiconductor material.
A new model of light-induced metastability (Staebler-Wronski effect) in a-Si:H has more recently been disclosed. There, it is postulated that when two mobile H atoms, generated by photo-induced carriers, collide they form a metastable-immobile-complex which contains two Sixe2x80x94H bonds. Excess metastable dangling bonds remain at the uncorrelated sites, from which the colliding hydrogen molecules were excited. This quantitative model accounts for many of the experimental observations which relate to the microscopic nature of the degradation problem and the associated kinetics of light-induced-defect-creation under various conditions. See Branz, H., Solid State Communications, Vol. 105, No. 6, pp. 387-391, 1998.
It is well known that the light-induced DB defects are metastable because they can be reversed. In the prior art, one method of reversing metastability includes annealing the films for 2 hours at temperatures greater than 150xc2x0 C. Another way of annealing light-induced changes in the dark conductivity and photoconductivity of a-Si:H thin films involves the ultraviolet (UV) irradiation (wavelength≅254 nm) of the films at room temperature. With this annealing process, a problem exists in that although the bulk photoconductivity of the film is improved, the UV irradiation is mostly absorbed near the top surface of the films and causes considerable surface damage. G. Ganguly, et al., Appl. Phys. Lett. 55, 1975 (1989). Further, illumination will cause Staebler-Wronski degradation of all amorphous silicon after such reversal treatments. Thus, what is needed is a process which, unlike the foregoing reversal methods, produces device-quality a-Si:H films which are highly resistant to metastable degradation without deleterious surface damage and thereby demonstrate an improvement in stability under light exposure or excess carrier conditions when used in amorphous silicon devices.
It is accordingly an object of the invention to provide novel hydrogenated amorphous silicon films which are characterized by an improved resistance to metastable degradation.
It is another object of the invention to provide a novel method for producing device-quality a-Si:H films which are highly resistant to metastable degradation and thereby demonstrate an improved stability when exposed to light or excess carriers.
It is yet another object of the invention to provide amorphous silicon devices which, through use of the novel a-Si:H films made according the method herein, are characterized by an improvement in stability when used under light or excess carrier conditions.
Briefly, to overcome the problems associated with the prior art methods and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention is intended to provide a method of producing amorphous hydrogenated silicon films which are resistant to metastable degradation, the method comprising the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.
Additional advantages of the present invention will be set forth in part in the Id description that follows and in part will be obvious from that description or can be learned from practice of the invention. The advantages of the invention can be realized and obtained by the method particularly pointed out in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
Some rack configurations require the use of an intermediate bracket connected to a wall-mounted support member for supporting a shelf. These intermediate brackets have a vertical front wall with a front face and two side walls each having an inside face. A cantilever arm connects to, and projects generally perpendicular from, the front face and generally away from the two side walls of the intermediate bracket. The wall-mounted support member has a front wall, two parallel side walls generally perpendicular to the front wall and two outer flanges extending from the side walls and generally parallel to the front wall. A connecting assembly permits the intermediate bracket to be connected to the support member. One disadvantage of this rack configuration is that it requires an intermediate bracket to connect the wall-mounted support member to the shelf. As a result, this rack configuration does not connect the shelf directly to the wall-mounted support column members.
Other racks provide for a wall-mounted storage system, including at least one pair of slotted-apart vertical hanger bars for attachment to a wall and at least one removable shelf support bracket associated with each hanger bar. A shelf is supported by the brackets and is releasably attached thereto by rear hooks on the brackets that hook over the rear rail of the shelf. The shelf support bracket is associated with each vertical hanger bar. One disadvantage of this rack configuration is that the vertical hanger bars require an intermediate bracket and therefore does not connect the shelf directly to the vertical hangar bars.
Thus, it would be desirable for a rack to connect directly to a wall bracket in an efficient, reliable and cost-effective manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a material layer of either wet- or dry-laid soft paper, including mixtures of polymer and cellulose fibres, fibre fabric or polymer film, the layer being intended for use as a separate layer, or at least in one layer, loosely laid on, or bonded to one or more material layers or webs such as to achieve the controlled diffusion of liquid deposited on at least this separate layer or web, or such as to be a part of a bulkier and thicker material layer or web, the invention also relating to a method of manufacturing the material layer.
A laminate including soft paper in one or more layers is usually the basic material on the market today for table covers, napkins, cleaning rags, face-flannels, bibs, underpant protectors, sanitary towels, absorption products or other table and hygiene products, as well as materials used in the packaging industry. A problem with these known laminates has been that hardly any of them is able to equal, as far as possible, a woven material with characteristics of flexibility and drapability. In addition, the materials used for absorption and in particular such laminates that are used for absorbing body liquids, have limited capacity for controlled diffusion of liquid deposited on them, resulting in that the absorption layer is not optionally utilized.
The object of the present invention is to provide a material layer of the kind mentioned in the introduction, and comprising a quality-determining, flexible material which is able to provide a laminate with a controlled diffusion capacity on the one hand and on the other hand a laminate with bulk.
With the first-mentioned ability of the inventive material layer there is achieved controlled diffusion, at least over the layer, of a liquid deposited thereon, whereby practically optimum utilization of the material absorption capacity may be reached. To this end, the layer is provided with a plurality of slit formations extending over it, laterally in optionally spaced relationship such as to form separate strip formations. These strip formations may be laterally in greater or less spaced relationship, depending on the field of use. In the case where mutual spacing is small and the layer is laminated against a material web with the propensity of being a liquid barrier, effective diffusion of liquid deposited on the layer is effected in the longitudinal direction of the strip formations. This is particularly suitable when the layer is used as a material layer in diapers, sanitary towels or underpant protectors, and with absorption products in general, where controlled diffusion of a liquid deposited on the layer is desirable. The slits may be made with an orientation on the layer according to the functional requirements, i.e. in any attitude from longitudinally to transverse the layer. The slit formations may either be continuous along the entire layer in some suitable direction, or may consist of a plurality of discontinuous slits, between which are formed longitudinal, free-cut strips of the web. If the inventive layer is made up using a less strongly absorbent or diffusive fibre quality, only limited absorption or diffusion takes place in the layer itself, and thus the deposited liquid migrates in the longitudinal direction of the strip formations and in the spaces between the strip formations, while absorption then also occurs on the material webs laminated to the upper or lower faces of the layer.
A method of producing a material layer in accordance with the invention consists of cutting or stamping slits in different patterns in a material, e.g. soft paper, although material having other characteristics and compositions may be used. The slitted layer may be subsequently drawn apart such as to afford different covering percentages of the material surface and to the extent appropriate to the field of use to which the layer is put. It may then be positionally fixed by laminating against one or more adjacent material layers or webs.
In utilizing the other ability of the material layer in accordance with the invention it is placed interiorly in a laminate in combination with other material layers or webs included in the laminate. Since greater bulk is desired here, the layer is drawn apart as in the previous case, causing reticulations to be formed where the slits are, with the strip portions becoming warped as the reticulations are formed. The reticulations may also be filled with foam. The reticulate layer may have a colour differing from the other material webs included in the laminate, and several reticulate layers may be put together in different patterns or be provided with different fillers to obtain such as greater weight, softness, colouring, workability, embossing properties, and absorption capacity. In addition, the laminate containing the inventive reticulate layer can provide a thicker material of a lower weight than would otherwise be possible, and as a result the layer also affords the possibility of liquid being absorbed into the material better. There is also less material needed in the laminate containing the inventive, reticulate layer.
In an alternate embodiment of the invention, the material layer is drawn out so as to be reticulated, causing the strip configurations to become warped, and then cured or xe2x80x9cfrozenxe2x80x9d in this condition with the object of forming a bulky material layer. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well known to those skilled in the art, oils such as lubricating oils including those derived from petroleum-based stocks or from synthetic compositions are desirably characterized by a variety of properties including dispersancy and viscosity index; and this field is characterized by continuing attempts to improve these properties.
It is an object of this invention to provide a novel oil composition. It is another object of this invention to provide lubricating oil compositions characterized by improved properties. Other objects will be apparent to those skilled in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Post-herpetic neuralgia is the predominant morbidity associated with development of herpes-zoster, also known as shingles. The neuralgia typically lasts for from one to six months and is often excruciatingly painful.
Evidence has accrued in recent years which shows that herpes-zoster is caused by reactivation of latent varicella virus [Straus et al., Ann. Int. Med. (1988); 108, 221-237; Hyman et al., Lancet (1983) 2, 814-816; Gilden et al., Nature (1983) 306, 478-80; Croen et al., Proc. Natl. Acad. Sci. USA (1988); 85, 9773-9777; Mahalingham et al., New Eng. J. Med. (1990) 323, 627-631]. The initial varicella infection may have occurred as a result of infantile chickenpox or as a result of immunization with a live-attenuated varicella zoster virus vaccine to prevent chickenpox. In either case, the virus appears to remain in the infected individual's system long after chickenpox or vaccination. The locus of VZV latency appears to be neural cells within dorsal root ganglia.
Years after VZV has become latent, the virus reactivates by an as yet poorly understood mechanism. Nonetheless, the reactivation of VZV and its subsequent replication gives rise to herpes zoster. It is in the course of and subsequent to this reactivation of VZV that severe post-herpetic neuralgia develops.
Numerous reports in the literature have suggested that there may be a correlation between diminished immune competence and reactivation of herpes zoster from its latent state. Suggestions of the mechanism by which reactivation occurs include diminished cell-based immunity, such as reduction of the number of blood CD4.sup.+ receptor bearing T-lymphocytes, which are responsible for recognizing non-self antigens presented by MHC type II molecules following phagocytosis of VZV. Alternatively, the reduced levels of CD8.sup.+ T-lymphocytes, responsible for killing cells in which MHC type I molecules recognize and present non-self antigents, has also been suggested as a possible mechanism perimissive for VZV reactivation. Neumeyer et al., [N.E.J. Med. p. 1456, May 29, 1986) noted a drop in the ratio of CD4.sup.+ /CD8.sup.+ prior to zoster, and subsequent increase of the ratio upon termination of the clinical syndrome.
In one study, a varicella vaccine was adminsitered to elderly subjects in an attempt to boost their CMI responses to VZV. VZV immunization of these seropositive individuals was undertaken because of the previously described age-related decline in VZV-specific CMI [Miller A E., Neurology. (1980); 30, 582-587; Berger R, Florent G. Just M., Infect. Immun. (1981); 32, 24-27; Burke B L, Steele, R W, Beard O W., Arch. Intern. Med. (1982); 142, 291-293] and the possibility that the age-related reactivation of VZV (as herpes zoster) is a consequence of this decline. This live attenuated vaccine was well tolerated; no severe local or systemic reactions occurred and the mild reactions were not very common. Systemic spread of vaccine virus, as manifested by minimal skin rash, did occasionally occur (possibly in 6/245 injections). While this is of theoretical concern in elderly patients with documented reduction of specific cell-mediated immunity, the resulting lesions and symptoms proved to be of no clinical significance. This is consistent with anecdotal observations that seropositive grandparents are not infected after exposure to grandchildren with varicella.
The deficits in VZV-specific immunity in the elderly occur in the context of generally reduced CMI responses. These are detected in assays of delayed hypersensitivity skin responses [Goodwin J S, et al., Clin. Exp. Immunol. (1982); 48, 403-410] and in in vitro proliferative responses of T lymphocytes stimulated by mitogens [Hayward A R, et al., J. Clin. Immunol. (1987); 7, 174-178; Tice R R, et al., J. Exp. Med. (1979); 149, 1029-1041; Murasko D M, et al., Am. J. Med. (1986); 81, 612-618]. Most studies document normal T cell number, but there is a decrease in CD4.sup.+ cells [Nagel Je, et al., J. Immunol. (1981); 127, 2086-2088; Thompson J S, et al,. J. Am. Geriate Soc. (1984); 32, 274-281]. Natural killer cell number and function are normal in these patients [Hayward A R, Herberger M., J. Clin. Immunol. (1987); 7, 174-178; Nagel Je, et al., J. Immunol. (1981); 127, 2086-2088]. An increased cell cycle time, as suggested in the study of Tice et al, would be a possible explanation for the loss of CMI with aging [Tice R R, et al., J. Exp. Med. (1979); 149, 1029-1041]. However, subsequent studies do not favor a change in cell cycle or any reduction in the degree of clonal expansion following antigen stimulation [Staiano-Coico L, et al., J. Immuno. (1984); 132, 1788-1792; Sohnie P G, et al., Clin. Exp. Immunol. (1982); 47, 138-146]. Instead, DNA analyses show an increased frequency of DNA damage, sister chromatid exchanges, and cell loss in mitrogen stimulated cells from the elderly [Dutkowski R T, et al., Mutat. Res. (1985); 149, 505-512]. Reduced proliferative responses to mitogens are not necessarily accompanied by reduced IL2 or IL2R synthesis [Dutkowski R T, et al., Mutat. Res. (1985); 149, 505-512]. The most consistent defect found by Chopra et al., was increased gamma-interferon production and a reduced survival of stimulated cells which supports the use of a booster [Chopra R K, et al., Clin. Immunol. Immunopathol. (1989); 53, 297-308].
Other studies in an aging population showed that the reduced VZV-specific immunity which accompanies the increased incidence of HZ in the elderly is at least partially explained by a reduced frequency of VZV-specific CD4.sup.+ cells in blood. However, these patients have normal T cell numbers and their NK cell activity is preserved in response to VZV antigen, providing that sufficient IL2 is present [Hayward A R, et al., J. Clin. Immunol. (1987); 7, 174-178]. The frequency of T cells expressing the memory cell phenotype (CD45RO) increases with age from a mean of 43+17% at 28 years to 65+14% at 70 years, so the decline in VZV-specific immunity with aging is not due to a selective loss of this subset. CD45RO.sup.+ cells make more .gamma.-interferon than CD45RA.sup.- cells, correlating with the results of Chopra and co-worker.
Whatever the mechanism of zoster control or reactivation, no medical evidence has effectively demonstrated prevention of herpes zoster reactivation (zoster), or diminution of post-herpetic neuralgia. Chemotherapeutic agents as a class have been dismal in adressing this painful condition [Watson, C. P. N., Neurol. Clin., 7, 231-248 (1989); Straus, et al., Ann. Int. Med. 108, 221-237 (1988)].
This invention is a method for reducing post-herpetic neuralgia and for ameliorating or abrogating herpes zoster reactivation. The efficacy of the method is demonstrated by positive results obtained in vivo in which the level of VZV specific lymphocytes increases. This increase in responder cell frequency, RCF, induced by immunization according to the method of this invention, yields an immune state in vivo which is refractory to the diseased state, including VZV reactivation and post herpetic neuralgia. Broad based, multicenter, long-term clinical investigation in which at-risk individuals are administered live-attenuated, killed, or subunit antigens, purified from VZV or from recombinant production shows that immunization according to this invention results in significant protection against VZV reactivation, or if reactivation occurs, significant reduction in the duration or severity of the post herpetic neuralgia. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to network interfacing and, more particularly, to methods and systems for transmitting data packets in a half-duplex network susceptible to capture effect.
2. Background Art
Local area networks use a network cable or other media to link stations on the network. Each local area network architecture uses a media access control (MAC) enabling a network interface card at each station to share access to the media.
The Ethernet protocol ISO/IEC 8802-3) (ANSI/IEEE Std. 802.3), 1993) edition) defines a half-duplex media access mechanism that permits all stations to access the network channel with equality. Each station includes an Ethernet interface card that uses carrier-sense multiple-access with collision detection (CSMA/CD) to listen for traffic on the media. Transmission by a station begins after sensing a deassertion of a receive carrier on the media, indicating no network traffic. After starting transmission, a transmitting station will monitor the media to determine if there has been a collision due to another station sending data at the same time. If a collision is detected, both stations stop, wait a random amount of time, and retry transmission.
Any station can attempt to contend for the channel by waiting, a predetermined transmission delay interval after the deassertion of the receive carrier on the media, known as the interpacket gap (IPG) interval. If a plurality of stations have data to send on the network, each of the stations will attempt to transmit in response to the sensed deassertion of the receive carrier on the media and after the IPG interval, resulting in a collision.
Ethernet network stations mediate collisions using a truncated binary exponential backoff (TBEB) algorithm, which provides a controlled pseudorandom mechanism to enforce a collision backoff interval before retransmission is attempted. According to the truncated binary exponential backoff algorithm, a station keeps track of the number of transmission attempts ) during the transmission of a current frame. The station computes a collision backoff interval as a randomized integer multiple of a slot time interval, and attempts retransmission after the collision backoff interval. The station will attempt to transmit under the truncated binary exponential algorithm a maximum of sixteen times.
The collision backoff interval is calculated by selecting a random number of slot times from the range of zero to 2.sup.j -1. For example, if the number of attempts j=3, then the range of randomly selected number of slot times is [0,7]; if the randomly-selected number of slot times is four, then the collision backoff interval will be equal to four slot time intervals. According, to Ethernet protocol, the maximum range of randomly selected slot times is 2.sup.10 -1.
The truncated binary exponential algorithm has the disadvantage that the range of randomly selected slot times [0, 2.sup.j -1] increases exponentially each time a specific station loses a retry attempt after collision, resulting in a higher probability of losing the next collision mediation by randomly selecting a larger integer multiple of slot times. Thus, a new station that has data to transmit has a higher probability of winning, a collision mediation than the station having, a greater number of attempts. This effect is known as the capture effect, where a new station in the collision mediation effectively has a greater probability of capturing access to the media than the losing station until the maximum number of attempts has been reached.
Hence, collision-based networks having collision mediation require each colliding station to back off a random number of slot times, dependent on the number of attempts, before reattempting access to the medium. Such collision mediation reduces the network throughput and creates unbounded packet access latencies. Consequently, applications requiring bounded access latencies such as interactive multimedia cannot be supported on half-duplex networks.
The capture effect also may occur between network stations having different capabilities in counting the transmission delay interval before attempting access of the media. Ethernet protocol specifies the transmission delay interval after sensed deassertion of the receive carrier, i.e., the interpacket gap (IPG) interval, as having a minimum value before stations can attempt access of the media. Network stations (i.e., network nodes) that are capable of minimizing, the transmission delay to the IPG interval, referred to as "fast nodes" or "dominant stations," will begin to transmit before stations incapable of achieving the minimum IPG interval, referred to as "slow nodes." In other words, hardware limitations may prevent the slow nodes from accessing the media within the time interval defined by the IPG interval. Hence, dominant network stations will tend to capture the media over slower nodes that wait a longer time before attempting access of the media. These slower nodes encounter a surrender effect, in which they "surrender" their access to the media due to hardware limitations. The surrender effect may create substantial throughput problems in transmission protocols requiring a sender to receive an acknowledgement within a prescribed interval after a burst transmission.
Hence, capture effect may be caused by a station encountering, a large number of collisions, variance in IPG access times between fast and slow nodes, and variations in propagation delay due to network topology. The capture effect thus causes a large variance in the network access latency, and a corresponding large variance in end to end delays experienced by data packets.
One proposed solution is described in Ramakrishman et al., "The Ethernet Capture Effect: Analysis and Solution," IEEE Local Computer Networks (LCN) Conference, Minneapolis, Minn., October 1994, pages 228-240. The proposed solution by Ramakrishman, referred to as capture avoidance binary exponential backoff (CABEB), uses the standard binary exponential backoff with enhancements for collision resolution in a special case when a station attempts to capture the channel subsequent to an uninterrupted consecutive transmit period.
The CABEB algorithm modifies the truncated binary exponential backoff algorithm based on the premise that there can be no more than one station in an uninterrupted consecutive transmit state at any given time on a CSMA/CD local area network. The CABEB algorithm calculates the collision backoff interval for an uninterrupted consecutive transmission as follows: if the number of collision attempts equals 1, then the collision backoff interval equals two (2) slot time intervals; if the number of collisions equals 2, then the collision backoff interval equals zero (0) slot times; and if the number of collision attempts is greater than 2, then the conventional TBEB algorithm is followed.
Although the CABEB algorithm reduces the capture effect, implementation of the CABEB algorithm in small networks, such as a 2-station or 3-station Ethernet network, substantially increases the collision rate. The CABEB algorithm also reduces the network throughput, especially for small packets.
Another proposed media access mechanism, referred to as the Binary Logarithmic Access Method (BLAM), are described by the IEEE 802.3 w Working Group Draft, "Enhanced Media Access Control Algorithm for IEEE 802.3 CSMA/CD." However, BLAM requires substantial changes to the MAC, and has not been proven effective in a mixed environment having stations employing BLAM nodes and TBEB nodes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally, an operation temperature of an electrolyte material of a solid polymer fuel cell is lower than 100° C. In the conventional electrolyte material, since an ion is conducted through moisture in a film, a system for controlling the moisture in the electrolyte material is required.
From the viewpoints of reduction of the cost of the system for the solid polymer fuel cell and simplification of the system, an electrolyte material that has an operation temperature equal to or higher than 100° C. and operates under a non-humidification or a low-humidification condition. JP 2014-116276 A (corresponding to US 2014/0011103 A1) discloses such electrolyte material. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to air sterilization using ultraviolet light wave energy in a replaceable cartridge containing all electronic components as well as a High Efficiency Particulate Air Filter (HEPA) or Carbon filter, or a combination of the two.
2. Description of the Related Art
Indoor air quality has become a concern for residential and commercial buildings, airplanes, and cruise ships. Biological terrorism, SARS, sick buildings, cruise ship disease outbreaks, toxic molds, and epidemics of asthma and allergies have all made the issue of healthy air critical.
As indoor air quality grows to be a major concern, consumers are looking for a viable solution. The use of a HEPA filter is one solution, though these filters have limitations on their effectiveness. HEPA filtration only traps particles of 0.3 microns or greater and they are unable to kill viable pathogenic microorganisms. The use of a HEPA filter as the primary air decontamination device is not enough. Viruses, bacteria, mold spores, and allergens are small enough to bypass the filter and continue circulation through the indoor air.
Activated carbon filters are another common solution to improve indoor air quality. Carbon adsorbs odors while maintaining a low resistance to air flow. In addition, carbon filters are lightweight and durable and easy to install. However, carbon filtration is not effective in eliminating airborne particulates, viruses, bacteria, etc.
A current trend in air treatment devices is to use negatively charged ions to “cling” to the positively charged ions in the air in order to bring the particles to the floor for easy vacuuming. These products can be very misleading to the public claiming that the negatively charged ions are dispersed throughout the room when what is really being emitted is ozone. Ozone will freshen the air by eliminating odors, but is toxic and corrosive in large amounts. This type of product is normally accompanied by a disclaimer to see a physician before using the product.
Ultraviolet light is gaining popularity with many air treatment systems manufacturers because of its extremely high effectiveness in killing viable pathogenic microorganisms. Ultraviolet light is used in a number of portable air treatment systems and permanent ducting systems alike. However, the biggest problem with ultraviolet light is that it is extremely harmful to the eye when it is operating, which makes servicing the unit a difficult task. One may never know if the bulbs are working properly in their air treatment system because the owner is unable to look at the exposed bulbs to determine if they are still effective. As a result, many ultraviolet light systems are installed and never maintained. After a while, when the bulbs have lost their life, the system is ineffective. Therefore, an air treatment system utilizing the effective killing power of ultraviolet light that permits quick and simple maintenance is needed. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to asynchronous reversible logic elements, a method for constructing asynchronous and reversible circuits using the elements and a method for constructing computers using the elements.
2. Description of Related Art
Microscopic physical phenomena are fundamentally reversible. To realize efficient and practical computers with ideally zero energy dissipation, reversible logic has been extensively studied but usually under the assumption that the underlying system is synchronous; i.e., all logic elements switch simultaneously in accordance with a central clock (Fredkin E and Toffoli T 1982 Conservative logic Int. J. Theoret. Phys. 21, 219–253). Because of the randomness of the operations that may occur within systems, a synchronous mode of timing seems hardly compatible with the backward determinism that accompanies reversible computing. Still, micro scale physical interactions are usually asynchronous. Asynchronous timing tends to reduce the energy dissipation per logic operation for different reasons: Logic elements in an asynchronous system can go into a sleeping state if they have no work to do; in synchronous system, idle logic elements have to engage in dummy switching whenever they receive clock signals (Hauck S 1995 Asynchronous design methodologies: an overview Proc. IEEE 83 (1) 69–93, Patra P 1995 Approaches to design of circuits for low-power computation Ph. D. Thesis University of Texas at Austin). The elements of an asynchronous system do not require a central clock signal and the hardware construction of a logic circuit may be simpler if an asynchronous mode of timing is adopted.
Universal reversible computer models that can conduct their computational tasks asynchronously have been proposed by Morita (Kenichi Morita, ‘A Simple Universal Logic Element and Cellular Automata for Reversible Computing’ MCU 2001, LNCS 2055, pp. 102–113, 2001), based on a reversible logic element called a Rotary Element (RE). Any reversible Turing machine (Turing machine is the prototype of modern electrical computers) can be constructed by using a network of REs, in which there is at most one particle moving around the entire circuit at any time. Since delays in any of the REs or lines do not affect the correctness of the computing process of the entire circuit, this circuit is called delay-insensitive (see e.g. Hauck S 1995 Asynchronous design methodologies: an overview Proc. IEEE 83 (1) 69–93, Patra P 1995 Approaches to design of circuits for low-power computation Ph. D. Thesis University of Texas at Austin). Thus, reversible computers consisting of REs can work in asynchronous mode, without needing a central clock signal to drive the operations of each RE (Kenichi Morita, ‘A Simple Universal Logic Element and Cellular Automata for Reversible Computing’ MCU 2001, LNCS 2055, pp. 102–113, 2001).
An RE has four input lines, four output lines, and two internal states. Although the RE can be used to realize reversible computers that operate asynchronously, it is somewhat complex, especially regarding the number or input and output lines. Intuitively, the less complex logic element is, the more opportunities it may offer for physical implementation. The purpose of this invention is thus to provide reversible elements that have less input and output lines than the conventional RE. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the general art of fishing, and to the particular field of holders and buckets used in fishing.
2. Description of the Related Art
Fishermen desire that fish that are caught be maintained in a live condition as long as possible to reduce spoilage or deterioration of the meat. Likewise, sport fishermen who do not intend to eat their catch desire to maintain the catch alive so that the fish can be returned to the body of water from which they were caught. Heretofore, a common method for keeping such fish alive was to place them on a stringer and to allow the fish to remain submerged in the body of water and on the stringer, with the end of the stringer connected to the fishing boat. However, that method could possibly lead to injury of the fish as a result of the stringer passing through the gills and mouth of the fish. Also, other fish or turtles often discover the stringer and destroy the catch. Moreover, the stringing operation is troublesome to the fisherman and injurious to the fish. Furthermore, if the stringer is not pulled in whenever the boat is moved by power to another location, the fish may be torn off. Another method of keeping caught fish alive is to provide a submersible creel that is submerged in the water, and is in the form of a perforated enclosure. However, such creels can be expensive.
Another technique for maintaining caught fish in a live condition includes a live bait and fish container that is at least partially filled with water to contain fish, and is adapted to float in the water adjacent to a boat and to be tied to the boat so it can be pulled along with it. However, such devices are not well adapted for receiving fish and maintaining the fish uninjured in the container.
Even though the devices that have heretofore been developed can help to maintain the fish in a live state while the fisherman continues to fish, where the fisherman is participating in a fishing contest, in which it is usually required that the fish that are caught be kept alive, weighed, and then returned alive to the body of water from which they are taken, each fish must individually be removed from a stringer or a submerged creel for weighing. Oftentimes the fish are placed in plastic bags partially filled with water in an effort to keep the fish alive. However, in the course of removing the fish from a stringer or retrieving it from a live well, injury is sometimes caused to the fish, and that injury sometimes kills the fish. In tournament fishing, dead fish could result in a penalty being imposed against the fisherman. Further, fish in the plastic bags must be carried to the scales, the water must then be released from the bag, and the fish weighed on the scale. Then, after the weighing has been completed, the fish are again placed in the plastic bags for carrying back to the body of water so that they can be released.
The above-described methods are cumbersome, and also lead to dead or injured fish. Accordingly, there is a need for an improved fish container and carrier that is particularly adapted to keeping the fish alive and injury free.
Still further, many of the devices known to the inventor are used on a boat and are not well adapted for use on land. To be most versatile, such devices should be useable on both land and water.
Therefore, there is a need for an improved fish container and carrier that is particularly adapted to keeping the fish alive and injury free and which can be used on land as well as on a boat.
Still further, to be most useful, a container should be as versatile as possible.
Therefore, there is a need for an improved fish container that can be used as a seat as well. | {
"pile_set_name": "USPTO Backgrounds"
} |
Liquid crystal display panels are increasingly used for the general display of alpha-numeric information and in particular they are finding application to such areas as control panels in the cockpit of aircraft or the like where the pilot user may view the display by looking down at an angle from the horizontal.
An inherent problem encountered with reflective dynamic scattering liquid crystal displays used in such applications is that of light trapping the specular reflection off of the display surface while providing illumination at angles where liquid crystal scattering is efficient.
Efforts of the prior art to use reflective surfaces to provide light to liquid crystal and other display devices are typified by the following U.S. Pat. Nos. 3,728,007 to Myrenne et al; 3,838,909 to Fitzgibbons; 3,920,311 to Tsuda; and 3,924,932 to Yamamoto. None of these discusses or solves the above problem dealt with by the present invention.
It is an object of this invention to provide a reflective dynamic scattering liquid crystal display and mounting arrangement therefore which solves this light trapping problem and is suitable for such cockpit use. | {
"pile_set_name": "USPTO Backgrounds"
} |
Modern aircraft are typically equipped with an autobraking system. During a landing phase or a Rejected Take-Off (“RTO”) event, a pilot may engage an autobraking system to assist with decreasing the speed of the plane. The autobraking system may also allow the pilot to focus on other aspects of achieving a safe landing or successful RTO event. When autobraking is engaged, the aircraft may veer off a desired course. Therefore, systems and methods for improved autobraking systems for aircrafts may be beneficial, including in assisting a pilot on maintaining a desired course during a landing or RTO event. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a switch assembly for selecting the operating mode of an at least partially rotary and/or percussive hand tool device, such as a low-power rotary hammer drill or a chisel hammer.
With such hand tool devices a percussion assembly is switchably driven, as required, using a common drive, such as an electrical motor, and via a percussive drive, for an axially reciprocating movement, as well as by way of a tool spindle. Moreover, the tool spindle can, as required, be freely moveable or stopped. To simplify operation mode selection, for example, of four operating modes, xe2x80x9crotary drillingxe2x80x9d, xe2x80x9crotary percussion boringxe2x80x9d, xe2x80x9cchisel positioningxe2x80x9d, xe2x80x9cchiselingxe2x80x9d it can be effected by using, for the most part, a rotary actuation element.
According to JP9239675 a hand tool device with a countershaft parallel to the tool spindle is characterized by a central switch assembly for mode selection, including the operating mode xe2x80x9cchisel positioningxe2x80x9d, having a rotary mode selection switch for a coaxial switch sleeve, which switches a countershaft, and a rotary lock, which engages in the countershaft and housing.
According to EP759342B1, the rotary drive is switched by a centrally arranged switch assembly of a combination hand tool device for mode selection of four operating modes, including the operating mode xe2x80x9cchisel positioningxe2x80x9d of the rotary drive by means of a first switch sleeve, which is regulated by a rotary mode selector switch via a switch plate, on a conical pinion shaft, the arrest of the tool spindle relative to the housing is done by way of a second switch sleeve coaxial thereto. The costly and space-intensive direct locking of the tool spindle in the housing is over-dimensioned for small hand tool devices up to 800 W power consumption.
According to JP9070771 a hand tool device having a countershaft parallel to the tool spindle is characterized by a centrally arranged switching mechanism for mode change having two switch sleeves for the rotary drive and for the percussion drive, respectively, coaxially displaced on the common countershaft, controlled separately by a rotary mode switch, for the rotary drive and for the percussive drive, respectively.
The object of the invention is to provide a centrally arranged, compact switching mechanism for hand tool devices, especially for low output devices. A further object is to provide a technologically simple, centrally switchable tool spindle locking mechanism.
Essentially, a centrally arranged switch assembly for mode selection for an at least partially rotary and percussive combination hand tool device is characterized by a first switch sleeve for the switchable percussion drive and a second switch sleeve for the switchable rotary drive, which meshes with the tool spindle via a countershaft, and a switch accessory providing rotational free coupling of the switch sleeves with one another, whereby the countershaft and percussion drive shaft of the percussion drive are arranged adjacent and parallel in a common axially extending zone and rotationally-freely guiding a driving gear pair in meshed engagement with one another, and can be coupled by way of switch sleeves.
As a result of the two individually switchable shafts arranged in a common axial zone and in a parallel and adjacent arrangement, a very compact, central switch assembly can be achieved.
An advantage is that the axially displaceable switch accessory in the switch sleeves with radially interlocking coupling means, at their ends via rotationally-freely engaging switch dogs within the basic arrangement of the switch assembly is formed between the two shafts, and further is advantageously configured as an axially extending, metal plate part shaped at the opposite ends, whereby the free space between the shafts can be utilized for a geometrically integrated central switch control for both switch sleeves.
Advantageously, the axially displaceable switch accessory engages in a form-fitting manner with a manually operable actuation member located outside the housing of the hand tool device, and is configured advantageously as a rotary switch having an eccentrically arranged pin engaged in the switch accessory, whereby the operating modes can be ordered in a switching sequence.
Moreover, the switch accessory is axially spring-biased, whereby independent switching of the concrete situational assignment of the interlocking enmeshing coupling element is synchronized.
A further advantage is that, relative to a first axial end position of the switch accessory, only the second switch sleeve of the rotary drive is engaged, whereby the function xe2x80x9crotary boringxe2x80x9d is attained. Furthermore, both switch sleeves are engaged relative to an axially adjacent intermediate position of the switch accessory, whereby the function xe2x80x9crotary percussion drillingxe2x80x9d is effected. Moreover, only the first switch sleeve is engaged relative to a further axially adjacent intermediate position of the switch accessory and the second switch sleeve is rotationally-free, whereby the function xe2x80x9cchisel positioningxe2x80x9d is attained.
Preferably, the coupling element associated with the first switch sleeve is characterized axially by a rotationally-free undercut, whereby the decoupled end position can be realized in a technologically simple fashion.
Advantageously, the second coupling element exhibits radially bilaterally interlocking coupling members, by means of which alternatingly an additional coupling element can be connected.
The further coupling element is configured as a form ring that can be rotationally-free, and in a form-fitting manner inserted into the housing.
Further, the countershaft is coupled with the housing relative to a second axial end position of the switch accessory, whereby the first switch sleeve of the percussion drive is engaged, and by means of the meshed engagement with the tool spindle, the spindle is non-rotationally locked, whereby the function xe2x80x9cchiselingxe2x80x9d is possible.
Advantageously, the countershaft is oriented transverse to the tool spindle and meshingly coupled with it via a conical crown gear, whereby a shortened construction of the hand tool device is realized. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to tubing having threaded ends with multiple seals.
Prior art United States patents are officially referenced and cross-referenced in Class 285, Pipe Joints or Couplings, subclasses 333, Threaded Drill Pipe Types, and 334, Similar Types Having Flat Crest Threads.
Examples of patents found there are:
______________________________________ 3,100,656 3,822,902 3,508,771 2,102,072 3,658,368 2,111,627 4,085,951 3,167,333 2,104,799 2,181,343 3,687,493 4,244,607 ______________________________________
U.S. Pat. No. 3,100,656, describes a threaded tubing joint with a shoulder seal, a tapered seat seal has an inward recess holding a plastic ring which is axially compressed.
U.S. Pat. No. 3,508,771 shows a tapered pipe joint with a shoulder seal 9, 10 and tapered seat seal 11 and a sealing ring between threads and a seat seal. The sealing ring 8 does not have a round cross-section. The threads may have a sealing profile as shown in FIGS. 5 and 6.
The seal receiving groove 21 in the inner tapered surface shown in FIG. 2 is of interest in U.S. Pat. No. 3,658,368.
The annular sealing ring 24 in U.S. Pat. No. 4,058,951 is of interest, but the ring has a generally square cross-section as shown in FIGS. 6, 7 and 8.
U.S. Pat. Nos. 2,104,799, 3,687,493 and 3,822,902 show sealing rings having round cross-sections.
Sealing rings as shown in U.S. Pat. Nos. 2,102,072, 2,111,627 and 3,167,333 are axially compressed.
U.S. Pat. Nos. 2,181,343 and 4,244,607 have thread configurations of interest.
The threaded tubing may be used in conditions of substantial pressure differentials between the inside and outside of the tubing and may be used in situations where it is undesirable to permit combination of fluids between the inside and outside of the tubing. Fluids in or around the threaded tubing may have propensities to move around conventionally sealed tubing.
A need persists for threaded tubing having multiple seals which complement each other and prevent communications of fluids between inside and outside of the tubing. | {
"pile_set_name": "USPTO Backgrounds"
} |
Existing network interface devices provide systems for receiving, analyzing, filtering and transmitting network data or frames of data. Network Protocol Analyzers, Bridges, and Routers are among the most common network interface devices currently available.
Conventional network protocol analyzers provide, for a predefined set of network frame structures or protocols, a system for monitoring the activity of a network and the stations on it by allowing network traffic to be captured and stored for later analysis. Common capture and analysis capabilities include the gathering of statistics, subsequent report generation, the ability to filter frames based on specific criteria, and the ability to generate network traffic.
Bridges and routers are network devices that pass frames from one network interface to another. Bridges operate at the data-link layer and routers at the network layer of the OSI reference model. Like protocol analyzers, both bridges and routers may gather statistics and filter incoming network frames based on specific criteria, however incoming frames also may be forwarded to other networks based on information collected by the bridge or router. Routers typically support only a limited number of network protocols.
Each of these network devices requires an ability to separate network frames into individual protocols and their components (typically referred to as parsing), an ability to filter incoming frames based on a logical combination of one or more field values extracted during parsing, and an ability to gather statistics based in part on extracted field values. Typically, it is a requirement that network frames be received, analyzed and forwarded at full network speeds, sometimes on many different networks at one time.
A frame filter consists of one or more criteria which specify one or more valid values for a frame (or segments of a frame). Frame filtering criteria are typically implemented using an offset (from frame or protocol header start), a length in bits which defines a field, a value for comparison, and mask values for identifying relevant and irrelevant bits within the field. For multiple value filter criteria, the result from each filter value is logically OR'ed together to obtain an overall result. Therefore, each additional result adds to the processing required to filter a given field. For filtering on optional protocol fields that do not occur at the same relative offset in each protocol frame, this method is time-consuming. Thus, it would be desirable to perform filtering on both fixed and optional variable offset fields for any number of values or ranges of values without incurring any additional overhead.
Parsing, the process wherein network frames are broken up into their individual protocols and fields, is necessary for filtering with offsets relative to protocol headers, gathering field based statistics, generating network traffic, routing data frames, verifying field values, and displaying network frames in human readable form. In conventional systems, the parsing process has an overall structure which incorporates control logic for each supported protocol. Therefore, additional control logic must be developed when support for a new protocol is added to a conventional system. As the development of additional control logic, whether implemented in hardware or software, may be both time consuming and expensive, it would be highly desirable to be able to parse all protocols with a single configurable software (or hardware) module so that support for additional protocols could be added to a system without requiring substantial modification to the system or its control logic.
Further, although microprocessors (or CPUs) available today can execute tens or even hundreds of millions of instructions per second, vendors often must provide dedicated hardware assistance and/or front-end processors with hand-coded assembly language routines to achieve the necessary processing rates for more than one pair of networks. Unfortunately, this solution requires hardware and/or software modifications whenever changes are made to the number of supported features or protocols.
Finally, as networks become larger and more complex, the maintenance of a comprehensive statistics database by each network device becomes more important. Because these statistics databases typically are not utilized by a maintaining device, but instead are collected by a network management device, the collection process may affect performance adversely without any corresponding benefit to the collecting device.
In light of the considerations discussed above, it is believed that a network interface system having a configurable protocol analysis capability with common control logic applicable to many different network devices would be highly desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
One way to address computer data security is to prevent or mitigate intrusions, that is, unauthorized data accesses. To mitigate intrusions it is helpful, of course, to detect them. One tool for detecting intrusions is to monitor user activities concerning data that is to be protected. Traditionally, real-time monitoring software systems may capture user activities rather indiscriminately and send all the captured information as an audit report to one or more repositories. For example, all the captured information is sent to a centralized repository and all the captured information is also sent to a back-up repository. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a star local-area network system, and more particularly to improvement of the central switching unit installed in a star local-area network.
2. Description of the Related Art
In star local-area network systems, communication between data stations is generally achieved by the central switching unit, which changes the connection between stations.
A typical central switching unit is a PBX, which has a plurality of input/output ports individually connected to separate data stations. When a data station requests a circuit connection, the PBX receives the circuit number of the called data station from the calling data station. The circuit number indicates the number of the input/output port of the PBX to which the called data station is connected. The PBX connects the input/output port connected to the calling data station to that connected to the called data station to establish a telecommunication circuit between the two data stations.
In a star local-area network system using a PBX as the central switching unit, each data station specifies the called data station, using the latter's circuit number.
The circuit number of the called data station, however, is determined on the basis of the input/output port to which the called data station is connected, so that when the connection of the called data station is changed to another input/output port, its circuit number is also changed. Therefore, to call a station whose input/output port has been changed, the calling station must recognize the new circuit number of the called station in advance.
As noted above, the calling data station always recognizes the numbers of the PBX physical input/output ports to which other data stations are actually connected. For this reason, it is necessary for the supervisor of the network system to inform the operator at each data station of the new numbers of other data stations.
With this situation in mind, a PBX is now available which contains an address table showing which input/output port numbers correspond to which data station names. By referring to the address table, the PBX recognizes which input/output port is connected to the data station whose name is specified by the calling data station. Therefore, the calling data station can specify the called data station by name without taking into account the number of the PBX physical input/output port connected to the called data station.
The information relating to the state of connection between data stations is entered in the address table by the supervisor beforehand. In this case, however, changes in the connection of data stations require the network supervisor to update the contents of the address table according to each new state of connection of the stations. | {
"pile_set_name": "USPTO Backgrounds"
} |
The existing eye drops almost use the same kind of plastic packing bottle with elasticity. Although such a packing bottle has a simple structure and a low manufacture cost, it cannot conveniently dispense eye drops, and the dropping amount cannot be controlled when the drop bottle is squeezed. When dropping eye drops, the user aims the dropping mouth at the eyes. In order to avoid contamination of the eye dropes, the dropping mouth is kept away from the eyes. Thus, the eye drops may not enter into eyes smoothly due to inaccurate aiming or eye closing. In addition, some users often stretch the eyelids by their hands in order to drop the eye drops, which is insanitary. Use of such a plastic packing bottle is troublesome, wasteful, time- and energy-consuming. | {
"pile_set_name": "USPTO Backgrounds"
} |
Criminals have been able to gain control of millions of personal computer systems (PCs) for various nefarious activities, such as generating spam messages, propagating viruses and worms used to compromise additional computer systems, stealing personal information for identity theft, and launching denial of service (DOS) attacks on computer systems. Networks of compromised machines (also known as “zombies”) are referred to as botnets. A botnet may include hundreds, thousands, or even millions of zombie computer systems that are under the control of the botnet. For example, the “Storm” botnet has been estimated to control as many as one to two million zombie computer systems to fewer than 160,000 zombie computer systems. Another botnet, the “bobax” or “Kraken” network has been estimated to control between 160,000 and 400,000 zombie computer systems, and the “Srizbi” network has been estimated to control 315,000 zombie computer systems.
Cybercriminals in control of botnets often offer the services of the botnets to the highest bidder. Often the botnet may be used to launch attacks, such as denial of server (DOS) attacks, on the computer systems of government and/or private entities. Terrorist groups may also harness botnets to stage attacks against government information systems and/or other critical infrastructure, such as power plants, air traffic control computer systems, and particularly well-funded terrorist organizations may have the resources to capture their own network of zombie computer systems for use in staging attacks. The size of a botnet can be quite extensive. Cyber terrorist groups may have as many as millions of zombie computer systems under their control, providing the terrorist groups with significantly more computing resources at their disposal for staging attacks the government and/or private entities currently often have at their disposal for thwarting such attacks. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to computer output devices. More particularly the present invention is directed to providing stereo audio for portable computers.
2. Discussion of Related Art
Personal computers require only rudimentary speaker devices for tasks such as wordprocessing, where sound is used as the auditory equivalent of dashboard warning light. The transducers producing such beeps and whistles, because they only produce sounds at the upper end of the auditory spectrum, are by nature quite compact and inexpensive. However, they are not capable of reproducing complex sounds, or pitches beyond a limited frequency range.
Multimedia presentations require high quality voice reproduction as well as the ability to accurately reproduce other types of complex audio material. Moreover, for on-location presentations, high-quality sound is important to the over-all attractiveness of the materials generated by a company's sales team.
Thus, it is highly desirable to provide a stereo sound unit for portable computer workstations that is compact and inexpensive as possible but can still provide the stereo separation and tonal range needed for high-fidelity sound reproduction. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to storage systems. More particularly, the invention relates to a method and system for managing storage systems containing multiple data storage devices.
2. Background
Conventional data storage systems include one or more storage devices connected to a controller or manager. As used herein, the term “data storage device” refers to any device or apparatus that can be used for the storage of data, e.g., a disk drive. For explanatory purposes only and not as an intent to limit the scope of the invention, the term “disk drive” will be used throughout this document instead of the tern “data storage device.”
A logical volume manager (also called a logical disk manager) can be used to manage storage systems containing multiple disk drives. The logical volume manager configures a pool of disk drives into logical volumes (also called logical disks) so that applications and users interface with logical volumes instead of directly accessing physical disk drives. One advantage of using a logical volume manager is that a logical volume may span multiple physical disks, but is accessed transparently as if it were a single disk drive. These logical volumes appear to other components of the computer system as ordinary physical disk drives, but with performance and reliability characteristics that are different from underlying disk drives.
The logical volume manager divides a physical disk drive into one or more partitions (also known as extents or subdisks). Each logical volume is composed of one or more partitions and each partition is typically defined by an offset and length. Because of the overhead inherent in managing multiple partitions, conventional systems normally have severe limitations on the number of partitions that can be formed on a physical disk drive. The practical limit in conventional systems is normally less than 100 (and often less than 10) partitions on a single disk drive. Due to the nature of the data structures and algorithms used by conventional volume managers, the maximum number of partitions or subdisks permitted to a logical volume in conventional systems is usually much less than 5000. In the simplest case, the disk manager forms a logical volume from a single partition. In more complex cases, the disk manager may form logical volumes by concatenating multiple partitions.
Each partition can, and typically does, have a different length. When a logical volume is no longer needed, its partitions are deleted so that space on the disk drives is made available for another partition to be created. However if a new partition is larger than the available space, then the space cannot be reused for the new partition. If the new partition is smaller than the available space, then a portion of the free space will be used and an even smaller piece will remain free. Over time, this results in many small pieces of free space that cannot be reused. This problem is often referred to as “fragmentation.”
Traditional approaches to fragmentation problems often introduce other problems into the system. For example, one traditional solution is to move existing partitions together so that the system free space is in one piece. However, this solution could be quite expensive since a significant amount of existing data may have to be moved to place all the partitions together. Moreover, the corresponding data may have to be locked during the move to prevent data inconsistencies from occurring. As a result, this solution could reduce or prevent the availability of data to users during the data move.
Load balancing is another function that should be addressed by the logical volume manager, since the manner in which data is distributed among disk drives may cause load balancing problems. A disk drive can usually service only one I/O request at a time. Requests received at a “busy” disk drive are stored in a queue for later processing, usually in the order received. If one disk drive is accessed more than other disk drives, the queue for accessing data from the busier disk drive becomes longer, and accordingly, the wait also becomes longer. This may result in some disk drives being overloaded while others remain idle or lightly loaded.
Solutions have been proposed to solve this load balancing problem but with limited success. A heavily accessed logical volume may be striped over a number of disk drives to distribute the load. However, the number of partition concatenations to stripe across must typically be chosen when the logical volume is allocated. This requires knowing ahead of time that a set of data is going to be heavily accessed, and presumes that the access pattern will not change over time. Because of changing access patterns, it is usually very difficult to predict optimal striping patterns ahead of time.
Another solution is to gather statistics about the frequency in which different logical volumes are accessed, and then reallocate multiple logical volumes to put less frequently accessed logical volumes on the same physical disk drives as more heavily accessed logical volumes. Logical volumes may also be reallocated to be striped over more disk drives. Deciding how to reallocate, however, is usually a labor intensive administrative task with conventional systems. Once data has been stored, it is normally quite expensive to move that data around. The data is either made unavailable or significant overhead must be incurred to coordinate normal accesses with the movement of the data. In addition, changing the number of disk drives for striping normally requires recopying of the entire logical volume.
A disk drive can be added to a system to increase the amount of available storage. Typically, new data is stored in the new disk drive, rather than moving existing data to be stored in the new disk drive. It may be necessary in some circumstances to add disk drives to support more I/O operations rather than to just provide more storage. However, adding a disk drive for this purpose raises many of the same problems associated with load balancing. For example, when first added, a new disk drive is like a device that has been misconfigured to be idle and needs data from existing logical volumes to be moved to it.
To protect against the loss of information, data on the system can be “mirrored” (i.e., duplicated and stored) on two or more separate storage locations. In this way, an additional copy of data is available for retrieval if the first copy cannot be accessed. However, conventional systems typically provide mirroring at relatively coarse granularity levels. For example, many systems provide mirroring at the granularity of the disk drive, i.e., entire disk drives are mirrored, even if it is desired to mirror only a portion of the data on the disk drive. By implementing mirroring on a disk drive basis, it is not normally possible to mix data with different redundancy requirements on the same disk drive. For example, parity protection can also be used to protect data. In many system, mirroring is more useful for heavily accessed data while parity protection is more useful for less frequently accessed data. In many conventional systems, administrative overhead makes it difficult to configure and protect some of the data with mirroring while protecting other data on the same disk drive with parity protection. Thus, the conventional method of implementing redundancy could create load imbalances.
Protection from disk drive failure can also be achieved by mirroring partitions or concatenations of partitions. Parity protection can also be maintained on a partition basis. To ensure that a disk drive failure does not result in lost data, all partitions in one concatenation should be on disk drives that are not used by other concatenations used for the same logical volume. This requires knowledge about all portions of a logical volume when allocating a new one. This is not a problem for a small number of partitions, but could be present a problem for a logical volume having a large number of partitions.
Conventional redundancy methods also do not adequately address the issue of multiple disk drive failures. If a system contains many logical volumes which spread redundancy data with small allocation granularity over many disk drives, then the chance of two disk drives failing which both contain redundant copies of a particular data item increases. As the partition size decreases, the chances of multiple drive failures that result in lost data increase, since there are more combinations of disk drives protecting redundant copies of the same data.
The foregoing problems of the conventional systems are further exasperated by systems containing many disk drives (e.g., a thousand or more disk drives). This is due in large part to the amount of manual administration required in conventional systems. In conventional systems, the functions of configuring, addressing, and administering logical volumes and disk drives are normally performed manually by an administrator who must make choices as to the proper configuration to employ. When a large number of disk drives and/or logical volumes are used, this manual administration becomes more and more difficult. Thus, existing systems are prone to human error and their structures (administrative and data) do not scale well beyond a certain number of disk drives.
Thus, there is a need for a system and method to address the above described problems of the related art. There is a need for a logical volume manager which can efficiently and effectively address the problems inherent in the prior art with respect to load balancing, fragmentation, and incremental addition of disk drives, particularly in disk systems having a very large number of disk drives. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional transportation and storage of industrial gases such as hydrogen takes place with the gas in the form of a liquid, the liquefied gas being referred to as a cryogen or a cryogenic liquid. In liquid form a larger quantity of the product can be stored in a smaller space than if the product were in the gaseous form. A major problem with transportation and storage of gases in liquid form is that it is impractical (i.e. excessive cost in equipment is required) to have a continuous quantity of gaseous product available to the customer at the point of use at pressures exceeding those obtainable by using a standard cryogenic storage container. Normally the product, as it is withdrawn from the storage vessel, passes through a heat exchanger to raise the temperature to that of ambient. If the gas is to be delivered to the point of use at pressures above the storage vessel pressure, the internal pressure of the gas must be raised by means of an expensive warm gas compressor.
The most common method of solving the problem of delivery of continuous quantities of product gas at high pressure is to store the product as a gas at high pressure and ambient temperature in stationary or mobile gas storage vessels. One type of vessel is the well known high pressure tube, or banks of tubes, adapted for being towed to the site in the form of a tube trailer. The storage pressure for this type of product is higher than the use pressure and is regulated to the use pressure by conventional pressure regulators. This method presents the problems of filling the stationary vessels or replacing the mobile ones as they approach use pressure. Also, the total quantity of product available "on-site" above use pressure is typically small unless a large number of costly high pressure tubes or tube trailers are used.
Another method is to store the product as liquid in the low pressure container and pump the liquid, batch-wise, to high pressure (exceeding use pressure). High pressure storage vessels are also required to store the gaseous product prior to usage. The method of liquid feed to these pumps can induce cavitation or vapor choking which is damaging to the unit, and is potentially dangerous in flammable or oxidizing gas service. Also, this type of pump tank system promotes excessive product venting due to repeated cooldowns, thermal stratification of the liquid in the tank and partial losses of insulating vacuums in the conventional cryogenic storage tank and associated plumbing insulation, these problems being especially acute where the customer has a low usage rate for the product.
Another method of solving the problem is to pressurize warm gaseous product to the required use pressure from a low pressure storage container using warm gas compressors. This method requires larger equipment, with capital costs 5 to 10 times higher than cryogenic pressurization, due to the low density of the compressor feed. Operating costs are considerably higher for maintenance and electricity and cooling water is necessary for the compressor. A much smaller pressure ratio is achieved per stage in the compressor since the feed is at ambient temperatures so more stages may be necessary to reach a desired discharge pressure versus that which would use cryogenic equipment.
One other method used to solve the problem involves constructing a special cryogenic container to hold high pressure product and regulate the product to use pressure. This method requires the use of special tanks which are extremely expensive, have a practical pressure limit (about 750 psig) for any storage advantage over warm high pressure vessels, require special filling equipment or extreme venting to enable filling thus taking the system off-line, elaborate or extensive pressure building systems all leading to problems in protecting the tank from over-pressure scenarios or situations. Also such high pressure cryogenic containers may exceed the fluid's critical pressure, raising concerns with the vessel's safety vent system for use with supercritical fluid. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a sound-field-modifying structure and more particularly to a sound-field-modifying structure that makes use of air-coupled surface waves to provide noise reduction, spectral shaping, or sound amplification.
The modification of sound fields using passive, physical structures is useful in many application areas. These include applications where noise reduction or attenuation is the main goal, as with highway noise barriers or sound-absorbing ceiling tiles. In other applications, sound amplification is desired, as with parabolic dish microphones. And others involve attenuation in some frequency bands resulting in relative amplification in others, i.e., spectral shaping of sounds, as with the design of concert halls. Typical strategies include the use of porous damping materials, the incorporation of Helmholtz resonators, and the use of barriers, shaped reflectors and diffusers.
It is also possible to make use of an entirely different physical mechanisms, such as air-coupled surface waves, to achieve improvements in performance in all of these areas. Air-coupled surface waves form and propagate over porous surfaces that have been designed to have appropriate acoustic impedance. Acoustical energy collects into the surface wave and is localised close to the surface as it propagates over the surface. These structures are useful for sound attenuation through the introduction of acoustically absorbing materials into sections of the surface wave structure, so that acoustical energy is trapped into a surface wave and then dissipated by the absorbing materials. Thus, improved noise reduction is achieved.
For example, in U.S. Pat. No. 4,244,439 entitled xe2x80x9cSound-absorbing structurexe2x80x9d, issued to Wested, a structure for use to reduce traffic noise is proposed. The mechanism used to reduce the noise, although not explicitly noted as such, is air-coupled surface waves.
Different frequency ranges are addressable in different fashions, so spectral shaping of different signal types such as speech, music, and noise are achievable. Optionally, a surface wave structure is designed so that it behaves differently for sound arriving from different directions: there is a directivity potential that is optionally exploited. Also, surface waves propagate with a phase speed that is different than the free field sound speed.
Efforts are often made to reduce noise in boardrooms and conference rooms using absorptive panels and carpets. However, such noise control efforts also reduce the intensity level of speech signals resulting in difficulties hearing individuals at opposing ends of a room, particularly for long rooms. This reduced audibility is even more of a problem when a microphone is being used to pick up the speech signals because the visual cues are not present at the remote listening end. Two procedures in current use to reduce the above noted problem are (i) reinforcing the speech signals along the length of a boardroom by installing an overhead, ceiling-mounted reflective panel and (ii) use of electronic amplification with microphones at each talker position. However, the installation of an overhead reflector can involve considerable structural, aesthetic and lighting considerations and, moreover, the effects of the original noise control efforts are offset by such an approach. Electronic amplification requires electronic hardware, such as microphones, amplifiers, loudspeakers and mixers, and a technician to ensure that equipment is running properly and levels are appropriately set.
It would be advantageous to provide a method and structure for improving acoustic communication.
According to an embodiment of the invention there is provided a surface wave apparatus having reduced sound attenuation across a surface along a known path having a path distance when compared to sound attenuation along a same path distance through air comprising:
a plurality of cells defining a first surface for supporting acoustical communication between a sound field incident on the first surface and the plurality of cells, each cell including:
an end that is approximately acoustically sealed such that most acoustic energy does not pass therethrough and spaced from the first surface for providing an effective acoustic surface impedance for which air-coupled surface waves form and propagate at selected sound frequencies,
at least a bounding sidewall having 2 opposing bounding sides, between the first surface and the end, that are approximately acoustically sealed such that most acoustic energy does not pass therethrough, the 2 opposing bounding sides of adjacent cells approximately defining boundaries of the known path,
the at least a bounding sidewall having further sides between the first surface and the end spaced apart by a distance less than a wavelength of sound at a known frequency and each disposed across the known path on the surface wave apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to cross-linked PVOH coatings having enhanced barrier characteristics and, more particularly, to PVOH coatings which exhibit improved processing characteristics resulting in cross-linked coatings providing improved oxygen barriers especially at high relative humidities.
Poly(vinyl alcohol) ("PVOH") coatings have been applied to various substrates in the past, and are known to provide a barrier to the transmission of oxygen. PVOH, however, is soluble in water and therefore is susceptible to attack by moisture. Various attempts have been made to decrease the sensitivity of PVOH to moisture.
One known method of decreasing the sensitivity of the PVOH coating to moisture is to cross-link the poly(vinyl alcohol). For example, a cross-linking agent and catalyst may be applied along with the poly(vinyl alcohol) such that the agent interconnects and thereby cross-links the poly(vinyl alcohol) molecules as such coating is dried. The catalyst is present to facilitate the cross-linking process.
Commonly owned co-pending application Ser. No. 08/080,602 discloses a polymeric substrate having a cross-linked layer of PVOH adhered thereto. The PVOH layer includes a cross-linking agent such as melamine or urea formaldehyde, which is cross-linked in the presence of a sulfuric acid catalyst. The resultant film exhibits enhanced oxygen barrier characteristics, as compared to barrier films of the prior art.
However, it can be difficult in the prior art films, including the film disclosed in commonly owned co-pending application Ser. No. 08/080,602, now U.S. Pat. No. 5,380,586, to ensure that the layer of poly(vinyl alcohol) cross-links fully throughout itself. In this regard, it is believed that the degree of cross-linking is indicative of the oxygen barrier characteristics of the resultant film. Stated differently, poly(vinyl alcohol) layers that are fully cross-linked tend to exhibit better barrier characteristics than those layers which are less than fully cross-linked.
The prior art films, in an attempt to achieve maximum cross-linking, are often dried and/or stored for an extended period of time. For example, it may be necessary to store a film for weeks, or even months, before such film has reached its point of maximum cross-linking. The aforementioned storage period increases the production time and cost for manufacturing polymeric films having cross-linked PVOH coatings thereon.
There is therefore a need in the art for a method of providing a PVOH coating on a substrate, such as a polymeric film, which upon drying is substantially 100% cross-linked thereby eliminating or, at the minimum, greatly reducing the storage period. The resultant coating should exhibit improved oxygen barrier characteristics and improved rubbing resistance especially at high relative humidities. Moreover, the resultant coating should bond firmly to the underlying substrate. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to fiber laser oscillators that have an optical fiber including a core portion. The core portion contains a laser activation material so that a laser beam is generated and amplified within the core portion when a pumping light enters the optical fiber.
2. Description of the Related Art
Conventionally, a variety of fiber laser oscillators have been proposed in order to obtain a laser beam that is extremely high in quality while using a pumping light that has a relatively low beam quality.
A conventional fiber laser generator of an end pumping type generally uses an optical fiber 10 as shown in FIG. 9(C). The optical fiber 10 has a core portion 12 that is positioned centrally with respect to a cross section of the optical fiber 10. The core portion 12 may permit the transmission of a single mode laser beam and may be doped with a rare earth element (such as Nd and Er) or the like. The core portion 12 has a fiber-like configuration and may have a diameter of about 2 to 12 μm. The optical fiber 10 has a first cladding portion 14 (permitting transmission of a pumping light Lin) surrounding the core portion 12. The refractive index of the first cladding portion 14 is lower than the refractive index of the core portion 12 in order to confine an output laser beam Lout within the core portion 12. In addition, the optical fiber 10 has a second cladding member 16 surrounding the first cladding portion 14. The refractive index of the second cladding member 16 is lower than the refractive index of the first cladding portion 14, so that the pumping light Lin is confined within the first cladding portion 14.
When the pumping light Lin enters the optical fiber 10 to transmit through the core portion 12 (or collides with the core portion 12), the rare earth element contained in the core portion 12 is excited to generate the output laser beam Lout, and the single mode output laser beam Lout remains within the core portion 12. The output laser beam Lout has a relatively small diameter (which may depend on the diameter of the core portion 12) and has a relatively small divergence angle (which may depend on the wavelength of the output laser beam Lout and the refractive indexes of the core portion 12 and the first cladding portion 14). Therefore, the quality of the output laser beam Lout is extremely high. The quality of the output laser beam Lout may be represented by a product of the diameter of the outgoing light and half the divergence angle of the outgoing light. The beam quality may become higher as the product becomes smaller. However, because the area at the end surface of the optical fiber is relatively small, the energy of the pumping light Lin is relatively low. As a result, there has been a desire for an increased amount of output energy.
In this specification, the term “optical fiber” is used to mean an optical fiber having a core member and a cladding member covering the core member, for use with a fiber laser oscillator, unless otherwise indicated.
U.S. Pat. No. 5,999,673 proposes methods shown in FIGS. 8(A) and 8(B). In the method shown in FIG. 8(A), an optical fiber 10z is wound around the optical fiber 10 for use with a fiber laser oscillator and provides a guide for a pumping light to be directed to the optical fiber 10. In the method shown in FIG. 8(B), the optical fiber 10z, for providing a guide for the pumping light, extends along the optical fiber 10 and is gradually joined to the optical fiber 10 at the circumferential surface. Therefore, when the pumping light Lin enters the optical fiber 10z, the incident pumping light Lin is guided to the optical fiber 10 via the joint portion.
Japanese Laid-Open Patent Publication No. 2001-015835 proposes a laser beam generator shown in FIGS. 8(C) and 8(D), in which a core portion 12 is arranged to extend within a flat plane. In addition, prisms 4a and 4b are disposed on an upper surface of the generator so that the pumping light Lin enters via an increased area provided by the prisms 4a and 4b (in this case, the pumping light Lin enters from a circumferential surface of the optical fiber and not from an end surface). As a result, an outgoing laser beam Lout may have a relatively larger energy.
Japanese Laid-Open Patent Publication No. 10-190097 proposes a laser device shown in FIG. 9(A), in which an optical fiber 10 is coiled and then bound by a UV curable resin so as to have a configuration similar to a cylindrical block. A pumping light may be emitted from the outer peripheral side of the laser device.
Japanese Laid-Open Patent Publication No. 11-284255 proposes a fiber laser device shown in FIG. 9(B), in which an optical fiber 10 is wound around a circumferential surface of a cylindrical rod 50z made of glass. A pumping light emitted from a laser diode 30z may enter the glass cylindrical rod 50z and may be transmitted to a position adjacent to the circumferential surface of the glass cylindrical rod 50z via a collimating lens 56 and a prism 54. The pumping light transmitted to the position adjacent to the circumferential surface of the glass cylindrical rod 50z may be reflected within the glass cylindrical rod 50z, thereby pumping the wound optical fiber 10 so that a laser beam is outputted.
In general, the diameter of a core portion 12 of an optical fiber 10 is set to be about 2 to 12 μm in order to improve the quality of a generated laser beam. As noted previously, the quality of an output laser beam Lout may be represented by the product of the diameter of the outgoing light and half the divergence angle of the outgoing light. The beam quality may become higher as the product becomes smaller. The diameter of a first cladding portion 14 is set to be about several hundred to several thousand μm.
In case of the known end pumping type fiber laser oscillator shown in FIG. 9(C), the area of the end surface of the cladding portion 14, to which the pumping light Lin enters, is small. In addition, the cross sectional area of the core portion 12 is very small in comparison with the area of the end surface of the cladding portion 14. Therefore, the probability of the transmission of the pumping light Lin through the core portion 12 is low, resulting in a low oscillating efficiency. Further, it is very difficult to target the incident pumping light Lin so as to collide with the core portion 12, because the pumping light Lin is relatively low in quality. Therefore, it is very difficult to generate an output laser beam Lout with a large amount of energy.
In case of the known art disclosed in U.S. Pat. No. 5,999,673 (see FIGS. 8(A) and 8(B)), there is a limitation to the diameter of the optical fiber 10z used for providing a guide for the pumping light. Therefore, the amount of the pumping light Lin that can be entered through the optical fiber 10z is limited. In order to produce an output laser beam Lout with a large amount of energy, a large number of optical fibers 10z (i.e., such as several hundred to several thousand) must be used for connections. This may cause difficulties in manufacturing the fiber laser oscillator. Further, the fiber laser oscillator must have a relatively large size.
In addition, because of the increases in the number of parts (optical fibers 10z in this case), the probability of errors occurring may be relatively high. As a result, in some cases the pumping light Lin may not be highly effectively in entering the optical fiber 10. It is difficult to connect the optical fibers 10z so as to have the same connecting conditions for each optical fiber 10z. In addition, it is also difficult to position the optical fibers 10z so as to align with the path of the pumping light Lin. In usual cases having these types of difficulties, some degree of error is inevitable.
In case of the known art disclosed in Japanese Laid-Open Patent Publication No. 2001-015835 (see FIGS. 8(C) and 8(D)), the circumferential surface of the optical fiber, which has the core portion 12 arranged within a flat plane and covered by the cladding portion 14, is machined so as to allow placement of the prisms 4a and 4b upon the side surface. However, in order to substantially entirely absorb the pumping light Lin that enters via the prisms 4a and 4b, the device must have a considerable length in the longitudinal direction. Therefore, the device is constrained to have a relatively large size.
In addition, because the pumping light Lin must enter the prisms 4a and 4b in the form of parallel light beams, a collimating lens is required for converting the pumping light Lin to parallel beams. Consequently, additional elements, i.e., collimating lenses and prisms are required for transmitting the pumping light Lin to the optical fiber. Therefore, there exists a possibility that the oscillating efficiency may be lowered due to errors in configurations or positions of the additional elements.
In case of the known art disclosed in Japanese Laid-Open Patent Publication No. 10-190097 (see FIG. 9(A)), the pumping light Lin is emitted from the outer peripheral side of the block-like optical fiber 10. Therefore, it is not possible to completely confine the pumping light Lin. Some portion of the pumping light L may not be used for pumping. As a result, the oscillating efficiency of the device may be lowered.
In case of the known art disclosed in Japanese Laid-Open Patent Publication No. 11-284255 (see FIG. 9(B)), the pumping light Lin may enter the glass cylindrical rod 50z and may be transmitted to a position adjacent to the circumferential surface of the glass cylindrical rod via the prism 54. However, the pumping light Lin should enter the prism 54 in the form of parallel light beams. If a semiconductor laser is used for generating the pumping light Lin, the device requires a collimating lens to convert the pumping light Lin into parallel light beams. Therefore, for the same reason as discussed in connection with Japanese Laid-Open Publication No. 2001-015835, the oscillating efficiency of the device may be lowered. In addition, the volume of the core portion 12 is very small relative to the total volume of the portions through which the pumping light Lin is transmitted. The probability that the pumping light Lin collides with the core portion 12 is low. Therefore, the efficiency is low for this reason as well. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a device and a method for hooking skin and holding it away from an incision, thus affording a surgeon greater access to the surgical area. More particularly, a forceps-type instrument is configured to hook into the skin on one side of an incision and hold the skin back against the hook.
2. Description of the Related Art
The invention relates to a device for hooking and, holding back the skin at an incision in the skin surface. An incision tends to remain closed because of the resilience of the skin and underlying tissue. Skin hooks are used to counteract this tendency by hooking the skin for the purpose of pulling the skin back from the incision and for providing a surgeon with improved access and visibility.
Known devices of this type include straight-shaft skin hooks, which have a pencil-type shape, with single or multiple hooks, as described and shown in U.S. Pat. No. 3,857,386 to Ashbell. Skin hooks of this design suffer from several disadvantages including the fact that they tend to slip to an extent that the hook becomes dislodged and needs to be reinserted. These skin hooks may also cause trauma from slippage in that the skin may tear in the area where the hook has slipped. More importantly, since the hook is not covered or protected, the physician or attendant is at significant risk of being inadvertently punctured, particularly when the skin hook is passed from the attendant to the physician or vice versa. With the possibility that these medical professionals could become infected by viruses such as AIDS or hepatitis from such a puncture, this design has severe disadvantages. Hooks with this design are also subject to being bent out of shape because the tips are unprotected, requiring frequent replacement.
Adhesive retractors for retracting skin at the edges of an incision, such as described and shown in U.S. Pat. No. 4,621,619 to Sharpe, have also been used to address the problem of slippage. An adhesive pad enables the retractor to remain in place. These products have drawbacks such as adhesives that do not stick all the time and the fact that they are not reusable which contributes to higher medical costs and waste that requires special handling. Further, since sterility is of utmost importance during an operation, the adhesive retractor is disadvantageous because it is difficult to sterilize since the adhesive pads are not autoclavable. Neither do adhesive retractors protect against accidental puncture by the retractor hooks.
Thus, there exists a need for a skin hook that will not slip, causes minimum trauma to the patient, will not bend when inadvertently bumped or dropped, and does not have unshielded sharp points or edges that could accidentally puncture physicians or attendants engaged in surgical procedures. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electrosurgery is commonly used to cauterize, cut and/or coagulate tissue. In typical electrosurgical devices, RF electrical energy is applied to the tissue being treated. Local heating of the tissue occurs, and, depending upon the waveform of the applied energy, the desired effect is achieved. By varying the power output and the type of electrical waveform, it is possible to control the extent of heating and, thus, the resulting surgical effect. For example, a continuous sinusoidal waveform is best suited for cutting, while a waveform having periodically spaced bursts of a partially rectified signal produces coagulation.
In bipolar electrosurgery, the electrosurgical device includes two electrodes. The tissue being treated is placed between the electrodes, and the electrical energy is applied across the electrodes. In monopolar electrosurgery, the electrical excitation energy is applied to a single electrode at the surgical site, and a grounding pad is placed in contact with the patient. The energy passes from the single monopolar electrode through the tissue to the grounding pad.
While tissue heating is the mechanism by which the various surgical treatments are realized, it can also cause various obstacles to optimum procedure performance. For example, the heat causes tissue fluids to evaporate. As the tissue is desiccated, the electrical resistance of the tissue increases, making it increasingly more difficult to supply adequate power to the tissue. Eventually, the resistance rises to such a high level that it is impossible to continue the procedure. This is such a well-known and common problem in prior electrosurgical devices that surgeons have become accustomed to it and have tailored their procedures to minimize its effects. Typically, surgeons operate prior electrosurgical devices at a very low power level. This prevents the electrode and the adjacent tissue from becoming too hot too fast. Unfortunately, it also requires the surgeon to perform the procedure much more slowly than he would if he could operate the device at full power. As a result, the procedure takes much longer, requiring more operating room time and longer exposure of the patient to dangerous anesthetics.
Heating also causes charring of the tissue. Like desiccated tissue, charred tissue is of very high resistance. Therefore, as the surface of the tissue being treated becomes charred, it becomes difficult, and eventually impossible, to continue delivering power to the tissue as desired. Once again, to avoid the problem, surgeons perform procedures much more slowly than is desirable.
Electrosurgical procedures are also hindered by adherence of tissue to heated electrodes. During electrosurgery, the heated tissue tends to transfer heat to the electrodes. As an electrode becomes hot, tissue tends to stick to it, resulting in various complications. First, the tissue stuck to the electrode can have a high resistance and can therefore hinder delivery of power to the tissue. In prior devices, while performing a procedure, a surgeon must periodically remove the device from the patient and clean it before continuing. In addition, surgeons typically perform the procedure at low power to reduce tissue adherence and thus the frequency of cleanings.
Tissue sticking can also cause unnecessary bleeding. During electrosurgical procedures, the tissue being treated often heats the electrode such that, when the electrode is removed from the tissue, a portion of the tissue sticks to the electrode and is torn away, which likely results in bleeding. Thus, as the surgeon is attempting to cauterize in order to stop bleeding, he is actually causing more bleeding. He must therefore make repeated attempts to cauterize the area, first cauterizing, then tearing away tissue, then recauterizing the torn tissue, etc. Once again, in an attempt to alleviate the problem, surgeons will typically operate at low power, resulting in a procedure requiring much more time to complete than is desirable.
Another problem caused by heated electrodes is the creation of steam and smoke in the proximity of the surgical site. As a result, the surgeon's visibility is reduced, and he must periodically interrupt the procedure to allow the steam or smoke to dissipate.
It has been recognized that cooling the surgical site during electrosurgery would be desirable. In response, systems have been developed which flush the surgical site with fluid during surgery. However, this results in much more steam being created at the surgical site and the associated reduction in visibility. Also, the fluid introduced at the site must be aspirated as the procedure is performed. | {
"pile_set_name": "USPTO Backgrounds"
} |
For example, a conventional hole plug has, as shown in FIG. 20, an integral structure formed of synthetic resin and the like. In an insertion part 1, a front side flange part 2 and a back side flange part 3 are formed to face each other. The hole plug seals an attachment hole from both sides of the attachment hole by means of the front side flange part 2 and the back side flange part 3 (Patent Literature 1). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to bioenergy solid fuel products. More particularly, the present invention relates to clean burning bioenergy solid fuel products and methods of making the same.
Due to diminishing quantities of coal, petroleum, and natural gas products, attention is being directed to found renewable fuel sources of energy. With the growing interest in renewable energy, the use of bio-mass-based fuel pellets has increased considerably.
Also, the recent surge in pricing for natural gas and fossil fuels has dramatically increased energy production to alternatives such as heating that utilizes bio-mass-based raw materials, particularly in Europe and North America resulting in the emergence of a sizeable industry for bio-mass-based fuel products. Thus, the demand for bioenergy fuel sources, such as those made from pellets of compressed biomass, such as wood pellets made from forestry products such as compacted saw dust, leftover logging material, wood chips or other energy product sources such as soy pellets, palm kernel shell, coconut shell, cellulose, grass, and other types, or from agricultural products such as straw, alfalfa, corn. Or other types such as domestic and municipal wastes have increased dramatically.
Furthermore, while coal has been a popular alternative, there are concerns with carbon dioxide and sulfur emissions as well as the desirability of having a more ecological renewable material resource for use as an alternative fuel option.
There remains a need in the art for an improved bioenergy solid fuel product based on sustainable/renewable resources that also exhibits high energy during combustion as measured in BTUs (British Thermal Unit), that also burns efficiently, cleanly and safely.
Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to an optical semiconductor device and a manufacturing method thereof, and more particularly to an optical semiconductor device including a semiconductor device which emits a light beam and a manufacturing method thereof.
2. Description of the Related Art
A package for an optical semiconductor device such as a surface-mounted LED, is formed by inserting an electrically conductive lead in a thermoplastic resin. Japanese Patent Publication (kokai) No. 2000-183407 discloses such a package. FIG. 5 is a vertical section of a package 100 for an optical semiconductor device. Package 100 is provided with a conductive lead 101 and a base 102. Base 102 includes an indentation 102a provided on an upper surface 101a of lead 101. A light emitting element 104 is positioned on lead 101. Indentation 102a is filled with translucent resin to form a translucent part 103. A wire 105 made of gold, electrically connects emitting element 104 and lead 101. A light beam emitted from light emitting element 104 radiates from package 100 through translucent part 103.
Package 100 is manufactured as described next. First, lead 101 is inserted into a die. Then, injection molding is carried out by filling the die with thermoplastic resin to form base 102. After a conductive adhesive is applied on one electrode of lead 101, light emitting element 104 is positioned on the applied conductive adhesive. Wire 105 is bonded to the other electrode of lead 101 to complete a conductive connection to light emitting element 104. Then, after filling into indentation 102a, translucent resin is cured under a certain curing condition to form translucent part 103. As a result, package 100 is produced.
A light beam emitted from element 104 radiates through translucent part 103. The angle of the beam spread ranges from 100-degree to 120-degree. Therefore, it is difficult to focus the light beam outputted from package 100 without a focusing lens or a light reflector. Consequently, package 100 is not suited for illuminating a specific limited region.
In order to illuminate a specific region, some packages have a wall for reflecting a light beam to control a directivity thereof. FIG. 6 is a vertical section of a package 200 for an optical semiconductor device as one example of such packages. Package 200 includes a lead 201 and an outer envelope 202. Outer envelope 202 includes a first indentation part 202a and a second indentation part 202b which surrounds first indentation part 202a. A translucent part 203 is formed by filling first indentation 202a with phosphor mixed silicon resin. An inner wall of second indentation part 202b serves as a reflecting wall 204 to reflect a light beam emitted from light emitting element 205. A wire 206 made of gold electrically connects a light emitting element 205 and one of electrodes of lead 201. Q in FIG. 6 designates light rays of the light beam emitted from light emitting element 205.
FIG. 7 illustrates a problem that may be experienced with package 200 having reflection wall 204 and translucent part 203 which is made by filling sealing resin. As shown in FIG. 7, phosphor mixed silicon resin creeps up reflection wall 204 in the process of filling and curing the resin. As a result, the area of reflection wall 204 is substantially reduced. Further, a surface shape of translucent part 203 differs from a desired designed shape. Consequently, reflection wall 204 does not perform as expected. Moreover, the phosphor mixed silicon resin creeping up reflection wall 204 also results in translucent part 203 being concave. As a result, an optical path of a light ray passing through the center of translucent part 203 is shorter than that of a light ray passing through the periphery of translucent part 203. This causes a different excitation and luminescence of the phosphor between a center and a peripheral part of translucent part 203. Consequently, color tone deteriorates. | {
"pile_set_name": "USPTO Backgrounds"
} |
Participation in athletic activities is increasing at all age levels. All participants may be potentially exposed to physical harm as a result of such participation. Physical harm is more likely to occur in athletic events where collisions between participants frequently occur (e.g., football, field hockey, lacrosse, ice hockey, soccer and the like). In connection with sports such as football, hockey and lacrosse where deliberate collisions between participants occur, the potential for physical harm and/or injury is greatly enhanced. Approximately 300,000 athletes incur concussions in the United States each year. This may be a conservative estimate because many minor head injuries go unreported. Although most concussions occur in high-impact sports, athletes in low-impact sports are not immune to mild traumatic brain injury. Head injuries are caused by positive and negative acceleration forces experienced by the brain and may result from linear or rotational accelerations (or both). Both linear and rotational accelerations are likely to be encountered by the head at impact, damaging neural and vascular elements of the brain.
At the school level, school authorities have become sensitive to the risk of injury to which student participants are exposed, as well as to the liability of the school system when injury results. Greater emphasis is being placed on proper training and instruction to limit potential injuries. Some players engage in reckless behavior on the athletic field or do not appreciate the dangers to which they and others are subject by certain types of impacts experienced in these athletic endeavors. Unfortunately, the use of mouth guards and helmets does not prevent all injuries. One particularly troublesome problem is when a student athlete experiences a head injury, such as a concussion, of undetermined severity even when wearing protective headgear. Physicians, trainers, and coaches utilize standard neurological examinations and cognitive questioning to determine the relative severity of the impact and its effect on the athlete. Return to play decisions can be strongly influenced by parents and coaches who want a star player back on the field.
The same problem arises in professional sports where the stakes are much higher for a team, where such a team loses a valuable player due to the possibility of a severe head injury. Recent medical data suggests that lateral and rotational forces applied to the head and neck area (for example, flexion/extension, lateral flexion, and axial rotation) are more responsible for axonal nerve damage than previously thought. Previous medical research had indicated that axially directed forces (such as spinal compression forces) were primarily responsible for such injuries.
Identifying the magnitude of acceleration that causes brain injury may assist in prevention, diagnosis, and return-to-play decisions. Most field measurements assess the acceleration experienced by the player with accelerometers attached to the helmet. The following show some attempts for measuring the impacts to the skull and brain while the player is participating in a sporting activity. U.S. Pat. No. 5,539,935, entitled “Sports Helmet,” issued on Jul. 30, 1996 and U.S. Pat. No. 5,621,922, entitled “Sports Helmet Capable of Sensing Linear and Rotational Forces,” issued on Apr. 22, 1997 are examples of some of those attempts. Both patents relate to impact sensors for linear and rotational forces in a football helmet. These devices test the impact to the skull of a player. If an athlete suffers a concussion, for example, it will be possible to determine if the relative magnitude of an impact is dangerously high relative to a threshold to which each sensing device is adjusted, taking into consideration the size and weight of the player.
Another attempt performs testing impact acceleration to the head with an intraoral device which provides acceleration information of the brain in various sports. Other attempts have been made, however all these attempts can be costly to implement and fail to provide full historical medical information to coaches, trainers and medical professionals in real-time for dozens of players at a time on one or more adjacent fields. | {
"pile_set_name": "USPTO Backgrounds"
} |
Thin film resistors are generally resistors that are formed on a semiconductor substrate using a thin-film deposition process. An exemplary thin film resistor 10 is illustrated in FIG. 1. As depicted, the thin film resistor 10 is formed on a substrate 12 and is shown having metallic interconnects 14 extending from either side of the thin film resistor 10. The substrate 12 may be formed from a wafer and is used as a foundation on which one or more semiconductor devices, such as transistors and diodes, are formed. The interconnects 14 are used to connect either side of the thin film resistor 10 to other electrical components, such as other resistors, inductors, capacitors, transistors, diodes, and the like in an overall circuit that is formed at least in part on the substrate 12. While the interconnects 14 are shown on either side of the thin film resistor 10, the interconnects 14 may be provided entirely or substantially above and below the thin film resistor 10.
In certain applications, the resistance provided between the interconnects 14 by the thin film resistor 10 is critical to the overall performance of the circuit in which the thin film resistor 10 resides. The circuit may be designed to require a resistor with very tight tolerances, and if the resistance provided by the thin film resistor 10 falls outside of a set tolerance, the circuit may not perform as desired. As such, it is important to form the thin film resistor 10 such that the resistance provided between the interconnects 14, or two other contact points, is highly controllable and repeatable during fabrication of the overall circuit on the substrate 12.
Unfortunately, the material from which thin film resistor 10 is formed is prone to oxidizing, and oxidation occurs before the interconnects 14 are formed during the fabrication process. The oxidation results in an oxide layer 16 forming over the exposed surface of the thin film resistor 10 before the interconnects are formed. The oxide layer 16 effectively raises the interlevel contact resistance between the thin film resistor 10 and the interconnects 14, and as a result, the actual resistance provided between the interconnects 14 by the thin film resistor 10 can be significantly different than the desired resistance. While the oxide layer 16 may be removed using various acid-based cleaning steps, such cleaning steps may unintentionally erode or harm other structures that were previously formed on the substrate.
Further, semiconductor fabrication generally involves numerous deposition, etching, and cleaning iterations as the various layers and devices are formed on the substrate 12. As such, numerous etching and cleaning steps may be required after the thin film resistor 10 is formed. These etching and cleaning steps may erode portions of the thin film resistor 10. Erosion of the thin film resistor 10 also has a significant impact on the resistance provided by the thin film resistor 10 between the interconnects 14.
Accordingly, there is a need for a technique that will substantially protect thin film resistors 10 from the undesirable effects of oxidation during fabrication, such that the thin film resistors 10 can be repeatedly formed to provide resistances within relatively tight tolerances. There is a further need for a technique that will substantially protect thin film resistors 10 from erosion during fabrication. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to communications systems and methods. More particularly, the present invention relates to a system and method for providing bidirectional data communication between a master device and one or more isolated slave devices.
Serial communication buses are widely known for transferring data from one device to another or to multiple devices. Such a communication bus can be used for example to transmit configuration data from a system controller to a power supply or to receive monitoring data from the power supply itself. The communication bus can also be used to implement a communication channel within the power supply itself, for example to configure or monitor different outputs of the power supply.
In order to reduce the number of physical signal lines, a wired-AND bus configuration 100 in conjunction with open-drain drivers and a passive pull-up device can be used such as shown for example in FIG. 1. When the master and slave devices 102, 104 are not communicating the signal lines are pulled high and free for communication. Each device 102, 104 can subsequently pull the signal line to a low voltage level to initiate communications in accordance with a particular sequence in which the signal line is pulled low. Such configurations are used as known in the art for example in I2C buses or in the SMBus. These configurations are advantageous in that with an appropriate protocol data can be transmitted in both directions on the same signal line, without requiring explicit handshaking. Further, wired-AND configurations are not limited to one transmitter and one receiver, as several receivers may be connected to the same signal line.
When such a bus is used within a power supply to transfer data from an on-board power supply controller and several output modules such as for example in a modular AC-DC power supply, then it becomes necessary to provide a galvanic isolation between the transmitter and each of the receivers. Solutions to provide a galvanic isolation for a wired-AND communication bus have been proposed and are well known in the art. An example of such a solution using cross-coupled isolators IC120, IC121 associated with each of master and slave devices 112, 114 and coupled along a communications bus 116 is shown in the communications bus configuration 110 of FIG. 2.
The difficulty in circuits such as that shown in FIG. 2 is to make sure that the cross-coupled isolators 120 which are used to transfer the communication data in both directions do not form a latch. This typically requires adding some amount of circuitry in order to be able to distinguish in which direction the data is sent so that only one of the opto-isolators 120 is used at the time, thus avoiding a condition where data such as for example an output low drive signal transferred in one direction gets immediately sent back and blocks the entire communication channel by holding the input low even after the output low drive signal is no longer present. A signal line “latched” in such a manner may require complex circuitry to break the loop, or may cause further potential problems such as oscillation where multiple lines are held low and then released at the same time.
Referring now to a circuit example 200 such as shown in FIG. 3, in cases where more than two devices are connected to the same bus, the proposed isolator configurations are becoming onerous in their complexity. A pair of isolators 220 are provided for each secondary device 216, and an encoder/decoder pair 218, 222 are further provided on either end of each isolator pair 220 to facilitate the bidirectional communications.
However, in many cases the first device 212 will be configured as a master device 212 talking to, and getting response from, the other devices 214. The first device 212 could be for example a power supply controller 212, whereas the secondary devices 214 could be PWM controllers 214 for a specific isolated power supply output of the power supply system. In this case there is also usually no need to communicate from one output device 214 to another output device 214. There will only be communications along the bus 216 directly between the power supply controller 212 and the individual PWM controllers 214. It would be desirable in these cases to simplify the isolation scheme and reduce circuit duplication. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pesticides, and particularly rodenticides, can be harmful to humans and other animals that unknowingly consume them or otherwise come into contact with them. In the past, rodenticides ingested intentionally and unintentionally by humans resulted in illness and death. Presently, conventional rodenticides ingested by animals other than the pests (namely, mice and rats) for which they are intended also result in the unintentional killing of those animals. Pet animals and wildlife are both harmed or killed by conventional rodenticide usage.
Vomiting (also called emesis) is a reflexive act caused by coordinated contractions of various muscles that eject stomach contents forcefully through an animal's mouth. Humans and many other animals are capable of vomiting as a natural reaction to purge toxic substances from the body. During vomiting, the muscles of the abdomen and chest contract and the diaphragm spasms downward and inward exerting pressure on the stomach. Next, and nearly simultaneously, the cardiac sphincter, which is a part of the diaphragm surrounding the esophagus, relaxes to assist in opening the esophagus. The longitudinal muscle of the esophagus contracts, which further opens the cardiac sphincter, and the resulting pressure forces contents of the stomach up into the esophagus and out of the animal's mouth.
Rats and many other rodents are unable to vomit, i.e., cannot produce an emetic reflex. Physiologically, rats have a powerful barrier between the stomach and the esophagus but lack sufficient esophageal muscle strength to overcome and open this barrier by force, which is necessary for vomiting. In humans and other animals, the emetic reflex requires that two muscles of the diaphragm contract independently, but rats are unable to dissociate the activity of these two muscles so that they may produce the independent contractions necessary for vomiting. In addition, rats lack complex neural connections that are present within the brain stem and between the brain stem and viscera of humans and other animals that coordinate the numerous muscles that produce the emetic reflex.
While rats are unable to vomit, they do exhibit other behavior-based techniques to avoid consumption of and poisoning by toxic substances. For example, rats learn to avoid certain foods that make them sick. When a rat discovers a new food, the rat consumes a small amount of the food, and if the rat becomes ill after ingesting the food, the rat learns to scrupulously avoid that food in the future. Rats learn to identify the food that is to be avoided by its taste and smell. Rats experiencing nausea also display pica, which is the consumption of clay or other non-food materials. By ingesting clay, some toxins are bound in the rat's stomach, which assists in reducing the effects of the toxin as experienced by the rat.
While rats are unable to vomit, they can regurgitate. Regurgitation is not the same as emesis and does not produce the forceful expulsion of the stomach contents through the esophagus and out of the mouth. In studies, when a rat is fed a diet of bulky food items, when the rat regurgitates stomach contents, the regurgitant is pasty and thick in composition and, as a result of the rat's tongue action, becomes packed as a plug within the rat's pharynx, larynx and esophagus. Because the regurgitant forms a plug, the rat chokes and often dies.
The rat's esophagus includes inner circular and outer longitudinal layers of striated muscle. These two layers of striated muscle become smooth muscle near the esophagus's point of attachment with the rat's stomach. A gastroesophageal barrier separates and closes off the rat's esophagus from its stomach. The gastroesophageal barrier is formed by a crural sling, a lower esophageal sphincter, and intraabdominal esophagus that lie between the crural sling and lower esophageal sphincter. The crural sling is part of the rat's diaphragm and is composed of a U-shaped bundle of fibers that wraps around the esophagus and attaches to the rat's vertebrae so that when the crural sling contracts, the rat's esophagus is pinched closed. The rat's diaphragm is formed by two muscles: the crural sling and the costal muscle, which is attached to the rat's rib cage. The lower esophageal sphincter is a circular muscle that surrounds the base of the esophagus and, at its lower edge, includes muscle fibers that insert into the limiting ridge, as described below.
The stomach of a rat includes two parts, i.e., a forestomach and a corpus. The forestomach is a non-glandular, thin-walled portion that receives the esophagus and serves as an initial holding chamber for food that is consumed. In rats, the forestomach's walls are similar to walls of the rat's esophagus. Unlike the forestomach, the corpus is a glandular, thick-walled section having walls that include secretory glands, which produce mucus and digestive enzymes. In rats, digestion begins in the stomach's corpus. A pyloric sphincter controls movement of stomach contents from the corpus into the intestines. The forestomach and corpus are separated by a limiting ridge (also called the margo plicatus), a low fold of tissue that extends circumferentially from the large curvature of the stomach to the small curvature of the stomach just below the esophagus. At the esophagus, the limiting ridge forms a U-shape that nearly surrounds the esophageal opening into the forestomach and the muscle fibers of the lower esophageal sphincter are inserted into the limiting ridge. Due to this anatomical structure, when a rat's lower esophageal sphincter contracts, both the walls of the rat's esophagus and the sides of the limiting ridge's U-shaped portion are pulled together, which tightly closes the esophageal opening in the rat's stomach thereby preventing stomach contents from being expelled by vomiting.
Pressure at the two ends of a rat's gastroesophageal barrier is much higher than the pressure found in the rat's thorax or abdomen during any phase of the breathing cycle. The strength and pressure of this barrier make reflux in rats nearly impossible although rats may engage in regurgitation. Rats are not capable of vomiting because, for several reasons explained below, they cannot produce the necessary coordinated muscular contractions to overcome this powerful barrier.
Rats are incapable of relaxing the crural sling while simultaneously contracting the remainder of the diaphragm. The rat's esophagus passes through the crural sling, and as explained above, when the crural sling of the diaphragm contracts, the rat's esophagus is pinched tightly closed. Rats are physiologically incapable of dissociating the activity of the crural sling and costal muscle of their diaphragm, and as a result, a rat cannot relax the crural sling while simultaneously contracting the costal muscle. Instead, in rats as opposed to in humans, both diaphragm muscles always contract or relax together. Rats' inability to separately and selectively control its two diaphragmatic muscles render their bodies incapable of producing the pressure on the stomach necessary to open the crural sling so as to allow their stomach contents to be expelled.
Rats are also unable to open their esophageal sphincter to permit the forceful expulsion of stomach contents during vomiting. In rats, the esophagus consists of a thin, weak unstriated, longitudinal muscle at its point of connection with the stomach, which is not sufficiently strong to open the rat's lower esophageal sphincter so as to allow expulsion of the rat's stomach contents.
Unlike emetic animals (including humans), rats and other nonemetics lack neural connections within the brain and between the brainstem and viscera that are necessary to coordinate the numerous muscles that produce the emetic reflex. While the brainstem nuclei and the muscle systems used in vomiting are present in rats and other nonemetics, the complex neural connections between the nuclei or between the brainstem and viscera, which are necessary to produce coordinated muscular contractions required for vomiting, are absent.
A need exists for a rodenticide that is safe and non-toxic if consumed by humans or non-rodent pets and wildlife. | {
"pile_set_name": "USPTO Backgrounds"
} |
The use of automated machinery to perform machining functions on workpiece has become an essential part of modern manufacturing technology. In such automated equipment, it is typical that one or more forming stations are provided. A workpiece is advanced into engagement with the forming station by means of a positioning mechanism. Upon retraction of the positioning mechanism, the workpiece is ejected from the forming station so that the metal forming cycle can be repeated. Ejection of the formed workpiece is accomplished by gravity or, in some instances, by an ejector rod that may, for example, be mechanically actuated to apply a jarring force to the workpiece to eject the workpiece from the forming station.
A specific example of such a machine adapted to perform a machining function, and a type of machine to which the present invention is particularly directed, is a lid seamer which is used in the food and beverage industry. Here, an open container having an open mount and an upper rim is filled with a product, and a lid is registered with the upper rim so that the combination lid and rim are seated on a chuck assembly as a workpiece. The open container has a can flange, and the lid has an end flange which are placed in registration adjacent to an outer forming surface of a chuck element. One or more forming rollers then revolve around the chuck element to roll the flanges together thus seaming the lid onto the container to produce a sealed, lidded container that is then ejected for packaging. As described more fully below, and as shown in the prior art FIG. 1, such lid seamers are commonly used in the beverage industry. Here, however, the standard ejector mechanism is in the form of a knock-out rod that is cam actuated so as to be mechanically timed to tap the center of the lidded beverage can thereby to eject it from the chuck assembly in the forming station. One such machine of this type in common usage is the Angelus sanitary seaming machine made by Angelus of Los Angeles, Calif.
Use of a knock-out rod of a type typically employed in the industry is not without its problems, however. Even though only a slight force of approximately twenty pounds is necessary to eject a lidded beverage can, the impact of the knock-out rod on the center of the joined lid may rupture the pull opener seal (score) or rivet. This may create several problems. On one hand, rupturing the seal can allow contamination of the food product by bacteria or other microbial organisms, which can endanger the consumer of the food product. On another hand, where a carbonated beverage is packaged in the lidded container, rupture of the pull tab seal or rivet allows the escape of the carbonating gas so that the contained beverage may go "flat" and thus be an undesirable consumer product. It can further lead to the loss of product since the occurrence of any of these events is undesirable to the manufacturer, most manufacturers are quite concerned about quality control of the pull tab integrity.
Even where the pull tab is not ruptured, several other disadvantages arise from use of a knock-out rod. One such disadvantage is the fact that the knock-out rod along with its associated mechanical structure including cam followers, cam grooves and the like greatly increase the complexity of most lid seamers. thus, such machines are expensive and are costly to maintain. Moreover, since the knock-out rod reciprocates a spindle assembly which mounts the forming chuck, it is necessary to lubricate the knock-out rod and its associated bushings, bearings, etc. The presence of lubrication always prevents the problem of leakage which, in rare instances, might contaminate the food product as the open container moved into position under the chuck assembly or, more often, can result in contamination of the surface of the lid after it is seamed onto the container by the leaked lubricating medium. Again, where a beverage can is concerned, a problem arises since consumers often drink the beverage directly from the beverage can so that a user might place his/her mouth on the lid contaminated with the lubricating medium. Further, the inertial mass of the reciprocating knock-out rod and its associated mechanical linkages acts limit on the speed at which such machines can operate.
Accordingly, there has been a long felt need for an improved ejector apparatus and method for machines in general and especially for lid seamers. There has been a need for ejector apparatus and methods which reduce the complexity of such machines by eliminating tradition complex mechanical knock-out rod assemblies. Further, a need has existed for ejector apparatus and methods for lid seamers which reduce the possibility of contamination of the food product where such lid seamers are used in the food and beverage industry. | {
"pile_set_name": "USPTO Backgrounds"
} |
When charging a lithium battery, if the charging voltage is too high, there might be a risk of battery explosion; if the charging voltage is too low, the battery life may be affected. In addition, when charging discharging the lithium battery, other abnormal conditions, such as excessive current and short-circuit, may also occur. Sometimes, the severity of such abnormal conditions may reach a certain level and may pose dangers to personal safety. To prevent these anomalies, special protection circuits re used to protect the lithium battery during the charging/discharging processes.
FIG. 1 shows a conventional lithium battery protection circuit. As shown in FIG. 1, the protection circuit includes a control circuit 1 (integrated circuit or IC), high-voltage power transistors M1 and M2, resistors R1 and R2, and capacitor C1. The drain terminals of the power transistors M1 and M2 are connected together; the gate terminals of the power transistors M1 and M2 are connected to the control circuit 1; the source terminal of the power transistor M1 is connected to the ground; and the source terminal of the power transistor M2 is connected to one end of the resistor R2 and also to the negative electrode “B−” to external circuits. The other end of the resistor R2 is connected to control circuit 1.
Further, one end of the resistor R1 is connected to the positive electrode of the lithium battery, and the other end of the resistor R1 is connected to one end of the capacitor C1. The other end of the capacitor C1 is connected to the ground and also to the negative electrode of the lithium battery. Both resistor R1 and capacitor C1 are connected to the control circuit 1. Two ends of the lithium battery are respectively connected to the external circuit positive electrode “B+” and negative electrode. “B−” When a load or an external circuit is connected between the positive electrode “B+” and negative electrode “B−”, the lithium battery discharges and provides current to the load; when a charger is connected between the positive electrode B+″ and negative electrode. “B−” the lithium battery is charged by the charger.
The control circuit 1 includes a bias and reference circuit, a multi-channel switch, an over-discharge protection circuit, and an over-charge protection circuit. Both the over-discharge protection circuit and the over-charge protection circuit are connected to the multi-channel switch. The over-discharge protection circuit and the over-charge protection circuit are also connected to logic circuit 2 via the delay circuit. The logic circuit 2, on the one hand, is connected to the gate terminals of power transistors M1 and M2 external to the control circuit 1 and, on the other hand, is connected to system sleep circuit 5. The excessive-current protection circuit 3 and short-circuit protection circuit 4 are connected to resistor R2 external to control circuit 1, and also to the logic circuit 2 via the delay circuit.
During a lithium battery charging process by a charger, if the battery voltage is higher than an over-charge protection voltage (typically 4.2V˜4.3V), the logic circuit 2 turns off the power transistor M2, which further cuts off the charging circuit loop and stops charging tale lithium battery. After the power transistor M2 is turned off, because no load current flows through the charging circuit loop, the charger's output voltage becomes higher than usual. The external circuit negative electrode “B−” can have a negative high voltage (up to −20V), which requires logic circuit 2, excessive-current protection circuit 3, short-circuit protection 4, and power transistor M2 to be able to withstand the negative high voltage. Meeting such requirement is necessary to ensure that the protection circuit can be used in high-voltage charging applications, and also improves reliability of the protection circuit under different application conditions.
During a discharging process, if the voltage of the lithium battery drops below an over-discharge protection voltage (usually 2V˜2.5V), and the low-voltage condition lasts longer than a specified delay time the logic circuit 2 turns off the power transistor M1, which stops the discharging. This condition may also show that the lithium battery has been exhausted. In order to better protect the lithium battery, logic circuit 2 also starts system sleep circuit 5 to put the entire control circuit 1 into a sleep state. Thus, the power consumed by the control circuit 1 itself can be reduced. Further, during the discharging process, if there is excessive-current or short-circuit condition, the logic circuit 2 also turns off the power transistor M1 to stop the discharging to protect the lithium battery.
Although the protection circuit as shown in FIG. 1 can achieve the goal of protecting the lithium battery during the charging/discharging processes, only the control circuit 1 is an integrated circuit, and other components in the protection circuit are external components. Thus, the degree of integration is relatively low and the manufacturing cost is relatively high.
FIG. 2 shows another conventional lithium battery protection circuit. As shown in FIG. 2, compared with the protection circuit in FIG. 1, the previous external resistors R1 and R2 and the power transistor M1 and M2 are integrated into the control circuit 1. Level shift circuit 6 and substrate switching circuit 7 are added to combine the power transistors M1 and M2 into one power transistor. Thus, the chip area and cost are reduced. The level shift circuit 6 is connected to the logic circuit 2, the substrate switching circuit 7, and the gate terminal of power transistor M1. The substrate switching circuit 7 is connected to the substrate of the power transistor M1 and the level shift circuit 6.
Although the protection circuit as shown in FIG. 2 increases the degree of integration and lowers cost, the excessive-current protection circuit 3, short-circuit protection circuit 4, level shift circuit 6, and substrate switching circuit 7 generally use low-voltage MOS devices (a low-voltage MOS device may only be able withstand a relative low voltage between the gate-source and the source-drain). In general, no other additional protective measures are used. Therefore, when protecting an overcharging condition, the protection circuit may be unable to withstand the high negative voltage from the external circuit negative electrode “B−”. Thus, the protection circuit may have a low reliability and may be limited on its applications.
The disclosed methods and systems are directed to solve one or more problems set forth above and other problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a new cosmetic cleansing composition with improved skin conditioning and stability properties.
2. Related Art of the Invention
Skin cleansers are known from U.S. Pat. Nos. 5,578,299 and 5,888,492 respectively, which contain a hydrocarbon oil, a non-ionic or anionic surface-active agent soluble therein, a diblock or triblock copolymer and, optionally, a fatty acid ester acting as an emollient.
In addition, emulsifier-free skin cleansers are known which contain hydrogenated styrene/butadiene copolymers along with other emulsion stabilizers such as acrylate polymers, as disclosed in U.S. Pat. No. 5,928,632. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to the combination of a brushless DC motor and encoded drive circuit and more particularly to such a combination in which the arcuate length and numberof rotor magnet poles, the manner of connection of multiphase stator windings and the encoded sequence of energization of the windings cooperate to produce a more efficient and better operating motor.
Recently six-transistor, encoded integrated circuits have been made available and have been proposed for brushless DC motors. These circuits permit "full wave" excitation of each winding, i.e., current flow in forward and reverse directions. Previous three-transistor stator winding energization circuits permitted only "half wave" excitation, current flow in one direction only. THe six-transistor circuits have been proposed for four-pole, three-phase brushless DC motors. See for example, "Hexfets in Hybrid Packages Make Compact Motor Drives," P. Wood and D. Grant, Proceedings of PCI, October 1985. The art, however, has not made full advantage of these encoded, six-transistor drive circuits such that each stator winding is energized through a larger mechanical rotor angle to contribute to the torque produced and fewer slots are utilized in the stator lamination stack whereby more magnetic material is present to conduct flux, thus improving efficiency. This is particularly true in small brushless DC motors where the number of slots takes on greater significance in the smaller diameter stator stock.
With higher speed brushless DC motors it is, moreover, desirable to decrease the number of switching occurrences per rotor revolution because switching losses reduce efficiency and with higher speeds occur more frequently. A typical four-pole, three-phase brushless DC motor utilizes three Hall devices angularly spaced at 30.degree. or 60.degree. mechanical to produce 12 commutations for every 360.degree. mechanical. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Embodiments of the invention relate to the field of counterbalance mechanisms; and more specifically, to spring force counterbalance mechanisms for rotating loads.
2. Background
In load positioning systems the effects of gravity on the load may be compensated for with a counterbalance or counterweight, a constant-force spring, or a pneumatic equilibrator. A counterweight is often undesirable due to its large size or to the weight and inertia that it adds to the system. In many situations a constant force spring is not capable of generating a sufficient compensating force. These springs have innately high stresses which induce metal fatigue. Consequently, the springs have a relatively short dynamic life span. The disadvantage of pneumatic equilibrators is that they are long and bulky and generally have to be made on a custom basis.
In a load positioning system with a servomechanism the servo amplifier may be biased in an attempt to compensate for the force of gravity. This procedure is not optimum inasmuch as it only reduces the steady-state error. When the bias is added, the maximum acceleration and maximum velocity remain asymmetrical—that is, the acceleration and the velocity in the direction opposite the gravity vector are less than the acceleration and the velocity in the direction of the gravity vector. Motor selection must therefore be made according to the performance demands of the worst case. This results in greater apparatus cost, volume and weight. Additionally, the extra load of the bias force going through the load positioning system's transmission will increase the friction in the joint.
Static balancing systems incorporating springs may be advantageous because they do not add an undue amount of weight and inertia. A spring balance system may offer the advantage of not requiring external power. However it can be difficult to provide a spring balance system for a load that rotates freely on a shaft. For example, U.S. Patent Application 2007/0156122 shows a spring balance system that can balance a pivoted arm where the arm moves through less than one-half of a revolution. U.S. Patent Application 2004/0035243 shows a spring balance system that can balance a pivoted arm where the arm can rotate freely but the spring balance system must be connected to an unobstructed end of the rotating shaft that supports the load.
It would be desirable to provide static balancing systems incorporating springs that can be coupled in the middle of the shaft that supports the load and permit the shaft to rotate freely. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates generally to data processing and more specifically to cache access mechanisms in data processing systems.
2. Description of the Related Art
A conventional multiprocessor data processing system may comprise a system bus to which a system memory and a number of processing units that may each include a processor and one or more levels of cache memory are coupled. Caches are temporary storage facilities utilized to store subsets of the overall memory of a data processing system at varying latencies. At the various levels of a cache hierarchy, a tradeoff is made between the size and the access latency of the cache at the given hierarchy level. The cache most directly coupled to a processing unit, typically referred to as the level one or “L1” cache, usually has the lowest latency but is the smallest of the various caches. Likewise, the cache at the lowest level of the hierarchy usually has a larger storage capacity, often one or two orders of magnitude larger that the L1 cache, but at a higher access latency.
It is often the case, though not required, that the cache at a lower level of the cache hierarchy contains a copy of all the data contained in the caches at higher levels of the cache hierarchy. This property is known as “inclusion” and necessarily leads to the condition that a cache at a lower level of the cache hierarchy be at least as large as the cache at the next higher level of the hierarchy in order to allow the lower level cache to include the contents of memory cached at the next higher level. Those skilled in the art are familiar with the notion of constructing a multi-level cache hierarchy that optimizes the access latency and size characteristics of the various cache hierarchy levels according to available implementation technologies, leading to optimal system performance.
A cache, at a given level of hierarchy, is typically comprised of a number of components often including a cache directory array, a cache data array, and those functional logic units necessary to update and manage the cache. The data array portion of a cache is a set of data storage elements utilized to store copies of portions of main memory. The data array is divided into a series of so called “cache blocks”. These cache blocks are storage regions utilized to hold copies of contiguous portions of the main memory within the data processing system. These blocks are typically on the order of 128 bytes in size and are further arranged into groups, known as “sets”, of usually 8 to 16 blocks. The overall data array contains of a number of these sets. When placing a portion of memory within the cache, some number of the bits of the address of the block of memory are typically utilized to index into the various cache sets to determine a set within which to place the block of memory. That is to say, each contiguous aligned portion of main memory within the data processing system maps to a particular set. Within the cache set, various allocation policies are utilized to pick which member among the members within the set to place the block. In summary, the data array is divided into multiple cache sets which contain multiple cache blocks. Any given block in memory is typically allocated to some selected block within a particular set chosen by a mapping function of some of the address bits corresponding to the address of the block in main memory.
The cache further typically includes a cache directory array. This array consists of bookkeeping information detailing which portions of the overall data processing system memory and their processing states that are currently present within the cache. Typically, each block within the cache data array also has a corresponding entry within the cache directory array detailing which portion of main memory and its processing state is present in that cache data block. Each directory entry usually includes a number of fields possibly including a TAG field, a STATE field, an LRU field, an INCLUSION field, and an ECC field, which provides error correction and detection.
The TAG field within the directory entry corresponds to those high order address bits necessary to determine which block within the main memory is present within the cache data array entry associated with this directory entry. The TAG field typically represents the majority of the bits within a cache directory entry. The STATE field typically indicates the processing state of the cache line. For example, this field is often used to maintain the cache coherence state of the cache block according to some cache coherence protocol such as the well known “MESI” protocol. The LRU field typically contains information about recent accesses to the cache line and is used to guide the cache block replacement policy when cache blocks of new addresses are allocated within the cache set. Finally, the inclusion field often indicates whether or not the current cache block is present in a higher level cache. Those skilled in the art will appreciate that the format and contents of the directory entry discussed here is but one representative format possible.
In order to allow for larger lower level caches without dramatically adding to cache directory array overhead, a technique known as “sectoring” is often employed. In sectoring, the cache blocks in a lower level cache often consist of a number of different “sectors”. That is to say, in the lower level cache, the cache blocks as described above are further divided into two or more like-sized sub-regions. These sectors are typically equal in size to the cache block size of the cache immediately above the current cache in the cache hierarchy.
Furthermore, each of the sectors can typically be manipulated and managed individually. For example, one sector of a cache block could be present in the lower level cache and the other sector could be not present. To support independent processing of the various sectors, the directory entry is usually formatted to include STATE fields for each individual sector. Importantly, the single TAG field within the cache directory entry, which dominates the size of the cache directory entry, now corresponds to a larger cache block. In other words, a similar number of directory entries with additional STATE fields per sector can support a larger cache in the same cache directory area than would be possible with a non-sectored implementation that would require an additional TAG field for each sector.
Finally, the cache also contains functional logic queues that consist of the functional logic necessary to update the cache, provide data to higher level caches or the processing unit(s), and honor snooped requests from either the system interconnect or lower level caches. These functional queues are typically divided into two classes of queues: Read Queues and Snoop queues, which process requests from higher level caches or the processing unit(s) or from the system interconnect or lower level caches, respectively. As part of their function, these queues are responsible for updating the cache data and directory arrays.
The methods used today to optimize cache behavior include alignment and cache-line padding. Large pages can also be used to provide a uniform distribution in the cache. Each of these three approaches presents frustrating problems. Alignment in the cache, while providing object separation (e.g., two blocks separated on two cache lines to avoid conflicts), provides poor utilization of an available cache resource through large amounts of unused space. Similar issues exist with cache-line padding. Large pages provide better distribution, because real addresses within the large page sequentially map into congruence class sets. However, multiple large pages cause conflicts in the cache when large page mappings become identical. In addition, any application's access pattern may not be totally ideally suited to large pages (e.g., an application may benefit from interleaving objects within the cache). | {
"pile_set_name": "USPTO Backgrounds"
} |
The androgen receptor (“AR”) is a ligand-activated transcriptional regulatory protein that mediates induction of male sexual development and function through its activity with endogenous androgens. Androgenic steroids play an important role in many physiologic processes, including the development and maintenance of male sexual characteristics such as muscle and bone mass, prostate growth, spermatogenesis, and the male hair pattern. The endogenous steroidal androgens include testosterone and dihydrotestosterone (“DHT”). Steroidal ligands which bind the AR and act as androgens (e.g. testosterone enanthate) or as antiandrogens (e.g. cyproterone acetate) have been known for many years and are used clinically.
New compounds are needed which are useful for treating and/or preventing a variety of hormone-related conditions, for example, conditions associated with androgen decline, such as, inter alia, anemia; anorexia; arthritis; bone disease; musculoskeletal impairment; cachexia; frailty; age-related functional decline in the elderly; growth hormone deficiency; hematopoietic disorders; hormone replacement; loss of muscle strength and/or function; muscular dystrophies; muscle loss following surgery; muscular atrophy; neurodegenerative diseases; neuromuscular disease; obesity; osteoporosis; and, muscle wasting. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a microwave oven comprising a cooking chamber in which food to be heated can be placed, a microwave generator for radiating microwave energy into said chamber to heat said food, fan means for producing an air flow to cool the generator and for directing air into said chamber, and humidity sensor means positioned in a sensor compartment downstream the cooking chamber after leaving said food to sense a change in humidity of the air in said chamber, said cooking chamber having a plurality of inlet apertures and an outlet opening communicating with said sensor compartment.
A known microwave oven of this type is described in U.S. Pat. No. 4,587,393. In this oven, the humidity emitted by the food encounters the humidity sensor together with all the cooling air. The sensed humidity can be used as an indication of the condition of the food. For equal conditions, the quantity of humidity emitted by a food product is related to its free evaporation surface area. The result is that as the cooling air flow is constant, a smaller free evaporation area leads to a greater dilution of the water vapour evolved by the food, the response of the humidity sensor thus occurring when the food has reached a temperature higher than required. Because of this fact, the use of this known method can result in differences of about 30.degree. C. with respect to the required temperature set by the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a sheet feeding type wafer polishing machine, and specifically relates to a sheet feeding type polishing machine which processes both surfaces of the wafer and outermost periphery of the wafer (edge part) in series. More specifically the present invention relates to a sheet feeding type polishing machine which polishes both surfaces and edge part of a wafer bigger than 12 inches diameter in series, and relates to a processing method using the machine.
2. Description of the Prior Art
An electronic part such as integrated circuit (IC), large-scale integration (LSI) or very large-scale integration (VLSI) are assembled using a small piece of semiconductor device chip on which a very fine electric circuit is drawn as a main part. Said semiconductor device chip is made from a thin wafer which is prepared by slicing a mono-crystalline ingot of silicon or other compound semiconductor. Recently, the size of silicon or other compound semiconductor wafer (hereinafter shortened to wafer) is becoming bigger in response to the requirement to improve productivity and productive efficiency. Especially, in a case of silicon wafer, since the manufacturing technique of silicon mono-crystalline ingot which is the starting material is remarkably improved, big size wafers of 12 inch or 16 inch diameter are beginning to be prepared on an industrial scale.
A wafer sliced from an ingot is processed by a lapping process, an etching process and then by a polishing process to generate a mirror finish wafer, i.e. at least one surface is mirror finished. The object of a lapping process is to improve a form accuracy of as cut wafer which has uneven surface after being sliced and to form a standard surface. The object of a polishing process is to improve the surface roughness. In general, to perform good productivity and high productive efficiency, a conventional lapping or polishing machine is designed to process plural numbers of wafer at the same time. Concretely, a lapping machine which has big cast iron platens or a polishing machine which has platens with polishing pad on upper and lower part of machine are generally used, and plural numbers of wafer are held by carrier plates. At the actual processing, plural numbers of wafer held by carrier plates are put between upper and lower platens and pressed. The platens and wafer are rotated, while fluid for processing which contains fine particles of abrasive is supplied and wafers are processed. At the final mirror finishing process, usually only one necessary side surface is processed.
Along with the recent increase in growth of the wafer size, a bigger processing machine which processes plural numbers of bigger size wafers at the same time becomes necessary. However, along with the increase in size of the processing machine, not only does the requirement for form accuracy and dimensional stability of the machine become more severe, but also the handling difficulty of loading and unloading of wafers becomes more troublesome. Therefore, it becomes difficult to expect good productivity and high productive efficiency from a bigger size processing machine.
To solve the above mentioned problem of a bigger size machine, recently a sheet feeding type wafer processing machine which processes wafers one at a time is becoming popular. For example, a double-disc surface grinding machine which uses two diamond grinding wheels is used as a sheet feeding type wafer processing machine. Diamond wheels are rotated at a high rotating speed and a grinding fluid is supplied, while wafers are supplied through a feeding system. In this case, since a wafer is processed by a grinding mechanism, it is difficult to achieve the purpose of obtaining a mirror finish surface which can be obtained by polishing.
After fine and complicated electric circuit is engraved on a mirror finished surface of wafer in a device procedure, the wafer is divided into small unit chips. Before the dividing process, a wafer is processed maintaining the original circular shape, and among the key processes there are additional procedures such as washing, rinsing, drying and transferring. Through these procedures, if the shape of outermost periphery of the wafer is sharp, sheer and coarse, these Portions of the wafers contact each other or the machine and cause fine cracks which generate fine particles, or fine contamination particles cover the coarse surface of the edge part of the wafer. These generated fine particles are scattered during the latter procedure, contaminate fine processed surfaces of wafers and affect significantly the yield and the quality of products. In general, to avoid said phenomenon, the sharp outermost periphery of wafer is dulled by a beveling wheel, then the dulled part is mirror finished (edge polishing).
However, if the edge polishing is carried out at the earlier stage, the polished edge surface can be easily damaged and contaminated at the latter procedure, and causes re-contamination which affects significantly the yield and the quality of products. Namely, since the polishing of a wafer surface and an edge surface are carried out independently as different procedures, these above mentioned problems arise. | {
"pile_set_name": "USPTO Backgrounds"
} |
Bitumen impregnated silica and clays are typically processed into refined oil and gas using Fischer-Tropsch process, retort systems, and alternative forms of solid distillation and pyrolysis. The most common of these processes, Fischer-Tropsch, has considerable environmental impact and uses large amounts of solvents and water as well as producing substantial amounts of green house gas.
Accordingly, research and development continues into systems and methods that can be used to extract hydrocarbons from hydrocarbon feedstock such as bitumen impregnated silica and clays which have less of an environmental impact. | {
"pile_set_name": "USPTO Backgrounds"
} |
The electric wrenches disclosed by U.S. Pat. Nos. 4,512,221 and 6,477,921 have a switch installed on one lateral side of the handle, which is easy to be activated by a holding hand during an operation. It can also be activated by accidental collision with a foreign object. Further, the extension of the switch on the otherwise smooth handle is visually harsh. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to methods of vehicle position location and more particularly to such methods involving reporting systems and wireless remote control.
Test engineers on missile range electronic proving grounds need a means of tracking moving vehicles to provide the engineers with increased visibility of test operations.
It is therefore an object of this invention to enable real time position tracking of moving vehicles during field test exercises.
This and other objects of the invention are achieved by a vehicle tracking system that includes a plurality of trackers each adapted to be attached to a respective movable vehicle and a remotely located control means for individually polling by radio each of the trackers to determine the position of the polled tracker. Each tracker includes a positioning receiver which receives satellite signals from a Global Positioning System and transmits a first positioning signal containing the position of the tracker to a micro controller unit. The micro controller unit receives the signal and transmits a second positioning signal containing the position of the tracker to a communication means. The communication means includes a second micro controller unit which radioes the second positioning signal to the remotely located control means by means of a data radio to communicate the position of the tracker in response to a radioed polling signal from the remotely located control means.
The use of a low cost off-the-shelf miniature positioning receiver permits the use of low cost, low power micro controller units to manage the passing of data from the receiver to the remotely located control means. Thus, the trackers can be implemented in a small, low-cost embodiment that is effective in a field test environment.
Additional advantages and features will become apparent as the subject invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein: | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
An aspect of the present disclosure relates to a display device and a fabricating method thereof.
2. Description of the Related Art
Recently, display devices having various shapes have seen increased demand. Accordingly, a technical scheme reducing a defect rate while effectively driving display areas having various shapes has been the subject of recent efforts. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to the programmed control of heating and cooling systems utilizing one or more programmed microprocessors. In particular, this invention relates to the manner in which the programmed control in the microprocessors interfaces with various elements in the heating and cooling systems.
U.S. patent application Ser. No. 08/143,029, now U.S. Pat. No. 5,491,649, entitled, "Configuration Control for HVAC Systems" filed in the names of Arthur Friday, Jr., Chi-Pin Chan and Brett Desmarais discloses a programmed microprocessor control system having separate hardware and software interfaces. The hardware interface defines communication channels to the hardware elements of an HVAC system that are to perform heating or cooling functions. The software interface defines a number of software variables present in a control program residing in the microprocessor. Configuration data stored in memory associated with the microprocessor maps at least some of these software variables to the communication channels defined by the hardware interface. Further software utilizes the configuration data so as to allow information to be transferred between the interfaces.
The above transfer of information between the interfaces does not take into account the possibility of erroneous information coming from one of the hardware elements to the hardware interface. In this regard, a particular hardware element may not necessarily be functioning properly or the communication link from the element might be temporarily experiencing difficulty. In either case it may not be advisable to further transfer the communicated value from the hardware interface to the software interface. It may also not be advisable to continue operation in the event of a serious problem having arisen at the hardware control element. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to arrangements for connecting aligned sections of bus bars, and more specifically to such an arrangement using two strap-type connecting pieces gripping over the mutually opposite ends of the sections and a clamping screw.
Known arrangements of this type are produced using profile parts made of the material of the bus bars. In this case, at least two clamping screws extend through bores in the bus bars and the connecting pieces, which rest on the broad sides of the sections of the bus bars.
The present invention is directed to the problem of developing an arrangement for connecting bus bars which makes individual bores in those sections of the bus bars which are to be connected unnecessary and reduces the number of clamping screws. | {
"pile_set_name": "USPTO Backgrounds"
} |
Small weapons with such a device can be inferred, for example from Austrian Patents 293 229 and 310 040. The sealing element that locks the cartridge chamber in the back is made of two parts here and includes, on one hand, the butt, which is adjacent to the cartridge chamber on the front, and, on the other hand, a case arranged on the butt that projects over the front, making it generally pot-shaped. The projecting part of the case that includes the propellant charge expands under the pressure of the propellant gas and is pressed onto the inside of the cartridge chamber. Since the resulting gas pressure is quite high, for example 4,000 to 5,000 bar, it has been shown that because of the annular gap between the case and the butt, the seal is not satisfactory, and a loss of pressure occurs that has an effect on the firing. It also means that the base of the pot shape in particular, and if necessary the projecting part of the case, is worn down or damaged.
Austrian Patent 317 726 shows an extractor for cartridges without cases that have a groove around the outside. The butt in this design has an extractor claw that overlaps the propellant charge on one part of the periphery and goes into the peripheral groove. The butt is thus either not coaxial to the running axis or, has a cross section that is not circular, caused by the eccentric extractor claw, so that the design of a bayonet catch is not possible.
The task of the invention is to create a device with an improved, easily produced seal for the cartridge chamber on the side where it locks. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention, in some embodiments thereof, relates to a system and method for measuring three-photon absorption events, and, more particularly, but not exclusively, to a system and method for measuring a three-photon absorption rate or counting three-photon absorption events, using a photon counting detector.
There is a need for characterizing light sources, including in ways that cannot be achieved by measuring one-photon or two-photon processes. For example, Ian A. Walmsley and Christophe Dorrer, “Characterization of ultrashort pulses,” Advances in Optics and Photonics 1, 308-437 (2009), describe the need to measure the shapes of pulses on femtosecond timescales, far too short to measure directly with any light detector, and reviews some of the techniques that have been developed to do this. Patrick Langlois and Erich P. Ippen, “Measurement of pulse asymmetry by three-photon absorption autocorrelation in a GaAsP photodiode,” Optics Letters 24, 1868-1870 (1999), the contents of which are hereby incorporated by reference, describe using an autocorrelator interferometer, and three-photon absorption in GaAsP, which is a direct band gap material, to measure the asymmetry of such ultrashort pulses, and point out that this cannot be done with one-photon or two-photon absorption. Shaul Pearl, Nir Rotenberg, and Henry M. van Driel, “Three photon absorption in silicon for 2300-3300 nm,” Applied Physics Letters 93, 131102 (2008), describe using silicon, an indirect band gap semiconductor, for three-photon absorption.
Tomoyuki Horokiri et al, “Higher order coherence of exciton-polariton condensates,” Physical Review B 81, 033307 (2010), describes the use of coincidence measurements from three single-photon detectors to measure the third order coherence function g(3)(0) in light emitted by a polariton laser. The authors use the results to show that a polariton condensate differs from a fully coherent state such as the light from an ordinary laser, as well as from light in a definite photon number state, or light in a thermal state, and explains the results with a model involving polariton-polariton and polariton-phonon interactions.
J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076 (2002), describes two-photon counting of 1.5 μm light with a GaAs photomultiplier tube. Lower power light was detected, and over a greater dynamic range, than in previous work where residual one-photon counting dominated at low power. The light was pulsed, and the width of the pulses was measured using two-photon counting with a Michelson interferometer.
A series of papers by Boitier and colleagues describes using two-photon counting, with a semiconductor detector, to measure the second order coherence function g(2)(τ) of various light sources on a femtosecond timescale, including a blackbody source, a source generating two-photon pairs by parametric fluorescence, a laser, and an Amplified Spontaneous Emission source. These papers are: F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nature Physics 5, 267-270 (2009); Fabien Boitier et al, “Second order coherence of broadband down-converted light on ultrashort time scale determined by two photon absorption in semiconductor,” Optics Express 18, 20401-20408 (2010); and F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Two photon counting: theory and experiment,” presented at Quantum Electronics and Laser Science Conference (QELS), San Jose, Calif., May 16, 2010, paper QTuE1.
Hannes Hübel et al, “Direct generation of photon triplets using cascaded photon-pair sources,” Nature 466, 601-603 (2010), describes recent advances in producing three-photon entangled states, which can be used for quantum communication and quantum computing.
T. Feurer, S. Niedermeier, and R. Sauerbrey, “Measuring the temporal intensity of ultrashort laser pulse by triple correlation,” Appl. Phys. B 66, 163-168 (1998), the contents of which are hereby incorporated by reference, describes using third harmonic generation of light in a nonlinear crystal to measure the triple autocorrelation function, a function of two time delays, for ultrashort laser pulses, and using the triple autocorrelation function to calculate the shape of the pulses. Tzu-ming Liu et al, “Characterization of Ultrashort Optical Pulses with Third-Harmonic-Based Triple Autocorrelation,” IEEE J Quantum Electronics 38, 1529-1535 (2002), extends the work of Feuer et al, using the optical spectrum, in addition to the triple autocorrelation function, to find not only the pulse shape, but also the color and phase of the light as a function of time within a pulse. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for producing ester of (S)-.gamma.-halogenated-.beta.-hydroxybutyric acid. In particular, the present invention relates to an efficient method for producing ester of (S)-.gamma.-halogenated-.beta.-hydroxybutyric acid having a high optical purity, based on the use of a microorganism belonging to a specified genus or a taxonomic unit.
2. Description of the Related Art
Optically active ester of .gamma.-halogenated-.beta.-hydroxybutyric acid is useful as a raw material for synthesizing optically active compounds or synthetic intermediates thereof, to be utilized for various pharmaceuticals and agricultural chemicals. For example, the optically active ester of .gamma.-halogenated-.beta.-hydroxybutyric acid can be converted into side chain moieties of optically active hydroxy acid derivatives which are common to various HMG-CoA reductase inhibitors (therapeutic agents for hyperlipemia) such as compactin and pravastatin. In order to produce the optically active ester of .gamma.-halogenated-.beta.-hydroxybutyric acid, investigations have been hitherto made to utilize microbial abilities to effect asymmetric reduction. There have been a large number of reports on the production of optically active ester of .gamma.-halogenated-.beta.-hydroxybutyric acid based on such a microbial process.
These, for example, methods include: (1) a method based on the use of microbial cells of a yeast belonging to, for example, the genus Candida, Debaryomyces, Saccharomyces, Pichia, or Hansenula (Japanese Patent Publication No. 4-7195); (2) a method based on the use of a culture liquid or separated microbial cells of a mold belonging to, for example, the genus Stemphylium, Alternaria, Corynespora, or Preussia (Japanese Laid-Open Patent Publication No. 6-38776); (3) a method based on the use of microbial cells of a bacterium belonging to, for example, the genus Brevibacterium, Escherichia, or Lactobacillus, or a yeast belonging to, for example, the genus Kluyveromyces, Saccharomycopsis, or Stephanoascus (Japanese Laid-Open Patent Publication No. 6-209782); and (4) a method based on the use of an enzyme of a yeast or a mold belonging to, for example, the genus Rhodotorula, Fusarium, Paecilomyces, or Verticillium to make a reaction in a two-phase system of water-organic solvent (Japanese Laid-Open Patent Publication No. 63-309195).
However, in any of the production methods described above, there is a limitation on the type of microorganisms which can be used. Certain microogranisms cannot be used since they involve problems in that (1) the reaction velocity is small, and it takes a long time to perform the reaction, (2) the concentration of an accumulated product cannot be increased, and (3) only a product having a low optical purity can be obtained. In view of such circumstances, there is a need to establish a production method which is excellent ecconomically and which makes it possible to produce optically active ester of .gamma.-halogenated-.beta.-hydroxybutyric acid having a high optical purity, at a highly accumulated concentration and at a high yield. | {
"pile_set_name": "USPTO Backgrounds"
} |
Dehydrogenating hydrocarbons is an important commercial hydrocarbon conversion process because of the great demand for dehydrogenated hydrocarbons for the manufacture of various chemical products such as detergents, high octane motor fuels, pharmaceutical products, plastics, synthetic rubbers, polymerization monomers and other products well known to those skilled in the art. Processes for the dehydrogenation of light acyclic hydrocarbons are well known to those skilled in the hydrocarbon conversion arts. For instance, the dehydrogenation of C.sub.2 -C.sub.5 paraffins is well known. Because the light paraffins are relatively volatile, a more complicated separation scheme and a bulk condensation is normally required to effect the separation of the product olefins from the light by-products and hydrogen which are simultaneously produced in the process. It is therefore believed that U.S. Pat. No. 4,381,418 (Gewartowski et al) is pertinent for its teaching of a catalytic dehydrogenation process for C.sub.2.sup.+ normally gaseous paraffinic hydrocarbons and the recovery of products of the reaction. U.S. Pat. Nos. 4,430,517 and 4,486,547 issued to Imai et al and U.S. Pat. No. 4,469,811 issued to Lucien are believed pertinent for their teaching of catalysts and operating conditions which can be employed for the dehydrogenation of low molecular weight parrafins.
Pressure swing adsorption (PSA) provides an efficient and economical means for separating a multi-component gas stream containing at least two gases having different adsorption characteristics. The more-strongly adsorbable gas can be an impurity which is removed from the less-strongly adsorbable gas which is taken off as product; or, the more-strongly adsorbable gas can be the desired product, which is separated from the less-strongly adsorbable gas. For example, it may be desirable to remove carbon monoxide and light hydrocarbons from a hydrogen-containing feed stream to produce a purified (99.sup.+ %) hydrogen stream for a hydrocracking or other catalytic process where these impurities could adversely affect the catalyst or the reaction. On the other hand, it may be desirable to recover more-strongly adsorbable gases, such as ethylene, from a feed to produce an ethylene-enriched product.
In pressure swing adsorption, a multi-component gas is typically fed to at least one of a plurality of adsorption beds at an elevated pressure effective to adsorb at least one component, while at least one other component substantially passes through. At a defined time, feed to the adsorber is terminated and the bed is depressurized by one or more co-current to the direction of feed depressurization steps wherein pressure is reduced to a level which permits the separated, less-strongly adsorbed component or components remaining in the bed to be drawn off without significant removal of the more strongly adsorbed components. Then, the bed is depressurized by a countercurrent depressurization step wherein the pressure on the bed is further reduced by withdrawing desorbed gas countercurrently to the direction of feed. Finally, the bed is purged and repressurized.
Those skilled in the art of hydrocarbon processing, more particularly the dehydrogenation of hydrocarbons, are constantly searching for ways to recover a liquid product from a dehydrogenation zone in the most convenient and economical manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention generally pertains to oscillators capable of providing an accurate time base in numerous electronic applications. In prior art devices, macroscopic crystals, which have a known natural frequency when a voltage is applied, are used for a time base. Macroscopic oscillators, however, have the disadvantageous quality of significant mass and stiffness which cause frequency shifts in environments where high gravitational fields are present, such as spinning projectiles. Since one significant application of such oscillators is in the proximity fuzes of these projectiles, a new oscillator is needed. Furthermore, due to the fragile nature of the crystal material used in such prior art oscillators, shock isolation is required in many applications. This adds unnecessary weight to the device and also makes production more complicated and expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Disclosure
This disclosure relates to a method of geophysical prospecting which improves the subsurface area imaged by Vertical Seismic Profiling (VSP) data. Specifically, the disclosure uses surface multiples, which have previously been regarded as noise, to provide a migrated image of a larger portion of the subsurface.
2. Description of the Related Art
In surface seismic exploration, energy imparted into the earth by a seismic source reflects and scatters from subsurface geophysical features and is recorded by a multiplicity of surface positioned receivers. This process is repeated numerous times, using source and receiver configurations which may either form a line (2-D acquisition) or cover an area (3-D acquisition). The acquired data are processed to produce an image of the reflectors in the subsurface using a procedure known as migration. The produced image is then used in prospect evaluation and development. Prospect evaluation and development specifically includes using the determined geometry of subsurface traps to establish the volume of recoverable reserves, and the drilling of additional exploration, evaluation, and development wells based on the image.
Conventional reflection seismology utilizes surface sources and receivers to detect reflections from subsurface impedance contrasts. The obtained image often suffers in spatial accuracy, resolution, and coherence due to the long and complicated travel paths between source, reflector, and receiver.
In vertical seismic profiling, seismic signals are recorded using detectors in a wellbore to record the energy generated by the activation of seismic sources at the surface. This results in the geometry such as that shown in FIG. 1 and is discussed further below. It is well recognized that traditional migration of upgoing primary reflections produces a VSP data image of only a very narrow conical zone around a borehole with the cone tip centered at the shallowest receiver in a borehole. This is schematically illustrated in FIG. 1 wherein exemplary reflected 129a, 129b, and 129c are shown with an imaging zone denoted by 131.
The present disclosure is directed towards a method and system for increasing the coverage obtained in VSP data acquisition. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to medical gas alarm systems. More particularly, the present invention relates to the design, installation, and operation of alarm system components that monitor a number of conditions of a medical gas system at various points throughout a healthcare facility.
Healthcare facilities, such as hospitals, include medical gas systems that deliver different types of gases and other gas-related services, such as vacuum and waste gas removal, to numerous points throughout the facility. A few examples of such gases include oxygen, nitrogen, carbon dioxide, and nitrous oxide. Conventional medical gas systems include source equipment, such as gas tanks, pumps, compressors, dryers, receivers, and manifolds that provide associated medical gases or vacuum through a network of pipes to service outlets located in rooms throughout the facility. Medical gas alarm systems usually monitor conditions of the source equipment as well as gas pressures at various locations throughout the facility. When certain alarm conditions are detected, the system operates to alert facility personnel of the alarm conditions so that appropriate corrective actions can be taken.
According to this disclosure, a medical gas alarm system for use in a healthcare facility having a medical gas system and having a network of computer devices is provided. The alarm system includes at least one area alarm controller adapted to receive a first signal indicative of a condition of a first portion of the medical gas system. The area alarm controller is adapted to communicate with the network. The alarm system also includes at least one master alarm controller adapted to receive a second signal indicative of a condition of a second portion of the medical gas system. The master alarm controller is adapted to communicate with the network. The area alarm controller is adapted to communicate with the master alarm controller through the network.
Networks included in healthcare facilities usually include a number of network hubs located throughout the facility. These network hubs are coupled, either directly or through other network hubs, to one or more servers of the network. The network hubs provide connection points for the computer devices, such as personal computers, included in the network. According to this disclosure, the area alarm controller and the master alarm controller are each adapted to couple to respective network hubs included in the network.
Also according to this disclosure, a master alarm controller is identified by a network address and is configured to host a website. Some of the pages of the website are password protected. Authorized users that know the network address are able to access the website hosted by the master alarm controller using any personal computer included in the network of the healthcare facility, assuming the personal computer being used is configured with appropriate web browser software. In addition, if the network of the healthcare facility is coupled to the world wide web (aka the Internet), then authorized users are able to access the website hosted by the master alarm controller through the Internet using any computer having appropriate web browser software.
In one embodiment, each area alarm controller is identified by its own, unique network address and is configured to host its own website. In such an embodiment, the website hosted by the master alarm controller is hyperlinked to each of the websites hosted by the area alarm controllers and the websites hosted by each area alarm controller is hyperlinked to the website hosted by the master alarm controller so that authorized users are able to easily navigate all of the websites once any of the websites have been accessed. Healthcare facilities will typically have at least two master alarm controllers and many area alarm controllers. In one embodiment, the master alarm controllers are each identified by the same network address and cooperate with one another to serve a single website.
Authorized users that access any of the websites hosted by the master alarm and area alarm controllers can navigate through various web pages of these websites to view output data from the master alarm controller, to view output data from any associated area alarm controllers, to provide input data to the master alarm controller, and to provide input data to any associated area alarm controllers. Examples of output data viewable via this website include alarm information about alarm conditions occurring in the medical gas system, set-up information regarding the configuration of any alarm controllers in the medical gas alarm system, network address information regarding the network addresses assigned to each of the alarm controllers of the medical gas alarm system, and an event log that lists past alarms. Authorized users provide input data via the websites, for example, to program each master alarm controller and to program each area alarm controller with various operating parameters.
In preferred embodiments, each master alarm controller and each area alarm controller includes a number of input ports that receive associated input signals. Each input signal indicates a respective condition of the medical gas system. The input signals received by each area alarm controller typically indicate gas pressures in respective gas lines being monitored by the associated area alarm controller. The input signals received by each master alarm controller are generally binary signals (i.e. on/off or high/low signals) that indicate the occurrence of some condition in the source equipment of the medical gas system. Examples of the conditions indicated by these binary signals include low line pressure, high line pressure, low vacuum, backup vacuum pump on, liquid level low, and reserve supply in use. A more exhaustive list is provided below in the Detailed Description of the Drawings.
Also in preferred embodiments, each master alarm controller includes a display screen that displays text messages identifying the alarm conditions that occur in the source equipment of the medical gas system. In addition, each master alarm controller may include a set of LED's which visually indicate, such as by turning from green to red, that an alarm condition is occurring in an associated portion of the medical gas system. In such embodiments, the input data provided by authorized users via the website hosted by the master alarm controller assigns to each input port of the master alarm controller an LED of the set of LED's, the type of gas and/or system associated with the respective input signal, and the text message that is to appear on the display screen of the master alarm controller when a respective alarm condition is indicated by the associated input signal.
The input data provided by authorized users via the websites hosted by the area alarm controllers may assign a device name to each area alarm controller and a location in the healthcare facility of each area alarm controller. This information is communicated to the associated master alarm controllers through the network. When any of the area alarm controllers receive an input signal indicative of an alarm condition, the associated device name and location in the facility is displayed on the display screen of the associated master alarm controllers.
In some embodiments, the input data received by the master alarm controller via the website hosted by the master alarm controller configures the master alarm controller to send an e-mail to at least one designated e-mail address to notify a recipient of the e-mail of the occurrence of an alarm condition in the medical gas system. The e-mail sent by the master controller contains information about the alarm condition that caused the e-mail to be sent. In other embodiments, the input data received by the master alarm controller via the website hosted by the master alarm controller configures the master alarm controller to initiate a page to at least one pager carried by a recipient to notify the recipient of the occurrence of an alarm condition in the medical gas system. Such a page may be initiated, for example, by sending an e-mail to a paging service provider with the number to be paged.
It will be appreciated that a method of installing a medical gas alarm system in a healthcare facility having a medical gas system and a network of computer devices is provided in this disclosure. The method includes providing a first alarm controller, coupling to the first alarm controller a first input signal line on which is carried a first input signal indicative of a first condition of a first portion of the medical gas system, and coupling the first alarm controller to the network. The method further includes providing a second alarm controller, coupling to the second alarm controller a second input signal line on which is carried a second input signal indicative of a second condition of a second portion of the medical gas system, and coupling the second alarm controller to the network.
Further according to this disclosure, an alarm controller includes a set of user inputs that are operable to program the alarm controller with operating parameters in lieu of using a personal computer to program these alarm controllers via the websites hosted by the various alarm controllers. One of the user inputs is operable to cause the alarm controller to enter into a programming mode. One or more other user inputs are operable to scroll through various programming options that are displayed on a display screen of the alarm controller. One or more additional user inputs are operable to select a desired programming option appearing on the display screen. In the illustrative embodiment, each master alarm controller and each area alarm controller includes its own set of user inputs that are operable to configure each of these controllers separately without the use of a personal computer.
Additionally according to this disclosure, a sensor module for use in a medical gas alarm system having a gas line through which pressurized gas flows is provided. The sensor module includes a housing and a transducer coupled to the housing. The housing is couplable to the gas line to expose the transducer to a gas pressure in the gas line. The transducer is adapted to generate a pressure signal that indicates a pressure in the gas line. The sensor module further includes an electric circuit coupled to the housing. The electric circuit receives and processes the pressure signal from the transducer. The electric circuit is adapted to output serial data indicating one or more of the following: the pressure in the gas line, the type of gas in the gas line, a serial number assigned to the sensor module, the software revision number of software with which the electric circuit is programmed, status information, information about the characteristic being measures, and a failure code indicating the occurrence of a failure in the sensor module.
Additional features and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of an illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a high strength high chromium cast iron. The invention also relates to a valve rocker arm for an internal combustion engine of an automotive vehicle, which is made of the high strength high chromium cast iron.
2. Description of the Background Art
In an automotive internal combustion engine, a valve drive mechanism is provided for driving intake valves and exhaust valves in synchronism with engine revolution. The valve drive mechanism generally comprises a camshaft and a cam follower which convert rotation of the camshaft into a reciprocating motion for axially driving the intake and exhaust valves.
The cam follower comprises a valve rocker arms adapted to be driven by cams carried by the camshaft. The rocker arm is formed of aluminum alloy or high chromium cast iron. In case of aluminium alloy, the rocker arm is formed by die-casting. On the other hand, in case of high chromium cast iron, the rocker arm is formed by integral casting. According to advancing of automotive technologies for higher performance engine, requirement for compact and light weight engine with long life and maintenance free construction.
One example of high chromium cast iron rocker arm has been disclosed in Japanese Patent First (unexamined) Publication (Tokkai) Showa 56-84442. In this Japanese Patent First Publication, ferrochromium alloy used for high chromium cast, is composed of Cr, C, Si, Mn and so forth. In the disclosure, the ferrochromium alloy contains about 30 wt % of Cr with 9 to 13 of Cr/C composition ratio and with greater than or equal to 15 of Cr/C/S composition ratio. More specifically, the disclosed composition of the ferrochromium allow is as follow:
C: 2.4-3.2 Wt % PA0 Si: 0.5-1.0 Wt % PA0 Mn: less than 1.0 Wt % PA0 Cr: 25-35 Wt %. PA0 C: 2.5-3.7 Wt % PA0 Si: 1.0-2.0 Wt % PA0 Mn: 0.5-1.0 Wt % PA0 Cr: 15-20 Wt % PA0 Ni: 0.3-0.7 Wt % PA0 P: less than 3 Wt % PA0 S: less than 0.1 Wt % PA0 Fe: remainder and inevitable impurities.
The high chromium cast iron randomly forms needle structure carbide precipitated on the surface which contacts with cam of a camshaft which is made of chilled cast iron valve shaft of intake and exhaust valve, pivot and so forth. Furthermore, the high chromium cast iron contains martensite base matrix, in which residual sustenite or ferrite is distributed. Such structure of cast iron can cause substantial wearing of the associated components, such as cam, valve shaft, pivot and so forth. On the other hand, the valve rocker arm per se can cause severe scarfing wearing. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known in the prior art that thermoplastic materials such as, for example, polystyrene foam sheet, may be thermoformed into various articles by preheating the sheet to an elevated forming temperature and thereafter deforming the preheated sheet to the desired configuration utilizing a pair of matched metal molds. Articles which have been formed utilizing such a technique include, for example, foam egg cartons, meat trays, produce containers, disposable table-wear items and the like. Such items are characterized by having structural features which include surrounding upstanding-wall member elements which are integral with the base of the item, and such items show little or no tendency to curl or warp following their removal from the thermoforming mold. However, it has been found that when relatively flat articles, which are devoid of surrounding upstanding wall elements, are thermoformed utilizing the above-described procedure there is a tendency for such articles to bend or curl upon removal from the thermoforming mold resulting in, not the desired flat structure when the longitudinal and transverse axis of the article lie substantially in the same plane, but rather an article which has a pronounced curve or bow. It has been found that regulation and control of the thermoforming process conditions, such as preheat and forming temperatures, forming pressures, and residence time in the forming mold do not remedy the undesirable bending or blowing effect assumed by the article when it is removed from the mold.
In accordance with the present invention, a method and apparatus are provided which allow for the formation of flat surfaces on products such as thermoplastic foam structures which have been thermoformed. The method includes controlling the cross section and surface area of the foam part being formed in such a manner as to produce parts or details of parts made from foam sheets which are flat. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present inventive concepts relate to the semiconductor packaging field, in particular, to semiconductor system packages integrated with a power source module.
2. Description of the Related Art
In conventional electronic products, a package, a SMT (Surface Mount Technology) plate and a battery constitute a standard system, and the package is connected with the battery through the SMT plate to be supplied with power so as to ensure running of the system. FIG. 1 illustrates a package in the prior art. As shown in FIG. 1, the package can be connected with the outside through solder balls in the bottom thereof and can be supplied with power by an external power source.
With development of the Internet of Things, not only mobile phones, but also the daily necessities (e.g., cups, toothbrush, and/or cloth) are being connected to each other. Thus the package is desired to be portable and/or to be smaller. However, conventional packages face difficulties in miniaturization because integration level of packages becomes increasingly high, but an independent power source is still desired to supply power. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a rolling bearing with solid lubricant used in a semiconductor producing apparatus.
Generally, in rolling bearings, a lubricant, such as grease, is fed between the inner and outer rings and between the rolling elements and the cage to decrease the rolling friction or sliding friction being subjected thereto so as to improve the durability of the bearing.
When a rolling bearing is to be used in vacuum requiring a high degree of cleanliness as in a semiconductor producing apparatus, the vapor of the lubricant becomes a source of contamination; thus, grease and other fluid lubricants cannot be used. Therefore, for a rolling bearing to be used in such environment, a solid lubricant having a low vapor pressure is required. At present, as to solid lubricants for rolling bearings, the laminar substance such as molybdenum disulfide, the soft metal such as gold, silver and lead, high polymer such as PTFE and polyimide are in wide use.
In recent years, in the semiconductor production field, as the degree of integration increases, the line width of electric circuits has been decreasing, and for fear that wear particles of the solid lubricant discharged from the bearing should short-circuit the electric circuit for its adhesion to the patterns, the trend is toward refraining from using solid lubricants of the soft metal type which are conductive. On the other hand, although solid lubricants, such as molybdenum disulfide and PTFE (polymer) are not conductive, they have low adherebility and low wear resistance; thus, they are inferior in durability to soft metals.
Further, in a recent semiconductor producing apparatus, not only a bearing which can be used in vacuum but also a bearing which can be used in both air and vacuum and which has a low dust producing rate and corrosion resistance has been called for. That is, it is mostly in the wafer treating process that vacuum bearings are used in the semiconductor producing process. The apparatus used in this process tends to be made in an in-line form; thus, the wafer conveyor requires a bearing to operate in both air and vacuum environments. Further, the high degree of integration of semiconductor necessarily requires suppressing the production of dust. Further, in some places where the apparatus is used, corrosion resistance and heat resistance are required.
Accordingly, an object of the present invention is to provide a rolling bearing with solid lubricant which is superior in durability when used both in air and in vacuum and which has a low dust producing rate and is suitable for use in the semiconductor producing field. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to a wall outlet plate assembly for use with and for covering an electrical outlet in a home or building. More particularly, the present invention relates to an insulated wall outlet plate assembly which protects against and prevents drafts of air from passing through the wall outlet, as well as unwanted or accidental access to the wall outlet.
2. Description of the Prior Art
Wall electrical plates are commonly found throughout homes and buildings. It is well known that electrical outlets can pose as a hazard and danger to small children and/or pets, in particular by children placing fingers or objects into an electrical outlet and risking electrocution. Various devices are available as safety enclosures for preventing such unwanted access to an electrical outlet by children. For example, plastic plugs (also known as “baby plugs”) can be inserted into an unused electrical outlet to prevent unwanted access by children. However, such devices are not without inherent disadvantages, as discussed below.
One shortcoming in the prior art is that not all outlets are uniform. Many outlets, especially in older homes and buildings, are provided as two-prong outlets while many newer electrical outlets are provided as three-prong outlets (or grounded outlets). Therefore, a two-prong baby plug would not provide sufficient protection for use with a three-prong outlet, while a three-prong baby plug would not be able to be used at all with a two-prong outlet. Therefore, one would be required to purchase both two-prong and three-prong baby plugs for use with the specific type of outlet. In addition, alternative baby plugs must be employed for use with wall outlets having a single plug, such as an outlet for a cable television line.
Another disadvantage with conventional baby plugs is that if they are removed from an outlet by a child they can be placed in the mouth and accidentally swallowed, thereby providing an additional choking hazard to children and/or pets. Still further, conventional baby plugs can be removed and lost, thereby requiring the repeated purchase of replacement plugs.
Wall outlet plates also provide a lesser known issue for homes and buildings by way of allowing cold air to enter the room via drafts through the outlets. Alternatively, warm air could also enter the room via the outlet to undesirably heat air conditioned cool air which is inside the room. The consequence of drafts through an electrical outlet is that the cost of heating (or cooling) a room increases in order to make up for cold (or warm) air entering the room through the outlet.
Therefore, in light of these factors, there is a need for an improved electrical wall plate assembly serving the dual purpose of eliminating drafts through the electrical outlet and as a safety measure for providing protection against unwanted access to the electrical outlet. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a method of making and a structure for smooth silicon carbide films and particularly to silicon carbide films used in X-ray masks and vacuum windows.
The X-ray mask is a critical structure in X-ray lithographic proximity printing. In general, x-rays from a point source of soft x-rays are shadowed by a heavy element mask consisting of a pattern absorber layer supported on a flat membrane, or pellicle, which is relatively transparent to the radiation. At the present time, the pellicle supporting the pattern absorber layer is made of a thin, inorganic material which minimizes X-ray attenuation, and yet remains mechanically stable to minimize distortion caused by stresses in the patterned absorber layer. Typically the pellicle is stretched across a stiff, flat ring whose expansion coefficient closely matches that of silicon. This stretching process flattens the substrate and stiffens it against bending and breaking. Factors important to mask fabrication are dimensional stability, absorber line-edge profile, and defect density. Also x-ray mask fabrication requires many steps which are similar to those used in wafer processing. As in wafer processing, these processing steps contribute to the defect density in the X-ray mask. Hence, defect density remains a highly critical problem.
Presently available pellicles are fabricated by the deposition of sequential layers of boron nitride and polyimide onto a sacrificial silicon substrate. The boron nitride is generally formed by the reaction of ammonia and diborane in a suitable chemical vapor deposition process. Typically a layer of filtered polyimide is spun on top of the boron nitride from a liquid source in order to cover small defects. However, many defects still remain at the polyimide surface.
In addition to boron nitride, silicon carbide has recently been deposited by chemical vapor deposition (CVD) onto silicon to form X-ray pellicles. This film is chemically inert and has excellent mechanical stability and strength, much stronger than boron nitride. Furthermore, the coefficient of expansion of silicon carbide can be closely matched to that of silicon. It is these properties of silicon carbide that make it an ideal mask support material. However, CVD of silicon carbide also has some inherent disadvantages. If the silicon carbide is deposited directly onto the wafer surface, the film tends to have a large number of defects. Also, for direct deposition on silicon, the deposition parameters required for optimum film smoothness do not necessarily coincide with the conditions required for optimum stress in the membrane.
Furthermore, vacuum windows used, for example, in electron beam addressed liquid crystal displays require deposition of a silicon carbide film directly onto a silicon wafer, thus also requiring a smooth silicon carbide surface. Additionally, the silicon carbide film must be thick enough to stop electrons produced from electron beam bombardment and thin enough to have low lateral heat loss. A silicon carbide film typically two microns thick is required to stop electrons in the range of 15 KEV to 20 KEV. However, when deposited to this thickness the surface roughness of the silicon carbide film is increased and correct alignment of the molecules of the liquid crystal on such a rough silicon carbide surface is difficult.
Therefore, to alleviate the present disadvantages of using silicon carbide films for the fabrication of X-ray masks and vacuum windows, a new mask structure has been developed. The present invention presents this structure and a method for its construction. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention generally relates to accurate call data recordkeeping operations in a telecommunications environment. More specifically the invention relates to a process of consolidating all separately generated call detail records associated with a given call such as a telephone call.
In conventional telecommunications, networks, particularly, in those involving some sort of telephony such as is in a voice over interne protocol (VoIP) communication arrangement, it is common for each call that is set up in the arrangement to initiate the generation of a new call detail record. Each call detail record contains parameters relating to a given call. Such parameters may include things as the origin terminus of the call, the destination terminus of the call, the start time of the call, the end time of the call, an information about the links and/or nodes which make up the call connection to establish the call, etc. Additional parameters maybe associated with the given call detail record where such metrics are easily detected within the network in question and affiliated with the given call. These call detail records therefore provide a detailed set of characteristics which describe the essential aspects of the call from the service providers perspective. Call detail records can be used in connection with such processes as facilities resource management, billing, etc.
Call detail records are also useful in connection with providing an overall perspective of the quality of the service being provided to the customers of the service provider. In addition, this can be an important indicator to the service provider as to either areas within the service or service backbone which require either immediate attention, such as for the treatment of an existing fault, or failure within the service or network or alternatively, proactive treatment of service or network component aspects of the arrangement.
In certain situations within the known communications arrangements, multiple call detail records may actually be produced in connection with attempts to set up the same call. An example of this is illustrated in FIG. 1.
In this arrangement 100, an origin device may seek to communicate with a user at destination 1 (155). The origin device (110) interacts with a network element 115 within network 170. As the caller attempts to establish the call through the network element 115, a call data record 1 is generated (116). Since the call is intended for destination 1 (155), network element 115 attempts to establish the call through network elements 125 and 150 respectively. It may happen that the user at destination (155) may operate to attempt to transfer the call to a user at destination 2 (145); the transfer of the call is delineated by the dashed lines which show that the call is being transferred via network elements 150, 125 and 140 to destination 2 (145). Thus, the origin device (110) is now connected via network elements 115 and 125 and 140 to destination 2. However, for purposes of the perspective of origin device (110), this constitutes the same call. Nonetheless, because the network element 125 has been prompted to reroute or switch the call to destination 2 via the transfer operation requested by destination 1, that network element 125 generates its own call detail record, too (126). These two call detail records CDR1 and CDR2 are provided to respective call detail record databases 120 and 130. Thus, in the prior art, multiple call detail records may be generated in connection with the establishment of the same call from an origin device perspective and those multiple CDRs may be transferred to distinct databases. In this case then, the system does not have the capability of providing an accurate reflection of the user experience by the user of origin device 110 as the two separate aspects of the single call are treated as two separate events in two distinct databases. It would be beneficial to provide an arrangement whereby the service provider can have a more complete and accurate view of the user experience of the user of origin device 110. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to race 2004 events. More particularly, the present invention allows a person to listen to communications of race teams participating in a race event where the person is remote from the race event.
Race events, such as motor vehicle racing, are a steadily growing sport. In many forms of racing, a driver communicates with a crew during the race to discuss strategy and vehicle performance. The communications are commonly listened to by fans at the race event, allowing the fans to become more involved during the race. However, the transmitters used are not powerful and are generally limited in range so as to function within the area of the race track. Thus, only those fans at the race have the ability to listen to the race communications. For fans watching the race remotely, such as on television, the communications are not generally available except for occasional excerpts provided by the race broadcaster. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Exemplary embodiments of the invention relate to a display device and a manufacturing method thereof, and in detail, relate to a display device and a manufacturing method for improving element reliability.
2. Description of the Related Art
An organic light emitting diode display generally includes two electrodes and an organic emission layer interposed therebetween. Electrons injected from one electrode of the two electrodes and holes injected from the other electrode of the two electrodes are combined in the organic emission layer to generate excitons. The generated excitons are changed to a ground state from an excited state, releasing energy to emit light.
The organic light emitting diode display includes a plurality of pixels including an organic light emitting diode as a self-emissive element, and a plurality of transistors for driving the organic light emitting diode and at least one capacitor are formed in each pixel. The plurality of transistors generally includes a switching transistor and a driving transistor. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a virtual machine system, a virtual disk acts as a storage device and is stored as an image file in the virtual machine. There are generally two types of virtual disks, i.e. a virtual disk with a fixed size and a virtual disk with an expandable size. The size of an image file of the virtual disk with a fixed size is fixed and will not be changed as the data is written. The size of the image file of the virtual disk with the expandable size will grow with the data write.
In order to prevent the data loss incurred by an error(s) or failure of the virtual machine system or a system failure, data in the virtual disk is typically backed up to other storage media. For example, every time data is written to the virtual disk or when the data in the virtual disk is changed, all the data in the image file of the virtual disk can be backed up to other storage media. However, such a full backup may result in the transmission of a large amount of duplicate data. To solve this problem, the full backup may be performed at an initial phase for the virtual disk and, when the data is changed, only an incremental backup is performed for the changed data. Nonetheless, such an incremental backup may be applicable only to a virtual disk with a fixed size, rather than a virtual disk with an expandable size. | {
"pile_set_name": "USPTO Backgrounds"
} |
When purchasing a communication device, a user selects a device, then adds a plan, adds a service(s), and adds accessories. This process can be time consuming and inefficient, particularly for users that are less knowledgeable about the various options that exist. Fragmentation and custom original equipment manufacturer builds can leave users with inconsistencies across devices. Often times, the selection and provisioning of the communication devices with content, applications and accessories can dis-intermediate the service provider from the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates generally to work vehicles. More particularly, it relates to auxiliary hydraulic valves and controllers for work vehicles. Even more particularly, it relates to automated methods and structures for calibrating the auxiliary valves for such vehicles.
This invention provides a way for automatically calibrating electronically controlled remote hydraulic valves. It is adaptable for use on all agricultural and construction vehicles equipped with electronically controlled remote hydraulic valves.
Remote hydraulic valves provide auxiliary hydraulic flows to implements that are coupled to vehicles for performing various tasks. Typically, such a vehicle will have several such valves, typically varying between two and eight. These valves are controlled in an operator station typically in the cab of the vehicle, most commonly by manipulating a lever or knob that provides a signal proportional to the movement of the lever or knob and indicates a desired flow rate to or from an auxiliary hydraulic valve. The hydraulic valves are typically connected to a manifold or manifolds, most commonly located at the rear of the vehicle, to which hydraulic actuators are mounted. These hydraulic actuators include such things as hydraulic motors and cylinders. By varying the position of the lever or knob, the operator can vary the flow rate to the manifold, and thence to the hydraulic actuators located on the implement.
Another common user input device located at the operator station is a flow rate control. The flow rate control is typically a small dial or knob that is set by the operator and indicates a maximum flow rate through the valve. Thus, by rotating the flow rate control, the operator can limit the operating range of the lever or knob from a flow rate of zero (0) to a positive maximum flow rate indicated by the flow rate control, and a negative maximum flow rate, also indicated by the flow rate control.
Vehicle operators usually expect the same flow rate curve from all the auxiliary hydraulic valves. Flow variations between valves may be severe, however, due to the tolerances of the valves, the actuators and the controls.
A typical problem that is commonly found with auxiliary hydraulic valves is that of hysteresis. From the operator""s perspective, hysteresis appears when the operator moves the lever or knob away from a zero flow rate position towards either a positive or negative flow rate and no flow passes through the valve.
The initial small movements of the lever or knob generate equivalent small electrical signals that are applied to the valve coil. These small initial signals are insufficient to overcome the valve""s static friction and therefore these initial small movements of the lever or knob will not cause the valve to open.
As the operator continues to move the lever or knob, indicating a higher flow rate, and generating a larger valve signal, the valve will still remain closed until the applied signal is sufficient to overcome the static friction, at which point a low flow rate begins to pass through the valve.
In some cases, the valve spool may indeed move when a signal is applied, but due to the location of the various lands and grooves, this movement may not be sufficient to open up a fluid flow path. The effect, from the operator""s perspective, is the same: movement of the lever or knob does not result in an equivalent flow rate.
In addition, a strong spring used in the valve may resist the movement of the spool and also result in no valve opening when small valve signals are applied.
During this movement of the lever or knob, the valve signal applied to the valve is indeed increasing. However, due to frictional effects in the valve, the resistance of the spring, or the location of the various lands and grooves, no hydraulic flow through the valve may occur. This region of no valve flow when the lever or knob is moved is often called a xe2x80x9cdead-band.xe2x80x9d
A way to cancel out this dead-band is needed in order to make the whole range of motion of the lever or knob provide an proportional flow rate.
The dead-band can be modeled as a constant valve signal offset that must be added to any signal sent by the controller. If the valve resists opening until a small positive valve signal is applied, this offset should be added to any signal transmitted by the lever or knob. In this manner, whenever the operator moves the proportional controlled lever or knob, even a small amount, some flow will begin to pass through the valve.
Determining this offset for a particular valve in a particular vehicle, generally requires actually applying a signal to the valve until the valve just opens or xe2x80x9ccracksxe2x80x9d. If one could observe the valve xe2x80x9ccrackingxe2x80x9d and identify the actual signal that was applied to the valve at the same time, the signal could be saved in the valve controller for later addition to the signal received from the proportional control lever or knob.
Identifying the valve xe2x80x9ccrackingxe2x80x9d point would normally require the attachment of a loop-back tool to each of the valves. When the valve cracks open, fluid will begin to flow through the valve, out through the quick-connect coupling, through the loop-back tool, back into the adjacent quick-connect coupling, back through the valve and then to a hydraulic reservoir or tank. This, however, would require that an additional tool be attached to the vehicle. During assembly of the vehicle, and when calibrating the vehicle in the field, it is awkward to use such a tool.
What is needed, therefore, is a method and apparatus for calibrating auxiliary hydraulic valves without the necessity of attaching a loop-back tool to the auxiliary hydraulic manifold. It is an object of this invention to provide such a method and apparatus.
It is also an object of this invention to provide a method and apparatus for sequentially and automatically calibrating each of the auxiliary hydraulic valves under computer control.
In accordance with the first embodiment of the invention, a method of computer calibrating at least one auxiliary hydraulic control valve is provided that includes the steps of selecting a first valve from a plurality of hydraulic control valves, applying a signal to that valve that is equivalent to a first degree of desired valve opening, measuring a first pressure in a restricted flow rate circuit, comparing the pressure with a predetermined pressure to identify a pressure change that indicates the cracking of the valve, incrementing the signal if the valve is not cracked and repeating the foregoing steps until the first valve cracks open, and finally saving a value indicative of the increment signal. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to an X-ray computerized tomograph (hereinafter called "X-ray CT"), and more particularly to an operator console for inputting scanning conditions of the X-ray CT.
2. Description of Prior Art
Computerized tomographs are known in the art, which emit an X-ray beam at a number of angles in a plane across a subject or a patient, and determine a distribution of X-ray absorptivities of various body sections, and display the absorptivity distribution on a screen of a display unit.
FIGS. 1 1(A) (B), and 1(C) depict the main components of a general X-ray CT. FIG. 1(A) illustrates a scanning gantry 1 and a patient table 2. Scanning gantry 1 has therein an X-ray tube and an X-ray detecting device (not shown) which are disposed in confronting relation to each other across an opening. Table 2 includes a cradle 4 axially slidable forward into opening 3, or backward out of opening 3, while carrying a subject or a patient (not shown) thereon, for exposure to the X-ray in gantry 1.
FIG. 1(B) shows a computer for controlling the overall X-ray CT and effecting computations for image reconstruction, for example.
FIG. 1(C) depicts an operator console having a variety of switches disposed on a panel thereof and selectively actuable for scanning operation of the X-ray CT, and a cathode ray tube 5 (hereinafter called "CRT").
In operating the X-ray CT of the above configuration, pieces of information, such as scanning conditions, are inputted normally through scanning operation on the operator console. Methods of entering such information include (1) a conversation or interactive process using a keyboard on the operator console while watching messages displayed on the CRT of the console; and (2) process of selectively actuating the switches on the panel of the console.
Method (1) is , however, disadvantageous, in that the operator must become experienced in keyboarding. It takes time to master operation of the CT. Numerous erroneous control operations tend to occur, since the operator is required to do the keyboarding while looking at the messages on the CRT.
Method (2) has a problem, in that, that the switches cannot be properly actuated unless the operator knows the correct switching operating sequence.
The scanning of the X-ray CT comprise such conditions as field of view (FOV), scanning time, current to flow through the X-ray tube for generating an X-ray, slicing interval, thickness to be sliced, and other parameters. In known CTs, (a) scan parameters are set while watching messages displayed on the CRT in a conversation or interactive process, or (b) scan parameters are selected and set by various selecting and setting switches on the panel each time the patients are changed or scan parameters are changed. Once an anatomy section to be scanned has been determined, a predetermined combination of scanning conditions or parameters, which are tailored to a particular hospital, is usually available for most of the scans thereat. However, with the above processes (a) and (b), scan parameters have to be established in each scanning operation, even when scanning is to be effected under routine conditions. Thus, prior parameter setting has been tedious and time consuming. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the provisioning of many new and existing communication services, voice prompts are used to aid the speaker in navigating through the service. In particular, a speech recognizing element is used to guide the dialogue with the user through voice prompts, usually questions aimed at defining which information the user requires. An automatic speech recognizer is used to recognize what is being said and the information is used to control the behavior of the service rendered to the user.
Modern speech recognizers make use of phoneme-based recognition, which relies on phone-based sub-word models to perform speaker-independent recognition over the telephone. In the recognition process, speech “features” are computed for each incoming frame. Modem speech recognizers also have a feature called “rejection”. When rejection exists, the recognizer has the ability to indicate that what was uttered does not correspond to any of the words in the lexicon.
The users of wireless communication services expect to have access to all of the services available to the users of land-based wireline systems, and to receive a similar quality of service. The voice-activated services are particularly important to the wireless subscribers since the dial pad is generally away from sight when the subscriber listens to a vocal prompt, or is out of sight when driving a car. With speech recognition, there are virtually no restrictions on mobility, because callers do not have to take their eyes off the road to punch in the keys on the terminal.
Currently, one area of research is focusing on the front-end design for a wireless speech recognition system. In general, many prior art front-end designs fall into one of two categories, as illustrated in FIG. 1. FIG. 1(a) illustrates an arrangement 10 including a speech encoder 12 at the transmitting end, a communication channel 14 (such as a wireless channel) and a speech decoder 16 at the receiving end. The decoded speech is thereafter sent to EAR and also applied as an input to a speech recognition feature extractor 18, where the output from extractor 18 is thereafter applied as an input to an automatic speech recognizer (not shown). In a second arrangement 20 illustrated in FIG. 1(b), a speech recognition feature encoder 22 is used at the transmitting end to allow for the features themselves to be encoded and transmitted over the (wireless) channel 24. The encoded features are then applied as parallel inputs to both a speech decoder 26 and a speech recognition feature extractor 28 at the receiving end, the output from feature extractor 28 thereafter applied as an input to an automatic speech recognizer (not shown). This scheme is particularly useful in Internet access applications. For example, when the mel-frequency cepstral coefficients are compressed at a rate of approximately 4 kbits, the automatic speech recognizer (ASR) at the decoder side of the coder exhibits a performance comparable to a conventional wireline ASR system. However, this scheme is not able to generate synthesized speech of the quality produced by the system as shown in FIG. 1(a).
In speech coding, channel impairments are modeled by bit error insertion and frame erasure insertion devices, where the number of bit errors and frame erasures depends primarily on the noise, co-channel and adjacent channel interference, as well as frequency-selective fading. Fortunately, most speech coders are combined with a channel coder, where a “frame erasure” is declared if any of the most sensitive bits with respect to the channel is in error. The speech coding parameters of an erased frame must then be extrapolated in order to generate the speech signal for the erased frame. A family of error concealment techniques are known in the prior art and can generally be defined as either “substitution” or “extrapolation” techniques. In general, the parameters of the erased frames are reconstructed by repeating the parameters of the previous frame with scaled-down gain values. In conventional speech recognition systems, a decoded speech-based front-end uses the synthesized speech for extracting a feature. However, in a bitstream-based front-end, the parameters themselves are present.
The need remaining in the prior art, therefore, is to provide a technique for handling frame erasures in a bitstream-based front end speech recognition systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a sectional door and to component members thereof. | {
"pile_set_name": "USPTO Backgrounds"
} |
A popular method employed in the manufacture of Leclanche or zinc-carbon dry cell batteries utilizes a so-called "paper liner" inside the zinc can to physically and electrically separate the zinc can (negative terminal) from the "depolarizer mix" surrounding the carbon rod (positive terminal). During manufacture, the inorganic salts and the water, which are to eventually become the battery's electrolyte, have been mixed into the depolarizer mix. Subsequent to manufacture the paper liner absorbs the electrolyte, becoming saturated with it, and for all practical purposes, the paper liner and the electrolyte become one and the same. It is important to recognize, at this point, that the depolarizer mix consists of materials which yield an electrically conductive mixture of low resistivity. Therefore, the electrical potential or e.m.f., measured at any point on the surface of, or within the mass of, the depolarizer mix is essentially the same potential or e.m.f. as measured at the carbon rod.
From the foregoing, it may be seen that three distinct electrical circuit elements may be identified in the finished battery, as follows:
(1) The zinc can (the negative terminal); PA1 (2) The saturated paper liner and the electrolyte; and PA1 (3) The carbon rod (the positive terminal) along with the surrounding mass of depolarizer mix.
Numerous techniques have been devised and employed to introduce the battery's various components into the zinc can in the proper sequence and under the required conditions. While no effort will be made here to review all of these techniques, two will be mentioned in order to illustrate the nature of the problem which the subject invention is intended to overcome.
Technique A. A rolled sheet of liner paper of appropriate size is first inserted into the zinc can, and then allowed to unroll against the inner wall of the can. A flat disc or "bottom washer" of paper, slightly larger than the can's inside diameter, is then pushed down to the bottom of the can. A controlled quantity of depolarizer mix is deposited within the paper enclosure formed by the sheet and disc, then a wipe-down washer and the carbon rod are placed in position. While the carbon rod is still held in place, a suitably shaped plunger is pressed against the wipe-down washer atop the depolarizer mix for the purpose of compacting the depolarizer mix around the carbon rod and against the paper liner, the compacted depolarizer mix forming a "bobbin."
Technique B. A preformed liner paper bag of suitable dimensions is filled with a controlled quantity of depolarizer mix, the filled bag is inserted into the zinc can, and then the carbon rod is inserted, with subsequent steps essentially those of Technique A.
The difficulty that results in the rapid spoilage of a significant percentage of batteries being manufactured is the production of "smears." These smears consist of a quantity of depolarizer mix which somehow, despite all efforts directed toward prevention, is deposited in a location which effectively "short circuits" the cell.
In Technique A, for example, a quantity of depolarizer mix may coat the paper liner while the mix is being inserted into the cell. If this coating extends to and over the top edge of the paper liner, it will eventually "bridge" or "short circuit" across the linear. In Technique B, for example, the relationship of the dimensions of the preformed liner paper bag relative to those of the can is critical, and any gap between bag and can permits the bag to burst during the compacting operation. Here again, mix leaking through the burst point will constitute a "bridge" or "short circuit" across the liner.
It is an object of the present invention to provide a method of making paper-lined dry cell batteries by Technique A which avoids the possibility of smear formation.
It is another object to provide such a method which does not reduce the efficiency of the battery.
It is a further object to provide such a method which is economical relative to a conventional battery making process.
Another object is to provide batteries made by such a method. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an image processing apparatus for processing image information obtained by reading an image with an image sensor such as CCD.
2. Related Background Art
In a conventional image processing apparatus for processing the image information obtained by reading the image of an original document with an image sensor, as disclosed in the U.S. Pat. No. 4,439,790, among the image signals read by the image sensor, only those relating to the image are considered effective and entered for processing.
In such image processing apparatus, after reading the original document with the image sensor, the image information of only the image therein is released from said apparatus. Consequently, if the size of the image released to a display unit or a printer is smaller than the display frame of the display unit or the recording sheet, the image, for example characters, appears as if it is suspended in the air as shown in FIG. 1. Such image is not easy to look at, and the boundary between the original document and the background is often unrecognizable.
Particularly in an electronic image file in which plural image information are stored in a memory medium such as a magnetooptical disk and are retrieved afterwards, the size of the original document or the image arrangement thereon cannot be identified from the retrieved image.
There has therefore been desired an image processing apparatus capable of solving such drawbacks and clarifying the boundary between the image of the original document and the background, thereby improving the legibility of the image. Also desired is such apparatus capable of clarifying the boundary between the image of the original document and the background, even on a printer or a display unit. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
The present disclosure relates generally to high-speed data communications interfaces, and more particularly, multipoint data communication links connecting multiple devices.
2. Background
Manufacturers of mobile devices, such as cellular phones, may obtain components of the mobile devices from various sources, including different manufacturers. For example, an application processor in a cellular phone may be obtained from a first manufacturer, while the display for the cellular phone may be obtained from a second manufacturer. The application processor and a display, display driver or other device may be interconnected using a standards-based or proprietary physical interface. One example of a physical interface is the Multipoint Coexistence Management Interface (MP-CxMi), which may be used within a device or components of a device.
A simple network of CxMi nodes associated with modems or other functions may be employed for fully integrated chips and non-integrated devices. The use of a standard interface allows common software to be developed to manage or interact with different devices. CxMi interfaces may use simple complementary metal-oxide-semiconductor (CMOS) signals and run at a data rate of approximately 50 Mbps. However, there is typically no bus master and bus arbitration processes may be prolonged, thereby affecting throughput. | {
"pile_set_name": "USPTO Backgrounds"
} |
A wide variety of elongated medical instruments are currently available that are adapted to be permanently or temporarily implanted in the mammalian body, usually the body of a human patient, or used to access a site in the body to facilitate introduction of a further implantable medical device or delivery of a therapeutic or diagnostic agent. Such elongated medical instruments have an instrument body extending between instrument body proximal and distal ends, and a distal segment of the instrument body is advanced to a remote site in the body.
In many cases, the introduction of such elongated medical instruments to a remote site in the body is effected through a skin incision accessing an incision into a blood vessel, whereby the instrument body is advanced through a pathway until the distal segment or the instrument body distal end are located at the remote site. Such advancement is often through a tortuous pathway having twists and turns requiring the capability to impart a curve or deflect the instrument body distal end to facilitate advancement. Therefore, the introduction of such elongated medical instruments through vascular pathways or other tortuous pathways in the body is facilitated by a wide variety of techniques and mechanisms that have been developed to impart curves in the distal segment of the instrument body or to deflect or steer the instrument body distal end.
Currently, endocardial cardiac pacing leads used in association with a pacemaker implantable pulse generator (IPG) and/or cardioversion/defibrillation leads used in association with implantable cardioverter/defibrillator (ICD) IPGs are introduced into a vein either via a cut down or percutaneous sheath introduction. Such cardiac leads are advanced under fluoroscopy into either the right atrium, right ventricle (or both in the case of a dual chamber pacemaker or ICD implantation) or into a cardiac vessel, e.g., the coronary sinus and great vein. Generally speaking, it is highly desirable that such cardiac leads be so flexible through their length that they are capable of flexing with the movement of the heart and other muscular movement so as to void the fracture of the lead body due to its cumulative stressing. Such cardiac lead bodies are generally too limp to be advanced axially on their own through the vascular pathway to the desired site in a heart chamber or vessel.
It has been commonplace for many years to employ thin wire, stiffening stylets extended down a lumen of the lead body to stiffen the entire assembly so that it can be pushed axially through the venous pathway. Then, the distal pace/sense electrodes or cardioversion/defibrillation electrodes (herein “cardiac electrodes”) must be fixed at the preferred site in the heart chamber or vessel to operate most efficaciously and to prevent dislodgement. The introduction and fixation of these cardiac leads is the most time consuming and difficult aspect of the implantation.
At the outset, a straight or slightly curved stiffening stylet wire is first extended into the lead body lumen within the cardiac lead in order to give the cardiac lead sufficient column strength and rigidity to be pushed through the tributary veins and typically into the subclavian vein. The stylet wire may be left straight or provided with a certain degree of curvature to facilitate the introduction through these veins and through the initial curvatures thereof. Thereafter, and from time to time, as the physician directs the distal tip of the cardiac lead in a tortuous path leading to the right heart through the superior vena cava (SVC), it may be necessary to withdraw the stylet and either substitute a new stylet wire or impart a different curvature to the distal portion of the stylet wire, reinsert the stylet wire, and advance the distal portion of the lead a bit further until another obstacle to advancement is encountered.
When the distal cardiac electrodes are to be placed in the right ventricle, the physician manually fashions a curve at the tip of another stylet wire that is inserted into the lead body lumen to advance the assembly through the tricuspid valve into the right ventricle. Most physicians continue advancing the lead with the curved tip stylet in place into the pulmonary artery outflow track to confirm right ventricle access and to rule out the possibility of entrance into the coronary sinus or coronary vein, which can mimic the appearance of a right ventricle placement under fluoroscopy. The conventional practice requires the physician to then remove the curved stylet and partially re-advance the original or another straight stylet into the lead body lumen, once the physician has confirmed that the lead is in fact in the pulmonary outflow track. The cardiac lead is then carefully pulled back under direct fluoroscopic observation until the lead body distal segment drops from the proximal portion of the pulmonary artery to the floor of the right ventricle. The physician then advances the stylet to its fully advanced position within the lead body lumen and advances the lead distal end into the right ventricular apex. Passive or active fixation mechanisms at the lead body distal end then effect fixation with the trabeculae or the myocardium to acutely maintain the cardiac electrode electrode(s) at the operative site.
In the case of atrial lead placement, the lead body distal end is typically lodged or affixed in the right atrial appendage which results in the lead body extending into the right atrium via the SVC and then bent through about a 180° or greater bend. Over the years, many atrial cardiac lead designs and atrial cardiac lead introduction tools and techniques have been proposed or clinically used to both achieve this orientation and to fix the cardiac lead body distal end within the atrial appendage and avoid dislodgement. Initially, such atrial cardiac leads were formed with a permanent “J”-shaped bend to facilitate both the positioning and the retention of the atrial electrode in the patient's atrial appendage as taught, for example, in U.S. Pat. No. 4,136,703. Insertion of these “J”-shaped leads is greatly facilitated through the use of a straight solid inner stylet which, in this case, straightens the bend normally fixed within the distal end of the lead itself to the extent that the stylet is advanced into or retracted from the lead body lumen. Such J-shaped atrial leads have largely been abandoned in favor of reduced diameter lead bodies that cannot accommodate shape-forming structures and the use of the straightening stylet as described above. Today, the small diameter cardiac lead body is normally straight, and the lead body distal end is typically aimed into the atrial appendage employing multiple insertions of relatively straight and curved stylets. The electrode bearing lead body distal end is fixed in the atrial appendage by means of an active fixation screw or passive fixation tines. However, dislodgements can occur before the fixation is effected when a stylet is withdrawn proximally as the stylet may bind against the lead body lumen in the region of the bend.
Similar techniques and multiple stylets are avoided to advance a cardiac lead distal segment into the coronary sinus and great vein.
Thus, there are multiple exchanges of straight stylet wires and curved stylet wires which have been bent according to the physician's choice in a typical cardiac lead implantation in the right atrium and ventricle. Stylets are typically formed of solid wire, typically about 0.014-0.018 inches in diameter. During handing, such stylets can easily become bent or kinked, and thereafter cause great difficulty when an attempt is made to reinsert them through the narrow inner diameter of the lead body lumen, which may only be 0.019 inch in the case of a stylet of 0.018 inch diameter, thereby providing no more than 0.0005 inch clearance around the circumference. The continual withdrawal and reintroduction of stylets is time consuming and offers the potential of damaging the lead in the process.
Moreover, it is undesirable to contaminate the lead body lumen with blood during this process because drying blood can form a strong adhesive bond between the stylet and the lumen wall, making stylet removal impossible and rendering the lead unusable. Because the surgeon is working through an open wound, even the most fastidious surgeon will have blood on his gloves that can be transferred to the stylet. The blood congeals, and because of the small clearance, even a few drops of blood are sufficient to causing jamming of the stylet inside the lead body lumen. When the stylet jams in the lead body lumen, kinking of the stylet within the lead can occur, which kinks, in turn, will create new jams or problems with the insertion and retraction of the stylet from the lead body lumen. In some cases, the jamming is so severe that the cardiac lead must be removed from the heart for fear of insulation puncture, discarded, and a new lead implanted, thereby at least doubling the lead cost used in the procedure as well as operative time. The overall result of such difficulties is that operative time is greatly increased, which results in increased time delay, associated cost, and prolonged X-ray exposure to the patient under continuous fluoroscopy as well as prolonged scattered X-ray exposure to the operating room staff due to procedural time delays. These problems with the use of multiple stiffening stylets have been recognized in the art and many proposals have therefore been advanced to reduce the number of stylets and the consequent number of times that stylet removal and re-insertion are needed.
In addition, the complexity of cardiac leads, the number of cardiac leads implanted in a common path, and the advancement of coronary sinus leads deep in a coronary vein have led to efforts to at least not increase and optimally to decrease the overall diameter of the cardiac lead body without sacrificing reliability and usability. More recently, it has been proposed to diminish the lead body by eliminating the lumen for receiving the stiffening stylet and by reducing the gauge and coil diameter of the coiled wire conductor or replacing it with highly conductive stranded filament wires or cables. In bipolar or multi-polar leads, each such cable extends through a separate lumen of the lead body to maintain electrical isolation.
Over the last 30 years, it has become possible to reduce endocardial lead body diameters from 10 to 12 French (3.3 to 4.0 mm) down to 2 French (0.66 mm) presently through a variety of improvements in conductor and insulator materials and manufacturing techniques. The lead bodies of such small diameter, 2 French, endocardial leads must possess little if any column strength that could cause the lead distal end fixation mechanism and electrode to perforate through the myocardium during implantation and if the lead body were to become axially force-loaded during chronic implantation. As a result, the small diameter lead bodies lack “pushability”, that is the ability to advance the lead distal end axially when the lead proximal end is pushed axially, particularly when the lead body extends through the tortuous transvenous pathway.
Commonly assigned U.S. Pat. Nos. 6,280,433 and 6,379,346 disclose steerable catheters that are employed to access a blood vessel through a percutaneous incision and to be advanced to a site within the vascular system or a heart chamber so that such a small diameter cardiac lead can be implanted through a delivery lumen of the catheter. A bilumen catheter body is disclosed that includes a relatively large diameter delivery lumen and a smaller diameter stylet lumen that is blocked at its distal end. The deflection mechanism in this case includes a stiffening stylet that can be selectively introduced into and removed from the stylet lumen from a proximal hub or handle. The stiffening stylet is advanced distally until the stylet distal end abuts the closed stylet lumen distal end to stiffen the catheter body to aid its introduction and advancement. The stylet distal end can be shaped when outside the stylet lumen opening to impart a curve to the catheter body when inserted into the lumen to assist in steering the catheter body distal end through the pathway. The stylet lumen is preferably lined with a wire coil sheath, and the handle and delivery lumen are preferably slittable by a slitting tool to aid in removing the introducer catheter from an electrical medical lead introduced through the delivery lumen. The delivery lumen exit port and the closed end of the stylet lumen are both located at the bitumen catheter body distal end.
A variety of deflectable or steerable stylets have been proposed and in some cases clinically introduced to aid in direct implantation of a cardiac lead having a lead lumen or to aid in the deflection and steering of a bilumen guide catheter. One approach has been to employ deflectable stylets wherein the stylet distal segment can be deflected or curved while within the lead body lumen from the proximal end thereof. Two-piece stylets that include a straight, tubular outer member and a curved inner member received within the outer member lumen enabling relative movement of the inner and outer members are disclosed in U.S. Pat. Nos. 4,136,703, 4,381,013 and 5,728,148. The outer tubular member of the '013 patent enables the transmission of torque applied by the implanting physician at the proximal end to be transmitted to a fixation helix located at the lead body distal end lead to screwed the helix into endocardial tissue. Alternatively, two-piece stylets comprising a curved outer member and a relatively straight inner member are also known to the art, as disclosed in U.S. Pat. Nos. 4,676,249 and 5,040,543. In such composite stylets, the relative position of the inner member with respect to the outer member determines the degree to which the curved member (inner or outer) is allowed to display its preset curvature.
A common approach to providing controllable deflection of the distal end segments of catheters, guidewires, and stylets employs a generally straight outer sheath or tube and a pull or push or push-pull wire extending through a lumen of the outer sheath to an attachment point at the sheath distal end. The wire is pushed or pulled on at its proximal end typically through a handle that is permanently or removably attached to the catheter or guidewire proximal end. The proximal retraction or distal advancement of the pull or push wire, respectively, causes at least a distal segment of the outer sheath to bend or deflect. Examples of such deflection mechanisms in catheters can be found in U.S. Pat. Nos. 4,815,478, 4,898,577, 4,940,062, 5,545,200 and 6,251,092. U.S. Pat. Nos. 4,815,478 and 4,940,062 disclose the use of push-pull wires extending through guidewire lumens for deflecting a guidewire distal end by manipulating a handle at the guidewire proximal end.
Deflectable stylets intended to be inserted into cardiac lead body lumens employing this type of deflection mechanism are disclosed in U.S. Pat. Nos. 5,170,787, 5,327,906, 5,439,006, 5,662,119, 6,027,462, 6,059,739, and 6,146,338. Such deflectable stylets include an elongated stylet body or tube extending from a stylet body proximal end to a stylet body distal end, a handle coupled to the stylet body proximal end, and a traction wire or pull wire extending through a stylet lumen of the stylet body of tube from the handle to the stylet body distal end. Many of these patents disclose steerable stylet handles at the stylet body proximal end that are manipulated by one hand operation to induce a bend in a distal segment of the stylet body.
Several embodiments of deflectable stylets are disclosed in the '119 patent that employ an elongated metal tube having a stylet tube lumen through which a traction or pull wire extends to a distal wire end. In each case, a distal portion of the pull wire is exposed along a like distal portion of the metal tube in such a way that traction applied to the pull wire proximal end causes the distal portion of the tube to bow or bend. The exposure of the distal portion of the pull wire extending alongside the metal tube is created in several ways.
In one embodiment depicted in FIGS. 1 and 2 (FIGS. 12 and 13 of the '119 patent), an elongated cutaway portion 11′ of the tube wall 15′ of tube 10′ is formed extending between cuts 18′ and 20′ proximal to tube distal end 22′. The cutaway portion 11′ extends about half way through the tube wall 15′ exposing a distal portion of the pull wire 12′ extending proximally and distally through the tube lumen 13′. The pull wire 12′ terminates in ball-shaped distal end element 23 having a diameter greater than the inside diameter of the tube lumen 13′ that bears against the tube distal end 22′ when pulled proximally.
In another embodiment depicted in FIG. 3 (FIG. 8 of the '119 patent), one side of the tube wall 15 is indented against the other side of the tube wall 15 between two openings 18 and 20 proximal to the tube distal end 22 to form a bendable indented portion 11 of the tube 10. The pull wire 12 is threaded out of the tube lumen 13 through the proximal opening 18 and back into the tube lumen 13 through the distal opening 20, whereby a distal portion of the pull wire 12 is exposed extending alongside the indented portion of the tube wall 15. The distal end of the pull wire 12 is crimped to the tube distal end 22 in this case.
The tube 10 is preferably formed of stainless steel hypodermic needle tubing having an outside diameter in the range of 0.012 to 0.016 inches. Pull wire 12 is preferably formed of high tensile strength stainless steel wire having a diameter in the range of 0.005 to 0.007 inches. The distance between the proximal openings 18, 18′ and the distal openings 20, 20′ is stated to be between 2 to 4 inches.
In a variation of these embodiments, a tubular retainer formed of a thin tube of polyimide, stainless steel or Nitinol is fitted over the tube 10 to extend across the indented portion 11 and the cutaway portion 11′ to restrict the outward movement of the pull wire 12 when it is tensioned, which could exert excessive friction against the coiled conductors defining the cardiac lead lumen that the tube 10 is inserted into.
In use, the tube 10 is normally relatively straight when the pull wire 12 is relaxed. A curve or bend is effected in the distal portion of the tube 10 at the indented portion 11 or the cutaway portion 11′ when the pull wire 12 is pulled proximally. The induced curve or bend stresses the tube wall 15 along the indented portion 11 and the cutaway portion 11′. It is stated in the '119 patent that prototypes of the cutaway tube embodiment of FIGS. 1 and 2 were found in testing to be inferior to the indented tube embodiment of FIG. 3 in resistance to kinking, and that the indented embodiment of FIG. 3 was easier to manufacture than the cutaway embodiment of FIGS. 1 and 2.
However, It can be difficult to indent thin wall stainless steel or shape memory alloy tubes to achieve the uniform indentation depicted in the '119 patent. It can also be difficult to precisely form uniform diameter proximal and distal holes as depicted in the '119 patent. Poor torque transmission and uneven bending characteristics can result particularly at the proximal end of the indented portion 11 that is weakened both by indentation and formation of the hole through the tube wall.
Thus, despite these improvements, there is still a perceived need for steerable stylet having a small diameter stylet body that is simple and inexpensive to manufacture, resists kinking, and that can be manipulated to control the deflection of and impart a wide degree of dynamic curvature in a distal segment of the stylet body. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventional actuator systems employ a closed loop position control system. These systems include a position sensor for actuator position feedback and either an integrating controller or proportional controller used for control. The integrating controller assures that the steady state sensed position matches the commanded position. However, the actual position versus commanded position is still susceptible to inaccuracies of the position sensor gain and position (i.e., calibration of the position sensor to the valve position), the position sensor demodulator accuracy, channel-channel tracking and digital resolution. The proportional controller is susceptible to the above inaccuracies as well as an allowed steady state error that is a function of disturbance magnitudes and the proportional gain of the controller.
Regardless of the controller type, the accuracy of the system is very highly dependent on the position sensor accuracy. For precise metering applications such as in aircraft systems, the position sensors need to be very accurate and have high resolution. While very accurate, the position sensors are typically very expensive, both in terms of time and cost. They are relatively difficult to interface with due to the mechanical interface, the hydraulic interface, the number of small gauge wires, complicated demodulation circuitry, etc. Position sensors are also prone to failure due to the reliability of small gauge wires. This failure mode leads to dual channel requirements (i.e., two separate position sensors, drivers, and motor control) and additional cost in order to meet reliability requirements.
Elimination of the position feedback sensor will save money and weight. However, the lack of position feedback and the closed loop controller means that the effects of disturbances and/or the variations in forward path gain that are sensed and/or compensated in the closed loop controller will no longer be sensed and/or compensated. To negate these adverse effects, the magnitude of the disturbances should be minimized, the inherent disturbance rejection characteristics of the forward path should be maximized and the gain accuracy of the forward path should be made insensitive to the environment. In other words, the forward path must be “robust.” The forward path must also be strictly proportional since there is no feedback to prevent the divergence that would occur with an integrating forward path.
Open loop, proportional electro-hydraulic servo valve (EHSV) based actuator systems use a low energy torque motor that controls hydraulics that drive the actuator. The motor used has high speed but very low torque. The low torque levels result in the motor (and thus the actuator) being substantially affected by relatively small DC torque disturbances. For example, isolation seals, relaxation of torsion spring preload, magnet MMF (magnetomotive force) variations, variations in flux path reluctance, discrete steps in nozzle pressure feedback forces, thermal induced movement of parts, etc. can affect the torque motor. The relatively undamped torque motor also does not support good dynamic torque disturbance rejection (e.g., current transient, vibration, etc.) and creates resonance issues. The actuator position is fed back to the motor via springs. This indirect position feedback technique does not provide adequate load disturbance rejection for most applications.
What is needed is a system that overcomes the problems of sensorless actuators as discussed above. The invention provides a system with such features. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
This section provides background information related to the present disclosure which is not necessarily prior art. This section also provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
As a result of environmental and other concerns, plastic containers, more specifically polyester and even more specifically polyethylene terephthalate (PET) containers are now being used more than ever to package numerous commodities previously supplied in glass containers. Manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable and manufacturable in large quantities.
Blow-molded plastic containers have become commonplace in packaging numerous commodities. PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to maintain its material integrity relates to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container. The following equation defines the percentage of crystallinity as a volume fraction:
% Crystallinity = ( ρ - ρ a ρ c - ρ a ) × 100 where ρ is the density of the PET material; ρa is the density of pure amorphous PET material (1.333 g/cc); and ρc is the density of pure crystalline material (1.455 g/cc).
Container manufacturers use mechanical processing and thermal processing to increase the PET polymer crystallinity of a container. Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching an injection molded PET preform along a longitudinal axis and expanding the PET preform along a transverse or radial axis to form a PET container. The combination promotes what manufacturers define as biaxial orientation of the molecular structure in the container. Manufacturers of PET containers currently use mechanical processing to produce PET containers having approximately 20% crystallinity in the container's sidewall.
Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. On amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque, and thus, generally undesirable. Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity for those portions of the container having biaxial molecular orientation. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of approximately 250° F.-350° F. (approximately 121° C.-177° C.), and holding the blown container against the heated mold for approximately two (2) to five (5) seconds. Manufacturers of PET juice bottles, which must be hot-filled at approximately 185° F. (85° C.), currently use heat setting to produce PET bottles having an overall crystallinity in the range of approximately 25%-35%.
Unfortunately, with some applications, as PET containers for hot fill applications become lighter in material weight (aka container gram weight), it becomes increasingly difficult to create functional designs that can simultaneously resist fill pressures, absorb vacuum pressures, and withstand top loading forces. According to the principles of the present teachings, the problem of expansion under the pressure caused by the hot fill process is improved by creating unique vacuum/label panel geometry that resists expansion, maintains shape, and shrinks back to approximately the original starting volume due to vacuum generated during the product cooling phase.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.