text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the invention
The invention relates to a controlled release liquid urea-formaldehyde fertilizer which has a nitrogen level greater than about 31%.
2. Description of Related Art
Urea-formaldehyde based liquid fertilizers have been used for some time to provide nitrogen to the soil. It is desirable that such fertilizers be stable and provide a steady, evenly supplied, amount of nitrogen.
In the past, long term stability of high nitrogen (around 30%) liquid urea-formaldehyde fertilizers was achieved by forming either a high percentage (more than 30%) of cyclic triazone structures or by condensing the urea-formaldehyde resin into small urea-formaldehyde polymer chains.
Several patents issued to Hawkins describe the preparation of urea-formaldehyde resins having high triazone contents. U.S. Pat. No. 4,554,005 describes a reaction that produces at least about 30% triazone and has a preferred urea, formaldehyde, ammonia ratio of 1.2/1.0/0.28. U.S. Pat. No. 4,599,102 describes a reaction that produces at least about 30% triazone and has a urea, formaldehyde, ammonia ratio of 1.2/1.0/0.5. Both of these resins have a high percentage of ammonia. U.S. Pat. No. 4,776,879 describes a reaction that produces at least about 75% triazone in water insoluble forms. This material is then crystallized out and redissolved at low solids levels for use. U.S. Pat. No. 4,778,510 describes a reaction that produces at least about 48% triazone. Nitrogen release from triazone is extremely slow, therefore, methylolated urea is preferred. The nitrogen is the useful part of the fertilizer to the plant and thus the higher the % of nitrogen, the more efficient the fertilizer.
Other patents describe condensing the resin into small chains. U.S. Pat. No. 4,781,749 to Moore reacts 1.5 to 2.5 mols formaldehyde per mole of urea in the presence of ammonium compounds such as ammonia. This initial mole ratio is below the initial mole ratio of 5 to 4 mols formaldehyde per mole of urea of the present invention. The pH is maintained at near neutral conditions (6.9-8.5) throughout the reaction. Condensed UF chains have lower solubility than methylolated ureas and could continue to advance, leading to extremely slow release.
U.S. Pat. No. 3,970,625 to Moore et al. describes a process for preparing urea-formaldehyde concentrates for use as slow release fertilizers or as adhesives. Urea and formaldehyde are mixed in a molar ratio of 1/4.4-7.3 with no more than 0.015 wt. % of ammonia present in the urea. The pH is adjusted to 8.8-9.5 and the mixture is heated to 50-60.degree. C. for 30-60 minutes. Thereafter, water is removed by distillation under reduced pressure until solids comprise 60-90% of the remaining residue. For producing fertilizers, the residue is heated for another 48 hours at a temperature of 45-50.degree. C.
U.S. Pat. No. 5,449,394 to Moore relates to liquid non-polymeric controlled-release nitrogen plant food compositions containing the condensation products of one part ammonia, two parts urea and three parts formaldehyde at a base buffered pH slightly above 7. The reaction is accomplished at a temperature of about 100.degree. C. for 30-300 minutes. Water may be removed by evaporation until the nitrogen content of the formulation is between 20 and 30%. The solution is cooled before polymerization producing chains of more than 3 urea moieties can occur.
It is desirable to have a method of making a stable urea-formaldehyde resin suitable for fertilizer use that uses significantly less triazone and no condensation, and has a higher nitrogen concentration. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a process for the preparation of aldehydes and ketones
2. The Prior Art
Aldehydes and ketones are widely used in organic chemistry. For example, they are important precursors in the synthesis of heterocycles, or perfumes and dyestuffs.
A variety of processes are known for the preparation of aldehydes and ketones. For example, the formyl and the acyl group are successfully introduced directly into aromatic systems via electrophilic substitution reactions, which, however, are limited by the substitution rules. Aromatic ketones can also be synthesized via organometallic reactions. A disadvantage includes the necessity of using an anhydrous reaction medium. Another disadvantage is the use of toxic chemicals such as phosphorus oxychloride, carbon monoxide, zinc cyanide, mercury organyls and cadmium organyls.
Aldehydes and ketones may also be synthesized via oxidation reactions. An overview is given in the literature reviewed in Houben-Weyl, Vol. E3, p. 230 et seq., 1983, and Vol. 7/2a, p. 688 et seq. Customary oxidants are selenium dioxide, chromium trioxide, cerium(IV) ammonium nitrate in perchloric acid/nitric acid or manganese dioxide in concentrated sulfuric acid, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or iodine in DMSO. These oxidants, however, are also not very suitable for larger-scale syntheses due to their toxicity, the high costs or difficult handling. Moreover, most syntheses are complicated and yield the desired aldehyde only in moderate yield. In accordance with Org. Synth. Coll. Vol. IV, 1961, p. 31, 4-aminobenzaldehyde can be synthesized from nitrotoluene with the aid of polysulfide. Purification of the reaction product, which has a tendency to polymerize, is difficult and must be carried out rapidly, so that this process is unsuitable for larger amounts of substance.
When carrying out the oxidation with oxygen with addition of catalysts, not only are the desired aldehydes formed, but in most cases also the corresponding carboxylic acids (see Houben-Weyl, Vol. E3, p. 234 et seq., 1983). If this process is carried out with addition of N-hydroxyphthalimide and Co(II) or Co(III) compounds, even the starting material is fully oxidized to give the carboxylic acid (Ishii et al., J. Org. Chem. 1996, 61, 4520). Aromatic ketones are formed from alkylbenzenes with the aid of N-hydroxyphthalimide and acetaldehyde/oxygen in nonaqueous medium (Einhorn et al. in Chem. Commun. 1997, 447). The formation of aromatic aldehydes from the corresponding methyl aromatics with the aid of the enzyme laccase and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) was described by Potthast in J. Org. Chem. 1995, 60, 4320. However, it was impossible to reproduce these results in independent experiments. Moreover, the laccase mentioned in the publication, by Mercian, which has an activity of 1.1.times.10.sup.4 (IU/ml, based on the conversion of 4-hydroxymandelic acid as substrate), is not available. When attempting to reproduce the results, an available product, namely Mercian laccase with an activity of approx. 95 IU/ml, was employed at 100-fold concentration. A difficulty is that such high amounts of enzyme would completely exclude an applicability of the method for preparative purposes. Under these conditions, not even traces of an oxidation of 4-nitrotoluene was observed. When 3,4-dimethoxytoluene was used in the conversion, only 0.3% of 3,4-dimethoxybenzaldehyde were detected. Synthetic methods using ABTS are generally limited by the price of the compound, which is high.
There is therefore a demand for an inexpensive process which allows even sensitive aldehydes to be synthesized on a large scale. In particular, there is a need for a process in which water can be used as reaction medium. | {
"pile_set_name": "USPTO Backgrounds"
} |
The natural mineral zeolite (e.g. porous aluminosilicate) has the property of strongly adsorbing water vapor, incorporating it in its internal crystal lattice, with a significant release of heat. Water can be deabsorbed from zeolites by heating. The absorption process can proceed in a partially evacuated environment where the absorption of the water by the zeolite can be so forceful that the internal pressure of the closed system drops dramatically and causes liquid water in the system to evaporate and cool, even to the point of freezing. This effect can be used to generate a cooling system where water is evaporated from one chamber of the system, cooling that chamber, and absorbing into the zeolite until the zeolite has reached its saturation point. This characteristic of zeolites has been explored for the development of air conditioning systems, particularly for systems where portability is desired. Portable systems can be used for mobile individuals in occupations where they must wear protective clothing in hot environments or for automobiles, where a significant amount of waste heat is available for the removal of water to recover the water absorbing zeolite.
The water adsorption capacity decreases as the temperature rises in a zeolite and limits the performance of a cooling system designed using a zeolite absorber. For systems of this type, a significant effort has been directed at the surface area of the zeolite bed in contact with the outside surface with the goal of increasing the rate of heat loss from the zeolite absorber. Many studies have focused on the design of the bed such that it has more surface area on the outside so that cooling by outside air will be more efficient. Unfortunately, the improvement of the absorption capacity has not been significant. A limitation for such a system is the thermal conductivity of the zeolite bed itself. A conventional packed bed of zeolite beads or powder is very thermally insulating with a room temperature thermal conductivity of about 0.2 to no more than about 10 W/m·K. The heat generation on absorption of water far exceeds heat loss to the environment for the best external architectures. Zeolite beds can reach temperatures of about 120° C. or more while absorbing water at practical rates of absorption for such cooling systems.
Zeolites are often employed as absorbents in air purification systems. Zeolites have been employed with other absorbents to enhance or modify the systems. A commonly employed combination is that of carbon and zeolites, which are considered complimentary absorbents. Usually they are employed in discontinuous layers, but have been used as a mixture of solids. The “absorbent carbon” used in such systems are charcoals and activated carbons formed by the pyrolysis of coal, wood, bark, and other cellulose based materials where volatile materials are remove. These “absorbent carbons” are also thermal insulators with thermal conductivities in the range of 0.5 W/m·K. Therefore, these mixed absorbents cannot significantly improve the water capacity limitations of the zeolites due to the high temperatures achieved by the zeolites during absorption.
There is a need to address absorption limitations due to the heating of the zeolite upon absorption of water. A route to improve the cooling of the zeolite during water absorption is also needed such that cooling and other systems based on the absorption of water in zeolites might be significantly enhanced. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to automobile wiper devices, and more particularly to a variable-driving unit capable of varying the arm pressure and the wiping area of a wiper device, and also to a wiper device incorporating such variable-driving unit.
2. Description of the Prior Art
An automobile wiper device includes a wiper arm driven to oscillate through a segmental or fan-shaped area. The wiper arm is firmly connected at its proximal end to a pivot spindle fixed to one end of a pivot lever pivotally connected at the other end thereof to one end of a link rod, the other end of the link rod being pivoted to a wiper motor. Upon rotation of the wiper motor, the link rod is reciprocated to oscillate the pivot lever and the pivot spindle connected thereto, thereby oscillating the wiper arm. The wiper arm is provided with a wiper blade connected to the distal end thereof for wiping a segmental area on a windscreen to remove raindrops or the like. During oscillating movement, the wiper blade is urged against the windscreen at a predetermined arm pressure by means of an arm spring associated with the wiper arm.
The arm pressure and the wiping area of the conventional wiper device are constant and not adjustable.
It is preferred to maintain the arm pressure at a minimum value while the wiper device is not operated, thereby preventing permanent deformation of the wiper blade. Such minimum arm pressure is not preferable when the vehicle is travelling at high speeds in which instance the wiper blade is subjected to a severe wind pressure tending to lift the wiper blade up from the windscreen against the force of the arm spring, resulting in a substantial reduction of wiping efficiency of the wiper device. This lifting of the wiper blade does not occur when the arm pressure is increased to a certain extent. However, the increased or high arm pressure tends to permanently deform the wiper blade while the latter is being pressed against the windscreen.
As stated above, the wiper blade of the conventional wiper device is oscillated within a predetermined wiping area and this wiping area cannot be changed. This construction is disadvantageous in that the wiper device is likely to be damaged under severe wiping loads acting on the wiper blade and the wiper arm when the wiper blade changes its direction of oscillating movement while the wiper device is operating to wipe the snow on the windscreen. Furthermore, the wiper blade while being oscillated is deplaced laterally outwardly from the predetermined wiping area under a severe window pressure acting on the windscreen when the vehicle is travelling at high speeds. The wiper blade thus displaced tends to slip off the windscreen in a lateral outward direction and damage the vehicle body.
One prior attempt made to overcome the foregoing difficulties caused by the constant arm pressure is disclosed in Japanese Patent Laid-open Publication No. 59-145647 in which an electromagnetic clutch is employed to change the arm pressure. The electromagnetic clutch, however, is difficult to control at an accurate operation timing which is required for spontaneous control of operation of the wiper device. Wiper devices having such electromagnetic clutch are complicated in construction and large in size. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a method for controlling a receiver that is implemented on the RAKE principle and comprises a number of correlators which are able to synchronize with a received signal.
A receiver operating on the RAKE principle comprises several branches, and each branch can synchronize with a different signal component. The receiver can thus receive a plurality of signals simultaneously. RAKE receivers are used especially in CDMA receivers.
CDMA is a multiple access system based on a spread spectrum technique, and it has recently been put into use in cellular radio systems in addition to previously used FDMA and TDMA. CDMA has many advantages over the prior methods, such as simplicity of frequency planning, and spectrum efficiency.
In a CDMA method, a narrow-band data signal of a user is multiplied to a relatively broad band by a spreading code having a much broader band than the data signal. Band widths used in known test systems include e.g. 1.25 MHz, 10 MHz and 25 MHz. The multiplication spreads the data signal over the entire band to be used. All the users transmit simultaneously on the same frequency band. On each connection between a base station and a mobile station is used a different spreading code, and the signals of the users can be distinguished from one another in the receivers on the basis of the spreading code of the user. If possible, the spreading codes are selected in such a way that they are mutually orthogonal, i.e. they do not correlate with one another.
Correlators in conventionally implemented CDMA receivers are synchronized with a desired signal, which they recognize on the basis of the spreading code. In the receiver the data signal is restored to the original band by multiplying it by the same spreading code as in the transmission step. Ideally, the signals that have been multiplied by some other spreading code do not correlate and are not restored to the narrow band. In view of the desired signal, they thus appear as noise. The object is to detect the signal of the desired user from among a number of interfering signals. In practice, the spreading codes correlate, and the signals of the other users make it more difficult to detect the desired signal by distorting the received signal non-linearly. This interference caused by the other users is called multiple access interference.
It is vital to the performance of the spread spectrum system that the receiver is able to synchronize with an incoming signal quickly and accurately. The synchronization with the incoming signal usually takes place in two steps. In code phase acquisition, the aim is to find the desired signal in the input and determine its phase with the accuracy of half a chip. When this has been accomplished, the phase is considered locked, and the code phase is then fine-adjusted with a code tracking loop, which maintains the phase lock.
The code phase acquisition can be implemented on either the applied filter or active correlation principle. The former method is rapid, but it can be utilized only with short codes and, when implemented digitally, it requires much current. Active correlation is the most generally used method in CDMA systems. In active correlation, the code phases of a local correlator are monitored at half-a-chip intervals and compared with the received signal. This is economical, but slow. The acquisition can be speeded by using several correlators in parallel, whereby the acquisition area can be divided into sections. The acquisition time is then naturally shortened.
In earlier solutions, RAKE receivers are designed such that the RAKE branches have fixed modes of operation. An acquisition branch looks for signals addressed to the receiver, and separate correlators are reserved for tracking and demodulation of the found signals. Another known solution is that all correlators are used for acquisition in establishing a connection with the system, but when the desired signal has been found, the correlators have fixed modes of operation, i.e. one or two branches are used in the acquisition and the others in the tracking of the desired signal.
In known solutions, the operation of the RAKE branches is not adaptive but either fixed or predetermined. The present receivers are designed to operate primarily in macro cells, i.e. large cells, in which the propagation delays of multipath-propagated signals are long and several tracking correlators are needed. In macro cells, there is time to look for a new base station signal, since the cells are large and a need for changeover does not arise unexpectedly. Micro cells, on the other hand, are small, often less than 500 m. A transmitter and a receiver often have a line of sight, and so the main part of the energy of the signal is contained in the direct propagated component. There is often no need to track several multipath-propagated components. In the solutions of the prior art, the tracking correlators of the receivers are thus not in use. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a device designed to protect a bottle fixed to the frame or to any other part of a bicycle or similar vehicle
The term bicycle or similar kind of vehicle is used to represent any pedal or motor-driven two-wheel vehicle such as a moped or a motorcycle. The term could equally apply to other types of pedal-driven vehicles having more than two wheels.
2. Description of Related Art
In past years it has become commonplace to equip bicycle frames with a holder or cage (hereafter referred to as the "cage") on or in which it is possible to fix a bottle allowing the cyclist to drink while riding. The cage or holder is usually fixed to the frame by two screws and has at least one component acting as a clamp to avoid the bottle coming loose when riding over bumpy terrain.
The major shortcoming of these systems is that the cap of the bottle which the cyclist, puts to his or her mouth to drink, is in no way protected from the dirt of the road. Thus, during a ride, the bottle and in particular its cap will be covered with dirt and dust requiring the cyclist to stop and clean the cap or try to clean it while riding, which may be dangerous. But of course even after wiping off the dirt from the bottle's cap macroscopically, chemical and organic contaminants are still present, which may represent a real health hazard. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cheese is made within block-shaped containers that are also used to ship or otherwise transport the cheese for further processing. Some of the containers are made of stainless steel with permanently joined sides, and others are made with plywood sides that are temporarily held together between metal corners by banding. These containers have approximately 80 gallons (i.e., 304 liters) of capacity for making blocks of cheese weighing nearly 700 pounds (or about 315 kilograms).
The sides of the containers are assembled together to constitute a so-called "cheese hoop", which is used independently of a base and cover of the containers during the cheese-making process. The cheese is pressed from both the ends of the hoop to remove whey from the coagulated part of the cheese. The compressed cheese exerts large outward pressures against the cheese hoops, and the sides and joints between the sides of the cheese hoops must be especially strong to resist these pressures.
Finished cheese is extruded in large blocks from the stainless steel containers for further processing, whereas the sides of the plywood containers can be taken apart to remove the blocks of cheese. Once removed from the containers, the blocks of cheese are further processed by forcing the blocks through a matrix of wire cutters for cutting the blocks into a number of smaller chunks. Any departure of the blocks from squareness and flatness, such as bowing, produces waste that is trimmed from the exterior of the blocks and discarded.
Accordingly, the cheese containers must be made to exacting tolerances and be especially rigid. In fact, the containers are generally required to hold dimensions of the finished cheese blocks to within 3/16.sup.ths of an inch (or approximately 5 millimeters). However, the stainless steel containers tend to become dented with repeated use and produce increasing amounts of scrap. The dents also make extruding the blocks of cheese from the stainless steel containers more difficult. The plywood containers are much cheaper than the stainless steel containers and resist denting; but the plywood poses sanitation problems, and the containers are difficult to assemble. The plywood is waxed for sanitary reasons and must be refurbished before the container can be used again to make cheese. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to medical devices and methods. More specifically, the present invention relates to a device and method for delivering implants such as an interbody implant to a space such as an intervetebral space.
2. Background of the Invention
Whether from degenerative disease, traumatic disruption, infection or neoplastic invasion, alterations of the normal anatomical relationships between the spinal vertebrae can cause significant pain, deformity and disability. Spinal disease is a major health problem and procedures that surgically reconstruct the spinal column have become common procedures in the industrialized world.
Vertebral fusion may be accomplished by using an anterior, lateral or posterior approach and each has particular advantages and drawbacks. Frequently, circumferential fusion of the unstable level with fixation of both the anterior and posterior aspect of the spine is desired. This requires that patients undergo a combination of the aforementioned approaches. The anterior or lateral approaches are used to insert the bone graft into the disc space between the adjacent vertebrae while the posterior approach is used to place bone screws or similar fasteners that are used to immobilize the vertebral bodies. Other implants such as interbody devices may also need to be deployed.
Commercially available surgical instruments and methods of use have varying degrees of success. In some instances, the instruments have a large profile and can obstruct the surgical field, or they require excessive tissue retraction or bone decompression in order to fit in the treatment area. In other instances, the instruments and methods may not utilize the easiest pathway to the treatment area or provide adequate access. For example, in some intervertebral implantations of interbody devices, the surgeon may deliver the device laterally relative to the spinal midline thereby requiring more bone to be removed in order for the delivery device and implant to fit in the space. Bone removal is generally avoided when possible. Therefore it would be desirable to provide delivery devices and methods that permit a more medial delivery in order to reduce the amount of bone removal required. Additionally, interbody devices may have to be delivered individually thereby requiring more operating room time. Therefore, it would also be desirable if bilateral delivery of interbody implants could be performed. At least some of these objectives will be satisfied by the various embodiments disclosed in this specification. | {
"pile_set_name": "USPTO Backgrounds"
} |
A wide variety of computer operating systems and computer application programs incorporate, display and/or perform operations on data or information which is hierarchical in nature. For example, most computer operating systems provide users access to a hierarchy of directories and/or sub-directories where documents, programs and/or other information are stored. Many computer e-mail systems likewise provide a hierarchy of files and/or sub-files in which e-mail messages may be stored. Organizer applications typically allow a user to establish task listings and/or store other forms of data which, once again, may be hierarchical in nature. The number and variety of computer systems and programs which store and/or manipulate hierarchical data sets continues to increase as computer processing applications continue to proliferate.
With the advent and expanded use of graphical user interfaces over the last fifteen or so years, it has become possible to display all or part of hierarchical data sets to the user of a computer via a “tree diagram” representation. Tree diagrams are particularly useful in displaying hierarchical data as the levels of the tree diagram visually depict the location of each piece of data in a way that quickly and intuitively conveys to a user both the location of the data within the hierarchy and the relationship of that data to other data in the hierarchy. Additionally, the hierarchical structure of a tree diagram may allow a user to more quickly and efficiently peruse the data, such as by reviewing the entries at the higher levels to locate particular branches which are most likely to contain the information of interest. A user also typically can “expand” or “collapse” the tree diagram at various points (i.e., displaying or hiding information in the higher levels of the tree) to further facilitate viewing the hierarchical data. Both custom programs, as well as tree diagram objects, are known in the prior art for providing a tree diagram graphical user interface to a user. For example, FIG. 3 is a screen capture of a prior art application (Microsoft Corporation's Windows Explorer) that includes a display area 5 containing hierarchical data displayed using a tree diagram graphical user interface.
While the use of tree viewer objects and custom tree viewer programs has expanded in recent years, so has the complexity of many of the hierarchical data sets that are displayed to the user via the tree diagram. Moreover, as computer memory and processing capabilities have expanded, users are now opening up more and more applications at the same time, resulting in desktop displays that typically have numerous windows open simultaneously in what may be a confusing, layered display of icons, windows and the like. Additionally hierarchical data is now displayed using tree diagrams on many mobile computing devices that have different constraints in terms of the size of the display and the control of windows. The complexity of the hierarchical data sets and the proliferation of environments in which they may be used have left a need for improved graphical user interfaces that display hierarchical data in tree diagram form. | {
"pile_set_name": "USPTO Backgrounds"
} |
Information and data available through the Internet are only available in a format chosen by those who control the data. To provide the ability to collect, access, and analyze data which the analyzer does not control, for example by search engines, tools have been developed to extract data from various data sources such as web pages.
Webmasters may wish to add schema.org markup to a webpage or HTML email in ways recognized by major search providers. Search engines may rely on this markup to improve the display of search results, making it easier for people to find the right web pages. To assist in adding markup, some systems may mark up an example page, and send this page to the webmaster. Then the webmaster may add markup which is not entirely correct, and the webmaster may then have to iterate several times with a search engine provider before getting the markup correct. Working directly with the webmaster also does not scale to the entire web. Thus, there exists a need for a self-service, interactive tool to help webmasters more easily add schema.org annotations to their webpages or HTML emails. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to retaining wall structures assembled from standardized structural units to form retaining walls useful for retaining earth embankments, and is particularly well adapted for the construction of levee or seawalls along shorelines.
The retaining wall system of the present invention finds its most practical application in situations where there is a difference of ground level elevation between the opposite sides of the wall of about two or more feet. In those cases where the wall is erected on relatively flat terrain, as to serve as a water barrier, back fill may be emplaced behind the wall. The structural components from which the wall is constructed may be made in units capable of being manually handled and emplaced. The system is so designed as to be assembled and emplaced by relatively unskilled labor. The system when emplaced provides a retaining wall defined primarily by panels which are relatively thin, but which are firmly anchored to the fill which bears against the unexposed side of the wall. | {
"pile_set_name": "USPTO Backgrounds"
} |
Information technology (IT) environments can include diverse types of data systems that store large amounts of diverse data types generated by numerous devices. For example, a big data ecosystem may include databases such as MySQL and Oracle databases, cloud computing services such as Amazon web services (AWS), and other data systems that store passively or actively generated data, including machine-generated data (“machine data”). The machine data can include performance data, diagnostic data, or any other data that can be analyzed to diagnose equipment performance problems, monitor user interactions, and to derive other insights.
The large amount and diversity of data systems containing large amounts of structured, semi-structured, and unstructured data relevant to any search query can be massive, and continues to grow rapidly. This technological evolution can give rise to various challenges in relation to managing, understanding and effectively utilizing the data. To reduce the potentially vast amount of data that may be generated, some data systems pre-process data based on anticipated data analysis needs. In particular, specified data items may be extracted from the generated data and stored in a data system to facilitate efficient retrieval and analysis of those data items at a later time. At least some of the remainder of the generated data is typically discarded during pre-processing.
However, storing massive quantities of minimally processed or unprocessed data (collectively and individually referred to as “raw data”) for later retrieval and analysis is becoming increasingly more feasible as storage capacity becomes more inexpensive and plentiful. In general, storing raw data and performing analysis on that data later can provide greater flexibility because it enables an analyst to analyze all of the generated data instead of only a fraction of it.
Although the availability of vastly greater amounts of diverse data on diverse data systems provides opportunities to derive new insights, it also gives rise to technical challenges to search and analyze the data. Tools exist that allow an analyst to search data systems separately and collect results over a network for the analyst to derive insights in a piecemeal manner. However, UI tools that allow analysts to quickly search and analyze large set of raw machine data to visually identify data subsets of interest, particularly via straightforward and easy-to-understand sets of tools and search functionality do not exist. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates generally to an antigenic preparation and specifically to a Leptospira outer membrane protein (OmpL2) which is used to induce a protective immune response in animals. Such a protein can be used immunologically as a vaccine for leptospirosis caused by this organism. Alternatively, diagnosis of leptospirosis can be performed by detecting the presence of the protein, antibody to the protein, or polynucleotide which encodes the protein.
2. Description of Related Art
Leptospirosis is a widespread zoonotic disease caused by pathogenic strains of Leptospira which are capable of infecting most mammalian species. At present, there are six pathogenic species and three nonpathogenic species within the genus Leptospira. Infection occurs either through direct contact with an infected animal or indirect contact with contaminated soil or water. In livestock, the disease causes economic losses due to abortion, stillbirth, infertility, decreased milk production, and death.
Efforts to control leptospirosis have been hampered because virulent leptospires have the capacity for both long-term survival in the environment as well as persistent infection and shedding by wildlife and livestock. Currently available leptospiral vaccines produce short-term immunity and do not provide cross-protection against many of the 170 serovars of pathogenic Leptospira (Thiermann, et al., J. Am. Vet. Med. Assoc. 184:722, 1984). These vaccines consist of inactivated whole organisms or outer envelope preparations which produce seroreactivity as determined by microscopic agglutination of intact organisms. The nature of the protective immunogens in these vaccine preparations has not been conclusively elucidated, although several lines of evidence suggest that lipopolysaccharide-like substance (LLS) may confer a degree of protection.
The pathhogeanesis of leptospircsls is veny similar to that of other spirochetal diseases, including syphillis (caused by Treponema pallidum) and Lyme borreliosis (caused by Borrelia burgdorferi). Both syphilis and Lyme borreliosis are characterized by widespread dissemination early in the course of disease, including invasion of the central nervous system. Leptospira share this ability with other pathogenic spirochetes such that meningitis is a common manifeslation of leptospirosis. Another feature of spirochetal infections is the ability to persist chronically in the host, as manifested in cases of tertiary syphilis and chronic Lyme arthritis.
In attempting to identify leptospiral outer membrane proteins (OMPs), previous research was unsuccessful due to such problems as: 1) the techniques used to identify surface-exposed proteins probably involved damage to the fragile leptospiral outer membrane resulting in exposure of subsurface structures; 2) putative surface-exposed proteins that were identified included a 35-36 kD doublet corresponding to Leptospira endoflagella (Kelson, et al., J. Med. Microbiol. 26:47, 1988), which are subsurface structures in spirochetes; and 3) use of SDS which nonselectively solubilizes proteins irrespective of their native cellular location.
Nunes-Edwards, et al. (Infect. Immun. 48:492, 1985) introduced the use of radioimmunoprecipitation and cell fractionation schemes based on the use of SDS in an effort to identify leptospiral OMPs. The leptospires used in their radioimmunoprecipitation procedure were subjected to high speed centrifugation (20,000.times.g) prior to the addition of antibody. Such high centrifugal forces cause mechanical disruption of the leptospiral outer membrane. Niikura, et al. (Zbl. Bakt. Hyg. A. 266:453, 1987) immunoprecipitated SDS-solubilized extracts of virulent and avirulent strains of L. interrogans serovar copenhageni that had been labeled by lactoperoxidase-catalyzed surface radioiodination. Since both of these studies precipitated a 35-36 kD doublet consistent with leptospiral endoflagella, there was a concern as to whsther the other prot-ins identified might also have a subsurface rather than a surface location.
Jost, et al. (J. Med. Microbiol. 27:143) characterized a monoclonal antibody with specificity for a 35 kD proteinase K sensitive antigen which was present in a leptospiral outer envelope preparation. However, to demonstrate binding of the monoclonal antibody by immunoelectron microscopy, the leptospiral outer membrane had to be disrupted. Doherty, et al. (J. Med. Microbiol. 28:143) cloned two leptospiral proteins represented in an SDS-generated outer membrane preparation of L. interrogans, but did not provide corroborating evidence that these proteins are either constituents of the outer membrane or are surface-exposed.
Unsuccessful research on the identification of Leptospira and T. pallidum OMPs has shown the importance of taking into account spirochetal outer membrane fragility and the lack of outer membrane selectivity of ionic detergents such as sodium dodecyl sulfate (SDS) (Cunningham, et al., J. Bacteriol. 170:5789, 1988; Penn, et al., J. Gen. Microbiol. 131:2349, 1985; Stamm, et al., Infect. Immun. 55:2255, 1987). Outer membrane proteins are of great importance because they play a key role in bacterial pathogenesis. The identification of outer membrane proteins involved in Leptospira pathogenesis is significant to understanding not only leptospiral outer membrane proteins and their involvement in pathogenesis, but also to understanding other spirochetal outer membrane proteins and their role in pathogenesis. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to radio pagers having a memory for storing messages.
With conventional radio pagers, received messages are stored temporarily into a memory for later retrieval. If a message is not answered by a called user, it is stored in the memory and a short beep sound is periodically generated to remind the user of the uncompleted page. However, if the user inadvertently turns off the pager for power savings purposes, uncompleted pages which might be stored in the memory will be completely lost. | {
"pile_set_name": "USPTO Backgrounds"
} |
In scientific research, a material can often be characterized by the response of a fluorescent probe to radiation. In some procedures, a sample is illuminated alternately with light of different wavelengths and the fluorescence of the sample with the different illuminating wavelengths is noted. For example, the calcium ion is believed to control a variety of cellular processes with a high degree of spatial and temporal precision. Calcium has been measured in single living cells with high spatial resolution utilizing a microscope and a highly fluorescent calcium sensitive dye Fura-2. A sample to which the dye has been added is illuminated alternately with light of 340 and 380 nanometers. The free fluorescent dye fluoresces at about 500 nanometers maximally in response to the 380 nanometer excitation; whereas, the dye associated with the calcium ion fluoresces at about 500 nanometers maximally in response to the 340 nanometer excitation. The concentration of calcium can then be calculated from the formula: EQU [Ca.sup.++ ].sub.i =K.sub.d [(R-R.sub.min)/(R.sub.max -R)].beta.
Where K.sub.d is the effective dissociation constant for the Fura-2-Calcium reaction, R is the ratio of fluorescent intensity at 500 nm with the 340 and 380 nm excitation, R.sub.min is the limiting value of R at a calcium concentration of zero, R.sub.max is R with fully saturated calcium and .beta. is an optical constant for the system which is a measure of the relative quantum yield at 380 nm of the calcium free and calcium saturated dye.
Often, the distribution of the fluorescent probe or the ratio of the distribution of the probe in its free form relative to its distribution in a bound form within a sample is of interest. For example, the concentration of calcium ions is found to be greater in the cell nucleus than in the cytoplasm. The locations of the ion concentrations have been determined by taking successive two-dimensional images of a sample through incremental focal planes.
The orientation as well as the location of microscopic material may also be significant. For example, alpha-actinin has been observed in muscle cells using fluorescently labeled antibodies specific to alpha-actinin. The location and orientation of the oblong-shaped bodies can be determined by observing the images from plural sections of a sample. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a radial flow turbine rotor used for a supercharger or the like using high temperature exhaust gas of an internal combustion engine as a drive source and a method of manufacturing the same.
Hitherto, an exhaust gas supercharger has been provided in an internal combustion engine in order to increase the density of air supplied for combustion and to increase the effective pressure of the combustion gas. A radial flow turbine rotor is usually provided in a combustion exhaust gas passage of the supercharger as mentioned. Usually, such a radial flow turbine rotor has a structure comprising a shaft and precision cast heat-resistant steel blades welded to the periphery of the shaft. The maximum permissible temperature of this radial flow turbine rotor is about 650.degree. to 750.degree. C., and the rotational speed is about 100,000 rpm. at most.
With such a radial flow turbine rotor, however, breakage is liable to result at the welded portion of the blade stem when high vibratory stress is produced at a high engine rpm. Further, with the supercharger it is desirable to increase the rpm by taking in high temperature and high pressure combustion exhaust gas and to reduce the stress acting on the blade stem as much as possible. To these ends, it is necessary to construct the entire apparatus with a material, which is light in weight and has excellent mechanical strength and thermal shock resistance. The conventional heat-resistant steels have not been perfectly satisfactory from these standpoints.
Recently ceramic turbine rotors have been developed. For example, a curved blade rotor made of ceramic material is shown at pages 888-891 of CERAMICS FOR HIGH PERFORMANCE APPLICATIONS-II published in 1978 by Brook Hill Publishing Company. The above-mentioned curved blade rotor was made by AME Ltd. in reaction bonded silicon nitride. The main object of making ceramic curved blade rotor is to replace expensive nickel alloys by cheaper, non-strategic materials and to operate the turbine at high temperatures. However, it has been found to be necessary to improve the design of the rotor in making a curved blade rotor of ceramic material.
The inventors have conducted various research and investigations and have found that the time required for finishing a radial flow turbine rotor after sintering can be reduced by obtaining a molding by injection molding using a mold having parting lines corresponding to the edges of blades said molding thus having no burrs on the periphery of the shaft to thereby enhance the efficiency of the turbine provided with the rotor. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to the field of dentistry, and more particularly to a dental mask which retracts the cheeks to open the oral cavity for access during dental procedures, and which protects the patient's facial area during dental work.
In the past, cheek retraction devices have been known for use in photography. For example, in orthodontics the cheek retractor is inserted to photograph the teeth before and after orthodontic work. One dental photographic mask is manufactured by Hager & Werken GmbH of Duisburg, Germany, and sold under the name Spandex. This device includes a plastic flexible mouth piece which has a curved cheek retractor that flexes and collapses to fit into the mouth. When the collapsed device is let go it retracts. During retraction the cheeks are retracted exposing the teeth and oral cavity for photography. Protective devices commonly referred to as a rubber dam have been used in dental work. The rubber dam consists of a sheet of latex material. A hole is punctured in the latex material and the latex is fitted over one or more teeth. A metal clamp is used to slide the latex material over the tooth or teeth. The outside of the latex sheet is carried by a wire frame to which latex is attached by prongs. The metal frame is loose and laid upon the patient's face while the latex serves as a working envelope for access to the area of the patient's oral cavity where work is to be performed. The latex acts like a barrier and prevents materials from going down the patient's throat. Napkins have also been used to cover a facial area of the patients. Numerous types of devices have been proposed for holding the napkins like elastic head bands, for example.
No method or device has been proposed which is entirely satisfactory for retracting the cheeks of the patient for access to the oral cavity and to cover the surrounding facial area during dental work in an effective manner. There are many procedures performed under dental work which cause contaminants to be sprayed upon the patient's face. For example, a popular teeth cleaning process includes spraying baking soda against the teeth to blast the stains and polish the teeth. This causes contaminant particles including baking soda and water to spray in the air around the patient's face and be deposited on the patient's face. If the face becomes too dirty, the face must be cleaned. Often facial make-up must be replaced. In the case of patient's with contact lenses, it is recommended that the eyes be closed during this procedure so that the soda dust and other particulate matter does not enter the eyes. Sonic scaler devices are also utilized in dental work which vibrate at sonic frequencies and spray water. These devices also cause water spray and loose particulate matter from the teeth to become sprayed in the air and deposited on the patient's face. Numerous other procedures in dental work using instruments vibrating or operating at high speeds cause foreign or contaminant matter to be sprayed into the air adjacent the patient's face and deposited.
Accordingly, an object of the invention is to provide a dental mask for protecting a patient's face against airborne particulate and contaminant matter during dental work.
Another object of the invention is to provide a device for retracting the cheeks and for covering the facial area surrounding the oral cavity of a dental patient during dental work.
Another object of the invention is to provide a device which retracts the cheeks, covers the surrounding facial area of a dental patient, and aids in the retention of particulate and contaminant matter resulting from the dental procedure within the more open oral cavity while protecting the facial area against any airborne particulate or contaminant matter. | {
"pile_set_name": "USPTO Backgrounds"
} |
The structure of a conventional DPMZM 10 is shown in FIG. 1. As seen therein, the DPMZM 10 comprises an optical input 12 for inputting an optical carrier signal, and an optical output 14 for outputting a QAM-modulated optical signal. Downstream of the optical input 12, the DPMZM 10 branches into a first and a second arm 16, 18, respectively, that are rejoined at the optical output 14, thereby forming what is referred to as an “outer MZM” in the present disclosure.
Within each of the first and second arms 16, 18 of the outer MZM, respective first and second “inner” MZMs 20, 22 are provided. The first inner MZM 20 comprises electrodes 24 for applying a first driving voltage VI for generating an in-phase component E1 of the optical signal to be transmitted. In other words, the first driving voltage VI is intended for modulating the part of the carrier signal propagating along first arm 16 of the outer MZM according to the I-component of a base-band signal, and said driving voltage VI is hence generally an AC-signal. In addition to AC-driving, a bias voltage is applied to the first inner MZM 20. While in practical implementations AC-driving and bias would typically be applied using different electrodes, for simplicity a single set of electrodes 24 is shown in FIG. 1.
Likewise, a pair of electrodes 26 is associated with the second inner MZM 22, for applying a second driving voltage VQ for generating a quadrature component EQ of the optical signal and for also applying a suitable bias voltage. Finally, a set of electrodes 28 is provided in the second arm 18 of the outer MZM in order to introduce a desired phase shift of 90° between the in-phase and quadrature components E1 and EQ of the modulated signal before these I- and Q-modulated signals are combined at the optical output 14.
The amplitudes E1 and E2 of the electrical fields of the portions of the carrier entering the first and second arms 16, 18 of the outer MZM can be modulated in response to the driving voltages VI, VQ to give the in-phase and quadrature components EI, EQ as follows:
E I = sin ( π 2 · V I V π + φ 1 ) E 1 E Q = sin ( π 2 · V Q V π + φ 2 ) E 2 , ( 1 ) assuming that the DPMZM device is composed of ideal inner and outer MZMs. As seen herein, the in-phase and quadrature components EI, EQ depend non-linearly from the corresponding driving voltages VI, VQ. Vπ is a device dependent constant and φ1 and φ2 are constant phases which can be adjusted by introducing a suitable bias at the electrodes 24, 26, respectively.
Unfortunately, a DPMZM is far from an ideal device: By its construction principle, it has non-linear input-output characteristics, and due to manufacturing imperfections, it generates cross-talk and amplitude imbalance between in-phase and quadrature components of the output signal. It is seen that the manufacturing imperfections are related to the extinction ratio (ER) of the DPMZM, i.e. the ratio of the maximum and minimum output power at the optical output 14 of the outer MZM over a sweep of the first and second driving voltages VI, VQ. An ideal DPMZM has an infinite ER, but series manufactured MZMs rarely achieve a guaranteed ER greater than 20 dB. With the introduction of new technologies like CMOS Photonics, it can be envisaged that newer and cheaper DPMZMs will become available, but their extinction ratios will likely be even well below 20 dB.
The non-ideal characteristics of the DPMZM impair the quality of the transmit signal and result into a performance penalty depending on the adopted signal constellation. State-of-the-art 100 G (˜100 GB/s) optical systems employ 4-point quadrature amplitude modulation (4 QAM) which tolerates well the imperfections of currently available DPMZMs. However, 200 G and 400 G systems will likely rely on 16 QAM that is very sensitive to DPMZM limitations. Future systems may also employ bigger QAM constellations or orthogonal frequency division multiplexing (OFDM) which suffer from even larger penalties. It would therefore seem that for these applications, an increased manufacturing effort is unavoidable in order to achieve the required signal quality. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to an adhesive sheet for a precision electronic member. More specifically, the present invention relates to an adhesive sheet for a precision electronic member which generates less amount of gas under high temperature atmosphere and which is suited as a low polluting adhesive sheet for a precision electronic member.
In recent years, an adhesive sheet is used in a variety of the fields because it has such easiness in use that it does not have to change in a state (for example, from a liquid to a solid) in use as is the case with conventional adhesives and exhibits an adhesive strength which stands practical use immediately after stuck (pressure-sensitive tack) and because it has such non-pollution, safety and good workability that a solvent and heating are not required in use.
Capable of being given as uses of this adhesive sheet are, for example, packaging and binding, business and household, bonding, masking for painting, surface protection, corrosion prevention and water proofing, sealing, electrical insulation, electronic appliances and optical parts, medical and sanitary material, distinguishing and decoration and labeling.
In recent years, particularly in the field of a precision electronic member, a diversification in products and a reduction in lots are advanced, and it has come to be carried out in many cases to stick adhesive labels on which, for example, bar codes are printed onto respective members for production control or to use an adhesive double coated sheet for bonding the members or to use an adhesive sheet for electric insulation. Such adhesive sheet used for a precision electronic member is required not to contaminate the above precision electronic member by gas generated from an adhesive layer. This is because the inside of an electronic appliance equipped with a precision electronic member is exposed to high temperature atmosphere in use in a certain case and gas generated from an adhesive sheet stuck onto the precision electronic member under such high temperature atmosphere causes bringing about such undesirable situation as corrosion and malfunction of the above member.
The present invention has been made under such circumstances, and an object thereof is to provide an adhesive sheet for a precision electronic member which generates less amount of gas under high temperature atmosphere and which is suited as a low polluting adhesive sheet for a precision electronic member.
Intensive researches of a low polluting adhesive sheet repeated by the present inventors have resulted in finding that capable of meeting the object described above is an adhesive sheet in which an adhesive comprising an acrylic copolymer having a specific composition is used for an adhesive layer and in which a gas-generating amount measured on a specific condition is controlled to some value or lower. The present invention has been completed based on such knowledge.
That is, the present invention provides:
(1) an adhesive sheet for a precision electronic member which has an adhesive layer comprising an acrylic copolymer and in which an amount of gas generated in heating at a temperature of 120xc2x0 C. for 10 minutes is 1.0 xcexcg/cm2 or less in terms of a n-decane amount, wherein the acrylic copolymer described above is prepared by copolymerizing a monomer mixture which comprises alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group and vinyl acetate in a proportion of 50:50 to 99.5:0.5 in terms of a weight ratio and in which a total content thereof is 75% by weight or more,
(2) the adhesive sheet for a precision electronic member as described in the above item (1), wherein the acrylic copolymer is prepared by copolymerizing alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group and vinyl acetate with a monomer having a cross-linkable group, and
(3) the adhesive sheet for a precision electronic member as described in the above item (1), wherein the weight average molecular weight of the acrylic copolymer is 150,000 or more.
The adhesive layer in the adhesive sheet of the present invention is constituted from an adhesive comprising an acrylic copolymer, and the above acrylic copolymer comprises alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group and vinyl acetate as essential monomers. In this respect, the alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group includes, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate and t-butyl (meth)acrylate. They may be used alone or in combination of two or more kinds thereof. If the alkyl (meth)acrylate has 5 or more carbon atoms in an alkyl group, a low polluting adhesive sheet in which a gas-generating amount is controlled to a prescribed value or lower is less liable to be obtained.
The function of vinyl acetate copolymerized with these alkyl (meth)acrylates is not necessarily apparent, and it is considered that vinyl acetate has a low polymerization reactivity in itself, so that it has a function to make a polymerization reaction of other monomers to proceed a residual amount of the unreacted other monomers. Even if vinyl acetate having a low polymerization reactivity remains as an unreacted monomer in the adhesive, the above vinyl acetate, which has as low boiling point as 73xc2x0 C., is volatilized in heating and drying in forming an adhesive layer and therefore does not exert an adverse effect on the gas-generating amount.
In the present invention, the monomer mixture which comprises alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group and vinyl acetate in a proportion of 50:50 to 99.5:0.5 in terms of a weight ratio and in which a total content thereof is 75% by weight or more is polymerized to produce the acrylic copolymer. If a use amount of vinyl acetate is lower than the range described above, the effect of copolymerizing vinyl acetate is not exhibited, and the object of the present invention can not be achieved. On the other hand, if it exceeds the range described above, the performance thereof as an adhesive is unsatisfactory. Because of these reasons, a proportion of the above alkyl (meth)acrylate to vinyl acetate is preferably 70:30 to 99:1, particularly preferably 80:20 to 90:10 in terms of a weight ratio.
Further, if a total content of alkyl (meth)acrylate having 4 or less carbon atoms in an alkyl group and vinyl acetate in the monomer mixture is less than 75% by weight, the performance as an adhesive is unsatisfactory or the gas-generating amount grows larger depending on the kind of the other monomers, and the desired low polluting adhesive sheet is not obtained in a certain case.
In the present invention, other copolymerizable monomers can be used, if necessary, together with the alkyl (meth)acrylate and vinyl acetate each described above as long as the object of the present invention is not damaged. The copolymerizable monomers include, for example, monomers having cross-linking functional groups or olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene monomers such as styrene and c-methylstyrene; diene monomers such as butadiene, isoprene and chloroprene; nitrile monomers such as acrylonitrile and methacrylonitrile; and N,N-dialkyl-substituted acrylamides such as N,N-dimethylacrylamide and N,N-dimethylmethacrylamide. Among these copolymerizable monomers, monomers having cross-linking functional groups are preferred, and these monomers having cross-linking functional groups include, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate and 3-hydroxypropyl (meth)acrylate; acrylamides such as acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide and N-methylolmethacrylamide; and ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and citraconic acid.
These copolymerizable monomers may be used alone or in combination of two or more kinds thereof, and a use amount thereof is 25% by weight or less based the weight of the whole monomers.
In the present invention, the acrylic copolymer used for the adhesive is preferably produced by radically polymerizing the monomer mixture described above using a conventionally known azo or peroxide radical polymerization initiator. An amount of the radical polymerization initiator is suitably 0.01 to 5 parts by weight, preferably 0.1 to 1 part by weight per 100 parts by weight of the monomer mixture. The polymerization form of the acrylic copolymer thus obtained shall not specifically be restricted and may be any of random, block and graft copolymers. The molecular weight is selected in a range of preferably 150,000 or more, more preferably 300,000 to 1,500,000 in terms of a weight average molecular weight. If this weight average molecular weight is less than 150,000, the adhesive is likely to be inferior in a heat resistance and unsatisfactory in an adhesive strength against an adherend.
The weight average molecular weight described above is a value reduced to polystyrene measured by gel permeation chromatography (GPC).
The adhesive in the present invention comprises the acrylic copolymer described above as a resin component, and it further comprises preferably a cross-linking agent together with this acrylic copolymer. The above cross-linking agent includes, for example, isocyanate cross-linking agents, epoxy cross-linking agents, metal chelate cross-linking agents, aziridine cross-linking agents and amine resins.
In this respect, the examples of the isocyanate cross-linking agents include tolylenediisocyanate (TDI), hexamethylenediisocyanate (HMDI), isophoronediisocyanate (IPDI), xylylenediisocyanate (XDI), hydrogenated tolylenediisocyanate, diphenylmethanediisocyanate and trimethylolpropane-modified TDI. The examples of the epoxy cross-linking agents include ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, diglycidylaniline and diglycidylamine. The examples of the metal chelate cross-linking agents include chelate compounds comprising acetylacetone and acetone acid esters of divalent or higher metals such as aluminum, copper, iron, tin, zinc, titanium, nickel, antimony, magnesium, vanadium, chromium and zirconium. The examples of the aziridine cross-linking agents include trimethylolpropane-tri-xcex2-aziridinylpropionate and bisisophthaloyl-1-(2-methylaziridine).
These cross-linking agents may be used alone or in combination of two or more kinds thereof. A use amount of the cross-linking agent is suitably 0.01 to 20 parts by weight per 100 parts by weight of the acrylic copolymer, and permanent adhesion type and removable type adhesives can be prepared by controlling a use amount of the cross-linking agent. Further, the adhesive in the present invention can be blended, if necessary, with various addition components which have so far conventionally been used for an acrylic adhesive as long as the object of the present invention is not damaged.
The adhesive sheet of the present invention has the adhesive layer thus prepared. The form thereof shall not specifically be restricted, and capable of being used is any of a sheet having an adhesive layer on one face of a base sheet, a sheet having adhesive layers on both faces of a base sheet, a sheet in which an adhesive layer is interposed between two release sheets without using a base sheet and a sheet in which an adhesive layer is provided on one face of a release sheet subjected to release treatment on both faces thereof and which is rolled.
A thickness of the adhesive layer described above shall not specifically be restricted and is suitably selected according to uses of the adhesive sheet. It is selected in a range of usually 5 to 200 xcexcm, preferably 10 to 130 xcexcm. This adhesive layer is preferably formed by coating the adhesive by a conventionally known method, for example, a method such as a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method and a gravure coating method and then heating it at a temperature of 80 to 150xc2x0 C. for 30 seconds to 5 minutes in order to prevent a solvent and low boiling components from remaining.
The base sheet described above shall not specifically be restricted, and various ones can be used. To be specific, used are polyethylene, polypropylene, polyesters such as polyethylene terephthalate, metal-deposited polyesters, synthetic paper, woodfree paper, impregnated paper, metallic foils such as aluminum foil, copper foil and iron foil and porous materials such as nonwoven fabrics. A thickness of these base sheets shall not specifically be restricted, and it is usually 3 to 250 xcexcm and falls in a range of preferably 10 to 200 xcexcm in terms of easiness in handling.
In the adhesive sheet of the present invention, a release sheet can be provided, if necessary, on the adhesive layer. This release sheet is prepared by using woodfree paper, clay coat paper, woodfree paper laminated with polyethylene or polypropylene, woodfree paper subjected to filling treatment with cellulose, starch, polyvinyl alcohol or an acryl-styrene resin or a plastic film of polyethylene, polypropylene or polyester such as polyethylene terephthalate and subjecting one face or both faces thereof to releasing treatment. A release agent used for the above releasing treatment are, for example, olefin resins, a long chain alkyl, a fluorine and a silicone resin. In particular, when the above adhesive sheet is used in production process of a hard disc or used as a production control label for a hard disc, a silicone release agent is transferred to an adhesive layer in a trace amount, and a silicon component thereof is adhered to a hard disc apparatus; and it forms an oxide thereof on a recording disc and a read head in the hard disc apparatus, which results in breaking the above hard disc apparatus in a certain case. Accordingly, when the above adhesive sheet is used for uses in a hard disc, a non-silicone release agent is preferably used. Further, when the silicone release agent is used as a release agent, the agent having less silicone component transferred to the adhesive layer is preferably selected.
In the adhesive sheet of the present invention, an amount of gas generated in heating at a temperature of 120xc2x0 C. for 10 minutes is 1.0 xcexcg/cm2 or less in terms of a n-decane amount. If this gas-generating amount exceeds 1.0 xcexcg/cm2, corrosion and malfunction of a precision electronic member on which the above adhesive sheet is stuck are brought about in a certain case.
When the above adhesive sheet has a release sheet, the gas-generating amount described above is a value measured after peeling and removing the above release sheet. A specific method for measuring gas generated shall be explained later.
Capable of being given as a precision electronic member to which the adhesive sheet of the present invention is applied are, for example, hard disc apparatuses, semiconductor parts such as an extension memory and an IC card, semiconductor production apparatuses, relay switches and circuit boards. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electronic systems typically store data during operation in a memory device. In recent years, the dynamic random access memory (DRAM) has become a popular data storage device for such systems. Basically, a DRAM is an integrated circuit that stores data in binary form (e.g., "1" or "0") in a large number of cells. The data is stored in a cell as a charge on a capacitor located within the cell. Typically, a high logic level is approximately equal to the power supply voltage and a low logic level is approximately equal to ground.
The cells of a conventional DRAM are arranged in an array so that individual cells can be addressed and accessed. The array can be thought of as rows and columns of cells. Each row includes a word line that interconnects cells on the row with a common control signal. Similarly, each column includes a bit line that is coupled to at most one cell in each row. Thus, the word and bit lines can be controlled so as to individually access each cell of the array.
A memory array is typically implemented as an integrated circuit on a semiconductor substrate in one of a number of conventional layouts. One such layout is referred to as an "folded digit line" architecture. In this architecture, sense amplifier circuits are provided at the edge of the array. The bit lines are paired in complementary pairs. Each complementary pair in the array feeds into a sense amplifier circuit. The sense amplifier circuit detects and amplifies differences in voltage on the complementary pair of bit lines as described in more detail below.
To read data out of a cell, the capacitor of a cell is accessed by selecting the word line associated with the cell. A complementary bit line that is paired with the bit line for the selected cell is equilibrated with the voltage on the bit line for the selected cell. The equilibration voltage is typically midway between the high and low logic levels. Thus, conventionally, the bit lines are equilibrated to one-half of the power supply voltage, V.sub.cc /2. When the word line is activated for the selected cell, the capacitor of the selected cell discharges the stored voltage onto the bit line, thus changing the voltage on the bit line.
The sense amplifier detects and amplifies the difference in voltage on the pair of bit lines. The sense amplifier typically includes two main components: an n-sense amplifier and a p-sense amplifier. The n-sense amplifier includes a cross-coupled pair of n-channel transistors that drive the low bit line to ground. The p-sense amplifier includes a cross-coupled pair of p-channel transistors and is used to drive the high bit line to the power supply voltage.
An input/output device for the array, typically an n-channel transistor, passes the voltage on the bit line for the selected cell to an input/output line for communication to, for example, a processor of a computer or other electronic system associated with the DRAM. In a write operation, data is passed from the input/output lines to the bit lines by the input/output device of the array for storage on the capacitor in the selected cell.
Each of the components of a memory device are conventionally formed as part of an integrated circuit on a "chip" or wafer of semiconductor material. One of the limiting factors in increasing the capacity of a memory device is the amount of surface area of chip used to form each memory cell. In the industry terminology, the surface area required for a memory cell is characterized in terms of the minimum feature size, "F," that is obtainable by the lithography technology used to form the memory cell. Conventionally, the memory cell is laid out with a transistor that includes first and second source/drain regions separated by a body or gate region that are disposed horizontally along a surface of the chip. When isolation between adjacent transistors is considered, the surface area required for such a transistor is generally 8F.sup.2 or 6F.sup.2.
Some researchers have proposed using a vertical transistor in the memory cell in order to reduce the surface area of the chip required for the cell. Each of these proposed memory cells, although smaller in size from conventional cells, fails to provide adequate operational characteristics when compared to more conventional structures. For example, U.S. Pat. No. 4,673,962 (the '962 Patent) issued to Texas Instruments on Jun. 16, 1997. The '962 Patent discloses the use of a thin poly-silicon field effect transistor (FET) in a memory cell. The poly-silicon FET is formed along a sidewall of a trench which runs vertically into a substrate. At a minimum, the poly-silicon FET includes a junction between poly-silicon channel 58 and the bit line 20 as shown in FIG. 3 of the '962 Patent. Unfortunately, this junction is prone to charge leakage and thus the poly-silicon FET may have inadequate operational qualities to control the charge on the storage capacitor. Other known disadvantages of such thin film poly-silicon devices may also hamper the operation of the proposed cell.
Other researchers have proposed use of a "surrounding gate transistor" in which a gate or word line completely surrounds a vertical transistor. See, e.g., Impact of a Vertical F-shape transistor (VFT) Cell for 1 Gbit DRAM and Beyond, IEEE Trans. On Elec. Devices, Vol 42, No.12, December, 1995, pp. 2117-2123. Unfortunately, these devices suffer from problems with access speed due to high gate capacitance caused by the increased surface area of the gate which slows down the rise time of the word lines. Other vertical transistor cells include a contact between the pass transistor and a poly-silicon plate in the trench. Such vertical transistor cells are difficult to implement due to the contact and should produce a low yield.
For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for realizable memory cell that uses less surface area than conventional memory cells. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an actuator system having an output shaft which is held in a first position by a spring and upon command an electric motor drives the shaft to a second position against the force of the spring and holds the shaft in the second position until a further command allows the spring to return the shaft to the first position.
2. Description of Co-Pending Application
In a co-pending patent application of Christopher M. Lange entitled xe2x80x9cDrive Circuit And Method For An Electric Actuator With Spring Returnxe2x80x9d Serial Number 08/904,005, Filed Jul. 31, 1997, issued Jun. 19, 2001 as U.S. Pat. No. 6,249,100B1 and assigned to the assignee of the present invention, an actuator system is shown in which an output shaft is positioned by a spring in a first position and upon command, is driven through a gear train to a second position by an electric motor. The circuit includes an input circuit for providing a current large enough to rotate the shaft against the force of the spring. A rotation sensor produces a signal when the motor and shaft are stalled at the second position and a modulation circuit receiving the signal from the rotation sensor operates to reduce the current to the motor so as to hold the stalled shaft and motor at the second position with a minimum of energy usage. In some applications, this circuit is intended for use in high ambient temperature conditions and accordingly, the rotation sensor utilizes a Hall effect device known to be able to withstand high temperatures. The use of a Hall effect device involves some undesirable features because it is undesirably complicated to implement and is slower than desired. The increased current to the motor at the stalled condition produces an increased torque that can over stress the gear train, at least temporarily, and gear damage may result.
The present invention overcomes these problems by noting that the current in the motor increases sharply when the shaft reaches the stalled position. Thus, detecting the sharp rise in current becomes a simple way to detect the stalled condition, and does not involve waiting for a time period as great or greater than the normal period for one complete revolution to determine the condition, as may be required if only a rotation sensor is relied on. The problem of possible gear damage is overcome in the present invention, with the use of a current limiting circuit to prevent the current in the motor from increasing beyond a predetermined limit chosen so that the gear train will not be damaged. This satisfactorily protects the gear train in a high temperature embodiment of the present invention, which uses the Hall effect devices to sense rotation of the output. However, in a low or normal temperature embodiment of the present invention, the Hall effect devices are not needed but, in order to detect a stalled condition, with a current limiter in operation, the voltage to the motor is rapidly stopped and started so that the current repeatedly and rapidly oscillates just below the current limiting value. A counter is employed to count these oscillations and a predetermined number of such oscillations becomes an indication that the motor is stalled. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to signal processing using time compressors, matched filters and correlators and more particularly to digital signal processing in which the signals are represented by a series of coded digits, for example digits found at the output of an analog-to-digital converter.
The linear and bilinear operations most needed for signal processing are: matched filtering, crosscorrelation, and the discrete Fourier transform. These transforms represent an excessive computational load for a general purpose computer and a heavy load even for a digital computer structured for signal processing. For example, a straight-forward linear transformation in a computer that takes a sequence of N data points into a sequence of N transform points may be regarded as a multiplication by a vector N.sup.2 matrix. A direct implementation that uses a single multiplier requires N.sup.2 multiplication times and N.sup.2 words of storage. The Fast Fourier Transform (FFT) offers some advantage in that it requires a number of multiplications proportional to Nlog.sub.2 N.
A number of transform implementations are known in the art that have a simple serial access data flow and a computation time proportional to N. These include the discrete Fourier transform (DFT), and transforms implemented using transversal filters as discussed in the paper by H. J. Whitehouse et at., "High Speed Serial Access Linear Transform Implementations", Naval Undersea Center, San Diego, CA 92132, January 1973. In general, apparatus in the prior art fall into two broad categories: those employing acoustic and nonacoustic means. Included in the former category are sonic, magnetostrictive, acoustic surface wave, and optacoustic filters while the latter category comprises charge coupled devices and binary shift registers. Acoustic filters have been described in the paper by W. D. Squire et al., "Linear Signal Processing and Ultrasonic Transversal Filters" appearing in the November, 1969, issue of IEEE Transactions on Microwave Theory and Techniques while nonacoustic filters have been described in the paper by G. W. Byram et al., "Signal Processing Device Technology" appearing in the Proceedings of the NATO Advanced Study Institute on Signal Processing held at the University of Technology, Loughborough, U.K. on Aug. 21 through Sept. 1, 1972.
As a rule, if interruptions of the processing are infrequent then acoustic filters are preferred since they offer large storage capacity, convenient tapping of delay lines, and low power dissipation. When short duration interruptions of the signal processing may occur then charge coupled devices (CCD) with their controllable clock rates offer the advantages of small size, offset only by charge transfer inefficiency and temperature sensitivity. When frequent processing interrupts are required, digital implementations in the form of shift registers are indicated. The rapid development of solid state technology however favors digital devices and these by far have now become available commercially.
Digital implementations in the present art have been obtained in the form of shift registers and these are described in the paper by J. J. Buie and D. R. Brewer, "A Large Scale Integrated Correlator" appearing in the October, 1972 issue of IEEE Journal of Solid State Circuits, SC-7. Such devices can be assembled from conventional medium scale integrated circuit logic or can be designed in large scale integrated (LSI) form. Thus, the digital implementation of a time compressor matched filter and correlator requires the high speed storage and readout of data as provided by a shift register. However, shift registers are limited in length and speed, and many similar devices are needed if much data must be stored. Metal-oxide substrate (MOS) registers, while providing high density, require extra power supplies and are slow speed when used as bipolar shift registers.
In many signal processing applications, the signals must be compressed in time. This is accomplished in the prior art by storing signals in a delay line and then retrieving them at a rate which is greater than the rate of storage, as explained in the article by Squire. Of particular interest is the delay line time compressor (DELTIC) which recirculates signals in a number of recirculations. The recirculation requires less length of delay line and therefore is a more efficient system.
In general, the prior digital art using shift registers utilize 2N words of storage and employ N multipliers for performing the correlation of signals. While the system of the present invention may also utilize 2N words of storage, its implementation of a digital DELTIC loop requires only a one word multiplier and in this manner provides new and improved time compressors, matched filters, and correlators while significantly decreasing the weight, size, power consumption, and cost for such devices.
From the discussion above it is clear that in the past, the digital implementation of a time compressor matched filter and correlator has been accomplished using shift registers in the memory element and, for all practical purposes, has not been successful for increasing the capacity and speed of operation for such devices beyond a certain limit determined by the technology of shift registers. Furthermore, the present art of digital implementations falls short when the size and cost of shift registers are considered in devices requiring high data throughputs.
It is the purpose of the present invention to produce a time compressor digital matched filter and correlator capable of exceeding the practical capacity and speed of present digital devices by at least one order of magnitude, at reduced size and cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a nonaqueous electrolyte secondary battery and a battery module.
2. Description of the Related Art
A nonaqueous electrolyte secondary battery using a lithium metal, lithium alloy, lithium compound or carbon material for its negative electrode is expected as a high energy density battery or high output density battery, and it has been intensively researched and developed. So far, lithium batteries comprising a positive electrode containing LiCoO2 or LiMn2O4 as an active material and a negative electrode containing a carbon material for intercalating and deintercalating lithium ions have been widely put in practical use. In the negative electrode, various materials which are a substitute for the carbon material are being studied, such as metal oxides and alloys.
In a nonaqueous electrolyte secondary battery, a copper foil is generally used as a current collector of a negative electrode. A lead and a terminal to which the lead is connected are usually made of copper or nickel. A secondary battery comprising a negative electrode including a current collector of copper foil is elevated in potential of the negative electrode in an overdischarged state. Accordingly, the dissolving reaction of the negative electrode made of copper foil is promoted, and the discharge capacity drops suddenly. When a long cycle continues in a battery module, a battery capacity balance is broken, and overdischarge may occur in certain batteries. For this reason, the current collector made of copper foil, which is assembled in a battery in an overdischarged state begins to dissolve. Therefore, the secondary battery is provided with a protective circuit for preventing itself from being overdischarged.
However, since such a protective circuit is installed, the secondary battery is reduced in energy density. If an outer container having a thin metal can is used in order to reduce the battery weight, copper for composing the current collector of the negative electrode, lead and terminal is dissolved, for example, at the time of overdischarging, and swelling of the battery increases.
Hence, JP-A. 2004-296256(KOKAI) discloses a nonaqueous electrolyte secondary battery using an aluminum foil or aluminum alloy foil for a negative electrode current collector, in use of a negative electrode active material for intercalating lithium ions at a specific potential. Such a configuration makes it possible to realize a nonaqueous electrolyte secondary battery enhanced in energy density and overdischarge cycle performance. Further, since this nonaqueous electrolyte secondary battery can elevate the discharge capacity over several Ah or tens Ah, it is highly expected to be used as a square nonaqueous electrolyte secondary battery for use in, aside from electric power storage, vehicles such as a power-assisted bicycle, electric scooter, electric vehicle, hybrid vehicle, and electric train.
An on-board secondary battery is required to be low in internal resistance, high in energy density, and high in output density, for the purpose of obtaining high output. Further, excellent cycle performance, and high strength and corrosion resistance of materials for a long period are demanded in the conditions of high temperature, high humidity, vibration, quick charging, high output discharge, and overdischarge. Therefore, for the purpose of maintaining the internal resistance of the battery at a low level, a connecting portion between a lead and a terminal where current in the battery is concentrated is required to be high in mechanical strength, electrochemical stability, and chemical stability in the high temperature and high humidity environment for a long period, thereby maintaining low resistance excellent in corrosion resistance.
However, when in the secondary battery described above, the lead and terminal of the negative electrode are formed of copper with an excellent conductivity, a corrosion or dissolving reaction may be advanced in the connecting portion between the lead and terminal in an overdischarge operation of the battery or high temperature and high humidity environment over a long period of use, and thereby the resistance is increased. For this reason, it becomes difficult to obtain high output from the battery and battery module. Further, since the impedance is increased, the discharge reaction of the positive electrode and negative electrode is not promoted sufficiently in high output discharge, and a utility rate of an active material is lowered.
On the other hand, JP-A 2003-36825(KOKAI) discloses a nonaqueous electrolyte battery high in safety, the battery having a terminal structure capable of preventing or suppressing sparks possibly occurring in a terminal unit due to leak of a nonaqueous electrolyte. This document, in paragraph [0036], discloses that a negative electrode terminal 40 made of copper alloy is composed of a current collector 40a serving as an internal terminal and a bolt-like external terminal unit 40b; that the current collector 40a is bonded to a band-like negative electrode lead 12a extending from an electrode body 10; that the external terminal unit 40b is positioned outside of a negative electrode side lid plate 23 of a battery case 20; and that the exposed surface portion is plated with aluminum to prevent spark generation.
In the nonaqueous electrolyte battery, the current collector 40a of the negative electrode terminal 40 to which the negative electrode lead is connected is made of copper alloy. Therefore, as mentioned above, a corrosion or dissolving reaction is promoted in a connecting portion between the lead and terminal in an overdischarge operation of the battery or high temperature and high humidity environment over a long period of use, and the internal resistance increases. Consequently, it becomes difficult to obtain a high output from the battery or battery module. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to dishwashing machines, and more particularly to an operating device for causing the lid covering a powdered dishwashing soap receptacle to open.
Dishwashers of this type generally consist of a tub appropriately mounted upon a frame. The tub has an opening which accesses a washing chamber in which the washing is performed. Both the tub and the frame are enclosed within a cabinet. The cabinet has a hinge along its bottom edge to which a door is mounted. When the door is closed the tub opening is covered and the washing cycle may begin. The dishwasher door has a receptacle for holding detergent prior to and during part of the washing cycle. The receptacle has an opening facing the washing chamber when the dishwasher door is closed and which, during the initial stage of the washing procedure, is covered by a lid releasable by electric means.
In most dishwashers of this type there is a receptacle for holding powdered detergent located in the dishwasher door. By such an arrangement it is easy to fill the detergent into the receptacle since when the dishwasher door is open it is horizontal and the opening of the receptacle is directed upwards. After filling the detergent into the receptacle it is covered by a lid which is kept in the closed position by a lock means. The lock means is usually releaseable by an electric means connected to a program controller arranged int eh dishwasher which controls the washing cycle. Often an electromagnetic solenoid, which is mounted in the dishwasher door, is used as the electric means and the core of the solenoid releases the lock means when the solenoid is activated. The electromagnetic solenoid is automatically activated by the program controller at the proper time during the washing cycle.
A disadvantage with this arrangement is that the cables for the electromagnet have to bridge the gap between the dishwasher door and the cabinet of the dishwasher. This often leads to wear problems since the door is rotatable on a hinge and must be opened each time dishes are inserted into or taken out of the washing chamber. Prolonged wear and tear from the unavoidable strechings and bendings to which the cables are exposed can create short circuits or breaks of the cables which result in a safety risk. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an electrical device such as an image forming apparatus (for example, a copier, a printer, or a facsimile (FAX)).
2. Description of the Related Art
Inside an electrophotographic image forming apparatus, a voltage higher than an alternating-current voltage of a commercial power supply has been used. Meanwhile, there have been cases where an operator opens a door provided on an image forming apparatus in order to replace cartridges or remove jammed sheets. Moreover, there are gears or the like that are rotated by a motor inside an image forming apparatus. Accordingly, an interlock mechanism for shutting off a current supplied from a power supply circuit when a door is opened has been adopted. The current supplied from the power supply circuit is thus shut off when the door is opened. Sometimes a relay and an interlock switch are provided as an interlock mechanism. The interlock switch is turned off when the door is opened, and the contact of the relay is opened in conjunction with the turning off of the switch, thereby stopping the supply of the current.
Incidentally, there are cases where a power supply line or a signal line such as that of a CPU are arranged near a line to a drive terminal of an interlock switch or a relay. When these lines short-circuit, the contact of the relay sometimes remains closed despite the door being open. In Japanese Patent Laid-Open No. 2007-152646, a distance between these lines is longer than a common insulation distance so that short-circuiting between lines are less likely to occur.
However, the longer the distance between the lines is, the larger the size of the circuit board becomes. | {
"pile_set_name": "USPTO Backgrounds"
} |
The disclosure relates to a glass for use as a large format cover glass. More particularly, the invention relates to an ion exchangeable glass for such applications. Even more particularly, the disclosure relates to an ion exchangeable glass having a coefficient of thermal expansion that is sufficiently high for use as a large format cover glass.
Glasses are used in as protective covers for appliances such as LCD displays. In some applications, such displays are supported by an outer frame, typically made of a metal, steel, or alloy. As the display size increases (e.g., 55 inch diagonal), it is critical that the coefficient of thermal expansion (CTE) of the glass match that of the frame material, otherwise the glass will be subjected to various stresses that may cause distortion or failure. None of the commercially available glasses that are presently in use meet this requirement. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to radio communication technologies, and more particularly, to a method and apparatus for generating a Dedicated Reference Signal (DRS) in a radio communication system.
2. Description of the Related Art
In an Advanced Long Term Evolution (LTE-A) system, 8 transmitting antennae are configured for each cell to support a higher peak rate. In order to decrease the overhead of Reference Signals (RS), a DRS is used to demodulate downlink data. A base station sends a DRS for each stream of data of each User Equipment (UE). Most UEs in a cell adopt a low rank transmission mode, wherein the value of the rank is equal to the number of streams simultaneously transmitted by the UE. As such, the number of DRSs actually transmitted by each UE is small, thereby decreasing the overhead of reference signals. In addition, the use of the DRS is convenient for Coordinated Multi-Point (CoMP) transmission and Multi-User Multiple-Input Multiple-Output (MU-MIMO) transmission.
In the LTE-A system, the CoMP transmission is mainly used for improving the average throughput of a cell and the throughput of a cell boundary, and includes two specific implementation modes, i.e. coordinated scheduling and coordinated multi-point joint transmission. For the coordinated scheduling, data of one UE only comes from one transmitting node, i.e. one serving cell. Data transmitted by other nodes is received as interference, and thus multiple nodes need coordinated scheduling to control an interference level. For the coordinated multi-point joint transmission, multiple nodes may transmit data to one UE by using the same time-frequency resources, thereby increasing the signal-to-noise ratio of the UE and decreasing the interference. Based on a DRS, the LTE-A system may support transparent coordinated multi-point joint transmission. The UE only receives data of a Physical Downlink Control CHannel (PDCCH) transmitted by one node, and the node is a serving cell of the UE. At the same time, data transmission is based on the DRS, and the UE receives the DRS, performs channel evaluation and demodulates the data, but does not consider which nodes transmit the data.
In addition, since MU-MIMO is adopted in the LTE-A system, data of multiple UEs can be transmitted by using the same time-frequency resources. The MU-MIMO has also been supported in a Long Term Evolution (LTE) system. However, MU-MIMO in the LTE solution is defined based on Single-User MIMO (SU-MIMO), which limits performance gain. In the LTE-A system, the MU-MIMO is to be optimized, by providing scheduling information of other UEs performing MU-MIMO with one UE, so that the UE can report more accurate Channel Quality Indicator (CQI) information, and remove interference as much as possible when demodulating data. For MU-MIMO based on a DRS, a base station is configured such that multiple UE performing MU-MIMO adopt different DRS patterns that preferably are orthogonal, to obtain a better channel evaluation performance.
FIG. 1 illustrates a conventional DRS structure. A Code Division Multiplexing (CDM) and Frequency Division Multiplexing (FDM) mode is adopted, i.e. the Resource Elements (RE) for transmitting DRSs are divided into two groups by using a FDM mode, and DRSs of multiple data streams are multiplexed in each RE group by using a CDM mode. Hereinafter, each group of REs will be referred to as a CDM RE group.
FIG. 2 illustrates a conventional method for generating and mapping a DRS. As shown in FIG. 2, an RS sequence of each antenna port, i.e. a DRS sequence, is generated, and then RE mapping is performed for the RS sequence. There are three methods for generating the RS sequence. In the first method, one random sequence is generated for each antenna port by using different initialization values, and then the RS sequence is generated according to the random sequence. In the second method, one random sequence is generated by using one initialization value, one long scrambling sequence is generated according to the random sequence, and the long scrambling sequence is divided into multiple subsections and the RS sequence of each antenna port is obtained. In the third method, one random sequence is generated by using one initialization value, then one scrambling code sequence is generated according to the random sequence, and each antenna port uses the scrambling code sequence as the RS sequence.
For a DRS structure using the CDM mode or a DRS structure jointly using the CDM mode and other multiplexing modes, the step of generating the RS sequence shown in FIG. 2 can be described in detail, e.g. a method for generating and mapping a DRS shown in FIG. 3. As shown in FIG. 3, an RS sequence of each antenna port is generated, then each element of each RS sequence is spread to obtain an spread RS sequence, where an spreading code may be a Walsh code, and RE mapping is performed for the spread RS sequence.
For the method shown in FIG. 3, if RS sequences of all antenna ports are identical, when DRSs of multiple data streams are transmitted by using the CDM mode, it is possible for DRSs on one OFDM symbol to adopt double transmission power and DRSs on the other Orthogonal Frequency Division Multiplexing (OFDM) symbol to have no transmission power, thereby influencing total power for data transmission. If the RS sequences of all antenna ports are independent from each other, an imbalance of transmission power of DRSs is not a problem. However, the method shown in FIG. 3 cannot restrain DRS interference between different cells. Generally, the smaller the interference, the better the performance, but the method shown in FIG. 3 results in the interference fixedly coming from a certain cell or UE. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a pharmaceutical composition which can contain N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine dissolved at high concentration, is stable and has a consistent quality.
N-(3-Chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine is a compound which is disclosed in WO01/32164, and is recognized to have a capability for selectively inhibiting 20-HETE-producing enzyme to control stroke.
As known methods for improving the solubility of slightly water-soluble drugs to obtain injectable solutions, etc., there are methods for forming them into salts, micelles, co-solvents and lipid emulsion preparations and methods of incorporating xcex2-cyclodextrins.
With respect to the solubilization of the slightly water-soluble drugs by incorporating xcex2-cyclodextrins, WO85/02767 discloses a solubilization of the slightly water-soluble drugs by hydroxypropyl xcex2-cyclodextrin, and U.S. Pat. No. 5,134,127 discloses a solubilization of the slightly water-soluble drugs by sulfobutyl ether xcex2-cyclodextrin.
However, no suitable method for solubilization can easily be obtained due to the differences in the kind or characteristics of drugs. Furthermore, even if it can be solubilized, various problems may raise in respect of stability over time and in respect of safety.
N-(3-Chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine is preferably administered by an intravenous route, but it is very slightly soluble in water and unstable under light exposure in a solution state, therefore, some special measures have been necessary to make a pharmaceutical composition such as an injectable solution. In addition, for prevention or therapy of stroke, since the prolonged intravenous infusion should be also considered, it is necessary to take the safety to a living body into consideration on the occasion of the production of the pharmaceutical preparation.
An object of the present invention is to provide a pharmaceutical composition which can contain N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine dissolved at high concentration, and is stable to light exposure, and safe to a living body.
As a result of repeated studies in order to attain the above-mentioned objects, the present inventors have found that by adding sulfobutyl ether xcex2-cyclodextrin or a salt thereof to N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine, a preparation can be obtained which can contain the drug dissolved at high concentration, is improved in the stability over light exposure and safe without causing injuries to a living body by administration. The present invention has been accomplished on the basis of this finding. That is, the present invention is directed to a pharmaceutical composition which comprises a pharmaceutically effective amount of N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine, and sulfobutyl ether xcex2-cyclodextrin or a salt thereof. The pharmaceutical composition of the present invention can be mainly used as an injectable solution and its further stability over time can be guaranteed by forming it into a freeze-dried injectable preparation.
The present invention can be disclosed in more detail as follows. Since N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine was unstable in an acidic solution, solubilization by forming it into an acidic salt thereof was not proper. Furthermore, the solubility of N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine in 5% Tween 80, 10% polyethylene glycol, soybean oil and olive oil, which were used for forming it into micelles, co-solvents and lipid emulsion preparations, was not more than 0.5 mg/mL at 25xc2x0 C. and was insufficient for forming it into these micelles, co-solvents and lipid emulsion preparations. However, in the case of a 10% aqueous solution of sulfobutyl ether xcex2-cyclodextrin sodium salt, the solubility of N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine in the aqueous solution of sulfobutyl ether xcex2-cyclodextrin or a salt thereof is 3.57 mg/mL at 25xc2x0 C., and in the case of a 20% aqueous solution, the drug solubility is extremely high at 7.67 mg/mL at 25xc2x0 C. Based on this unpredictable finding in which in the case of the sulfobutyl ether xcex2-cyclodextrin solution, the drug is stable over light exposure and thus, it is convenient for actual use without a special care such as shading, the present invention has been accomplished.
In the present invention, N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine can be synthesized, for example, according to the method described in WO01/32164, and the dose is different depending on the disorders and administration forms, but it is 0.1 to 3000 mg per day, and preferably 1 to 300 mg per day.
Sulfobutyl ether xcex2-cyclodextrin or a salt thereof is available as a commercial product (for example, Captisol (trade name) manufactured by CyDex, Inc.) or can be synthesized by introducing sulfobutyl group(s) into OH group(s) of xcex2-cyclodextrin according to the method described in U.S. Pat. No. 5,134,127. The number of sulfobutyl group(s) substituted at OH group(s) of xcex2-cyclodextrin is referred to as xe2x80x9csubstitution degreexe2x80x9d. The average substitution degree is preferably about 5 to about 8, more preferably about 6 to about 7, most preferably about 7. A preferred salt of sulfobutyl ether xcex2-cyclodextrin is sodium salt.
Sulfobutyl ether xcex2-cyclodextrin or a salt thereof is contained in an amount of 10 to 300 parts by weight, preferably 50 to 150 parts by weight based on one part by weight of N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine.
In addition, if necessary, tonicity agents (e.g., glycerol or glucose), pH modulators, etc. can be contained.
The pharmaceutical composition of the present invention may be formulated into various pharmaceutical forms such as injectable solutions, freeze-dried injectable preparations, tablets, granules, powders, capsules, solutions for internal use or dry syrups. Especially, injectable solutions and freeze-dried injectable preparations are preferred. These injectable solutions and freeze-dried injectable preparations can be dosed by single administration or intravenous infusion.
The pharmaceutical composition of the present invention can be formulated by usual preparation methods, for example, an ordinary method for producing injectable preparations which comprises mixing N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine, sulfobutyl ether xcex2-cyclodextrin or a salt thereof and water for injection with agitation and dissolving the mixture. Specifically, there is a method which comprises adding water for injection to the powders of N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine and sulfobutyl ether xcex2-cyclodextrin or a salt thereof and dissolving the mixture, or a method which comprises dissolving sulfobutyl ether xcex2-cyclodextrin or a salt thereof in water for injection previously, adding N-(3-chloro-4-morpholin-4-yl)phenyl-Nxe2x80x2-hydroxyimidoformamidine to the resulting solution and dissolving the mixture.
Agitation is usually carried out by means of an ordinary agitator, however, for certain purposes such as shortening the dissolution time, it can be carried out using an emulsifier or a homogenizer using a shearing force or a grinding force may be employed.
Conventional high-pressure steam sterilization and filtration sterilization are considered as sterilization step for preparation of injectable solutions, but in the case of the pharmaceutical composition of the present invention, high-pressure steam sterilization tends to lower the content of the drug, so that filtration sterilization is preferred. Usually, filtration sterilization can be carried out using a filter with a pore size of about 0.2 xcexcm. The material of the filter will not be especially limited, unless there is any problem such as adsorption.
For producing freeze-dried injectable preparations, an ordinary freeze-drier can be used. Furthermore, in order to prevent the decomposition of the drug, the headspaces of vials or ampoules are preferably substituted with nitrogen regardless of the solution state of the composition or freeze-dried state.
Embodiments | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to new and useful improvements in molded thermoplastic thread protectors for the threaded ends of pipe or casing.
2. Description of the Prior Art
In shipping industrial pipe, conduit and casing which are threaded at the ends, it has been necessary to provide protectors to prevent damage to the threads. At the present time, one of the most commonly used thread protectors for threaded pipe or casing is one which is made of thermoplastic material, cup shaped and internally threaded to fit the threaded ends of the pipe or casing requiring protection. Thread protectors of this type require considerable time for application and have to be screwed on the ends of the pipe which is a time consuming process. As a result, there has been a considerable need for thread protectors which can be applied without the need for screwing onto the threaded ends of the pipe and which will not slip off the threaded ends during shipment and handling.
Halsey U.S. Pat. No. 3,485,271 discloses an internally threaded protector for pipe threads.
Vestal U.S. Pat. No. 3,744,528 discloses a tubular plastic closure member for metal tubes or pipe.
Callicoatte U.S. Pat. No. 4,239,062, discloses a plastic thread protector for threaded pipe having a cup shaped construction with longitudinally extending ribs for gripping the threads to be protected. The use of longitudinally extending ribs does not provide any means for securing the protector on threaded pipe and there is a tendency to slip off.
Curtiss U.S. Pat. No. 2,900,435 discloses a plastic bushing for the ends of electrical conduit which may be hammered into place. The bushing is formed of plastic material and is internally threaded.
In the formation of molded plastic objects having internal threads and lugs and the like, special consideration has to be given to the design of the molds for forming such parts.
Blaustein U.S. Pat. No. 3,150,222 discloses apparatus for molding threaded articles of thermoplastic by the injection molding process. This involves the use of a two part mold in which one of the parts has threaded recesses forming threads in the molded article. The threaded part of the mold has to be withdrawn from the molded article by unscrewing the article therefrom.
Armour U.S. Pat. No. 3,013,308 discloses a method and apparatus for manufacture of threaded plastic parts. The internal portion of the mold is threaded and the part must be unscrewed from the threaded portion of the mold.
Zulaf U.S. Pat. No. 3,350,044 discloses cup shaped covers for the ends of electrical conduit having longitudinally extending internal ribs for securing the covers in place.
Fields U.S. Pat. No. 3,247,548 discloses a method and apparatus for molding internally threaded cup shaped parts of thermoplastic by use of a mold having a collapsible inner portion.
Kessler U.S. Pat. No. 3,325,576 discloses a method and apparatus for molding internally threaded parts of plastic having a two part inner mold segment, one part of which is movable to eject the molded threaded piece from the mold.
Alexandris U.S. Pat. No. 3,584,092 discloses a vacuum molding process for drawing a sheet of thermoplastic material into a female mold cavity and having threaded ribs to be formed in the molded product.
In the manufacture of molded parts of thermoplastic materials by the injection molding process, when the product is manufactured with internal ribs or threads, it has been necessary to remove the molded part by an unscrewing operation or to remove the insert portion of the mold by means of collapsing the same. Thus, it has been necessary to use collapsible mold inserts in order to remove the mold insert from the molded part where under cuts or lugs are produced in the molding operation.
There has not been a practical means provided for the molding of internal ribs which extends circumferentially of a molded part without the use of collapsible mold inserts. | {
"pile_set_name": "USPTO Backgrounds"
} |
In order to provide versatility to the equipment in thermoforming shallow items such as lids for containers and the like from both oriented and non-oriented thermoplastic materials of the solid (as opposed to foamed) type, orientation of such materials ordinarily requires temperatures to be lower than those for non-oriented materials in order to achieve proper retention of orientation in the finished product. Certain materials at these lower temperatures are more difficult to thermoform and provide the desired ultimate detail with only vacuum pressure behind the thermoforming draw. Accordingly, additional pressure or pressure assist is needed in order to enhance the detail in the finished product. This is provided by placing positive pressure on one side of the web being thermoformed with or without vacuum on the other.
In the prior art, this additional pressure was achieved by a clamshell type device consisting of a lid at one edge of the mold pivoted from a position across the mold face to a position 90.degree. from the mold face to permit insertion and ejection of thermoformable web and finished product, respectively. However, because of the inertias involved in operating such a trap door or clamshell type pressure lid over a mold cavity, this system becomes very cumbersome at high speeds. The present invention is directed to pressure assist devices synchronized with rotary molding devices such that high speeds are achievable without the sacrifice of quality.
Continuous rotary in-line thermoforming devices operating at relatively high speeds of the plug assisted or match molding type require accurate indexing of the plug devices or male match molding devices with the mold cavities in a rotary mold wheel while at the same time keeping inertial changes to an optimal minimum.
It is an object of the present invention to provide continuous rotary in-line thermoforming systems and methods in which pressure, plug assist and match mold devices are accurately indexed at high speeds with the rotary mold means and mold cavities therein.
Another object of the present invention is to provide new and novel pressure assist means for rotary in-line thermoforming systems.
Still another object of this invention is to provide new and novel plug assist means and indexing and drive means for same for continuous rotary in-line thermoforming systems.
Yet another object of the present invention is to provide new and novel match mold means and indexing and drive means for same for continuous in-line rotary thermoforming systems.
These and other objects of the present invention will become more fully apparent with reference to the following specification and drawings which relate to several preferred embodiments of the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a non-contact measurement of the wheel alignment of motor vehicles, and more particularly to a method and an apparatus for optoelectronically measuring the vehicle wheel alignment.
2. Prior Art
The wheel alignment is an important requirement for safe and stable travelling of motor vehicles. It is therefore necessary to accurately measure the vehicle wheel alignment at a high speed for enabling proper subsequent adjustment of the wheel alignment based on the result of the measurement.
There are known two types of measurement of vehicle wheel alignment; one is achieved statically and the other dynamically. The dynamic measurement is preferable because it is conducted under conditions substantially the same as the actual vehicle travelling conditions.
According to one such known dynamic measurement system, a pair of axially movable roller-headed feelers or proves is held in contact with a tire side surface at diametrically opposite portions thereof for measuring a toe-in angle and a camber angle on the basis of axial displacements of the respective proves. This system is however disadvantageous in that due to irregularity of the tire side surface, the measurements of a toe-in angle or of a camber angle fluctuate and hence an accurate measurement is difficult to achieve.
Another example of known dynamic measurement system is constructed to detect a side slip force of the tire (i.e., a force urging the tire to slip laterally when a vehicle is running) which varies proportional to the magnitude of toe-in angle of the wheel. This system is however disadvantageous in that the correlation between the side slip force and the toe-in angle is not constant but varies depending on the tread patterns of the individual tires.
As described above, the known dynamic wheel alignment measurement systems are not satisfactory in accuracy because they are negatively affected by the shape, design and deformation of a tire to be measured.
With the foregoing difficulties in view, an artisan might attempt to realize an optical measurement system capable of measuring the wheel alignment without direct contact with a tire. A possible proposal would probably be a system such as shown in FIG. 8 of the accompanying drawings. The system includes a pair of photoelectric sensors S1, S2 disposed near the tire T on a wheel W for measuring the distance between a side surface of the tire T and a reference vertical plane. With this arrangement, however, when the wheel W is rotated by a pair of drive rollers (not shown), it is displaced rearwardly, as indicated by the dotted lines. Relatively to this rearward displacement of the wheel W, measuring points M1, M2 on the tire T are displaced forwardly. With this displacement of the measuring points, the obtained measurements of a toe-in angle .theta. necessarily contain an error. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to analog-digital converters using .DELTA..SIGMA. modulation.
2. Prior Art
Conventionally, there are provided one-bit analog-digital converters which use .DELTA..SIGMA. modulation system. FIG. 1 shows an example of a .DELTA..SIGMA. analog-digital converter conventionally known. In FIG. 1, a .DELTA..SIGMA. modulator 31 converts an analog input into serial-bit strings. This .DELTA..SIGMA. modulator 31 consists of a switched-capacitor integrator 32, a one-bit quantizer 33 and a feedback circuit 34. Herein, the one-bit quantizer 33, which is configured using a clocked comparator, is provided to quantize an output of the switched-capacitor integrator 32; and an output of the one-bit quantizer 33 is subjected to one-sample delay in the feedback circuit 34 based on reference voltage, wherein either positive reference voltage V.sub.REF+ or negative reference voltage V.sub.REF- is selected as the reference voltage in response to polarity of the output of the one-bit quantizer 33. Serial-bit strings, which are produced by the .DELTA..SIGMA. modulator 31, are inputted into a digital filter 35. The digital filter 35 extracts low-frequency components, corresponding to the analog input, from the serial-bit strings, so the low-frequency components extracted are converted into digital data of certain number of bits.
The above-mentioned analog-digital converter employs a so-called "scaling system" (disclosed by U.S. Pat. No. 4,851,841) in order to reduce noise in a digital output. According to the scaling system, gain of the .DELTA..SIGMA. modulator 31 is fixed at `1/A`, while scaling gain `A` is provided for the digital filter 35 by using impulse-response coefficients. Such a system is made under consideration of a fact that the analog-digital converter of FIG. 1 has certain noise characteristic, as shown by FIG. 2, with respect to analog-input level.
In the analog-digital converter of FIG. 1, as shown by FIG. 2, as the analog input becomes closer to full scale in analog-input level, i.e., "clip level" of the .DELTA..SIGMA. modulator 31, level of noise in the digital output becomes larger, wherein the clip level of the .DELTA..SIGMA. modulator 31 is set at either V.sub.REF+ or V.sub.REF-. Therefore, the gain of the .DELTA..SIGMA. modulator 31 is suppressed in such a way that maximum value in the analog input coincides with the reference voltage multiplied by `1/A` (e.g., `0.8`). In contrast to suppression of the gain of the .DELTA..SIGMA. modulator 31, scaling gain `A` is applied to the digital filter 35 which follows the .DELTA..SIGMA. modulator 31. By employing such a scaling system, it is possible to effectively reduce the noise.
Meanwhile, if the analog input contains DC offset component, "calibration" is required to remove the DC offset component at last. In order to do so, the digital filter 35 is followed by a high-pass filter, for example. However, when providing the high-pass filter which follows the digital filter 35 under a condition where a certain gain is applied to the digital filter by employing the aforementioned scaling system, some problem occurs due to clipping for high-level signals.
Now, we will explain about the aforementioned problem with reference to FIGS. 3A and 3B. Let us think about it by using an analog-input signal, whose amplitude is relatively large and which contains a DC offset `.DELTA.V`, as shown by FIG. 3A, for example. Herein, `.+-.V1` indicate clip levels of the digital filter 35; and `.+-.V2` indicates clip levels of the .DELTA..SIGMA. modulator 31. The above-mentioned clip levels .+-.V1 and .+-.V2 are shown relatively with respect to altering level of the analog-input signal, so relationship between clip levels, which are actually set for the analog-digital converter of FIG. 1, do not necessarily coincide with relationship between .+-.V1 and .+-.V2 shown by FIG. 3A. Thanks to the aforementioned scaling system, maximum amplitude of the analog-input signal can be suppressed less than the clip level of the .DELTA..SIGMA. modulator 31. On the other hand, the scaling gain A is applied to the digital filter 35, so the clip level becomes lower. If the DC offset .DELTA. exists in a positive side of the analog-input signal shown by FIG. 3A, there may occur a situation where waveform in the positive side of the analog-input signal (i.e., a positive part of the output of the high-pass filter) is clipped at a certain level as shown by FIG. 3B. In that situation, the DC offset can be removed, however, a clipped state in positive side of the waveform may remain in an output of the high-pass filter. Such a clipped state may cause to occur deformation corresponding to overflow of data.
As described above, in order to reduce the noise, the scaling system is applied to the analog-digital converter, based on the .DELTA..SIGMA. modulation, so that gain of the modulator is limited while a certain gain is applied to the digital filter which follows the modulator. In this case, if DC offset is contained by the analog-input signal, a clipped state may occur for a large amplitude of the analog-input signal. So, there is a problem that un-desired effect due to such a clipped state cannot be eliminated even if a high-pass filter is provided to remove the DC offset. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to left-handed materials, and in particular to left-handed materials with deformed split ring resonators (DSRR) conducted to provide negative permeability.
With reference to the discussion of negative permeability material or left-handed metallic structure, in 1968, Veselago disclosed a theory that when transmitted through a substance with negative dielectric coefficient and negative permeability, an electromagnetic wave will display a distinctive and unusual quality. Moreover, in 1996, Pendry disclosed a system combining the split-ring resonator, array with a metallic line array to enable an electromagnetic wave of a certain microwave band to simultaneously possess a negative dielectric coefficient and negative permeability. In 2000, Pendry also applied this theory to the analysis of optical lens resolution. Thus, if a metallic structure with left-handed materials can be developed, the metallic structure will be capable of altering the non-penetrability of ordinary substances and modulating the wave-transmitting direction. Additionally, if formed on a large-scale silica substrate or other transparent substrate, the left-handed material can be introduced to produce a planar super-resolution optical lens. Accordingly, the requirements of delicate mechanical tolerance can be reduced, thus increasing assembly efficiency and production yield. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field
The present disclosure generally relates to optical fibers and, more specifically, to multicore optical fibers.
Technical Background
Optical fiber is the leading alternative to traditional materials used for data signal communication such as copper wiring. Optical fiber is now widely utilized in a variety of electronic devices and systems to facilitate the high-speed communication of voice, video, and data signals at high bandwidths. However, as the speed and bandwidth of the electronic systems increases, there is a corresponding need to increase the speed of optical interconnects which interconnect components of the system. One solution to increase the speed of optical interconnects is to increase the fiber density of the optical interconnects. However, increasing the number of individual fibers in an optical interconnect increases the overall size and cost of the optical interconnect. To avoid the increased fiber count, multicore optical fibers (“MCFs”) have been developed. MCFs contain optical core elements contained in a single fiber. The core elements are designed for, for example, the transmission and receiving of data, and can be arranged as transmit and receive (Tx/Rx) pairs. Such MCFs may be used in data networks to enable high speed Tx/Rx transmission of data between system components such as transceivers, processors, servers, and storage devices. For connection and termination in the networks, connectors are attached to the MCFs. For correct Tx/Rx optical transport and connections to be manufactured, it is important for the operators to know the orientation of the optical fibers when the connectors are terminated to the MCFs. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wireless communication systems are widely spread all over the world to provide various types of communication services such as voice or data. The wireless communication system is designed for the purpose of providing reliable communication to a plurality of users irrespective of their locations and mobility. However, a wireless channel has an abnormal characteristic such as a fading phenomenon caused by a path loss, noise, and multipath, an inter-symbol interference (ISI), a Doppler effect caused by mobility of a user equipment, etc. Therefore, various techniques have been developed to overcome the abnormal characteristic of the wireless channel and to increase reliability of wireless communication.
A multiple input multiple output (MIMO) scheme is used as a technique for supporting a reliable high-speed data service. The MIMO scheme uses multiple transmit antennas and multiple receive antennas to improve data transmission/reception efficiency. Examples of the MIMO scheme include spatial multiplexing, transmit diversity, beamforming, etc.
A MIMO channel matrix is formed by multiple receive antennas and multiple transmit antennas. A rank can be obtained from the MIMO channel matrix. The rank is the number of spatial layers. The rank may also be defined as the number of spatial streams that can be simultaneously transmitted by a transmitter. The rank is also referred to as a spatial multiplexing rate. If the number of transmit antennas is Nt and the number of receive antennas is Nr, a rank R satisfies R≦min{Nt, Nr}.
Meanwhile, there is an ongoing standardization effort for an international mobile telecommunication-advanced (IMT-A) system in the international telecommunication union (ITU) as a next generation (i.e., post 3rd generation) mobile communication system. The IMT-A system aims at the support of an Internal protocol (IP)-based multimedia seamless service by using a high-speed data transfer rate of 1 gigabits per second (Gbps) in a downlink and 500 megabits per second (Mbps) in an uplink. A 3rd generation partnership project (3GPP) is considering a 3GPP long term evolution-advanced (LTE-A) system as a candidate technique for the IMT-A system. It is expected that the LTE-A system is developed to further complete an LTE system while maintaining backward compatibility with the LTE system. This is because the support of compatibility between the LTE-A system and the LTE system facilitates user convenience. In addition, the compatibility between the two systems is also advantageous from the perspective of service providers since the existing equipment can be reused.
In the LTE system, up to 4 transmit antennas are supported in downlink transmission. In the LTE-A system, it is considered to support up to 8 transmit antennas in downlink transmission. As such, a new system in which the number of transmit antennas is increased in comparison with the legacy system can be taken into consideration. The greater the number of transmit antennas, the higher the information transfer rate, the reliability, etc.
Accordingly, there is a need for an apparatus and method for effective information transmission in a wireless communication system in which the number of transmit antennas is increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus and a method of controlling clock frequency generation, and more particularly, to an apparatus and a method for a portable device.
2. Background of the Related Art
In general, a portable device such as a notebook computer can be supplied with its necessary electric energy either by a battery or an AC power line. However, because battery capacity is limited, a notebook cannot be used for more than a few hours if its power is supplied from the battery.
FIG. 1 is a simplified block diagram of a related art notebook. The notebook of FIG. 1 comprises a CPU 11 conducting ordinary well-known operations and functions; a bridge controller 12 conducting both assistant operations of the CPU 11 and management of memories, a video port, a bus, etc.; a video processor 13 for processing video data and outputting the processed data for video presentation; and a clock generator 10 providing a 100 MHz clock signal 1 for the CPU 11 and the bridge controller 12, and a 66 MHz clock signal 2 for the video processor 13.
A PLL (Phase Lock Loop) circuit 110 is embedded in the CPU 11. The PLL circuit 110 multiplies the 100 MHz clock from the clock generator 10 differently based on a current power supplying mode. For example, the PLL circuit 110 multiplies the 100 MHz clock 1 by a factor of six to produce a 600 MHz internal clock if an AC power mode (PWR mode) is detected, and it multiplies the 100 MHz clock 1 by a factor of five to produce a 500 MHz clock if a battery power mode is detected.
Because power consumption of a CPU 11 is proportional to the speed of a clock driving the CPU 11, if a 500 MHz internal clock is used in a battery supplying mode, processing speed is lowered and power dissipation is decreased in comparison with a 600 MHz internal clock. Therefore, battery life is extended.
However, in a related portable computer, a host bus 3 to which both a CPU 11 and a bridge controller 12 are connected is driven by a bus clock to bridge controller 12 whose speed is fixed regardless of power supplying mode. Therefore, power saving in a battery supplying mode is less effective.
The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background. | {
"pile_set_name": "USPTO Backgrounds"
} |
Mixtures of molecular compounds are often separated into their various constituents using chromatographic techniques, based upon their differential migration or movement through a sieving medium according to certain properties, such as molecular weight or affinity for a solid adsorbent. The separated constituent compounds may be visualized by a number of different techniques, most of which require that the constituent compounds be labeled with a molecule that emits electromagnetic radiation, such as a fluorescent dye. This radiation can be detected by an optical detector sensitive in the spectral range of emitted radiation and then converted to an electronic or visual signal indicating the identity, amount, and order of the labeled fragments.
Chromatographic methods are commonly used to determine the sequence of a nucleic acid sample. Such methods involve the electrophoretic separation of mixtures of nucleic acid chain-termination fragments representing a size-distribution of fragments terminating at each A, G, T and C of the nucleic acid, with each fragment being labeled with a detectable label specific to the base type (A, T, G, or C) of the last nucleotide base of the fragment (in the case of dye-terminator labeling chemistry). Alternatively the primer used in the sequencing reaction can be labeled. The chain termination fragments are electrophoretically separated in a gel medium according to the fragment size, resulting in a pattern of bands corresponding to the order of the terminal nucleic acid base type. An optical detector detects the signal emitted by the fragment labels in the order of migration and converts the signal to a visualized pattern of peaks representing discrete constituent terminal nucleotide bases of each fragment. The pattern of peaks can then be analyzed by signal processing technology and/or computer, to determine the order, quantity, and identity of the terminating base type (and hence the sequence) of the individual components nucleic acid sample. Data acquired by an electrophoresis-based instrument, such as a slab-gel or capillary system) is known as a chromatogram or data trace, which provides a chronological series of peaks representing the nucleotide sequence.
Because chromatographic methods of nucleic acid sequencing utilize an electrophoretic sieving medium to separate DNA fragments on the basis of size, the accuracy of the sequence results depends on accurate detection of the chronological order in which the fragments migrate through the medium, as indicated by the presence and order of signal peaks representing individual fragments in an chromatogram or sequence data trace. Failure to identify a peak will result in loss of a base (called deletion error) in the identified sequence where a base actually exists. Identification of a false-positive peak (a peak that does not in fact represent a real nucleotide fragment) will result in a nucleotide/base being inserted (insertion error) in the identified sequence where no base actually exists.
Accurate identification of the order, identity and quantity of constituent components (e.g., nucleic acid base types) of a chromatographic separation process is critical for many applications. However, the accuracy of current methods is limited by a number of factors. First, the spacing of peaks produced by fragments differing in length by a single nucleotide tends to change with size of the fragment. Differences in the spacing of bands among multiple lanes also contributes to inaccuracies. Additionally, the electromagnetic radiation emitted by the detectable label is inherently stochastic in nature, resulting in a spread or dispersion of the signal. Background noise is also inherent, and contributes to a low but variable pattern of visual darkening or visual signal over the lane and in the peaks representing the signal. The general intensity of labeling often varies between the four nucleotide types, and there is furthermore a tendency for bands within a given lane to vary in relative intensity in an unpredictable manner. Consequently, signals generated by the detectable labels of the components are not discrete, and often result in overlapping peaks, which tend to occur frequently towards the end of the sequence, especially when there is a run of multiple components having the same identity (e.g., AAAAA, GGG or CCCC) which become convoluted and appear as a single peak. Overlapping peaks generally occur as a result of the reduction of resolution provided by a sieving medium with the length of the nucleic acid fragment. All of above factors contribute to difficulties in resolving individual constituent peaks, ordering of the peaks, and determining the correct sequence of bases.
Various methods have been utilized to circumvent the above problems and improve the accuracy of base-calling, including highly configurable data processing modules, homomorphic deconvolution followed by peak detection, neural networks, grid search assuming regularly spaced Gaussian pulses, expert systems, and others. The various methods generally fall into two categories: deconvolution methods and peak-fitting methods. Peak-fitting methods are based on empirical knowledge of the number, location, and characteristics of peaks of the same or a cognate sequence. Peak-fitting methods, however, require empirical knowledge of related sequences, and cannot be used where such empirical data is not available. Deconvolution methods, on the other hand, are based on an unbiased interpretation of data inherent in the peak data generated by the sample sequence, and involve an enhancement of the data by means of computational elimination or reduction of variables contributing to the blurring of the peak, which should theoretically result in an ideal discrete profile peak. Typical deconvolution base-calling methods use simple Fourier methods to predict base positions and then find peaks in the data as regions about inflexions or concavities in the signal that exceed certain area thresholds. Deconvolution methods, however, have limited utility where such inflexions between peaks are not present. Deconvolution is also highly sensitive to noise.
Accordingly, there is a continuing need to develop improved methods of base-calling, particularly methods that are capable of resolving peaks in low-resolution regions of peak data. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to an apparatus for recording an image on a photosensitive recording medium.
2. Description of Related Art
Conventionally, when an image recording apparatus, such as a color photocopier, copies an original, rays are irradiated onto and reflected by the original, thereby resulting in the formation of an image. Specifically, when the photosensitive recording medium, such as a photosensitive sheet, is exposed to the rays reflected by the original, a latent image corresponding to the image on the original is formed on the surface of the photosensitive recording medium. Subsequently, the surface of the photosensitive recording medium with the latent image formed thereon is put in contact under pressure with the developer applied surface of a developer sheet, and the image is transferred from the photosensitive recording medium onto the developer sheet. By heating the developer sheet, a chromatic image, corresponding to the latent image, is developed on the developer sheet.
When the component colors of the chromatic image on the original are similar to each other in pigment and brightness, for example, when the original bears the scenery of the sea mainly composed of blue, the related-art image recording apparatus obtains an output chromatic image having poor color gradation. The optimum conditions of the exposure of the original to the rays vary with the hue and brightness of the rays. Consequently, some hue characteristics of the original result in an output chromatic image of undesirable quality with poor color gradation.
The optimum conditions of the exposure of the original to the rays also vary with the brightness characteristics of the original, such as the average brightness and contrast of the original. Some brightness characteristics of the original result in an output chromatic image of undesirable quality with poor color gradation. For example, when the quantity of the rays reflected by the original is large, when the original has low brightness and when the original is inclined to white, the output chromatic image has no distinctive color gradation, even if the quantity of the reflected rays is varied. As a result, the output chromatic image becomes uniformly light and has no distinctive color gradation. The same problem arises when the original has dark color. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to transport systems and, more specifically, to guest conveyance systems for amusement park rides and the like.
In amusement park settings, a variety of transportation systems are utilized for conveyance purposes. In an amusement park, a guest conveyance system is used to move guests along a predetermined path through a ride or attraction. Such a guest conveyance system can include vehicles that are each equipped with one or more bogies, which are guides that slide along a track to steer the vehicle along the predetermined path. When one of the bogies slides along a curved section of the track, that bogie applies turning forces to the vehicle. These turning forces act in a direction perpendicular to the direction of the vehicle's travel. The vehicle also has a drive system that applies forces parallel to the direction of travel to increase and decrease the vehicle's speed as it moves through a particular ride. Such a drive system can include powered wheels and tires mounted under the vehicle to engage a horizontal surface adjacent to the track. The powered wheels are aligned to rotate in a vertical plane parallel to the direction of travel of the vehicle and thereby provide needed propulsive and braking forces as the vehicle moves through the attraction.
One drawback associated with such an arrangement is that the wheels must be steered to avoid excess tire wear. If the wheels are not steered to maintain their alignment in a direction parallel to the vehicle's direction of travel, side slip forces from the bogies are applied to the wheels as the vehicle turns. These side slip forces cause the wheels to skid sideways as the vehicle negotiates turns, thereby resulting in undesirable wear and inflated power requirements for the drive system. Such tire wear is especially expensive because of the labor costs associated with replacing worn tires in an amusement ride having many vehicles. Further, such tire wear yields minute rubber particles that can accumulate within an enclosed amusement ride, requiring unwanted costs associated with removal of the particles by a ventilation system or by periodic cleaning of the accumulated particles from surfaces inside the ride.
One solution to the above identified problem is to connect each drive wheel to a steering mechanism or provide an alternative drive system. See, e.g. U.S. Pat. Nos. 2,101,024 and 3,807,312. However, such mechanisms increase the cost of the vehicle and are also somewhat complicated, resulting in increased maintenance costs and more undesirable downtime.
Accordingly, there is a definite need for a transport system having powered wheels that are each steered in an automatic, simple fashion to individually maintain their alignment in a direction parallel to a desired direction of travel to reduce side slip and tire wear. | {
"pile_set_name": "USPTO Backgrounds"
} |
Graphs may be composed of edges and nodes that represent persons and their relationships to other persons. These graphs may only be limited in their size by the complexity of the relationships between specific persons. That is, if a person has, for example, a plurality of complex relationships, then the graph representing this person and their relationship to other persons might be quite large. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computer systems today are subject to a variety of attacks that can disrupt or disable expected operation of a computer system and cause the system to behave in damaging or undesirable ways. Computer viruses, worms, and trojan horse programs are examples of different forms of attack. Attacks can also come from unscrupulous users of a computer system or remote hackers. Often these attacks take the form of attempts to modify existing program code executed by the computer system or attempts to inject new unauthorized program code at various stages of normal program execution within the computer system. Systems and methods for preventing such malicious attacks are becoming increasingly important.
Generally speaking, such attacks are implemented by causing the computer to execute foreign code. “Foreign” code, in this case, refers to code that is not intended or expected to execute in the process space of a particular program. It is typically written by a hacker to get into the process space of a program to accomplish some end, such as to delete, corrupt, or manipulate code or data for some other purpose, like unlawfully making unauthorized copies of music.
Preventing such attacks by foreign code assists in assuring the behavioral integrity of a computer system (or, at least, a particular program). One way to maintain integrity is to perform module authentication, in which the security of one or more software modules is protected against tampering. This provides a level of protection against malicious changes to the software such as code patching, redirection, and software breakpoints.
One form of module authentication is to ensure that content contained in the software module is unchanged (or, at least, that the portions of the module that are not expected to change, such as the code portions, actually remain unchanged). This may be done via static module authentication. Static module authentication is the process of verifying the persistently stored image of the module, which in some cases can be thought of as the “on-disk” module. For example, one mechanism to check the module on-disk may be accomplished by hashing the file and comparing the resulting hash value with a pre-computed hash value of the file that has been signed by a trusted signatory.
The process of hashing, is a well-known cryptographic technique for identifying data with a relatively unique, but substantially smaller representation than the original data. The hash can be taken on a binary source of arbitrary length, and the result of the hashing computation is a smaller, usually fixed-size piece of binary data known as a hash, hash value, or digest. For example, FIPS SHA-1 (Federal Information Processing Standards Secure Hash Algorithm 1) produces a 20-byte long hash regardless of the amount of data that is processed. A good hashing algorithm, like SHA-1, will produce significantly different hash values even for minute changes in the source data, or binary file in this case. Thus, when the expected attack is modification of the stored code, hashing is very effectively at allowing the modification to be detected.
However, not all attacks come in the form of modifications to the stored code. Some attacks are leveled without any modification to the program itself, but rather by modifying the runtime data in such a way that the program will jump into some foreign code created by a hacker, and then execute the foreign code in the program's address space. It would be advantageous to prevent all these kinds of foreign code attacks by recording stack and call tree information of a program, and then during the execution of that program, use this information to compare the actual execution sequence of the program to the intended execution of the program, where the actual execution is determined by stack walking and the obtaining of return addresses on the stack, and the intended execution of the program is obtained from the call tree information. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a dispersion of an aggregated dye, a method for preparing said dispersion and a radiation-sensitive element containing said aggregated dye.
Radiation-sensitive materials, including light-sensitive materials, such as photographic materials, may utilize filter dyes for a variety of purposes. Filter dyes may be used to adjust the speed of a radiation-sensitive layer; they may be used as absorber dyes to increase image sharpness of a radiation-sensitive layer; they may be used as antihalation dyes to reduce halation; they may be used to reduce the amount or intensity of radiation from reaching one or more radiation-sensitive layers, and they may also be used to prevent radiation of a specific wavelength or range of wavelengths from reaching one or more of the radiation-sensitive layers in a radiation-sensitive element. For each of these uses, the filter dye(s) may be located in any number of layers of a radiation-sensitive element, depending on the specific requirements of the element and the dye, and on the manner in which the element is to be exposed. The amount of filter dyes used varies widely, but they are preferably present in amounts sufficient to alter in some way the response of the element to radiation. Filter dyes may be located in a layer above a radiation-sensitive layer, in a radiation-sensitive layer, in a layer below a radiation-sensitive layer, or in a layer on the opposite side of the support from a radiation-sensitive layer.
Photographic materials often contain layers sensitized to different regions of the spectrum, such as red, blue, green, ultraviolet, infrared, X-ray, to name a few. A typical color photographic element contains a layer sensitized to each of the three primary regions of the visible spectrum, i.e., blue, green, and red. Silver halide used in these materials has an intrinsic sensitivity to blue light. Increased sensitivity to blue light, along with sensitivity to green light or red light, is imparted through the use of various sensitizing dyes adsorbed to the silver halide grains. Sensitized silver halide retains its intrinsic sensitivity to blue light.
There are numerous applications for which filtration or absorbance of very specific regions of light are highly desirable. Some of these applications, such as yellow filter dyes and magenta trimmer dyes, require non-diffusing dyes which may be coated in a layer specific manner to prevent specific wavelengths of light from reaching specific layers of the film during exposure. These dyes must have sharp-cutting bathochromic absorbance features on the bathochromic side to prevent light punch through without adversely affecting the speed of the underlying emulsions. Depending on the location of these filter layers relative to the sensitized silver halide emulsion layers, it would also be desirable to have non-diffusing, layer specific filter dyes with absorption spectra which are sharp-cutting on the hypsochromic edge as well as the bathochromic edge. Such dyes are sometimes known as xe2x80x9cfinger filtersxe2x80x9d. Preferably these dyes should exhibit high extinction coefficients, narrow halfbandwidths and sharp cutting hypsochromic and bathochromic absorption envelopes when incorporated into photographic elements. Typically, to achieve these properties, solutions of dissolved, monomeric dyes (non-aggregated) have been incorporated. Dyes introduced by this method cannot be coated in a layer specific manner without the use of mordants, and therefore they often wander into adjacent layers and can cause problems such as speed loss or stain. Solubilized monomeric dyes may be mordanted to prevent wandering through adjacent layers. While the use of polymeric mordants can prevent dye wandering, such mordants aggravate the stain problem encountered when the dye remains in the element through processing.
Dyes with a high extinction coefficient allow maximum light absorption using a minimum amount of dye. Lower requisite dye laydown reduces the cost of light filtration and produces fewer processing by-products. Lower dye laydowns may also result in reduced dye stain in short duration processes.
Finger filters such as described above are highly desirable for other uses such as protecting silver halide sensitized emulsions from exposure by safelights. Such dyes must have absorbance spectra with high extinction coefficients and narrow halfbandwidths, and sharp cutting absorbance envelopes to efficiently absorb light in the narrow safelight-emitting region without adversely affecting the speed of the sensitized silver halide emulsions. This affords protection for the sensitized emulsion from exposure by light in the safelight""s spectral region. Useful absorbance maxima for safelight dyes include, but are not restricted to 490 nm and 590 nm.
Similar properties are required for infrared absorbing filter dyes. Laser-exposed radiation-sensitive elements require high efficiency light absorbance at the wavelength of laser emission. Unwanted absorbance from broadly absorbing dyes reduces the efficiency of light capture at the laser emission wavelength, and requires the use of larger amounts of dye to adequately cover the desired spectral region. In photographic elements, unwanted absorbance may also cause speed losses in adjacent silver halide sensitized layers if the photographic element has multiple sensitized layers present. Useful finger filter absorbance maxima for absorbing laser and phosphor emissions include but are not restricted to 790 nm, 633 nm, 670 nm, 545 nm and 488 nm. [Laser ablation/non-photographic]
In some photographic elements it is necessary to provide light filtration or antihalation at deep cyan and infrared wavelengths. Typically such protection has been achieved using water soluble dyes or milled solid particle dyes. Typically, water soluble monomeric dyes can provide relatively sharp, high extinction absorbance, but are prone to interlayer wandering. Solid particle dispersions of typical cyan filter dyes are broad absorbing, see for example U.S. Pat. No. 4,770,984, and often weakly absorbing at 700 nm.
One common use for filter dyes is in silver halide light sensitive photographic elements. If, prior to processing, blue light reaches a layer containing silver halide which has been sensitized to a region of the spectrum other than blue, the silver halide grains exposed to the blue light, by virtue of their intrinsic sensitivity to blue light, would be rendered developable. This would result in a false rendition of the image information being recorded in the photographic element. It is therefore a common practice to include in the photographic element a material that filters blue light. This blue-absorbing material can be located anywhere in the element where it is desirable to filter blue light. In a color photographic element that has layers sensitized to each of the primary colors, it is common to have the blue-sensitized layer closest to the exposure source and to interpose a blue-absorbing, or yellow filter layer between the blue-sensitized layer and the green- and red-sensitized layers.
Another common use for filter dyes is to filter or trim portions of the UV, visible or infrared spectral regions to prevent unwanted wavelengths of light from reaching sensitized emulsions. Just as yellow filter dyes prevent false color rendition from the exposure of emulsions sensitized to a region of the spectrum other than blue, UV, magenta, cyan and infrared filter dyes can prevent false color rendition by shielding sensitized emulsion layers from exposure to specific wavelength regions. One application of this strategy is the use of green-absorbing magenta trimmer dyes. In one type of typical color photographic element containing a layer sensitized to each of the three primary regions of the visible spectrum, i.e., blue, green, and red, the green-sensitized layer is coated above the red-sensitized layer and below the blue-sensitized layer. Depending on the chosen spectral sensitivity maxima for the sensitized silver halide layers, there may be a region of overlap between the spectral sensitivities of the green and red emulsions. Under such circumstances, green light which is not absorbed by the green-sensitive emulsion can punch through to the red sensitive emulsion and be absorbed by the leading edge of the red spectral sensitizing dye. This crosstalk between the green and red emulsions results in false color rendition. It would, therefore, be highly desirable to find a green-absorbing filter dye which upon incorporation into a photographic element would absorb strongly around the spectral maximum of the green-sensitized emulsion, and possess a sharp cutting bathochromic absorbance such that there is no appreciable absorbance just bathochromic to its absorbance maximum. Though the position of optimal absorption maximum for a magenta trimmer dye will vary depending on the photographic element being constructed, it is particularly desirable in one type of typical color photographic element containing a layer sensitized to each of the three primary regions of the visible spectrum, i.e., blue, green, and red, that a magenta trimmer dye absorb strongly at about 550 nm, and possess a sharp cutting bathochromic absorbance such that there is no appreciable absorbance above about 550 nm. Therefore it would be desirable to provide a filter dye for use in photographic elements that possesses high requisite absorbance in the green region of the spectrum below about 550 nm, but little or no absorbance above about 550 nm, and furthermore does not suffer from incubative or post process stain problems, and furthermore is not prone to migration in the coated film, but is fully removed upon processing.
One method used to incorporate soluble monomeric filter dyes into photographic film element layers is to add them as aqueous or alcoholic solutions. Dyes introduced by this method are generally highly mobile and rapidly diffusing and often wander into other layers of the element, usually with deleterious results. While the use of polymeric mordants can prevent dye wandering, such mordants aggravate the stain problem encountered when the dye remains in the element through processing.
Filter dyes have also been prepared as conventional dispersions in aqueous gelatin using standard colloid milling or homogenization methods or as loaded latices. More recently, ball-milling, sand-milling, media-milling and related methods of producing fine particle size slurries and suspensions of filter dyes have become standard tools for producing slurries and dispersions that can readily be used in photographic melt formulations. Solid particulate filter dyes introduced as dispersions, when coated at sufficiently low pH, can eliminate problems associated with dye wandering. However, milled, insoluble solid particulate filter dyes provide relatively low absorption coefficients, requiring that an excessive amount of dye be coated. In addition, the time and expense involved in preparing serviceable solid particulate filter dye dispersions by milling techniques are a deterrent to their use, especially in large volume applications. It is therefore desirable to provide dye dispersions that do not necessarily require mechanical milling before use and that do not wander but that wash out easily during processing leaving little or no residual stain. It is also desirable that such filter dye dispersions provide high light absorption efficiencies with sharp-cutting absorbance peaks. One method of obtaining these desirable dye features in solid particulate dispersions of oxonol filter dyes was described by Texter (U.S. Pat. Nos. 5,274,109 and 5,326,687). Texter describes a process by which pyrazolone oxonol dyes are microprecipitated under strictly controlled pH conditions to produce absorbance spectra which are narrow, bathochromic and sharp cutting on the long wavelength side relative to their corresponding milled solid particulate dispersions. This technique, however, is impractical for large volume applications.
Problem to be Solved by the Invention
It is therefore desirable to have a filter dye which has a high extinction coefficient, narrow halfbandwidth, sharp cutting on both the hypsochromic and bathochromic edge, and capable of being substantially completely removed or rendered colorless on process of an exposed radiation-sensitive element comprising said dye. It is also desirable to have a method for preparing a dispersion of a filter dye that is suitable for high volume manufacture.
One object of this invention is to provide a filter dye which when dispersed and aggregated in a hydrophilic colloid such as gelatin, possesses a spectral absorbance maximum bathochromically shifted and exhibits an unusually high extinction coefficient and an exceptionally narrow halfbandwidth relative to its non-aggregated solution absorbance spectrum.
Another object of this invention is to provide a filter dye which when dispersed and aggregated in a hydrophilic colloid such as gelatin, possesses narrow absorption bands exhibiting an especially sharp-cutting absorbance envelope on the short and long wavelength edges.
Another object of this invention is to provide a filter dye which when dispersed and aggregated in a hydrophilic colloid such as gelatin, exhibits low dye diffusibility and interlayer wandering.
Another object of this invention is to provide a direct gelatin dispersion method allowing easy and reproducible incorporation of the inventive dyes in an aggregated state, with all desirable properties intact, into photographic elements without recourse to milling techniques.
Another object of this invention is to provide a filter dye which when dispersed and aggregated in a hydrophilic colloid such as gelatin exhibits excellent stability at high temperature and humidity conditions.
Another object of the invention is to provide silver halide radiation-sensitive material containing at least one aggregated dye, incorporated in a hydrophilic colloid layer, which is decolorized irreversibly by photographic processing and which causes no deleterious effects on the silver halide photographic emulsions before or after processing.
A further object of the invention is to provide a silver halide radiation-sensitive material in which a hydrophilic colloid layer is dyed and exhibits excellent decolorizing properties upon photographic processing.
Yet another object of the invention is to provide a silver halide radiation-sensitive material in which a hydrophilic colloid layer is dyed and exhibits high absorbance in a portion of the spectral region at its absorbance maximum, but possesses comparatively little absorbance around 20 nm above its absorbance maximum.
Yet another object of the invention is to provide a silver halide radiation-sensitive material in which a hydrophilic colloid layer is dyed and exhibits high absorbance in a portion of the spectral region at its absorbance maximum, but possesses comparatively little absorbance around 20 nm below its absorbance maximum.
We have now discovered that certain dyes of Formula I, II and III, set forth below, aggregate when dispersed in an aqueous medium (preferably containing a hydrophilic colloid) and provide the advantages set for in the above objects of the invention. The said dye dispersion can be prepared by dispersing powdered dye or microcrystalline solid dye particles in an aqueous medium, preferably containing gelatin or other hydrophilic colloid, using the methods set forth herein.
One aspect of this invention comprises an aqueous dispersion comprising an aqueous medium having dispersed therein an aggregated dye of structural
wherein X is oxygen or sulfur; R1-R4 each independently represent an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group or an unsubstituted or substituted heteroaryl group; L1, L2 and L3 each independently represent substituted or unsubstituted methine groups; M+ represents a proton or an inorganic or organic cation; and n is 0, 1, 2 or 3 and wherein the aggregated dye in the dispersion has an absorption halfbandwidth of less than 55 nm.
In another preferred embodiment of the invention the aggregated dye of structural Formula I is of Formula II:
wherein R1 to R4 and M+ are as defined above and R5 represents a hydrogen atom or an unsubstituted or substituted alkyl, aryl or acyl group.
In yet another preferred embodiment of the invention the aggregated dye of structural Formula I is of Formula III:
wherein R1 to R4, X, M+ and R5 are as defined above.
Still another preferred embodiment of the invention comprises a radiation-sensitive element, such as a photographic element, containing an aggregated dye of structural Formula I, II or III.
Yet another preferred embodiment of the invention comprises a method of preparing a dispersion which comprises adding a dye of structural Formula I, II or III to an aqueous medium at a temperature of from about 20 to about 100xc2x0 C. and agitating the mixture for about 5 minutes to about 48 hours.
Advantageous Effects of the Invention
This invention provides a dye, useful as a filter dye in a radiation-sensitive element, such as a photographic element, which when dispersed in an aqueous medium, for example aqueous gelatin, dissolves then spontaneously aggregates. In some instances, the aggregated dye state constitutes an unusually well-ordered and thermodynamically stable liquid crystalline phase. A dye in the aggregated state possesses a coated xcexmax which is substantially bathochromic to that of its monomeric non-aggregated state and exhibits exceptionally high covering power at its coating xcexmax Further the aggregated dye exhibits sharp-cutting bathochromic and hypsochromic spectral features absorbing strongly at its coating xcexmax while absorbing comparatively little light at wavelengths just below or just above its absorbance maximum. Further, the aggregated dye possesses an unusually narrow halfbandwidth. The dyes can be formulated using methods for producing microcrystalline solid particle dye dispersions (SPD""s), or as direct gelatin dispersions (DGD""s) for incorporation in a photographic element. In such an environment, the spontaneously aggregated dyes exhibit little, if any tendency to wander within the element and upon processing are substantially free of post-process stain problems.
As noted above, the dispersion of this invention comprises an aggregated dye of Formula I:
wherein X is oxygen or sulfur; R1-R4 each independently represent an unsubstituted or substituted alkyl group, an unsubstituted or substituted aryl group or an unsubstituted or substituted heteroaryl group; L1, L2 and L3 each independently represent substituted or unsubstituted methine groups; M+ represents a proton or an inorganic or organic cation; and n is 0, 1, 2 or 3 and wherein the aggregated dye in the dispersion has an absorption halfbandwidth of less than 55 nm.
In a preferred embodiment of the invention the aggregated dye of structural Formula I is of Formula II:
wherein R1 to R4 and M+ are as defined above and R5 represents a hydrogen atom or an unsubstituted or substituted alkyl, aryl or acyl group.
In yet another preferred embodiment of the invention the aggregated dye of structural Formula I is of Formula III:
wherein R1 to R4, X and M+ are as defined above.
In Formula (I), (II) and (III), illustrative alkyl groups preferably contain 1 to 6 carbon atoms and include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, and isohexyl. Examples of aryl groups include phenyl, naphthyl, anthracenyl, and styryl. Examples of substituted aryl groups include, for example, tolyl, m-chlorophenyl and p-methanesulfonylphenyl, etc. Examples of heteroaryl groups include pyridyl, thienyl, furyl, and pyrrolyl. Examples of acyl groups include ethoxycarbonyl, amido, benzoyl, carboxy and acetyl. M+ is preferably H, Na, K, triethyl ammonium or pyridinium.
When reference in this application is made to a substituent xe2x80x9cgroupxe2x80x9d, this means that the substituent may itself be substituted or unsubstituted (for example xe2x80x9calkyl groupxe2x80x9d refers to an unsubstituted or substituted alkyl). Generally, unless otherwise specifically stated, substituents on any xe2x80x9cgroupsxe2x80x9d referenced herein or where something is stated to be possibly substituted, include the possibility of any groups, whether substituted or unsubstituted, which do not destroy properties necessary for the photographic utility. For example, the filter dyes of this invention should not contain a substituent or combination of substituents, which render the dye too soluble at coating pH""s, favoring a mobile monomeric dye species instead of the preferred aggregated dye species. It will also be understood throughout this application that reference to a compound of a particular general formula includes those compounds of other more specific formula which specific formula falls within the general formula definition.
Examples of substituents on any of the mentioned groups can include known substituents, such as: halogen, for example, chloro, fluoro, bromo, iodo; alkoxy, particularly those with 1 to 6 carbon atoms (for example, methoxy, ethoxy); substituted or unsubstituted alkyl, particularly lower alkyl (for example, methyl, trifluoromethyl); alkenyl or thioalkyl (for example, methylthio or ethylthio), particularly either of those with 1 to 6 carbon atoms; substituted and unsubstituted aryl, particularly those having from 6 to 20 carbon atoms (for example, phenyl, naphthyl, anthracenyl or styryl); and substituted or unsubstituted heteroaryl, particularly those having a 5 or 6-membered ring containing 1 to 3 heteroatoms selected from N, O, or S (for example, pyridyl, thienyl, furyl, pyrrolyl); and others known in the art. Alkyl substituents may specifically include xe2x80x9clower alkylxe2x80x9d, that is having from 1 to 6 carbon atoms, for example, methyl, ethyl, and the like. Further, with regard to any alkyl group, alkylene group or alkenyl group, it will be understood that these can be branched or unbranched and include ring structures.
Examples of preferred dyes of this invention are listed below.
The dyes of Formulas (I), (II) and (III) can be prepared by synthetic techniques well-known in the art, as illustrated by the synthetic examples below. Such techniques are further illustrated, for example, in xe2x80x9cThe Cyanine Dyes and Related Compoundsxe2x80x9d, Frances Hamer, Interscience Publishers, 1964.
The dispersions of this invention can be prepared in any of the ways known in the art (e.g., with the aid of a high-boiling non-polar organic solvent or in suitable water-miscible solvents such as methyl alcohol or dimethylformamide or the like), but are preferably formulated using methods developed for producing solid microcrystalline particles of dye (SPD""s) or are more preferably formulated as direct gelatin dispersions (DGD""s) as described herein.
A dispersion comprising solid microcrystalline particles of dye (SPD) can be prepared by known methods. Such methods includes forming a slurry of the dye in an aqueous medium comprising water and a surfactant and the subjecting the slurry to a milling procedure such as ball-milling, sand-milling, media-milling or colloid-milling (preferably media-milling). The SPD can then be added to an aqueous medium comprising water and a hydrophilic colloid, such as gelatin, for use in a photographic element.
In another preferred embodiment, the dyes may be formulated as a direct gelatin dispersion (DGD) wherein the finely powdered dye or aqueous slurry thereof is simply mixed or agitated with aqueous medium containing gelatin (or other hydrophilic colloid) at a temperature of 40xc2x0 C. or higher. This method does not require the use of organic solvents, surfactants, polymer additives, milling processes, pH control or the like. It is simpler, faster, more forgiving and more flexible than prior processes.
In either of the preferred methods, the dyes may be subjected to elevated temperatures before and/or after gelatin dispersion, but to obtain desirable results, this heat treatment is carried out preferably after dispersing in gelatin. The optimal temperature range for preparing gelatin-based dispersions is 40xc2x0 C.-100xc2x0 C. but should remain below the decomposition points of the dyes. The heating time is not especially critical as long as the dyes are not decomposed, but in general it is in the range of 5 minutes to 48 hours. A similar heat treatment may be applied, if so desired, to dyes prepared as solid particle dispersions before and/or after dispersion in aqueous gelatin to obtain effective results. Furthermore, if so desired, pH and/or ionic strength adjustments may be utilized to control the solubility and aggregation properties of dyes prepared using SPD or DGD formulation techniques.
The direct gelatin dispersion method is advantageous in that it does not necessarily require the use of organic solvents, surfactants, polymer additives, milling processes, pH control or the like. A related method described by Boettcher for preparing concentrated sensitizing dye dispersions in aqueous gelatin (PCT WO 93/23792) is equally effective when applied to the inventive dyes. The entire disclosure of WO 93/23792 is incorporated herein by reference.
Solid particle dispersion and direct gelatin dispersion formulations of the compound of Formula (I-III) are useful as general purpose filter dyes, alone or in combination with other filter dyes in photographic elements. The dyes formulated as described above possess finite but low solubilities and a pronounced tendency to aggregate spontaneously at coating pH""s of 6 or less (generally 4-6) so that they do not interact with other components of the photographic element. However, they are highly soluble at processing pH""s of 8 or more (generally 8-12), such that they are still fully removed during photographic processing.
A particular advantage of the inventive dyes is that in the aggregated state, they provide higher covering power at their coating xcexmax than comparable known dyes which are insoluble and exist as microcrystalline solid particles in the photographic medium. This advantage is particularly important in modern film formats and processing conditions, as filter dyes with high covering power need not be coated at as high a coverage as dyes with lower covering power in order to achieve the same degree of light filtration. In addition to reducing manufacturing costs, lower levels of coated dyes will reduce the level of dye residue built up in the processing solutions, and the resulting lower levels of dissolved dye residue removed from photographic elements will have reduced environmental impact.
A further advantage of dyes of the invention is that they generally possess absorbance envelopes that are sharper cutting on the bathochromic side than comparable known solid particle dyes such as the structural analogs disclosed in Agfa U.S. Pat. No. 4,770,984. This feature is especially advantageous when strong light absorbance is required in a spectral region up to a specific xcexmax, and maximum light transmission is required past the specified xcexmax. Such filter or trimmer dyes are especially useful when coated in specific layers of color photographic films to effectively prevent light of a specific wavelength region from exposing radiation-sensitive layers below the light filtration layer containing the dye, without causing unwanted absorption of longer wavelength radiation. A green filter dye coated directly above a red-sensitive silver halide layer is a particularly advantageous example of such absorbance features, and excellent green/red speed separation can be realized. In a typical color photographic element, it is desirable to have a green-absorbing filter dye which when coated absorbs strongly at wavelengths close to 550 nm, but which absorbs comparatively little at wavelengths greater than 550 nm. It should be emphasized that the exact envelope of desirable light absorbance for a filter dye, even specifically a green filter dye, varies tremendously from one photographic element to another depending on the intended purpose of the material. Some photographic elements might require a filter dye, such as a green filter dye, which absorbs strongly up to a wavelength somewhat shorter or longer than 550 nm, but is sharp cutting on the bathochromic side, mostly transmitting wavelengths of light past the desired absorbance xcexmax. The feature of coated dye absorbance exhibiting a sharp cutting bathochromic and/or hypsochromic characteristic is fundamentally useful for wavelength-specific light filtration, though the exact wavelength of desired spectral shift from absorbance to transmission may be different for different photographic materials.
The dyes may be located in any layer of the element where it is desirable to absorb light, but in photographic elements it is particularly advantageous to locate them in a layer where they will be solubilized and washed out during processing. Useful amounts of dye range from 1 to 1000 mg/m2. The dye should be present in an amount sufficient to yield an optical density at the absorbance Dmax in the spectral region of interest before processing of at least 0.10 density units and preferably at least 0.50 density units. This optical density will generally be less than 5.0 density units for most photographic applications.
The dyes of the invention can be used as interlayer dyes, trimmer dyes, or antihalation dyes. They can be used to prevent crossover in X-ray materials as disclosed in U.S. Pat. Nos. 4,900,652 and 4,803,150 and European Patent Application Publication No. 0 391 405, to prevent unwanted light from reaching a sensitive emulsion layer of a multicolor photographic element as disclosed in U.S. Pat No. 4,988,611, and for other uses as indicated by the absorbance spectrum of the particular dye. The dyes can be used in a separate filter layer or as an intergrain absorber.
The aggregated dyes of Formula (I-III) are useful for the preparation of radiation sensitive materials. Such materials are sensitive to radiation such as visible light, ultraviolet, infrared, X-ray. The material can be an optical recording medium, such as a CD or other medium sensitive to a laser, light emitting diode, or a more conventional light-sensitive photographic material.
Another aspect of this invention comprises a radiation sensitive element containing an aggregated dye of Formula (I-III). Preferably, the radiation sensitive element is a photographic element comprising a support bearing at least one light sensitive hydrophilic colloid layer and at least one other hydrophilic colloid layer. A dye of Formula I, II or III may be incorporated in a hydrophilic layer of the photographic element in any known way.
The support of the element of the invention can be any of a number of well-known supports for photographic elements as discussed more fully below.
The photographic elements made by the method of the present invention can be single color elements or multicolor elements. Multicolor elements contain dye image-forming units sensitive to each of the three primary regions of the spectrum. Each unit can be comprised of a single emulsion layer or of multiple emulsion layers sensitive to a given region of the spectrum. The layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art. In an alternative format, the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
A typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler. The element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers, and the like. All of these can be coated on a support which can be transparent or reflective (for example, a paper support).
Photographic elements of the present invention may also usefully include a magnetic recording material as described in Research Disclosure, Item 34390, November 1992, or a transparent magnetic recording layer such as a layer containing magnetic particles on the underside of a transparent support as in U.S. Pat. Nos. 4,279,945 and 4,302,523. The element typically will have a total thickness (excluding the support) of from 5 to 30 microns. While the order of the color sensitive layers can be varied, they will normally be red-sensitive, green-sensitive and blue-sensitive, in that order on a transparent support, (that is, blue sensitive furthest from the support) and the reverse order on a reflective support being typical.
The present invention also contemplates the use of photographic elements of the present invention in what are often referred to as single use cameras (or xe2x80x9cfilm with lensxe2x80x9d units). These cameras are sold with film preloaded in them and the entire camera is returned to a processor with the exposed film remaining inside the camera. Such cameras may have glass or plastic lenses through which the photographic element is exposed.
In the following discussion of suitable materials for use in elements of this invention, reference will be made to Research Disclosure, September 1994, Number 365, Item 36544, which will be identified hereafter by the term xe2x80x9cResearch Disclosure I.xe2x80x9d The Sections hereafter referred to are Sections of the Research Disclosure I unless otherwise indicated. All Research Disclosures referenced are published by Kenneth Mason Publications, Ltd., Dudley Annex, 12a North Street, Emsworth, Hampshire P010 7DQ, ENGLAND. The foregoing references and all other references cited in this application, are incorporated herein by reference.
The silver halide emulsions employed in the photographic elements of the present invention may be negative-working, such as surface-sensitive emulsions or unfogged internal latent image forming emulsions, or positive working emulsions of internal latent image forming emulsions (that are either fogged in the element or fogged during processing). Suitable emulsions and their preparation as well as methods of chemical and spectral sensitization are described in Sections I through V. Color materials and development modifiers are described in Sections V through XX. Vehicles which can be used in the photographic elements are described in Section II, and various additives such as brighteners, antifoggants, stabilizers, light absorbing and scattering materials, hardeners, coating aids, plasticizers, lubricants and matting agents are described, for example, in Sections VI through XIII. Manufacturing methods are described in all of the sections, layer arrangements particularly in Section XI, exposure alternatives in Section XVI, and processing methods and agents in Sections XIX and XX.
With negative working silver halide a negative image can be formed. Optionally a positive (or reversal) image can be formed although a negative image is typically first formed.
The photographic elements of the present invention may also use colored couplers (e.g., to adjust levels of interlayer correction) and masking couplers such as those described in EP 213 490; Japanese Published Application 58-172,647; U.S. Pat. No. 2,983,608; German Application DE 2,706,117C; U.K. Patent 1,530,272; Japanese Application A-113935; U.S. Pat. No. 4,070,191 and German Application DE 2,643,965. The masking couplers may be shifted or blocked.
The photographic elements may also contain materials that accelerate or otherwise modify the processing steps of bleaching or fixing to improve the quality of the image. Bleach accelerators described in EP 193 389; EP 301 477; U.S. Pat. Nos. 4,163,669; 4,865,956; and 4,923,784 are particularly useful. Also contemplated is the use of nucleating agents, development accelerators or their precursors (UK Patent 2,097,140; U.K. Patent 2,131,188); electron transfer agents (U.S. Pat. Nos. 4,859,578; 4,912,025); antifogging and anti color-mixing agents such as derivatives of hydroquinones, aminophenols, amines, gallic acid; catechol; ascorbic acid; hydrazides; sulfonamidophenols; and non color-forming couplers.
The elements may also contain filter dye layers comprising colloidal silver sol or yellow and/or magenta filter dyes and/or antihalation dyes (particularly in an undercoat beneath all light sensitive layers or in the side of the support opposite that on which all light sensitive layers are located) formulated either as oil-in-water dispersions, latex dispersions, solid particle dispersions, or as direct gelatin dispersions. Additionally, they may be used with xe2x80x9csmearingxe2x80x9d couplers (e.g., as described in U.S. Pat. No. 4,366,237; EP 096 570; U.S. Pat. Nos. 4,420,556; and 4,543,323.) Also, the couplers may be blocked or coated in protected form as described, for example, in Japanese Application 61/258,249 or U.S. Pat. No. 5,019,492.
The photographic elements may further contain other image-modifying compounds such as xe2x80x9cDeveloper Inhibitor-Releasingxe2x80x9d compounds (DIR""s). Useful additional DIR""s for elements of the present invention, are known in the art and examples are described in U.S. Pat. Nos. 3,137,578; 3,148,022; 3,148,062; 3,227,554; 3,384,657; 3,379,529; 3,615,506; 3,617,291; 3,620,746; 3,701,783; 3,733,201; 4,049,455; 4,095,984; 4,126,459; 4,149,886; 4,150,228; 4,211,562; 4,248,962; 4,259,437; 4,362,878; 4,409,323; 4,477,563; 4,782,012; 4,962,018; 4,500,634; 4,579,816; 4,607,004; 4,618,571; 4,678,739; 4,746,600; 4,746,601; 4,791,049; 4,857,447; 4,865,959; 4,880,342; 4,886,736; 4,937,179; 4,946,767; 4,948,716; 4,952,485; 4,956,269; 4,959,299; 4,966,835; 4,985,336 as well as in patent publications GB 1,560,240; GB 2,007,662; GB 2,032,914; GB 2,099,167; DE 2,842,063, DE 2,937,127; DE 3,636,824; DE 3,644,416 as well as the following European Patent Publications: 272,573; 335,319; 336,411; 346, 899; 362, 870; 365,252; 365,346; 373,382; 376,212; 377,463; 378,236; 384,670; 396,486; 401,612; 401,613.
DIR compounds are also disclosed in xe2x80x9cDeveloper-Inhibitor-Releasing (DIR) Couplers for Color Photography,xe2x80x9d C. R. Barr, J. R. Thirtle and P. W. Vittum in Photographic Science and Engineering, Vol. 13, p. 174 (1969), incorporated herein by reference.
It is also contemplated that the concepts of the present invention may be employed to obtain reflection color prints as described in Research Disclosure, November 1979, Item 18716, available from Kenneth Mason Publications, Ltd, Dudley Annex, 12a North Street, Emsworth, Hampshire P0101 7DQ, England, incorporated herein by reference. The emulsions and materials to form elements of the present invention, may be coated on pH adjusted support as described in U.S. Pat. No. 4,917,994; with epoxy solvents (EP 0 164 961); with additional stabilizers (as described, for example, in U.S. Pat. Nos. 4,346,165; 4,540,653 and 4,906,559); with ballasted chelating agents such as those in U.S. Pat. No. 4,994,359 to reduce sensitivity to polyvalent cations such as calcium; and with stain reducing compounds such as described in U.S. Pat. Nos. 5,068,171 and 5,096,805. Other compounds useful in the elements of the invention are disclosed in Japanese Published Applications 83-09,959; 83-62,586; 90-072,629, 90-072,630; 90-072,632; 90-072,633; 90-072,634; 90-077,822; 90-078,229; 90-078,230; 90-079,336; 90-079,338; 90-079,690; 90-079,691; 90-080,487; 90-080,489; 90-080,490; 90-080,491; 90-080,492; 90-080,494; 90-085,928; 90-086,669; 90-086,670; 90-087,361; 90-087,362; 90-087,363; 90-087,364; 90-088,096; 90-088,097; 90-093,662; 90-093,663; 90-093,664; 90-093,665; 90-093,666; 90-093,668; 90-094,055; 90-094,056; 90-101,937; 90-103,409; 90-151,577.
The silver halide used in the photographic elements may be silver iodobromide, silver bromide, silver chloride, silver chlorobromide, silver chloroiodobromide, and the like. For example, the silver halide used in the photographic elements of the present invention may contain at least 90% silver chloride or more (for example, at least 95%, 98%, 99% or 100% silver chloride). In the case of such high chloride silver halide emulsions, some silver bromide may be present but typically substantially no silver iodide. Substantially no silver iodide means the iodide concentration would be no more than 1%, and preferably less than 0.5 or 0.1%. In particular, in such a case the possibility is also contemplated that the silver chloride could be treated with a bromide source to increase its sensitivity, although the bulk concentration of bromide in the resulting emulsion will typically be no more than about 2 to 2.5% and preferably between about 0.6 to 1.2% (the remainder being silver chloride). The foregoing % figures are mole %.
The type of silver halide grains preferably include polymorphic, cubic, and octahedral. The grain size of the silver halide may have any distribution known to be useful in photographic compositions, and may be either polydipersed or monodispersed.
Tabular grain silver halide emulsions may also be used. Tabular grains are those with two parallel major faces each clearly larger than any remaining grain face and tabular grain emulsions are those in which the tabular grains account for at least 30 percent, more typically at least 50 percent, preferably greater than 70 percent and optimally greater than 90 percent of total grain projected area. The tabular grains can account for substantially all ( greater than 97 percent) of total grain projected area. The tabular grain emulsions can be high aspect ratio tabular grain emulsionsxe2x80x94i.e., ECD/t greater than 8, where ECD is the diameter of a circle having an area equal to grain projected area and t is tabular grain thickness; intermediate aspect ratio tabular grain emulsionsxe2x80x94i.e., ECD/t=5 to 8; or low aspect ratio tabular grain emulsionsxe2x80x94i.e., ECD/t=2 to 5. The emulsions typically exhibit high tabularity (T), where T (i.e., ECD/t2) greater than 25 and ECD and t are both measured in micrometers (xcexcm). The tabular grains can be of any thickness compatible with achieving an aim average aspect ratio and/or average tabularity of the tabular grain emulsion. Preferably the tabular grains satisfying projected area requirements are those having thicknesses of less than 0.3 xcexcm, thin ( less than 0.2 xcexcm) tabular grains being specifically preferred and ultrathin ( less than 0.07 xcexcm) tabular grains being contemplated for maximum tabular grain performance enhancements. When the native blue absorption of iodohalide tabular grains is relied upon for blue speed, thicker tabular grains, typically up to 0.5 xcexcm in thickness, are contemplated.
High iodide tabular grain emulsions are illustrated by House U.S. Pat. No. 4,490,458, Maskasky U.S. Pat. No. 4,459,353 and Yagi et al EPO 0 410 410.
Tabular grains formed of silver halide(s) that form a face centered cubic (rock salt type) crystal lattice structure can have either {100} or {111} major faces. Emulsions containing {111} major face tabular grains, including those with controlled grain dispersities, halide distributions, twin plane spacing, edge structures and grain dislocations as well as adsorbed {111} grain face stabilizers, are illustrated in those references cited in Research Disclosure I, Section I.B.(3) (page 503).
The silver halide grains to be used in the invention may be prepared according to methods known in the art, such as those described in Research Disclosure I and James, The Theory of the Photographic Process. These include methods such as ammoniacal emulsion making, neutral or acidic emulsion making, and others known in the art. These methods generally involve mixing a water soluble silver salt with a water soluble halide salt in the presence of a protective colloid, and controlling the temperature, pAg, pH values, etc, at suitable values during formation of the silver halide by precipitation.
The silver halide to be used in the invention may be advantageously subjected to chemical sensitization with noble metal (for example, gold) sensitizers, middle chalcogen (for example, sulfur) sensitizers, reduction sensitizers and others known in the art. Compounds and techniques useful for chemical sensitization of silver halide are known in the art and described in Research Disclosure I and the references cited therein.
The photographic elements of the present invention, as is typical, provide the silver halide in the form of an emulsion. Photographic emulsions generally include a vehicle for coating the emulsion as a layer of a photographic element. Useful vehicles include both naturally occurring substances such as proteins, protein derivatives, cellulose derivatives (e.g., cellulose esters), gelatin (e.g., alkali-treated gelatin such as cattle bone or hide gelatin, or acid treated gelatin such as pigskin gelatin), gelatin derivatives (e.g., acetylated gelatin, phthalated gelatin, and the like), and others as described in Research Disclosure I. Also useful as vehicles or vehicle extenders are hydrophilic water-permeable colloids. These include synthetic polymeric peptizers, carriers, and/or binders such as poly(vinyl alcohol), poly(vinyl lactams), acrylamide polymers, polyvinyl acetals, polymers of alkyl and sulfoalkyl acrylates and methacrylates, hydrolyzed polyvinyl acetates, polyamides, polyvinyl pyridine, methacrylamide copolymers, and the like, as described in Research Disclosure I. The vehicle can be present in the emulsion in any amount useful in photographic emulsions. The emulsion can also include any of the addenda known to be useful in photographic emulsions. These include chemical sensitizers, such as active gelatin, sulfur, selenium, tellurium, gold, platinum, palladium, iridium, osmium, rhenium, phosphorous, or combinations thereof. Chemical sensitization is generally carried out at pAg levels of from 5 to 10, pH levels of from 5 to 8, and temperatures of from 30 to 80xc2x0 C., as described in Research Disclosure I, Section IV (pages 510-511) and the references cited therein.
The silver halide may be sensitized by sensitizing dyes by any method known in the art, such as described in Research Disclosure I. The dye may be added to an emulsion of the silver halide grains and a hydrophilic colloid at any time prior to (e.g., during or after chemical sensitization) or simultaneous with the coating of the emulsion on a photographic element. The dyes may, for example, be added as a solution in water or an alcohol. The dye/silver halide emulsion may be mixed with a dispersion of color image-forming coupler immediately before coating or in advance of coating (for example, 2 hours).
Photographic elements of the present invention are preferably imagewise exposed using any of the known techniques, including those described in Research Disclosure I, section XVI. This typically involves exposure to light in the visible region of the spectrum, and typically such exposure is of a live image through a lens, although exposure can also be exposure to a stored image (such as a computer stored image) by means of light emitting devices (such as light emitting diodes, CRT and the like).
Photographic elements comprising the composition of the invention can be processed in any of a number of well-known photographic processes utilizing any of a number of well-known processing compositions, described, for example, in Research Disclosure I, or in T. H. James, editor, The Theory of the Photographic process, 4th Edition, Macmillan, New York, 1977. In the case of processing a negative working element, the element is treated with a color developer (that is one which will form the colored image dyes with the color couplers), and then with a oxidizer and a solvent to remove silver and silver halide. In the case of processing a reversal color element, the element is first treated with a black and white developer (that is, a developer which does not form colored dyes with the coupler compounds) followed by a treatment to fog silver halide (usually chemical fogging or light fogging), followed by treatment with a color developer. Preferred color developing agents are p-phenylenediamines. Especially preferred are:
4-amino N,N-diethylaniline hydrochloride,
4-amino-3-methyl-N,N-diethylaniline hydrochloride,
4-amino-3-methyl-N-ethyl-N-(xcex2-(methanesulfonamido) ethylaniline sesquisulfate hydrate,
4-amino-3-methyl-N-ethyl-N-(xcex2-hydroxyethyl) aniline sulfate,
4-amino-3-xcex2-(methanesulfonamido)ethyl-N,N-diethylaniline hydrochloride and
4-amino-N-ethyl-N-(2-methoxyethyl)-m-toluidine di-p-toluene sulfonic acid.
Development is followed by bleach-fixing, to, remove silver or silver halide, washing and drying.
Synthesis of Dye 1
3-methyl glutacondialdehydedianil hydrobromide (6.6 g, 19 mmol) was added portionwise to a solution of 4-methoxyphenylbarbituric acid (9.6 g, 41 mmol) in 150 mL pyridine at 80xc2x0 C. The blue mixture was heated at 80xc2x0 C. for 30 min, then allowed to cool to 25xc2x0 C. The precipitated dye was collected by filtration and washed with acetonitrile. The collected solid was suspended in 300 mL methanol and stirred while 100 mL concentrated HCl was added over 10 min, and the resulting slurry was allowed to stir at 25xc2x0 C. for 30 min. The dye was collected by filtration and dried. Isolated 6.2 g (46%) of Dye 1 as a black solid. All analytical data were consistent with the structure.
Synthesis of Dye 8
Glutacondialdehydedianil hydrochloride (7.3 g, 26 mmol) was added portionwise to a solution of 3-methoxyphenylbarbituric acid (12.0 g, 51 mmol) and triethylamine (7.8 g, 77 mmol) in 300 mL ethanol at 25xc2x0 C. The mixture was heated to reflux and held for 30 min. A blue solid precipitated from the hot reaction mixture. The mixture was then allowed to cool to 25xc2x0 C., and the precipitated dye was collected by filtration and washed with ethanol. The collected solid was suspended in 250 mL ethanol and heated to reflux while 3 mL concentrated HCl was added over 5 min. The resulting slurry was heated at reflux for 10 min, then allowed to cool to 25xc2x0 C. The dye was collected by filtration, washed with methanol and dried. Isolated 11.3 g (84%) of Dye 8 as a dark solid. All analytical data were consistent with the structure. | {
"pile_set_name": "USPTO Backgrounds"
} |
Conventionally, semiconductor wafer (hereinafter, simply referred to as “wafer”) is stuck with a protective sheet for protecting circuit surface thereof, and stuck with a heat sensitive adhesive sheet on the rear surface or front surface thereof.
As a sheet sticking method as described above, the following method is known. That is, using a raw strip sheet in which a strip of sheet such as the protective sheet, an adhesive sheet and the like is temporarily stuck on a strip of release liner, the sheet is peeled off from the release liner, stuck onto a wafer, and then cut off along the periphery of the wafer; thus the sheet is stuck onto the wafer (refer to, for example, patent document 1).
Patent document 1: Japanese Patent Application Laid-Open No. 2003-257898 | {
"pile_set_name": "USPTO Backgrounds"
} |
Certain compounds in the exhaust stream of a combustion process, such as the exhaust stream from an internal combustion engine, are undesirable in that they must be controlled in order to meet government emissions regulations. Among the regulated compounds are hydrocarbons, soot particulates, and nitrogen oxide compounds (NOx). There are a wide variety of combustion processes producing these emissions, for instance, coal-or oil-fired furnaces, reciprocating internal combustion engines (including gasoline spark ignition and diesel engines), gas turbine engines, and so on. In each of these combustion processes, control measures to prevent or diminish atmospheric emissions of these emissions are needed.
Industry has devoted considerable effort to reducing regulated emissions from the exhaust streams of combustion processes. In particular, it is now usual in the automotive industry to place a catalytic converter in the exhaust system of gasoline spark ignition engines to remove undesirable emissions from the exhaust by chemical treatment. Typically, a “three-way” catalyst system of platinum, palladium, and rhodium metals dispersed on an oxide support is used to oxidize carbon monoxide and hydrocarbons to water and carbon dioxide and to reduce nitrogen oxides to nitrogen The catalyst system is applied to a ceramic substrate such as beads, pellets, or a monolith. When used, beads are usually porous, ceramic spheres having the catalyst metals impregnated in an outer shell. The beads or pellets are of a suitable size and number in the catalytic converter in order to place an aggregate surface area in contact with the exhaust stream that is sufficient to treat the compounds of interest. When a monolith is used, it is usually a cordierite honeycomb monolith and may be pre-coated with gamma-alumina and other specialty oxide materials to provide a durable, high surface area support phase for catalyst deposition. The honeycomb shape, used with the parallel channels running in the direction of the flow of the exhaust stream, both increases the surface area exposed to the exhaust stream and allows the exhaust stream to pass through the catalytic converter without creating undue back pressure that would interfere with operation of the engine.
When a spark ignition engine is operating under stoichiometric conditions or nearly stoichiometric conditions with respect to the fuel-air ratio (just enough oxygen to completely combust the fuel, or perhaps up to 0.3% excess oxygen), a “three-way” catalyst has proven satisfactory for reducing emissions. Unburned fuel (hydrocarbons) and oxygen are consumed in the catalytic converter, and the relatively small amount of excess oxygen does not interfere with the intended operation of the conventional catalyst system.
However, it is desirable to operate the engine at times under lean burn conditions, with excess air, in order to improve fuel economy. Under lean burn conditions, conventional catalytic devices are not very effective for treating the NOx in the resulting oxygen-rich exhaust stream.
The exhaust stream from a diesel engine also has a substantial oxygen content, from perhaps about 2-18% oxygen, and, in addition, contains a significant amount of particulate emissions. The particulate emissions, or soot, are thought to be primarily carbonaceous particles. It is also believed that other combustion processes result in emissions that are difficult or expensive to control because of, for instance, dilute concentrations of the compounds to be removed from the effluent stream or poor conversion of the compounds using conventional means.
In spite of efforts over the last decade to develop an effective means for reducing NOx to nitrogen under oxidizing conditions in a spark ignition gasoline engine or in an diesel engine, the need for improved conversion effectiveness has remained unsatisfied. Moreover, there is a continuing need for improved effectiveness in treating emissions from any combustion process, particularly for treating the soot particulate emissions from diesel engines.
An alternative way to treat the hydrocarbon, particulate, or NOx emissions in an exhaust or effluent stream would be to destroy such emissions using a non-thermal plasma. Plasma is regarded as the fourth state of matter (ionized state of matter). Unlike thermal plasmas, non-thermal plasmas (NTPs) are in gaseous media at near-ambient temperature and pressure but have electron mean energies considerably higher than other gaseous species in the ambient environment. NTP species include electrically neutral gas molecules, charged particles in the form of positive ions, negative ions, free radicals and electrons, and quanta of electromagnetic radiation (photons). These NTP species are highly reactive and can convert hazardous gases to non-hazardous or less hazardous and easily managed compounds through various chemical reaction mechanisms. In contrast to thermal processes (such as thermal plasma), an NTP process directs electrical energy to induce favorable gas chemical reactions, rather than using the energy to heat the gas. Therefore, NTP is much more energy-efficient than thermal plasma.
NTPs call be generated by electric discharge in the gas or injection of electrons into the gas by an electron beam. Electron beams must be accelerated under a high vacuum and then transferred through special windows to the reaction site. The reaction site must be sized with respect to the penetration depth of the electrons. It is much more difficult to scale-up the size of an electron beam reactor than an electric discharge reactor. Therefore, electron beam reactors are less favored than electric discharge reactors.
Among the various types of electric discharge reactors, pulse corona and dielectric barrier (silent) discharge reactors are very popular for their effectiveness and efficiency. However, pulse corona reactors have the major disadvantage of requiring special pulsed power supplies to initiate and terminate the pulsed corona. Consequently, dielectric barrier discharge has become a fast growing technology for pollution control.
Cylindrical and planar reactors are two common configurations for dielectric barrier discharge reactors. Both of these configurations are characterized by the presence of one or more insulating layers in a current path between two metal electrodes, in addition to the discharge space. Other dielectric barrier discharge reactors include packed-bed discharge reactors, glow discharge reactors, and surface discharge reactors.
A variety of known dielectric barrier discharge NTP reactor designs are based upon the use of one or more structural dielectric ceramic pieces coated with a conductive material arranged to form the dielectric barrier-conductor-dielectric barrier configurations. Problematically, structural ceramic substrates provide relatively poor dimensional control with respect to thickness and camber. For example, dimensional thickness and camber of ceramic substrates may vary by, for example, about +/−10% and +/−0.4%, respectively, resulting in variations in dielectric barrier thickness and gaps. This dimensional variation limits the practical operating range for the non-thermal plasma reactor in applications such as after-treatment of diesel exhaust emissions.
Further, structural ceramics comprise a significant portion of the cost factor for current NTP reactor designs based on structural ceramics having dual support and operational dielectric barrier function. In addition, ceramic materials typically used for such applications, including cordierite, mullite, and alumina, have mid-level dielectric constants, limiting the ability to reduce the overall size of the NTP reactor.
Commonly assigned copending U.S. Patent Application Ser. No. 09/812,071 entitled “Non-Thermal Plasma Reactor And Method—Structural Conductor”, which is hereby incorporated by reference herein in its entirety, provides double, single, or null dielectric barrier non-thermal plasma reactor structural conductor elements comprising a structural base conductor. Mechanical strength and durability are provided from one or multiple layers of structural base conductor. For double dielectric structural conductor elements, die base conductor is coated with a high-k dielectric barrier. For null dielectric structural conductor elements, the base conductor is uncoated. For single dielectric structural conductor elements, each exhaust passage has one side coated with high-k dielectric and the other side uncoated.
Uncoated structural conductor reactor elements are most simple to fabricate. However, these require the use of ultra fast (nano-second scale) switching power supplies that are not economical to produce. More typically, the base structural conductor layers are coated with a high-k dielectric so more economical power supplies may be used. It is difficult to achieve a defect-free, durable layer of high-k dielectric over a structural metallic layer for applications having a wide variation in operating temperature, such as for automotive exhaust applications.
What is needed in the art is an improved high capacitance NTP reactor element. What is further needed in the art is an improved high capacitance NTP reactor element that can be manufactured cost effectively while meeting application performance and durability requirements | {
"pile_set_name": "USPTO Backgrounds"
} |
1Field of the Invention
The present invention relates to a magnetic lock closure device making use of the attractive action provided by a permanent magnet.
2. Description of the Prior Art
Conventionally, there is known a magnetic lock closure device that can be used on bags such as women's handbags, baggage, and the like as a locking device, or on clothing accessories such as waist belts. In either case, the magnetic lock closure device comprises a first part including an annular permanent magnet and a first ferromagnetic plate attached to one side of the permanent magnet that provides one polarity, and a second part including a second ferromagnetic plate which may be removably attached to the other side of the permanent magnet that provides the opposite polarity. The first part is completely enclosed by a nonmagnetic cover, and the first ferromagnetic plate may or may not have a rod at the center extending therefrom, which is also ferromagnetic. On the second part, the second ferromagnetic plate has a rod at the center extending therefrom, which is also ferromagnetic. When those two parts are to be coupled together, the second ferromagnetic plate can be engaged with the first part by engaging the rod on the second part with the rod on the first part or directly with the first ferromagnetic plate which in this case has no such rod, through the bore of the permanent magnet and cover. The two parts can be decoupled by pulling the second part away from the first part.
When the conventional magnetic lock closure device is employed for a handbag, for example, the first part which contains the permanent magnet is mounted on the body side of the handbag, and the second part is mounted on the flap side of the handbag. When the first and second parts are to coupled together under the attacting force of the first part, the second ferromagnetic plate is placed on the first part so that the rod on the second ferromagnetic plate can first engage the portion of the cover that is located between the outer marginal periphery of the annular permanent magnet and the periphral marginal edge of the bore through the magnet. This is because that portion of the outer cover or permanent magnet provides the highest magnetic flux density which tends to attract the rod on the second ferromagnetic plate more coercively than the other areas when the second part is placed on the first part. Then, an attempt is made to locate the bore through the outer cover and permanent magnet and force the rod on the second ferromagnetic plate into the bore by the most coercive attracting action of that portion. As the rod on the second ferromagnetic plate is magnetically attracted by that portion, it can only be moved away from that highest density area toward the bore in a zigzag fashion rather than directly, before it can successfully engage the bore. This may disadvantagously cause damage such as scratches on the outer cover.
Usually and in practice, prospective customers check to see if the devices on handbags or other articles will work well by trying to couple or decouple the two parts before they have decided upon one of their choice. In particular, the coupling action which involves the sliding motion may cause damage as described above that may degrade the commercial value of the articles. One practically proposed method whereby such damage can be prevented is to provide an additional protective sealing over the outer cover, or to provide a mesh pattern on the outer cover that hides any possible damages.
Another suggested method is to minimize the sliding motion of the rod on the second ferromagnetic plate onto the outer cover. This method may consist of providing a concavely-formed surface on the side of the permanent magnet that meets with the second ferromagnetic plate. The outer cover also has the corresponding surface on that side. This particular form may serve to guide the rod on the second ferromagnetic plate toward the center bore with minimum effort and therefore with minimum sliding motion. This particular form may be obtained by grinding or polishing an annular permanent magnet to conform to such form, but the grinding or polishing process is not adequate for the permanent magnet in particular, since the high dimensional or precision requirements that the permanent magnet must meet cannot be provided by the grinding or polishing process. This will disadvantageously affect the assembly process of the device that contains the thus formed permanent magnet as well as the other subassembly parts. Thus, the device that incorporates such a formed permanent magnet may not provide an attracting action that is strong enough to couple its two parts together magnetically. It is therefore to be noted that the products which have been manufactured in that manner may include many defective ones, which means a lower productivity or yield.
As an alternative solution to the above disadvantage, it has been suggested that an annular permanent magnet be provided with an additional part that may be formed from a ferromagnetic material as a yoke having a concavely formed surface on its one side. This yoke may eliminate the need of forming the permanent magnet itself, but will also increase the number of the component parts to be assembled. As the number of the component parts is increased, the accummulated dimensional errors for each individual part will become greater. Thus, the precision problem that will occur during the assembly process remains unsolved. | {
"pile_set_name": "USPTO Backgrounds"
} |
Notebook systems making use of a stack of sheets is bound together using a plurality of disks are commercially available from various sources, including Continental Accessory, Corp., the assignee of the subject invention. Those notebook systems include a front cover, a rear cover, a plurality of disks and a stack of sheets, e.g., paper sheets. Each of the sheets and the covers include a plurality of mushroom-like shaped slots along one marginal edge thereof. Each of the slots is arranged to receive a respective disk to bind all of the sheets and covers together, so that the notebook serves as a binder with removable sheets.
U.S. Pat. No. 5,553,959 (Feldman et al.) and U.S. Pat. No. 5,749,667 (Feldman et al.) disclose notebook systems like the foregoing. In particular, the Feldman et al. systems make use of a stack of sheets is bound together between a front and rear cover using a plurality of disks that are inserted into mushroom shaped slots in the edge of each of the sheets of the stack and each of the covers. Each of the plural disks has a substantially flat disk-like central surface portion and an enlarged continuous rim portion which extends around the periphery of the central surface portion. The rim portion extends outwardly in a direction perpendicular to the flat central portions of the disks, and the central surface portion has a radius which is larger than the thickness of a stack of sheets to be bound thereby.
While such prior art notebook systems are generally suitable for their intended purposes, they leave much to be desired from the standpoint of each assembly of the notebook, each of use, and ability to be configured to accommodate more than a prescribed number of pages, due to the fixed size of the disks. Thus, a need exists for a notebook or scrapbook system or photo album system which overcomes those drawbacks. The subject invention addresses that need.
All references cited and/or identified herein are specifically incorporated by reference herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
As broadband networks such as Asymmetrical Digital Subscriber Line (hereinafter referred to as ADSL), Very-high-bit-rate Digital Subscriber Line (hereinafter referred to as VDSL), and Fiber To The x (hereinafter referred to as FTTx) (x represents the destination) rapidly develop, and the technologies and applications such as Voice over Digital Subscriber Line (hereinafter referred to as VoDSL) and Voice over Internet Protocol (hereinafter referred to as VoIP) are mature, the increased broadband rate and the improved network Quality of Service (hereinafter referred to as QoS) mechanism may ensure that the conversation quality of VoIP calls is equivalent to the conversation quality of Public Switched Telephone Network (hereinafter referred to as PSTN) calls. Since 2006, the global VoIP market develops rapidly, and the telecom operators gradually replace the traditional PSTN/Integrated Service Digital Network (ISDN) voice service by the VoDSL/VoIP voice service, and phase out the operation of the existing PSTN/ISDN network to reduce the Operating Expense (herein after referred to as OPEX).
However, in the process of implementing the present invention, the inventor finds that when implementing the VoIP telephone service, the IP-based broadband network and the IP Multimedia Subsystem (IMS) are vulnerable to connectivity failure, which may make the VoIP telephone service unavailable.
As a technical solution to the problem in the prior art, “PSTN/ISDN+VoIP” is adopted to implement the telephone service. However, the PSTN/ISDN network device is required to be preserved and maintained, and this increases the OPEX for the telecom operators. Therefore, a solution for implementing the telephone service without any PSTN/ISDN network device is desired. | {
"pile_set_name": "USPTO Backgrounds"
} |
Well-established power distribution systems exist throughout most of the United States, and other countries, which provide power to customers via power lines. With some modification, the infrastructure of the existing power distribution systems can be used to provide data communication in addition to power delivery, thereby forming a power line communication system (PLCS). In other words, existing power lines, that already have been run to many homes and offices, can be used to carry data signals to and from the homes and offices. These data signals are communicated on and off the power lines at various points in the power line communication system, such as, for example, near homes, offices, Internet service providers, and the like.
Power distribution systems include numerous sections, which transmit power at different voltages. The transition from one section to another typically is accomplished with a transformer. The sections of the power distribution system that are connected to the customers premises typically are low voltage (LV) sections having a voltage between 100 volts (V) and 200V, depending on the system. In the United States, the LV section typically is about 120V. The sections of the power distribution system that provide the power to the LV sections are referred to as the medium voltage (MV) sections. The voltage of the MV section is in the range of 1,000V to 100,000V. The transition from the MV section to the LV section of the power distribution system typically is accomplished with a distribution transformer, which converts the higher voltage of the MV section to the lower voltage of the LV section.
In one example PLCS embodiment, a backhaul point forms the gateway between the power line and conventional telecommunications medium and communicates with a plurality of downstream communication devices such as transformer bypass devices. The backhaul point and its plurality of communication devices (and their associated user devices) form a PLCS subnet.
In a PLCS the low voltage power line typically has the highest noise and interference that limits the amount of data that can be transmitted over the low voltage power line. This problem is more acute when multiple users are all sharing the same low voltage power line subnet. Therefore, there remains a need to prove additional and alternate bandwidth capability to a user of a PLCS. Further, the users of other types of broadband systems may have service outages. For example, if a user has a DSL connection that has an outage, the user is unable to communicate with the internet or other external network. For many users such an outage may result in various detrimental effects such as work stoppage, loss of E-mail capability, etc. Therefore there remains a need for a backup capability in the case of such outages. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a rubber modified polystyrene composition having excellent environmental stress-crack resistance (ESCR) properties, and more specifically, it relates to a flon-resistant rubber modified polystyrene composition.
2. Description of the Prior Art
In general, rubber modified polystyrenes are moldable and have excellent physical properties, and are therefore suitable for use in various applications. However, conventional rubber modified polystyrenes have poor resistance to flon compounds (i.e., fluorocarbons) or oils, and for this reason, they tend to develop environmental stress cracks and other problems after being used only a short period of time.
Various rubber modified polystyrenes which have environmental stress-crack resistance properties when exposed to long chain oils or a fats have been studied, as described in Japanese PCT Patent Application Laid-Open No. 504450/1996 and Japanese Patent Application Laid-Open No. 12845/1996. These documents describe the oil resistance of rubber modified polystyrenes used in margarine containers, trays for a refrigerators, and the like. However, these documents do not describe polystyrenes having satisfactory flon-resistance properties.
When rubber modified polystyrenes are used as refrigerator liners, the physical properties of the polystyrene are noticeably impaired by the residual flon compounds used as foaming agents in the polyurethane foam which contacts the liner. Contact with these residual flon compounds causing cracking to occur in the polystyrene. In order to prevent such cracking, it is necessary to provide a flon-resistant material between the liner and the polyurethane, or to employ an expensive material such as an ABS resin which has flon-resistant properties. It is therefore desirable to develop a rubber modified polystyrene which itself has flon-resistant properties. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
This invention relates in general to electroplating and etching, and in particular to an apparatus and method for controlling the thickness, uniformity, and composition of electroformations.
2. Background Art
In electroplating, a thin film of metal or alloy is deposited on a workpiece that is submerged in an electrolytic bath. The workpiece acts as a cathode when connected to the negative terminal of a power supply. An anode is similarly submerged and connected to the positive terminal of the power supply. Electrical current flows between the anode and the cathode through the electrolyte, and metal is deposited on the workpiece through an electrochemical reaction.
It is highly desirable to deposit the metal on the workpiece at a uniform thickness and composition, especially with electrical component workpieces. However, electroplating is relatively complex and various naturally occurring forces may degrade the process. In particular, the current or flux path between the anode and cathode should be relatively uniform to ensure uniform deposition. In addition, as metal ions are depleted from the electrolyte, its uniformity is decreased and must be adjusted to avoid degradation of the process. Furthermore, debris is generated in the chemical reactions that also can degrade the process.
In the prior art, uniformity and consistency in electroplating has been achieved by several methods. In U.S. Pat. No. 5,312,532, an electroplating system circulates solution between horizontally-disposed anodes and workpiece cathodes in multiple compartments. The workpiece cathodes are located on the floors of the compartments and the anodes are located above the cathodes. A horizontally-oriented paddle is reciprocated in a horizontal plane between the terminals and slightly above the cathode workpieces to improve performance of the system. Each of the paddles comprises an opposed pair of elongated elements having a triangular prismatic or semi-cylindrical shape. The flat side of one of the elements moves just above the workpiece in parallel relation.
In U.S. Pat. No. 5,516,412, an electroplating system circulates solution between a vertically disposed anode and a workpiece cathode. The workpiece cathode is mounted on a wall of system and the anode is on an opposite wall. A vertically-oriented paddle is reciprocated in an upright position between the terminals immediately adjacent to the cathode workpiece to improve performance of the system. In this design, the paddle comprises an opposed pair of elongated prisms wherein the flat side of one of the prisms moves just above the workpieces in parallel relation. Although these systems are workable, an improved electroplating system is desirable.
An electroplating system circulates solution between an anode and a workpiece mounted to a cathode. A shaped agitation paddle is reciprocated immediately adjacent to the cathode workpiece to improve performance of the system. The paddle is an elongated prism or other elongated shape having a generally flat side that is parallel to the workpiece. The flat side has a fluid port connected to a pump. The solution may be pumped with either positive pressure to force the solution against the surface of the workpiece, or negative pressure to draw the solution away from the surface of the workpiece. In an alternate embodiment, the cathode workpiece is rotated in the solution above an anode with a stationary, shaped paddle in between them. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to field of casting molten metal. More particularly, the present invention is directed to a dual pump system and method of bottom filling a casting.
Conventional mold-filling methods involve filling a sand mold from the top through a sprue hole. Such a technique can result in creation of eddy currents which produce defects in the casting. If the defect goes beneath the surface, or if the article is a precision casting, such eddy currents can require scrapping of the entire casting. In their earlier patent, U.S. Pat. No. 7,213,634 entitled Offset Molding Process, Applicants have described one method of providing a suitable solution for obviating these eddy currents by bottom-filling the mold. However, that process has limited applicability in larger molds. The present invention is directed to a pumping system and a method for bottom-filling large molds by utilizing twin pumps which empty two identical crucibles by switching between the two to provide a continuous flow of molten metal to prevent the early fill from taking a set before the mold fill operation is complete.
The system of the present invention comprises a) a reservoir filled with molten metal to a first depth; b) a first pump crucible partially submerged in the reservoir, the first pump crucible having a first check valve positioned in a passageway in a bottom wall of the first pump crucible such that the first pump crucible will fill with molten metal to a second depth equal to the first depth; c) a riser tube extending upwardly from the first pump crucible, a first check valve in a bottom end of the riser tube to prevent downward flow of molten metal in the riser tube; d) a horizontally extending runner interconnecting the riser tube with a fill port in the bottom-fill mold; e) a high pressure source of inert gas interconnected to the first pump crucible by a gas delivery system including piping, at least one flow valve and a pressure regulator; whereby opening the at least one flow valve permits the inert gas to force the molten metal in the first pump crucible up the riser tube through the horizontally extending runner into the mold through the fill port.
The system further comprises a second pump crucible partially submerged in the reservoir, the second pump crucible having a second check valve positioned in a passageway in a bottom wall of the second pump crucible such that the second pump crucible will fill with molten metal to a third depth equal to the first depth. The at least one flow valve comprises a control valve for each of the first and the second pump crucibles and control means to enable switching between the first and the second pump crucible.
More preferably, the system for pumping molten metal to bottom fill a mold, comprising includes a) a reservoir filled with molten metal to a first depth; b) a first pump crucible submerged in the reservoir, the first pump crucible having a first check valve positioned in a passageway in a bottom wall of the first pump crucible such that the first pump crucible will fill with molten metal to a second depth equal to the first depth; c) a first riser tube extending upwardly from the first pump crucible, a first check valve in a bottom end of the riser tube to prevent downward flow of molten metal in the first riser tube; d) a horizontally extending runner interconnecting the riser tube with a fill port in the mold; e) a second pump crucible submerged in the reservoir, the second pump crucible having a second check valve positioned in a passageway in a bottom wall of the second pump crucible such that the second pump crucible will fill with molten metal to a third depth equal to the first depth; e) second pump crucible submerged in the reservoir, the second pump crucible having a second check valve positioned in a passageway in a bottom wall of the second pump crucible such that the second pump crucible will fill with molten metal to the third depth equal to the first depth; f) a high pressure source of inert gas interconnected to the first pump crucible and to the second pump crucible by a gas delivery system including piping, a pressure regulator, two flow valves, one for each the first and the second pump crucible, and a controller to switch between the two flow valves; g) a second riser tube extending upwardly from the second pump crucible, a second check valve in a bottom end of the riser tube to prevent downward flow of molten metal in the second riser tube; whereby opening one of the flow valve permits the inert gas to force the molten metal in a respective pump crucible up the riser tube through the horizontally extending runner into the fill port and switching to the other flow valve provides continuous flow of molten metal to the horizontally extending runner. The high pressure source of inert gas is preferably a tank of nitrogen maintained at 3000 psi and the pressure regulator supplies pressurized gas to the molten metal crucibles at no greater than 20 psi. The crucibles are manufactured from graphite and the riser tubes from refractory, ceramic or graphite.
The first and second check valves have a float ball having a first diameter, an end of the first and second riser tube being spaced from an upper surface of the check valve by a distance less than the first diameter to ensure the float ball remains captive in its respective check valve. Each of the crucibles has a lid which is cast around its respective riser tube to ensure absence of pressure loss between the lid and the riser tube.
In addition, the present invention includes a method of bottom-filling a mold with molten metal comprising the steps of a) providing two graphite crucibles submerged in a reservoir of molten metal, each the crucible being in fluid communication with the reservoir through a check valve; b) subjecting an interior compartment of a first one of the two graphite crucibles to a pressure in a range of between 12 and 20 psi forcing the molten metal within the first crucible past a first check valve up a first vertically positioned riser tube into a horizontally extending runner, through a fill port into the mold; c) switching pressure application from the first crucible to the second one of the two graphite crucibles, venting the first crucible to atmosphere enabling the first crucible to refill, the pressure range of between 12 and 20 psi forcing the molten metal within the second crucible past a second check valve up a second vertically positioned riser tube into the horizontally extending runner through the fill port into the mold; d) switching pressure back and forth between the second and first crucibles as often as needed to complete the fill process; whereby flow of molten metal from the first and second crucibles occurs continuously until filling of the mold is completed.
Various other features, advantages, and characteristics of the present invention will become apparent after a reading of the following detailed description. | {
"pile_set_name": "USPTO Backgrounds"
} |
The need to use raw materials sparingly and the legal environmental protection regulations require that the relevant industry decant liquids for transport and for storage in large-volume pallet containers of generic type designed as commercially available reusable containers instead of, as in the past, in drums with significantly smaller capacity.
The essential drawbacks of the generic pallet container, which are due to the fact that the inner container is made of plastic, are the following:
The formation, by fluorination, of barrier layers on the outside and inside of the plastic inner container cannot prevent the permeation of liquids such as solvents and solvent-containing liquids into the plastic, so that the possibilities for cleaning the pallet container are limited. According to the legal regulations, flammable liquids must not be stored in pallet containers with a plastic inner container, and no flammable liquids with a flash point of below 0.degree. C. may be transported in such containers. Finally, the inner container has limited resistance to external impact or shock. | {
"pile_set_name": "USPTO Backgrounds"
} |
Data storage utilization is continually increasing, causing the proliferation of storage systems in data centers. In particular, the size of the applications and the data generated there from is increasing. Moreover, systems/users are copying multiple copies of a given set of data to maintain multiple versions. For example, snapshots of a given database stored in a server are copied and stored over time, thereby allowing a given version/snapshot of a set of data to be restored. Thus, a typical client has an abundant amount of data to be copied. A typical network configuration includes multiple remote devices communicatively coupled to a central storage system for copying their data. The copied data can be subsequently restored to a target system from the storage system.
In some situations, there is a need to restore an application and its application data that has been copied at a particular time, as well as its original operating environment at that particular point in time. Such a restoration tends to be a manual process and error prone. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to modular storage racks for attaching to an upright surface, or hanging over a door. More particularly, the present invention relates to modular hanging storage units including a shoe rack, a basket, a tray, shelves, and/or drawers.
U.S. patent application Ser. No. 08/915,821, filed Aug. 20, 1997, entitled xe2x80x9cClothes Hanger With Sliding Hooksxe2x80x9d, incorporated herein by reference, teaches a modular hanging storage unit including a shoe rack and a hook unit.
U.S. Pat. No. 5,695,073 teaches a hanging shoe rack having first and second plastic side frame members, and a plurality of shoe-retaining tiers, formed by pairs of support bars, extending there between. U.S. Pat. No. 5,695,073 is incorporated herein by reference in its entirety. U.S. Pat. No. 5,695,073 illustrates and describes a modular hanging shoe rack, such that one shoe rack may be modularly connected to another shoe rack.
The present invention is directed to a modular storage unit, including in one embodiment a shoe rack, modularly connected to a different type of storage unit. In particular, the present invention provides a modular storage unit comprising at least two of the following: shoe rack, basket, tray, shelves, and drawer. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present exemplary embodiments relate to MRI (magnetic resonance imaging) which magnetically excites nuclear spin of an object with an RF (radio frequency) signal having the Larmor frequency and reconstructs an image based on NMR (nuclear magnetic resonance) signals generated due to the excitation. More particularly, the present exemplary embodiments relate to a magnetic resonance imaging apparatus and a magnetic resonance imaging method which can image CSF (cerebrospinal fluid).
2. Related Art
Magnetic Resonance Imaging is an imaging method which excites nuclear spin of an object set in a static magnetic field with an RF signal having the Larmor frequency magnetically and reconstruct an image based on NMR signals generated due to the excitation.
In the field of the magnetic resonance imaging, MRA (magnetic resonance angiography) is known as a method of obtaining an image of a blood flow. An MRI without using a contrast medium is referred to as a non-contrast MRA. As the non-contrast enhanced MRA, an FBI (fresh blood imaging) method that performs an ECG (electrocardiogram) synchronization to capture a pumping blood flow is ejected from the heart, thereby satisfactorily representing a blood vessel.
In MRA, “labeling” (synonymous with tagging) is performed on blood in order to better depict a blood vessel. As a method of labeling blood, there is known a time spatial labeling inversion pulse (t-SLIP) method (for example, see Japanese Patent Laid-Open No. 2009-28525). According to the t-SLIP method, a specific blood vessel can be selectively depicted using a non-contrast MRA.
FIG. 1 is an explanatory drawing explaining a data acquisition method using a conventional t-SLIP method.
In FIG. 1, the abscissa axis indicates time. As illustrated in FIG. 1, according to the t-SLIP method, when a region selective inversion recovery (IR) pulse is applied as a labeling pulse, the blood in a labeling region is labeled. Then, when a BBTI (Black Blood Traveling Time) has elapsed since the region selective IR pulse is applied, imaging data acquisition is performed. Then, as illustrated in FIG. 1, in order to make dynamic observation on a blood flow, the BBTI is changed for each data acquisition before imaging is performed. For this reason, if a large number of different BBTIs with small difference are set, dynamic observation can be made on the blood flow corresponding to a more detailed change in time.
Further, in the t-SLIP method, a method of applying a plurality of labeling pulses has been devised.
FIG. 2 is a drawing explaining a data acquisition method with application of a plurality of labeling pulses using the conventional t-SLIP method.
In FIG. 2, the abscissa axis indicates time. As illustrated in FIG. 2, according to the t-SLIP method, a plurality of BBTIs can be set to one data acquisition by applying a plurality of labeling pulses at each different timing. In addition, the spatial position of applied labeling pulses can also be changed. By doing so, not only various blood vessels but also the CSF can be selectively depicted or suppressed.
However, the CSF has no periodicity such as a cardiac cycle and the CSF flow greatly changes for each data acquisition timing. In light of this, from images acquired by the t-SLIP method, it is possible to understand a dynamic behavior of a periodic fluid, but it is difficult to understand a dynamic behavior of a non-periodic fluid accurately.
Moreover, when a plurality of labeling pulses are applied, the periods from the application timing of the respective labeling pulse to data acquisition timing are changed respectively. For this reason, the method of applying a plurality of labeling pulses cannot generate images representing a dynamic fluid behavior of synchronous time.
Furthermore, the CSF is greatly different in flow depending on its position. In light of this, the t-SLIP method of performing data acquisition a plurality of times by changing the BBTI has difficulty in following and imaging the CSF whose flow is changed. Moreover, in order to understand the CSF flow at a plurality of positions using the t-SLIP method, imaging needs to be performed at a different timing for each position. For this reason, the t-SLIP method cannot allow a wide range of CSF flow of synchronous time to be understood.
In addition, in the t-SLIP method, contrast is greatly changed due to a change in the period from the application timing of the labeling pulse to the data acquisition timing. For this reason, in the t-SLIP method, it is very difficult to visually understand a detailed dynamic CSF behavior from monochrome image in grayscale. | {
"pile_set_name": "USPTO Backgrounds"
} |
The subject matter disclosed herein relates to non-invasive imaging and, in particular, to spectral calibration of a radiographic imaging system.
In the fields of medical imaging and security screening, non-invasive imaging techniques have gained importance due to benefits that include unobtrusiveness, convenience, and speed. In medical and research contexts, non-invasive imaging techniques are used to image organs or tissues beneath the surface of the skin. Similarly, in industrial or quality control (QC) contexts, non-invasive imaging techniques are used to examine parts or items for hidden defects that may not be evident from an external examination. In security screening, non-invasive imaging techniques are typically used to examine the contents of containers (e.g., packages, bags, or luggage) without opening the containers and/or to screen individuals entering or leaving a secure location.
One example of a non-invasive imaging system is a computed tomography (CT) imaging system in which an X-ray source emits radiation (e.g., X-rays) towards an object or subject (e.g., a patient, a manufactured part, a package, or a piece of baggage) from a variety of different angular positions. The emitted X-rays, after being attenuated by the subject or object, typically impinge upon an array of radiation detector elements of an electronic detector, which generates signals indicate of the incident radiation at different locations on the detector. The intensity of radiation reaching the detector is typically dependent on the attenuation and absorption of X-rays through the scanned subject or object. The signals generated at the detector are processed to generate images and/or volumetric representations of the internal structures of the subject or object.
Such a CT system may be subject to various artifacts, such as beam hardening artifacts, ring/band artifacts, and/or scatter-induced artifacts. To mitigate such artifacts, a spectral calibration process may be performed using a variety of calibration phantoms. However, as the scan coverage of such CT systems has increased (particularly in the dimension extending through the imaging bore, i.e., the Z-direction), the phantoms have grown correspondingly larger to accommodate the increased scan coverage. The increased size of such calibration phantoms can make performing spectral calibrations by attaching the phantom at the edge of the patient table increasingly difficult. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a camouflage pattern, and techniques that can be used to create a camouflage pattern. More particularly, the invention relates to a camouflage pattern used on fabric based structures that in combination with certain dyes, fabrics, and materials as well as certain printing techniques, provides improved concealment for military personnel, vehicles, and other equipment in a range of tactical environments. Also, the invention pertains to a camouflage system used on non-fabric equipment. In addition, the camouflage pattern is useful in the civilian sector for fashion, as well as sportsman. This invention combines principles of human perception, natural camouflage, and psychophysics to create two pattern elements of a macro-pattern and a micro-pattern combined into a single configuration: one to disrupt the features of the subject target, the other to match the subject target to the characteristics of the background. The combinations of this invention provide counter surveillance from visual and near-infrared detection for combat utility uniforms and equipment.
2. Related Applications
Design patent application Ser. No 29/143,340 titled xe2x80x9cunited states marine corps combat utility uniformxe2x80x9d filed Jun. 13, 2001.
Design patent application Ser. No. 29/143,683 titled xe2x80x9ccamouflage pattern for sheet material and uniformsxe2x80x9d filed 19 Jun. 22, 2001.
Provisional patent application No. 60/312,743 titled the same as above, filed Aug. 17, 2001 from which filing date benefit is claimed.
3. Description of the Prior Art
Camouflage is an art in the process of becoming a science. Camouflage, also called protective concealment, is a means to disguise a subject, whether animate or inanimate, in plain sight so as to conceal the subject from something or someone. Beginning with Abbott and Gerald Thayer in the late 1800""s and Pycraft in the 1920""s, camouflage evolved from a study of naturalistic observations of organisms in their complex environments to designs that purposely effect perception. The basic canon of natural camouflage includes xe2x80x9cevolved tacticsxe2x80x9d such as mimicry (contrived similarity to background features, like the walking stick bug), countershading (lightened ventral surfaces to combat the contrast of shadow), and disruption (Thayer""s xe2x80x9cruptionxe2x80x9d), the breakup of boundary features or internal structures.
Thayer noticed that the coloring of many animals graduated from dark, on their backs, to almost white on their bellies. The gradation from dark to light breaks up the surface of an object and makes it harder to see the object as one thing. The object loses its three-dimensional qualities and appears flat. The ratio of dark coloration to light coloration can mean the difference between success and failure of a design. Thayer called this xe2x80x98ruptionxe2x80x99xe2x80x94the development of patches of light and dark covering that served to break up the outline of the animal.
However, strategies based on natural observations often fall short of military requirements. There are two reasons for departing from the xe2x80x9cnaturalxe2x80x9d approach. First, animal coloration is often idiosyncratic and keyed to narrow co-evolution histories of predator and prey in a specific econichexe2x80x94that is, the zebra""s stripes tell us more about the visual system of the lion than about usable principles of military camouflage. Second, organisms are limited in the strategies (patterns) they can xe2x80x9cemploy.xe2x80x9d The coloration patterns of animals reflect survival probabilities over a long period of time passed on genetic advantage. However, animals do not xe2x80x9cdesignxe2x80x9d their appearance; the process is passive and represents genetic exploitation of random mutations. In addition, the processes by which natural patterns develop are constrained by biology.
Murray (1992) describes, for example, the process by which local interaction between two populations of color producing cells (melanophores) create different categories of patterns (stripes, spots, blotches, etc.) reminiscent of standing waves of different frequencies in metal sheets. It is significant requirement for this invention that a particular frequency or local melanophore interaction may produce a pattern that interrupts internal symmetry axes. Biological entities have the disadvantage of not being able to produce an animal with both spots and stripes, or with complex patterns of certain types.
Deliberate military camouflage as well as sportsman and fashion patterns does not suffer from these limitations. It is useful as well to remember that animals choose to inhabit certain fairly narrow econiches which in turn allows camouflage xe2x80x9cstrategiesxe2x80x9d very specific to particular places and backgrounds. Military forces do not have this luxury, and must adopt strategies more generally effective across a range of terrain and environmental conditions to which they may be deployed.
Brassey""s Book of Camouflage by Tim Newark traces some of the history of camouflage. In 1812, some of the first experimentation done with camouflage found that the color that blended in the best in the wild was gray. In 1857, one of the first true uses of camouflage occurred when British soldiers dyed their white tunics and belts tan, or khaki (which means literally xe2x80x9cdustyxe2x80x9d colored), to blend in with the environment in India. The first section de camouflage in military history was established in 1915 by the French, under the command of an artist. Thereafter, comparable units were used by the British and Americans, and, to lesser extent, by the Germans, Italians, and Russians. These units were largely made up of camoufluerss who in civilian life had been artists of one kind or another, including fine artists, designers, and architects. As a result, participants on all sides of the conflicts used hundreds of artists during both World Wars. These artists acted as military or civil defense camouflage experts. Included in this group were such familiar names as Jacques Villon, Franz Marc, Arshile Gorky, Thomas Hart Benton, Grant Wood, Laszlo Moholy-Nagy, and Oskar Schlemmer.
Artificial camouflage patterns of some sophistication appeared in the 1914-1918 time frame propelled by advances in weapons and tactics that accompanied the First World War. Thayer designed some of these patterns. Others were designed by a variety of daring and empirical innovators. The designers tended to rely on bold disruption, deception techniques (e.g. painting a large bow wave on a slow vessel to deceive submarine observers as to their actual velocity and direction), as well as traditional blotch and splinter (sharp-edged, polygonal patterns) approaches.
While the wartime use of camouflage is by no means a modern invention, its importance became magnified during World War I because of the use of airplanes and aerial photography. The Korean War saw the introduction of night vision devices, which added the need to disrupt the human form not only in the visible but also in the near infrared range of the spectrum. Humans see a wide color spectrum called the visible range, and when aided by night vision devices, humans can also see into the near infrared range. The problem of disrupting the human form in both the near-infrared and visible ranges is only a military problem that has no parallel in the natural world. Adding to the complexity is that dry and wet conditions change reflectivity of surfaces changing the xe2x80x9chidingxe2x80x9d characteristics of most patterns under different light conditions.
Interest in camouflage declined through the 1950s because of advances in fire control and target acquisition technology. Also, experience showed that most camouflage measures simply did not work very well. The visual system simply overpowered most measures.
In the late 1960""s and 1970""s, there was a resurgence of interest in camouflage. In the area of camouflaging combat vehicles, Sweden adopted a xe2x80x9csplinterxe2x80x9d pattern keyed to the colors predominant in Scandinavia. Germany experimented with novel boundary disrupting measures. Many countries simply applied camouflage as a matter of pride or decoration. Some of these designs had little practical counter-surveillance utility, but looked somehow xe2x80x9cmartial.xe2x80x9d
In the United States, the war in Viet Nam occasioned the issue of battle dress uniforms using a woodland color pattern that was designed by the U.S. Army Engineering Research and Development Laboratory as early as 1948. Though designed by the Army, it was rejected by that service and adopted instead by the Marine Corps. By the late 1970""s, a general desert camouflage appeared for uniforms. By the middle of the 1970""s, combat vehicles and other equipment acquired a four-color camouflage pattern designed by the U.S Army Mobility Equipment Research and Development Center (MERDC; now BRDEC). This pattern was widely used from 1974 until the 1980""s, when it was replaced by a 3-color NATO standard pattern.
Camouflage Pattern
For the human form, camouflage is used by hunters and by the military. For hunters, it is sufficient to disrupt the human form with a pattern because many animals are colorblind so, it is only necessary to xe2x80x9cblendxe2x80x9d into the shades of gray created by the background of the terrain. Colors within that terrain are not as critical. For military applications, color is an additional issue that must be considered.
Two significant deficiencies common to most camouflage pattern measures is that most pattern measures address either the configuration of the target to be hidden, or the nature of the background into which the target must blend. This limits the usefulness and robustness of a concealment measure since both objectives must be answered if the target""s signature is to be significantly reduced for the observer. There have been many approaches trying to address both camouflage patterns in general and military or paramilitary applications of camouflage in particular. The most common appearance of military camouflage are various forms of curving shapes in three to four natural xe2x80x9cearth tonexe2x80x9d colors. Hunter camouflage takes the form of a mimic of trees, bark or bushes. Mathews in U.S. Patent No. Des. 425,709 teaches a camouflage design in the form of bushes. Kolpin, in U.S. Patent No. Des. 297,076 shows a bark or rock like pattern. Yacovella in U.S. Pat. No. 4,656,065 teaches a pattern and color combination that mimics rough bark of a tree. Hollinger, in U.S. Pat. No. 5,675,838 carries this theme a step further by teaching two different patterns printed on one set of clothing to account for vertically and horizontally growing plant life. Lehman, in U.S. Pat. No. 5,972,479 describes a method of creating or forming these mimic camouflage patterns. The process includes photographing one or more environments, entering the photographs as graphics into a computer to create a composite picture, separating the colors in the composite picture into a series of color prints, creating screens for each major color, and finally rotary screen printing the composite onto sheet material. This technique is a standard printing process for fabrics in general and camouflage in particular. The issue with mimic patterns is that they are site specific or geographically limited.
For military applications, the mimic of a particular setting is inadequate. The military needs camouflage that will be adaptable in many different environments and under different weather conditions with the minimum number of uniform sets. In addition, the military needs a camouflage pattern that works well in the visible as well as in the near-infrared range of the spectrum when using night vision devices.
Many military patterns, on the other hand, ignore the nature of the background (except as regards gross color distributions), concentrating on the Thayer principle of disruption of boundaries. Each of these approaches is somewhat less than half the answer. Conway, in U.S. Pat. No. 5,077,101, describes camouflage for tanks and other vehicles by using a three-color paint that helps to mask infrared emissions. The paint relies heavily on the inclusion of carbon in the dye. Carbon can also be incorporated into the fiber itself for substrate or sheet material on which a camouflage pattern is printed. Such a process is described by Weingarten in U.S. Pat. No. 4,095,940, where carbon is incorporated into the fiber and the sheet material is then cross-dyed or over-printed with standard dyes that are compatible with that type of fiber as used in traditional camouflage patterns to provide adequate near-infrared protection properties. Clarkson, in U.S. Pat. No. 5,798,304, describes an interesting camouflage uniform for uniformed law enforcement that shows a solid color under visible lighting conditions and a camouflage pattern in the near-infrared range.
Conner in U.S. Pat. No. 5,985,381 took a different approach. Conner suggests a mimic type pattern (leaves of an eastern forest) coated with photochromic and/or heat sensitive materials so the printed pattern will change color under different light and temperature conditions.
One innovation appeared in 1976 that applied a more scientific spin explaining the reasons camouflage worked, O""Neill et al. (1977a,b). This innovation was called xe2x80x9cDual-Texxe2x80x9d or dual-texture. Initially, Dual-Tex was a modification of the MERDC 4-color vehicle pattern, where a band of higher, denser texture was added by the simple expedient of coarse quantization. This means that a larger pattern was decomposed into pixel-like square elements while keeping the larger element. This was like xe2x80x9cadding leaves to treesxe2x80x9d without removing the tree. The result was a macropattern that disrupted the shape of the target making it hard to recognize, and a micropattern that matches the texture of the background, making it hard to detect (hence xe2x80x9cDual-Texturexe2x80x9d). These two elements address the two visual tasks that face an observer detecting a target against a background (technically, detecting an anomaly in the optic array), and then recognizing (or identifying) the anomaly as a target or a false alarm. These tasks are served by two more or less distinct visual pathwaysxe2x80x94the ambient (or tectopulvinar) and the focal (or geniculostriate). These have been described as the xe2x80x9cwhere is it?xe2x80x9d and the xe2x80x9cwhat is it?xe2x80x9d systems.
The Dual-Tex measure was subjected to test and evaluation at the United States Military Academy using photo-simulation techniques (O""Neill et al., 1977a), and at Aberdeen Proving Ground using human observers against painted test vehicles at tactically appropriate ranges (O""Neill et al., 1977b,c) The measure was tested informally in various locations, and in 1978 was adopted by the 2nd Armored Cavalry Regiment in Europe (where it continued in use until the adoption Army-wide of the current 3-color pattern). It was formally subjected to troop test by the Combat Development Experimentation Command shortly afterward (CDEC, 1979). An application of the Dual-Tex concept was published in the November/December 1977 issue of Armor Magazine.
Military patterns that address disruption of the target shape, as opposed to background match, concentrate on the boundary features of the target. This is a misconstruction of what constitutes the visual, as opposed to the physical features of the target. The Dual-Tex macro-pattern component, as an exception, evolved from a traditional boundary-disrupting configuration to a unique and more effective approach.
Blum (1967, 1973, 1974, 1978) demonstrated a new non-Euclidean geometry of biological form based on internal symmetries of shapes. Psotka (1978) showed that the observer""s visual attention tends to lie along the symmetry axes of a shape rather than along the boundary or at the center (as traditionally assumed). O""Neill (1982) demonstrated the effect of a local interaction in the optic array that draws the attention of the observer, and may assist in recognizing and encoding shapes in the visual cortex. O""Neill (1986) modified the Dual-Tex pattern to include a macro-pattern keyed to the symmetry axes instead of the boundaries in a test of the effects of camouflage measures on the ability of a gunner to track a moving target. The combination of the target disrupting macro-pattern and the background-matching micro-pattern is the essential characteristic of the Dual-Tex type measure. No previously known or currently known camouflage pattern measure appears to address both these factors (disrupting the target and matching the background) effectively for a broad spectrum of terrain and environmental conditions needed for military operational effectiveness.
The micro-pattern of the Dual-Tex measure was designed to match the texture of the background in a tactical environment, defined as the spatial frequency spectrum. The micro-pattern matches the spatial frequency spectrum of the environmental background. It mimics the size components of the background. The role of spatial frequency in human vision and pattern recognition has been demonstrated experimentally since 1969 (e.g., Blakemore and Campbell, 1969; Julesz, 1980; Maffei and Fiorentini, 1980; Ginsburg, 1978, 1980). O""Neill (1988) demonstrated the role of spatial channels in detecting military targets. Dual-Tex pattern employs a quantization method to decompose a macro-pattern (q.v.) by the technique of digitizing the macro-pattern to add appropriate bands of spatial frequency xe2x80x9cnoisexe2x80x9d that mimics the presumed tactical background.
The Canadian National Defense Force came to realize that it was not necessary to have curved sections of color to form a camouflage pattern. The Canadians designed and began fielding the Canadian disruptive pattern (CADPAT), which consists of shapes having relatively straight sides. Josephs, in U.S. Pat. No. 6,061,828, also suggests a camouflage pattern using what Josephs calls rectilinear shapes. Josephs relies on rather large splotches of color in at least six sided splotches with opposing sides being parallel to form a pattern. Josephs appears most interested in the xe2x80x9cfashionxe2x80x9d attraction of camouflage rather than its utilitarian application. The only advantage of straight-sided figures is that it simplifies computer printing. The US Marine Corps evaluated some 60 existing patterns in house. Field-testing revealed that none of the existing patterns provide maximum concealment possible given today""s printing and material technologies as well as pattern concepts.
Fabric, Printing and Garment Treatments:
Historically, military uniforms were made of heavy cotton twill or duck fabric. This is also true of the modern fatigue or utility uniform. The heavier the fabric the more durable it was. These types of fabrics were hot to wear, became heavier when wet and were slow to dry. Cotton fabrics rapidly look like they were xe2x80x9cslept inxe2x80x9d even when heavily starched. Pure synthetic fibers had a good wear life and could be made permanent press, but the fabric tended to be hot and not adsorb sweat. In addition, many synthetic fibers reflected both visible and infra red light. In other words, synthetic fibers are shiny. Blending cotton with synthetic fiber, such as nylon, increases the fabric""s strength without increasing weight. Uniforms and clothing made from these fabrics wear better than those made from the traditional 100 percent cotton fabrics. They also have advantages of drying rapidly, and maintain a sharp military appearance longer. Finding the correct balance of fiber composition, weave, weight, and ability to take the needed dyes was a complicated empirical problem.
Printing, represents another challenge. While there are numerous types of dyes and pigments, all of which are chemically compatible with specific fiber types, they can not be used interchangeably. Each different class of dye also has certain performance characteristics. Acid dyes are compatible with nylon fiber and are very colorfast, but in the near infrared, generally, they are too light and bright for military camouflage purposes. Vat dyes are used to dye cotton fabrics. They are very colorfast, but in the near infrared, generally, they are too dark. Disperse dyes are compatible with polyester, however, they are not available in the colors required to meet military camouflage specifications, they are not very colorfast, and they are light and bright in the near infrared.
Hodge et al., in U.S. Pat. No. 5,074,889, teaches a method and describes materials for printing aromatic polyamide (aramid) fabrics with acid dyes. The treatment is specifically designed to print or overprint the sheet material with an acid dye for camouflage patterns. A problem still remains. The problem is achieving the objectives of a durable, serviceable uniform with concealing characteristics in the visible and near infrared. The problem requires a disruptive pattern that can be used for a wide range of applications from paint patterns on tanks, through uniforms that is an improvement on the good beginning of the prior art.
Accordingly, an object of this invention is the creation of a camouflage pattern measure based on the functioning of the human visual system, addressing both disruption of the subject target shape and matching of the spatial characteristics of the environment.
Another object of the invention is a pattern which is empirically developed and subsequently defined by a mathematical algorithm that is optimized for different environments by computer aided devices.
A further object of this invention is a pixel pattern that provides improved disruption of a subject over existing patterns.
Yet another object of this invention is the creation of a camouflage pattern printed on a surface such as fabric of uniforms and equipment or combat vehicles that will provide improved concealment in both visible and near-infrared range of the electromagnetic spectrum.
A further object of this invention is integrating the fabric, acid dyes and overprinted vat dyes, and functional finishes together with a specific empirically derived pixel pattern providing improved results in the visible and near-infrared spectrum range for fabric based subjects.
Yet another object of the invention is a camouflage pattern which gives effective camouflage results under both wet and dry conditions.
A further object of this invention is a system resulting from a combination of materials, dyes, printing methods, pattern and design features relating specifically to uniform design that builds a xe2x80x9csystemxe2x80x9d which provides U.S. Marines a combat utility uniform with significant advantages over currently available similar systems.
A further object of this invention is a fabric that provides improved camouflage advantages when combined with specific dyes and printed in a specific pattern.
Again, an object of this invention is a human engineered uniform having improved wear characteristics and improved protective protection for the user.
These and additional objects of the invention are accomplished by a camouflage system to be used for both military uniforms and equipment. Also, the system can be used for civilian applications, particularly with sportsman hunters. The system provides camouflage in both the human visible light range and the infrared light range. The system depends on the use of a macro-pattern resulting from a repeat of a micro-pattern. On fabric, the results are achieved by printing a macro-pattern that disrupts the sensed shape of the subject and a micro-pattern that blends the subject into the background. The repeat size of the micro-pattern produces the macro pattern. The reflectance of the printed material is comparable to the negative space surrounding a subject so the subject does not appear too dark or too light (out of place). The variation in the lightness between wet and dry printed fabric is not greater than 17-28%. The fabric can be formed into uniforms and other fabric equipment. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to paper feeding arrangements and more particularly, to a paper sheet feeding arrangement for feeding copy paper sheets one sheet by one sheet from a paper sheet cassette in a copying apparatus.
Conventionally, as a paper sheet feeding arrangement of the above described type, there has been proposed an arrangement in which a paper sheet cassette having copy paper sheets stacked therein is detachably mounted on a paper feeding section, while a feed roller and a paper sheet separating roller rotating in a direction counter to a paper feeding direction of the feed roller are provided forwardly of a paper feeding roller so as to extend in parallel with each other and vertically in contact with each other. In such a paper sheet feeding arrangement in which the copy paper sheets are separated from each other at a position disposed slightly forwardly of the paper sheet cassette, a paper feeding cycle of one of the copy paper sheets to be separated is completed in a state where a leading edge of the separated copy paper sheet has been transported to a contact point between the feeding roller and the paper sheet separating roller or has been gripped between the feeding roller and the paper sheet separating roller. Accordingly, when the paper sheet cassette is pulled out of the paper feeding section for replenishment of the copy paper sheets or replacement of the copy paper sheets with those of another size, such a problem arises that the separated copy paper sheet remains in the paper feeding section undesirably. Namely, it is troublesome to remove the copy paper sheet remaining in the paper feeding section. Furthermore, in the case where the paper sheet cassette is mounted on the paper feeding section without removing the copy paper sheet remaining in the paper feeding section, jamming of the copy paper sheet remaining in the paper feeding section takes place. Thus, in the paper sheet feeding arrangement of this kind, the copy paper sheet having its leading edge projecting out of the paper sheet cassette is required to be returned into the paper sheet cassette at the time when the paper sheet cassette is pulled out of the paper feeding section.
Furthermore, there is shown in FIGS. 1 to 3, a known paper sheet feeding arrangement provided with a lever type paper sheet returning mechanism for returning the copy paper sheet into a paper sheet cassette 60 mounted on the paper feeding section. A lifting lever 65 is pivotally projected into the cassette 60 upwardly from a bottom portion of the cassette 60 so as to be pivoted about a support shaft 67. A paper sheet support plate 61 having the copy paper sheets placed thereon is upwardly urged, at its front end portion, by the lifting lever 65 such that the upper face of the uppermost one of the copy paper sheets placed on the support plate 61 is brought into pressing contact with a paper feeding roller 80. When the paper feeding roller 80 is driven so as to be rotated counterclockwise, the uppermost one of the copy paper sheets placed on the support plate 61 is transported in the rightward direction in FIG. 1 together with one or more copy paper sheets through friction therebetween. Namely, at this time, two or more copy paper sheets are transported simultaneously by the paper feeding roller 80.
Meanwhile, a feed roller 30 and a paper sheet separating roller 40 rotating in the direction counter to the paper feeding direction are rotatably provided in contact with each other at the position forwardly of the paper feeding roller 80 and are each driven for counterclockwise rotation thereof. Therefore, the uppermost one of the copy paper sheets transported by the paper feeding roller 80 is fed in the rightward direction in FIG. 1 through counterclockwise rotation of the feed roller 30 and is further transported to a transfer section of a photosensitive drum (not shown) by a pair of transport rollers 85. However, travel of the remaining copy paper sheets transported by the paper feeding roller 80 is prevented through counterclockwise rotation of the paper sheet separating roller 40 so as to be stopped at the paper sheet separating roller 40.
As shown in FIG. 2, the paper sheet returning mechanism includes a return lever 20 mounted on a rotatable shaft 21, an arm 22 secured to one end portion of the shaft 21, and an arm 23 secured to a rotatable shaft 24. The arm 22 is formed with an elongated opening 22a. The arms 22 and 23 are coupled with each other by driving a pin 23a into the arm 23 through the elongated opening 22a. Meanwhile, an ejector arm 25 provided, at its distal end, with a roller 26 is fixed to the shaft 24. The arms 23 and 25 are urged to rotate in the counterclockwise direction by a torsion spring 27 wound around the shaft 24.
A front face of the cassette 60 inserted into the paper feeding section is brought into contact with the roller 26. Thus, the cassette 60 is depressed rearwardly in the leftward direction in FIG. 2 by an urging force of the torsion spring 27. Consequently, since a claw portion 15a of a lock lever 15 is positively brought into engagement with a lock hole 62 of the cassette 60 as shown in FIG. 1, the cassette 60 is securely positioned.
Meanwhile, a mechanism for releasing upward urging of the lifting lever 65 for the paper sheet support plate 61 includes a release operating lever 70, a release lever 73 and a retainer lever 75. The release operating lever 70 is upwardly urged about a shaft 71 by a torsion spring 72. The release lever 73 is provided, at its distal end, with a roller 74 and is secured to the support shaft 67 of the lifting lever 65. The retainer lever 75 is mounted on a shaft 76 and is urged in the clockwise direction in FIG. 2 about the shaft 75. Namely, when the release operating lever 70 is depressed downwardly, the lifting lever 65 is downwardly pivoted about the support shaft 67 together with the release lever 73. Thus, the release lever 73 is locked through engagement of the roller 74 of the release lever 73 with a step portion 75a of the retainer lever 75. At the same time, since a lock release lever 16 is downwardly pivoted by the roller 66 of the lifting lever 65, the lock lever 15 is pivoted downwardly and thus, the claw portion 15a of the lock lever 15 is disengaged from the lock hole 62 of the cassette 60 such that the cassette 60 is unlocked. It is to be noted that the lock lever 15 and the lock release lever 16 are rotatably mounted on a shaft 17 and are urged upwardly by torsion springs 18 and 19, respectively as shown in FIG. 3.
When the cassette 60 is unlocked as described above, the cassette 60 is thrusted out slightly in the leftward direction in FIG. 2 by the ejector arm 25 which is urged to rotate about the shaft 24 in the counterclockwise direction by an urging force of the torsion spring 27. At this time, the arm 23 is pivoted counterclockwise and the arm 22 is pivoted clockwise relative to the counterclockwise rotation of the arm 23. Therefore, since the return lever 20 is pivoted clockwise about the shaft 21, the remaining copy paper sheets are returned into the cassette 60 by a distal end of the return lever 20. Here, the remaining copy paper sheets are those stopped by the paper sheet separating roller 40 with their front ends proceeding up to the position between the feed roller 30 and the paper sheet separating roller 40.
However, the above described lever type paper sheet returning mechanism of the known paper sheet feeding arrangement has such drawbacks that the remaining copy paper sheets stopped by the paper sheet separating roller 40 can be returned into the cassette 60 by the return lever 20 only in the case where the remaining copy paper sheets stopped by the paper sheet separating roller 40 are disposed within a travel stroke of the return lever 20 and that since the feed roller 30 and the paper sheet separating roller 40 are held in contact with each other, the remaining copy paper sheets stopped by the paper sheet separating roller 40 may be damaged when being gripped, at the front ends, between the feed roller 30 and the paper sheet separating roller 40. | {
"pile_set_name": "USPTO Backgrounds"
} |
The disclosure relates to gas turbine engines. More particularly, the disclosure relates to fan tip clearance accommodation.
In turbofan engines, differences in the fan material versus fan case material may contribute to thermally-induced rub. Turbine engine fans and their cases experience differential thermal expansion across an operational range. For example, on the ground they are subject to a normal range in atmospheric temperatures (e.g., from 20 C to 40 C with an exemplary ambient temperature being 21 C). In flight, however, temperatures will typically decrease. Whereas other portions of the engine are subject to heating, the fan, and moreso, fan case temperatures may decrease at altitude (e.g., to an exemplary −60 C to −45 C). An exemplary temperature decrease from ground to altitude may be in excess of 50 C, more narrowly, 60-80 C or an exemplary 70 C.
With an exemplary metallic fan and non-metallic fan case (or structural portion thereof) the decrease in temperature will cause the fan to decrease in diameter more than the fan case (due to the fan having a higher coefficient of thermal expansion (CTE) than a structural portion of the fan case). When the inboard surface of the fan case moves radially with the structural case, a gap between fan blade tips and the fan case will increase, thereby potentially compromising performance. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to defect detection in articles using computer modelled dissipation correction differential time delay Far infra-red scanning. Especially the invention relates to such defect detection in articles such as fibre board panels, oriented strand board panels, medium density fibre board panels, metal panels, metal pipes, coated metal pipes and similar articles.
2. Acknowledgement of the Prior Art
Non-destructive testing inspection using Far IR scanning is well known in the detection of hot spots for example detecting where insulation is absent, where friction components are malfunctioning, or where cooling/exhaust systems are failing. However, flaws which do not cause local hot spots are more difficult to detect. Some of these flaws are very hard to detect.
Various attempts have been made to overcome the difficulties which arise in this type of scanning for flaws. Examples of methods which have been used are set out in U.S. Pat. No. 5,357,112 issued Oct. 18, 1994 to Steele et al., U.S. Pat. No. 5,444,241 issued Aug. 22, 1995 to Del Grande et al., and U.S. Pat. No. 5,631,465 issued May 20, 1997 to Shepard.
The horizontal density variation of Oriented Strand Board (OSB) affects most of the physical and mechanical properties of the panel. Between-panel density variation can well be measured and controlled. Within-panel variation, however, has been difficult to measure. A better estimation of this horizontal density variation obviously could provide information for controlling the mat forming process to reduce density variation. A more uniform density distribution would allow for a reduction in panel thickness or density, which would eventually improve wood fibre utilization.
Destructive measurements of OSB panel density are usually slow and expensive in terms of labor cost. There is a need for methods of nondestructive measurements of OSB density both at laboratory and industrial scales.
It has been observed qualitatively that variation in density could be detected using a Far infra-red imaging system. IR thermography technology was used to estimate OSB panel density.
The fact that radiation is a function of object surface temperature makes it possible for an IR camera to calculate and display this temperature. If an OSB panel contains an anomaly in its density, and the panel starts at an initial uniform temperature, then as it is quickly heated and cooled, the anomaly will produce an anomaly in the distribution of surface temperature. This is because, in the course of temperature change, those areas of the panel which have lower density will lose or gain heat more rapidly and high density areas lose or gain heat more slowly. This is the basic theoretical principle on which infrared OSB density measurement is based. An aim of this invention was to determine the accuracy, spatial resolution and speed of IR measurement of OSB panel density.
It has also been surprisingly discovered that in a large central area of an article it is not necessary to resort to various precautions to overcome difficulties. It is only necessary to utilize precautions in a marginal area where cooling of an unflawed article does not occur in such a set pattern as in a central area.
The present invention provides a process for the detection of flaws in an article, especially OSB, using Far infra-red scanning of its surface comprising changing the temperature of the surface of an article over a plurality of temperatures and making an infra-red scan at each of said temperatures during changing the temperature, the infra-red scans being separated one from another by equal time increments; characterized in the steps of allocating parts of said surface as central and marginal parts forming images from said infra-red scans, digitizing said infra-red scans, digitizing the images to provide a sequence of digitized scanned images; for said central part of the surface, comparing data directly from said digitized scanned images and noting variations and/or anisotropies from a general cooling pattern for the article and deducing the presence of flaws at locations in the article corresponding to the location of the variations and/or anisotropies in the comparison of the digitized scanned images; and for the marginal part of the surface, performing thermodynamic modelling on one of the digitized scanned images to provide an estimate of the temperature distribution for a hypothetic unflawed article after passage of one of said time increments, and comparing data from an adjacent digitized scanned image with said estimate and noting variations and/or anisotropies of the structure of the marginal part of the article.
The present invention also provides a process for detection of flaws in an article, especially in OSB. This process comprises changing the temperature of the surface of an article over a plurality of temperatures; making an infra-red scan at each of said temperatures during changing of temperature; said infra-red scans providing at least a first and a second scanned image and being separated one from the other by a time increment; digitizing the at least first and second scanned images to provide a sequence of at least a first and a second digitized scanned image; performing thermodynamic modelling on the first digitized scanned image to provide an estimate of the temperature distribution for a hypothetic unflawed article after passage of said time increment; comparing data from said second digitized image with said estimate, noting variations and/or anisotropies of the structure of the article. Thereafter, quality decisions about the fitness of the article can be made.
While first and second scans at first and second temperatures may be sufficient to provide data for flaw detection, a group of scans may be made at a series of three or more temperatures for greater accuracy. Said thermodynamic estimate may be made at any one of this series of temperatures and may be compared with data from scanned images obtained at higher or lower temperatures.
The relative proportion of the central and marginal parts may be chosen in accordance with the shape and size of the article, the material from which it is made and the degree of accuracy required. For example, if the article is a circular metal plate of say 10 feet in diameter, the central portion may be a 9 foot circle within an annular marginal portion. If the plate is formed of a less thermally conductive material, the marginal portion may be smaller. If, however, the plate is square, the central portion may possibly still be circular, since the corners of the square cause irregularities. Many of the decisions will be within the skill of the operator once the general principle is appreciated may be made by a man skilled in the art. In very general terms the central portion may be of regular shape and may be from 10-90% of the surface area of the article.
More particularly the central part may be from 20-80% or especially 75% of the surface area of the article.
The process of specifically inducing, or introducing a heating or cooling transient, with the specific intention of creating a temporary temperature differential in what would have otherwise been a steady state situation is particularly important. The creation of, high speed monitoring of, image acquisition of, image processing of, enhancement of, and thermodynamic modelling of, these temporary temperature differences constitutes the essence of this invention.
Conveniently the thermodynamic modelling and the comparison of data are performed by a suitably programmed computer.
In the following specific detailed discussion, it is always assumed that a surface of the article to be tested is heated above ambient temperature and allowed to cool. In fact, it is within the scope of the invention to cool the article below ambient temperature and allow it to heat up to obtain two incremental temperature differences.
While the following detailed discussion is limited to the scanning and comparison of only two images at different temperatures, it is clear that a much larger number of images may be scanned and compared.
For example, the process may comprise the following steps:
1. Central and marginal parts are designated if desired.
2. The component to be inspected is heated so that its temperature rises significantly above ambient temperature. This heating is preferably uniform, and preferably of at least 50 degrees Celsius in magnitude.
3. An IR image of the surface of the heated component to be analysed is obtained with sufficient resolution (in temperature, spatial, and temporal domains) to allow for detection of defects. The spatial resolution required will depend on the defects in question (for example variation in oriented strand board (OSB) panels might require resolution of xc2xcxe2x80x3 square, variations in pipe wall thickness might require resolution of 0.5 mm square). The temperature resolution required from the Far IR image will typically be from 0.1 to 0.2 degrees Celsius. Typically the scanner will be a forward looking infra-red (FLIR) scanner using a cooled mercury cadmium telluride detector, or a cooled indium arsenide detector or even an uncooled micro-bolo metric array. The details of the scanner implementation are not important as long as:
a) the resolution is adequate,
b) the image acquisition speed is adequate (some thermal transients are of short duration)
c) the image can be acquired in the appropriate setting (real time acquisition for in plant production monitoring, remote portable and field worthy acquisition for in-situ applications).
d) the acquisition speed and mode is appropriate to the application (e.g. linear or flying spot scanning may be necessary for moving web processes, where as a real or snapshot acquisition may be necessary for quasi-stationary processes).
4. The scanned Far IR (3-10 micrometers wavelength of peak sensitivity) image is digitized and stored. The pixel resolution of the digitization and the storage system must be adequate to preserve the spatial resolution of the original IR data.
5. After a suitable time interval (this interval may vary from a fraction of a second in the case of a pipeline in use, to tens of minutes for large structures like the hulls of ships which have only been minimally heated), a second Far IR image of equivalent resolution is sampled and digitized. For the central part of the first and second images may be compared directly. For the marginal part thermodynamic modelling as described in the following steps may be used. If central and marginal parts are not designated then thermodynamic modelling is performed on the whole.
6. Standard thermodynamic modelling involving specific heats, conductivities, temperature differentials from ambient, and rough convection and other loss estimates is applied to the component data for the first sample, and the temperature distribution for a xe2x80x9cperfect homogeneousxe2x80x9d component at the instant of the second sampled is modelled and estimated. Alternately, this estimate may be derived from images of xe2x80x9cgoodxe2x80x9d articles taken at the second sampling time. The main purpose of calculating this estimate is to account for the significant non-uniformity of heat loss that arises directly from thermodynamics of the situation, so that comparison of the estimated temperature distribution with the actual will not high light any local anomalies.
7. The modelled radiant temperature profile estimate at the time of the second sampling is then compared with the actual profile data from the second sampling and the difference calculated, or high lighted.
8. Significant variation or anisotropies from within three dimensional structure then become evident. These may correspond to flaws or other non-uniformities.
9. The variations, and anisotropies evident in the image, can then be further enhanced using conventional image processing techniques, and:
a) presented in the form of a visual spot
b) quantified and used to make a pass/fail or grading decision.
It is believed the process of the invention is especially applicable to:
1. The inspection of pressed composite panel, such as OSB, or laminated products, in a production environment for anisotropies, resin spots and delaminations or other defects.
2. The in-situ inspection of structural panels on ships storage tanks, and other large structures; for external corrosion, paint or coating delamination, the buildup of layers or other defects.
3. The in-situ inspection of wall thickness variations in pipelines. In this case no marginal part is designated, or the marginal part involves only the ends of the pipes. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention relates to a thin film formation method by an ink jet method, an ink jet apparatus, a production method of an organic EL (electro-luminescence) device, and an organic EL device.
2. Description of Related Art
An organic EL display including organic EL devices (light emitting device having a light emitting layer made of an organic material interposed between an anode and a cathode) so arranged as to correspond to pixels has been rapidly developed in recent years as a spontaneous light emitting display that will replace current liquid crystal displays. Materials of the light emitting layer of the organic EL device can include aluminum quinolynol complexes (Alq3) and poly(paraphenylene)vinylene (PPV) as an organic material having a high molecular weight.
As disclosed in “Appl. Phys. Lett.” 51(12), 21 Sep., 1987, 913, it is known to form a film of a light emitting layer made of an organic material having a low molecular weight by vacuum evaporation. Another reference, “Appl. Phys. Lett.” 71(1), 7 Jul., 1997, p.34 et seq. describes the film formation of a light emitting layer made of an organic material having a high molecular weight.
In organic EL devices for display, it is necessary to form an anode at each pixel position on a substrate and to dispose a light emitting layer on each anode. If the arrangement of the light emitting layer can be performed by an ink jet method, precise patterning can be made within a short time because application and patterning can be conducted simultaneously. Moreover, since the amount of materials to be used is that which is minimum necessary, the materials can be used without waste and the production cost can be lowered.
To arrange the light emitting layer by an ink jet method, it is necessary to use a material in the liquid form. When a polymer material such as PPV is used as the material of the light emitting layer, the arrangement can be made by the ink jet method if a precursor solution of the polymer material is used. Japanese Patent Laid-Open Publication Nos. 11-40358, 11-54270 and 11-339957 teach to arrange a light emitting layer made of a PPV type polymer material in accordance with the ink jet method.
As shown in FIG. 1A, in the liquid arrangement by the conventional ink jet method, an ink jet head 2 smaller than a substrate 1, for example, is employed. The inside of the surface of the substrate 1 is so divided into a plurality of regions 11 to 15 as to correspond to the length of rows of nozzles 3 of the head 2. The liquid is serially discharged from the nozzles 3 of the head 2 while the substrate 1 or the head 2 is being moved.
According to this method, however, when a solvent of the liquid to be discharged is a solvent having a large density, a solvent vapor evaporating from droplets is likely to stay inside the substrate surface. When a droplet A having an early arrangement order on the substrate is compared with a droplet B having a late arrangement order, for example, as shown in FIG. 1B, the droplet B having a late arrangement order is discharged in an atmosphere in which the partial pressure of the solvent vapor is high. As a result, a drying rate of the droplet B is lower than that of the droplet A. The droplet A arranged previously, too, is affected by the solvent vapor staying inside the substrate surface and in some cases, it is again dissolved after drying or its drying rate becomes lower.
Therefore, when a solution prepared by dissolving a plurality of polymer materials having mutually different molecular weight or polarity in a solvent having a large density is arranged on the substrate by the conventional ink jet method, the droplets having a low drying rate are likely to result in a thin film in which a plurality of polymer materials are in the phase separation state. When the drying rates of the droplets are different inside the substrate surface, the condition of the resultant thin film becomes different depending on the position inside the substrate surface.
As described above, when the conventional ink jet method is employed to arrange the light emitting layer in the organic EL display, luminance is likely to vary inside and among pixels. | {
"pile_set_name": "USPTO Backgrounds"
} |
Supporting devices of this type serve to support the vehicle during the lifting of a load by means of a cantilever arm. The support is such that the vehicle's tilting edge is as close as possible to the intersection point of the load distribution line and the ground. For vehicles used in military rescue there are additional requirements. First, the vehicles must also provide protection to the transported repair crews and facilitate their covered egress and work. Therefore, stroke range adjustment and support, and also an egress door at the rear of the vehicle are provided. Furthermore, it is often necessary to tow a damaged vehicle by means of an on-board cable winch, especially if the vehicle is too heavy to be lifted. Such towing requires considerable tractive power. This tractive power exceeds the holding power of the brakes and the road adherence of the wheels in the case of wheeled vehicles. Therefore, a support in the horizontal direction is also required.
A plow shield for a rescue tank is known from DE-C 30 39 364. This plow shield provides support to the vehicle in the horizontal, as well as in the vertical, direction. However, the plow shield extends over the entire width of the vehicle, which not only leads to high weight and high costs, but also makes egress at the front side impossible. Furthermore, the horizontal support action of the plow shield is limited because the lower edge of the shield tends to lift off the ground in the manner of a bulldozer rather than to hold the vehicle on the ground.
It is, therefore, an object of the instant invention to create a light-weight and highly effective supporting device, in both traction directions, which is also easily retractable and accessible. | {
"pile_set_name": "USPTO Backgrounds"
} |
Prior art napkin making machines using mechanical tuckers and grippers are based on U.S. Pat. Nos. 2,054,426 and 2,057,879 granted to Campbell (1936).
In 1934, U.S. Pat. No. 1,974,149 to Christman describes vacuum folding techniques used in machines for making longitudinally and single transversely folded products like napkinsxe2x80x94referred to as quarterfolded napkins.
In the 1970""s U.S. Pat. Nos. 3,689,061 to Nystrand and 3, 870,292 to Bradley extended vacuum folding to machines that make a second transverse fold for dinner napkinsxe2x80x94referred to as eigthfold napkins.
For example, the ""051 apparatus of Nystrand uses a vacuumized anvil/folding roll (F) to selectively advance, foldback, and superpose the leading half panel of a segment over the trailing half and release the lead panel while the trailing half panel is held and advanced.
In ""061, the carrier/folding vacuum roll (F) coacts with a vacuumized transport roll (C) to complete the second transverse fold (doublefold).
Present state fo the art vacuum folders operate with the same folding principles used for the past 60 years and include vacuum carrier rolls, combination anvil carrier rolls, and vacuum folding rolls made from solid blanks or solid steel forgings. machine to be processed without off-line unwinding and slitting to widths suitable for converting and are describes in a co-pending U.S. patent application Ser. No. 09/499242.
The objects of the instant roll design are detailed below.
The object of this invention is to provide hollow rolls with separate internal vacuum and air conduits that can be assembled from discreet components to overcome weight, diameter, and roll length limits of present vacuum transport, cutting, and folding rolls.
A further object is to provide conduits superposed against the inside surface of hollow rolls to minimize the length of drilled connections between air/vacumn conduits and openings in the surface of the rolls.
An object of the invention is to provide larger conduits for low pressure high volume air conduits rather than large diameter holes drilled into solid roll blanks.
An object is to provide larger diameter cylinders with multiple repeats and substantial internal space to avoid the diameter limits for holes drilled in solid rolls because of the restricted area of small diameter rolls for shorter product repeats.
A further object is to provide closed air plenum chambers using the inside surface of the roll as a portion of the plenum chamber closure.
An object is to provide a plenum against the inside surface to minimize the length of, or eliminate, air channels to openings in the surface of the roll.
An object of the above stated plenum with a replaceable surface section is to allow different patterns of air apertures to extend as longitudinal slots, substantially xe2x80x98open meshxe2x80x99 segment support surfaces, or patterns of holes in the roll surface.
A further object of the air plenum is to allow the operative surface pattern of the plenum chamber to be changeable for different air flow volumes.
An object of the invention is to provide lighter weight hollow rolls of larger diameter having an extended circumferential path for use of more than one stationary fold completion device thereby eliminating the separate cooperating vacuum roll usually needed for a second transverse fold.
Another object is to provide for surface mounting of anvils and internal support means to increase roll stiffness.
Another object is to provide hollow roll construction having a hollow central shaft and roll supports between the roll shell and central shaft.
A further object of this is to provide air/vacuum conduits that can be prefabricated or pre-molded from plastics to complete the internal passages between air/vacuum sources and connections to vacuum ports and air apertures.
The above listed objects describe benefits that derive from the hollow roll and the benefits of greater productivity from wider, larger diameter rolls and air folding, etc. more clearly described in the abovementioned co-pending U.S. Patent Application.
Other objects may be seen in the ensuing specifications. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the field of intravascular deployment systems. More particularly, the invention relates to the field of apparatus and methods for the deployment of intravascular devices, including exclusion devices such as stent grafts, where interference between the components of the delivery apparatus may lead to an inability to deploy the device or result in partial deployment of the device.
2. Background of the Art
Intravascular deployment of exclusion devices (stent grafts) is a methodology used to deliver an exclusion device to a portion of a body flow lumen that is diseased or damaged, such as an aneurysmal portion of an aorta, and, thence deploy the exclusion device to span the diseased or damaged portion of the aorta and thereby provide a synthetic flow conduit which passes through the diseased or damaged portion of the aorta and seals against healthy tissue of the aorta at locations upstream and downstream of the diseased or damaged portion thereof. By deploying the exclusion device intravascularly, the diseased or damaged portion of the flow lumen may be bypassed with the exclusion device forming a synthetic flow lumen, without the need to remove the diseased or damaged portion of the flow lumen, which would require far more invasive surgery. Where the diseased or damaged flow lumen is the aorta, either the abdominal aorta or thoracic aorta, the use of intravascular deployment of a stent graft to exclude the diseased or damaged portion of the aorta, and provide a secondary flow conduit within the aorta, is well known to those skilled in the art.
A stent graft includes a stent portion or frame, which is in some embodiments configured as a plurality of wires formed into hoops, to which is affixed a graft material, which is likewise formed into a hoop shape to provide a synthetic flow conduit for blood once the stent graft is deployed in the aorta. The stent graft is sized to have a length sufficient to span the diseased or damaged portion of the aorta, and overlap 10 to 25 mm onto the adjacent healthy tissue and a diameter one of two millimeters larger than the diameter of the healthy portion of the aorta located on the upstream and downstream ends, in a blood flow direction perspective, of the diseased or damaged portion of the aorta, such that the stent portion biases the graft material against healthy aorta wall tissue at the upstream and downstream ends of the stent graft to seal off the disease or damaged aorta wall from further blood flow thereto at systemic pressure.
To enable intravascular deployment of the stent graft, the stent graft is first radially compressed to a small diameter, on the order of a centimeter or less, and loaded into a tubular element, specifically a graft cover portion of a deployment system. The deployment system, includes the tubular graft cover, within which the compressed stent graft is inserted at the distal end thereof, a manipulator or middle member within the stent graft extends through the graft cover to the proximal end, thereof, and a guidewire can, extend through a bore in the middle member which extends the length of middle member and through the compressed stent graft, such that a first end of the guidewire can be disposed beyond the proximal end of the graft cover, and a second end is extendable from the bore at the distal end of the graft cover. The middle member serves several purposes: It provides the bore through which the guidewire is received such that the middle member, and the graft cover and stent graft thereover; may be tracked over the guidewire; it provides a support or “stent stop” against which the stent graft will bear during the deployment of the stent graft procedure; during the procedure the graft cover is retracted from around the stent graft and middle member; and, it provides, in conjunction with the graft cover, support or structure to carry the axial, rotational and bending loads imposed upon the delivery system as it is tracked over the guidewire.
Endovascular delivery of a stent graft is commonly facilitated by opening an incision into one of the iliac arteries adjacent the groin of the patient, and first deploying the guidewire, having fluoroscopic markers adjacent to the distal or deployed, end thereof, through or along the artery to a position wherein the distal end of the guidewire extends beyond the diseased portion of the aorta. The stent graft delivery catheter having the graft cover, having the middle member and the stent graft held therein, is then tracked along the guidewire, such that the distal end of the graft cover is positioned upstream of the deployment location of the stent graft. The distal end of the graft cover is then exposed to the aorta, and the graft cover is retracted while the middle member is held stationary, such that the stent graft cannot move relative to the stationary stent stop and the stent graft becomes exposed to the aorta and is deployed from the graft cover.
One issue which may arise during deployment of the stent graft from the graft cover, and which has serious consequences, is that the graft cover may become bound up with the stent stop, such that the graft cover cannot be retracted or moved relative to the stent stop. One cause of this binding is buckling of the graft cover, which can occur when the graft cover and middle member are being tracked along the guidewire through regions of tortuous anatomy. Because the graft cover is a thin walled tubular column, which is being pushed through restricted or tortuous pathways of an artery to reach the diseased portion of the aorta, forces may be imposed axially, i.e., the pushing of the graft cover from its proximal end as it is being tracked over the guidewire, rotationally, by forces imposed on the graft cover as the surgeon or other practitioner rotates the proximal end of the graft cover to properly align the stent graft at the deployment location, and in bending, by forces which are imposed as the delivery system is tracked through turns or restrictions in the introduction artery or the aorta. Turns result in the delivery system having one portion of the delivery system positioned in a generally linear path which is at an angle to the immediately adjacent portions of the delivery catheter. If the sum of these forces or loads exceeds the buckling strength or capacity of the graft cover, i.e., its resistance to excess deformation, then the graft cover can buckle. When such buckling occurs, the span across the interior of the graft cover is reduced at the buckle. If this occurs in the region of the graft cover extending about the stent graft held within the graft cover, as the graft cover is retracted to deploy the stent graft, the cover can become bound against (create an interference fit with) the enlarged portion of the middle member which forms the stent stop, preventing further retraction of the graft cover. Where the buckle interferes with the stent stop before substantial deployment of the stent graft, this is an inconvenience, as the procedure must be terminated and the delivery system with the stent graft intact, must be removed from the body by reverse tracking thereof over the guidewire. Where the buckle is brought against the stent stop after a portion of the stent graft is deployed, and the surgeon cannot pull the graft cover further over the middle member, immediate emergency surgery, to open the patient through the chest and invasively repair the situation is warranted. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to novel opioid receptor antagonists and agonists, methods of making these compounds, and methods of use.
2. Description of the Background
The opioid receptor system has been extensively studied over the past eight decades, driven primarily by a search for analgesics that do not possess the abuse potential associated with morphine. While these studies were unsuccessful, our understanding of the opioid system has increased tremendously. A significant breakthrough in our understanding of this system came about as a realization that the pharmacology of opioids is receptor based. From this vantage point, the focus of research turned to identifying receptor subtypes with the ultimate goal of assigning specific physiological function to individual receptors. Today, the receptor system is known to be composed of the three distinct subtypes OP1, OP2, and OP3 (delta, kappa and mu), as each of these have been cloned and been shown to derive from three different chromosomes. For a discussion of opioid receptors, see Kirk-Othmer Encyclopedia of Chemical Technology, Volume 17, Fourth Edition, 1996, pp. 858-881. There is however less however as to the number of subtypes within each of the main branches and while much has been learned along these lines, the process of assigning function to subtypes is still an area of active investigation.
The opioid receptor system has been extensively studied over the past eight decades driven primarily by a search for analgesics that do not possess the abuse potential associated with morphine. While this effort has been unsuccessful to date, recent studies have highlighted the delta opioid receptor system as holding the greatest potential for success. Principally, agonists acting through the delta opioid receptor have been shown to modulate pain while minimizing many of the side-effects associated with morphine which acts primarily at the mu opioid receptor. These unwanted side-effects include physical dependence, respiratory depression, and gastrointestinal motility problems. These findings have led to a dramatic increase in the research efforts directed toward the production of potent, highly delta receptor selective agonists. The bulk of this effort has been in discovering small molecules as opposed to peptides due to their enhanced stability in vivo and their ability to penetrate the central nervous system.
I.
The discovery of potent, highly receptor-selective opioid pure antagonists has been a goal of medicinal chemists for many years. 1,2 As molecular probes, antagonists have served as useful tools in the study of both the structure as well as the physiological functions of the highly complex opioid receptor system. Much has been accomplished as evidenced by the elegant work of Portoghese and coworkers over the past decade which ultimately has led to the discovery of the naltrexone-based kappa and delta receptor subtype-selective antagonists norbinaltorphimine3 (1, nor-BNI) and naltrindole4 (2, NTI), respectively. Following Portoghese""s lead, workers at SmithKline Beecham recently reported that the octahydroisoquinoline (3, SB 205588) was a second-generation, highly potent and selective delta antagonist formally derived from naltrindole fragmentation. One specific research aim has been the discovery of opioid receptor selective reversibly binding ligands from the N-substituted (+)-(3R,4R)-dimethyl-4(3-hydroxyphenyl)piperidine (4a) class of compounds that display pure antagonist activity.6 These compounds will be useful as molecular probes for the opioid receptor as well as potential drug candidates for the treatment of substance abuse and other CNS disorders.7 While mu antagonists have for years been used in drug abuse therapy, recent findings suggest that kappa antagonists could provide a more effective, long-lasting treatment strategy.8 A great variety of N-substituted derivatives of 4a has been prepared, but until the recent demonstration of mu selectivity for 5a,9 none had shown selectivity between the opioid receptor subtypes. Since the pure antagonist activity of these compounds is not dependent on the N-substituent, multiple changes to this part of the molecule would be expected to affect binding affinity and possibly receptor selectivity but not alter its fundamental antagonist character. This feature distinguishes this class of antagonist from the morphone-based compounds, which display pure antagonist behavior only with N-substituents such as allyl or cyclopropylmethyl but not methyl, ethyl, or phenethyl.10 It is currently believed that the N-substituent in 4a interacts with a lipophilic binding domain which has been described as either very large or quite malleable since a multitude of different types of N-substituent changes provided ligands displaying high binding affinity.11 It has also been determined that maximum potency and selectivity for the mu opioid receptor is achieved when the N-substituent incorporates a lipophilic entity (phenyl or cyclohexyl ring) separated from the piperidine nitrogen by three atoms as illustrated by compounds 5a.9,11 The synthesis of K-selective compounds remains an important goal.
II.
Derivatives of N-substituted (xc2x1)-trans-3,4-dimethyl(3-hydroxyphenyl)piperidine, such as 6 and 7, are known to posses nonselective potent opioid pure antagonist activity.12-16 Early investigations of the phenylpiperidine class of opioid antagonists identified the 3methyl substituent and its trans relative relationship to the 4-substituent as being both necessary and sufficient to impart antagonist activity to the agonist 4(3-hydroxyphenyl)piperidine.12 This feature distinguished the phenylpiperidines from the oxymorphones which rely on particular N-substituents (i.e. allyl, cyclopropylmethyl) for expression of opioid antagonist activity. Further studies demonstrated that the N-substituent in the phenylpiperidine antagonists controls their potency and efficacy.15 Accordingly, there remains a need for compounds which have similar therapeutic effects as the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines, but are based on different structural elements.
III.
Numerous structural types of opioid agonists have been discovered, and several such as methadone, meperidine, fentanyl, and pentazocine as well as others have become important drugs for the treatment of pain.10 However, there are only a few structural types that show potent, opioid pure antagonist activity.10,7 A resurgence in heroin use in recent years coupled with the demonstrated effectiveness of opioid antagonists for the treatment of other substances of abuse has spurred new interest in the development of novel antagonists for opioid receptors.16
The oxymorphone-related compounds such as naloxone (8a) and naltrexone (8b), where the antagonist activity is dependent upon the N-substituent, have received considerable attention over the past few decades.10 For example, pioneering studies by Portoghese and coworkers lead to the development of the prototypical kappa and delta opioid receptor antagonists, norbinaltorphimine (1, nor-BNI) and naltrindole (2, NTI). In contrast, the N-substituted trans-3,4-dimethyl-(3-hydroxyphenyl)piperidine (9a-d) class of pure antagonist has received relatively little attention. Studies with the N-methyl analog 9a as well as many other N-substituted analogs such as 9b, 9c (LY255582), and 9d showed that the pure antagonist activity was dependent on the 3-methyl substituent and its trans relative relationship to the 4-methyl substituent on the piperidine ring and, unlike the oxymorphone class, was independent of the nature of the N-substituent.7,16,17,6,13,14 Interestingly, the 3,4-dimethyl cis isomer 9e was found to be a mixed agonist-antagonist. May and coworkers18 reported that 2,9xcex1-dimethyl-5-(3-hydroxyphenyl)morphan (10a), which has the 9-methyl group in a configuration comparable to the cis-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (9e) with the 5-(3-hydroxyphenyl) group locked in an equatorial conformation relative to the piperidine ring in the morphan structure, was a weak but pure antagonist.
Neither 2,9xcex2-dimethyl-5-(3-hydroxyphenyl)morphan (10b) nor 2,4xcex2-dimethyl-5-(3-hydroxyphenyl)morphan (10g) have not been reported, due to a lack of synthetic accessibility to these structural isomers. Accordingly, the successful synthetic preparation of 2,9xcex2-morphans and 2,4xcex2-morphans remains an important goal of in the field opioid receptor-binding compounds.
IV.
In search of analgesics possessing a reduced side-effect profile relative to morphine, much effort has been expended towards finding opioids which operate via xcex4 or xcexa opioid receptors as opposed to the xcexc opioid receptor which meditates the actions of morphine and its congeners.10 BW373U86 (11)19 and SNC-80 (12)20 represent one class of opioid agonists discovered to be selective for the xcex4 opioid receptor. Due to the lack of a clear opioid message substructure (i.e., a tyramine component similar to the enkephalins), compounds 11 and 12 have been referred to as non-classical opioid ligands.5 The piperazine subunit of 11 and 12 is not commonly found in compounds showing activity at the opioid receptors. In contrast, piperidine ring compounds are found in many different classes of opioids.27 If the internal nitrogen atom in compounds 11 or 12 is transposed with the benzylic carbon, piperidine ring analogs such as 13 would be obtained. Even though there are common structural elements between structures 11 or 12 and 13, the expected difference between in basicity between the piperidinyl amino group of 11 or 12 and the di-phenyl substituted amine of 13 is sufficient such that it cannot be predicted whether similarity to suggest that 13 would interact with opioid receptors similar to 11 or 12. It is also interesting to note that compound 13 has some structural elements in common with cis-3-methylfentanyl (14),21,22 a non-classical opioid ligand selective for the mu opioid receptor. Accordingly, the preparation of compound 13 and related structures remains an important goal.
(1) Dhawan, B. N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P. B.; Portoghese, P. S.; Hamon, M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 1996, 48, 567-592.
(2) Martin, W. R. The evolution of concepts of opioid receptors. In The Opiate Receptors, Pasternak, G. W. Eds.; Humana Press Inc.: New Jersey, 1988, pp. 3-22.
(3) Portoghese, P. S.; Nagase, H.; Lipkowski, A. W.; Larson, D. L.; Takemori, A. E. Binaltorphimine-related bivalent ligands and their kappa opioid receptor antagonist selectivity [published erratum appears in J. Med. Chem. 1988 Oct;31(10):2056]. J. Med. Chem. 1988, 31, 836-841.
(4) Portoghese, P. S. An approach to the design of receptor-type-selective non-peptide antagonists of peptidergic receptors: xcex4 opioid antagonists. J Med. Chem. 1991, 34(6), 1757-1762.
(5) Dondio, G.; Ronzoni, S.; Eggleston, D. S.; Artico, M.; Petrillo, P.; Petrone, G.; Visentin, L.; Farina, C.; Vecchietti, V.; Clarke, G. D. Discovery of a novel class of substituted pyrrolooctahydroisoquinolines as potent and selective xcex4 opioid agonists, based on an extension of the message-address concept. J. Med. Chem. 1997, 40, 3192-3198.
(6) Zimmerman, D. M.; Nickander, R.; Horng, J. S.; Wong, D. T. New structural concepts for narcotic antagonists defined in a 4-phenylpiperidine series. Nature 1978, 275, 332-334.
(7) Zimmerman, D. M.; Leander, J. D. Invited perspective, selective opioid receptor agonists and antagonists: Research tools and potential therapeutic agents. J. Med Chem. 1990, 33, 895-902.
(8) Rothman, R. B.; Gorelick, D. A.; Eichmiller, P. R.; Hill, B. H.; Norbeck, J.; Liberto, J. G. An open-label study of a functional opioid kappa antagonist in the treatment of opioid dependence. In Problems of Drug Dependence, 1997: Proceedings of the 59th Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc., Harris, L. S. Eds.; U.S. Department of Health and Human Services: Rockville, Md., 1997; Vol. 178, pp. 309.
(9) Thomas, J. B.; Mascarella, S. W.; Rothman, R. B.; Partilla, J. S.; Xu, H.; McCullough, K. B.; Dersch, C. M.; Cantrell, B. E.; Zimmerman, D. M.; Carroll, F. I. Investigation of the N-substituent conformation governing potency and xcexc receptor subtype-selectivity in (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists. J. Med. Chem. 1998, 41(11), 1980-1990.
(10) Aldrich, J. V. Analgesics. In Burger""s Medicinal Chemistry and Drug Discovery, Wolff, M. E. Eds.; John Wiley and Sons, Inc.: 1996; Vol. 3: Therapeutic Agents.
(11) Mitch, C. H.; Leander, J. D.; Mendelsohn, L. G.; Shaw, W. N.; Wong, D. T.; Cantrell, B. E.; Johnson, B. G.; Reel, J. K.; Snoddy, J. D.; Takemori, A. E.; Zimmerman, D. M. 3,4-Dimethyl-4-(3-hydroxyphenyl)piperidines: Opioid antagonists with potent anorectant activity. J.Med. Chem. 1993, 36(20), 2842-2850.
(12) Zimmerman, D. M.; Smits, S.; Nickander, R. Further investigation of novel 3-methyl4-phenylpiperidine narcotic antagonists. In Proceedings of the 40th Annual Scientific Meeting of the Committee on Problems of Drug Dependence,1978, pp. 237-247.
(13) Zimmerman, D. M.; Smits, S. E.; Hynes, M. D.; Cantrell, B. E.; Leander, J. D.; Mendelsohn, L. G.; Nickander, R. Drug Alcohol Depend. 1985, 14, 381-402.
(14) Mitch, C. H.; Leander, J. D.; Mendelsohn, L. G.; Shaw, W. N.; Wong, D. T.; Zimmerman, D. M.; Gidda, S. J.; Cantrell, B. E.; Scoepp, D. D.; Johnson, B. G.; Leander, J. D. J. Med. Chem. 1994, 37, 2262-2265.
(15) Evans, D. A.; Mitch, C. H.; Thomas, R. C.; Zimmerman, D. M.; Robey, R. L. Application of metalated enamines to alkaloid synthesis. An expedient approach to the synthesis of morphine-based analgesics. J. Am. Chem. Soc. 1980, 102, 5955-5956.
(16) Kreek, M. J. Opiates, opioids and addiction. Mol. Psychiatry 1996, 1(3), 232-254.
(17) Zimmerman, D. M.; Gidda, J. S.; Cantrell, B. E.; Schoepp, D. D.; Johnson, B. G.; Leander, J. D. Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J. Med. Chem. 1994, 37(15), 2262-2265.
(18) Awaya, H.; May, E. L.; Aceto, M. D.; Merz, H.; Rogers, M. E.; Harris, L. S. Racemic and optically active 2,9-dimethyl-5-(m-hydroxyphenyl)morphans and pharmacological comparison with the 9-demethyl homologues. J. Med. Chem. 1984, 27, 536-539.
(19) Chang, K. J. ; Rigdon, G. C.; Howard, J. L.; McNutt, R. W. A novel potent and selective nonpeptidic delta opioid receptor agonist, BW373U86. J. Pharm. Exp. Ther. 1993, 267, 852-857.
(20) Calderon, S. N.; Rothman, R. B.; Porreca, F.; Flippen-Anderson, J. L.; McNutt, R. W.; Xu, H.; Smith, L. E.; Bilsky, E. J. ; Davis, P.; Rice, K. C. Probes for narcotic receptor mediated phenomena. 19. Synthesis of (+)-4-[(xcex1R)-xcex1-(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80) A highly selective, nonpeptide xcex4 opioid receptor agonist. J. Med. Chem. 1994, 37, 2125-2128.
(21) Van Bever, W. F.; Niemegeers, C. J. E.; Janssen, P. A. J. Synthetic analgesics. Synthesis and pharmacology of the diastereoisomers of N-(3-methyl-1-2-phenylethyl)-4-piperidyl)-N-phenylpropanamide and N-(3-methyl-1-(1-methyl-2-phenylethyl)-4-piperidyl)-N-phenylpropanamide. J. Med. Chem. 1974, 17(10),1047-1051.
(22) Xu, H.; Kim, C. H.; Zhu, Y. C.; Weber, R. J. ; Rice, K. C.; Rothman, R. B. (+)-cis-Methylfentanyl and its analogs bind pseudo irreversibly to the mu opioid binding site: Evidence for pseudoallosteric modulation. Neuropharmacology 1991, 30, 455-462.
It is an object of the present invention to provide novel compounds which bind to opioid receptors.
It is another object of the present invention to provide novel compounds which are opioid receptors antagonists that bind with high affinity.
It is another object of the present invention to provide novel opiates that are selective for the kappa receptor as compared to the delta and mu receptors.
It is another object of the present invention to provide novel opiates that are selective for the mu and kappa receptors as compared to the delta receptor.
It is another object of the present invention to provide novel opiates that are selective for the delta receptor as compared to the mu and kappa receptors.
It is another object of the present invention to provide novel opiates that are pure antagonists at the mu, delta and kappa receptors.
It is another object of the present invention to provide methods of making the novel compounds.
It is another object of the present invention to provide methods of treating a variety of disease states with the novel opiate compounds of the present invention.
The objects of the present invention may be accomplished with compounds represented by formula (I), or pharmaceutically acceptable salts thereof:
where
R1 is hydrogen, an alkyl group, an aryl group, or an aralkyl group;
R2 is hydrogen, an alkyl group, an aryl group, or an alkaryl group; and
R3is
each X is, independently, halogen, xe2x80x94OH, xe2x80x94OR, an alkyl group, an aryl group, xe2x80x94NH2, xe2x80x94NHR, xe2x80x94N(R)2, xe2x80x94CF3, xe2x80x94CN or xe2x80x94C(O)NH2, xe2x80x94C(O)NHR, or xe2x80x94C(O)N(R)2;
each R is, independently, an alkyl group, an aryl group or an alkaryl group;
n is 0 or an integer from 1 to 5; and
Ra is hydrogen or an alkyl group.
The objects above may also be accomplished with compounds represented by formula
(II): or pharmaceutically acceptable salts thereof, where
R1 is an alkyl group or aralkyl group; and
R3, R4, R5, R6 are each, independently, hydrogen, an alkyl group, xe2x80x94OH, xe2x80x94NH2, xe2x80x94NHR, xe2x80x94N(R)2, halogen, xe2x80x94OR, xe2x80x94CF3, xe2x80x94CN, xe2x80x94NO2, or xe2x80x94NHC(O)R;
each R is, independently, an alkyl group, an aryl group, or an alkaryl group; and
R7 is hydrogen or an alkyl group.
The objects of the present invention may be also accomplished with compounds represented by formula (III), or pharmaceutically acceptable salts thereof:
where
R1 is an alkyl group or an aralkyl group;
R2 is hydrogen, an alkyl group, an aralkyl group, xe2x95x90O, xe2x80x94NH2, xe2x80x94NHR, xe2x80x94N(R)2, xe2x80x94NHC(O)R, xe2x80x94NRC(O)R, xe2x80x94NHC(O)R5, or xe2x80x94NRC(O)R5;
R3 and R4 may be hydrogen or methyl, with the proviso that when R3 is methyl then R4 is hydrogen and when R3 is hydrogen then R4 is methyl;
each R is, independently, an alkyl group, an aryl group, or an alkaryl group; and
R5is
each X is, independently, halogen, xe2x80x94OH, xe2x80x94OR, an alkyl group, an aryl group, NH2, xe2x80x94NHR, xe2x80x94N(R)2, xe2x80x94CF3, xe2x80x94CN, xe2x80x94C(O)NH2, xe2x80x94C(O)NR or xe2x80x94C(O)N(R)2;
each R is, independently, an alkyl group, an aryl group, or an alkaryl group;
n is 0 or an integer from 1 to 5; and
Ra is hydrogen or an alkyl group.
The objects above may be accomplished with compounds represented by formula (IV), or pharmaceutically acceptable salts thereof:
where
Ra and Rb are each, independently, hydrogen or an alkyl group, or Ra and Rb, together, form a cycloalkyl group;
each X is, independently, an alkyl group;
O is a five- or six-membered aryl or heteroaryl group;
each Z is, independently, an alkyl group, xe2x80x94OH, xe2x80x94OR, halogen, xe2x80x94CF3, xe2x80x94CN, xe2x80x94NH2, xe2x80x94NHR, or xe2x80x94N(R)2;
each R is, independently, an alkyl group, an aryl group, or an alkaryl group;
each W is an alkyl group;
n is 0 or an integer from 1 to 4;
y is 0 or an integer from 1 to 5;
z is 0 an integer from 1 to 8; and
R5 is an alkyl group, alkenyl group, or aralkyl group.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to an erosion resistant wear sleeve at the fluid outlet of a pressure valve. More particularly, to a wear sleeve having a diverging fluid outlet end for transitioning from the smaller choke passage to the larger line bore.
High-pressure valves for controlling flow of drilling fluids are important devices in the exploration and production of oil and gas. In the trade such valves are commonly referred to as choke valves.
A choke valve is exposed to erosive and corrosive drilling fluids for extended periods of time. Drilling fluids are designed to carry the debris from the drill bit to the surface and often are quite viscous and particle-laden. The choke valve is subjected to high flow velocities of these dense, particle-laden fluids creating an extremely erosive environment.
When a pay-zone is reached, pressures immediately increase, forcing the drilling fluids to the surface in the return line. Generally when this occurs, the blowout preventers are closed and the pressure is controlled through the choke valves. When the choke valve is closed, it should seat tightly so that no leakage occurs. For this reason erosion of the valve seat and/or the gate can be a severe problem.
However, deterioration of any component within the choke valve is a problem that requires the system to be shut down and the eroded component to be replaced. Another component of the choke valve that experiences rapid erosion is the extreme end of the fluid outlet where the choke valve joins the pipeline. The accelerated erosion of the fluid outlet end is associated with a flow discontinuity caused by the abrupt transition from the smaller choke passage to the larger line bore. A need exists for a mechanism for minimizing this erosion to prolong the useful life of the choke valve.
The present invention provides a wear sleeve and a replaceable retainer ring, wherein the outlet end of the retainer ring is altered to decrease the abruptness of the transition from the smaller choke passage to the larger line bore. The outlet end may be tapered, curved or otherwise shaped so that the internal diameter of the retainer ring increases at its outlet end.
The foregoing has outlined rather broadly several aspects of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other tools for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computing architectures often use a client-server model. The client-server model has centralized machines providing resources or services called servers. Resources or services are provided to distributed devices called clients. A typical mode of operation for a client-server relationship is for a client to request a service from the server, the server then executes an application or carries out some task involving data or functions available to the server, and finally the server completes the loop by providing some level of feedback or results to the client. This activity is generally carried out over a network, but a client-server model may be employed on a single machine (e.g., a personal computer acting as server and client).
The client-server model offers several benefits over alternative architectures like peer-to-peer. In the peer-to-peer model, the architecture includes only client devices. Resources of each client are shared for the benefit of an entire network. Conversely, in the client-server architecture, client resources are not utilized via the server, and therefore are only available to the client. The server, being centralized, acts as a hub of activity and sits in a position to control resources, services, or access to either. Client-server architectures are easier to maintain and can be more reliable because very little relies on the individual clients.
Many common systems have adopted the client-server model. A simple example is a basic website. The application that is the website resides on a server on a network. Clients may gain access to that website through a client interface or web browser in most cases. Client activity is translated to service requests from the client to the server. The server replies by executing the website application. Another common example is an email system. Each email account is a client and operates via requests to the email server. Many other examples exist such as: web servers, file transfer protocol (FTP) servers, application servers, database servers, name servers, print servers and so on.
One of the great benefits of the client-server model is security. The server acts as gatekeeper to all services, data, and resources available to clients. A key element to that security is the ability to establish a secure relationship between the client and server. Once established, the secure relationship allows a free exchange of services and data between the client and server. A corollary to the ability to establish secure relationships is the ability to invalidate. Over time those secure relationships become needless, compromised, or simply stale. Invalidating secure relationships frees up resources on the server to be allocated to other clients. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the recent drive for higher integration and operating speeds in LSI devices, the pattern rule is made drastically finer. The photolithography which is currently on widespread use in the art is approaching the essential limit of resolution determined by the wavelength of a light source. As the light source used in the lithography for resist pattern formation, g-line (436 nm) or i-line (365 nm) from a mercury lamp was widely used in 1980's. Reducing the wavelength of exposure light was believed effective as the means for further reducing the feature size. For the mass production process of 64 MB dynamic random access memories (DRAM, processing feature size 0.25 μm or less) in 1990's and later ones, the exposure light source of i-line (365 nm) was replaced by a KrF excimer laser having a shorter wavelength of 248 nm. However, for the fabrication of DRAM with a degree of integration of 256 MB and 1 GB or more requiring a finer patterning technology (processing feature size 0.2 μm or less), a shorter wavelength light source was required. Over a decade, photolithography using ArF excimer laser light (193 nm) has been under active investigation. It was expected at the initial that the ArF lithography would be applied to the fabrication of 180-nm node devices. However, the KrF excimer lithography survived to the mass-scale fabrication of 130-nm node devices. So, the full application of ArF lithography started from the 90-nm node. The ArF lithography combined with a lens having an increased numerical aperture (NA) of 0.9 is considered to comply with 65-nm node devices. For the next 45-nm node devices which required an advancement to reduce the wavelength of exposure light, the F2 lithography of 157 nm wavelength became a candidate. However, for the reasons that the projection lens uses a large amount of expensive CaF2 single crystal, the scanner thus becomes expensive, hard pellicles are introduced due to the extremely low durability of soft pellicles, the optical system must be accordingly altered, and the etch resistance of resist is low; the development of F2 lithography was stopped and instead, the ArF immersion lithography was introduced.
In the ArF immersion lithography, the space between the projection lens and the wafer is filled with water having a refractive index of 1.44. The partial fill system is compliant with high-speed scanning and when combined with a lens having a NA of 1.3, enables mass production of 45-nm node devices.
One candidate for the 32-nm node lithography is lithography using extreme ultraviolet (EUV) radiation with wavelength 13.5 nm. The EUV lithography has many accumulative problems to be overcome, including increased laser output, increased sensitivity, increased resolution and minimized edge roughness (LER, LWR) of resist film, defect-free MoSi laminate mask, reduced aberration of reflection mirror, and the like.
Another candidate for the 32-nm node lithography is high refractive index liquid immersion lithography. The development of this technology was stopped because LUAG, a high refractive index lens candidate had a low transmittance and the refractive index of liquid did not reach the goal of 1.8.
The process that now draws attention under the above-discussed circumstances is a double patterning process involving a first set of exposure and development to form a first pattern and a second set of exposure and development to form a pattern between the first pattern features. A number of double patterning processes are proposed. One exemplary process involves a first set of exposure and development to form a photoresist pattern having lines and spaces at intervals of 1:3, processing the underlying layer of hard mask by dry etching, applying another layer of hard mask thereon, a second set of exposure and development of a photoresist film to form a line pattern in the spaces of the first exposure, and processing the hard mask by dry etching, thereby forming a line-and-space pattern at a half pitch of the first pattern. An alternative process involves a first set of exposure and development to form a photoresist pattern having spaces and lines at intervals of 1:3, processing the underlying layer of hard mask by dry etching, applying a photoresist layer thereon, a second set of exposure and development to form a second space pattern on the remaining hard mask portion, and processing the hard mask by dry etching. In either process, the hard mask is processed by two dry etchings.
As compared with the line pattern, the hole pattern is difficult to reduce the feature size. In order for the prior art method to form fine holes, an attempt is made to form fine holes by under-exposure of a positive resist film combined with a hole pattern mask. This, however, results in the exposure margin being extremely narrowed. It is then proposed to form holes of greater size, followed by thermal flow or RELACS® method to shrink the holes as developed. However, there is a problem that control accuracy becomes lower as the pattern size after development and the size after shrinkage differ greater and the quantity of shrinkage is greater. With the hole shrinking method, the hole size can be shrunk, but the pitch cannot be narrowed.
It is then proposed in Non-Patent Document 1 that a pattern of X-direction lines is formed in a positive resist film using dipole illumination, the resist pattern is cured, another resist material is coated thereon, and a pattern of Y-direction lines is formed in the other resist film using dipole illumination, leaving a grid line pattern, spaces of which provide a hole pattern. Although a hole pattern can be formed at a wide margin by combining X and Y lines and using dipole illumination featuring a high contrast, it is difficult to etch vertically staged line patterns at a high dimensional accuracy. It is proposed in Non-Patent Document 2 to form a hole pattern by exposure of a negative resist film through a Levenson phase shift mask of X-direction lines combined with a Levenson phase shift mask of Y-direction lines. However, the crosslinking negative resist film has the drawback that the resolving power is low as compared with the positive resist film, because the maximum resolution of ultrafine holes is determined by the bridge margin.
A hole pattern resulting from a combination of two-exposures of X- and Y-direction lines and subsequent image reversal into a negative pattern can be formed using a high-contrast line pattern of light. Thus holes having a narrow pitch and fine size can be opened as compared with the prior art.
Non-Patent Document 3 reports three methods for forming hole patterns via image reversal. The three methods are: method (1) involving subjecting a positive resist composition to two double-dipole exposures of X and Y lines to form a dot pattern, depositing a SiO2 film thereon by LPCVD, and effecting O2-RIE for reversal of dots into holes; method (2) involving forming a dot pattern by the same steps as in (1), but using a resist composition designed to turn alkali-soluble and solvent-insoluble upon heating, coating a phenol-base overcoat film thereon, effecting alkaline development for image reversal to form a hole pattern; and method (3) involving double dipole exposure of a positive resist composition and organic solvent development for image reversal to form holes.
The organic solvent development to form a negative pattern is a traditional technique. A resist composition comprising cyclized rubber is developed using an alkene such as xylene as the developer. An early chemically amplified resist composition comprising poly(tert-butoxycarbonyloxystyrene) is developed with anisole as the developer to form a negative pattern.
Recently a highlight is put on the organic solvent development again. It would be desirable if a very fine hole pattern, which is not achievable with the positive tone, is resolvable through negative tone exposure. To this end, a positive resist composition featuring a high resolution is subjected to organic solvent development to form a negative pattern. An attempt to double a resolution by combining two developments, alkaline development and organic solvent development is under study.
As the ArF resist composition for negative tone development with organic solvent, positive ArF resist compositions of the prior art design may be used. Such pattern forming processes are described in Patent Documents 1 to 3. These patent documents disclose resist compositions for organic solvent development comprising a copolymer of hydroxyadamantane methacrylate, a copolymer of norbornane lactone methacrylate, and a copolymer of methacrylate having acidic groups including carboxyl, sulfo, phenol and thiol groups substituted with two or more acid labile groups, and pattern forming processes using the same.
Further, Patent Document 4 discloses a process for forming a pattern through organic solvent development in which a protective film is applied onto a resist film. Patent Document 5 discloses a topcoatless process for forming a pattern through organic solvent development in which an additive is added to a resist composition so that the additive may segregate at the resist film surface after spin coating to provide the surface with improved water repellency.
The positive development system involving deprotection reaction to generate a carboxyl group and subsequent neutralization reaction with aqueous alkaline developer to improve a dissolution rate achieves a high dissolution contrast in that the dissolution rate differs between the unexposed and exposed regions by a factor of more than 1,000. In contrast, the negative development system via organic solvent development provides a low contrast because the dissolution rate in the unexposed region due to solvation is low, and the dissolution rate thus differs between the unexposed and exposed regions by a factor of less than 100. For the negative development system via organic solvent development, it is desired to seek for a novel material which can offer a high dissolution contrast. Patent Document 6 describes an acid labile group of tertiary ester type having isopropyl directly attached to cyclohexyl ring. Although this example is to be applied to a positive resist composition compatible with alkaline developer, this acid labile group has never been used in positive resists because the branched alkyl group directly attached to ring undergoes swell in the developer, with an increased propensity that the pattern collapses and bridges form between pattern features after development. | {
"pile_set_name": "USPTO Backgrounds"
} |
A mobile computing device such as a notebook computer, tablet computer, mobile phone, or smart device may be powered by a portable energy source, such as at least one battery, fuel cell, etc. The operation of such a device may be limited by the life of the energy source. Accordingly, appropriate power management of the device may be beneficial for extending the life of the energy source and the operation of the device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a booster circuit for generating a higher voltage than a power supply voltage, and particularly to a charge pump style booster circuit.
2. Description of Related Art
A display unit of a portable information device such as cellular phone and Personal Digital Assistant (PDA) is configured to operate at a low power supply voltage to save power consumption. On the other hand, a display panel for displaying processed information sometimes requires a higher voltage than a power supply voltage. Generally a circuit for driving a display panel is provided with a booster circuit for boosting a power supply to generate a necessary driving voltage.
An example of booster circuit is disclosed in Japanese Unexamined Patent Application Publication No. 2005-45934. The booster circuit is a charge pump style as shown in FIG. 3 that includes P-channel MOS transistors M1, M3 to M8, an N-channel MOS transistor M2, capacitors C1 and C2. The booster circuit is configured as shown in FIG. 3 and boosts a power supply voltage VDD by twice in response to a clock signal CLK to generate the voltage as Vout.
The circuit in FIG. 3 includes a P-channel MOS transistor M9 between a power supply line VDD and the capacitor C2 (i.e. Vout line) in order to speed up start-up at power-on.
A booster circuit needs to be operated to display information, however it is not necessary to display information at any time. Operating a booster circuit at all the time only consumes unnecessary power. Thus a boosting operation of a booster circuit is suspended while there is no information to be displayed. The circuit shown in FIG. 3 fixes a clock CLK to high-level, turns on the transistors M1 and M2, turns off the transistor M3 and M4 to charge the capacitor C1 while a boosting operation is suspended. Further, the circuit fixes a control signal CNT supplied to agate of the transistor M9 to low-level and electrically connects the VDD line and the Vout line, so that the capacitor C2 is charged to a level of VDD. Charging the capacitor C2 speeds up start-up when resuming a boosting operation.
However in recent years, there are increasing requests from clients to generate a ground level potential as Vout while a boosting operation is suspended, so as to ensure that an operation of a circuit receiving Vout is stopped while a boosting operation is suspended. Setting Vout to a ground level while a boosting operation is suspended causes a signal necessary to operate a booster circuit such as a clock signal CLK to be the ground level, thereby not ensuring to stop a boosting operation. This is because that the signal such as the clock signal CLK requires twice the VDD level during a boosting operation and is generated by a circuit operated on Vout voltage. | {
"pile_set_name": "USPTO Backgrounds"
} |
A. Field of the Invention
This invention describes a particle-loaded fibrillated polytetrafluoroethylene web with a reinforcing screen or scrim at least partially embedded therein. Compared to an unreinforced web, this reinforced web can resist a much greater pressure drop across it without deforming and displays greater strength against various mechanical stresses.
B. Description of Related Art
Particle-loaded, non-woven, fibrous articles wherein the non-woven fibrous web can be compressed, fused, melt-extruded, air-laid, spunbonded, mechanically pressed, or derived from phase separation processes have been disclosed as useful in separation science. Web products of non-woven webs having dispersed therein sorbent particulate have been disclosed to be useful as, for example, respirators, protective garments, fluid-retaining articles, wipes for oil and/or water, and chromatographic and separation articles. Coated, inorganic oxide particles have also been enmeshed in such webs. Such webs with enmeshed particles which are covalently reactive with ligands (including biologically-active materials) have also been recently developed.
Numerous examples of PTFE filled with or entrapping particulate material are known in many fields. Many applications for PTFE filled with electroconductive materials are known. These include circuit boards, oil leak sensors, electrical insulators, semipermeable webs, and various types of electrodes. Other such combinations have been used as gasket or sealing materials and wet friction materials. Still others have been used to produce high-strength PTFE films and webs with applications as structural elements and electronic components. Where the particulate has catalytic properties, this type of combination provides a form which can be conveniently handled. U.S. Pat. No. 4,153,661 discloses various particulate distributed in a matrix of entangled PTFE fibrils as being useful in, among other things, electronic insulators and semipermeable webs.
Numerous combinations of PTFE and metals in which the metal is not entrapped within a PTFE matrix are also known. These include PTFE webs completely or partially coated with metal and metal matrices with a network of fibrillated PTFE in the pores thereof. PTFE powder with metal filler has been used (in paste form) as a battery electrode and as a self-lubricating layer coated on bronze bearings. PTFE films coated onto metal films and plates are also known.
Methods of preparing fibrillated PTFE webs have been described in, for example, U.S. Pat. Nos. 4,153,661, 4,460,642, and 5,071,610.
The physical properties of such particle-loaded fibrillated PTFE webs are somewhat limited, however. They do not resist high pressure drops without deforming and have limited strength against mechanical stresses created by, for example, fluid flow, tensile force, mechanical impact, and abrasion. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a copying machine or like image forming apparatus, and more particularly to a control system for controlling a fixing unit provided in the image forming apparatus.
A fixing unit provided in an existing image forming apparatus such as a copying machine includes a fixing roller and a pressing roller. The fixing unit heats a copy sheet at a predetermined fixing temperature while transporting it. whereby fixing a transferred image onto the copy sheet. The fixing roller is provided with a heater for heating the fixing roller and a temperature detector including a thermistor for detecting the temperature of the fixing roller. The temperature of the fixing roller is maintained in a predetermined temperature range by turning on and off the heater at appropriate timings, i.e., on-off controlling the heater in accordance with the temperature detected by the temperature detector.
The fixing unit is activated when the image forming apparatus is powered on. While power is applied to the image forming apparatus, the temperature of the fixing roller is maintained at a predetermined stand-by temperature near the fixing temperature so that a copying operation can be executed any time. Upon start of the copying operation, the temperature of the fixing roller is increased from the stand-by temperature to the fixing temperature, and decreased from the fixing temperature to the stand-by temperature again upon completion of the copying operation.
Recently, a multitude of functions and high performance have been required for an image forming apparatus as an office machine. However, there has also existed an increasing demand for a low cost image forming apparatus having a simplified and small-sized construction. A simplified and small-sized image forming apparatus is realizable by reducing the number of various functions and sensors or making them smaller. Such an apparatus will be power-saving and can be manufactured at a low cost.
For example, the image forming apparatus may have a simple construction by reducing the number of complicated control mechanisms such that copy sheets are manually fed one by one thereto. Further, detection of jam of a copy sheet may be left in an operator's hand. In other words, the operator may discriminates whether the jam has occurred based on whether or not the copy sheet has discharged within a specified period following start of a copying operation. In this way, a jam sensor can be dispensed with. Furthermore, the image forming apparatus can be manufactured at a low cost if various components as well as a main body of the apparatus are formed with low cost resin.
However, promotion of small-sized and low cost image forming apparatus is at variance with the use of material having high heat resistance and makes it difficult to provide a space for releasing the heat and heat releasing members within the apparatus. This requires measures to reduce an amount of heat generated within the apparatus.
Particularly, in the case where a fixing unit provided with a conventional control system is applied in a simple and small-sized image forming apparatus, the temperature of a fixing roller is controlled using a heater all the time while power is applied to the apparatus. Accordingly, it is difficult to suppress a temperature increase within the apparatus.
Further, in this apparatus, the heater is kept energized even during the time while the copying operation is not executed as long as power is applied to the apparatus. Accordingly, the apparatus is obliged to consume more power than necessary.
Moreover, in the case where, for example, power outage occurs while the copy sheet is being transported in the fixing unit causing a copy sheet jam therein, it is not to be discriminated whether the copy sheet has been discharged within a predetermined period. Therefore, the apparatus cannot detect the jam. The copy sheet remaining in the fixing unit is heated by the fixing roller for a long time until a next copying operation, thereby causing problems such as burning of the copy sheet and fire. | {
"pile_set_name": "USPTO Backgrounds"
} |
There is no admission that the background art disclosed in this section legally constitutes prior art.
Type I diabetes is an autoimmune disease in which the beta-cells of the body are destroyed thus resulting in a lack of insulin production. This leads to an inability to control blood glucose concentration as insulin facilitates the cellular uptake of glucose. If levels of blood glucose concentration remain high for extended periods of time, long-term complications such as neuropathy, nephropathy, vision loss and the like can arise. [1-3] Due to the lack of insulin production, type I diabetics are required to take insulin subcutaneously as their primary method of therapy.
The major difficulty involving the successful treatment of diabetes is the appropriate dosing of insulin such that a normal physiologic glucose concentration is maintained. There are a multitude of factors which influence subsequent glucose concentrations in diabetics including but not limited to: insulin dosage, carbohydrate and nutritional intake, lifestyle (i.e., sleep-wake cycles and sleep quality, exercise, etc.), and emotional states (i.e., stress, depression, contentment, etc.). [4-14] The effect of these various factors on subsequent glucose levels is not fully understood, and may be similar across all diabetic patients or patient specific. In order to optimize control in diabetic patients, there needs to be some method for quantifying or predicting future occurrences of dysglycemia (i.e., high and low blood glucose concentration, also referred to as hyperglycemia and hypoglycemia, respectively).
Fluctuations in glucose concentration experienced on an everyday basis appear to be chaotic, however, prior research does elude to possible patterns which may exist. [14-20] Circadian rhythms in sleep and subsequent glucose regulation have been identified in previous research. [14] Other patterns in insulin activity, insulin sensitivity, and their subsequent effect on glucose concentration have been identified in previous research. [15-20] The existence of rhythms in insulin activity, and subsequent quantifiable patterns in glucose fluctuations, provide the foundation and construct for the development of the neural network models described herein.
The advent of continuous glucose monitoring (CGM) in the field of diabetes technology provides even more insight for the determination of patterns existent in daily glucose fluctuations of diabetic patients. The usage of CGM technology is also advantageous as it leads to a better understanding of gluco-regulatory dynamics.
Attempts to model blood glucose and insulin interactions in diabetic individuals have been an ongoing topic in current research. The complexity of the neural networks developed in such studies range from simplistic feed-forward neural networks to more complex recurrent networks. In most of these studies, in an attempt to achieve tight glucose control in the normal physiological range, a controller is used to determine the required insulin dosage (based on glucose prediction). [2-28] The determination of optimal insulin dosages is likely to have considerable error associated with each model as each patient possesses different insulin sensitivities.
In many of the previous endeavors aimed at predicting glucose or optimal insulin dosages to maintain normal glucose concentration, models were generated using inputs including: glucose meter readings, insulin dosages, exercise/activity status, and nutritional intake. While these factors undoubtedly contribute to changes in blood glucose concentration and are quantifiable, there are many factors which are left unrecognized in previous models, particularly other lifestyle and emotional factors.
As mentioned previously, a major difficulty in the management of diabetes is the optimization of insulin therapies to avoid occurrences of hypoglycemia and hyperglycemia. The overall effect of the factors impacting glucose fluctuations has not been fully quantified to determine the impact on subsequent glycemic trends.
The recent advances in diabetes technology such as real-time continuous glucose monitoring (CGM) provide significant sources of data such that quantification may be possible. Depending on the CGM technology utilized, the sampling frequency ranges from 1-5 minutes.
However, physiological systems and diseases, such as diabetes mellitus which affect such systems, are extremely complex in nature. Attempts to analyze and better understand these types of “systems” have utilized methods such as control engineering. Based on these methods, there have been many attempts aimed at prediction, simulation, and fault detection. Although these methods, in part, provide insight into biological systems, they are still limited due to the inherent complexity of the systems they are attempting to model.
An Artificial Neural Network (ANN) is one approach that is recently gaining considerable interest. In part, this is due to its inherent nature which would seem to be well suited to model complex physiological systems. An ANN functions as a brain within a nervous system, in that it has the ability to distinguish and recognize a particular object from a large set of objects. Neural networks can be utilized to construct a mathematical model of a specific system which is to be controlled.
Another application for the development of such systems which has not received considerable research attention, is in reducing post-traumatic hyperglycemia. Following severe trauma, research indicates that approximately 5% of individuals may experience hyperglycemia. [29] If hyperglycemia is sustained, mortality and requirements for care are potentially increased. [30-32] Published data indicate that lowering glucose levels after trauma may decrease mortality, the length of stay on ventilators, incidence of infection, and length of stay in the intensive care unit (ICU) and in the hospital. Aggressive therapy to maintain glucose levels below 150 mg % was shown [31] to improve outcomes although the ability to sustain this goal in post-traumatic circumstances may be difficult as the patient recovers.
Continuous glucose monitoring (CGM) in a real-time setting represents a tremendous advantage in such a venue. CGM allows for the assessment of trends in glycemic excursions over an extended period of time. CGM in patients, who have sustained significant trauma, combined with a system capable of anticipating post-traumatic hyperglycemia, may enhance glycemic control and reduce post-trauma glycemic variability, thus potentially reducing infection rates, ventilator days, pneumonia, length of stay in the ICU, and mortality. For example, if glucose levels exceed 200 mg % in severely injured patients on admission to trauma centers, their expected survival has been reported to be reduced by more than 50%. [30] Persistence of this hyperglycemia during the first 2 days after trauma has been shown to further reduce survival [32] and increasing glucose levels during this early post-trauma period has been shown to potentially predict adverse outcomes in these patients. [30] Glucose levels greater than 150 mg % during the first 2 post-trauma days is also associated with an increased risk of mortality and/or other complications and subsequent euglycemic maintenance does not appear to improve these outcomes. [29]
Post-traumatic hyperglycemia is a significant health risk and occurs with a relative high frequency. In an unpublished study at the University of Toledo Medical Center, measurements of the initial glucose concentration of 50 Level 1 trauma patients were obtained upon arrival to the critical care unit. Of these, 53% had elevated glucose concentrations (≧150 mg/dL). Of these patients, 34% had glycemic levels within 150-199 mg/dL and were defined as elevated and 19% had glucose concentrations greater than 199 mg/dL and were defined as highly elevated; results of this study are summarized in FIG. 1.
Patients with initial glucose concentrations ≧150 mg/dL usually experienced considerable glycemic variability over the course of their stay in the critical care unit.
FIG. 2 illustrates the degree of glycemic variability in a single trauma patient over the course of their stay in the intensive care unit and demonstrates the need for intervention to maintain glucose levels in a normal range.
To minimize the incidence of hyperglycemia following trauma, prompt, aggressive, and sustained treatment is needed, especially to reduce development of adverse outcomes.
Another application for the utilization and development of such predictive systems for glucose include cardio-thoracic surgical patients and other critical care patients which commonly experience elevated glucose. While models for these patients have generated little research attention, the research conducted demonstrates the need for glycemic prediction and optimization of glycemic control in this patient base. For example, patients who undergo some form of cardiovascular surgical intervention are also prone to glycemic fluctuations. Control of glucose concentration in such patients is a desired goal for improving patient outcomes. Also, tight glycemic control in cardiac surgical patients has been correlated to reduced morbidity and mortality rates. [33-37] Thus, it is integral to patient outcome, that tight glycemic control be obtained in cardiac surgical patients both interoperatively/perioperatively as well as post operatively.
In other venues, such as in a military situation, with current technology, the intervention required is likely to exceed the capability of medics in the field. The ability to make key decisions, such as rapid evacuation or for individuals in remote places where evacuation can be difficult or dangerous, the need for aggressive treatment becomes a critical judgment. There is a need to provide improved monitoring technology and treatment criteria, as well as, rapid and accurate assessment of the appropriate urgency for treatment of the wounded.
In addition, recent research includes: U.S. Pat. No. 7,052,472: Systems and methods for detecting symptoms of hypoglycemia; U.S. Pat. No. 7,025,425: Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data; U.S. Pat. No. 6,931,327: System and methods for processing analyte sensor data; U.S. Pat. No. 6,923,763: Method and apparatus for predicting the risk of hypoglycemia; U.S. Pat. No. 6,882,940: Methods and devices for prediction of hypoglycemic events: U.S. Pat. No. 6,658,396: Neural network drug dosage estimation; U.S. Pat. No. 6,582,366: Medical devices for contemporaneous decision support in metabolic control; U.S. Pat. No. 6,572,535: Method and apparatus for real-time control of physiological parameters; U.S. Pat. No. 6,572,542: System and method for monitoring and controlling the glycemic state of a patient; U.S. Pat. No. 6,544,212: Diabetes management system; U.S. Pat. No. 6,379,301: Diabetes management system and method for controlling blood glucose; U.S. Pat. No. 6,272,480: Method and arrangement for the neural modeling of a dynamic system with non-linear stochastic behavior; and U.S. Pat. No. 7,230,529: System, method, and computer program for interfacing an expert system to a clinical information system.
Therefore, what is needed is an improved supporting algorithm and model for glycemic forecasting and prediction for use with glucose monitoring technologies.
There is a need for improved predictive models for glucose which do not have the prior systems' significant prediction error and limited prediction windows of a few minutes.
It is also desired to have a system that utilizing these glycemic predictions provides the ability to determine insulin dosage estimates for maintaining normal glucose concentration utilizing an algorithm/model which has the capability to learn and adapt given historical trends in glycemic data.
It is further desired to provide a system that has patient/user interaction. The patient and user should be able to select the predictive/forecast window. Such a system should be configured to alert/alarm the user/patient in the event that dysglcyemia (hypoglycemia and hyperglycemia) are predicted, or the system estimates there is a high probability of the occurrence of these unwanted glycemic states. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to cooking equipment and in particular to a cooking appliance that includes a griddle plate for grilling food products such as meat patties, eggs, bacon, sausage links, potatoes and the like.
Conventional griddle plates are made from steel or cast iron and are heated by means of tubular sheathed elements as, for example, disclosed in U.S. Pat. No. 3,843,315. The heating elements are maintained in contact with the underside of the griddle plate by a clamping system to maximize heat transfer and prevent over heating of the heating elements. The clamping system involves a substantial and often complex metal fabrication that adds cost and weight to the cooking appliance. The clamping system is secured to the griddle plate by a rather large number of studs that are screwed into holes or welded on to the griddle plate. This also adds cost and weight to the cooking appliance.
Another disadvantage of the conventional griddle plate heating system is that upon initial warming and heat recovery after placement of cool food products on the griddle, there is more heat transfer at the points of heating element contact than at other areas of the griddle plate. This leads to uneven griddle plate cooking surface temperatures. An uneven cooking surface temperature, in the form of localized hot and cool spots, affects the quality of the food products being grilled.
A thermal insulating material is used below the heating elements to maintain efficient heat transfer and prevent heat from affecting nearby components, controls or structures. The insulating material, if not contained, can be an environmental hazard to users of the cooking appliance. A container for the insulation is an added cost.
The present invention provides an improved cooking appliance that is relatively simple in construction and inexpensive to manufacture versus the heavy, labor intensive grills of the prior art.
Moreover, the present invention provides an improved cooking appliance that provides a uniform distribution of heat over the entire surface of a griddle plate which overcomes the uneven heat distribution associated with the heating elements used in conventional grills.
A cooking appliance according to the present invention comprises a heating assembly for heating a griddle plate. The heating assembly includes a non-contact infrared heating element disposed within the assembly such that there is a space between the heating element and the griddle plate.
In other embodiments according to the present invention, the heating assembly includes a container having a cavity with the heating element being disposed within the cavity. Preferably, the cavity is formed by thermal insulating material. The container is formed of a base and a wall.
In one preferred embodiment according to the invention, the infrared heating element is secured to the insulating material by staples.
In another embodiment according to the present invention, the cooking appliance includes a lower platen and a positioning mechanism, each mounted to a housing. An upper platen is mounted to the positioning mechanism. The positioning mechanism is operable to move the upper platen between a cooking and a non-cooking position with respect to the lower platen. A heating assembly is provided to heat the lower platen. The heating assembly includes a non-contact infrared heating element disposed within the assembly such that there is a space between the heating element and the lower platen. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to cassettes for receiving and stacking of banknotes. In particular, the invention relates to cassettes with improved stacking capability.
Existing cassettes for banknote accepting devices such as currency validators or vending devices, include a mechanism for initially receiving a banknote in a guide with a movable actuator positioned between the guides for displacing the banknote laterally to add it to a stack of banknotes adjacent one side of the guides. Typically, this actuator moves the stack of banknotes a sufficient distance for the best banknote to clear the guides. The guides are stationary and aligned with a receiving slot of the cassette. A helical spring bias the banknote in one direction and the movement of the actuator also causes a compression of the spring.
Cassettes of this type require considerable interior space for accommodating movement of the actuator through the stationary guides for stripping of the last received banknote. Furthermore, the actuator must have sufficient power for displacing the stack of banknotes and the spring when a banknote is added to the stack. In many cases, the maximum capacity of the cassette determines the frequency that the cassettes have to be removed and large capacity cassettes are normally desired. On the other hand, space is often at a premium and there is a trade-off between the size of the cassette and the space that is available. Larger capacity cassettes have also required higher power for the actuator as the size of the stack of banknotes which is displaced is also larger.
The present invention provides a structure which more efficiently makes use of the interior volume of the cassette. | {
"pile_set_name": "USPTO Backgrounds"
} |
As one of ingredient compound for producing a poly methyl silsesquioxane-based minute particle having a diol, 3-glycidoxy propyl trialkoxysilane is known (Patent Document 1).
[Patent Document 1] JP-A H11-116681
Additionally, known is a method for synthesizing an organosilicon resin having a diol, in which an alkoxysilane having an alicyclic epoxide is synthesized and hydrolyzed, and an oxidation reaction of the epoxide is conducted.
[Patent Document 2] JP-A H10-87834
A halogenosilane and an alkoxysilane having an alkali-soluble group as typified by diol are useful as an ingredient for a lithography material, an organic-inorganic hybrid material and the like.
There are various types of organosilicon resins having a diol. Known is a method in which an organosilicon resin is previously synthesized and diol is introduced into the resin using polymer reaction. The examples reported are described hereinafter.
Poly methyl silsesquioxane-based minute particle having a diol is reported.
[Patent Document 3] JP-A H11-116681
Moreover, known is a method for synthesizing an organosilicon resin having a diol, in which an alkoxysilane having an alicyclic epoxide is synthesized and hydrolyzed, and an oxidation reaction of the epoxide is conducted.
[Patent Document 4] JP-A H10-87834
According to these methods, it is difficult to accurately control the amount of the diol to be introduced due to use of polymer reaction. And when ingredients are left after the polymer reaction, it is also difficult to remove the remaining ingredients and refine the organosilicon resin. Since an organosilicon resin having a diol shows an excellent alkaline solubility compared with an organosilicon resin having monoalcohol, it is useful as an ingredient for a lithography material, an organic-inorganic hybrid material and the like. In addition, the resin can be an ingredient for a variety of functional materials since the resin is easy to react with a silylating agent. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to display devices in general, and in particular to an electronically controlled and illuminated pictorial artwork display.
2. Description of the Related Art
Cartoon art displays suitable for hanging on a wall can range from simple frames for cartoon cels to complex devices with mechanical parts for moving the images of cartoon characters, speakers for playing back an audio soundtrack, and buttons for initiating the character movement with a synchronized audio soundtrack.
The more complex displays are much more valuable and much more difficult to manufacture. Such a display has a certain thickness within which the display objects may be placed at different depths so as to create a three-dimensional effect. There is a cartoon character (for example) on one piece in the center, with scenery artwork both in front of and in back of, the character. All of this production art is printed on the separate pieces. When a button in the bottom right-hand side is pushed, a sequence of movements with synchronized audio is initiated. The central cartoon character's body and arms move while the soundtrack with both music and dialogue from a movie is played. Other characters and moving objects may appear from behind scenery artwork during the sequence and execute their own movements.
Clearly, the parts of this display must be painstakingly crafted, joined together, and calibrated in order to insure that the sequence of movements and sounds will look and sound as it should. Most of the parts of this display, including the backbox and frame, are customized for this particular cartoon piece and cannot be used in the creation of other cartoon art displays. Because of the economies of scale, a large quantity of such displays (as many as 10,000) must be built in order to recoup fixed costs.
The complex nature of this type of audio-visual cartoon art display results in some shortcomings in both its manufacturing and retailing. As mentioned above, a large number of them must be produced so a truly limited edition of the display (perhaps 1,000) is not practicable from the manufacturing standpoint. Furthermore, because many of the parts, such as the mechanical actuators, are individually crafted and programmed for each style, the manufacturer can not take advantage of interchangeable parts which can be used in a multitude of display design styles.
Because of its complexity, this type of audio-visual cartoon art display must arrive at the retailers fully assembled in a frame. Thus, individual retailers can not individualize the display by placing their own frame on it, or by allowing the customer to choose a frame design. Furthermore, after pressing the button, sales people trying to show the audio-visual cartoon display must wait for the sequence of movements and audio to end before continuing the conversation with the customer. Because the sequence can last a considerable amount of time (e.g., 30 to 60 seconds), it can slow down the momentum of a sales pitch and otherwise distract from the salesperson's talking points. Moreover, if the salesperson is attempting to demonstrate several different styles of products, it becomes burdensome to listen to the audio-visual sequences of each style of product to its completion.
Furthermore, although these complex mechanical devices add audio and visual effects to cartoon art, the addition of these effects are a step removed from the traditional flat animation artworks. In other words, the large bulky mechanical displays are their own form of artwork, but not a means of adding more expressive value to traditional flat animation artworks. Further still, the fact that such a complex display has many mechanical parts makes it difficult to offer a variety of styles and programming.
Therefore, there is a need for a display device for traditional flat animation art which is capable of audio and visual effects which add value and expressive content to the artwork, without detracting from the traditional format of the artwork. There is also a need for an audio-visual cartoon art display device which allows the use of interchangeable parts while still retaining the integrity of traditional animation art. There is a further need for an audio-visual cartoon art display device that allows for the retailer or customer to individualize the framing of the display device without requiring the retailer or customer to deal with the complexities of the device. Furthermore, these is a need for an audio-visual cartoon art display device that may include a long soundtrack and sequence, yet doesn't require the entire sequence/soundtrack to play all the way through. Further still, there is a need for an audio-visual cartoon art display device that offers both reliability and a low service requirement. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various network-based publication systems (e.g., EBAY®, AMAZON®, or CRAIGSLIST®) may facilitate the buying or selling of items (e.g., goods or services) by their users. Additionally, these systems, may keep track of and enable users to view or perform actions with respect to their past actions on these systems. For example, these systems may enable a user to view his purchase history. The purchase history may include a listing of items that the user has purchased (e.g., over a particular period of time, such as a month or year). Each record or entry in the listing may include various information about a purchased item, such as a description, a purchase price, a date of purchase, information about the seller (e.g., user name, feedback rating, and so on), a cost of shipping for the item, and so on. Furthermore, each entry may be associated with actions that the user can perform with respect to a past purchase, such as viewing a seller's other items, viewing similar listed items, listing the purchased stem for sale, contacting the seller, and so on. However, traditional methods of enabling users to view and manage actions associated with their past purchases may not take into account various needs of large-scale buyers (e.g., a buyer who purchases a significantly larger number of items in a given rime period than a typical user). | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Aspects of the present invention relate to a handover in a mobile communication system. More particularly, aspects of the present invention relate to a method and system for improving a call drop caused by a Radio Link Failure (RLF) before handover triggering in a Long-Term Evolution (LTE) communication system.
2. Description of the Related Art
A method of deploying several small-sized multi-cells has been introduced to satisfy requirements of a high data rate and to reliably provide various services in a next generation network cellular system. Due to such advantages, research and standardization work on combining an existing macro-cell and a small-sized femto-cell are currently being conducted in, among others, the 3rd Generation Partnership Project (3GPP) and Institute of Electrical and Electronics Engineers (IEEE) 802.16 standards.
When managing a Base Station (BS), a Self-Organizing Network (SON) is used to configure a network in a more reliable and effective manner. In particular, as it becomes clear that mobile communication systems will employ a femto-cell and a next-generation communication technique, there is an increasing interest in SONs including an automation function, such as self-configuration or self-optimization. This is because cell planning and the like cannot be performed in advance, because nodes (such as the femto-cell) are not installed in an optimal position defined by a service provider. Rather, the nodes are installed by a user, and thus the nodes have to perform optimization by themselves by detecting an environment and gathering information.
Therefore, in an SON environment, an information exchange operation for having a relation with neighbor BSs, i.e., an Automatic Neighbor Relation (ANR) function, is generally necessary for an update process performed when a new BS is added and an old BS is released. The ANR function is basically performed using a User Equipment (UE).
FIG. 1 illustrates an exemplary scenario of a Radio Link Failure (RLF) before handover triggering (hereinafter, referred to as “RLF_before_HO”) in a mobile communication system of the related art.
Referring to FIG. 1, an Element Management System (EMS)/SON server 100 performs network management, and controls an update process when a new BS (also referred to as an evolved Node-B (eNB)) is added and an old BS is released (such control is referred to as ANR function control).
An eNB A 110 is connected with a User Equipment (UE) 130 via a link 112. When the UE 130 moves to an eNB B 120 quickly, a link 116 between the eNB A 110 and the moved UE 130′ is disconnected before handover triggering is generated, and the moved UE 130′ intends to establish a link 118 by transmitting a Radio Resource Control (RRC) re-establish message to the eNB B 120.
In an SON environment, an Automatic Neighbor Relation (ANR) update function between eNBs may be necessary. An ANR configuration function detects a new neighbor cell using a UE measurement report and automatically adds a Neighbor Relation (NR). An ANR optimization function provides an NR addition/deletion function and a prioritization function based on a UE measurement result (e.g., signal strength of a neighbor eNB), a HandOver (HO) Key Performance Indicator (KPI) (e.g., handover attempt rate/success rate), and Radio Resource Management (RRM) information, and thus provides an optimal Neighbor Relation Table (NRT) management function in an automated manner.
As described above, when the UE measurement report is received, each eNB may be added to the NRT. However, in case of the RLF_before_HO, the link between the UE 130 and the serving eNB 110 is disconnected before the UE measurement report is received, and thus the serving eNB 110 cannot add the target eNB 120 to its NRT (in this case, the target eNB 120 is not included in the NRT of the old serving eNB 110). Further, since the RLF_before_HO is not recognized as an handover from the perspective of the serving eNB 110 (that is, the serving eNB 110 cannot know that the UE 130 unlinked from the eNB 110 attempts a handover to the target eNB 120), this case is not considered in the HO KPI, and is eventually not considered in determination of an NRT priority. As a result, the target eNB 120 may be deleted from the NRT of the serving eNB 110 (in this case, the target eNB 120 is included in the NRT of the old serving eNB 110).
FIG. 2 is a graph illustrating handover triggering according to the related art.
Referring to FIG. 2, received signal strength received by a UE from a serving eNB is indicated by 202, and received signal strength received by the UE from a target eNB is indicated by 204. Handover triggering is generated at an instant 210 at which the received signal strength received by the UE from the target eNB becomes greater than the received signal strength received by the UE from the serving eNB.
In practice, a hysteresis value (e.g., an offset value) is used to mitigate a handover ping-pong effect. As a result, the received signal strength received by the UE from the serving eNB is offset to a curve 212, and the received signal strength received by the UE from the target eNB is offset to a curve 214. Therefore, actual handover triggering is generated at an instant 220 at which the received signal strength received by the UE from the target BS becomes greater than the received signal strength received by the UE from the serving eNB.
Consequently, even if the UE exists in a handover area, the signal strength between the UE and the serving eNB becomes less than a signal strength threshold 200 at which an RLF occurs, and thus a link established between the UE and the serving eNB is disconnected at the instant 220 before handover triggering is generated.
In this case, a handover event triggering parameter (i.e., a handover triggering offset value based on the handover ping-pong effect, referred to as a Cell Individual Offset (CIO)) is incorrectly set, and thus a previous connection established to an eNB (e.g., the serving eNB) before the UE measurement report is received is disconnected. If the RLF occurs by late handover triggering caused by fast movement of the UE, the serving eNB should modify a handover parameter (i.e., the CIO) for the target eNB to handle this problem.
Accordingly, there is a need for a method and system for improving a call drop caused by a link failure before handover trigging in a mobile communication system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a measuring template in the form of a tape or printed on building materials for use in the framing of building structures and its method of use whereby to permit precise positioning and sacrament of building components while facilitating and accelerating the framing of building structures.
Various devices have been heretofore provided to assist the carpenter in the framing and construction of building structures. For example, U.S. Pat. No. 5,367,783 discloses a layout template tool which facilitates the marking of the positions of studs, joists, rafters, trusses, before nailing-in these building components in permanent position. A problem with these layout tools is they are usually constructed of metal members and they are cumbersome to use, require the user to use a pencil to mark desired locations, it is difficult to transport, some have moving parts which can be lost rendering the tool inoperative and their measuring markings wear out with periodic use often resulting in improper measurement markings. The tools also have restricted use when used close to other walls or building components, due to the fact that the tool is rigid and cannot be bent around corners.
Templates made of flat flexible thick material having adhesives thereon are also known in the cabinetry trade and other trades and an example of such is illustrated in U.S. Pat. No. 5,666,737. Such tapes are used at precise locations to indicate the position of holes when making cabinetry which require precision hardware to be installed thereon. Such templates have therefore very limited use. It is also known to use templates in the construction of housing development where repetitious measures are utilized and such a system is disclosed in U.S. Pat. No. 4,573,302. Such templates have again restrictive usage and are not practical as a measuring tool for all sorts of building structures. There is also a need in the prior art to provide a template which is securable on building surfaces to identify components which are not visible and further wherein building components may be erected directly on the templates at precise locations. There is also a need to provide a template which is easy to use, which is economical and which accelerates construction.
It is a feature of the present invention to provide a flexible framing template which is an improvement over the above-referenced prior art templates and which is formed from an elongated flat tape of flexible material.
It is a further feature of the present invention to provide a flexible framing template in the form of a tape and which accelerates the construction of the framing of building structures, which is easy to use, economical, and which may be adhesively secured to building materials to identify the positioning of building components or to identify the position of building components which are not visible.
Another feature of the present invention is to provide a flexible framing template in the form of a tape and which may be used as a level indicator.
Another feature of the present invention is to provide building materials on which the template of the present invention is permanently affixed thereto such as being printed thereon.
According to the above features, from a broad aspect, the present invention provides a measuring template for use in framing of building structures. The template is comprised by an elongated printed measure having two or more groups of measuring indicia. The groups of indicia are disposed at predetermined intervals from one another. There are two or more of the said predetermined intervals. Each of the groups of indicia has a center mark associated therewith. A first set of numerical markings is associated with each of the center mark of each of the groups of indicia. The center mark indicates an exact location of the numerical markings. The first set of numerical markings is identical and indicates a cumulative measure from a starting point. The numerical markings of the first set are disposed on opposed sides of the center mark on a transverse axis of the template and aligned with the center mark. A second set of identical numerical markings is disposed on a longitudinal axis of the template on opposed sides of the center mark whereby the numerical markings of the first and second sets are easily readable when the template is disposed horizontally or vertically. The groups of measuring indicia each have a distinctive identification means to distinguish said groups from one another. Each distinct identification means indicates an associated one of said two or more groups of measuring indicia. The sets of numerical markings of distinct identification means groups define a numerical spacing between the groups of measuring indicia.
According to a still further broad aspect of the present invention there is provided a measuring template for use in framing of building structures. The template is comprised by an elongated printed measure having two or more groups of measuring indicia. The groups of indicia are disposed at predetermined intervals from one another. There are two or more of the said predetermined intervals. Each of the groups of indicia has a center mark associated therewith. A first set of numerical markings is associated with each of the center mark of each of the groups of indicia. The center mark indicates an exact location of the numerical markings. The first set of numerical markings is identical and indicates a cumulative measure from a starting point. The numerical markings of the first set are disposed on opposed sides of the center mark on a transverse axis of the template and aligned with the center mark. A second set of identical numerical markings is disposed on a longitudinal axis of the template on opposed sides of the center mark whereby the numerical markings of the first and second sets are easily readable when the template is disposed horizontally or vertically. Each group of indicia is further provided with a cumulative numbered indicia adjacent the center mark and indicating a cumulative number of building components required from said starting point to each said center mark. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. The Field of the Invention
The present invention relates generally to framing equipment for use in the construction of buildings. More particularly, it concerns a framing device for positioning and installing a plurality of building frame members simultaneously.
2. The Background Art
Conventional framing methods in the construction of buildings involve positioning and installation of individual building frame members, such as floor joists, roof trusses and the like. A floor joist is essentially a beam-type member for supporting the floor of a building, often having an I-shaped cross section such as the floor joist 16 shown in FIG. 2A. The floor joist 16 typically comprises a main web 18 with upper and lower flanges 20. The floor of a building typically has a number of floor joists 16 extending beneath the floor for structural support.
During the framing portion of the building construction, the floor joists 16 are usually placed horizontally one by one, by hand at the desired lateral spacing. When the floor joists 16 are properly positioned and fastened to the building frame 17 as in FIG. 2B, the floor (not shown) is then constructed on top of the joists 16. The joists 16 essentially function as beams.
It will be appreciated that conventional framing methods are quite laborious and repetitive. As indicated in FIG. 2B, two or more individual workers 19 must place each joist 16 by hand which is very time-consuming and costly. The workers 19 often utilize a ladder 21 in order to place the joists 16 when framing an upper-level floor. The framing of upper-level floors, in addition to requiring the laborious and time-consuming hand placement and attachment methods, also requires workers 19 to remain upon a narrow ledge 23 of the building frame 17 for dangerously long periods of time. The ledge 23 is often only four-six inches wide. In order to be cost competitive, many companies often have their workers 19 remain atop the narrow ledge 23, while other workers 19 remain below to hoist the joists 16 up onto the ledge 23 where the workers remaining on the ledge take over to position and attach the joists 16.
This increased time of exposure of workers 19 upon the narrow ledge 23 is not only dangerous but potentially life threatening in the event of dizziness or other disorientation which could cause workers to fall from the narrow ledge 23. Since the major portion of the construction season spans the summer, workers are often exposed to hot and humid working conditions which increases the risk of fatigue or dizziness, and thus further increases the danger to workers who must remain atop the narrow ledge 23 in accordance with conventional framing methods.
Some attempts have been made to simplify the positioning and installation of building frame members. For example, U.S. Pat. No. 4,322,064 (granted Mar. 30, 1982 to Jarvis) discloses a spacing tool 10. The tool 10 is capable of repeatedly and precisely spacing building frame members such as roof trusses during framing procedures. However, even if the spacing tool were to be applied to the positioning and installation of floor joists, the laborious and time-consuming requirement of placing the joists one by one by hand remains, as well as the requirement of workers who must remain atop narrow ledges in order to be cost competitive. As such, the Jarvis patent fails to solve the problems inherent in the conventional methods of framing, including those discussed above. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a particle-removing apparatus for a semiconductor device manufacturing apparatus and to a method of removing particles, and more specifically it relates to a particle-removing apparatus that prevents the falling of particles that are generated during a process onto a wafer, and to a method for removing particles.
2. Description of the Related Art
Particles that are generated in the process of manufacturing a semiconductor device, and in particular in a process that makes use of plasma, are a cause of reduced yield and a deterioration of uptime. These particles can be caused by the peeling off of substances that have been deposited within the process equipment by reactions and by growth of substances generated by reaction within the plasma. To prevent the falling of these particles onto a substrate, as described in the Japanese Unexamined Patent Publications (KOKAI) No. 5-29272 and No. 7-58033, there has been a proposal of an apparatus in which the substrate is covered after a process is completed.
FIG. 9(a) is a drawing that shows a plasma etching apparatus of the past, in which the reference numeral 2100 denotes a processing chamber, inside which are provided an upper processing electrode 2200 and a lower processing electrode 2300, the upper processing electrode 2200 being grounded, and a high-frequency power supply 2400 being connected to the lower processing electrode 2300.
Above the lower processing electrode 2300 there is provided an electrostatic chuck electrode 2700, which is insulated by means of an insulator 1900, a voltage being applied to this electrostatic chuck electrode 2700 from a power supply 2600, so as to hold a semiconductor substrate 3000. The processing chamber 2100 is provided with an intake port 3100 for processing gas and an exhaust port 3200. A cover 3600 is provided so that particles do not fall onto the semiconductor substrate 3000.
FIG. 9(b) illustrates the general equipment operation cycle of a plasma etching process in a semiconductor device manufacturing process.
This process is for the case of a cycle in which a single substrate is processed. The substrate 3000, which is transported from a transporting port 3800, is transported to within the processing chamber 2100, at which point the process gas is introduced from the process gas intake port 3100. When the pressure within the processing chamber 2100 reaches a prescribed value, a high-frequency voltage is applied from the power supply 2400, so as to generated a plasma that etches the substrate 3000. Simultaneously with the above, the substrate 3000 is held by the electrostatic chuck. After completion of the etching, the supply of the high-frequency voltage, the supply of the process gas, and the electrostatic chuck are all stopped. After several seconds, an inert gas that does not contribute to etching is supplied for a prescribed amount of time in order to quickly purge the chamber of the process gas. The substrate 3000, after completion of this processing, is transported to outside the processing chamber 2100 from the transporting port 3800.
In an apparatus of the past as described above, in order to prevent particles from falling onto the substrate 3000, the cover 3600 is provided over the substrate 3000. According to an experiment by the inventor, however, in a semiconductor device manufacturing process that uses plasma, the timing of the falling of particles onto a substrate was shown to be intimately connected with the operating status of the semiconductor device manufacturing apparatus. Specifically, in the above-noted publications of the past, there was absolutely no consideration given to the timing of the covering of the substrate, this representing a major problem with regard to not being able to prevent the attachment of particles to the substrate.
Accordingly, it is an object of the present invention to improve over the above-noted drawback in the prior art, in particular by providing a novel particle-removing apparatus of a semiconductor device manufacturing apparatus and a method of removing particles whereby, by controlling the timing of the covering by a cover provided over the substrate in accordance with the processing condition of the substrate, the attachment of particles that are generated within the manufacturing apparatus during a process that uses plasma to the substrate is prevented.
It is another object of the present invention to provide novel particle-removing apparatus of a semiconductor device particle and method of removing particles whereby, by making use of the characteristic that particles are positively charged, attachment of the particles to the substrate is prevented without the use of a cover or the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to cement slurry reclamation techniques for ready-mix concrete plants in which the aggregate and coarse sand constituents are separated from returned concrete mix and the remaining ingredients are stored in slurry form for total consumption during the following production day.
U.S. Pat. No. 4,226,542 issued Oct. 7, 1980, for "Cement Slurry Reclamation System and Method", the disclosure of which is hereby incorporated by reference, illustrates a slurry reclamation system for use with a concrete ready-mix plant which enables one hundred percent reclamation of the constituents of concrete mix returned to the plant site by vehicles. Returned concrete mix is dumped into an inlet hopper having a screw classifier for removing aggregate and coarse sand, and a weired channel enabling gravity flow of the water, cement fines and sand fines constituents into a slurry vessel. The slurry vessel is sized in such a manner as to guarantee complete consumption of the slurry returned during a day's production by the end of the following production day, the volumetric capacity of the vessel being related to the total average volume of water used to produce fresh concrete during a representative production day.
The slurry is consumed by admixture to fresh water, cement, sand and aggregate at a rate selected in accordance with the slurry specific gravity and the scheduled or estimated production requirements for that particular day. As disclosed more fully in the above-referenced patent, the percentage of slurry to be admixed to the fresh ingredients is selected by the operator and determined by the slurry vessel working level volume, the measured specific gravity of the slurry (typically obtained at the beginning of the production day) and the scheduled day's production. Typically, the operator manually selects a programmed amount of cement, sand, aggregate and water by weight into a set point controller physically incorporated in the batching console in the ready-mix plant, the amounts being determined by the operator in accordance with the concrete design mix figures normally used by the operator. Next, the set point amounts of these ingredients are then modified or compensated for in accordance with the percentage of slurry activity (a predetermined figure), the specific gravity obtained from a density cell and the percentage of slurry substitution obtained from the day's production schedule. It should be noted that the set amount of the aggregate by weight is normally unaffected by the slurry values, since the slurry ordinarily contains no aggregates. The batch controls for cement, water, sand and aggregate are then used to meter the relative amounts of the constituent ingredients from the water supply and the storage bins for the dry ingredients to the ready-mix mechanism. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a perforator, more particularly to a perforator for forming holes in metal plate material, such as a presensitized plate, which will be durable in use.
2. Description of the Prior Art
A lithographic printing system is generally operated by utilizing a preseuisitized plate (herein referred to as a PS plate), which comprises a support consisting of a thin metal plate of e.g. aluminum or steel. Such a PS plate processed for lithography is mounted in a printer. To position the PS plate precisely in the printer, the PS plate is provided with punched holes to receive positioning members.
In a manufacturing process for such PS plates, a perforator is used for punching the plate material. The perforator is a movable blade or punch shaped to punch a hole in order to pierce the plate material, and a stationary blade or die for slidably receiving the punch. The plate material is continuous or is a separate piece and is sandwiched between the punch and the die so as to punch holes in the plate material. Such a perforator is usable to punch simultaneously plural superposed pieces of material.
Good formation of punch holes which will be stable even after long use requires high quality of the punch and die of the perforator: the punch and die should be sufficiently hard, should have each blade precisely constructed, and should have sufficiently small roughness on the faces of the blades. It is usual to form the punch from high speed steel SKH, and to form the die from special tool steel SKD, and to set the roughness on the blade faces to be 20.0 .mu.m, preferably as small as 1.0 .mu.m. It is general to provide clearance between the punch and the die, of 5 to 8% of the thickness of the plate material to be punched.
In the course of repeated punching, finely powdered aluminum dust is generated from the plate material. The fine dust sticks on the blade faces, degrades the sharpness of the punching structure, and causes the punched edges to have irregularities, which are raised over the plate surface by contact with the punches when the punches are raised and removed from the punch holes. In view of this problem, it is proposed in Japanese Patent Laid-Open Publ. No. 61-241096 to superpose the metal plate material on light-shielding polyethylene-laminated lining paper and to punch the plate material from the side of the lining paper. The use of the polyethylene-laminated lining paper is somewhat effective in maintaining the sharpness of the punching structure, because the lining paper can wipe the fine dust off the blade faces.
Widespread use of polyethylene-laminated lining paper, however, could be harmful when discarded as industrial waste. Moreover, the mass production of PS plates can be counterproductive, in view of the public concern now shown for protection of the global environment against destruction caused by considerable wastes.
It might be better, for protecting PS plates from ambient light, to use polyethylene lining paper superposed on the PS plates. An experiment was conducted with thin aluminum plate with which polyethylene lining paper was used and which is 150 .mu.m thick. The SKH-formed punches and/or the SKD-formed die had a roughness of 1.0 to 2.0 .mu.m. A round punch hole 2 formed by the punches of a sheet perforation was 4 mm across, as illustrated in FIG. 10. In FIG. 11, a slot-like punch hole 3, formed by punches of a web perforator moving in the arrowed direction, was 10 mm long and 6 mm wide.
It has been observed that 10 to 20 times of operation of punching the plate material resulted in generation of an unwanted rise 5 or fold 6 around punch holes 2 and 3, because irregularities inside the punch holes 2, 3 are raised by the punches upon being retracted from the punch holes 2, 3. This lowers the quality of PS plates as products.
The use of such conventional perforators, after every 10 to 20 punching operations, requires inspection or cleaning of the blade faces. A problem lies in that there is a considerable limit to improving efficiency in punching out plate material. | {
"pile_set_name": "USPTO Backgrounds"
} |
This application relates to non-metabolizable analogs of clomiphene which have been shown to be effective in reducing the proliferation of cell lines known to be resistant to tamoxifen, a known anti-tumor agent. Two of the compounds specifically demonstrated to be useful according to the claimed invention have been disclosed previously. Murphy and Sutherland in the Journal of Clinical Endocrinology and Metabolism, 57(2), 373, disclose that compounds of this invention were also effective in inhibiting the growth of MCF-7 cells, a cell line sensitive to tamoxifen. In CA:64 8081, a method of preparing 3-[p-2-chloro-l,2-diphenylvinyl)phenyl]-N,N-diethyl-hydro-chloride was disclosed. At that time the compound was alleged to be useful in the treatment of gynecological defects and hypercholesterolemia. In CA:63 535h, the same compound is presented and its use as an inhibitor of pituitary gonadotropin was disclosed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a solar powered fluid pumping system. More particularly, it relates to a solar collecting panel combined with a fluid pump and a reservoir tank in a system which may incorporate a watering trough, predominantly utilized to provide water for livestock.
Solar pumps offer several advantages over other types of pumps. Most significantly, solar pumps can be installed in remote locations where electricity and fuels are not readily available. Solar pumps can also operate where windmills are ineffective because of lack of wind. Their sole limitation for operation is the availability of sunlight. For these reasons and others, solar powered pumps offer an attractive potential as a relatively low maintenance pump, especially in remote areas.
Unfortunately, the advancement of solar pumps has been hindered significantly by cost obstacles. The solar collecting panels are the primary contributors to the high cost. While these solar panels are an essential element of a solar pumping system, financial considerations have forced many potential users to select alternative pumping systems even in situations where solar pumps would be functionally advantageous. Since the price of the solar panel is proportionally related to its size, it is an object of the present invention to minimize this cost obstacle by using a motor with low power requirements which, in turn, reduces the necessary size of the solar collecting panel. Despite the low voltage motor, another object of the invention is to operate effectively with the use of an efficiently designed surface pump, which also avoids the high costs and installation problems caused by submersible pumps used in many other systems. The present invention, thus, is determined to greatly reduce the cost obstacle of solar pumps.
Most solar pumping systems are comprised of several separate components which are connected but which are not integrated into a single unit. Such configurations allow a buyer to select different components according to his desires; however, this leads to waste of material in structure and connections. Multicomponent layouts also tend to be more immobile due to their complexity and may require separate barriers to protect the individual components from damage by livestock or otherwise. These characteristics of multicomponent layouts are wasteful, cumbersome and, subsequently, costly.
Accordingly, it is an object of the present invention to be an integrated unit which is intended to reduce such problems. Through integration, material needs are reduced since structural materials serve multiplicative purposes, supporting several components rather than one. Connecting pipes and wires are also reduced in length because of the compact nature of the integrated structure. By mounting the solar panel and other components on top of the sturdy reservoir tank, and, thus, above the surrounding livestock, the present invention may eliminate the cost and need for a livestock barrier completely. This integration object, furthermore, enables quick and easy installation at, or movement to, virtually any well or fluid source. The object of integrated character of the present invention, thus, helps to solve the mobility and cost problems which burden other solar pump designs.
Furthermore, while many solar pumps use batteries to store electricity for use when the sun is not available, it is an object of the present invention to utilize the reservoir tank as an effective battery of water. In this way, water is stored until it is needed and the electric battery is eliminated; the pump operates whenever sunlight is available; and when the reservoir tank is full, a circuit breaker is actuated to turn off the pump until water is needed or, alternatively, fluid is redirected elsewhere. Thus, the costs, maintenance, complexities and inefficiencies inherent with electric batteries are also eliminated.
Finally, while solar pumps are used predominantly for providing water to livestock, it is an object of the present invention to provide a complete package designed for that use. The object includes a combination of the solar powered pump along with a reservoir tank and a watering trough which may be integrated into a single compact unit. This combination presents an all-in-one alternative to compiling several products for this particular use while still serving other purposes at the option of the user.
Therefore, it is a conclusive goal of the present invention to provide a unique, simple, low-cost, low-maintenance, self-contained and easily movable solar powered pumping system for use in watering livestock.
Other objects, features and advantages of the invention will become evident to those skilled in the art in light of the following detailed description, viewed in conjunction with the referenced drawings, of a preferred exemplary system according to the invention. The foregoing and following description of the invention is for exemplary purposes only. The true spirit of the invention is set forth in the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention pertains to transporting objects, and more particularly to apparatus for orienting workpieces and propelling them along selected paths.
2. Description of the Prior Art
It is well known to transport workpieces along elongated paths between work stations located along the paths. A rather specialized application of workpiece transporting equipment involves conveyors, such as roller conveyors, that support either the workpieces or workpiece carrying pallets. Examples of prior conveyors for propelling workpieces may be seen in U.S. Pat. Nos. 3,716,129; 3,810,538; 3,960,262; 4,108,303; 4,109,783; 4,174,777; 4,227,607; 4,240,538; and 4,817,784.
Change of direction of a workpiece along a conveyor path may generally be accomplished in one of four ways. First, the conveyor may be constructed with a rather large radius corner, such as is shown in U.S. Pat. No. 4,096,942. That construction enables a pallet to change direction with minimum expense or complexity.
It is also possible to use turntable corners for changing the direction of a workpiece on a conveyor. Turntable corners have the advantage of occupying less space than large radius corners. In addition, turntable corners can be used to change the orientation of a workpiece without necessarily changing its translational direction along a path. Turntable corners are also capable of diverting a workpiece or pallet from one path to an intersecting path. For example, turntable corners can rotate 90 degrees and transfer a workpiece to a branch path. Turntable corners are also capable of rotating 180 degrees and continuing to propel the workpiece in the initial direction. Additionally, turntable corners can merely propel a workpiece downstream without imparting any rotary motion to it. U.S. Pat. No. 3,530,571 shows a conveyor system with multiple paths and turntable corners at the junctions of various paths. U.S. Pat. No. 5,086,910 describes an exemplary conveyor system that includes both large radius corners and turntable corners.
Another mechanism that reorients and redirects workpieces along a conveyor path is a lift and rotate mechanism. Those mechanisms lift a workpiece, rotate it, and then lower it back to the plane of the conveyor. A lift and rotate mechanism is required if a 90 degree change in workpiece orientation relative to its direction of travel is required. Such lift and rotate mechanisms are large and sturdily built in order to handle heavy workpieces. In particular, their bearings must be adequate to handle heavy weights. They are also quite complicated because the lifting plates must clear their propelling rollers. Because of their size and weight, it is quite difficult to operate them manually if a failure of the turntable mechanism occurs. A closely related disadvantage of lift and rotate devices is their high cost of construction and maintenance.
Another prior device for changing the direction of a workpiece along a path is a lift and transfer mechanism. A lift and transfer mechanism lifts the workpiece from one conveyor path and then transfers it to a branch path that is at a higher elevation. Like the lift and rotate mechanisms, lift and transfer mechanisms must be large, expensive, and complicated in order to handle heavy workpieces. If a failure should occur, the lift and transfer function is very difficult to perform manually.
It is therefore highly desirable to develop an improved turning corner for workpiece handling conveyor systems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Filamentary media such as optical fibers have become an essential part to nowadays infrastructures and communication technologies given their superior signal transmission capabilities. Taking optical fibers for example, an optical fiber cable consists of a plurality of optical fibers surrounded by protective sheath. Each individual optical fiber consists of a small diameter core of materials such as glass or plastic cladded by a surrounding protection having a lower index of refraction than the core. Even though optical fibers are designed for near total reflection of light propagating therethrough, when an optical fiber is bent past a critical radius, light rays transmitted no longer are fully reflected within the core of the optical fiber and therefore no longer traverse the optical fiber, resulting in signal loss or degradation. Therefore, extra care is required when it comes to handling and routing optical fiber cables to avoid sharp bends or kinking in the fibers in order to achieve reliable signal transmission.
Panel illumination for interiors of vehicles such as airplanes or automobiles is an important application utilizing optical fiber delivered lighting. For example, an aircraft cabin lighting system can be designed to provide decorative patterns of light on aircraft cabin ceilings, with optical fibers providing optical communication from a light source to the one or more illuminating points. Presently, when optical fibers that are horizontally guided on a surface of a panel access light pipes vertically inserted in the panel, reinforcement at the exterior of the optical fiber cable at such accessing locations is used so that the cable does not bend past a radius too sharp, e.g., along a curve having a radius less than the critical radius of the fibers. However, such reinforcement techniques are not only cumbersome to implement, but also add weights to vehicles such as an aircraft where weight reduction is of great significance.
Thus, there is a need for an adapter for routing, supporting and protecting a filamentary medium, without sharp bending or kinking, in compliance with the critical bend radius of the filamentary medium. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
This invention belongs to the field of manufacturing of smart card, and relates particularly to smart card with two read-write modes as well as to its manufacturing method.
2. Description of Related Arts
DI (Dual Interface) card is the abbreviation of smart card with two read-write modes. Constructed with PVC (Polyvinyl Chloride) layer, chip module and coil, the DI card is a single chip module based card with integrated contact and contactless interfaces. With two operation interfaces, the DI card allows access to the chip module either via contact points of the contact mode or via radio frequency mode in a certain distance (within 10 cm), to execute the same operation; the two interfaces follow two different standards: the contact interface meets ISO/IEC 7816, while the contactless interface meets ISO/IEC 14443. The two interfaces share a same micro processor, operating system and EEPROM (Electrically Erasable Programmable Read-Only Memory).
Besides one chip module, inside the DI card, there is also an antenna coil connecting with the chip module, when using the contactless interface, the electro-magnetic field generated by the reader will provide energy, through radio frequency to supply energy and transmit data.
At present, there are two kinds of DI card manufacturing process, one of which includes the below steps:
Make ready the antenna and base materials, and make pre-lamination to get the inlay layer; align and register the top layer which contains top printed sheet and protection film, the bottom layer which contains bottom printed sheet and protection film, precisely with the Inlay layer, then laminate and cut card, to obtain the card base of smart card with two read-write modes; mill slot for the first time at the location of chip module of the card base, and manually pick and draw the wires, trim wire end, and etc., of the antenna on the card base obtained after the first time slotting, then mill slot for the second time; concurrently, on another equipment, solder and mill flat to the two contact points of the chip module; and finally, in the encapsulation machine, place in order the treated card base and the chip module to encapsulate them, place in order the treated card base and chip module on the dual-interface encapsulation machine to encapsulate them.
The other kind has the following steps:
Make ready the antenna and base materials, and make pre-lamination to get the inlay layer; align and register the top layer which contains top printed sheet and protection film, the bottom layer which contains bottom printed sheet and protection film, precisely with the Inlay layer, then laminate and cut card, to obtain the card base of smart card; mill slot for the first time at the location of chip module of the card base, and mill slot for the second time at the locations of the chip module's circuit contact points; infill with conductive adhesive on the location of second time slotting, and set the chip module into the corresponding contact points to solidify.
Finally place in sequence the treated card base and chip module on the dual-interface encapsulation machine.
In the course of materializing the above said DI card production, it is found by the inventor that there are at least the following problems with the existing techniques: many steps have to resort to manual work, e.g., soldering, and etc., characterized by low daily output, and also by difficulty in controlling the operation method, where, even skilled workers are hard to guarantee product quality; manual work also causing high rejection rate, and applying the method on the treatment of soldering and copper wire may damage the antenna wire end and the chip module, resulting in reduced stability of the finished card. If conductive adhesive is adopted, the exposure in the air of the adhesive in the course of solidification process, as well as the fairly long solidification time yields the adhesive's conductivity significantly susceptible to time and environmental factors, which would result in unstable conductivity of card. | {
"pile_set_name": "USPTO Backgrounds"
} |
Progressing cavity pumps (PCP) were invented in the 1930s by Moineau as seen in U.S. Pat. Nos. 1,892,217 and 2,028,407.
A progressing cavity pump has a stator and a rotor. The stator typically comprises an elastomeric liner within a housing. The stator is open at both ends and has a multi-lobe helical passage extending through it. The rotor is normally of metal and has a helical exterior formed on it. Rotating the rotor causes fluid to pump through the stator. Progressing cavity pumps are used for a variety of purposes.
As a well pump, progressing cavity pumps may be driven by a downhole electrical motor or by a string of rods extending to a motor located at the surface. With a rod driven pump, normally the stator is suspended on a string of tubing, and the drive rods are located within the tubing. When installing a rod driven progressing cavity pump, the operator first secures the stator to the string of tubing and runs the tubing into the well to a desired depth. The operator then lowers the rotor through the tubing on the string of rods and into the stator.
To operate the pump at desired capacity, the rotor must be at the desired axial spacing within the stator and the rods must be in tension. If the lower end of the rotor is spaced above a lower end of the stator during operation, then a lower portion of the stator will not be in engagement with the rotor and the pumping capacity will suffer. The operator thus needs to know when the rotor has fully entered the stator during installation. The operator can calculate how much the rods will stretch due to the hydrostatic weight of the column of well fluid in the tubing. With the anticipated stretch distance known and with the rotor at a known initial position in the stator, the operator can pull the rods and rotor upward a distance slightly greater than the anticipated stretch, so that during operation, the rotor will move back downward to the desired axial position relative to the stator.
Stators are manufactured by insertion of a core into a tubular housing and capping the ends with the core properly positioned. The inside wall of the housing can have an adhesive coating before the material for the stator is injected through one of the end caps and forced under pressure to fill the annular space between the core and the housing inner wall. The adhesive was used in the past to help the stator body adhere to the surrounding housing. Depending on the size and the particular application, the housing could be over 10 meters long and could have an inside housing wall diameter smaller than 10 centimeters.
As the industry develops, PCPs are being deployed in progressively hotter environments to the point where the commercially available adhesives reach their temperature service limit in the order of about 150° C. In an effort to allows stators to operate effectively at higher temperatures structures have been proposed to be supported from the housing inside wall and extend inwardly such that when the stator was created within the housing a core and injected rubber around it, the end result would be a better bond to the housing inside wall than just using adhesive by itself. Along those lines U.S. Pat. No. 7,407,372 suggests a ring structure with openings that allow the rubber to pass through during manufacturing and positioned in the stator housing with L-shaped rings 18 that are welded to the stator inside wall as shown in FIGS. 2 and 3 of that patent. FIGS. 4 and 5 show another embodiment of such a ring with openings and external grooves 52 that lead to openings 54 so that the rubber can hopefully envelope the ring structure 50. The grooves are stated to be longitudinal or spiral and FIG. 5 further shows L-shaped indents at opposed ends into the ring 50 from the inside that are stated to help seal the rubber to the ring structure 50.
There are several issues with this design. In a long housing it is expensive and difficult to secure the intermediate standoff supports 18 to the housing inner wall. The more substantial the tube for structural rigidity the less rubber can be used as the stator. On the other hand if the tube is too flimsy so as to maximize the rubber content it will be structurally weaker to the point that during stator manufacturing with the core in the housing and the ring held by supports, the delivery of rubber under very high pressures to fill all the void space between the housing inner wall and the core will result in flexing of the tube to the point where it will touch the core. When the core is then removed portions of the tube extend out of the stator and damage the rotor.
Other references relating to PCP stator construction are: U.S. Pat. Nos. 3,280,753; 5,318,416; 7,131,827; JP 61180512; DE 3322095; US 2009/0152009; 2009/0169404; 2002/0153141; 2009/0129937; U.S. Pat. Nos. 7,299,873; 7,201,222; 6,868,912 and 6,705,402.
What is needed and provided by the present invention is a simple way to enhance grip of the stator to its housing that is structurally sound against torsional stresses and offers in some embodiments the ability to stiffen the stator. This is accomplished with modifications to a tubular housing for the stator that can have elongated ribs extending inwardly from the housing inner wall disposed longitudinally or in a spiral array. The spiral array can have ribs spiraling all in one direction or with one or more ribs spiraling in the opposite direction forming an overlapping pattern of ribs. These ribs are formed as an integral part of the housing either by extrusion, machining, or welding such that they cannot move with respect to the housing during injection of the stator rubber or due to torsional stresses during operation. The reverse of inwardly extending ribs can also be used in the form of wall grooves in the stator housing interior wall that preferably have a bulbous region further into the wall from a narrower inlet so that a grip is created when the internal groove structure is filled with injected rubber to form the stator. These and other aspects of the present invention will become more readily apparent to those skilled in the art from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is defined by the literal and equivalent scope of the appended claims. | {
"pile_set_name": "USPTO Backgrounds"
} |
Pneumatic and electric fluid dispensers have been developed for dispensing applications requiring a precise placement of a fluid. Pneumatic dispensers have a significant advantage in that the pneumatic solenoid operating the dispensing valve provides a sufficient force so that the dispensing valve operation is essentially independent of the viscosity of the fluid being dispensed. However, pneumatic solenoids have disadvantages in that they generally have a shorter life than electric solenoids, and the operation of the pneumatic solenoid is subject to less precise control than the electric solenoid in an electric fluid dispenser. Therefore, in some applications, electrically operated fluid dispensers are preferred over pneumatic fluid dispensers.
Generally, electrically operated fluid dispensers include an electromagnetic coil surrounding an armature that is energized to produce an electromagnetic field with respect to a magnetic pole. The electromagnetic field is selectively controlled to open and close a dispensing valve by moving a valve stem connected to the armature. More specifically, the forces of magnetic attraction between the armature and the magnetic pole move the armature and valve stem toward the pole, thereby opening the dispensing valve. At the end of a dispensing cycle, the electromagnet is de-energized, and a return spring returns the armature and valve stem to their original positions, thereby closing the dispensing valve.
In the operation of an electric fluid dispensing gun, the coupling between the coil and the armature is not efficient; and therefore, in order to achieve the highest actuation speed, a current pulse or spike is typically provided to the coil during an initial turn on period in order to initiate the motion of the armature as quickly as possible. After the initial current pulse, the current through the coil is then reduced to approximately the minimum value required to hold the armature in its open position against the opposing force of the return spring. Such a stepped current waveform provides high performance while minimizing power dissipation in the coil.
The continued development and use of fluid electric dispensers has resulted in more demanding performance specifications. For example, the operational speed of the dispensing valve can be increased by increasing the electrical voltage applied to the electric coil operating the valve. However, simply doubling the applied voltage without other changes to the solenoid driver circuit would cause overheating and possibly degrade the performance of the fluid dispenser. For example, if a high voltage power supply is used with a low voltage solenoid driver circuit, the solenoid will switch proportionally faster. However, the low voltage solenoid driver provides an initial current pulse having more power than is required by the solenoid which results in an inefficient operation of the coil. Therefore, if it is desired to use a higher voltage to operate the fluid dispenser at a higher rate, not only must a new power supply be used; but a different solenoid driver circuit must be used. The requirement of replacing the whole driver circuit to upgrade the performance of the fluid dispenser is labor intensive, time consuming and expensive.
While the above problem has been described with respect to an electrically operated fluid dispenser, a similar problem exists with respect to pneumatically operated fluid dispensers. Therefore, there is a need to provide a fluid dispenser having a driver circuit which is operable with different power supplies. | {
"pile_set_name": "USPTO Backgrounds"
} |
Screw top caps have been used for some time to seal various containers. Although many screw tops include a separate sealing gasket within the cap, there is substantial advantage to be had in producing a one-piece cap which will effectively seal the container.
Such a one piece cap is shown in the British patent 788148 (3 Aug. 1956) which includes a continuous lip within the top portion of the cap positioned to engage against the annular end face of the opening and provide a seal between the lip and the front edge of the container with the lip curling over at its free edge. However, this cap provides a seal only against the free end edge of the container.
Australian application 15456/76 (30 Jun. 1976) discloses an alternative one-piece cap in which an annular lip extends from the inside top of the cap and engages the inner bore of a container opening so as to curl the free end of the lip in against the bore or inside surface of the container opening. However, with this cap, effective sealing requires that the inside bore of the opening be of accurate and consistent dimension. Furthermore, if aerated or other gaseous liquid is to be contained, gas pressure will tend to distort the lip and cause a seal failure.
Australian patent application 14180/83 (5 May 1983) describes a cap with two internal sealing structures. One of the structures is an annular shaped outer portion shaped to accept the outer peripheral edge of the free end of the container is relying upon the pressure generated during the closing of the cap to seal against this outer edge. Further provided is an inner cylindrical lip to engage the inner bore of the container opening. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to gas lasers and more specifically to a gas laser construction and method for obtaining a single line polarized operation in an internal mirror configuration.
2. Background Art
The advantage of one hundred percent (100%) single line operation in a gas laser such as an argon gas laser has been recognized but difficult to achieve.
It is known to use a half-Littrow prism in combination with a curved mirror to produce single line operation of a gas laser. This has been done by mounting both optical elements external of the laser tube and terminating the tube with windows placed at the Brewster angle. However, this system does not provide the several advantages of being able to use internal rather than external optics.
U.S. Pat. No. 4,746,201 refers to use of prism surfaces at the Brewster angle and schematically illustrates use of prisms within a gas laser tube but provides no specific indication of how the prisms would be mounted. Further, there is no indication of how the prisms could be replaced if contaminated after use.
With further regard to internal optics, it is known to attach optical mirrors to a gas laser tube to form an internal mirror tube as shown in U.S. Pat. No. 4,477,907. This provides what is commonly called a gas laser with integral mirrors. While not described as such, the optical mirrors referred to in the '907 patent were secured using a frit seal. However, frit seals are known to degrade when exposed to high temperature cycling and are difficult to remove if contaminated. As an improvement over frit sealed mirrors, mirrors have been attached with a cold weld to form a tube with integral mirrors. This construction is illustrated in U. S. Pat. No. 4,803,697. Various manufacturing considerations become involved when the cold weld method is employed.
In another form of internal optics for a gas laser, it is known to contact optical elements such as windows to form the tube terminations. This method as well as the cold weld method is advantageous because the elements may easily be removed during processing if they become contaminated. Thus, overall an internal optics system is to be preferred over an external optics system for a gas laser such as an argon gas laser.
With respect to achieving line purity, it is known to attach narrow band-width mirrors to reduce the number of lines produced by the laser so as to achieve ninety-five percent (95%) line purity. It has heretofore been considered virtually impossible to provide one hundred percent (100%) line purity with a mirror or window coating. The typical coating is known to be very sensitive to process variables such as temperature, pressure and the like. Thus, it would be desireable to achieve 100% line purity without total dependence on the coating employed.
It is also known to provide polarizing elements to achieve polarized light. Such an operation is achieved in a window tube by using windows at the Brewster angle and a polarized light operation is of course desireable in a gas laser.
With the foregoing in mind, there is thus a need to provide an improved gas laser construction having replaceable internal optics capable of producing one hundred percent (100%) line purity in the form of polarized light. The provision of such a laser and the method of achieving such operation thus become the principle objects of the present invention. Other objects will appear as the description proceeds. | {
"pile_set_name": "USPTO Backgrounds"
} |
The conventional tricycles for children are generally devoid of a protective means which is located between the front wheel and the rear wheels for protecting the foot of a child riding the tricycle. The feet of a child learning to ride a tricycle are vulnerable to injury by the pedals or wheels in motion. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to a method and system enabling photoplethysmograph measurement of volume status.
2. Description of the Related Art
Assessments of impact on blood volume by challenges ranging from local application of a vasoactive agent to systemic blood loss share a common problem—how to effectively monitor the impacts noninvasively. Moreover, they may share a common solution—a heretofore unreported use of the photoplethysmograph (PPG, also referred to as photoplethymogram) to delineate local as well as systemic changes in pulsatile volume (“AC” which represents portion of the stroke volume (SV) delivered to the given site) and nonpulsatile volume (“DC,” which represents the venous volume+arterial volume at given site, except for the portion of arterial volume that changes with each stroke volume, i.e., except for the AC).
Monitoring of local volume and flow has been thwarted by limitations. Thermometry is nonspecific; radionuclide and substrate sampling are invasive; laser Doppler flowmetry has high spatial heterogeneity (due to varying numbers of arterioles and capillaries in its 1 mm3 sampling area); measurement of flow-mediated vasodilation measures changes in larger vessels in limited locations; strain gauge plethysmography is nonspecific and limited as to site of application; and, in the absence of methods and systems disclosed in accordance with the present invention, photoplethysmograph is confounded by attenuation (based on extinction coefficient of the media transversed by the transmitted light) and background (non-blood tissues). Moreover, none of the noninvasive techniques distinguishes arterial and venous volume; thus, they cannot fully characterize local physiologic impact and its relationship to arterial and venous components of the systemic circulation.
Monitoring of systemic volume likewise has been challenging, prompting a search for alternatives to invasive (and not consistently reliable) central venous and pulmonary artery pressure monitoring. When available, echocardiography often provides the gold standard, but preload measurements have been inconsistent and stroke volume measurements during lower body negative pressure (LBNP), a model of simulated blood loss, are disturbed by vacuum-induced changes in chest alignment; likewise for measures of thoracic impedance. Monitoring contour and magnitude of arterial pressure and photoplethysmograph waveforms are impacted by changes in local vascular tone; thus far, neither has quantified changes in venous volume. Although increases in ventilation-induced variations in intra-arterial and intra-venous waveforms can identify hypovolemia, they do not quantify volume status and the effectiveness of such monitoring is limited in the absence of positive pressure ventilation.
The monitoring limitations in the aforementioned settings have prompted investigations into mechanisms for improving interpretation of changes in the signal generated by the photoplethysmograph. The conventional wisdom has been that, although AC height trends with stroke volume, most potentially meaningful volume information within photoplethysmograph voltages is obscured by background, attenuation, inconsistencies among devices and regional vasomotor activity. Hence, analysis of individual photoplethysmograph beats typically entails voltage clamping and complex contour analysis. On a local level, investigators and clinicians have evaluated changes in pulse height attributable to ischemia, autonomic activity, and regional anesthetics. However, changes in arterial and venous volume have not been effectively distinguished and compared. Recent efforts to assess systemic volume have focused on ventilation induced variations of the photoplethysmograph waveform, such as plethysmographic variability index (PVI) and spectral-domain analysis of oscillatory activity at the respiratory frequency. However, and as noted above, these only provide relative assessments (i.e., they neither measure nor estimate actual volume), and they are confounded by rate, depth and pattern of respiration.
A major limitation to the use of the photoplethysmograph for these purposes is that commercial devices (e.g., for clinical monitoring) have autocentering and/or dynamic recalibrating algorithms that minimixe changes in voltages caused by what I believe to be important physiologic changes. This is because the commercial photoplethysmograms are components of pulse oximeters, designed to identify the time of arterial pulsation so as to determine arterial oxygen saturation; changes in the photoplethysmographic tracing have been considered “distracting.” I believe that what others have considered noise is actually music hence, unless otherwise specified, all photoplethysmographic data shown herein are obtained using noncommercial devices without the aforementioned algorithms and the embodiments included herein are derived from said data. | {
"pile_set_name": "USPTO Backgrounds"
} |
In one such known clamping device (cf. company brochure of the company HILMA-ROMHELD GMBH, D-57260 Hilchenbach (Germany), "Technische Daten/Zubehor, Doppelspannsystem DS 125" [Technical data/accessories double clamping system DS 125], 4.3660, page 1, issue 3/96) the abutment part is arranged to slide in the body by the operating end of the one slide. A clamping screw is provided in the abutment part, running perpendicular to the base part of the body, with which the abutment part can be clamped fast relative to the body, when the so-called "THIRD HAND function" described in further detail below is desired. Two helical springs are provided as the spring arrangement, and a each supported at one end on the outer side of the abutment part facing away from the slide and at the other end on the head of a retaining screw, which passes through the abutment part and is screwed into the slide. The abutment part is normally pressed on to the slide by this spring arrangement and is displaced together with the slide. Two workpieces can be clamped at the same time by actuation of a single screw spindle in the known clamping device and they can even have different dimensions. One of the workpieces is clamped between the jaw of the first slide at the operating end and the central jaw, the other workpiece between the jaw of the second slide and the central jaw. Before the clamping it is mostly necessary to align each of the workpieces accurately relative to the body or the jaws. With many workpieces it is necessary to hold the workpiece in the aligned position long enough, until the jaws are pressed with sufficient force on to the workpiece. If however there are two workpieces which have to be held in the aligned position, two hands are needed for this and there is then no hand free for actuating the screw spindle. This problem also always occurs when the body is arranged vertically on a machine table. The so-called "THIRD HAND function" is provided in order that one can firstly align one of the workpieces in such a clamping device with only one screw spindle and then clamp it enough for its to be retained in the aligned position between the jaws. In this case, by first turning the screw spindle the spacing required for the second workpiece between the second jaw and the central jaw is created and this workpiece is then placed between these two jaws. By drawing the slide and jaw unit on the operating end towards the operating end, the second jaw is brought into abutment with the second workpiece and the latter with the central jaw, without play. While maintaining this contact free from play the distance between the operating end first jaw and the central jaw is so adjusted by further rotation of the screw spindle that the first workpiece can just be fitted between these two jaws. The abutment part is clamped fast relative to the body in this position by actuating the clamping screw. The screw spindle is now actuated, whereby the second workpiece is gripped between the second jaw and the central jaw and is held in the aligned position, but is not clamped fast. This gripping replaces the third hand and is therefore called the THIRD HAND function. The gripping of the second workpiece has been made possible in that the first slide is initially held immovable relative to the body by the clamped abutment part and the spring arrangement. After the second workpiece has been gripped in the described manner, one hand is free again and can be used to fit the first workpiece between the jaw of the first slide and the central jaw. On further rotation of the screw spindle the first slide is now displaced against the force of the spring arrangement towards the first workpiece and the first workpiece is gripped between the jaw of the first slide and the central jaw. On further rotation of the screw spindle the two workpieces are finally clamped. When the clamping device is to be released again after completion of machining of the workpieces, the jaws of the first workpiece come free first, while the second workpiece remains gripped in the described manner with the THIRD HAND function turned on. This has the advantage with a vertically standing body that the second workpiece does not fall out of the clamping device when the first workpiece is taken out by one hand and the screw spindle is actuated with the other hand.
Since the abutment part in the known clamping device is arranged alongside the first slide, swarf can fall during machining between the first slide and the abutment part. If this is not removed carefully before unclamping the THIRD HAND function no longer works properly. Moreover either a greater total length of construction of the clamping device or a smaller opening stroke of the jaws results from the arrangement of the abutment part beside the first slide.
In a similar known clamping device (U.S. Pat. No. 5,098,073) the abutment part is arranged outside on the face of the operating end of the body. It surrounds a sleeve concentric with the spindle and axially immovable relative thereto and can be clamped fast thereon in different axial positions. The abutment part also engages slightly in a recess provided in the face of the operating end. The abutment part comprises a lug underneath the spindle, which also engages in the end recess. An annular shoulder is provided in a bore of the lug and a spring arrangement engages on each of the two sides thereof A retaining screw, on which one of the spring arrangements bears, is passed through both spring arrangements and screwed into the base part of the body. The spindle is held axially immovable relative to the body by these two spring arrangements, until one of the movable jaws bears on the first workpiece. This clamping device also has the disadvantage that the abutment part and the sleeve also project for their full length beyond the end face of the operating end and thus substantially increase the overall length of construction of the clamping device. Swarf can also fall between the abutment part and the recess and affect the function.
Another known clamping device (U.S. Pat. No. 4,934,674) has the same disadvantage, being very similar to the previously described clamping device. In this clamping device also the abutment part surrounding the spindle is disposed outside the end of the body, so that the overall length of construction of the clamping device is increased. | {
"pile_set_name": "USPTO Backgrounds"
} |
Semiconductor lasers used for an active layer having quantum dots have been developed in recent years. Patent Document 1 discloses a method for forming quantum dots. Patent Document 2 discloses a semiconductor laser in which at least part of an active layer including a plurality of quantum dots is formed of p-type semiconductor in order to achieve high-speed modulation and high reliability.
Referring to FIG. 1E of Patent Document 2, a p-type clad layer 2 and a quantum dot active layer 3 are stacked on a p-type GaAs substrate 1. An n-type clad layer 4 having a convex shape (ridge portion) is provided on the quantum dot active layer 3. The n-type clad layer 4 is formed only at a central portion of the quantum dot active layer 3. Thus, an area of p-n junction formed by the quantum dot active layer 3 and the n-type clad layer 4 can be reduced. Therefore, the parasitic capacitance can be reduced, so that high-speed modulation can be achieved. Patent Document 1: Japanese patent No. 3468866 Patent Document 2: Japanese laid-open patent publication No. 2006-286902 | {
"pile_set_name": "USPTO Backgrounds"
} |
In a code symbol reader in which a CCD (Charge Coupled Device Image Sensor) imaging pickup element, etc. pickup the image of a code symbol using an area image sensor and then outputs the pickup commodity code, in order to guarantee the brightness for the imaging pickup, the code symbol is irradiated by the light from a light source while the area image sensor is picked up an image, as an optical illusion will be caused if light is continuously irradiated from the light source, light is irradiated at certain time intervals during the period in which no image is picked up by the area image sensor. | {
"pile_set_name": "USPTO Backgrounds"
} |
Data communication networks may include various switches, routers, hubs, and other devices coupled to and configured to receive data and forward the data on the network. These devices will be referred to herein as “network elements.” A network element is generally not a consumer of the data, but rather is used to receive and forward data so that the data may pass through the network. Data is communicated through a network by enabling the network elements to pass protocol data units, such as frames, packets, cells or segments, between each other over communication links. A particular protocol data unit may be handled by multiple network elements and cross multiple communication links as it travels between its source and its destination over the network.
The various network elements on the communication network communicate with each other using predefined sets of rules, referred to herein as protocols. Different protocols are used to govern different aspects of the communication, such as how signals should be formed for transmission between the network elements, various aspects of what the protocol data units should look like, how protocol data units should be handled or routed through the network by the network elements, and how information such as routing information should be exchanged between the network elements.
In Ethernet network architectures, devices connected to the network compete for the ability to use shared telecommunications paths at any given time. Where multiple bridges or nodes are used to interconnect network segments, multiple potential paths to the same destination often exist. The benefit of this architecture is that it provides path redundancy between bridges and permits capacity to be added to the network in the form of additional links. However to prevent loops from being formed, a spanning tree was generally used to restrict the manner in which traffic was broadcast on the network. Since routes were learned by broadcasting a frame and waiting for a response, and since both the request and response would follow the spanning tree, most if not all of the traffic would follow the links that were part of the spanning tree. This often led to over utilization of the links that were on the spanning tree and underutilization of the links that weren't part of the spanning tree.
To overcome some of the limitations inherent in Ethernet networks, a Provider Link State Bridging network (one example of a link state protocol controlled Ethernet network) was disclosed in application Ser. No. 11/537,775, filed Oct. 2, 2006, entitled “Provider Link State Bridging,” the content of which is hereby incorporated herein by reference. PLSB is further described in U.S. patent application Ser. No. 11/702,263, filed Feb. 5, 2007, entitled MULTICAST IMPLEMENTATION IN A LINK STATE PROTOCOL CONTROLLED ETHERNET NETWORK, the content of which is hereby incorporated herein by reference.
PLSB uses a link state protocol such as Intermediate System to Intermediate System (ISIS) to enable the network elements to exchange link state routing information. The nodes use the link state routing information to compute shortest paths through the network. Because shortest path routing is used, a shortest path tree may be computed from each source node to avoid the use of the Spanning Tree Protocol, so that link utilization may be increased on the network.
MPLS networks may be built on Ethernet networks or other communication networks. In an MPLS network, a signaling protocol is used to establish label switched paths through the network, so that traffic may be forwarded across the network on any desired path. In operation, an ingress node (label edge router or LER for short) will receive a packet and determine which path the packet should take through the network. The LER will apply an outer label to the packet and forward it on the Label Switched Path (LSP). Label Switch Routers (LSRs) on the LSP will receive the packet, remove the outer label, use the outer label to determine a next hop for the packet, apply a new outer label to the packet, and forward the packet on the network to the next hop. This outer label will thus be replaced at each hop as the packet passes through the network until the packet reaches its destination.
MPLS establishes unicast connectivity everywhere by establishing Label Switched Paths between pairs of nodes on the MPLS network. Setup of the label switched paths requires labels to be distributed to each of the nodes on the path, so that the nodes can agree on what labels will be used to enable the packet to follow the path through the network. One protocol that is commonly used to establish label switched paths through an MPLS network is commonly referred to as Label Distribution Protocol (LDP), although other signaling protocols have been developed as well. Using a signaling mechanism, labels are established along the label switched paths so that label switch routers can read a label, determine an output for the packet based on the label, and apply a new label to forward the packet along the path through the network. The signaling protocol is used to install the labels and other appropriate forwarding state for the traffic along the path. The Label Switched Paths define unicast connectivity on the MPLS network, which is generally set up in advance indiscriminately.
MPLS also has several different types of labels that are commonly used. Generally, an outer label will be used to define the forwarding context for a particular packet. This label is often replaced hop-by-hop as the packet traverses across the network. Once the packet has reached an area where the forwarding context is implicit, this outer label may be popped off the packet which is commonly referred to as pentultimate hop popping. Forwarding context is commonly deemed implicit at least one hop away from the final destination of the packet and, hence, the term pentultimate has been used to refer to this process. However, the outer label may be removed at any point along the network path where the route becomes implicit. The outer labels are node-specific, which means that they have meaning to a particular node on the network. The outer labels are not globally unique values, but rather may be reused at different parts of the network.
MPLS enables multiple labels to be stacked onto a given packet. Frequently, as mentioned above, the outer label is used to specify forwarding context for the packet. An inner label (Pseudo Wire label) is frequently used to enable the nodes to demultiplex the packet at the egress from the Label Switched Path. To do this, the destination node will assign a Pseudo Wire label for each service instance being handled by that destination node. The destination also will then instruct the other nodes on the network to apply the Pseudo Wire labels to the packets when they enter the network, so that the egress node can use the inner MPLS Pseudo Wire label to determine how to forward the packet. Thus, the egress node will assign Pseudo Wire labels to its service instances and coordinate with the ingress nodes to apply those Pseudo Wire labels to traffic entering the network. Like the outer labels, the inner Pseudo Wire labels are not network unique, but rather are only unique to the particular egress node. Use of inner labels enables many different flows of data to be multiplexed for transmission over a given LSP on the MPLS network.
In operation, a LER will apply both the inner Pseudo Wire label and the outer forwarding label to a packet at the ingress to the MPLS network. The outer label will be used to forward the packet across the network and the inner label may be used by the destination node to forward the packet off the MPLS network. This enables a single lookup to be performed by the ingress LER and enables label switching to be used to forward the packet across the MPLS network and, by the destination node, off of the MPLS network e.g. to a client network.
Once unicast connectivity has been established, through the establishment of a full set of LSPs through the network, multicast connectivity may be built on top of the MPLS network. Unfortunately, building multicast connectivity requires use of a different signaling protocol, which makes multicast slower to set up and more error prone. For example, nodes use a protocol such as Internet Group Management Protocol (IGMP) to join and leave multicast groups, which causes the nodes to add nodes and remove nodes from the multicast tree. As nodes join and leave multicast groups, multicast connectivity is built on the MPLS nodes. Destination nodes that would like to subscribe to the multicast send out a join message and the intermediate nodes use the join messages to determine whether forwarding state should be added for the particular multicast. Building multicast trees one at a time in this manner is time consuming and computationally intensive. Accordingly, it would be advantageous to provide a new way to implement multicast on an MPLS network. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
This invention relates to sawing apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.