text
stringlengths 2
806k
| meta
dict |
---|---|
Implantable medical devices, including cardiac rhythm management devices such as pacemakers and implantable cardioverter/defibrillators, typically have the capability to communicate data with a device called an external programmer via a radio-frequency telemetry link. A clinician may use such an external programmer to program the operating parameters of an implanted medical device. For example, the pacing mode and other operating characteristics of a pacemaker are typically modified after implantation in this manner. Modern implantable devices also include the capability for bidirectional communication so that information can be transmitted to the programmer from the implanted device. Among the data which may typically be telemetered from an implantable device are various operating parameters and physiological data, the latter either collected in real-time or stored from previous monitoring operations.
Telemetry systems for implantable medical devices utilize radio-frequency energy to enable bidirectional communication between the implantable device and an external programmer. An exemplary telemetry system for an external programmer and a cardiac pacemaker is described in U.S. Pat. No. 4,562,841, issued to Brockway et al. and assigned to Cardiac Pacemakers, Inc., the disclosure of which is incorporated herein by reference. A radio-frequency carrier is modulated with digital information, typically by amplitude shift keying where the presence or absence of pulses in the signal constitute binary symbols or bits. The external programmer transmits and receives the radio signal with an antenna incorporated into a wand which can be positioned in proximity to the implanted device. The implantable device also generates and receives the radio signal by means of an antenna, typically formed by a wire coil wrapped around the periphery of the inside of the device casing.
In previous telemetry systems, the implantable device and the external programmer communicate by generating and sensing a modulated electromagnetic field in the near-field region with the antennas of the respective devices inductively coupled together. The wand must therefore be in close proximity to the implantable device, typically within a few inches, in order for communications to take place. This requirement is an inconvenience for a clinician and limits the situations in which telemetry can take place. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to the technical field of image coding and, more particularly, to a coding method and system with an adaptive bitplane coding mode.
2. Description of Related Art
An image coding typically compresses an entire frame by dividing the frame into macroblocks and compressing each of the macroblocks. To achieve a higher compression ratio, the macroblocks may be compressed by different macroblock modes, depending on the attributes thereof. Therefore, in a compressed or coded bit stream, each macroblock requires several fields to indicate the macroblock mode used in the macroblock, for example, Skipped MB/Not Skipped, 1MV/4MV, AC prediction, Direct Mode/Not Direct Mode, or the like. In the VC-1 standard, a bitplane coding mode is provided to further compress the macroblock mode of each macroblock to thereby achieve a higher compression ratio.
In the VC-1 (WMV) image coding, a frame is divided into multiple macroblocks, and the coding modes for every macroblock are combined into multiple bitplanes. Namely, each bitplane consists of macroblock modes used by a macroblock of the frame, and is coded in accordance with the VC-1 (WMV) image coding standard, thereby obtaining a preferred compression efficiency.
The bitplane coding mode can be divided into raw mode and compress mode. FIG. 1 is a schematic diagram of typical bitplanes of the coding system at the compress mode. As shown in FIG. 1, the macroblock modes output by a first macroblock mode determinator 120 and a second macroblock mode determinator 150 are temporarily stored in a second buffer 130. Having constructed multiple bitplanes, a compression operation is performed on the bitplanes. In addition, the compressed data of the macroblocks is temporarily stored in a first buffer 140. Finally, the compressed bitplane and the compressed macroblocks are combined into a bit stream. In this case, the combined bitplane is located in the frame header of the bit stream. FIG. 2 is a schematic diagram of typical bitplanes of the coding system in the raw mode. As shown in FIG. 2, each macroblock mode, which is not compressed, is temporarily stored in a second buffer 130. The non-compressed macroblock modes are combined with the compressed macroblocks. In this case, the data of each macroblock mode is located in the macroblock header of the macroblock corresponding to the macroblock mode. However, such a way requires a bit steam produced after every macroblock is temporarily stored and compressed, and the location of each compressed macroblock in the bit stream. In addition, the additional time for transferring data is required, which causes a poor efficiency. Therefore, there is a need to provide an improvement relating to coding method and system for the above bitplane coding mode. | {
"pile_set_name": "USPTO Backgrounds"
} |
A speed control switch uses an electronic circuit or a microprocessing chip to change the graduation, voltage, current, frequency and the like of the motor for controlling the rotational speed of the motor, so that the motor can achieve a higher performance of an electronic switch.
Conventional speed control switches on the market employ step speed regulation or point contact at a high speed, but the swing of the switch is too large. It is unable to achieve precise speed regulation. The structure is complex, and the size is also relatively large. The overall operation is inconvenient. Accordingly, the inventor of the present invention has devoted himself based on his many years of practical experiences to solve these problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a display device comprising a first substrate provided with row electrodes and a second substrate provided with column electrodes, in which overlapping parts of row and column electrodes with an interpositioned layer of electro-optical material define pixels, said electro-optical layer comprising a chiral-nematic liquid crystal material which is capable of assuming a plurality of states, of which at least a focal-conic state and a planar state are stable in the absence of an electric field, further comprising drive means for driving the row electrodes with selection signals and for driving the column electrodes with data signals in conformity with an image to be displayed.
More in general, the invention relates to a display device in which an electro-optical layer is switchable between a plurality of (long-lasting) stable states. A display device based on two (or more) stable states may be used in various applications, for example, when information written once should be maintained for a longer period of time (electronic newspapers, telephony, smart cards, electronic price tags, personal digital assistants, billboards, etc.).
A pixel in such a display device, based on chiral-nematic liquid crystal material has a plurality of stable states, namely a light-transmissive state, which corresponds to the focal-conic state of a layer of liquid crystal material, and a reflecting state which corresponds to the planar state of the layer of liquid crystal material. The color (wavelength) of the reflected light is dependent on the pitch of the liquid crystal material, i.e. the distance through which the director (the average orientation of the molecules in a layer) makes a twist of 360 degrees. In the absence of an electric field, both states are stable for a long period of time. In the light-transmissive states, light of said color is passed to a larger or smaller degree, dependent on the texture (ratio between parts of a pixel in the planar and the focal-conic states, respectively). Moreover, such a display device may also have the so-called homeotropic state; at a high voltage, all molecules (directors) direct themselves to the fields. Incident light then passes through the liquid crystal material in an unhindered way. When used without polarizers, the color in the homeotropic state of a reflective display device is determined by the background color, for example, an absorbing layer. The display device is usually only brought to this state to reach one of the two stable states. Dependent on the frequency used and on the voltage of the switching pulses, a pixel changes to the focal-conic or the planar state.
The selection time (addressing time) for writing the different states is usually rather long. Without special measures, it is 20 to 30 msec, which is too long for use in, for example, an electronic newspaper.
The article xe2x80x9cDynamic Drive for Bistable Cholesteric Displays; A Rapid Addressing Schemexe2x80x9d, SID 95 Digest, page 347 describes how the addressing time which is necessary for reaching the different states can be reduced by means of a special drive mode, using a preparation phase and an evolution phase.
It is, inter alia, an object of the present invention to reduce the selection period. To this end, a display device according to the invention is characterized in that, in the operating state, the drive means sequentially provide groups of p row electrodes (p greater than 1) with mutually orthogonal signals during a selection period.
The use of orthogonal signals is known per se for driving (super)twisted nematic display devices so as to inhibit a phenomenon which is known as frame response. In contrast to the conventional single line addressing, a number of rows is selected simultaneously. This requires a special treatment of incoming signals which must be processed mathematically so as to determine the correct signals for the column electrodes. Said phenomenon of frame response occurs when the frame time becomes too long in proportion to the response time of the liquid crystal material. The transmission of a pixel is then no longer determined by the effective voltage value in a plurality of successive selections, but follows the presented voltage pattern to a greater or lesser degree. In the case of orthogonal drive, the drive signals are adapted in such a way that a pixel is driven several times per frame period. The transmission is then again determined by said effective voltage value in a plurality of successive selections. Notably when used in the above-mentioned applications (electronic newspapers, telephony, smart cards and electronic price tags) of chiral-nematic liquid crystal material, in which the drive voltage is removed after information has been written once, such a problem does not occur in the absence of successive selections.
The invention is based on the recognition that the selection period should be sufficiently long, on the one hand, so that the liquid crystal (the pixel) reacts to the effective voltage value of the presented signals, whereas, on the other hand, a plurality of rows (p) can be simultaneously driven with orthogonal signals within the selection period, while a column signal is determined by the desired state of the pixels and the corresponding orthogonal signals on the rows. In the simultaneously driven rows, sufficient energy is presented to cause the pixels to switch. Consequently, the display device is written faster by a factor of p. The p rows may be spread on the surface of the display device but preferably form a group of consecutive rows. The optimum value for p appears to be dependent on the electro-optical characteristic of the pixels, such that p opt = 16. V pf 2 [ 1 2 xe2x80x83 ( V on 2 + V off 2 ) - V pf 2 ( V on 2 - V off 2 ) 2 ] ,
in which Von is the voltage across a pixel in the reflection (transmission)/voltage characteristic curve required for the transition to a planar state via the homeotropic state, Voff is the voltage across a pixel in the reflection (transmission)/voltage characteristic curve for the transition to the focal-conic state, and Vpf is the voltage across a pixel in the reflection (transmission)/voltage characteristic curve for the transition from the planar state to the focal-conic state.
In principle, Vpf, Von and Voff are related to reaching a certain reflection (transmission), for example 99%, 99% and 1% of the maximum reflection (or, for example 95%, 95% and 5%). In practice, notably Von and Voff are often also determined by the adjustment of the drive circuit (driver IC).
Moreover, the reflection (transmission)/voltage characteristic also depends on the history. In some cases, the state reached after selection depends on the initial situation and may be different for an initial situation in which the pixel at a voltage of 0 volt is in the focal-conic state, as compared with an initial situation in which the pixel at a voltage of 0 volt is in the planar state. This is not a problem for on-off switching (for example, alphanumerical) displays but is a problem in the case of fast changes in the image in which grey scales are also to be displayed. To provide this facility, a preferred embodiment of a display device according to the invention is characterized in that the drive means comprise means for bringing, prior to a selection period, the liquid crystal material in groups of p rows of pixels to an (unambiguously) defined state in the operating state. This defined state is preferably the homeotropic state, but the focal-conic state is alternatively possible, while even a state associated with a given texture (grey value) is feasible.
For the orthogonal functions, for example, Walsh functions are chosen, but other functions are alternatively possible such as, for example, Haar functions, Rademacher functions or Slant functions. To prevent a DC voltage from being built up when driving the same kind of information for a long period of time (for example, a title of a document at the top of a page whose contents change, or the word xe2x80x9cpagexe2x80x9d at the bottom of a page of an electronic newspaper), the voltage integral of the selection voltages in a selection period is preferably zero.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter. | {
"pile_set_name": "USPTO Backgrounds"
} |
In FIG. 1 typical topology of a DC-DC up-converter 100 is depicted. Basically, an input voltage Vin is supplied to the converter core 110. When the switch S1 is conducting the current through the coil L ramps up. When the switch S2 is conducting the current is forwarded to the output capacitor C2. A digital controller 150 measures the output voltage Vout at the capacitor C2 by a sensing circuit 130. The sensing circuit 130 generates a control signal as input for the controller 150 from the actual output signal Vout. By controlling the switches S1 and S2 the controller 150 regulates Vout to a desired value. Thereby, the switches S1 and S2 are never conducting at the same time. For deriving a feedback signal, which indicates an error between the present output signal and a desired output signal value, for the control circuit 150 of the converter 100, one or more comparators may be used in the sensing circuit 130. The feedback signal may indicate that the output voltage is within, above or below a desired window which is defined for the output voltage. For that purpose a quantized feedback or control signal, respectively, is sufficient. The controller regulates the switching of the switches S1, S2 based on the feedback signal such that the output voltage Vout is always within this window.
In the following with reference to FIG. 2, a circuit arrangement is shown for defining the respective error windows in order to derive applicable control signals for a digital control unit of the DC-DC-converter. Two windows, each with a high level and a low level are used: the first narrower window is herein called ‘small signal’ window Ws, the other ‘large signal’ window W1. This implies that a total of four comparators OPLWs, OPHWs, OPLW1 and OPHW1 are used to create these four (window) levels. However, these comparators need to be accurate and this usually means they are current consuming and use a relatively large area of silicon.
In FIG. 2 it shall be assumed that Vout of a switching power supply, for example the DC-DC-converter of FIG. 1, is desired to be 2.5 V. Vout is sensed by a resistive divider 210 of resistors RI, RII with the ratio 4:1, that is the output of the resistive divider 210 should be 625 mV, if Vout of the converter is as desired. Next, the output of the divider 210 is compared to 4 levels around 625 mV. The respective comparator outputs VH20, VH05, VL05, and VL20 are used as inputs for the digital controller controlling the switches of the converter. That is during operation the digital controller tries to regulate the (divided) output voltage Vout into the small signal window Ws between the levels VL05−VH05, in the example of FIG. 2 within the range of 620 mV to 630 mV. For bigger load steps (changes of the load and the needed load current) the controller tries to regulate the (divided) output voltage Vout to be within the large signal window W1 between the levels VL20−VH20, here 605 mV to 645 mV. FIG. 3 depicts the large signal window W1 (VL20−VH20), and the small signal window Ws (VL05−VH05).
A disadvantage of the circuit of FIG. 2 is that the four comparators OPLWs, OPHWs, OPLW1 and OPHW1 have to be very accurate. This implies these comparators use a lot of silicon area and high bias currents. Further, the four comparators OPLWs, OPHWs, OPLW1 and OPHW1 form a considerable capacitive load for the resistive divider 210 at Vout. Together with the divider 210 having a relatively high impedance for efficiency reasons, the bandwidth is limited. As consequence thereof, the control loop may not react adequately fast to changes of the output voltage Vout in cases of sudden load steps. Moreover, the ‘distance’ between the error window levels is not fixed. Depending on the offsets of the comparators OPLWs, OPHWs, OPLW1 and OPHW1 the windows can be smaller or larger than intended, affecting the stability of the control loop, especially in case of very small window sizes. Therefore, the offsets of the comparators OPLWs, OPHWs, OPLW1 and OPHW1 are the main reason in cases where the actual window sizes differ from the intended window sizes.
For instance, it is assumed that the two small signal window comparators have an error of ±2 mV, corresponding to a 99.4% error level (so-called 4-sigma error). These offsets can be considered as not correlated. Accordingly, the maximum distance between VL05 and VH05 is VH05−VL05max=2×5 mV+√{square root over (2 mV2+2 mV2)}=12.8 mV and the minimum distance between VL05 and VH05 is VH05−VL05 max=2×5 mV−√{square root over (2 mV2+2 mV2)}=7.2 mV. The effects on the small signal window of these errors are illustrated in FIGS. 4a and 4b for the two possible worst case scenarios. When the small signal window becomes to small instability of the control loop will become a problem.
It is therefore, one object of the present invention to provide a circuit arrangement and method by which the afore-discussed problem can be avoided.
The afore mentioned object of the invention is solved by a feedback. Accordingly, the feedback circuit, for generating a control signal representing the relation of a signal to be controlled relative to predetermined limits of at least one error signal window, comprises signal detecting means, a detected signal connected to error amplifying means for amplifying the error between the detected signal and a first reference signal, an output error signal of the error amplifying means connected to at least a first comparator means and second comparator means each configured to compare the error signal with one of the upper limit and lower limit of the at least one error signal window.
The feedback circuit may further comprising means for generating error window reference signals for providing the upper limit and the lower limit of the at least one error signal window. The means for generating error reference signals can be implemented as a resistive divider connected to a second reference signal and the resistive divider can be configured to provide as outputs the upper limit and the lower limit of the at least one error signal window. In a further development the circuit comprises two error signal windows a small window for small changes to the signal to be controlled and a large window for bigger changes of the signal to be controlled.
Each of the at least first and second comparator means corresponds to one of the limits of the at least one error signal window and provides as output a digital control signal indicative for the relation of the error signal to the respective limit. Thus, the resultant control signal is a quantized signal.
In one embodiment the error amplifying means is an operational amplifier configured to multiply the error between the detected signal and the first reference signal by a predetermined factor and wherein the error signal comprises the first reference signal as offset. Thus the respective limits of the at least one error signal window can be symmetrically arranged around the offset determined by the first reference signal.
In a preferred application of the feedback circuit the signal detecting means are connected to the output of a power supply circuit and the quantized control signal is input to a control circuit of the power supply circuit, which may be digital controller or alike. The control circuit is configured to regulated the power supply circuit such that the output signal stays within the at least one predetermined error signal window. In one embodiment the power supply circuit is a DC-DC-converter.
The afore mentioned object of the invention is further solved by a method for generating a quantized control signal from a sensed signal. Accordingly, the method comprises the steps of: determining at least one error signal window with predetermined upper and lower limits; generating a error signal by subtracting a reference signal from the input signal; amplifying the error signal; comparing the amplified error signal with the upper and lower limits of the at least one error window; and outputting the results of the comparing step as the quantized control signal.
The method may further comprise the step of dividing the input signal by a predetermined ratio. By this step the internal control signals of a circuit, in which the method is used, can be lower then an available supply voltage, which may be a battery. Further, the amplifying step may further comprise adding the reference signal to the amplified error signal as an offset. By this step the error signal windows do not need to by symmetrical to a ground reference potential of the circuit, by which generation of symmetrical reference signals can be avoided.
The method of the invention may advantageously be used in an electronic circuit for generating a quantized feedback signal from an output signal of the electronic circuit for control of the output signal.
To summarize, the general concept of the present invention resides in the idea that by use of one accurate error amplifier for amplification of the error signal, the needed window comparators can be relatively inaccurate, which reduces the requirements thereof. Moreover, with the method and respective circuit arrangement of the invention the error window size(s) can be much more accurate compared to the solution discussed above. This is important especially in situations where extremely small windows are needed for very accurate output voltages. | {
"pile_set_name": "USPTO Backgrounds"
} |
In copending U.S. patent application Ser. No. 051,367, filed 5/18/87 by Roland F. Gatturna et al. for "Suture Anchor", there is disclosed a variety of suture anchors of the sort adapted to anchor one end of a piece of conventional suture in bone, and there is disclosed several suture anchor installation tools for deploying such suture anchors in bone.
The specification and drawings of the above-identified U.S. patent application Ser. No. 051,367 is hereby incorporated by reference into the present patent application.
Looking now at FIG. 1, there is shown one of the suture anchors disclosed in the above-identified U.S. patent application Ser. No. 051,367. This suture anchor, identified generally by the numeral 105, comprises a coupling member 110 and a barb 115.
Coupling member 110 comprises a piece of 6A14V titanium alloy having a first end surface 120 and a second end surface 125. First end surface 120 is disposed at an angle of approximately 30 degrees to the coupling member's longitudinal axis, and second end surface 125 is disposed at a right angle to the coupling member's longitudinal axis, as shown. Coupling member 110 has a blind hole 130 opening on second end surface 125, and a bore 135 extending at an angle between the coupling member's side wall and its bottom end surface 120, as shown. Bore 135 extends at a right angle to the coupling member's bottom end surface 120. In the case of a suture anchor adapted to anchor a No. 0 suture (i.e., a suture having a diameter of approximately 0.014 inch), coupling member 110 preferably has a length of approximately 0.160 inch and a diameter of approximately 0.053 inch, blind hole 130 has a depth of approximately 0.070 inch and a diameter of approximately 0.028 inch, and bore 135 has a diameter of approximately 0.028 inch.
Barb 115 comprises a curved length of nickel titanium alloy having a first end 140 and a second end 145. In the case of a suture anchor adapted to anchor a No. 0 suture, barb 115 preferably has a diameter of approximately 0.026 inch and, in its unrestrained state, comprises an arc of approximately 135 degrees of a loop approximately 0.250 inch in diameter (when measured to the inside of the loop). Barb 115 is attached to the coupling member by fitting the barb's first end 140 into the coupling member's blind hole 130, whereby the barb's second end 145 extends upward and outward from the coupling member. Coupling member 110 is then crimped inward at one or more points as shown at 150 to lock barb 115 to the coupling member. Barb 115 is made of such a nickel titanium alloy that it is capable of being elastically deformed to a substantially straight length when desired (i.e., so that the barb's second end 145 is aligned with its first end 140, as well as with the opposite ends of the coupling member). By way of example, barb 115 may be made out of binary nitinol such as that sold by Furukawa of Japan and Raychem Corporation of Menlo Park, Calif., or it might be made out of ternary nitinol such as that sold by Raychem Corporation and described in U.S. Pat. No. 4,505,767 (Quinn).
Looking next at FIG. 2, there is shown one of the suture anchor installation tools disclosed in the above-identified U.S. patent application Ser. No. 051,367. This suture anchor installation tool, identified generally by the numeral 205, may be used to deploy the suture anchor shown in FIG. 1. Installation tool 205 comprises a hollow sheath or cannula 210, a hollow loader or inserter 215 and a solid (or hollow) plunger 220.
Hollow sheath 210 terminates in a flat annular surface 225 at its front end and a flat annular surface 230 at its rear end. Surfaces 225 and 230 are disposed at an angle substantially perpendicular to the longitudinal axis of sheath 210. Sheath 210 has an axial bore 235 extending between its front and rear surfaces 225 and 230. Sheath 210 includes a disk-like finger grip 240 which is affixed to the rear end of the outer sheath member and includes a flat surface 245 which is coplanar with the sheath member's rear surface 230. In the case of an installation tool adapted to deploy a suture anchor for anchoring a No. 0 suture, sheath 210 preferably has an outer diameter (i.e., forward of finger grip 240) of approximately 0.083 inch, an inner diameter of approximately 0.071 inch, and a length of approximately 4.0 inches.
Hollow loader 215 terminates in a flat annular surface 250 at its front end and a flat annular surface 255 at its rear end. Surfaces 250 and 255 are disposed at an angle substantially perpendicular to the longitudinal axis of loader 215. Loader 215 has an axial bore 260 extending between its front surface 250 and its rear surface 255. Loader 215 includes a disk-like finger grip 265 which is attached to the rear end of the loader member and includes a flat surface 270 that is coplanar with the loader's rear surface 255. Loader 215 is sized so that it will make a close sliding fit within bore 235 of sheath 210, as will hereinafter be described in further detail, and also so that its leading tip 250 will not protrude from the front end of sheath member 210 when the loader is inserted into the sheath's axial bore 235 and the loader's finger grip 265 is in engagement with the sheath's rear surface 230, as will hereinafter be described in further detail. In the case of an installation tool adapted to deploy a suture anchor for anchoring a No. 0 suture, loader 215 preferably has an outer diameter (i.e., forward of finger grip 265) of approximately 0.065 inch, an inner diameter of approximately 0.047 inch, and a length of approximately 4.13 inches.
Plunger 220 includes a solid (or hollow) body section 275 and a head section 280. Body section 275 has a round cross-section and terminates in a front surface 285. Plunger 220 is sized so that its body section 275 will make a close sliding fit within bore 260 of loader 215 and also so that its leading tip 285 will protrude from the front end of the loader member a short distance when the plunger's head section 280 is in engagement with the loader member's rear surface 270, as will hereinafter be described in further detail. In the case of an installation tool adapted to deploy a suture anchor for anchoring a No. 0 suture, plunger 220 preferably has a diameter of approximately 0.047 inch forward of head section 280, and a length of approximately 4.32 inches, as will hereinafter be described in further detail.
Installation tool 205 is intended to be utilized as follows. Looking next at FIG. 3, suture anchor 105 is loaded into the top end of sheath member 210 so that the suture anchor's coupling member 110 resides inside the sheath's axial bore 235 and the suture anchor's barb 115 extends above finger grip 240 of the sheath member. Looking next at FIG. 4, the front end 250 of loader 215 is then slipped over the free end of the suture anchor's barb 115 so that the free end of the barb extends into the loader member's axial bore 260. Then loader member 215 is (a) forced into coaxial alignment with outer sheath member 210, thereby straightening out barb 115 in the process, and (b) pushed into the interior of sheath member 210, carrying the suture anchor downward within the sheath member as it goes. In order to assure that barb 115 of suture anchor 105 is contained completely within loader 215 such that suture anchor loader surface 250 contacts suture anchor surface 125, the sheath's bottom surface 225 is rested against a stationary surface 305 (see FIG. 5) while suture anchor loader 215 is brought downward into direct contact with the suture anchor's rear surface 125. Sheath member 210 and loader member 215 are carefully sized relative to one another (and relative to suture anchor 105) so that when the loader member's finger grip 265 is thereafter brought into contact with the sheath member's top surface 245, the suture anchor will protrude slightly from the bottom end of the sheath member, as shown in FIG. 6. More specifically, as seen in FIGS. 7 and 8, sheath member 210 and loader member 215 are sized relative to one another (and relative to suture anchor 105) so that both ends of the suture anchor's diagonal bore 135 will be exposed to view when the loader member's finger grip 265 is brought into contact with the sheath member's top surface 245. With the suture anchor so held by the installation tool, a conventional suture 405 may then be easily attached to the suture anchor by passing the suture through the anchor's diagonal bore 135 and tying a knot 410 at the end of the suture which can then bear against the bottom end 120 of the suture anchor's coupling member, as shown in FIGS. 7 and 8.
Once the suture has been attached to the suture anchor in the foregoing manner, plunger member 220 may then be inserted into the loader member's internal bore 260 (see FIG. 9) and pressed downward until its bottom tip 285 contacts the suture anchor barb contained in the loader member's bore 260. By appropriately sizing the respective members involved, the head section 280 of the plunger member will remain slightly above finger grip 265 of loader member 215 when the plunger member's tip 285 engages barb 115 of suture anchor 105.
Thereafter, when the installation tool is actuated to deploy the suture anchor (and its attached suture) into bone, the tip of the installation tool is inserted into a hole 505 formed in a bone 510 until the suture anchor rests on the bone surface 515 (see FIG. 10), and then head section 280 of plunger member 220 is held stationary while finger grip 240 of sheath member 210 is pulled upward so that the loader's flat surface 270 engages the underside of the plunger's head section 280, thereby ejecting the suture anchor 105 (and its attached suture 405) out of the installation tool and into the bone, as shown in FIGS. 10 and 11.
Complete details regarding the construction and use of suture anchor 105 and installation tool 205 are provided in the above-identified U.S. patent application Ser. No. 051,367, which is incorporated herein by reference; the foregoing description is provided merely for convenient reference in understanding the present invention.
With the three-element installation tool 205 described above, a hole slightly larger in size than the combined diameters of the outer sheath member 210 and the suture 405 must be drilled in the bone. For example, with a suture anchor for anchoring a No. 0 suture, where the suture anchor's coupling member 110 has a diameter of approximately 0.053 inch, suture 405 has a diameter of approximately 0.014 inch, and outer sheath 210 has a diameter of approximately 0.083 inch, a hole approximately 0.098 inch in diameter must be drilled in the bone. In the case of a suture anchor for anchoring a No. 2 suture, where the suture anchor's coupling member 110 has a diameter of approximately 0.061 inch, suture 405 has a diameter of approximately 0.020 inch, and outer sheath 210 has a diameter of approximately 0.095 inch, a hole approximately 0.116 inch in diameter must be drilled in the bone.
A summary table of such sizing is given below:
TABLE 1 ______________________________________ Suture Size: No. 0 No. 2 ______________________________________ Suture Anchor Dia. 0.053 0.061 Sheath Diameter 0.083 0.095 Suture Diameter 0.014 0.020 -- -- Sheath + Suture Dia. 0.097 0.115 Drill Diameter 0.098 0.116 (Drill hole) - (Suture Anchor) 0.045 0.055 ______________________________________
Unfortunately, while the three-element installation tool 205 described above is known to work, it is also believed to suffer from a number of disadvantages.
For one thing, it will be seen from Table 1 above that the three-element installation tool 205 takes up a substantial amount of room in the bone hole relative to the diameter of the suture anchor. More specifically, as seen in Table 1 above, the suture anchor for anchoring a No. 0 suture has a coupling member diameter of approximately 0.053 inch, yet it requires a drilled hole of approximately 0.098 inch to accommodate the suture anchor when it is set by installation tool 205. Therefore, the suture anchor's barb must essentially take up the difference between the 0.053 inch coupling member and the 0.098 inch hole when the suture anchor is set in the hole. Thus, the barb must expand approximately 0.045 inch for the suture anchor used to anchor a No. 0 suture. Similarly, as seen in Table 1 above, the suture anchor for anchoring a No. 2 suture has a coupling member diameter of approximately 0.061 inch, yet it requires a drilled hole of approximately 0.116 inch to accommodate the suture anchor when it is set by installation tool 205. Therefore, the barb must essentially take up the difference between the 0.061 inch coupling member and the 0.116 inch hole when the suture anchor is set in the hole. Thus, the barb must expand approximately 0.055 inch for the suture anchor used to anchor a No. 2 suture. Inasmuch as the barb loses force as it returns closer and closer to its original curved shape from its constrained straight shape (e.g. much like a spring), the larger the difference existing between the bone hole diameter and the suture anchor body, the smaller the force applied to the side wall of the bone by the suture anchor's barb when the suture anchor is set in the bone, and hence the weaker the attachment of the suture anchor to the bone. Accordingly, a fit such as that mandated by the use of the three-element installation tool 205 could possibly lead to inconsistent anchoring of the suture in the bone.
Another disadvantage of the three-element installation tool 205 described above is that the outer sheath 210 and loader member 215 can be preloaded with the suture anchor (in the manner shown in FIGS. 5 and 6) but, if it is then left for a substantial amount of time between loading and use, the barb can lose its resiliency and relax over time, so that when the suture anchor is thereafter used, its barb may not contact the bone wall with the same force that it would have if the suture anchor had been used immediately after loading the suture anchor into sheath 210 and loader 215. Accordingly, preloading accompanied by delayed use can possibly lead to inconsistent and unsatisfactory anchoring of the bone anchor in the bone. | {
"pile_set_name": "USPTO Backgrounds"
} |
The compounds disclosed herein are related to the biological and chemical analogs of modafinil. Modafinil, C15H15NO2S, also known as 2-(benzhydrylsulfinyl)acetamide, or 2-[(diphenylmethyl)sulfinyl] acetamide, a synthetic acetamide derivative with wake-promoting activity, has been described in French Patent No. 78 05 510 and in U.S. Pat. No. 4,177,290 (“the '290 patent”). It has been approved by the United States Food and Drug Administration for use in the treatment of excessive daytime sleepiness associated with narcolepsy. Methods for preparing modafinil and several derivatives are described in the '290 patent. The levorotatory isomer of modafinil, along with additional modafinil derivatives are described in U.S. Pat. No. 4,927,855, and are reported to be useful for treatment of hypersomnia, depression, Alzheimer's disease and to have activity towards the symptoms of dementia and loss of memory, especially in the elderly.
Modafinil has also been described as a useful agent in the treatment of Parkinson's disease (U.S. Pat. No. 5,180,745); in the protection of cerebral tissue from ischemia (U.S. Pat. No. 5,391,576); in the treatment of urinary and fecal incontinence (U.S. Pat. No. 5,401,776); and in the treatment of sleep apneas and disorders of central origin (U.S. Pat. No. 5,612,379). In addition, modafinil may be used in the treatment of eating disorders, or to promote weight gain or stimulate appetite in humans or animals (U.S. Pat. No. 6,455,588), or in the treatment of attention deficit hyperactivity disorder (U.S. Pat. No. 6,346,548), or fatigue, especially fatigue associated with multiple sclerosis (U.S. Pat. No. 6,488,164). U.S. Pat. No. 4,066,686 describes various benzhydrylsulphinyl derivatives as being useful in therapy for treating disturbances of the central nervous system.
Several published patent applications describe derivative forms of modafinil and the use of modafinil derivatives in the treatment of various disorders. For example, PCT publication WO 99/25329 describes various substituted phenyl analogs of modafinil as being useful for treating drug-induced sleepiness, especially sleepiness associated with administration of morphine to cancer patients. U.S. Pat. No. 5,719,168 and PCT Publication No. 95/01171 describes modafinil derivatives that are useful for modifying feeding behavior. PCT Publication No. 02/10125 describes several modafinil derivatives of modafinil, along with various polymorphic forms of modafinil.
Additional publications describing modafinil derivatives include U.S. Pat. No. 6,492,396, and PCT Publication No. WO 02/10125.
Terauchi, H, et al. described nicotinamide derivatives useful as ATP-ase inhibitors (Terauchi, H, et al, J. Med. Chem., 1997, 40, 313–321). In particular, several N-alkyl substituted 2-(Benzhydrylsulfinyl)nicotinamides are described.
U.S. Pat. Nos. 4,980,372 and 4,935,240 describe benzoylaminophenoxybutanoic acid derivatives. In particular, sulfide derivatives of modafinil containing a phenyl and substituted phenyl linker between the sulfide and carbonyl, and a substituted aryl in the terminal amide position, are disclosed.
Other modafinil derivatives have been disclosed wherein the terminal phenyl groups are constrained by a linking group. For example, in U.S. Pat. No. 5,563,169, certain xanthenyl and thiaxanthenyl derivatives having a substituted aryl in the terminal amide position are reported.
Other xanthenyl and thiaxanthenyl derivatives are disclosed in Annis, I; Barany, G. Pept. Proc. Am. Pept. Symp. 15th (Meeting Date 1997) 343–344, 1999 (preparation of a xanthenyl derivative of Ellman's Reagent, useful as a reagent in peptide synthesis); Han, Y.; Barany, G. J. Org. Chem., 1997, 62, 3841–3848 (preparation of S-xanthenyl protected cysteine derivatives, useful as a reagent in peptide synthesis); and El-Sakka, I. A., et al. Arch. Pharm. (Weinheim), 1994, 327, 133–135 (thiaxanthenol derivatives of thioglycolic acid).
Thus, there is a need for novel classes of compounds that possess the beneficial properties. It has been discovered that a class of compounds, referred to herein as substituted thioacetamides, are useful as agents for treating or preventing various diseases or disorders disclosed herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
U.S. Pat. No. 4,027,669 describes a thermoplastic syringe barrel with an integrally molded internally threaded locking sleeve at its forward end. The locking sleeve was segmented by three circumferentially spaced slots to provide a sleeve structure with internal threads that could be longitudinally stripped (without unscrewing) from its mold during formation.
During mold stripping, it is desirable to have the sleeve as flexible as possible so the threads are not damaged during the stripping process. During use, just the opposite is desirable, i.e. the sleeve should be as stiff as possible to prevent lateral ears of a hypodermic needle from slipping on the threads. Because of these two divergent needs relative to flexibility of the sleeve, seemingly minute changes in structure can have a tremendous effect on moldability and performance of the syringe. It was previously believed necessary to include a circumferentially uninterrupted portion of approximately 0.100 inch length at a rear of the locking sleeve. This was felt necessary to provide the backup support to prevent overflexing of the sleeve when the needle ears were pushing outwardly against the sleeve during use. An expanded view of this prior art is shown in FIG. 1. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention herein pertains generally to mechanical bandpass filters and specifically to a mechanical filter which employs bar resonators operated in a longitudinal mode of vibration to achieve a narrower bandpass frequency range than previously attainable with prior art mechanical filters.
Although mechanical bandpass filters are well known and are extensively used commercially in electronic circuits, their application for narrow bandwidth operation has been somewhat limited because of inherent problems, such as high insertion loss and passband rounding, engendered by some of the transduced mechanical energy being diverted to the structural supports away from the output transducer stage. In addition, specific types such as conventional disk-wire designs require a high degree of resiliency (wire compliance) in order to achieve narrow bandwidths, so that as the ruggedness of the device is diminished to achieve greater selectivity a point is reached when the structure is too fragile to withstand the forces normally encountered in a commercial environment. These filters are typically capable of minimum bandwidths of about 0.1% of the center frequency. Bar-flexure designs suffer from the inaccessibility to the singular nodal point for support purposes so that some of the transduced mechanical energy must inherently be dissipated through the structural supports thereby reducing the attainable Q levels and consequently the degree of selectivity. The bandwidth for these devices generally exceeds 0.2% of the center frequency.
The longitudinal-mode of resonant response wherein a bar resonator vibrates along its longitudinal axis is a well known and understood phenomenon. However, although longitudinal-mode resonators, such as the Langevin type, comprising two columnar metal rod sections separated by a piezoelectric transducer (see Modern Filter Theory and Design by Temes and Metra, p. 175) have been employed in mechanical bandpass filters such as the tandem type described in an article entitled "The Mechanical Filter: Evaluation to Technical Maturity" which appeared in the June 1973 issued of Japan Electric Engineering, the realizable bandwidths do not even compare with those of the aforementioned filters (the article indicating a minimum bandwidth of 0.2% of center frequency).
With the foregoing in mind, it is a primary object of the present invention to provide a new and improved mechanical bandpass filter.
It is a further object of the present invention to provide such a filter which advantageously employs the longitudinal mode of vibrational response for bar resonators.
It is still a further object of the present invention to provide such a filter which exhibits a narrower bandwidth than previously attainable with prior art mechanical filters.
The foregoing objects as well as others, and the means by which they are achieved through the present invention, may be best appreciated by referring to the Detailed Description of the Invention which follows hereinafter together with the figures. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates generally to direct current (DC) electric motors and, more particularly, to DC electric motors with motor-cooling features.
2. Description of the Prior Art
It is well known that DC electric motors give off heat when they operate. With many motors, ambient air is sufficient for cooling the motors. Even a fan blowing ambient air may also provide sufficient cooling. However, for a DC electric motor that performs relatively large amounts of work and generates more heat than can be sufficiently cooled merely by air, it would be desirable if a DC electric motor were provided with a liquid cooling system.
Generally, a conventional DC electric motor has a simple stator, an armature that includes a pair of armature poles wherein one armature pole has a right-handed winding, and the other armature pole has a left-handed winding. Also, such a conventional DC electric motor includes a commutator that has two commutator contacts. Also, a conventional DC electric motor includes sliding brushes.
With the present invention, a number of improvements over a conventional DC electric motor are contemplated. For example, it would be desirable to provide a novel DC electric motor which provides a stator comprised of a plurality of stator magnet modules. It is contemplated that multiple stator magnet modules can provide maximum torque.
With the present invention, instead of employing an armature that has only two armature pole portions, it would be desirable to provide a DC electric motor that has an armature that includes additional armature pole portions. The use of multiple armature pole portions will permit the maximizing of the efficiency of available electric current.
With the present invention, instead of having opposite armature pole portions that have opposite winding configurations, such as right-handed winding and left-handed winding, it has been discovered beneficial to have opposite armature pole portions to have the same winding configurations. That is, both opposite armature pole portions can have either right-handed windings or left-handed windings.
With the present invention, instead of using conventional sliding brushes, the invention employs roller brushes. Roller brushes last longer than sliding brushes.
In addition, instead of employing a conventional bearing for the armature, the present invention provides a tunnel bearing assembly which puts the bearings close to the armature for better stability and load supporting.
Conventionally, brushes are retained in fixed positions with respect to the commutator contacts. That is, even with different motor speeds and different loads, the relative positions between the commutator contacts and the brushes do not change. In this respect, it would be desirable if a brush advance/retard mechanism were provided. Such a brush advance/retard mechanism would allow for maximum performance at different motor speeds and loads.
Thus, while the foregoing body of prior art indicates it to be well known to use DC electric motors, the above discussion indicates that the prior art does not teach or suggest a DC motor apparatus which has the following combination of desirable features: (1) is provided with a liquid cooling system; (2) provides a stator comprised of a plurality of stator magnet modules; (3) has an armature that includes additional armature pole portions; (4) has opposite armature pole portions having the same winding configurations; (5) employs roller brushes; (6) provides a tunnel bearing assembly; and (7) provides a brush advance/retard mechanism. The foregoing desired characteristics are provided by the unique liquid cooled DC motor apparatus of the present invention as will be made apparent from the following description thereof. Other advantages of the present invention over the prior art also will be rendered evident. | {
"pile_set_name": "USPTO Backgrounds"
} |
Adhering to agent schedules can be a challenge for a contact center. In many instances, an agent's schedule for a standard work day may include several events, such as scheduled breaks, lunch breaks, training sessions, defined callback times, and/or the like. Currently, contact centers treat all of these types of events as being fixed and immovable. This causes problems where a specific agent is needed to handle a transaction from a customer (e.g., an incoming call or callback) at a time during a fixed event in the agent's schedule. Existing contact centers either have to reschedule the transaction or select another agent to handle the transaction. In either case, this is not always the optimal solution. What is needed is a better way to manage events in an agent's schedule to meet the needs of the contact center. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to system comprising plural stabilizing brackets, and to a kit of components therefore, for use in designing and constructing an outdoor play gym, swing set, or play set, of the type often found in the back yard of homes, especially those with small children. The brackets are designed and constructed to allow the home owner to personalize the design to include such features as swings, teeter totter boards, elevated platforms, slides, etc., where the selected features will depend on the ages of the children to be using same.
Most of the back yard sets that are found in residential neighborhoods are commercial systems available in many retail outlets and typically consist of an A-frame formed of tubular products, with swings and a teeter totter board suspended from a cross member of a tubular configuration. Further, such commercial systems are held in place with either complicated braces or just simply nails. These fastening mechanisms can lead to instability that may result in injuries or potential dangerous conditions. In any case, personalized systems are not commercially available, and should one design an individualized system, little help can be found from the commercial outlets in finding the fastening members and supports that are needed.
What may be available in the prior art are limited in the freedom to design a personalized system. Several patents from the prior art are found in the following U.S. Patents:
a.) No. 6,527,232, to Robertson et al., discloses an A-frame bracket having a rectangular top, and two rectangular side walls that each extend at an angle downwardly from the rectangular top, wherein each side wall has an integrally formed flange forming an “L”-shaped wall for receiving wooden legs that form an A-frame.
b.) No. 5,364,312, to Cunard et al., relates to a kit for assembling wood legs to form an A-frame to support the end of a cross beam for a children's play gym that includes a trapezoidal frame bracket to connect the upper ends of the legs to each other and to the cross beam and a special frame brace for reinforcing that connection which will accommodate a tubular metal cross beam or a cross beam consisting of a single board or a plurality of boards. The frame brace has a generally rectangular top wall and a pair of laterally spaced apart side walls extending down from the top wall at an angle such that the side walls have more or less the same slope as the side edges of the frame bracket. Portions of the frame brace top wall define a first set of holes spaced apart along the longitudinal centerline of the top wall, there being two such holes in the first set and a second set of holes containing at least two holes spaced along the top wall on each side of that centerline. There also may be a third set of holes containing at least two holes spaced along the top wall on each side of the centerline and being displaced from the second set of holes. The kit also includes fasteners arranged to extend through the first set of holes into the cross beam when the cross beam is a unitary member and through the second and third sets of holes into the cross beam when the cross beam is of wood so that the same hardware can be used to construct play gyms having a variety of different type cross beams.
c.) No. 4,966,309, to Baer, teaches a kit for assembling timbers into a play structure. The kit includes a frame bracket which has a frame segment joined at a right angle to a beam segment. The frame segment has four nail or screw holes and the beam segment has two nail or screw holes. The beam segment has a square bolt hole for receiving a carriage bolt. The frame segment is adapted to joining two timbers into an A-frame so formed to a transverse overhead laminated beam. The kit also has a frame brace with a body plate having a flange joined to it at such an angle that when the body is placed flat on the A-frame, the flange lies flat on the beam. The frame brace has nail or screw holes and bolt holes in both the body and the flange. The kit also contains rectangular flat beam clamps adapted to attachment across the laminations of the beam so as to restrict the separating of the laminations. The beam clamps have at least two nail holes and a central bolt hole. The bolt hole being circular on the beam clamp for use with the frame bracket and oblong for use with a swing hanger.
While the foregoing prior art offer some insight into the construction of gym sets, such as for the back yard, they fail to offer a readily constructable system that allows for the do-it-yourselfer to build and assemble a customized set in the manner of the present invention. The manner by which the present invention allows the do-it-yourselfer to accomplish his goals will become clearer in the following specification and drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a composition of a coating solution, a process for its preparation and a process for producing a layer of cadmium stannate on a substrate with the coating solution.
Cadmium stannate layers are known to have high electrical conductivity, high infra-red reflecting properties and a low absorption within the visible spectrum. These characteristics of cadmium stannate layers make them suitable for example, as layers in heated windows, windows for buildings, doors for microwave ovens or solar collector panels.
Conventionally cadmium stannate layers have been applied to substrates using high frequency atomisation. This process takes considerable time to deposit the desired thickness of film and usually requires expensive production equipment. Clearly when coating large or numerous substrates this is uneconomical.
An alternate process for producing a cadmium stannate layer upon a substrate has been proposed which entails spraying of an aqueous solution of cadmium and tin salts, to which other salts have been added as process additives, onto hot glass. The temperature of the glass (usually ranging from 600 to 700.degree. C.) is critical as CdSnO.sub.3 or Cd.sub.2 SnO.sub.4 as well as CdO and SnO.sub.2 may be formed. This process does not appear to achieve a uniform layer corresponding to the chemical composition of the coating solution.
A further approach is disclosed in U.S. Pat. No. 4,229,491 which describes a process in which glass is dipped at room temperature into a coating solution. Then it is withdrawn steadily from the coating solution and heated to a high temperature, to form a transparent cadmium stannate layer. This is said to ensure a fully homogenous cadmium stannate layer and allow economical coating of glass panes as well as tubes of any given shape.
The patent describes the use of alcoholic solutions containing hydrolysable complexes formed from cadmium and tin compounds as dipping solutions. These complexes are derived from cadmium (lower alkyl) carboxylate, e.g. cadmium acetate, and a tin alkoxide, e.g. tin tetra-n-butylate. The preferred Cd:Sn ratio is from 1:1 to 2:1. Whereas acetylacetone is disclosed as an additive to such dipping solutions its effect on the process is not discussed.
Detailed studies of the system described in the U.S. Pat. No. 4,229,491 have shown that alcoholic solutions of tin alkoxides and cadmium acetate in the presence of acetylacetone alone are unstable and allow precipitation to occur. Such solutions do not give reliable cadmium stannate films. The films produced by this process may easily become subject to severe crazing and thus liable to be removed from the substrate to which they have been applied. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to linear materials for fasteners, which are endowed with pearly luster and a method for the production thereof.
2. Description of the Prior Art
Polyester monofilaments, particularly polyethylene terephthalate monofilaments, have been heretofore used for fasteners because they possess many excellent properties. The main parts of a fastener are a pair of tapes and fastening elements attached to the tapes (components for joining the tapes). In the case of a slide fastener, for example, the elements are made of a monofilament in a coiled or zigzagged shape. In some of the conventional slide fasteners, tapes and elements are so prepared that they assume a practically equal color after they are separately dyed prior to assembling. In others, tapes and elements are made of monofilaments so colored with pigments that they assume a varied combination of colors.
In the case of a slide fastener produced in one and the same color, notwithstanding the tapes and the elements thereof have undergone the same dyeing treatment, the color consequently assumed by the tapes is variable with the material of threads forming the tapes and the texture formed by weaving. For the purpose of dyeing the elements in a color matching the color of the tapes, therefore, it is necessary that the dyeability or dye-affinity of the elements be controlled. The control of the dyeability of the elements has been generally implemented by adjusting the draw ratio of the monofilament thereby varying the degree of orientation of the monofilament or by adjusting the temperature of the final heat treatment thereby varying the degree of crystallization or crystallinity.
These methods, however, are at a disadvantage in suffering the elements to incur notable dimensional variation during the forming thereof because the changes in conditions of drawing or temperatures of heat treatment caused on the monofilament notably vary the physical properties, particularly the degree of shrinkage, of the monofilament. For the purpose of imparting highly desirable quality to the produced elements, therefore, the degree of shrinkage of the monofilament and consequently the conditions of drawing or the temperatures of heat treatment to be employed are restricted invariably at the sacrifice of the dyeability and consequently the equality of color.
Incidentally, for the purpose of enabling the fasteners such as slide fasteners and hook-and-loop fasteners, particularly their elements, to present an appearance of high quality, the practice of imparting pearly luster thereto has been in vogue. As means to effect this impartation of pearly luster, a method which resides in adding a pigment capable of conferring a pearly color tone (hereinafter referred to as "pearlescent pigment") is popular. In the case of a linear material for a fastener, especially a monofilament as a raw material for fastener elements, when the pigment is added thereto in the proportion of not less than about 3%, the elements in an undyed state indeed acquire a pearly luster. When these elements are dyed, however, they are not fully colored by the dyeing because the added pearlescent pigment has degraded the dyeability thereof and the color of the monofilament itself has already been turned to opaque white by the pigment. Thus, the elements are dyed very poorly as compared with the tapes of the fastener and the pearly luster imparted thereto is likewise inferior. As a result, the tapes and the elements of a fastener cannot be dyed in matched colors and the produced fastener is deficient in commercial value.
As another means to effect the impartation of pearly luster, a method which consists in mixing a coloring pigment with the pearlescent pigment has been known. According to this method, though the monofilaments are obtained indeed as colored in pearly tones, the production of fasteners in such a huge number of colors as 200 to 300 is difficult to achieve from the practical point of view and is unduly expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to methods of inspecting the finger dovetails of a turbine wheel and buckets for cracks in the material surrounding pinholes in which pins are received for securing the buckets and wheel to one another and particularly relates to use of a phased array ultrasonic probe for finger dovetail inspection in situ for cracks in the fingers.
In turbines, for example, steam turbines, the rims of the turbine wheels are often provided with axially spaced, annular extending fingers defining dovetails which receive generally complementary-shaped discrete finger dovetails on buckets secured to the wheel. The bucket and wheel dovetails interdigitate with one another and at least two, and typically three, pinholes are aligned axially through bucket and wheel fingers along the margin of the wheel with the pinholes lying along a radius at each bucket location. Pins are axially inserted through the aligned pinholes to maintain the buckets secured to the wheel. It will be appreciated that the pins bear the radial loading of the buckets on the wheel. Over time and extended use, the radial loading may cause stress-related cracks to develop at or in the general region of one or more of the wheel fingers, particularly at the pinholes in the turbine wheel fingers. The stress-related cracks tend to have a generally tangential orientation and typically propagate circumferentially from the pinholes. The cracks sometimes link up with adjacent pinholes. It will be appreciated that crack formation in either one or both of the wheel and bucket finger dovetails provides a potential for failure of the wheel or bucket dovetail, loss of the bucket at speed and damage to the turbine and/or the power station.
This potential for turbine failure has been recognized in the industry. Consequently, periodic inspections of the wheel and bucket finger dovetails are indicated. Periodic inspections can, of course, be performed by disassembly of the buckets from the turbine wheel. However, to disassemble each bucket or even sample buckets from the turbine wheel after usage of the turbine is labor-intensive, time-consuming and, hence, costly. Additionally, the pins securing the buckets to the turbine wheel are oftentimes extremely difficult to remove to release the bucket from the wheel. Typically, the pins are hammered out or a gun with an explosive charge is used to dislodge those particularly hard-to-remove pins. Also, drilling and EDM processes have been used for pin removal. Upon removal of the pins and buckets from the wheel, the finger dovetails may be inspected, e.g., by using magnetic particle testing techniques. After testing, the buckets and pins must be reinstalled in the wheel. Some of the pins, however, may have been damaged upon their removal and must be replaced. Also, magnetic particle inspection requires surface preparation prior to inspection. Further, significant logistic support in the form of cranes, laydown areas and the like is required in order to complete removal, inspection and reinstallation of the pins to secure the buckets to the wheel. Accordingly, there has developed a need for non-destructive in situ inspection of turbine wheel and bucket finger dovetails.
Accordingly, and in a preferred embodiment of the present invention, there is provided a method of inspecting in situ material adjacent the pinholes in the finger dovetails of the wheel and buckets for crack formation with removal of only a minimum number of pins and without removing the buckets from the wheel. Thus, pins are removed from the pinholes at preferably regularly spaced intervals about the wheel, e.g., every other bucket, and then only one and preferably the intermediate pin of the three pins securing the bucket to the wheel. Upon removal of the selected pins, an ultrasonic probe, with either one or more discrete elements, or alternately a phased array ultrasonic probe is then inserted into the pinholes to detect crack formation in both circumferentially and radially adjacent pinholes. In the case of an ultrasonic probe with one or more elements, the probe is mechanically rotated in and about the axes of the aligned pinholes, thereby providing a full circumferential scan of the material about the aligned pinholes. The ultrasonic information is then analyzed for detection of cracks.
In the case of the phased array ultrasonic probe, the probe is sized for insertion into the pinholes whereby the ultrasonic beam can be electronically scanned circumferentially without mechanical movement of the probe, i.e., without rotation of the probe about the axis of the pinhole. The ultrasonic beam can also be focused at different distances. The position of the probe can be encoded and combined with the ultrasonic information, enabling accurate imaging of the inspection data for analysis. The combination of mechanically moving the ultrasonic probe in the axial direction and rotating the ultrasonic beam circumferentially by pulsing individual phased array elements, e.g., piezoelectric elements, about the circumference of the probe with appropriate delays, permits a complete scan of the material about the pinhole. By synchronizing the axial scan with the ultrasonic pulsing, a continuous helical scan path can be produced. Alternatively, a circumferential scan can be conducted at one axial distance and the probe can then be incrementally and repeatedly axially advanced to create a plurality of scan/indexing steps to inspect the material adjacent the axial length of the pinhole. It will be appreciated that the ultrasonic beam thus detects crack formations opening into holes adjacent to the pinhole receiving the probe. Crack formation in the pinhole receiving the probe can be ascertained by another testing technique, such as eddy current tests, after withdrawal of the probe. As a consequence of the foregoing, the inspection process can be performed in situ with a minimum number of pins removed from the pinholes and without removal of buckets from the turbine wheel, while still obtaining a high sensitivity to crack detection in the finger dovetails of the wheel and buckets.
As a further technique, the inspection method hereof may involve a sampling of the finger dovetails at intervals about the wheel insufficient to detect all cracks. That is, the ultrasonic sampling probe may be used only in widely-spaced pinholes and therefore not lie in position to detect all cracks. In this manner, a statistical probability of crack formation can be determined, e.g., non-existent, very low, high probability or the like. Once the probe detects any cracks extant in the dovetail material, the cracks can be further investigated, e.g., by removing the bucket and performing other tests to determine the extent of the crack. Also, the inspection interval about the wheel can be reduced to ensure detection of all cracks, rather than just a sampling.
In a preferred embodiment according to the present invention, there is provided a method of inspecting finger dovetails of at least one of a turbine wheel and bucket, the wheel bucket having aligned holes through the finger dovetails for pinning the wheel and bucket to one another, comprising the steps of inserting an ultrasonic probe in a hole of the aligned holes in one of the wheel and the bucket and rotating the probe within and about axes of the aligned holes to electronically scan material about the hole to identify any cracks extant in the material about the hole.
In a further preferred embodiment according to the present invention, there is provided a method of inspecting finger dovetails of at least one of a turbine wheel and bucket, the wheel bucket having aligned holes through the finger dovetails for pinning the wheel and bucket to one another, comprising the steps of inserting a phased array ultrasonic probe in a hole of the aligned holes in one of the wheel and the bucket and actuating the probe to electronically scan material of a finger dovetail of the one wheel and bucket circumferentially about the hole to identify any cracks extant in the material about the hole.
In a further preferred embodiment according to the present invention, there is provided a method of inspecting in situ turbine wheel and bucket dovetails for cracks in materials about pinholes containing pins securing the buckets and wheel to one another, comprising the steps of (a) removing a pin from a pinhole securing one of the buckets to the wheel, (b) inserting a phased array ultrasonic probe into the pinhole and (c) actuating the probe to electronically scan material circumferentially about the pinhole to identify cracks extant in the material about pinholes adjacent to the pinhole receiving the phased array ultrasonic probe. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the heat processing of products and materials it is often required to maintain in a furnace chamber a predetermined gas environment which may be of critical composition, such as CO.sub.2 or CO in equilibrium, or which may be dangerous. Leakage of gas from the furnace chamber can affect the intended furnace environment and can release dangerous gas outside of the furnace with possibly serious consequences. Leakage of air into the furnace can also have deleterious and possibly hazardous effects. Gas leakage from the furnace as well as air leakage into the furnace usually occur around the door by which the furnace is loaded and unloaded. The requirements for an efficient furnace door seal have been incompatible with the requirements for easy access to the furnace for loading and unloading purposes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Vinylidene chloride interpolymers are well-known for their excellent barrier to mass transport of atmospheric gases and moisture vapor. These interpolymers have limited areas of application, however, because of poor melt processing characteristics. In particular, vinylidene chloride interpolymers in a melt plasticized state have poor heat stability and low melt strength. These same interpolymers, when fabricated, tend to be brittle and have low impact strength.
Similarly, polyvinylchloride (PVC) is well-known for its excellent physical properties. Specifically, PVC is easy to mold, inexpensive and inherently flame-retardant. Unfortunately, PVC resins provide a relatively low degree of barrier to mass transport of atmospheric gases and water vapor when compared to vinylidene chloride interpolymers. Moreover, despite the similar molecular structure of polyvinylidene chloride and PVC, a blend of the two resins is friable due to the lack of adhesion of the respective interfaces.
It is desirable to produce a polymeric composition possessing the desirable properties of both a vinylidene chloride interpolymer and PVC. It is to this goal that the present invention is directed. | {
"pile_set_name": "USPTO Backgrounds"
} |
In tests for various electronic instruments and electrical instruments, waveforms of electric signals are generally measured. In this waveform measurement, there are cases where a waveform called ringing needs to be measured. Ringing is an undulating waveform caused in such a case where a signal, such as a square wave, which changes steeply, passes through an electric network. Ringing is caused by inductance of an interconnection, a shortage of a transmission bandwidth, and the like.
FIG. 10 is a view showing an example of a waveform including ringing.
As shown in FIG. 10, in a waveform containing ringing, an overshoot or an undershoot occurs in an edge portion of the waveform including ringing, and the waveform undulates.
The waveform of an electric signal is measured using a measuring device such as an oscilloscope. An overshoot (α in FIG. 10) and an undershoot of a signal can be measured with an ordinary measuring device of this type. However, the peak-to-peak amplitude (β in FIG. 10) of ringing (e.g., see TDS3000B Series User Manual, P3-44 to P3-46, Tektronix, hereinafter referred to as Non-Patent Document 1) is not measured with the ordinary measuring device.
As described above, in a case where ringing is measured in the measurement of the waveform of an electric signal, an overshoot and an undershoot of the signal can be measured with a conventional measuring device. However, the peak-to-peak amplitude of the ringing cannot be measured with the conventional measuring device. Accordingly, even in a case where the peak-to-peak amplitude of this ringing is desired to be measured, such as a case where an attempt is made to analyze a cause of the ringing, such a measurement cannot be performed with the conventional measuring device. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to nesting grocery carts with an open-top container having a rearwardly collapsible, raised pocket therein for use as a rear-facing child's seat or a carrying bin.
Prior art grocery carts with a rearwardly collapsible, baby seat show a cart consisting of a wheeled frame with a wire mesh, open-top container (commonly called a "basket") mounted thereon. A panel which serves as a back rest for a child is pivoted at the rear of the container and is movable between two stable positions: a collapsed position flat against the container rear wall and an open position where it is tilted away from said rear wall. A base member (commonly called a "baby seat") which serves as a horizontal base for a child's seat is pivoted to the basket's rear wall and linked to the panel such that when the panel is in its collapsed position the base member is also collapsed either downwardly or upwardly against the rear wall, and when the panel is in its open position, the base member is generally horizontal between the panel and the rear wall. The rear wall of the basket defines a pair of leg holes or one large hole with a vertical crossbar to accommodate a seated child's legs which hang out the back of the basket through the holes. To close these holes when the baby seat is being used as a carrying bin to store groceries, purses and/or other items, a leg hole closure, usually a plate, is pivotally mounted and is movable to two stable positions: a raised position in which it closes said holes, and a lowered position where it provides a seat for the buttocks of a child.
Prior art grocery carts adapted to be nested together in telescopic fashion show a cart identical to the type previously described except that the rear wall of the basket is an upwardly swinging gate, and the baskets are generally tapered-down from back to front so that a substantial portion of the basket from one cart can be inserted into the basket of another cart from the rear, the rear gate of the receiving cart being pushed swingingly up and out of the way by the entering cart.
U.S. Pat. Nos. 2,891,801 by S. J. Sides and 2,896,959 by F. W. Young et al. both show a nesting grocery cart, as above, with a container having an upwardly swinging rear gate and a raised pocket with a base member. In each case a rear end of the base member is pivoted to the container's rear gate and a front end of the base member rides vertical struts of the panel upward by force applied to it by the panel when the panel is being pushed to its collapsed position. In such an arrangement the base member can stick for various reasons (e.g. deformation due to rough treatment, corrosion and wear) causing resistance to the collapse of the panel. Furthermore, any mechanical advantage gained by the panel acting as a lever against the base member decreases as the panel is moved closer to the rear wall of the container because the line of application of force moves up the vertical struts resulting in a decrease in effective lever arm length.
U.S. Pat. Nos. 2,890,059 by W. Brooks et al. and 2,911,227 by L. N. Davis both show a similar nesting grocery cart with a container having an upwardly swinging rear gate and a raised pocket with a base member. In each case a front end of the base member is pivoted to the panel and a rear end of the base member rides the container's rear gate upward when the panel is being collapsed. This arrangement also has the disadvantages inherent in designs where an end of the base member rides struts upward by force applied to it by a collapsing panel. This invention presents a base member which is not forced up, but rather it collapses downward of its own weight.
U.S. Pat. No. 2,890,057 by L. N. Davis and French Patent 84.169 by Ateliers Reunis S. A. both show a similar nesting grocery cart with a container having an upwardly swinging rear gate and a raised pocket with a base member. In each case the base member is pivoted to the container's rear gate, but as the panel collapses the base member collapses through an opening in the panel. These patents also each show a leg hole closure plate pivoted at the pivotal junction of the base member and the rear gate. In both cases the leg hole closure plate collapses downward through the panel with the base member when the panel is collapsing. When the panel is reopened the leg hole closure plate's initial position is the lowered position, i.e. resting on the base member. Such an arrangement is disadvantageous for most shoppers, because most shoppers do not have a small child with them and are in no need of a child's seat. However, it is well known that most shoppers tend to use the pocket to carry items, e.g. small parcels, fragile items and purses. With the initial position of the leg hole closure plate being in the lowered position, such shoppers must always move the plate to its raised position to prevent items from falling out of the leg holes in the rear gate. This invention presents a hole closure whose initial position, when the pocket is opened, is the raised position.
A problem common to all nesting cart baskets as described above is "swelling" which refers to an undesirable outward bowing of the basket walls, particularly the side walls. Swelling can be caused by cart collisions with walls, posts and the like. It can be caused by the countless impacts with the rear gates of other carts while being nested. It can also be caused, over time, by a property inherent in the vertical struts of most baskets as a result of the way said baskets are formed. Heretofore, baskets were formed by welding straight wire bars into a planar welded-wire mesh to form the floor of a basket. Extensions of the bars were then bent up to form vertical struts for the walls of the baskets, and horizontal strut "rings" were used to confine the upwardly bent portions to the desired shape. Vertical struts thusly formed have residual memory of their originally straight condition. This residual memory urges them outwardly against the rings and eventually can cause the sides to bow outwardly.
Excessive swelling can cause several problems. A swollen cart can be too wide to nest or fully nest, and even if such a cart can be nested, it can be very difficult to extract from the cart in which it is nesting.
Moreover, the rear gate of a cart in which a swollen cart is nested can collapse into the nested cart making it very difficult to free the carts from each other.
Another problem common to all nesting carts as described above is "droop" which refers to the undesirable downward sagging of the front of a basket in relation to the basket's rear. Drooping is primarily a deformation, over time, of the basket due to the countless loads carried by the basket. Drooping essentially misaligns the basket's front end and prevents or makes more difficult the nesting of a drooped cart.
In addition to nesting and unnesting problems caused by swelling and droop, they can also cause the painted finish of a cart to become marred. This is so because the carts must be more violently maneuvered during nesting and unnesting operations, which maneuvers can cause rubbing and jamming of the painted surfaces resulting in unsightly scars and nicks in the paint.
A further problem common to all cart baskets described above is the exposure of the tops of the vertical struts which can be irregular and oftentimes jagged. Clothing and other items can snag on them and be damaged. This problem is so pervasive that some manufactures have gone to plastic baskets to avoid it.
A further problem is caused by the fact that the edges along the bottom of the baskets of the prior art baskets are really pluralities of individual wire corners, the wires being bend at approximately a right angle and spaced apart. Edges of table tops, counters, and the like can catch the corners of the bent wires and deform them. Besides making the basket unsightly, such deformations can themselves cause nicks and other damage to a surface, such as a counter top or table, because said edges are not smooth.
This invention presents an improved grocery cart which eliminates the problems discussed above which are inherent in prior art carts. Other advantages and attributes will either be discussed or readily discernible from a reading of the text hereinafter. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various mechanisms have been developed for limiting nitrous oxide emissions from internal combustion engines.
As it is well known, nitrogen oxides (also known as NOx) are of particular concern in lean-burn, diesel engines, and devices such as NOx traps—also known as NOx adsorbers or Lean NOx Traps (LNT)—and Selective Catalytic Reduction (SCR) systems have been developed for this purpose.
A NOx trap assists in reducing NOx emissions by storing nitrogen dioxide as nitrates in zeolite adsorbers during fuel-lean conditions and releasing the nitrates as nitrogen oxides and oxygen during fuel-rich conditions, which are then converted into N2 and H2O. In diesel engines, a lean NOx trap conventionally combines the NOx adsorbing function with an oxidation catalyst function. Hence, the LNT generally consists of a single housing with adsorbing catalyst material and oxidation catalyst material (to provide the functions of a diesel oxidation catalytic converter). Alternative configurations include a NOx trap arranged downstream of a diesel oxidation catalytic converter (DOC).
NOx traps significantly reduce NOx emissions, but have a susceptibility to sulfur poisoning. Indeed, sulfur is present in fuel and engine oil and tends to bind to nitrate sites on the zeolite adsorber in the form of sulfates SO4. Because sulfates are more stable than nitrates and carbonates, the sulfur species are not released during the fuel-rich regeneration process that is performed to release the carbon dioxide and nitrogen oxides, i.e. in the regular operating range for NOx adsorbers at 150 to 500° C.
Various processes have been developed to desulfurize NOx traps. One conventional approach is to control the engine so that the NOx trap temperature reaches an appropriate temperature of generally above 600° C. while running a rich air-fuel mixture, typically by post fuel injection. A difficulty here is however that the temperature of the NOx trap should not rise up to levels where it may damage the latter. Therefore, as for the regeneration mode, in desulfation mode the engine is operated so that the exhaust air fuel mixture is alternately lean and rich in order to limit the temperature.
U.S. Pat. No. 7,036,489 relates to a NOx trap desulfation process employing an on-board reformer producing hydrogen and carbon monoxide to control the operating air-fuel ratio at the NOx trap. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention relates to a control system and a method for operating the system. More particularly, the present invention relates to a run-to-run control system and a run-to-run controlling method.
2. Description of Related Art
Currently, in the semiconductor process, a metrology process for checking the process performance is performed every several process runs. The metrology process includes several measurement categories, such as thickness, depth, uniformity, critical dimension, defect count, film quality etc. When the result of the metrology process of the current tool shows that the process performance is abnormal, a feed-back signal is transmitted to the process controller of the current tool to modify the current process recipe in order to adjust the process performance to be normal. Sometimes, if the performance shifting of the current tool is not serious, a feed-forward signal is transmitted from the current tool to another tool for performing a semiconductor process next to the current semiconductor process in the semiconductor manufacturing procedure. By referring to the feed-forward signal, the performance shifting caused by the current tool can be compensated by the subsequent semiconductor process.
However, the metrology process is not performed for every process run of each wafer since it takes long time to perform the metrology process. Hence, the result of the metrology process does not real-time reflect the timing at which the process performance starts to change due to the variation of the process environment. Even though the feed-back signal used for modifying the current process recipe and the feed-forward signal used for modifying the current process recipe to compensate the previous performance shifting are provided, the modified process recipe does not instantly respond to the change of the process environment. Therefore, the modified process recipe is not the optimal process recipe for the current tool to perform the current semiconductor process on that moment. | {
"pile_set_name": "USPTO Backgrounds"
} |
Rest compartments for the flight crew of an aircraft (flight crew rest compartment FCRC) constitute part of the mandatory facilities on board aircraft during long flights. International standards require that a rest facility (e.g. a cot) for one person be provided for flights lasting from 8 to 14 hours, and that a rest facility for two persons be provided for flights lasting over 14 hours. This also stems from the requirement that two alternating cockpit crews must be on board starting at a specific flight duration. Given this fact, the compartment according to the present invention may be in use for a long period of time, or continuously for the duration of the flight.
Known FCRC's are realized with two adjacent rest facilities in the ceiling area, the crown area, of the aircraft. Usually, the cockpit crew has to cover a certain distance to reach the FCRC. The constricted rest area inside the compartment is followed by an overhanging area in the passenger cabin, e.g., the first class area, which maynot have the full ceiling height in at least one section.
It is an object of the present invention to provide an improved compartment for accommodating at least one flight crewmember. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a fork with timer and more particularly pertains to providing a cue to a user after an elapsed period of time for indicating that another bite of food using the fork may be taken with a fork with timer.
2. Description of the Prior Art
The use of forks is known in the prior art. More specifically, forks heretofore devised and utilized for the purpose of eating are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
By way of example, U.S. Pat. Des. No. 245,141 to Eldridge et al. discloses a fork or other similar article of flatware. U.S. Pat. Des. No. 275,167 to Laslo discloses a fork. U.S. Pat. Des. No. 337,701 to Wilson discloses a fork. U.S. Pat. No. 3,609,865 to Golden discloses a fork-like food utensil. U.S. Pat. No. 4,896,423 to Kinsey discloses an eating fork.
While these devices fulfill their respective, particular objective and requirements, the aforementioned patents do not describe a fork with timer that provides a cue to a user after an elapsed period of time for indicating that another bite of food using the fork may be taken.
In this respect, the fork with timer according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in doing so provides an apparatus primarily developed for the purpose of providing a cue to a user after an elapsed period of time for indicating that another bite of food using the fork may be taken.
Therefore, it can be appreciated that there exists a continuing need for new and improved fork with timer which can be used for providing a cue to a user after an elapsed period of time for indicating that another bite of food using the fork may be taken. In this regard, the present invention substantially fulfills this need. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computer Assisted Surgery (CAS) systems are being increasingly used for orthopedic operations in general, and for joint replacement surgeries in particular, in order to continue to improve the accuracy and long-term success of joint replacement surgery. The accuracy of cuts and drilled holes performed in joint replacement surgeries such as in knee arthroplasty, or total knee replacement, is of prime importance, such that the installation of the implants can be made such that they best duplicate the kinematics of the natural knee.
Known optical, radio frequency and magnetic based CAS systems employ passive and active trackable elements affixed to objects, such as surgical tools and patient bone references, in order to permit the determination of position and orientation of the objects in three-dimensional space. Preoperatively taken images, computer generated models created from preoperative patient scans or intra operative landmark digitization are some of the methods used to provide accurate patient anatomical information to the CAS system, such that the real-time position of the same anatomical elements can be registered or calibrated and thus tracked by the system, permitting the
Total knee replacement surgery, for example, may require one or more precise cuts to be made in the femur and/or tibia to completely remove the knee joint, such that the implant may fit correctly and best replicates the geometry of a natural healthy knee. To perform these steps, in both conventional and CAS total knee replacement surgeries, it is known to use a tool or implement known as a surgical tool guide block which provides a drill and/or cutting guide to assist the surgeon to perform the steps required to prepare the femur and tibia for receiving the implant. For example, using known CAS surgery techniques, the surgical tool guide block, such as a saw cutting guide for example, would be drilled or screwed into that part of the bone to be severed, while in other bone CAS systems, and its position would be determined through known methods using the CAS system.
To best permit the desired positioning and fixation of the surgical tool guide block in the determined position, a surgeon typically uses a positioning block which requires controllable adjustment of several degrees of freedom.
While certain flexibility is provided by such total knee replacement positioning blocks of the prior art, there nevertheless remains a need for an improved positioning device permitting additional control of the adjustment thereof, and being adapted for use with a CAS system. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a device and a method by which two optical digital signals, identical in the number of constituent optical bit signals, are compared bit by bit without photo-electric conversion, and more particularly to an optical comparator and a method of comparing optical signals which utilize the Bragg diffraction of light by a surface acoustic wave.
With remarkable progress in light application techniques in recent years, there is a growing demand for various optical functional devices. Among other optical devices, optical comparators are basic devices for optical calculation, optical information processing, etc. Although greatly desired, such devices have not been actually implemented in practice. | {
"pile_set_name": "USPTO Backgrounds"
} |
Existing database indexing methods exploit the structure inherent when more than one database field is used. These methods are commonly based upon space-filling curves to map the multi-dimensional data to a single dimension, which is then indexed in the standard fashion. The B-tree indexing algorithm [1] and similar algorithms attempt to maintain a balanced index tree by adjusting the thresholds used to split the indexed parameter's value set as the tree is descended. Multi-dimensional indexing methods are found under several names, such as R-trees [2] and R*-trees [3], and applications exist in the implementation of image databases and other areas. A parallel database based upon this type of approach has been patented by IBM [4] using MPI, a widely available message-passing interface library for parallel computing [5]. Other implementations exist in some commercial database systems, such as the Informix Dynamic Server's Universal Data Option [6].
DNA profile information consists of allele information at one or more DNA loci or sites. Typically 10 or more loci are used. Typically, individuals can exhibit either one or two alleles at each site; forensic samples containing DNA from two or more individuals can have more alleles. The anticipated size of databases containing DNA profile information necessitates new methods to manage and utilize the stored information. An example of such a database is the national CODIS [11] database, which is expected to eventually store on the order of 108 profiles and uses complex match specifications. Standard database indexing structures such as B-trees, which provide rapid access to records based upon the value of a selected database field, are not able to take advantage of naturally occurring structure in the data. Although more than one field may be indexed, the index structures are computed independently. Retrieval of stored information based upon several indices requires an intersection of the results of retrievals based upon each index, which is a time-consuming operation. Methods using R-trees, R*-trees, and similar approaches rely on space filling curves rather than structural properties of the data. There remains a need in the art for database structures and search engines that can rapidly and efficiently store, manage, and retrieve information from very large datasets based upon the structural properties of the data expressed in multiple fields. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a turbomachine having at least one rotor disk that is attached at an overhung end of a mounted first shaft, and having an electric rotor of an electric machine that is connected with the end of the first shaft that lies opposite the rotor disk, by way of a coupling.
2. The Prior Art
In the case of the turbomachines known from practice, having the characteristics described initially, the shaft, with the rotor disk attached to it, as well as the electric rotor of the electric machine, are each mounted separately. In this connection, the bearings of the electric machine are arranged on both sides of the electric rotor. There are very great demands on the required production precision of the bearing seats in the housing of the electric machine. These demands become particularly significant when using fast-running high-precision roller bearings or gas bearings, which demand an alignment accuracy of the two bearings relative to one another that lies within extremely close tolerances. Therefore, this known design is very complicated and causes high costs. Furthermore, this alignment accuracy of all of the rotor and housing parts involved is frequently ruined, despite extremely precise production of all the parts involved, in operation, as the result of opposite temperature distortions, since there is a significant heat development in fast-running electric machines. | {
"pile_set_name": "USPTO Backgrounds"
} |
Serotonin Selective Reuptake Inhibitors (SSRIs) currently provide efficacy in the treatment of several CNS disorders, including depression and panic disorder. SSRIs are generally perceived by psychiatrists and primary care physicians as effective, well-tolerated and easily administered. However, they are associated with a number of undesirable features.
Thus, there is still a strong need for compounds with an optimised pharmacological profile as regards the activity on reuptake of the monoamine neurotransmitters serotonin, dopamine and noradrenaline, such as the ratio of the serotonin reuptake versus the noradrenaline and dopamine reuptake activity.
WO 2004/113334 (NeuroSearch NS) discloses 8-aza-bicyclo[3.2.1]octane derivatives useful as monoamine neurotransmitter re-uptake inhibitors. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to a semiconductor integrated circuit, and more particularly to a programmable logic unit circuit and a programmable logic circuit.
2. Description of the Related Art
There are various techniques developed to realize circuits fulfilling users' requirements using semiconductor integrated technology. A gate array is one of the most useful integrated circuits. Gate arrays, as commonly known, are integrated circuits that realize desired logic circuits by previously forming transistors in wafers and then selectively connecting those transistors with suitable metallization patterns. The connection of transistors through metal wiring is made by manufactures, almost at the last stage of the manufacturing processes of integrated circuits. This makes it possible to offer the product to the users very quickly.
However, a user may normally have to wait for several days to several weeks before he receives the product after having ordered it, since the manufacturer first receives the circuit information from the user, forms a mask pattern for metal wiring layers based on the circuit information, and then forms the integrated circuit using the mask. Should the user have given the wrong circuit information to the manufacturer by mistake, the produced integrated circuits cannot be used. To correct the error, it is necessary to design a new integrated circuit from scratch
A field programmable gate array (FPGA) has been developed to eliminate this problem. FPGAs allow the user himself to program them to realize the desired circuit without presenting the circuit information to the manufacturer. One of the features of gate arrays is that a selective metal wiring provides a desired logic circuit, as described earlier. By previously forming many wires and internal switches in an integrated circuit and then selectively connecting them through the internal switches, it is possible for the integrated circuit to emulate the same function as a conventional gate array.
One of such FPGAs is disclosed in U.S. Pat. Nos. 4,706,216 and 4,758,985. Specifically, the former discloses a unit circuit that is constructed of a memory circuit consisting of shift registers, a combinational logic circuit, a temporary storage circuit (a D flip-flop), and select circuits. The latter discloses a unit circuit that is constructed of a memory circuit consisting of shift registers, a combinational logic circuit, a temporary storage circuit (a D flip-flop), and select circuits. It also discloses a circuit configuration of these circuit units arranged in matrix form.
What should be kept in mind in developing such FPGAs is the size of the unit circuit and the design of the program memory circuit.
The above-described FPGA unit circuit provides a wide variety of combinational logic circuits and it has the state of the unit circuit's internal nodes requires more circuits, which would increase the size further. A larger-scale unit circuit has the advantage of realizing more types of circuits with a single unit, but has the disadvantage of being less suitable for integrating a number of unit circuits due to a corresponding increase in the circuit area. In addition, if the desired logic circuit is a simple combinational logic circuit, the number of unused circuits in the unit circuit exceeds that of operating circuits, resulting in a lot of waste.
On the other hand, in the shift registers of a memory circuit, serial data transfer takes a long time to send a large volume of data. In addition, when part of the data in the memory circuit needs to be rewritten, or part of the data needs to be read, all of the data has to be transferred again. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a semiconductor device.
2. Description of the Related Art
A degree of integration in a semiconductor device, particularly in an integrated circuit using a MOS transistor, has been increasing year by year. Along with the increase in the degree of integration, miniaturization of the MOS transistor used therein has progressed to a nano region. The progress in miniaturization of the MOS transistor, which constitutes an inverter circuit as a basic circuitry for digital circuits, gives rise to a problem, such as difficulty in suppressing a leak current, which causes deterioration in reliability due to hot carrier effects and poses an impediment to sufficiently reducing a circuit occupancy area while meeting a requirement of ensuring a necessary current magnitude. With a view to solving this problem, there have been proposed a surrounding gate transistor (SGT) having a structure in which a source, a gate and a drain are arranged in a direction perpendicular to a substrate, wherein the gate is formed to surround an island-shaped semiconductor layer, and a CMOS inverter circuit using the SGT (SGT-based CMOS inverter) (see, for example, the following Non-Patent Document 1).
FIG. 1 is a circuit diagram showing an inverter. The inverter comprises a pMOS transistor and an nMOS transistor. In the inverter circuit, the pMOS transistor is required to have a gate width two times greater than that of the nMOS transistor, because a hole mobility is one-half of an electron mobility. Therefore, a conventional SGT-based CMOS inverter is made up using two pMOS SGTs and one nMOS SGT. In other words, the conventional SGT-based CMOS inverter circuit is made up using a total of three island-shaped semiconductors. Non-Patent Document 1: S. Watanabe, K. Tsuchida, D. Takashima, Y. Oowaki, A. Nitayama, K. Hieda, H. Takato, K. Sunouchi, F. Horiguchi, K. Ohuchi, F. Masuoka, H. Hara, “A Novel Circuit Technology with Surrounding Gate Transistors (SGT's) for Ultra High Density DRAM's,” IEEE JSSC, Vol. 30, No. 9, 1995 | {
"pile_set_name": "USPTO Backgrounds"
} |
The present exemplary embodiment relates generally to fusing of images in a printing system including a plurality of marking engines. It finds particular application in conjunction with a printing system which includes first and second tandem marking engines where the second marking engine receives print media which has been partially fused by the fuser of the first marking engine, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
In a typical xerographic marking engine, such as a copier or printer, a photoconductive insulating member is charged to a uniform potential and thereafter exposed to a light image of an original document to be reproduced. The exposure discharges the photoconductive insulating surface in exposed or background areas and creates an electrostatic latent image on the member, which corresponds to the image areas contained within the document. Subsequently, the electrostatic latent image on the photoconductive insulating surface is made visible by developing the image with a developing material. Generally, the developing material comprises toner particles adhering triboelectrically to carrier granules. The developed image is subsequently transferred to a print medium, such as a sheet of paper. The fusing of the toner onto the paper is generally accomplished by applying heat to the tonerwith a heated roller and application of pressure.
Systems which incorporate several marking engines have been developed. These systems enable high overall outputs to be achieved by printing portions of the same document on multiple printers. Such systems are commonly referred to as “tandem engine” printers, “parallel” printers, or “cluster printing” (in which an electronic print job may be split up for distributed higher productivity printing by different printers, such as separate printing of the color and monochrome pages). Tandem engine printing systems allow a sheet of print media to be printed by a first marking engine and then conveyed by a paper pathway to a second marking engine. This permits “tandem duplex printing.” In this process, a first marking engine applies an image to a first side of a sheet and a second marking engine applies an image to a second side of the sheet. Each of the marking engines is thus operating in a simplex mode to generate a duplex print.
Such integrated printing systems have advantages over more complex, single marking engine systems in that they can achieve high productivity by combining several relatively low-cost smaller marking engines. However, the smaller marking engines frequently do not have the capability to fuse a wide range of print substrates or may run at lower outputs, in terms of prints per minute, when certain heavyweight media is to be fused. | {
"pile_set_name": "USPTO Backgrounds"
} |
When one intends to grow natural turfs, grasses or flowers at a ground such as a general house garden, a bank of a river, a park or a golf course, or a planting zone of a building, road or the like, he or she directly sows plant seeds in the ground or planting zone, or plants young plants therein. An appropriate anti-flow-out fence or the like may be provided for preventing flow-out of the sowed seeds or planted young plants as well as applied fertilizer by rain, wind and irrigated water.
In the sport facilities, fields of soil or natural turfs have been used for a long time. However, a difficult or laborious work is required for maintaining such fields, so that artificial turfs are now used in many cases.
However, the artificial turf is not suitable to some kinds of sports such as a soccer, so that such sports are played on the natural turf even in these days.
In the sport facilities, however, the field in which the natural turf is directly planted in the ground suffers from such problems that it is difficult to control the growth of the turf, and that a long time is required for repairing a turf damaged by the play, which may disable continuous use thereof. In view of this, such a method may be used that natural turfs which have been grown at another place are laid on a leveled and prepared base ground, and a possible damaged portion can be replaced with a new turf.
Natural turfs which have been grown at a different place and are cut into an appropriate size are used for laying them in the sport facilities and for replacing a damaged turf portion with it, as is well known. In connection with this, one can envisage a semi-artificial natural turf sheet structure which does not use natural soil and can be transferred.
Such a turf sheet structure may be used at grounds such as a general house garden, a bank of a river, a park, a golf course, a hillock and a seaside as well as planting zones of various buildings, roads or the like.
As an example of a semi-artificial natural turf sheet structure, Japanese Laid-Open Patent publication No. 51-119108 (1976) has disclosed a turf mat which can be rolled up and includes a turf growing soil layer made of saw-dust, an underlying mesh mat and a water-proof base sheet in a layered fashion. Also, Japanese Laid-Open Patent publication No. 54-117732 (1979) has disclosed a turf sheet in which soil or sand is laid on a net, and a turf is grown on the same. Japanese Laid-Open Patent publication No. 60-95004 (1985) has disclosed a structure, in which a rubber mat or a synthetic resin plate provided with holes are laid in a place for growing a natural turf, and the holes are filled with soil, sand, turf runners, fertilizer and water retaining material for growing the turf. Japanese Laid-Open Patent publication No. 62-25907 (1987) has disclosed a mat which is mainly made of a rock wool holding turf seeds mixed thereinto. Japanese Laid-Open Patent publication No. 63-91015 (1988) has disclosed a planting mat, in which a rock wool is integrally provided with a frame member having substantially equally spaced tip ends and a bottom in a matrix form, and turf seeds are contained in the rock wool. Japanese Laid-Open Patent publication No. 2-104216 (1990) has disclosed a long-sheet product in a roll form, in which turfs are decomposed and expanded into elongated forms, stripe-shaped runners are arranged on a net having an appropriate mesh size, and their top surfaces are covered with a water-soluble paper sheet. Japanese Laid-Open Patent publication No. 3-247204 (1991) has disclosed the following natural turf base. A turf growing base member is made of a mixture of fertilizer and an inorganic light-weight soil member. Side and lower surfaces of the base member are covered with a lower sheet. An upper sheet is arranged on an upper surface of the base member. A member holding turf seeds are arranged at the lower surface of the upper sheet. A wave-shaped net is arranged between the turf seed holding member and the lower sheet and in the base member. The upper and lower sheets are integrally joined together by sewing threads, staples or the like.
However, when one intends to grow natural turfs, grasses or flowers at a ground such as a general house garden, a bank of a river, a park, a golf course, a hillock washed with rainwater, or a seaside exposed to a strong wind, or at a planting zone of a building, road or the like by directly sowing plant seeds in the ground or planting zone, or planting young plants therein, such a problem arises that the sowed seeds or planted young plants as well as applied fertilizer and others are liable to be flown out by rainwater, wind, irrigated water and others. Although the above problem can be prevented by provision of an anti-flow-out fence, or the like, this requires a laborious and time-consuming work.
Each of the natural turf sheet structures disclosed in the foregoing publications can be used without cutting it or after cutting it into an appropriate size. Further, it may be cut into an appropriate size after germination of turf seeds or growth, if necessary. Thereby, it can be laid over grounds such as a general house garden, a bank of a river, a park and a golf course as well as a place such as a planting zone of a building or a road, in which case the foregoing problems caused by direct sowing in the soil can be prevented to a certain extent. Also, the above structures can be used in sport facilities. However, the following problem arises.
The perforated rubber mat and synthetic resin plate disclosed in Japanese Laid-Open Patent publication No. 60-95004 are used not for entirely growing the turf but for intermittently growing the turf. Therefore, this cannot be employed when the turf is to be grown on a whole surface without a space. Particularly, this cannot be employed in sport facilities.
Further, except for the natural turf base, which includes the upper and lower sheets fixed together by the sewing threads, staples or the like as disclosed in Japanese Laid-Open Patent publication No. 3-247204, the structures disclosed in the foregoing publications cannot be used for the places such as sport facilities in which a severe force is applied thereto, because these structures are liable to be entirely decomposed and/or damaged. If the turf is damaged, e.g., by being shaved, an underlying material is exposed to exhibit an unpreferable appearance.
Even in the natural turf base disclosed in Japanese Laid-Open Patent publication No. 3-247204, if the turf is damaged, e.g., by being shaved, an underlying material is exposed, which similarly results in an unpreferable appearance.
Further, any of the natural turf sheet structures disclosed in the foregoing publications suffers from a problem that its weight is small and/or it cannot be sufficiently fitted with the underlying soil or the like, resulting in a poor stability. Therefore, a problem arises when it is laid, for example, over an inclined surface of a river bank, hillock or the like. Particularly, it is not suitable to the sport facilities, because players cannot stably play on the structure.
Description has been given on the case where the plants such as a turf are grown in grounds such as a general house garden, a bank of a river, a park and a golf course as well as planting zones of various buildings, roads or the like, fields of various sport facilities and others. In addition to these places, it is preferable to plant the natural turf at concrete walls of concrete constructions such as a concrete dam in some cases in order to protect the construction and/or improve an appearance.
Generally, dams are used for irrigation and water control, and more specifically, for storing water for electric power generation, irrigation, public water, industrial water or the like, and/or for preventing flood or controlling a water level. As a kind of dam, there has been a concrete dam constructed from concrete.
Generally, outer surfaces or walls of the concrete dam are not finished or coated. However, the unfinished concrete surface is directly exposed to the sunshine, wind and rain, so that they are liable to be deteriorated. In order to prevent the deterioration, outer finishing may be effected on the concrete surface as is done in ordinary buildings. However, the concrete dam, which is a huge construction, requires a vast sum of money for finishing its outer surfaces, so that the outer surfaces are not actually finished.
Some of huge dams are tourist attractions, in which case unfinished concrete surfaces of the dams present an unpreferable scene and sense of incompatibility with respect to surrounding green.
As measures for the above, it may be envisaged to cover the concrete surfaces, e.g., of the concrete dam with a natural turf sheet. However, appropriate method and technique for the above have not been proposed.
In addition to the foregoing, the following problem actually arises when one intends to lay turfs or the like.
In many large-scale facilities such as indoor sport facilities, gymnasiums and other multipurpose holes, an artificial turf is laid and removed depending on contents of the games and events. In this case, a problem actually arises in connection with storage of huge artificial turfs, which are to be laid in large-scale facilities. For example, if a warehouse for storing the artificial turfs cannot be ensured in the large-scale facilities, the warehouse must be independently prepared for storing them. If the independent warehouse is remote from the large-scale facilities, a time-consuming work is required for transferring the artificial turfs between the warehouse and the large-scale facilities. Further, the artificial turf is worn in accordance with use, and is considerably damaged when it is used for hard sport games such as a soccer. Therefore, the artificial turf requires a time-consuming repair.
Accordingly, a first object of the invention is to provide a plant growth sheet structure of a first type for growing a plant such as a turf which has the following advantages.
(1-1) Without changing a size or after cutting the structure into an appropriate size, the structure can be simply and easily laid in grounds such as a general house garden, a park, a river bank, a golf course, a hillock washed with rainwater and a seaside exposed to a strong wind as well as planting zones of various kinds of buildings, roads or the like, sport facilities and others. Also, it is possible to sow seeds of turfs, grasses and flowers, and grow them in the structure. Also, the structure can be moved to and from the above places.
(1-2) Sowed seeds, sprouts growing therefrom and others are suppressed from being moved and flowed out by the wind, rain, irrigated water or the like, which facilitates growth and maintenance of the plants.
(1-3) The whole structure is integral and has a sufficient resistance against decomposition. Sowed seeds as well as sprouts, roots and others are protected against a downward load, a lateral pulling force or the like, which also facilitates maintenance of growing and grown plants.
(1-4) It is possible to suppress an unpreferable appearance before growing of plants and even in such a case that grown plants are damaged or lost due to shaving or withering.
(1-5) The structure can be laid over possible seeds of weeds to restrict growth thereof, which also facilitates maintenance of growing and grown plants.
(1-6) A weight can be controlled, and thus its weight can be reduced to allow easy transfer. Also, the weight can be increased to improve stability of the laid structure at an installation place. The stability of the laid structure can be improved to allow use in sport facilities for some kinds of sports.
(1-7) The structure can be produced in an elongated form.
A second object of the invention is to provide a plant growth sheet structure of a second type, which holds seeds of plant such as turf seeds in advance, and has the following advantages.
The "turf seeds" mean the seeds of turf themselves as well as runners or the like which are obtained from cut turfs or the like, and from which a turf can be obtained.
(2-1) Without changing the size, or after cutting the structure into an appropriate size, the structure can be easily laid in grounds such as a general house garden, a river bank, a park, a golf course, a hillock washed with rainwater, and a seaside exposed to a strong wind as well as planting zones of various buildings, roads or the like, sport facilities and others. It is possible to grow plants from seeds of turf, grass or flower which are held in advance at the structure. Also, the structure can be moved to and from the above places.
(2-2) The plant seeds held at the structure, sprouts growing therefrom and others are suppressed from being moved or flowed out by the wind, rain, irrigated water or the like, which facilitates growth and maintenance of plants.
(2-3) The whole structure is integral and has a sufficient resistance against decomposition. Held seeds as well as sprouts, roots and others are protected against a downward load, a lateral pulling force or the like, which also facilitates maintenance of growing and grown plants.
(2-4) The structure also has advantages similar to those already described at the items (1-4) through (1-7) of the plant growth sheet structure of the first type.
A third object of the invention is to provide a natural turf sheet structure having the following advantages.
(3-1) Without changing the size, or after cutting the structure into an appropriate size, the structure can be easily laid in grounds such as a general house garden, a park, a river bank, a golf course, a hillock and a seaside as well as planting zones of various buildings, roads or the like, sport facilities and others. Also, the structure can be easily moved to and from the above places.
(3-2) The turf is suppressed from being moved or flowed out by the wind, rain, irrigated water or the like, which facilitates growth and maintenance of turfs.
(3-3) The whole structure is integral and has a sufficient resistance against decomposition. Sprouts, roots and others of the turf are protected against a downward load, a lateral pulling force or the like. Therefore, the structure can be used in the sport facilities. This also facilitates maintenance of the turf.
(3-4) As compared with a conventional natural turf sheet structure, it is possible to suppress an unpreferable appearance in such a case that turfs are damaged or lost due to shaving or withering.
(3-5) The structure can be laid over possible seeds of weeds to restrict growth thereof, which also facilitates maintenance of turfs.
(3-6) A weight can be controlled, and thus its weight can be reduced to allow easy transfer. Also, the weight can be increased to improve stability of the laid structure at an installation place. The stability of the laid structure can be improved to allow use in sport facilities for some kinds of sports.
(3-7) The structure can be produced in an elongated form.
A fourth object of the invention is to provide a method of growing a turf, in which a turf is grown at a concrete surface of a concrete dam, a retention pond or the like for covering the concrete surface with a natural turf so as to protect the surface against the direct sunshine, wind and rain, and to improve an appearance thereof.
A fifth object of the invention is to provide a method of laying a turf sheet structure, and in particular to a method of laying a turf sheet structure in large-scale facilities, by which it is possible to perform storage of the turf sheet structure before and after intended arrangement of the same, laying of the stored structure for the intended arrangement, and restoring and rearranging of the damaged turf sheet structure in a more simple and economical manner than a conventional artificial turf. | {
"pile_set_name": "USPTO Backgrounds"
} |
Roaches, ants and flies are common pests that have plagued mankind for ages. Extensive efforts have been made to exterminate these difficult and disease-bearing insects.
Boric acid is known as a killing agent in roach and ant-killing compositions. For example, Australian patent 22,579 (Fenwicke, 1935) teaches the use of boric acid as a "germicidal antiseptic" in combination with castor oil and turpentine as "cleaning agents" to be applied to sheep for killing maggots. Japanese patents J5-8052-205 (Nakamoto, 1981), J6-1030-506-A (Wakayama, 1984) and J6-1078-705-A (Amachir, 1984) teach the use of boric acid as the killing agent in various complex compositions for killing roaches (Nakamoto and Amachir) and white ants (Wakayama). All three Japanese patents are dried and used in a pellet, tablet or ball form.
French patent 2,491,296 (Lagache 1982) shows a 50/50 by weight composition of boric acid or one of its salts plus sweetened condensed milk which was placed, without spreading, in a ship's hold to control cockroaches. Japanese document JA-72-23198-R (Sankyo Co. Ltd. 47-23198) shows a toxic roach bait comprising insecticidal compositions, e.g. dieldrin, BHC (Lindane), DDT, Sumithic, and boric acid mixed with more than 4 weight percent glycerol in carriers, such as, cereal, fish meal, rice bran, starch paste, sugar, maltose, fatty acids, faulty acid esters and fatty alcohols. Japanese patent J5-4017-120 (Sakamoto) shows a cockroach bait of 1.5-10 weight percent boric acid, 10-50 weight percent starch and an extract of fish or animal bones prepared by boiling the bones in water for not over 2 hours.
While boric acid has been used previously, the art teaches that it must be kept dry, as wet boric acid will not work; Wellness Letter, University of Calif. at Berkeley, September 1991, page 7. Thus, use of boric acid with aqueous liquefiers, such as water, is not expected to be effective.
The prior art also shows the high degree of specificity of attractants in different insecticide compositions. For example U.S. Pat. No. 4,049,460 (Broadbent, 1977), teaches a composition of brown sugar, a binder material (paraffin or wax), dry dog food, maltose and Dursban (a commercially available insecticide) in pellet form. Roaches are attracted to the dog food, maltose and sugar mixture. The pellets are coated with a paraffin or wax to protect them from disintegrating upon exposure to environmental factors. The Dursban is ingested by the roaches, along with the attractant. Japanese patent J53091-140 (Kao Soap KK) teaches the use of pure concentrated sesame oil, preferably mixed with an extract of cockroaches faeces as an attractant for cockroaches.
U.S. Pat. No. 4,332,792 (Kohn et al., 1982) teaches a process for preparing a pyrolyzate solution of corn syrup and N-methylnicotinic acid for attracting insects, particularly roaches.
U.S. Pat. No. 4,369,176 (Ott, 1983) teaches a sugar, bacteria and carrier material (such as ground corncobs, sawdust or sand) for use as an insect attractant. The sugar is degraded by the bacteria, causing fermentation by-products which are the attractant. The attractant is combined with an insecticide to kill insects. The insects ingest the insecticide along with the composition.
U.S. Pat. No. 4,627,981 (Shimano et al., 1986) discloses the use of various alcohols dissolved in an organic solvent and impregnated on a carrier (such as cardboard or cloth) for use in attracting and killing insects in pellet form.
There is a need in the art for an improved insecticide composition having specific and powerful attractants, having features for direct and easy application, that is not an environmental pollutant or potential carcinogen. Many of the current insecticides are complex organic compounds. Applicants' invention lies in the combination which confers properties of increased efficiency due to direct application of the composition in paste form by squeeze bottle in easily metered amounts to the site of infestation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to an electronic printed circuit board which is designed for a display instrument, particularly in a motor vehicle, and has a light source.
Display instruments for modern vehicles have a printed circuit board holding the essential components. In addition to the necessary electronic components, this printed circuit board usually also accommodates a pointer drive system for an analog pointer-type instrument, a light source and possibly other mechanical and/or optical components. The thus populated printed circuit board can then be easily inserted into an appropriate housing of the display instrument and can then be fitted, together with this display instrument, into a dashboard in a motor vehicle. To illuminate a dial plate and for background or transmitted illumination of symbols, warning indicators or monitoring displays, the printed circuit board is fitted with at least one light source, which is often connected to an optical fiber. In particular, the light source is also used for actively illuminating a liquid crystal display (LCD).
A disadvantage of printed circuit boards of the aforementioned type is that any change in the position of the light source on the printed circuit board usually requires that the printed circuit board be completely reconstructed. This means that the use of the printed circuit board is generally restricted to a single application, and that changing the display instrument is associated with considerable complexity.
It is already known practice to connect the light source to an optical fiber so that the area which is to be illuminated can then be reached better. In this arrangement, a diffuser ensures that light emerges uniformly at the desired point, the optical fiber itself being of very shallow design and affecting the physical height only insignificantly. A disadvantage of this is that the light emerging from the diffuser, particularly for illuminating large areas, such as are found in actively illuminated liquid crystal displays, does not allow a sufficient illumination level. There are then frequently differences in brightness, which the observer perceives as irritating and which make reading more difficult. In addition, the difference in brightness gives an inferior impression which cannot be prevented even by using more powerful light sources.
The invention is based on the problem of providing a printed circuit board of the aforementioned type which is intended for a display instrument in such a way that it can be used flexibly for different display instruments and the illumination level is increased at the same time. In particular, it should also be possible to achieve particularly uniform illumination without differences in brightness.
The invention solves this problem in that the light source is arranged on a support which is designed as a bridge and is mounted on the printed circuit board by a fixing means. This allows the area under the support to be used for other electronic components, which means that the design can be compact. The support can be mounted at no distance from the populated printed circuit board, so that there is only an insignificant increase in the physical height, or none at all, as a result. At the same time, the support itself can be made of a comparatively thin material, since it does not need to have any conductor tracks. In addition, the arrangement of the light source on the support allows flexible positioning of the light source on the printed circuit board, without any change in the electronic components or rearrangement of the conductor tracks being necessary for this. To this end, the support can easily be positioned at a predetermined point using the fixing means, which allows the fixing, which can be both detachable and undetachable, to be immediately monitored visually and mechanically. This allows flexible adaptation to different applications, and, in particular, further supports can be added and easily replaced for servicing. In addition, the power loss from the light source in the form of heat has no disadvantageous effect on electronic components arranged on the printed circuit board, since the physical decoupling provides for improved heat dissipation. Electrical contact with the light source could be made by means of cables, for example; however, it is particularly beneficial if the support is designed as a rigid or flexible printed circuit board and holds conductor tracks for supplying the light source with electrical power. The extraordinary compactness means that the printed circuit board according to the invention can also advantageously be used, in particular, for combined display instruments having a plurality of displays, as used in motor vehicles, in particular.
A particularly advantageous embodiment of the invention is provided when the fixing means has a clip connection. This allows easy connection of the support to the printed circuit board without additional auxiliary means or tools. It also allows easy implementation of a practical modular design, so that an individual display instrument is produced by connecting individual components using the clip connection.
In this regard, a development of the invention which is particularly beneficial is one in which the fixing means is integrally connected to a housing of the display instrument. This allows the support to be connected directly to the housing, which means that there is no need for complicated positioning, and the number of components is reduced. In this case, the printed circuit board connected to the support is secured in the predetermined installation position subsequently, for example as an addition.
It is also beneficial if, according to one development of the invention, the fixing means is a hinge. This allows the printed circuit board and the support to be premounted, first, irrespective of the subsequent installation position, enabling the support to be pivoted into the final position after the printed circuit board has been fixed. This means that, in particular, configurations of the type in which the display plane and the plane of the printed circuit boards are not parallel to one another can also be produced.
Assembly is particularly simple if the fixing means has an electrical contact arrangement. In this case, electrical contact is made at the same time as the support is fixed, in only one operation. Furthermore, possible sources of error both in assembly and in operation can then be largely eliminated.
In this case, the support is fixed particularly simply in that the support is bonded to the printed circuit board. This allows the support to be arranged at virtually any desired point on the printed circuit board. This requires no special preparation or configuration of the printed circuit board. At the same time, an adhesive or a double-sided adhesive strip used for bonding also serves for insulation and protection of the printed circuit board against mechanical damage.
Electrical contact could be achieved by means of a solder connection. On the other hand, a particularly advantageous embodiment of the invention is provided in that the support can be placed in electrical contact with the printed circuit board by means of a plug connection. Such a plug connection requires only a small degree of complexity in the assembly process, and can easily also be retrofitted at a later instant, for example if further displays are desirable. At the same time, the plug connection also allows the use of a support which is not suitable for a solder connection on account of the thermal or mechanical loading, or which, to simplify the assembly process, cannot be connected to the printed circuit board until at a later instant.
By way of example, the support could be hardboard or rigid-plastic board. According to another development of the invention, however, it is particularly advantageous if the support is a ceramic substrate. This ensures good dissipation of the heat given off by the light source. Conductor tracks can be printed on the substrate for making electrical contact with the light source.
One embodiment is particularly advantageous if the support is a foil. This firstly produces a comparatively small thickness, which results in a very compact design for the display, and secondly the foil allows the light source to be adapted flexibly to different installation positions. In particular, this also allows curved surfaces at different levels in height to be produced.
In such a case, it is particularly beneficial if the support is elastically deformable. This means that, in the installation position, the support can be arranged such that it is prestressed against the printed circuit board, which makes simple, reliable fixing possible. At the same time, the support comes to bear optimally against the printed circuit board, so that a compact design can be achieved. This likewise allows for simpler connection of a support having the light source and the contact arrangement provided only on the front, because, first, the surfaces of the support and of the printed circuit board are placed onto one another and contact is made with them, and then the support is folded over, so that the light source subsequently points in the direction facing away from the printed circuit board. Furthermore, any components of the printed circuit board which might be arranged underneath the support can be accessed without any difficulty, even for servicing, by lifting off the support from the printed circuit board.
In this context, a development of the invention which is also particularly simple is one in which the support can be rolled. This means that it can be produced economically by the meter with a light source which is already fitted, for example, and that it need merely be cut to the desired length in the assembly process.
In this context, it is also particularly advantageous if the support has a reflector for the light source. This allows the desired area to be illuminated specifically and uniformly with little complexity. For example, the support can also be designed such that the light source inserted in the reflector does not protrude from said reflector, which means that the light source is arranged so as to be protected against damage.
The support can be made of any desired material. However, one embodiment of the invention is particularly beneficial if the support comprises a section of the printed circuit board. The section of the printed circuit board, together with the printed circuit board, can have components fitted in a single operation. When the section has been separated off, it forms the support. This allows the manufacturing process to be simplified and means that, by cleverly utilizing the geometry of the printed circuit board, an otherwise useless residual portion (waste) can be used as a support.
The light source can be a conventional incandescent lamp, for example. A particularly advantageous embodiment of the invention is one in which the light source is a light-emitting diode (LED). Such light-emitting diodes can be soldered directly to the support and can be arranged next to one another with only a small gap, so that the result is a uniform light source with little susceptibility to faults. In this arrangement, such light-emitting diodes afford the possibility of radiating light of different colors, depending on the driving.
It is also particularly beneficial if the support is an electroluminescent foil. This electroluminescent foil inherently combines the function of the support and of the light source, so that further components can be dispensed with and consequently a significantly smaller physical height can be achieved.
A preferential improvement in the heat dissipation from the light source can be achieved, and it can also advantageously become possible to arrange additional components on the printed circuit board in the area of the support, if, in accordance with another development of the invention, the support does not rest directly on the printed circuit board, but is at a distance from it.
Particularly if the light source has a high power loss, it is especially advantageous, according to another development of the invention, for a heat-dissipating element to be arranged between the printed circuit board and the support. The heat-dissipating element can be a passive cooling element, for example in the form of metal cooling ribs, or an active cooling element, for example in the form of a cooling line charged with coolant.
It is conceivable for the support to be arranged approximately parallel to the printed circuit board; however, in accordance with another advantageous development of the invention, in which the support is arranged at an acute angle to the printed circuit board, the light source can be oriented specifically onto the area which is to be illuminated, which increases the illumination level. | {
"pile_set_name": "USPTO Backgrounds"
} |
Fabrication of hard alloy or metal matrix composite articles is always challenging since brittleness typically increases with increasing hardness. Fabrication of hard alloy or metal matrix composite articles having complex geometry, thin wall thickness or thin cross-section is particularly challenging. Fabrication techniques such as pre-forming by powder pressing, extrusion or injection molding followed by sintering are often employed for making such articles. However, given the limitations of tooling and dies, articles produced according to these methods are usually not near-net shape, necessitating additional significant green shaping, machining and processing.
Moreover, casting can be used for making articles of complex geometry and thick wall structure. Nevertheless, casting is mainly limited to a subset of metal and alloy systems suitable for such operations. For hard alloys and metal matrix composites, casting can be difficult. Further, mechanical working, such as hot rolling, is sometimes employed for making thin metal or alloy sheets. Hard alloys and metal matrix composites are generally unsuitable for hot rolling due to the high hardness exhibited by these materials rendering them brittle and prone to crack formation during the working process. In view of these deficiencies, new methods of producing hard alloy and metal matrix composite articles, including articles of complex geometry, thin wall structure or thin cross-section, are required. | {
"pile_set_name": "USPTO Backgrounds"
} |
Memristive devices are electrical switches that can retain a state of internal resistance based on an applied voltage and current. See, for example, Yang et al., “Memristive Devices for Computing: Mechanisms, Applications and Challenges,” USLI Process Integration 8 at the 224th Electrochemical Society Meeting (October 27-Nov. 1, 2013) (7 pages). Memristive devices have gained significant interest for accelerated machine learning applications.
Memristive devices need to have the following characteristics. Memristive devices have to be non-volatile and capable of storing a continuously variable resistance value. This resistance can be tuned up and down using current or voltage pulses. Memristive device resistance needs to be symmetrically tunable, meaning that when + or − voltage pulses are applied to the device, the resistance moves up or down by roughly the same magnitude.
There is a need for creating a device which can have these resistive switching characteristics. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention generally relates to a circuit board inspecting apparatus, and specifically relates to an apparatus for automatically inspecting solder portions of a printed circuit board.
Japanese published unexamined patent application 1-219548 discloses an apparatus for automatically inspecting solder portions of a printed circuit board by using the fact that a good solder portion and a defective solder portion exhibit different accumulative frequency distributions of luminance. The apparatus of Japanese application 1-219548 has a two-dimensional camera to generate data representing luminances of the solder portions of the printed circuit board. An accumulative frequency distribution of luminance is derived from the luminance data. The solder portions of the printed circuit board are checked by analyzing the accumulative frequency distribution of luminance. | {
"pile_set_name": "USPTO Backgrounds"
} |
Leak detection routines may be intermittently performed on a fuel system and emissions control system to confirm that the systems are not degraded. Leak detection routines may be performed while the engine is off (engine-off leak test) using engine-off natural vacuum (EONV) generated due to a change in temperature and pressure at the fuel tank following engine shutdown and/or with vacuum supplemented from a vacuum pump. If the systems are sealed from atmosphere, a pressure or vacuum will develop there within responsive to changes in ambient temperature if the systems are intact. Alternatively, leak detection routines may be performed while the engine is running by operating a vacuum pump and/or using engine intake manifold vacuum.
Such leak detection routines rely on a functional fuel tank pressure transducer (FTPT) to measure the pressure or vacuum within the fuel system. As such, the rationality of the FTPT must be periodically tested and confirmed. The FTPT may be tested for offset, to determine if a baseline output of the FTPT is accurate. One example approach for an FTPT offset test is shown by Jentz et al. in U.S. Patent Application 2015/0075251. Therein, the fuel tank is vented to atmosphere for a lengthy vehicle-off soak. If the FTPT is functional, a value within a threshold of atmospheric pressure should be output following the vehicle-off soak. A deviation from atmospheric pressure may result in a diagnostic trouble code (DTC) being set at the controller, and/or may result in the FTPT output being adjusted to compensate for any offset.
However, the inventors herein have recognized potential issues with such systems. As one example, an offset FTPT output following a vehicle-off soak may be due to factors other than FTPT degradation. For example, if the canister vent pathway is restricted or blocked, a pressure or vacuum may naturally develop in the fuel tank as ambient temperature changes. A mechanic may replace a functional FTPT due to a DTC, and may or may not discover the canister vent restriction. This may result in premature automatic shut-off events during refueling, and may prevent proper canister purging, thereby increasing vehicle emissions.
In one example, the issues described above may be addressed by a method for a fuel system wherein a fuel vapor canister is vented to an engine intake during a first condition, and wherein a restriction in a canister vent pathway is indicated, responsive to a change in a fuel tank pressure transducer output greater than a threshold. If the fuel tank pressure transducer output changes less than the threshold, degradation of the fuel tank pressure transducer is indicated. In this way, a fuel tank pressure transducer offset may be distinguished from a canister vent pathway restriction if a fuel tank pressure transducer indicates a significant pressure or vacuum in a vented fuel tank.
As one example, the fuel tank may be vented to atmosphere for the duration of a vehicle-off soak. If the fuel tank pressure transducer output is more than a threshold from atmospheric pressure, the canister purge valve is opened. If the FTPT output returns to atmospheric pressure, a canister vent pathway blockage may be inferred. If the FTPT output does not return to atmospheric pressure, FTPT degradation may be inferred. In this way, an on-board test can discern potential reasons for FTPT offset without requiring mechanical intervention.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to the manufacture of electrical contacts and more particularly to methods of producing electrical contacts adapted for electrically interconnecting an electrical wire with either a male contact pin or a female contact.
Still further, the invention relates to methods of making electrical contacts wherein the produced contacts may be positioned within an electrically insulative housing.
Contacts of the variety described above have usually been manufactured by processes utilizing a complex molding and forming operation. Mostly, these contacts have been produced from a single material which in turn is subjected to multiple operations such as stamping, bending, rolling, etc. The resulting product was thereafter only able to satisfy a single function, that is, interconnect an electrical wire with another wire or a wire with a male or female component. Those adapted for joining wires with male components were not able to accept a female component, and vice-versa. Similarly, those adapted for joining wires to wires were unable to connect a wire to a corresponding male or female member. Being unitary in structure, such contacts have therefore lacked the feature of versatility so often desired in the electronics field.
Examples of the above contacts are represented in U.S. Pat. No. 3,467,942 wherein FIGS. 3 and 4 depict male and female mating members each of which has been joined to an electrical wire. As is understood, each of these contacts is produced from a unitary material which in turn is formed through a series of often complicated forming operations (i.e., stamping using multiple dies) to provide the end product. As can further be seen in U.S. Pat. No. 3,467,942, the housing required to retain the illustrated contacts is itself rather complicated in design, thus further necessitating a complex molding operation to achieve its formation. Otherwise, two separate and distinct molding operations for different housings (one for each type contact) are required.
It is believed therefore that a method of producing electrical contacts which features interchangeability of components and therefore a substantial reduction in the number and complexity of molding operations necessary to provide housings for these contacts would constitute an advancement in the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Prior to the invention disclosed herein, gauges for testing the accuracy of the relationship of a vertical and horizontal surface were comprised of a gauge with an enlarged integral end part supporting the cylindrical test surface to the surface to be tested by a permanent magnet and a magnet that itself engages the steel surface of a plate. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field
Apparatuses and methods consistent with the disclosure provided herein relate to remote controlling, broadcast receiving and controlling the same, and more particularly, to a remote controller apparatus, a broadcast receiving apparatus, and a control method for setting macro functionality on the remote controller apparatus to control the broadcast receiving apparatus.
2. Description of the Related Art
Recent advancements in electronic engineering have enhanced various functions relating to controlling a broadcast receiving apparatus by using a remote controller. In particular, a remote controller with a macro functionality set thereon can sequentially transmit pre-stored instructions to the broadcast receiving apparatus, thus enabling users to control certain operations of the broadcast receiving apparatus with ease.
Conventionally, the macro functionality is set on the remote controller generally as follows. A user sequentially inputs a macro registration start key and inputs remote controller keys intended as the macro instructions, and the remote controller stores infrared (IR) codes and time interval information relating to the remote controller keys inputted by the user. Then, as the user inputs macro registration end key, macro functionality is set.
As described above, the conventional macro functionality registration requires the user to input registration start key, which can be troublesome. Further, if the user inadvertently skips pressing the registration start key, the macro functionality is not set.
Further, because the macro functionality is executed simply based on the remote controller keys previously inputted by the user without considering the current status of the broadcast receiving apparatus, the broadcast receiving apparatus is sometimes controlled in a different way than the user intended.
Accordingly, there is a need for a method which can set macro functionality with increased efficiency while accounting for the current status of the broadcast receiving apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a woodworking clamp, and in particular to a quick release structure for a woodworking clamp.
2. Description of the Related Art
When several plate-like workpieces such as wood plates, metallic plates, plastic plates or the like are to be bound together or machined at the same time, a large-sized portable clamp is used for clamping these plates together because a stationary clamp such as a vise fixed on a work bench cannot be moved to meet the positions of the plates. A common portable clamp has a transverse positioning rod on which a clamp body and a chuck are provided. By adjusting the position of the clamp body relative to the chuck, the portable clamp can be used to clamp several plates, the clamp fixes a workpiece onto the work bench in two ways. One way is to sandwich the workpiece between a fixed end and a movable end of the clamp, in which the movable end moves along a guiding rod toward the fixed end to sandwich the workpiece therebetween. The other way is to support the workpiece having an inner hole, in which the fixed end and the movable end of the clamp are disposed into the inner hole, and then the movable end moves along a guiding rod away from the fixed end to thereby hold the workpiece.
Therefore, it is desirable to provide a quick release structure for a woodworking clamp to mitigate and/or obviate the aforementioned problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
One form of apparatus for applying an imprint to a web of flexible material by means of a stamping foil which can also be referred to as an embossing or transfer foil, as is to be found for example in DE 32 10 551 C2, compises a stamping or foil-applicator roller and at least one and more specifically a plurality of pressure or backing rollers, by means of which the foil and the web of material can be pressed against each other and against the peripheral surface of the stamping roller. In that assembly the backing rollers are disposed combined together in pairs on a respective roller cage. The backing rollers can be individually adjusted, in such a way that firstly one or two adjacent inner backing rollers and then progressively outwardly the further backing rollers can be brought to bear against the stamping roller. However, particularly when that apparatus is being used to deal with webs of flexible delicate or sensitive material such as for example banknote paper, it is not possible with certainty to exclude the likelihood of undesirable compression of the fibers of the material and thus an undesirable change in the properties of the material, as a result of the material being subjected to pressure over the full area thereof between the backing roller and the stamping or applicator roller.
In another form of apparatus, to be found in DE 40 24 537 C1, for applying a foil imprint to a web of flexible material, the aim therein is to avoid undesirable compression of the fibers of the material and thus an unacceptable change in the properties thereof, even when dealing with a web of flexible material to which a stamping or transfer foil imprint is to be applied, without the operating speed of the apparatus being adversely affected by the avoidance of fiber compression and its consequences. That aim is achieved by the at least one backing roller being provided with an adjusting device for producing defined adjustment of the spacing of the backing roller relative to the surface of the stamping or applicator roller, thereby to provide for defined adjustment of the pressure applied by the backing roller to the foil and the web of material.
However, tolerances in respect of thickness of the web of material and/or flaws in respect of shape caused by temperature conditions, for example out-of-roundness of the stamping or applicator roller, caused by a temperature variation, can result in irregular depths of impression of the at least one backing roller into the web of material, thus resulting in an irregular imprint effect. | {
"pile_set_name": "USPTO Backgrounds"
} |
Polycarbonates, copolyestercarbonates, and polysiloxane copolycarbonates are high polymers produced by the condensation or intercondensation of a dihydroxy compound and a diacid or reactive derivative thereof such as an acid halide. When the dihydroxy compound is bisphenol-A and the acid derivative is phosgene, a simple polycarbonate (PC) polymer results. Similarly terephthalic acid and ethylene glycol intercondense to form polyethylene terephthalate (PET). Since these polymers are polyesters of bifunctional precursor monomers, it is theoretically possible for the reaction mixture to go entirely to completion and create one entire reaction vessel filling molecule. In practice, of course, this does not occur because as the polymerization increases the average chain length of the polymer increases, the viscosity of the reaction medium increases and the reaction probability decreases because there are progressively fewer complementary reactive species in a unit volume of the reaction vessel. Thus the reaction slows and eventually terminates on the basis of the statistics of reaction probability and the statistics of the polymer chain conformation because a reactive acid-derived terminus is statistically unlikely to find and react with a reactive hydroxyl terminus.
In producing these types of polyester polymers, endcapping or chain terminating agents are employed. In order to effectively terminate the growing end of a polymer molecule, these chain terminating or endcapping species must be monofunctional such that when reaction occurs with the growing end of the polymer molecule, further growth in lo the chain length of the particular polymer molecule is terminated. Thus depending on the statistical mechanics of polymer growth, there should be at least a rough correlation between the quantity of chain terminating agent, on a molar basis, and the average molecular-weight of the polymer. Indeed, one function of endcapping agents, aside from the elimination of reactive ends, is to regulate the average molecular weight of the polymer being synthesized.
Typical endcapping agents have been monofunctional compounds of low molecular weight, high reactivity, readily available and cheap. Additionally such compounds have been monofunctional analogs of one or the other bifunctional monomers being polymerized. Thus in the case of polycarbonates, typical endcapping agents are various phenols such as phenol, tertiary-butyl-phenol, and para-cumyl-phenol. Other endcapping agents have been disclosed such as chromanyl in U.S. Pat. No. 3,697,481 to Bialous et al. herewith incorporated by reference. In general aromatic polycarbonates and polycarbonate copolymers may be produced by various methods such as shown in U.S. Pat. Nos. 3,635,895 and 4,001,184, herewith incorporated by reference.
Variations in the mole ratio between the chain terminating compounds, such as phenol, and the chain growing compounds, such as bisphenol-A and phosgene, lead to the ability to control the molecular weight of the resulting polymer. Higher levels of chain terminating agents in the reaction mixture tend to lead to lower average molecular weights or shorter average polymer chain length. Conversely, lower levels of chain terminating agents in the reaction mixture tend to lead to higher average molecular weights or longer average chain length.
Frequently there are additional considerations or advantages associated with the choice of a particular chain terminating agent. Being esters, polymers such as polyesters, copolyestercarbonates, polycarbonates, polysiloxane copolycarbonates and the like are susceptible to hydrolysis and trans-esterification. A chain terminating agent that reduces the susceptibility of these polymers to hydrolysis or trans-esterification can impart improved properties to the polymer as well as functioning as a polymer chain length regulator during synthesis.
When put to use, these polymers may be alloyed with other polymers and/or compounded with various stabilizing and functionalizing additives. The additive compounds or mixtures of additive compounds are typically incorporated to prohibit undesired reactions of the polymer to the physical or chemical challenges experienced either during the process of converting the polymer to a useful article of manufacture or during the useful life of the manufactured article containing the stabilized polymer. These physical and chemical challenges include among others, slow oxidation, rapid oxidation (combustion), photolytic degradation, thermal degradation, and hydrolytic degradation. Consequently, depending on a particular polymer, there are to be found various stabilizer compounds available commercially either singly or in combination that improve or render more stable one or more of the physical or chemical properties of the polymer.
A particular problem associated with the polycarbonate family of polymers is stability to photolyric degradation, especially that caused by ultraviolet radiation. There are accordingly a large variety of stabilizer compounds useful to impart an improved resistance to the effects of ultraviolet radiation upon polycarbonate polymers. Among these stabilizer compounds are the phenolically substituted benzotriazole compounds. At low levels of addition to the polymer formulation, below about 0.5 to about 1.0 weight percent, the benzotriazole ultraviolet stabilizers generally disperse or dissolve in the polymer matrix in a satisfactory fashion and generally impart the desired ultraviolet resistance to the polymer. At higher levels, above about 2 to about 3 weight percent, the benzotriazole stabilizers have a tendency to undergo migration, phase separation, and plate out. This is a significant problem for certain extruded, laminated or layered sheet formulations where the function of the sheet is to provide a protective function for structural or glazing sheet thereunder, because when the stabilizer compound undergoes a phase separation the effective quantity of stabilizer compound present in the polymer matrix is reduced. Additionally, the stabilizer that migrates form the polymer matrix coats and/or plugs the manufacturing process equipment, causing surface defects and other quality problems in the articles being manufactured. This results in increased downtime of the manufacturing equipment for cleaning.
A previous approach exemplified by the teachings of U.S. Pat. No. 4,153,780 (the '780 patent) where phenolically substituted benzotriazoles, active for imparting ultraviolet resistance to polymers, are chemically bound as an endcapping agent to the polycarbonate polymer through the phenolic hydroxyl moiety. This approach incorporates the phenolically substituted benzotriazole as a chain stopping agent into the polymeric molecule. However, by the formation of a covalent chemical bond between the phenolic oxygen of the substituted benzotriazole and the terminal chloroformate group of the growing polycarbonate polymer, the ability of the phenolically substituted benzotriazole to function as an ultraviolet stabilizer is greatly reduced or altogether destroyed. Apparently, the phenol hydroxyl group of the phenolically substituted benzotriazole must be capable of forming a hydrogen bond in order for the molecule to function as an inhibitor for the degradative effects of ultraviolet radiation. While Applicant subscribes to this view as a matter of information and belief as however, the operability of Applicant's invention does not depend on this particular theoretical mechanism. While the incorporation of the benzotriazoles as taught in the '780 patent may render polycarbonates somewhat more stable to ultraviolet radiation, on a comparative basis the addition of an equivalent amount of free, as opposed to polymer bound, benzotriazole stabilizer compound to polycarbonates generally produces a better stabilizing effect in the polymers being treated therewith. Consequently, the benefit that might be achievable by chemical incorporation of the stabilizer molecule into the polymer is more than offset by a loss in efficacy caused by the changes in chemical bonding forced upon the stabilizer molecule when the stabilizer molecule is incorporated into the polymer.
Typically the stabilizer compounds are of a significantly lower molecular weight by comparison to the polymer being stabilized. This large difference in molecular weight leads to problems that are generally categorized as compatibility problems, i.e. the stabilizer may not be soluble in the polymer or because of its low molecular weight, the stabilizer has a tendency to volatilize or migrate out of the polymer matrix. A stabilizer that will not dissolve or disperse in the polymer to be stabilized does not impart any useful benefit to the polymer. Likewise a stabilizer that volatilizes or migrates out of the polymer matrix also does not impart any useful benefits to the polymer, and causes problems during manufacturing. The famous so-called "new car" smell is due to the migration and/or volatilization of various polymer stabilizing additives and plasticizers from the polymeric formulations widely employed in the manufacture of automobiles. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to lasers and, more particularly, to lasers which operate at a predetermined and fixed wavelength.
2. Background Art
Although lasers are usually thought of as sources of monochromatic light, all lasers actually emit light at multiple wavelengths simultaneously. For example, a CO.sub.2 laser can be made to emit at least 400 individual wavelengths in the 8.7-11.8 micron range when isotopes in addition to .sup.12 C.sup.16 O.sub.2 are used. Moreover, in most lasers, the width of the broadened laser line contains several longitudinal cavity modes which permits the laser to oscillate at several closely-spaced wavelengths at once.
Many laser applications require that the laser output be at a particular and constant wavelength. For example, applications in holography often require long coherence lengths that can be achieved only if the laser operates in a single, longitudinal mode. Applications in spectroscopy, photochemistry and isotope separation require a laser having a specific wavelength and a narrow bandwidth.
A wide variety of arrangements are known for controlling a laser to operate at a particular wavelength. As a general rule, it is desirable to selectively increase the cavity loss for the other wavelengths where the active medium produces gain, but without increasing loss at the desired wavelength. Known arrangements include such passive devices as tuning prisms, diffraction gratings, filters positioned at Brewster's angle, Fabry-Perot etalon plates and tuning wedges. However, these devices have a number of disadvantages. For example, prisms are not particularly effective in selecting one wavelength from a plurality of closely-spaced wavelengths. Diffraction gratings are difficult and expensive to manufacture and also introduce substantial energy losses at the desired wavelength. As a result, the laser must be operated at higher input power levels to obtain the same output power level, thus adding expense and inefficiencies to the laser system.
The operating wavelength of a laser can also change due to physical changes in the cavity length as the system operates, generally changes from expansion or contraction due to temperature variations. The highly reflective mirror at one end of the laser cavity has been mounted on a piezoelectric crystal to change the position of the mirror as the cavity length changes. The problem with such an arrangement is that the laser system must additionally include complicated and expensive devices for measuring deviations from the desired wavelength and energizing the piezoelectric crystal to compensate for any changes in wavelength.
Mirrors which reflect only at the desired wavelength and at no other wavelength have also been proposed. Other arrangements for controlling the operating wavelength of a laser are shown in U.S. Pat. Nos. 4,305,046; 4,558,452; 4,615,034; and 4,701,924.
It is an object of the present invention to provide a passive arrangement for accurately, reliably and inexpensively selecting a particular operating wavelength for a laser, but without diminishing the output of the laser. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to railroad wheel steels. More particularly, it is concerned with those railroad wheel steels that are alloyed and/or heat treated to resist both wear and thermo-mechanical deterioration, especially in the tread (and/or flange) regions of such wheels. The terms “spalling” and “shelling” are widely used in describing such thermo-mechanical deterioration. Spalling generally refers to loss of wheel tread material as a result of metallurgical damage created by excessive heat that results from sliding of railroad wheels during train braking operations. Shelling generally refers to loss of wheel tread material as a result of deterioration arising from mechanical stresses.
Various problems arise from each form of tread material loss. By way of example only, thermo-generated deterioration of a railroad wheel's tread can quickly create flat spots on the wheel's outer surface and thereby produce the undesired quality known as “out-of-roundness”. Moreover, when railway wheels experience thermo-engendered deterioration, surface cracks tend to propagate from such deteriorated areas and cause potentially dangerous defects in contiguous wheel regions. Similar surface cracks are also created as a result of relatively slower mechanically generated deterioration. Aside from their catastrophic accident causing potentials, wheel defects such as these are also known to increase wheel/rail dynamic forces that produce consequential damage such as broken rails and accelerated track deterioration. The railroad industry is therefore constantly looking for ways to minimize every aspect of thermo-mechanical deterioration of railroad wheels while still preserving, as far as possible, their wear resistance qualities.
2. Description of the Prior Art | {
"pile_set_name": "USPTO Backgrounds"
} |
Within this application several publications are referenced by Arabic numerals within parentheses. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entirety are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
The subject of this invention is a vaccine for pseudo-rabies virus (herpesvirus suis, suid herpesvirus 1, or Aujesky's disease virus) disease of swine. Swine are the natural host of pseudorabies virus in which infection in older animals is commonly inapparent but may be characterized by fever, convulsions, and death particularly in younger animals. Pseudorabies also infects cattle, sheep, dogs, cats, ferrets, foxes, and rats (1) where the infection usually results in death. Death is usually preceded by intense pruritus, mania, encephalitis, paralysis, and coma. Traditional live vaccines are available for use in swine, but they are lethal for the other animals. An improved vaccine for pseudorabies would induce a more reliable immune response in swine, would be specifically attenuated to be incapable of reversion to virulence, and would not cause disease in other hosts.
In addition to the attributes given above, it would be advantageous to deliver in a single injection with the pseudorabies vaccine other antigens protective against other economically important diseases, for example rotavirus, transmissible gastroenteritis virus, and parvovirus. Such a vaccine would minimize the handling of the animal and the cost of administration. If these antigens were incorporated into the pseudorabies virus as part of the genome of the virus and were designed to be expressed during vaccine virus replication, other advantages would be realized. First, the cost of producing such vaccines would be lowered because the other antigens would be included in the cost of producing a single dose of pseudorabies vaccine. Second, the antigens cloned into pseudorabies virus would be safe --they could never revert to virulence because the majority of the virus nucleic acid sequences are not present in the vaccine. Thirdly, the vaccines would be delivered via a live virus vector that would replicate in living cells in the body which would promote the best possible immune response to give solid protection over the longest time period.
The present invention concerns pseudorabies viruses which have been genetically engineered to contain foreign DNA sequences which encode anitigens which are antigenic in the host animal and may be used to elicit protection against a number of different diseases. These viruses comprise a portion of the pseudorabies virus DNA which is essential for replication of the naturally-occurring virus, but which is missing DNA sequences that are required for full pathogenicity (i.e. they have attenuating deletions). Into these attenuated pseudorabies viruses have been inserted foreign genes under the control of various herpesvirus promoters that direct the expression of foreign antigenic proteins. Vaccines comprised of these viruses are characterized by the efficacy, safety, and economic benefits noted above.
The prior art for this invention stems first from the ability to clone and analyze DNA while in bacterial plasmids. The techniques that are available for the most part are detailed in Maniatis et al. (3112). This publication teaches state of the art general recombinant DNA techniques.
Among the herpesviruses, only two primate herpesviruses (herpes simplex of humans and, to a limited extent, herpes saimiri of monkeys) have been engineered to contain foreign DNA sequences previous to this disclosure. The earliest work on the genetic manipulation of herpes simplex involved the rescue of temperature sensitive mutants of the virus using purified restriction fragments of DNA (3). This work did not involve cloning of the DNA fragments nor the purposeful creation of deletions nor insertions of foreign DNA fragments into the viral genome. The first use of recombinant DNA to manipulate herpes simplex virus involved cloning a piece of DNA from the L-S junction region into the unique long region of the DNA, specifically into the thymidine kinase gene (4). This insert was not a foreign piece of DNA, rather it was a naturally-occurring piece of herpesvirus DNA that was duplicated at another place in the genome. This piece of DNA was not engineered to specifically express any protein, and thus it did not teach how to express protein in herpesviruses. The manipulation of herpes simplex next involved the creation of deletions in the virus genome by a combination of recombinant DNA and thymidine kinase selection. The first step was to make a specific deletion of the thymidine kinase gene (5). The next step involved the insertion of the thymidine kinase gene into the genome at a specific site, and then the thymidine kinase gene and the flanking DNA at the new site were deleted by a selection against thymidine kinase (6). In this manner herpes simplex alpha-22 gene has been deleted (6). In the most recent refinement of this technique, a 15,000 bp sequence of DNA has been deleted from the internal repeat of herpes simplex virus (7).
The insertion of genes that encode protein into primate herpesviruses have involved seven cases: the insertion of herpes simplex glycoprotein C back into a naturally occurring deletion mutant of this gene in herpes simplex virus (8); the insertion of glycoprotein D of herpes simplex type 2 into herpes simplex type 1 (9), again with no manipulation of promoters since the gene is not really `foreign`; the insertion of hepatitis B surface antigen into herpes simplex virus under the control of the herpes simplex ICP4 promoter (10); and the insertion of bovine growth hormone into herpes saimiri virus with an SV40 promoter that in fact didn't work in that system (an endogenous upstream promoter served to transcribe the gene) (11). Two additional cases of foreign genes (chicken ovalbumin gene and Epstein-Barr virus nuclear antigen) have been inserted into herpes simplex virus (18), and glycoprotein X of pseudorabies virus has been inserted into herpes simplex virus (20).
These limited cases of deletion and insertion of genes into primate herpesviruses demonstrate that it is possible to genetically engineer primate herpesvirus genomes by recombinant DNA techniques. The methods that have been used to insert genes involve homologous recombination between the viral DNA cloned on plasmids and purified viral DNA transfected into the same animal cell. In aggregate this is referred to as the homologous recombination technique. This technique has been adapted with some modifications to allow us to engineer pseudorabies virus. Several key elements of the genetic engineering of pseudorabies are not made obvious from these previous primate herpesvirus studies. The present invention demonstrates where to make deletions that serve to attenuate pseudorabies virus, where to make the insertions of the foreign genes to get them stably contained within the pseudorabies virus genome, and which promoters are effective in expressing foreign proteins in the pseudorabies virus genome.
Pseudorabies virus is classified as an alphaherpesvirus with a class D genome structure (12); that is, it contains two copies of a single repeat region, one located between the unique long and unique short DNA region and one at the terminus of the unique short region (see FIG. 1). Herpes simplex virus is an alphaherpesvirus with a class E genome (12); that is , it contains two copies of each of two repeats. Herpes saimiri is a gammaherpesvirus with a class B genome: that is, it contains numerous reiterations of the same sequence at both termini (12). As the genome structure differs significantly between these different classes of herpesviruses, and because the different viruses attack different cells within their hosts and elicit different pathologies, it is necessary in each instance to establish which specific regions can be removed in order to attenuate and which regions can be altered to express foreign genes.
Pseudorabies virus has been studied using the tools of molecular biology including the use of recombinant DNA techniques. BamHI, KpnI, and BglII restriction maps of the virus genome have been published (13, 14). DNA transfection procedures have been utilized to rescue temperature sensitive and deletion mutants of the virus by the homologous recombination procedure (13). There are two examples of deletions that have been made in the pseudorabies virus genome --one is a thymidine kinase gene deletion (15, 19) disclosed in U.S. Pat. No. 4,514,497 entitled "Modified Live Pseudorabies Viruses". This patent describes a method to delete the thymidine kinase gene of pseudorabies virus to produce a virus with reduced virulence for mice and teaches thymidine kinase deletions only, but does not suggest other attenuating deletions, nor does it suggest insertion of foreign DNA sequences. The other example involves the deletion of a small DNA sequence around a HindIII restriction site in the repeat region (16). From this work a patent application has been filed in Europe that involves other larger deletions in the unique short region as well. Published on May 15, 1985, European Patent Publication No. 0141458, based upon European Patent Application No. 84202474.8, filed on Oct. 12, 1984, entitled "Deletion Mutant of a Herpesvirus and Vaccine Containing Same", describes deletions in the unique short region of pseudorabies virus and their attenuating effect.
The present invention concerns deletions which have been introduced into the pseudorabies genome at sites previously undisclosed. These deletions are shown to be attenuating and to increase the utility of the virus as a vector for the expression of foreign genes as a vaccine. Foreign DNA sequences have been introduced into the attenuated pseudorabies virus and expressed as proteins. One embodiment of the invention concerns a vaccine useful for preventing pseudorabies and other swine diseases with a single inoculum.
Other relevant pseudorabies literature concerns the presence of naturally-occurring deletions in the genome of two vaccine strains of pseudorabies viruses (14, 17). These deletions are responsible, at least in part, for the attenuated nature of these vaccines. Such naturally-occurring deletions do not teach the methods for making these deletions starting with wild type pseudorabies virus DNA, nor do they suggest other locations at which to make attenuating deletions. Our deletions do not occur at the sites of these natural deletions, nor do they overlap these deletions in any way. Thus the presence of these naturally occurring deletions is simply a curious phenomenon that does not teach or instruct the current invention. There are no examples of naturally-occurring insertions of foreign DNA in herpesviruses. | {
"pile_set_name": "USPTO Backgrounds"
} |
The 2-alkyl-1,4-butanediols, especially 2-methyl-1,4-butanediol, have a variety of uses. For example, they can be cyclized to the corresponding 3-alkyltetrahydrofurans. Amongst other uses, 3-alkyltetrahydrofurans can be copolymerized with tetrahydrofuran to form polyether glycols, and those glycols can be used in preparing polyurethane elastomers. In the past, 2-alkyl-1,4-butanediols have been prepared by a variety of techniques. For example, they have been prepared by the reduction of itaconic acid. They have also been prepared by the hydroformylation of 1,4-butenediol followed by hydrogenation of the hydroformylation reaction product (believed to be 2-formyl-1,4-butanediol) as described by Copelin in U.S. Pat. No. 3,859,369. In addition, they have been prepared by catalytic hydrogenation of 1,4-butynediol or 1,4-butenediol in the presence of an aldehyde as disclosed in my U.S. Pat. No. 590,312.
While the prior art methods are useful, they are not without their disadvantages. Itaconic acid and the acetylene-based chemicals used in prior art processes are expensive, and there is thus a need for a process which can be operated at a lower cost. In some of the prior art processes, production of 2-alkyl-1,4-butanediols is accompanied by the production of 1,4-butanediol. Those prior art methods yield a greater quantity of 1,4-butanediol than the 2-alkyl-1,4-butanediols. For example, the process disclosed and claimed in my U.S. Pat. No. 4,590,312 gives a diol mixture having a maximum 2-alkyl-1,4-butanediol content of 15 percent by weight. While that may at times be the desired result, at other times it is desirable to prepare mixtures of 2-alkyl-1,4-butanediols and 1,4-butanediol which contain more of the former than the latter. | {
"pile_set_name": "USPTO Backgrounds"
} |
As is well known, the demand for semiconductor devices has been increasing. Various types of contacts, (e.g., contact holes), have been recently developed for semiconductor devices. The contact hole is usually filled with a conductive metal, (e.g., tungsten), to thereby electrically connect a silicon substrate with a wiring board.
FIG. 1 is a cross-sectional view of a contact of a conventional semiconductor device. A conventional method for forming the contact of the semiconductor device will now be described:
An insulating layer is formed on a substrate 1. The insulating layer is then etched to thereby form a contact hole 2. An active region of the substrate 1 is exposed through the contact hole 2. A tungsten diffusion barrier 3, (e.g., a CVD TiN (chemical vapor deposition titanium nitride) layer), is deposited on the sidewalls and an undersurface of the contact hole 2. Thereafter, the contact hole 2 is filled with tungsten by depositing tungsten on the tungsten diffusion barrier 3 to thereby form a tungsten plug 4. Subsequently, an Al line 5 is deposited on the tungsten plug 4.
The above-mentioned deposition of the CVD TiN layer is usually executed by a MOCVD (metal-organic chemical vapor deposition) method. As a result, many impure atoms, (e.g., C, N, O and the like), are left in the CVD TiN layer. Leakage current can flow through these impure atoms. To reduce the leakage current, attributes of the CVD TiN layer may be enhanced by performing an N2/H2 plasma treatment. That is, the impure atoms in the CVD TiN layer can be reduced by the N2/H2 plasma treatment.
However, because of the anisotropic property of the N2/H2 plasma treatment, the sidewalls of the contact hole 2 cannot be treated with the N2/H2 plasma treatment. Since the attributes of the sidewalls of the contact .hole 2 are not enhanced by the N2/H2 plasma treatment, the leakage current may flow through the sidewalls. Therefore, the yield and the reliability of the manufactured semiconductor devices are degraded. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via the communication network. For example, a user at a personal computing device can utilize a software browser application to request a Web page from a server computing device via the Internet. In such embodiments, the user computing device can be referred to as a client computing device (“client”) and the server computing device can be referred to as a resource provider.
Resource providers are also generally motivated to provide requested resources to client computing devices often with consideration of efficient transmission of the requested resource to the client computing device or consideration of a latency associated with the transmission of the requested resource For larger scale implementations, a resource provider may receive resource requests from a high volume of client computing devices which can place a strain on the resource provider's computing resources. Additionally, the resource requested by the client computing devices may have a number of components, which can further place additional strain on the resource provider's computing resources. For example, the resource can be the data transmission of a video or the like.
Some resource providers attempt to facilitate the delivery of requested resource, such as Web pages or resources identified in Web pages, through various servers stored across a network (e.g., a regional network). In turn, resource providers can instruct, or otherwise suggest to, client computing devices to request some, or all, of a resource through a connection via one of the various servers or via data transmission through a plurality of the various servers. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a toner cartridge for supplying toner to an image forming apparatus.
2. Description of the Related Art
An image forming apparatus has a toner cartridge for supplying toner to the apparatus. The toner cartridge is inserted in the image forming apparatus in a removable manner. Also, the toner cartridge is configured such that the user can exchange the toner cartridge himself or herself when the toner cartridge is emptied of toner. In addition, a filling opening is provided in the toner cartridge and the toner is supplied through the filling opening. In the toner cartridge, a mixer is rotated constantly so as to prevent the toner from solidifying inside the toner cartridge.
In many cases, a manufacturer recommended product including a genuine product is set with respect to the toner cartridge such as above. This is because using a toner cartridge other than the recommended product is considered to cause a possible problem in the image forming apparatus. In a color image forming apparatus, the toner cartridge needs to be inserted in an appropriate position depending on a color of toner. For this reason, there is also an image forming apparatus which is configured so as to discriminate whether a inserted toner cartridge is recommended or not, and a type of the toner cartridge including a type of toner.
Jpn. Pat. Appln. Publication No. 2001-255728 discloses a slit disk which is provided at each toner cartridge and attached on an axis of a rotary shaft of a paddle, and in which slits are formed with specified intervals in a peripheral direction and slit intervals are mutually differently formed. A photosensor can detect the slit and detect a type of the toner cartridge from a detected signal.
U.S. Pat. No. 6,542,709 discloses a method of driving a paddle wherein a driving gear is arranged on one end of an auger for conveying toner, and a driven gear provided on one end of the paddle is rotated by the driving gear through an indirect gear.
In addition, Jpn. Pat. Appln. Publication No. 2004-264460 discloses a cartridge which has a paddle and an auger rotated by a driving gear, a driven gear, etc. provided on an external side of a toner cartridge.
However, when a slit is detected by rotating an axis of a paddle in which slits are formed as disclosed in Jpn. Pat. Appln. Publication No. 2001-255728, and when a rotary force of the paddle is a driven rotary force based on a rotation of an auger such as the one shown in U.S. Pat. No. 6,542,709, there is need to take into consideration a necessary rotation to ensure correct detection of the slit. However, a toner cartridge taking into consideration the above point does not exist, and this has resulted in detection in error.
When the inventors of the present invention attempted to have a toner cartridge having a gear on an external side of the cartridge optically detect the slit disclosed in Jpn. Pat. Appln. Publication No. 2001-255728, there occurred a problem that the gear entangles a variety of lead wires used for detection.
The present invention is invented in view of the above circumstances. An object of the present invention is to provide a toner cartridge which can correctly discriminate a type of the toner cartridge inserted in the image forming apparatus and a toner cartridge which does not interfere with optical detection carried out by the image forming apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
A weakness has been found in CRC generation (CRC=Cyclic Redundancy Check) of the CAN FD frames or messages according to the current Committee Draft of ISO11898-1 or the specification “CAN with Flexible Data-Rate, Specification Version 1.0 (released Apr. 17, 2012)”, which can be downloaded from the website http://www.semiconductors.bosch.com.
The weakness is to do with the CAN stuffing mechanism, which is described in the cited document. This involves inserting after five bits with the same level a “stuff bit”, which has a different level than the five previous bits. By this predetermined rule for inserting the stuff bits it is possible to prevent that bit sequences with more than five identical bits are mistakenly interpreted as signaling an End of Frame, for example, or that the absence of signal edges or changes of level between the bits causes the bus subscribers to lose synchronization. This is so because, in the case of CAN and CAN FD, signal edges or changes of level are used for synchronizing the bus subscribers.
After an initial Start of Frame bit (SOF bit) with a dominant level, which signals the beginning of the frame, CAN FD messages or frames have a bit 28 to bit 18, and possibly also a bit 17 to bit 0, for an identifier of the CAN FD frame. Therefore, the bit 28 to bit 0 is also referred to as ID28, ID27, etc.
According to the known rule for inserting the stuff bits, a stuff bit is inserted into the CAN FD frame at the earliest after the bit ID25, that is to say when ID28-ID25=“0000”. If CAN FD frames beginning with ID28-ID25=“0000” or ID28-ID25=“0001” are sent, a Start of Frame bit erroneously detected by the receiver of the frame may have the effect that the identifier of the frame is falsified, but the CRC test does not detect this error. Since in the case of CAN FD stuff bits are included in the CRC generation, this error does not lead to a format error and is not detected. The frame is therefore accepted by the receiver as valid. Affected by this are 11-bit and 29-bit identifiers in the case of frames in the FD format (17-bit and 21-bit CRC).
The CRC weakness is caused by the initialization vector of the CRC generator. This is currently a zero vector “0 . . . 0”. This weakness can be eliminated by changing the initialization vector to for example “10 . . . 0” (final value only after further investigations). The problem here is however that two CAN FD implementations that use the same CRC generator, but with different initialization vectors, cannot communicate with one another. They would continually detect CRC errors and reject the frames received.
Frames in the classical CAN format are not affected by the problem, since with them the stuff bits are excluded from the CRC calculation.
The weakness of the CAN FD CRC only manifests itself in the following two cases:
Case 1) Transmitter Sends ID28-ID25=“0000”
The receiver does not detect the Start of Frame and therefore interprets ID28 as the Start of Frame. Consequently, on account of the stuff bit inserted by the transmitter after ID25, the first four identifier bits are falsified as ID28-ID25=“0001”; all the subsequent identifier bits are received correctly. The transmitter does not detect any error when reading back the Start of Frame from the bus.
Case 2) Transmitter Sends ID28-ID25=“0001”
The receiver sees a dominant bit in the bit time before the sent Start of Frame and interprets this disturbance as a Start of Frame. The receiver detects the Start of Frame sent by the transmitter as ID28. Consequently, the first four identifier bits are falsified as ID28-ID25=“0000”. The sent ID25=“1” is interpreted by the receiver as a stuff bit. All the subsequent identifier bits are received correctly. The transmitter does not detect a dominant bit in the bit time directly before its Start of Frame.
To sum up, Table 1 shows how, as a result of the effect described, the leading four identifier bits can be falsified on the way to the receiver, without the error being detected by the CRC test of the receiver.
TABLE 1SentReceivedID25ID27ID26ID25ID25ID27ID26ID250000→00010001→0000
In all other cases, a falsified identifier is detected by the CRC with a Hamming distance of 6. | {
"pile_set_name": "USPTO Backgrounds"
} |
The survival knife has become as important to the underwater demolition or "Seal" team member as his hands in carrying out his hazardous duties. He would never go on a mission without it. Military pilots and sportsmen also find the survival knife aptly named since its multiple uses all related to survival have caused it to earn its name.
Typically, the survival knife is an extremely high quality steel bladed fixed handle knife with, in addition to its cutting edge and point, two sets of serrations on the upper edge of the blade. A first set of serrations, each in the order of 1/8 inch in length is designed to provide a metal or wire cutting saw. Rearward of the first set of serrations are a series of rearward extending teeth of approximately 3/8 inch spacing and 1/4 quarter inch across. These last serrations or teeth when hardened provide a rugged wood saw capable of rapidly severing wooden obstructions.
The handle of survival knives often are round and hollow. The handle is often separated from the blade by a hand guard or quillon similar to fixed bladed knives through the centuries. The quillon may take many shapes but is designed to insure separation of the user's hand from the blade and to assure that any object contacted by the blade does not reach the user's hand. The end or pommel of the handle often will carry a ring for securing a lanyard which is often looped around the user's wrist to insure that the knife will not be lost if dropped. The survival knife is often carried in a sheath which may be worn on the belt but often strapped to the user's leg to be out of the way until needed. Sheaths for survival knives therefore usually have more than one form of attachment and usually have a belt strap at the top and a leg strap at the bottom to securely hold the sheath and survival knife to the thigh. Some have two pair of leg straps which hold the survival knife and sheath on the lower leg.
As capable as the conventional survival knife may be, as found, I felt that significent improvements could be made while maintaining all of the features which it already furnished. | {
"pile_set_name": "USPTO Backgrounds"
} |
Content transcoding is widely used in content delivery applications, such as video streaming applications, which can include video-on-demand, Cable television (TV) programming, live TV over the internet, accessing content by way of social media providers, etc. Content delivery applications often facilitate access to the same body of content but with different formats, compression ratios, frame dimensions, etc. As an example, watching a video program on a desktop computer will often be at a higher bitrate, larger frame size, and better resolution than watching the same video program on a mobile phone. In these types of situations, frequently, a high quality video stream is recorded and stored at a server. The high quality video stream then can be adapted to the output bit rates, temporal/spatial resolutions and video formats for delivery to different terminal devices and over different channels or carrier services. In transcoding, both accurate bit rate and a consistent visual quality are generally desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
A. FIELD OF THE INVENTION
The present invention relates to a plug-in electrical interconnect system and, in particular, to interconnect components used in the plug-in electrical interconnect system. Although the electrical interconnect system of the present invention is particularly suitable for use in connection with high-density systems, it may also be used with high-power systems or other systems.
B. DESCRIPTION OF THE RELATED ART
Electrical interconnect systems (including electronic interconnect systems) are used for interconnecting electrical and electronic systems and components. In general, electrical interconnect systems contain both a projection-type interconnect component, such as a conductive pin, and a receiving-type interconnect component, such as a conductive socket. In these types of electrical interconnect systems, electrical interconnection is accomplished by inserting the projection-type interconnect component into the receiving-type interconnect component. Such insertion brings the conductive portions of the projection-type and receiving-type interconnect components into contact with each other so that electrical signals may be transmitted through the interconnect components. In a typical interconnect system (e.g., the pin grid array of FIG. 29, discussed in detail below), a plurality of individual conductive pins 101 are positioned in a grid formation and a plurality of individual conductive sockets (not shown in FIG. 29) are arranged to receive the individual pins, with each pin and socket pair transmitting a different electrical signal.
High-density electrical interconnect systems are characterized by the inclusion of a large number of interconnect component contacts within a small area. By definition, high-density electrical interconnect systems take up less space and include shorter signal paths than lower-density interconnect systems. The short signal paths associated with high-density interconnect systems allow such systems to transmit electrical signals at higher speeds. In general, the higher the density of an electrical interconnect system, the better the system.
Various attempts have been made in the past at producing an electrical interconnect system having a suitably high density. One electrical interconnect system that has been proposed is shown in FIG. 1(a).
The electrical interconnect system of FIG. 1(a) is known as a post and box interconnect system. In the system of FIG. 1(a), the projection-type interconnect component is a conductive pin or post 101, and the receiving-type interconnect component is a box-shaped conductive socket 102. FIG. 1(b) is a top view of the interconnect system of FIG. 1(a) showing the post 101 received within the socket 102. As can be seen from FIG. 1(b), the inner walls of the socket 102 include sections 103 and 104 which protrude inwardly to allow a tight fit of the post 101 within the socket. FIGS. 1(a) and 1(b) are collectively referred to herein as "FIG. 1."
Another electrical interconnect system that has been proposed is illustrated in FIG. 2(a). The electrical interconnect system of FIG. 2(a) is known as a single beam interconnect system. In the system of FIG. 2(a), the projection-type interconnect component is a conductive pin or post 201, and the receiving-type interconnect component is a conductive, flexible beam 202. FIG. 2(b) is a top view of the interconnect system of FIG. 2(a) showing the post 201 positioned in contact with flexible beam 202. The flexible beam 202 is biased against the post 201 to maintain contact between the flexible beam and the post. FIGS. 2(a) and 2(b) are collectively referred to herein as "FIG. 2."
A third electrical interconnect system that has been proposed is shown in FIG. 3(a). The electrical interconnect system shown in FIG. 3(a) is known as an edge connector system. The projection-type interconnect component of the edge connector system includes an insulative printed wiring board 300 and conductive patterns 301 formed on the upper and/or lower surfaces of the printed wiring board. The receiving-type interconnect component of the edge connector system includes a set of upper and lower conductive fingers 302 between which the printed wiring board 300 may be inserted.
FIG. 3(b) is a side view of the system illustrated in FIG. 3(a) showing the printed wiring board 300 inserted between the upper and lower conductive fingers 302. When the printed wiring board 300 is inserted between the conductive fingers, each conductive pattern 301 contacts a corresponding conductive finger 302 so that signals may be transmitted between the conductive patterns and the conductive fingers. FIGS. 3(a) and 3(b) are collectively referred to herein as "FIG. 3."
A fourth electrical interconnect system that has been proposed is shown in FIG. 4. The electrical interconnect system shown in FIG. 4 is known as a pin and socket interconnect system. In the system of FIG. 4, the projection-type interconnect component is a conductive, stamped pin 401, and the receiving-type interconnect component is a conductive, slotted socket 402. The socket 402 is typically mounted within a through-hole formed in a printed wiring board. The pin 401 is oversized as compared to the space within the socket 402. The size differential between the pin 401 and the space within the socket 402 is intended to allow the pin to fit tightly within the socket.
The interconnect systems of FIGS. 1 through 4 are deficient for a variety of reasons. For example, the interconnect components in these systems generally include plating on each external and internal surface to ensure adequate electrical contact between the projection-type and receiving-type components. Since plating is typically accomplished using gold or other expensive metals, the systems of FIGS. 1 through 4 can be quite costly to manufacture.
Performance-wise, the edge connector system of FIG. 3 is subject to capacitance problems and electromagnetic interference. Likewise, the pin and socket system of FIG. 4 requires a high insertion force to insert the pin 401 within the slotted socket 402, and will not fit together properly in the absence of nearperfect tolerancing.
The main problem associated with the systems of FIGS. 1 and 2 (when arranged, for example, as in FIG. 29), the system of FIG. 3 (when arranged, for example, in a pair of rows), and the system of FIG. 4 (when arranged, for example, as in FIG. 3(a)) is that these systems are not high enough in density to meet the needs of existing and/or future semiconductor and computer technology. Interconnect system density has already failed to keep pace with semiconductor technology, and as computer and microprocessor speeds continue to climb, with space efficiency becoming increasingly important, electrical interconnect systems having even higher densities will be required. The electrical interconnect systems discussed above fall short of current and contemplated interconnect density requirements. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to heated mirrors and their manufacture.
The light reflecting properties of mirrors are generally provided by a layer of highly reflecting metal, especially silver, aluminium or chromium, applied to a glass or plastics substrate; copper layers are sometimes used as an alternative, but are generally less acceptable because of the strong red tint of the reflected light.
Silver coatings are generally applied to preformed glass plates, in the cold, by wet chemical methods in which a solution of silver salt is applied to the glass surface and reacted with a reducing agent which reduces silver ions present to silver metal which deposits on the glass surface. The silver used is not very durable in use and in practice requires protection by other layers, and these methods are generally unsuitable for application to glass on the production line on which it is formed so that a separate "silvering" line is required to produce the silvered glass.
Aluminium coatings are difficult to apply by chemical methods because of the strongly reducing nature of aluminium metal, and aluminium mirrors are generally produced by deposition methods carried out at low pressure e.g. by sputtering. Such low pressure methods are essentially batch processes and, like the wet chemical methods used for deposition of silver mirrors, are generally unsuitable for on-line application on the production line on which the glass is made.
GB 2248853A discloses a method of coating glass with aluminium to form a mirror. A solution of an alane amine adduct of aluminium is formed and the liquid is deposited onto heated glass. The adduct decomposes to form an aluminium coating. Although it is stated that it is envisaged that the invention may be used in conjunction with float glass production, there is no exemplification of such a use. It is believed that substantial technical problems could be encountered in simply introducing the disclosed aluminium compounds into a float glass line.
Silicon layers have also been used to produce reflecting layers (which, like silver and aluminium layers, are substantially neutral in reflection colour) on architectural glazing for aesthetic and solar control purposes. GB 1507465, 1507996 and 1573154 relate to a continuous chemical vapour deposition method for producing float glass having such a silicon layer, and U.S. Pat. No. 4,661,381 describes a development of that method. However, such silicon layers do not provide the high reflections commonly required in mirrors. Thus REFLECTAFLOAT (trade mark) glass, commercially available from Pilkington Glass Limited of St. Helens, England, has a reflection of about 50%, and MIRROPANE EP (trade mark) commercially available from Libbey-Owens-Ford Co. has a reflection of about 60%.
None of the above technology is currently suitable for the application of highly reflecting coatings to glass during the glass production process to provide a coated glass substrate with a light reflection of over 70%, and preferably over 80%.
Mirrors are often used in situations, such as in domestic bathrooms or as side view automotive mirrors, where water vapour can condense out on the mirror surface thereby to steam or mist up the mirror or water or ice can be deposited on the mirror. It is known to provide silvered mirrors having disposed behind the mirror a heating assembly comprising a heating element, assembled in or on an insulating layer. An example of such a known arrangement is a heating wire assembled in or on a plastics film which is adhered onto the rearmost paint layers of the mirror, the heating element being connected to a source of electrical power. Such a heating assembly is relatively complicated and can be expensive to manufacture.
The present invention aims to provide an improved heated mirror and manufacturing method therefor.
On a completely different scale, it has been proposed in GB 1262163, to produce very highly reflecting (greater than 90%) "cold light" mirrors comprising silicon layers for use, for example in cinema projectors, for separating heat radiation from visible light. Such cold light mirrors are produced by vacuum deposition on thin bases, typically glass substrates 3 mm thick or less, and are used without any backing paint to minimise build up of heat in the glass. GB 1262163 refers, in discussing the prior art, to a known cold light mirror comprising a "purest silicon layer" covered by four to six alternate layers of silicon oxide and tantalum oxide or titanium oxide but concludes that, for a satisfactory product, substantially more layers would be required. It therefore proposes to achieve the very high reflection (greater than 90%) required in a different way using several silicon layers as the individual layers of high refractive index of a multi-layer interference system.
Much more recently, it has been proposed by J. Stone and L. W. Stulz (Applied Optics, February 1990, Volume 29, No. 4) to use quarter wavelength stacks of silicon and silica layers for mirrors in the spectral region between 1.0 and 1.6 microns (i.e. within the infra red). However, the authors observe that silicon cannot be used at wavelengths below about 1 micron (and thus not in the visible region of the spectrum) due to its high absorption at such wavelengths. Stone and Stulz refer to the deposition of Si/SiO.sub.2 by low pressure methods such as reactive sputtering and electron beam evaporation.
Although GB 1262163 and the Stone and Stulz paper are discussed herein, the technology, in particular the production process described therein, is not suitable for the production of on line glass mirrors which essentially requires processes suitable for use at atmospheric pressure. Accordingly, these references would not be considered by the person skilled in the art as being in any way relevant to the production of on-line mirrors to compete with the conventional "off-line" mirrors discussed above. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Embodiments relate to the design of a memory controller.
2. Background
A memory controller is an interface between an external memory and a processing core, e.g., a central processing unit (CPU). A memory controller receives a memory access request from the CPU, which specifies the logical address of a data unit in the external memory. A “data unit” refers to smallest addressable unit of data in the memory, e.g., a byte, a word, or a double-word. The memory controller scrambles, or maps, the logical address bits into its physical address pins connecting to the memory.
As the memory controller typically has fewer physical address pins than the number of logical address bits, output from the physical address pins is time-multiplexed. In a typical synchronous dynamic random access memory (SDRAM) bus protocol, during a first time phase (which may take one or more clock periods) the memory controller delivers a row address. During a later time phase the memory controller delivers a column address. Typically, column address bits are the least-significant logical address bits received from the CPU. Bank address bits and row address bits are the more-significant logical address bits.
Different memories may have different sizes, e.g., row size, data width, or memory density. The term “data width” refers to the size of a data unit. The term “row size” refers to the number of bits in a row, which is equal to the data width multiplied by the number of columns. The term “memory density” refers to the total number of bits in the memory and is synonymous to “total memory size.” When the row size changes but data width remains the same, the number of columns changes. Thus, the number of column address bits changes and the positions of the row address bits are shifted to different positions in the logical address. As a result, when a memory controller is connected to a memory with a different row size, row address bits are routed onto different physical address pins. Similar changes occur when the data width of the memory varies.
Existing double data rate (DDR) SDRAM memory controllers handle limited row sizes for limited memory densities. The existing memory controllers are allowed to scramble many logical address bits arbitrarily as needed to simplify their design. However, the existing memory controllers cannot easily handle a wide range of memory sizes without greatly increasing their complexity.
Moreover, flash memory introduces new row sizes and may cause more scrambling scenarios to be built into the design of the memory controller. The variety of the scrambling scenarios would threaten to inflate the complexity of the memory controller's address output multiplexer. Due to the blocking and partitioning of memory cells in the flash memory, flash memory restricts address scrambling so that the memory controllers are prohibited from scrambling many logical address bits arbitrarily as was done in the past. The restriction thus eliminates one of the existing methods of simplifying the memory controller design.
To accommodate the different memory sizes, the address output multiplexer of the memory controller needs to be designed with configurable flexibility to increase the variability of memories with which the memory controller is compatible. The variability herein refers to dimensional parameters of the memory. The term “dimensional parameter” refers to the dimensions defining a memory including, but not limited to, row size, data width, and memory density. An increase in a memory dimension, e.g., row size, is usually associated with increased performance and increased cost. Part of the increase in cost comes from the increased complexity of the memory controller design. Thus, it is an objective of the circuit designer to accommodate a diverse range of memory dimensions without adding complexity to the address output multiplexers in the memory controller. | {
"pile_set_name": "USPTO Backgrounds"
} |
Formation coring is a well-known process in the oil and gas industry. In conventional coring operations, a core barrel assembly is used to cut a cylindrical core from the subterranean formation and to transport the core to the surface for analysis. Analysis of the core can reveal invaluable data concerning subsurface geological formations—including parameters such as permeability, porosity, and fluid saturation—that are useful in the exploration for and production of petroleum, natural gas, and minerals. Such data may also be useful for construction site evaluation and in quarrying operations.
A conventional core barrel assembly typically includes an outer barrel having, at a bottom end, a core bit adapted to cut the cylindrical core and to receive the core in a central opening, or throat. The opposing end of the outer barrel is attached to the end of a drill string, which conventionally comprises a plurality of tubular sections that extends to the surface. Located within, and releasably attached to, the outer barrel is an inner barrel assembly having an inner tube configured for retaining the core. The inner barrel assembly further includes a core shoe disposed at one end of the inner tube adjacent the throat of the core bit. The core shoe is configured to receive the core as it enters the throat and to guide the core into the inner tube. Both the inner tube and core shoe are suspended within the outer barrel with structure permitting the core bit and outer barrel to rotate freely with respect to the inner tube and core shoe, which may remain substantially rotationally stationary. Thus, as the core is cut—by application of weight to the core bit through the outer barrel and drill string in conjunction with rotation of these components—the core will traverse the throat of the core bit to eventually reach the core shoe, which accepts the core and guides it into the inner tube assembly where the core is retained until transported to the surface for examination.
Conventional core bits are generally comprised of a bit body having an annular face surface on a bottom end. The opposing end of the core bit is configured, e.g., by threads, for connection to the outer barrel. Located at the center of the face surface is the throat, which may extend into a substantially hollow cylindrical cavity formed in the bit body. Different types of core bits are known in the industry, such as, by way of non-limiting example, diamond bits, including polycrystalline diamond compact (PDC) bits as well as impregnated bits. In PDC bits, for example, the face surface typically includes a plurality of cutters arranged in a selected pattern. The pattern of cutters includes at least one outside gage cutter disposed near the periphery of the face surface that determines the diameter of the bore hole drilled in the formation during a coring operation. The pattern of cutters also includes at least one inside gage cutter disposed near the throat that determines the outside diameter of the core being cut. It is to be understood, however, that the scope of the present disclosure is not limited to PDC bits, but encompasses other core bit types as well.
During coring operations, a drilling fluid is usually circulated through the core barrel assembly to lubricate and cool the cutting structure of the bit face, such as the plurality of cutters disposed on the face surface of the core bit, and to remove formation cuttings from the bit face surface to be transported upwardly to the surface through the annulus defined between the drill string and the wall of the wellbore. A typical drilling fluid, also termed drilling “mud,” may be a hydrocarbon, a water-based (saltwater or freshwater) or synthetic-based fluid in which fine-grained mineral matter may be suspended, or any other fluid suitable to convey the downhole formation cuttings to the surface. Some core bits include one or more ports or nozzles positioned to deliver drilling fluid to the face surface. Generally, a port includes a port outlet, or “face discharge outlet,” which may optionally comprise a nozzle, at the face surface in fluid communication with a face discharge channel. The face discharge channel extends through the bit body and terminates at a face discharge channel inlet. Each face discharge channel inlet is in fluid communication with an upper annular region formed between the bit body and the inner tube and core shoe. Drilling fluid received from the drill string under pressure is circulated into the upper annular region to the face discharge channel inlet of each face discharge channel to draw drilling fluid from the upper annular region. Drilling fluid then flows through each face discharge channel and discharges at its associated face discharge port to lubricate and cool the plurality of cutters on the face surface and to remove formation cuttings as noted above.
In conventional core barrel assemblies, a narrow annulus exists in the region between the inside diameter of the bit body and the outside diameter of the core shoe. The narrow annulus is essentially an extension of the upper annular region and, accordingly, the narrow annulus is in fluid communication with the upper annular region. Thus, in addition to flowing into the face discharge channel inlets, the pressurized drilling fluid circulating into the upper annular region also flows into the narrow annulus between the bit body and core shoe, also referred to as a “throat discharge channel.” The location at which drilling fluid bypasses the face discharge channel inlets and continues into the throat discharge channel may be referred to as the “flow split.” The throat discharge channel terminates at the entrance to the core shoe proximate the face of the core bit and any drilling fluid flowing within its boundaries is exhausted proximate the throat of the core bit. As a result, drilling fluid flowing from the throat discharge channel will contact the exterior surface of the core being cut as the core traverses the throat and enters the core shoe.
Conventional core barrel assemblies are prone to damage core samples in various ways during operation. For example, core barrel assemblies may be prone to damage core samples by exposing the core to the flow of drilling fluid, particularly if the flow velocity is relatively high and the area of exposure is large. For example, a throat discharge channel through which drilling fluid is discharged with high velocity in the region where the core is exposed to the drilling fluid can create significant problems during coring operations, especially when coring in relatively soft to medium hard formations, or in unconsolidated formations. Drilling fluids discharged from the throat discharge channel enter an unprotected interval where no structure stands between such drilling fluids and the outer surface of the core as the core traverses the throat and enters the core shoe. Such drilling fluid can also invade and contaminate the core itself. For soft or unconsolidated formations, these drilling fluids invading the core may wash away, or otherwise severely disturb, the material of the core. The core may be so badly damaged by the drilling fluid invasion that standard tests for permeability, porosity, and other characteristics produce unreliable results, or cannot be performed at all. The severity of the negative impact of the drilling fluid on the core increases with the velocity of the drilling fluid in the unprotected interval. Fluid invasion of unconsolidated or fragmented cores is a matter of great concern in the petroleum industry as many hydrocarbon-producing formations, such as sand and limestone, are of the unconsolidated type. For harder formations, drilling fluid coming into contact with the core may still penetrate the core, contaminating the core and making it difficult to obtain reliable test data. Thus, limiting fluid invasion of the core can greatly improve core quality and recoverability while yielding a more reliable characterization of the drilled formation.
The problems associated with fluid invasion of core samples described above may be a result, at least in part, of the material comprising the bit body of a core barrel assembly. Conventional core bits often comprise hard particulate materials (e.g., tungsten carbide) dispersed in a metal matrix (commonly referred to as “metal matrix bits”). Metal matrix bits have a highly robust design and construction necessitated by the severe mechanical and chemical environments in which the core bit must operate. However, the dimensional tolerances of metal matrix core bits (including inner surface diameter, gap width of the throat discharge channel, TFA of the face discharge channels and depth of the junk slots) are limited by the strength of the metal matrix material. In such metal matrix core bits, portions of the bit body must exceed a minimal thickness necessary to maintain structural integrity and inhibit the formation of cracks or microfractures therein. | {
"pile_set_name": "USPTO Backgrounds"
} |
Technical Field
Embodiments of the present disclosure relate generally to load harmonic suppression. More specifically, embodiments relate to systems and methods for load harmonic suppression in uninterruptable power supplies (UPS).
Background Discussion
UPSs are generally constructed to isolate a load from disturbances in an external power source (e.g., a power grid). Various parameters may be measured to analyze the quality of the power output by the UPS to the load. For example, the total harmonic distortion (THD) of the output voltage waveform by the UPS may be determined. The THD parameter of a waveform compares the magnitude of the harmonics with the magnitude of the fundamental frequency present in the waveform. The harmonics are signals present in the waveform at integer multiple frequencies of the fundamental frequency. A large THD value indicates that the waveform is distorted while a low THD value indicates that the waveform is undistorted.
The voltage waveform output by a UPS may become distorted due to the characteristics of the load being supplied. In particular, switch-mode power supply (SMPS) loads draw current with a substantial amount of harmonics. SMPSs variably draw current while performing voltage regulation and subsequently distort the voltage waveform. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an inertial sensor.
2. Background Art
An inertial sensor manufactured by a machining technique of micro electro mechanical systems (MEMS) detects displacement of a movable part in order to measure an inertial force. The inertial sensor can measure an inertial force such as acceleration, an angular velocity, or angular acceleration by converting the displacement into an electric signal and processing the electric signal with an electronic circuit. In particular, a capacitance type inertial sensor detects the displacement as a change in the capacitance between a fixed detection electrode and a movable electrode. In the following explanation, a direction which is orthogonal to a principal plane of a substrate layer in which an elastic beam and a movable part are to be machined is referred to as an out-of-plane direction. For example, acceleration acting in the out-of-plane direction is referred to as out-of-plane acceleration.
In order to detect the acceleration in the out-of-plane direction, it is necessary to shift the center of gravity of the movable part from a rotation axis. An example of an inertial sensor having such a movable part is disclosed in JP-T-2010-536036 (the term “JP-T” as used herein means a published Japanese translation of a PCT patent application) (Patent Literature 1). In FIG. 1 of Patent Literature 1, lengths from the rotation axis to respective left and right ends of the movable part are set to different lengths. As a result, the center of gravity of the movable part is shifted from the rotation axis. On the other hand, for example, in FIG. 3 of Patent Literature 1, a part of the movable part is removed asymmetrically with respect to the rotation axis by etching to open a hole (the opened hole is referred to as “aperture”) to shift the center of gravity from the rotation axis while keeping the lengths from the rotation axis to the respective left and right ends of the movable part the same. In both the configurations of Patent Literature 1, an electrode is provided under the movable part. JP-T-2008-544243 (Patent Literature 2) is a literature similar to Patent Literature 1. For example, FIG. 3 discloses the configuration in which apart of the movable part is removed asymmetrically with respect to the rotation axis by etching while keeping the lengths from the rotation axis to the respective left and right ends of the movable part the same.
Another example of the acceleration sensor that detects acceleration in the out-of-plane direction is described in JP-A-2000-19198 (Patent Literature 3). Patent Literature 3 discloses a technique for providing a plurality of sub-supporting supports asymmetrically with respect to a rotation axis and suppressing an influence due to distortion of upper and lower substrates of a movable part. However, in Patent Literature 3, the movable part is configured asymmetrically with respect to the rotation axis. It is unclear how the center of gravity is shifted from the rotation axis.
As another related art, in recent years, a manufacturing process employing a transfer mold process for cost reduction in packaging an inertial sensor attracts attention. The transfer mold process is a manufacturing process explained below. First, an MEMS element, an LSI electronic circuit, and a lead frame are set in a mold and, then, warmed resin is filled in the mold at high pressure of about 5 to 20 MPa. The resin is cooled and solidifies to be a mold resin package for fixing the MEMS element, the LSI electronic circuit, and a leader line. The transfer mold process has higher mass productivity than a process employing a ceramic package in the past and is expected to be an effective process in reducing manufacturing costs for the inertial sensor.
In the MEMS element of the inertial sensor, the movable part is encapsulated in a cavity at the atmospheric pressure or in a vacuum. If the transfer mold process is applied to such an MEMS element, when the resin is filled in the mold at high pressure, the high pressure is applied to the MEMS element as well. Then, since a difference between internal and external pressures of the element is large, the cavity of the element is deformed. The coefficient of thermal expansion of a material (silicon, etc.) forming the MEMS element is different from the coefficient of thermal expansion of the resin. Therefore, the element is deformed when heat is absorbed and emitted in the transfer mold process. Further, the formed mold resin package has a characteristic to expand by absorbing heat and humidity and contract by emitting heat and drying. Therefore, the MEMS element is deformed depending on fluctuation in an environment in which the mold resin package is set.
As explained above, in the inertial sensor employing the transfer mold process, various factors of deformation are conceivable. Problems explained below occur because of the deformation.
Asymmetrical Distortion
First, a problem of asymmetrical distortion is explained.
When the configuration in which the lengths from the rotation axis to the ends of the movable part are changed (FIG. 1 of Patent Literature 1) and the configuration in which a part of the movable part is asymmetrically removed (FIG. 3 of Patent Literature 1) are compared, the inertial sensor having the former configuration has higher sensitivity under the same conditions. This is because, whereas, in the latter configuration, a portion where the aperture is formed in the movable part is a useless region not contributing to detection of an inertial amount, in the former configuration, the useless region is absent in the movable part. Further, in general, an effect of shifting the center of gravity is larger when the lengths to the ends of the movable part are changed to shift the center of gravity than when the aperture is formed to shift the center of gravity. Therefore, in the former configuration, it is possible to more largely change the position of the movable part having the same mass. As a result, the inertial amount can be detected at higher sensitivity.
A detection electrode opposed to the movable part is desirably provided on a substrate above the movable part. This is because a change is the capacitance in the MEMS element is extracted by wire bonding and transmitted to an LSI, when the detection electrode is provided above the movable part, it is easier to draw around the leader lines than when the detection electrode is provided below the movable part.
However, when a process for applying high pressure such as the transfer mold process is applied to an inertial sensor that satisfies such demands, asymmetrical distortion occurs in the detection electrode. The asymmetrical distortion is explained with reference to FIGS. 7 and 8. In FIG. 7, the lengths from the rotation axis to the ends of the movable part are set different on the left and right and the lengths from the rotation axis to cavity ends are also set different on the left and right. Detection electrodes 505a and 505b are respectively provided above a movable part 504.
When high pressure is applied to the MEMS element having such a configuration by the transfer mold process, the environment such as temperature and pressure fluctuates. Then, as shown in FIG. 8, upper substrates set in contact with the mold resin package show deformations different from each other. The detection electrodes 505a and 505b provided above the cavity respectively show different deformations. As a result, the capacitances between the detection electrodes and a movable electrode show changes different from each other. When the capacitances are detected by differential detection shown in FIG. 6, an offset occurs. This causes deterioration in sensor sensitivity. All the patent literatures neither describe nor indicate the problem of the asymmetrical distortion and means for solving the problem.
Distortion Due to High Pressure
Second, distortion due to high pressure is explained. In the transfer mold process, when the resin is filled, high pressure of about 5 to 20 MPa is applied to the MEMS element. In such a high-pressure process, a change in the detection electrode due to the distortion of the MEMS element is also large compared with the process in the past. Therefore, even if the inertial sensor is configured to be capable of reducing the influence of a relative change in the detection electrode due to the asymmetrical distortion, it is desirable that the inertial sensor can reduce an absolute change in the detection electrode as well. A support provided as in Patent Literature 3 is one of configurations for reducing such an absolute change. However, it is more suitable for the transfer mold process if the absolute change can be reduced by the configuration of the movable part as well. However, not only Patent Literature 3 but also all the patent literatures neither describe nor indicate such a configuration of the movable part. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a method for processing an ethylene-vinyl alcohol copolymer (EVOH) solution. More precisely, it relates to a method for processing an EVOH solution, which comprises feeding the solution into a column vessel selected from a plate column and a packed column to thereby substitute a part of the solvent in the solution with water in the column vessel.
2. Discussion of the Background
As having good oxygen gas barrier properties, EVOH is used as a starting material for producing packaging films and bottles for various foods. One general method of producing EVOH comprises copolymerizing ethylene with vinyl acetate to give an ethylene-vinyl acetate copolymer followed by saponifying the ethylene-vinyl acetate copolymer in a solvent of methanol in the presence of an alkali catalyst. In this, the saponification is effected under a predetermined pressure and at a predetermined temperature, and the saponified product is obtained in the form of a methanol solution thereof. When a part of methanol in the methanol solution of the saponified product is substituted with water, then the solution can be handled with ease even under atmospheric pressure at a relatively low temperature, and its stability is improved, and, in addition, it can be coagulated into strands. With that, high-quality EVOH products are produced efficiently.
For post-treating the alcohol solution of EVOH obtained through saponification, for example, Japanese Patent Publication No. 38634/1972 (U.S. Pat. No. 3,847,845) discloses a method of producing EVOH pellets which comprises adding water to an optionally-concentrated methanol solution of EVOH to such a degree that no EVOH deposit is formed therein to prepare a methanol-water mixed solution of EVOH that contains from 15 to 45% by weight of EVOH, then extruding it into strands in water or in a methanol-water mixed solution having a lower methanol concentration than the EVOH solution, at 50xc2x0 C. or lower, and thereafter cutting the strands. It is stated therein that the methanol concentration in the methanol-water mixed solution in the coagulating bath preferably is between 10 and 50% by weight. It is further stated therein that the pellets thus obtained are porous and can be readily washed with water to remove the saponification catalyst residue and that the pellets are easy to handle in the subsequent washing and drying step.
For substituting a large amount of methanol in a methanol solution of EVOH with water, a large amount of water, relative to the amount of methanol in the solution, must be added to the solution. However, the solubility of EVOH in methanol and in water is limited, and depends on the temperature and pressure. Therefore, if too much water is added to the methanol solution of EVOH, the solution will gel. On the other hand, if the amount of water added to the solution is too small, EVOH could not be in the form of a solution thereof, and methanol in the solution could not be substituted with water. For substituting a part of methanol in a methanol solution of EVOH with water, simple distillation or flushing is generally employed.
Regarding the process of adding water to a methanol solution of the EVOH after saponification, for example, demonstrated in Example 1 of Japanese Patent Laid-Open No. 90927/1999 (EP 937,557) is a method of producing a completely transparent, uniform methanol/water solution of EVOH, which comprises adding an aqueous methanol solution having a water content of 62.5% by weight to a methanol solution of EVOH having an EVOH content of 30% by weight, under an azeotropic condition at 100xc2x0 C. to 110xc2x0 C. under a pressure of 3 kg/cm2 G so as to remove methanol until the EVOH content of the resulting the EVOH solution increases up to 40% by weight. However, EVOH often gels while processed according to the method, and therefore could not be continuously processed according to it. For these reasons, the method is not advantageous for industrially processing EVOH.
If a part of the solvent in an EVOH solution can be continuously substituted with water without gelling, the method is advantageous for industrially processing EVOH. Accordingly, the object of the present invention is to provide a method for processing an EVOH solution capable of producing a high-concentration EVOH solution by substituting a part of the solvent in the EVOH solution with water without gelling.
We, the present inventors have assiduously studied, and have found that, when a part of the solvent in an ethylene-vinyl alcohol copolymer solution is substituted with water in a column vessel, then the above-mentioned object can be attained. On the basis of this finding, we have completed the invention. Specifically, the invention is a method for processing an ethylene-vinyl alcohol copolymer solution, which comprises feeding the solution into a column vessel selected from a plate column and a packed column to thereby substitute a part of the solvent in the solution with water in the column vessel.
Preferably, the column vessel is a plate column with at least two tiers therein or a packed column of which the height is equivalent to that of the plate column. Also preferably, a solvent-water mixed vapor is fed into the plate column or the packed column through its lower part, and the ethylene-vinyl alcohol copolymer solution is fed thereinto through a part higher than the part through which the mixed vapor is fed into the column. More preferably, the part through which the ethylene-vinyl alcohol copolymer solution is fed into the column vessel is at the 2nd to the 15th tier from the bottom of a plate column, or at a height of a packed column equivalent to that part of the plate column.
Also preferably, the ethylene-vinyl alcohol copolymer concentration in the solution to be fed into the column vessel is between 15 and 50% by weight, more preferably between 25 and 40% by weight. Also preferably, the ratio by weight of the amount of the ethylene-vinyl alcohol copolymer solution to be fed into the column vessel to that of the mixed vapor thereinto, i.e., solution/mixed vapor, is between 100/400 and 100/8. More preferably, the water content of the mixed vapor is between 20 and 70% by weight.
Also preferably, the ethylene content of the ethylene-vinyl alcohol copolymer is between 3 and 70 mol %. Also preferably, the solvent in the ethylene-vinyl alcohol copolymer solution is an alcohol having a boiling point of not higher than 130xc2x0 C., more preferably methanol.
In general, the ethylene-vinyl alcohol copolymer for use in the invention is obtained by saponifying an ethylene-vinyl ester copolymer prepared through copolymerization of ethylene with a vinyl ester of a fatty acid such as vinyl acetate, in an organic solvent containing an alcohol in the presence of a saponification catalyst. The vinyl ester of a fatty acid includes, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate and vinyl stearate. From the viewpoint of industrial advantages, saponified products of ethylene-vinyl acetate copolymer are preferred for use in the invention.
The ethylene content of the ethylene-vinyl alcohol copolymer preferably is between 3 and 70 mol %. If the ethylene content is smaller than 3 mol %, the melt moldability of the copolymer is often poor. More preferably, the ethylene content is at least 20 mol %, even more preferably at least 30 mol %. On the other hand, if the ethylene content is larger than 70 mol %, the gas barrier properties of the copolymer are often not good. More preferably, the ethylene content is at most 60 mol %, even more preferably at most 50 mol %. The degree of saponification is preferably at least 90 mol % for ensuring better gas barrier properties of the products. More preferably, the degree of saponification is at least 98 mol %, even more preferably at least 99 mol %.
The ethylene-vinyl alcohol copolymer may be further copolymerized with other comonomers not interfering with the effect of the invention. The comonomers include, for example, unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, itaconic acid and maleic anhydride and their mono or di-alkyl esters; nitrites such as (meth)acrylonitrile; amides such as (meth)acrylamide; olefinsulfonic acids such as ethylenesulfonic acid and (meth)allylsulfonic acid, and their salts; alkyl vinyl ethers, polyoxyalkyl allyl ethers, allyl esters, vinyl ketones, N-methylpyrrolidone, vinylidene chloride, vinylidene fluoride, oxyalkylene-containing unsaturated vinyl monomers, and vinylalkoxysilanes.
The most characteristic feature of the method for processing an ethylene-vinyl alcohol copolymer solution of the invention is that the method is effected in a column vessel selected from a plate column and a packed column. The plate column includes, for example, porous plate columns and bubble-cap towers that are generally used for distillation. The packed column includes, for example, those filled with various fillers such as raschig rings that are used for distillation or absorption. Preferably, the plate column has at least two tiers. Also preferably, the packed column has a height equivalent to that of the plate column. The number of tiers in the plate column referred to herein is the actual number thereof; and the height of the packed column which is equivalent to that of the plate column is obtained by multiplying the number of transfer units in the packed column by the height of transfer unit. The material of the columns is not specifically limited, but, in general, preferred are stainless columns in view of their corrosion resistance.
For substituting the solvent in an ethylene-vinyl alcohol copolymer solution with water in the invention, the solution and a solvent-water mixed vapor are fed into the column vessel as above. In this method, it is desirable that the solvent-water mixed vapor is fed into the plate column or the packed column through its lower part and the ethylene-vinyl alcohol copolymer solution is fed thereinto through a part higher than the part through which the mixed vapor is fed into the column. In that manner, the two are contacted with each other in countercurrent flow, therefore enabling efficient substitution of the solvent in the copolymer solution with water. The lower part of the column is meant to indicate the part of about 1/3 thereof from the lowermost tier or the bottom of the column. Preferably, the solvent-water mixed vapor is fed into the column at its lowermost tier. Where a plate column having a large number of tiers therein or a packed column of which the height is equivalent to that of the plate column is used, the ethylene-vinyl alcohol copolymer solution is fed thereinto preferably at the 2nd to the 15th tier from the bottom of the plate column, more preferably at the 4th to 11th tier from the bottom thereof, or at a height of the packed column equivalent to that part of the plate column.
Preferably, the ethylene-vinyl alcohol copolymer concentration in the ethylene-vinyl alcohol copolymer solution to be fed into the column vessel is between 15 and 50% by weight for carrying out the method of the invention on an industrial scale. If the copolymer concentration is smaller than 15% by weight, the productivity of the method will be low and the production costs thereof will increase. More preferably, the copolymer concentration is at least 20% by weight, even more preferably at least 25% by weight. If, however, the copolymer concentration is higher than 50% by weight, the copolymer will often gel. More preferably, the copolymer concentration is at most 40% by weight, even more preferably at most 35% by weight.
Also preferably, the ratio by weight of the amount of the ethylene-vinyl alcohol copolymer solution to be fed into the column vessel to that of the solvent-water mixed vapor thereinto, solution/mixed vapor, is between 100/400 and 100/8, as it ensures better results. If the ratio is smaller than 100/400, the composition and the concentration of the copolymer solution will vary rapidly, and, as a result, the copolymer solution will gel at the site at which the mixed vapor is fed into the column vessel. On the other hand, if the ratio is larger than 100/8, the amount of water in the mixed vapor will have to be increased to ensure a good amount of the copolymer solution to be processed, and, as a result, the copolymer solution will also gel at the site at which the mixed vapor is fed into the column vessel.
Also preferably, the water content of the mixed vapor is between 20 and 70% by weight. If it is smaller than 20% by weight, the amount of the mixed vapor to be fed into the column vessel will have to be increased in order to ensure a good amount of the copolymer solution to be processed, but it will increase the production costs. On the other hand, if the water content is larger than 70% by weight, the composition of the copolymer solution will vary rapidly, and, as a result, the copolymer solution will gel at the site at which the mixed vapor is fed into the column vessel. More preferably, the water content of the mixed vapor is at most 60% by weight.
The solvent for use in the invention is preferably an alcohol having a boiling point of not higher than 130xc2x0 C. More preferably, the boiling point is not higher than 100xc2x0 C. The alcohol includes, for example, methanol, ethanol, propanol and butanol. Above all, preferred is methanol, as it is easily available and inexpensive, and has a low boiling point and is therefore easy to handle.
Where methanol is used as the solvent in the method of the invention and where an ethylene-vinyl alcohol copolymer solution having a concentration of from 25 to 35% by weight is fed into a plate column at the 4th to 11th tier from its bottom or into a packed column at a height equivalent to that part of the plate column, the ratio by weight, X, of the amount of the ethylene-vinyl alcohol copolymer solution to be fed into the column vessel to that of the solvent-water mixed vapor thereinto, solution/mixed vapor, preferably is within a range of (xe2x88x92147.3/X)+103.7 less than Y less than (xe2x88x9264.5/X)+128 with 20xe2x89xa6Yxe2x89xa670, in which Y (wt. %) indicates the water content of the mixed vapor, as it ensures better results. More preferably, Yxe2x89xa660.
For processing an ethylene-vinyl alcohol copolymer solution in a plate column or a packed column according to the method of the invention, a solvent-water mixed vapor is fed into the column through its lower part while the ethylene-vinyl alcohol copolymer solution is fed thereinto through a part higher than the part through which the mixed vapor is fed into the column, whereby the ethylene-vinyl alcohol copolymer solution is contacted with the mixed vapor in countercurrent flow in the column so as to substitute a part of the solvent in the ethylene-vinyl alcohol copolymer solution with water. In this process, a mixture of the solvent and water is removed from the column through its top, and a paste of the ethylene-vinyl alcohol copolymer solution that comprises the copolymer, water and the solvent is taken out of the column through its bottom. The solvent-water mixture thus led out of the column through its top may be purified and recycled, if desired. The pressure and the temperature in the system may vary, depending on the type of the alcohol used. In general, however, the pressure may fall between 1 and 5 kg/cm2 or so, and the temperature may fall between 40xc2x0 C. and 160xc2x0 C. or so. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to an examining apparatus, and more particularly, to a soldering appearance inspection apparatus for automatically examining whether or not lead wires are properly soldered onto soldering portions of a printed circuit board or the like.
Recently, there have been proposed various kinds of soldering appearance inspection apparatuses for the purpose as described above. The conventional inspection apparatus for discriminating good products by obtaining a three-dimensional shape of a soldered portion by a light ray cutting system as disclosed, for example, in Japanese Patent Laid-Open Publication Tokkaisho No. 63-196980, has been so arranged to effect the judgement by comparing a histogram in dark/light image of the solder and its binary coded image over a predetermined threshold value, with those of a good product. However, the above known arrangement requires a long processing time, while a photo-detector having a large dynamic range as referred to therein is necessary, and thus, this apparatus is not suitable for practical applications. There has also been conventionally proposed in Japanese Patent Laid-Open Publication Tokkaisho No. 64-68606, an inspection apparatus for judging a quality of soldering through utilization of the fact that, upon projection of a concentric multi-circular pattern light onto a soldered portion, the multi-circular pattern image is distorted when the configuration of the soldered portion is abnormal. Another known apparatus disclosed, for example, in Japanese Patent Laid-Open Publication Tokkaisho No. 64-73207 is so arranged that by once projecting ring-shaped pattern light onto a printed circuit board, a judgement is made as to whether or not the solder configuration is good by a distance between a high brightness portion formed by reflection of its indirect light on a soldered face and a lead wire.
However, in the conventional soldering appearance inspection apparatuses as referred to above, although the solder configurations may be compared with those on a good printed circuit board in the case where scattering in the sizes and positions of soldered portions and lead wires to be examined is small, it has been difficult to inspect soldering appearance of a printed circuit board in which positions and sizes of soldered portion are scattered or lead wires are merely soldered onto land portions without the presence of any through-holes.
Similarly, it has also been difficult to detect a faulty state such as scorching or no luster on the surfaces of the soldered portions by the partial pattern light projecting method. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to hydrocyclones, and more particularly to a hydrocyclone having an unconstrained tube or rod serving as a vortex breaker within the hydrocyclone body.
2. Description of Related Art
A cyclone is a device commonly used to separate entrained solids from liquids or gases, or to classify entrained solids into lower and higher density fractions. In the usual application, a carrier fluid (gas or liquid), containing solid particles of varying densities greater than the fluid density, enters the vertical body of a cyclone under pressure through a horizontal tangential inlet located near the top. The energy of the entering suspension is converted to rotation within the body of the cyclone. The different density components stratify under centrifugal force. Carrier fluid, containing most of the higher density solid particles, is discharged at the apex located at the bottom end of the cyclone body, and the remainder of the carrier fluid, also containing lower density solid particles, is discharged through a “vortex finder” tube protruding through the center of the top end near the tangential inlet and terminating below the invert of the tangential inlet. When the fluid is water or other liquid, the term hydrocyclone is frequently used to describe such a device. Besides the usual application of classifying suspensions of particulate matter in liquids, hydrocyclones have also found application in separation of non-emulsified oils from water, where the oil is only slightly less dense than water.
In the operation of a hydrocyclone, an outer vortex or helical flow pattern containing dense particles (or, in the case of oil-water separation, the water phase) progresses from the inlet end towards the apex end, while concurrently an inner vortex or helical flow pattern concentric with the outer vortex containing mostly carrier liquid with lower-density material (or, in the case of oil-water separation, the oil phase) progresses in the opposite direction, towards the vortex finder. An air core forms within the inner vortex in the vacuum occurring at or near the center longitudinal axis, starting at the apex and extending upwards. The maintenance and control of the outer and inner vortices, and the air core, is important to the function of hydrocyclones in classifying or separating entrained material of a density greater than or slightly less than that of the carrier liquid, where the higher-density material is concentrated in the flow leaving the apex.
Hydrocyclones almost always are designed with a tapered body, where higher and higher centrifugal forces develop as the rotating mass is displaced downward within the body, because unacceptably low separation efficiencies result if the body is cylindrical. Numerous means have been devised to increase the efficiency of separation of dense particulates from the carrier fluid in tapered body hydrocyclones, such as the elongate core extending downward from the vortex finder described in U.S. Pat. No. 6,024,874 dated Feb. 15, 2000, the adjustable flow restrictor within the vortex finder described in U.S. Pat. No. 3,568,847 dated Mar. 9, 1971, and the dewatering tube extending upwards from the apex described in U.S. Pat. No. 4,786,412 dated Nov. 22, 1988. Hydrocyclones are most commonly installed vertically, with the tangential inlet and vortex finder at the top, although in some applications the angle from the vertical varies up to 90 degrees.
Stabilized emulsions of gases in liquids (usually air in water) are useful in industrial separation processes, cleaning of textiles and surfaces, fire suppression, and other applications. The gas phase of such emulsions is comprised of a very large number of fine bubbles in the size range of 5 to 100 microns, each bubble coated with a film of surfactant to prevent immediate coalescence of the bubbles. The fluid properties of stabilized air-water emulsions are unusual, in that the bulk density is between 30% and 80% of the density of water, yet the viscosity is very nearly equal to that of water. When producing these emulsions in a recycle type generator, it has been found necessary to classify a stream of emulsion into fractions of lower and higher bulk densities in order to obtain the desired emulsion quality.
The literature has almost no references relating to the use of hydrocyclones for classifying suspensions or emulsions of gases in liquids, although laboratory bench scale continuous air-water emulsion generators using two small tapered-body hydrocyclones in series are known to be able to classify a stabilized gas-liquid emulsion into two fractions of different bulk densities, where the emulsified material (air) is far less dense than the carrier fluid (water). The hydrodynamics of this kind of two-phase system in hydrocyclones is not well understood. In operation, pressurized recycled air-water emulsion stabilized with a surfactant enters the tangential inlet of the first hydrocyclone. The lower bulk density emulsion fraction issues under pressure through the top (vortex finder) outlet of the first hydrocyclone, while the higher bulk density emulsion fraction is ejected out of the apex. The emulsion product from the first hydrocyclone is further classified by introducing it into the tangential inlet of a second hydrocyclone. Emulsion product of still lower bulk density, of suitable quality for experimental use, issues under pressure from the top (vortex finder) outlet of the second hydrocyclone while a relatively denser emulsion fraction is ejected out of the apex. The maximum possible rate of production of stabilized air-water emulsion using this type of apparatus is less than 1.3 gallons per minute.
Numerous attempts at simple scaleup of hydrocyclone classifiers for gas-liquid emulsions have heretofore proven unsuccessful beyond a production rate of about 2 gallons per minute of emulsion, due to the inoperability of hydrocyclones larger in inside diameter than about ¾ inches in this application. The inventor found by experimentation, using either commercially available tapered body hydrocyclones or custom-built cylindrical bodied hydrocyclones with various combinations of dimensions, that for hydrocyclone body diameters greater than ¾ inch and inlet emulsion flow rates greater than about 5 gallons per minute, greater bulk density emulsion issued from the vortex finder at the upper end and lesser bulk density emulsion issued from the apex. The inventor observed that the fluid rotating within the lower portion of the hydrocyclone was of lesser density than the average density throughout the entire volume of the hydrocyclone, apparently due to the entry of excess air through the apex countercurrent to the flow of emulsion out the apex, and concluded that this was why lesser-density emulsion was observed discharging from the apex. This was the reverse of the desired action, and prevented the generation of acceptable quality emulsion. | {
"pile_set_name": "USPTO Backgrounds"
} |
A mobile communication device typically maintains a queue of outbound data to be sent to a destination. The data stored in the queue may, for instance, be messages destined for a server. Such messages may include messages that are formed as requests for information from the server and messages that are formed as updates to information previously stored on the server. Broadly, the messages may be considered elements of a data transaction between the server and the mobile device. Typically, the queue is used only in a transient manner while the mobile device is in coverage range. The queue is of particular use when the mobile device is not in communication with the server. That is, when the mobile device is not within a coverage range of any suitable wireless communications base stations. Typically, after being out of coverage range, when the mobile device enters a coverage range, the mobile device automatically sends the queued messages to the server.
Unfortunately, queuing may be required for extended periods. For instance, the mobile device may be out of coverage for the extent of a long journey aboard an airplane. By the time a given queued message is sent, the given queued message may be out of date. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a docking apparatus and, more particularly, to such an apparatus for docking portable data processing units of various sizes.
With the advent of portable data processing units such as handheld laptop and notebook computers, docking stations have been utilized for charging the unit's batteries as well as powering the unit and connecting it to a variety of external peripherals to transfer data to and from the unit. In the latter Context, high density multiconductor pin and socket connectors are provided on the data processing unit and the docking station and are adapted to transfer the appropriate electrical signals. Since the pins in these connectors, as well as their corresponding sockets have to be closely spaced, precise alignment of the portable unit in the docking station is critical.
The side-to-side alignment of the portable unit relative to the docking station is typically controlled by closely matching the distance between two upright side walls of the docking station with the width of the data processing unit. Thus it is impossible to accommodate units having even a slight variation in width since this would compromise the above-mentioned electrical connectors. Moreover, these walls prevent side access to computer communications (PMACIA) cards and the like.
Further problems exist in prior art docking stations in connection with accommodating portable data processing units having different heights, or thicknesses. More particularly, most prior art docking stations provide a lower wall, or floor, on which the unit slides into place with the assistance of gravity while an upper, or top, wall is not provided in order to accommodate units of different heights. However, this permits unrestricted upward movement of the unit and thus exposes the mated electrical connectors to damage when a lifting force is applied to the data processing unit. Some docking stations utilize various techniques, such as the provision of cooperating rails and tracks on the respective side walls of the portable unit and the docking station to eliminate this upward movement. However, these designs prevent the use of ports or the like on the side walls of the portable unit, usually involve extra parts, are obtrusive and add to the cost and complexity to the docking station. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a system and method for determining whether a secondary infusion has been properly set up and administered. More specifically, the present invention relates to a system including an infusion pump having a sensor that is capable of monitoring and detecting pressure within the container-side of a fluid infusion set. The pressure sensor is used to monitor the pressure within the container-side of the infusion set and provides signals that may be analyzed by a processor to determine, for example only, and not by way of limitation, whether a check-valve in a primary infusion line is working properly, whether the differential height of the primary and secondary fluid containers is correct, and whether a manual valve in the secondary infusion line has been opened and generally whether the secondary infusion line provides an unobstructed flow path to the secondary fluid container. The processor is programmed to provide a signal to care-givers in an institution, or store a record of the event in an institutional database, in response to determining that a fault in the infusion set up has been detected.
2. General Background and State of the Art
Infusion of therapeutic fluids to treat or nourish patients is commonly used in hospitals and other medical care institutions. Originally, such infusions were carried out by hanging a bag or container of therapeutic fluid from a pole so that fluid flows under the force of gravity regulated by a user-controllable restrictor through a length of tubing and into the lumen of a vessel of a patient. More recently, the flow of fluid into the patient is accomplished under the control of a programmed infusion pump located in the fluid pathway. Infusion pumps are useful in that they allow for more precise control of the flow of therapeutic fluid into the patient.
Although standard infusion sets have typically provided for the administration of a single fluid, the need to administer two different fluids to a patient is not uncommon. Typically, such a need arises when a patient must have a maintenance solution delivered and, concomitantly with the administration of the maintenance fluid, there is a need for the intermittent infusion of a therapeutic solution. In such cases it has been the practice to use what is commonly referred to as a “piggyback” system wherein separate fluids from separate containers are sequentially infused through a common tube. Such systems have several obvious advantages. For instance, in a piggyback system the needle need not be removed from the patient whenever the administration of fluids changes from the maintenance solution to the therapeutic solution or vice versa. This fact, of course, causes less trauma to the patient, avoids unnecessary pain, and reduces the chances of infection. Furthermore, and equally important, the use of a piggyback system simplifies procedures for the nurse.
Several devices are employed in the sequential administration of two separate solutions to a patient. Basically, these systems comprise a primary administration set and a secondary administration set and rely on the varying differential of hydrostatic pressure at a check valve throughout the course of delivery for the sequencing of fluid flow within the system.
When the secondary container is set up, the primary container is typically placed below of the level of the secondary container, generally approximately eight inches below the primary container. The primary container may be left in this position, or it may be raised on the secondary container has emptied. Normally, a one-way check valve is included in the infusion line connecting the primary container to the infusion pump, and the infusion line from the secondary container is connected to the infusion line at a location below, or downstream, of the check valve. This check valve prevents therapeutic fluid from the secondary container from flowing upwards into the primary container, and may also be set to prevent flow of fluid from the primary container while fluid is flowing from the secondary container.
One problem occurs when the secondary container is incorrectly placed at or below the level of the primary container. When this happens, the differential hydrostatic pressure which would normally close the one-way check valve is non-existent. If the containers are so improperly placed, fluid from both the primary and secondary containers may flow into the pump concurrently, or if the secondary container is sufficiently lower than the primary container then primary fluid may flow into the secondary container. In either case, where the primary fluid and secondary fluid are incompatible, or if the infusion regimen calls for one of the fluid to be sequentially infused in a necessary order, attention must be given to the infusion set up to correct the problem. Unfortunately, this problem may go un-noticed by a busy care-giver.
Typically, a manual valve (roller clamp, slide clamp etc.) is included in the secondary infusion line between the secondary container and the connection of the secondary infusion line to the infusion line that is connected to the pump. This valve is useful in that it allows for connection of the secondary fluid container to the infusion set up while infusion from the primary fluid is being infused, and is opened only when it is time to begin infusion from the secondary container. A problem occurs when the care-giver fails to open this valve, thus preventing the secondary infusion fluid from being pumped from the secondary container, in this situation the primary fluid will be infused at the secondary flow rate which may cause undesired medical consequences.
An additional problem occurs when the containers are in their proper position for automatic secondary infusion but the one-way check valve fails allowing fluid to flow bi-directionally. When this happens, fluid from the secondary container, because the secondary container is higher than the level of the primary container, and thus has a greater hydrostatic pressure than the fluid in the primary container may flow into the primary container, mixing with the primary fluid. This is disadvantageous for the reasons stated previously.
Still another potential problem in the administration and set up of a secondary infusion occurs when multiple fault conditions exist simultaneously. One such condition consists of a bi-directionally open one-way check valve fault and the manual valve on the secondary infusion line being inadvertently closed when it is intended to be open for secondary delivery.
Often, the secondary container is filled with a volume different from the volume that is programmed to be delivered. Typically, the pump is programmed with a “secondary” volume to be infused. Where the secondary container is overfilled, a volume of secondary fluid remains in the secondary container when the pump determines that the secondary volume to be infused parameter has been satisfied. When this happens, the pump, which may have been programmed to change its pumping rate when the secondary infusion is completed, begins pumping the remaining secondary fluid at the new rate, which may be too high a rate for the particular secondary fluid being infused.
Similarly, where the secondary container has been under-filled, the pump will exhaust the secondary container before the volume to be infused parameter is satisfied, and will continue pumping at the secondary infusion rate. However, due to the exhaustion of the fluid within the secondary container, the one-way check valve will open, and allow fluid from the primary container to flow into the infusion line. Thus, the pump may continue to pump primary infusion fluid at the secondary flow rate, this flow rate may be inappropriate for the primary fluid.
What has been needed and heretofore unavailable, is a simple and reliable system and method for detecting when an infusion container is empty, or nearly empty, and for providing a signal to an infusion pump to either alter the infusion rate, provide an alert signal to a care-giver that the container needs replenishment or replacement. Such a system should be able to detect when the height of the secondary infusion container is incorrect relative to the height of the primary infusion container, and should also be able to detect when the manual valve or clamp on the secondary infusion line has not been opened under the desired mode of operation. The system should also be capable of detecting a failure of the one-way valve, as well as certain multiple fault conditions. The present invention satisfies these and other needs. | {
"pile_set_name": "USPTO Backgrounds"
} |
Methods for closing off throttle valve assemblies are known. Closing off in this case takes place by means of throttle valves which are arranged centrally in the throttle valve assembly on a throttle shaft. For as low an idling rotational speed as possible, the throttle valve must in this case be capable of closing in a highly leaktight manner, so that adverse leakage air is avoided. As regards the present-day mechanically or electrically driven throttle valve assemblies, attempts are made to achieve this by means of very narrow tolerances of the individual components. This requires a relatively high outlay in manufacturing terms for the throttle valve assembly and for the throttle valve which has to be lathe-turned with the highest possible precision to these narrow tolerances. At the same time, care must be taken to ensure that the throttle valve bears with as high a leaktightness as possible against the inner wall of the throttle valve assembly, but does not touch the inner wall too firmly, since a jamming of the throttle valve may otherwise occur. | {
"pile_set_name": "USPTO Backgrounds"
} |
Headers carrying electrical pins or sockets, the bodies which are made of plastic material, are known. The electrical pins or sockets in the plastic body are susceptible to movement when heat is applied to the pins or sockets when soldering an electrical component thereto. Such movement of the pins or sockets in the plastic body is caused by the heat of soldering. Movement of the pins or sockets in the plastic body results in misalignment of pins or sockets and they will not mate with respective sockets or pins or holes in a circuit board to which the header is to be connected without realigning the pins or sockets. Movement of the pins, when the pins are to have electical contacts connected thereto, will result in improper operation of the contacts by relay or switch means. This involves additional time and expense, and, if the electrical component is to be provided in a heremetically-sealed environment, the heat of soldering the component to the pins or sockets may prevent proper sealing from being accomplished. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to the testing of integrated circuits and, more specifically, to the functional testing of integrated circuit chips by means of two physical contact points, generally by devices of tip board type. The present invention more specifically relates to the testing of contactless transponder integrated circuits intended for so-called secure applications where circuits internal to the chip operate asynchronously with respect to its outer environment.
2. Discussion of the Related Art
FIG. 1 shows, in a simplified view and in the form of blocks, an example of a conventional test of an integrated circuit 1. Such a tester comprises a contacting element 2 provided with two points 3, 4 of connection to pads corresponding to the integrated circuit chip. Chip 1 rests upon a support 5 of the tester and tip board 2 communicates with a central unit (UC) 6 of the test system.
FIG. 2 very schematically shows in the form of blocks a chip 1 of the type to which the present invention applies. Chip 1 comprises an area 2 comprising the processing circuits linked to the application and two input/output pads 11, 12 of this area. Pads 11 and 12 are more specifically intended to be subsequently connected to the ends of an inductive winding taking part in a resonant circuit, generally parallel, in an application to an electromagnetic transponder. The functional test to which the present invention relates includes of testing the circuit before assembly with its resonant circuit.
The functional testing, also called radiofrequency mode testing, is generally performed by using pads 11 and 12 for points 3 and 4 of the tester.
In so-called non-secure applications, a functional testing is generally carried out by connecting several integrated circuits in parallel. Such a testing is thus carried out by integrated circuit wafer, before cutting.
In so-called secure applications, a specific problem is that the operation of integrated circuit chips is voluntarily desynchronized to prevent piracies based on a synchronized operation, based on a clock external to the chip, of secret quantities or secret algorithms contained by the chips. The chips thus all respond with variable non-predictable delays to control signals received on their respective pads 11 and 12. Such a characteristic of secure products prevents parallel tests of several chips, which considerably increases the duration of testing. | {
"pile_set_name": "USPTO Backgrounds"
} |
In today's electronic age, massive volumes of electronic data are produced and maintained by most institutions. If an institution is in litigation, it may have to produce all electronic and other data related to the case. Electronic discovery (e-discovery) refers to the process of collection, preparation, review and production of electronic documents in litigation discovery. Electronically-stored information (ESI) which may be relevant evidence in litigation includes, but is not limited to: electronic files; communications, including electronic mail (e-mail) and instant messages sent or received, and voicemail; data produced by calendaring software; and information management software. ESI may also include data that may not be visible that is generated by computer systems and stored on hard-drives, e-mail and instant messaging, information management software, handheld computing devices (e.g., smartphones), telecommunications devices, and back-up storage devices. ESI may be stored on a variety of electronic devices and removable devices (e.g., internal and external drives, PDAs, smart phones, servers, laptops, backup tapes, thumb drives, CDs, DVDs, etc.) and may reside at different locations (e.g., on home or work systems, third-party or personal systems, in departmental files, etc.). As should be appreciated, e-discovery can be a very time-consuming and expensive process for an institution. The process of identifying custodians and preserving and collecting data can be a very complicated process. The term “custodian” describes a person or a physical asset (e.g., a storage locker, piece of equipment, cell phone, etc.) within an institution that may have data relevant to a particular matter. There is a need in the art for improved methods and systems for identifying custodians, preserving, collecting, processing, reviewing, analyzing, producing, presenting, and dispositioning data responsive to a legal discovery request. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a magnetic bubble memory with a hybrid junction and more specifically deals with the junction enabling the propagation of a magnetic bubble from an area with non-implanted patterns to an area with deposited patterns. Throughout the remainder of the text such a junction will be designated IP or JIP junction for an implanted permalloy junction.
In a magnetic bubble memory, the magnetic bubbles are contained in a monocrystalline magnetic layer, such as a magnetic garnet film supported by an amagnetic monocrystalline garnet. These bubbles are in the form of generally cylindrical, isolated magnetic regions having a magnetization which is opposite to that of the remainder of the monocrystalline magnetic layer. These magnetic bubbles are stable through the application of a continuous or d.c. magnetic field H.sub.pol perpendicular to the plane of the magnetic layer. In practice, this magnetic field is produced by a permanent magnet, which consequently ensures the non-volatility of the informations contained in the bubble memory.
The bubbles are displaced by applying a rotary d.c. field H.sub.T in a direction parallel to the surface of the magnetic layer. The bubbles are displaced around the so-called propagation patterns.
These patterns are in the form of disks, lozenges triangles, T's, etc and can be produced from a material based on iron and nickel, deposited on an insulating layer covering the magnetic layer, or can be obtained by implanting ions in the upper part of the magnetic layer through a mask making it possible to define the shape of these patterns. In the latter case, in view of the fact that ion implantation is only carried out around these patterns, the latter are called non-implanted patterns.
The propagation patterns are generally contiguous and as a result of their shape, two adjacent patterns define two cavities or hollows between them.
The displacement of the bubbles along these patterns generally takes place for a time equal to one third of the rotation period of the planar magnetic field H.sub.T, the bubbles remaining stationary in the cavities defined between two adjacent patterns for the remainder of the cycle. These cavities constitute so-called stable positions. Thus, shift registers are produced in which the binary information 1 is represented by the presence of a bubble and the binary information 0 is defined by the absence of a bubble.
Apart from these propagation patterns, it is necessary to use electric conductors for producing within the bubble memory functions such as writing, information recording, non-destructive reading, transfer between registers and erasing.
FIG. 1 diagrammatically shows the known structure of a magnetic bubble memory. It comprises a group of so-called minor loops for storing informations parallel to one another and disposed along an easy magnetization axis 112 of the magnetic material. Each minor loop is connected by an exchange gate 4.sub.1 . . . 4.sub.n to a major writing loop 6 having at one end a magnetic bubble generator 8. The major writing loop 6 is aligned along an axis perpendicular to the axis of the minor loops. Each exchange gate makes it possible to write informations into a minor loop.
Each minor loop is also connected by a duplication gate 10.sub.1 . . . 10.sub.n to a major reading loop 12 parallel to the major writing loop 6. The major reading loop 12 is terminated by a detector 14 constituting a reading means.
A hybrid magnetic bubble memory has two regions 16, 18 with deposited patterns and a region 20 having non-implanted patterns. All the elements of the bubble memory are solely contained in regions 16, 18, with the exception of the minor loops, each of which extends over the three regions. Thus, each minor loop has four junctions JPI-E, JIP-E, JIP-D and JPI-D, which constitute the junctions between the propagation paths or tracks located in the different regions.
The invention relates to junctions enabling a magnetic bubble to pass from a propagation track defined by non-implanted patterns to a propagation track defined by deposited patterns, i.e. junctions JIP-E and JIP-D in FIG. 1.
Such junctions are more particularly described in patent application No. EP-A2-0 081 215, filed on Dec. 3, 1982 by HITACHI. FIGS. 2 and 3 respectively show junctions IP-E and IP-D according to the teaching of said specification.
In each drawing, a first propagation track is defined by a boundary 22 between an implanted area 24 and a non-implanted area 26 and a second propagation track is defined by a sequence of deposited patterns, such as deposited patterns 28, 30. The two propagation tracks have generally parallel directions and overlap at the first deposited pattern 28.
In European application No. 0 081 215 no information is given on the shape or size of the overlap zone, or on the orientation of the boundary between the implanted area and the non-implanted area level with said overlap zone.
However, embodiments of said junction have been described in several other documents.
In the article "Characteristics of junctions between ion-implanted and permalloy tracks in hybrid bubble devices" by N. KODAMA et al, published in IEEE Transactions on Magnetics, vol MAG20, No. 5 (part 1), September 1984, a junction IP-E is shown in FIG. 1. This junction is similar to that shown in FIG. 2, but the boundary between the implanted area and the non-implanted area has a step at overlap zone 32 and then the boundary continues as in FIG. 2.
The author states that this junction is not very reliable. Thus, it has been found that the field margin H.sub.pol was difficult to reproduce and that its value could vary between 4 and 10%, as a function of the memories. Moreover, the alignment between technological levels can lead to a deterioration of the margins.
The author proposes an improvement to the junction consisting of replacing the clearly defined boundary between implanted area 24 and non-implanted area 26, where the density of implanted ions passes suddenly from a non-zero value in the implanted area to a zero value in the non-implanted area, by a gentler boundary having a non-zero width where the density of the implanted ions decreases linearly from a non-zero value in the implanted area to a zero value in the non-implanted area.
An IP junction is also described in U.S. Pat. No. 4,546,452 granted on Oct. 8, 1985 to HITACHI. In this junction, the overlap between the two propagation tracks takes place over a length at least equal to 2.5.lambda., in which .lambda. is the spacing of the non-implanted patterns and said overlap zone is directed along an axis perpendicular to the general direction of the two propagation tracks.
The invention aims at obtaining a reliable IP junction, i.e. having a large, reproducible field margin H.sub.pol without having to use a gentle boundary.
In an IP junction, a magnetic bubble passes from a propagation track defined by non-implanted patterns to a propagation track defined by deposited patterns. In the overlap zone of the propagation tracks, it is consequently necessary to have a weak position in the implanted area and a stronger position on the deposited pattern, namely for the phase of the rotary field corresponding to the passage of the magnetic bubble from the first track to the second track.
According to the invention, to obtain a non-stable position in the implanted area at the time of the passage of the magnetic bubble, the boundary between the implanted area and the non-implanted area is oriented perpendicular to an easy magnetization axis of the magnetic material. Moreover, in order to be less sensitive to the alignment between the technological levels defining the two propagation tracks, the overlap zone between the implanted area and the deposited pattern has a surface substantially equal to that of the magnetic bubble.
With regard to the deposited pattern, it is known for the purpose of having a strong position on the pattern deposited level with the overlap zone, to use a pattern having the general shape of a chevron and whereof one leg has a particularly great length and width. According to the invention, it is proposed to increase the magnetic pole created level with the overlap zone by said reinforced arm by forming an implanted area beneath a significant part of said leg. This area has two functions, the first being to limit the width of the non-implanted area in the vicinity of the overlap zone, which reduces the stability of the magnetic bubble on the first propagation track level with said overlap zone, whilst the second function is to force the magnetic bubble towards the end of the other leg of the chevron, whilst in said implanted area the magnetic bubble tends, after extending between the overlap zone and the end of the other leg of the chevron, to return towards the overlap zone if certain technological parameters vary. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cancer is a term commonly known as a disease occurring due to indiscreet proliferation of cells and due to damage to the mechanism of regulating cell proliferation. In accordance with data released by World Health Organization (WHO) in February, 2012, the number of deaths due to cancer throughout the world in 2008 was about 7.6 million people accounting for 13% of mortality over the world and, and five cancers such as lung cancer, stomach cancer, liver cancer, colon cancer and breast cancer account for about 50% of the entire death rate of cancer. In addition, it was shown that 12.7 million new cancer patients were diagnosed during 2008, and among them, about 70% occurred in underdeveloped/developing countries such as China, South America, Africa, and the like. The occurrence rate of new cancer patients has steadily increased, such that it is expected to reach 22 million cancer patients in 2030.
In particular, the occurrence rate of cancer patients in Asia has rapidly increased from obesity due to westernized diet, an increase in intake of red meat and alcohol, and the like. It is expected that the occurrence rate of cancer patients per 100,000 people will rapidly increase from 122 people in 2005 to 163 people in 2030 by 45% or more, which is about 7.34 million people when converting the rate into the number of patients.
Cancer is a disease currently ranking No. 1 for the cause of death in Korea and the number of new cancer patients for 1 year in 2009 according to data released by Statistics Korea on Dec. 30, 2011 was 192,561 (male: 99,224, female: 93,337), which had increased by 6.7% as compared to 180,465 in 2008 and by 90.6% as compared to 101,032 in 1999. For people in Korea, surviving to the age of 81, which is an average life span of people in Korea, the probability of suffering from cancers is 36.2%, and cancer has progressed in one of three patients (2 out of 5 male, and 1 out of 3 female). It was found that the total number of people with cancer surviving until the end of 2009 was 808,503, and the number of people overcoming cancer or living with cancer was 8 hundred thousand.
In accordance with Global Cancer Facts & Figures, 2nd Edition published by American Cancer Society in 2011, the cost for prevention, diagnosis, and treatment of cancer all over the world was estimated to be about 895 billion US dollars (985 trillion won in Korean money). It was investigated that cost incurred in relation with cancer in the US in 2010 was about 263.8 billion US dollars (290 trillion won in Korean money), the direct medical cost was 102.0 billion US dollars (112 trillion won in Korean money), the loss due to disease was 20.9 billion US dollars (23 trillion won in Korean money), and the economical loss due to premature death was 140.1 billion US dollars (154 trillion won in Korean money).
In accordance with cancer registry statistics released by the National Cancer Center in December, 2011, in Korea, it was estimated that the cost associated with cancer was: liver cancer (mean cost: 66.22 million won), lung cancer (46.47 million won), gastric cancer (26.85 million won) and colorectal cancer (23.52 million won).
A main reason that a normal cell is changed into a cancer cell is due to the abnormality of a gene, wherein the abnormality is caused by genetic factors inherited from parents; however, there are many cases where the abnormality is developed by acquired factors such as carcinogens, smoking, diet, virus infection, and the like. As a result, personal deviation in view of the reaction to chemotherapy after surgical procedure and the recurrence of cancer is largely shown. That is, since cancer is developed by reflecting genetic and environmental factors, cancer has patient-specific properties, and a degree of sensitivity to a specific drug also differs with each patient.
Hierarchial model, which is the latest theory with respect to cells configuring cancer tissue, asserts that a few tumor stem cells are present in tumor tissue and more differentiated cells without self reproduction ability are produced while maintaining a few tumor stem cells (E Passegue C. H. et al., Proc Natl Acad Sci USA, 30; 100 Suppl 1:11842-11849, 2003). Therefore, since a few tumor stem cells capable of inducing cancer and most of the differentiated cells losing cancer inducing ability are mixed, the tumor stem cell has drug resistance with respect to the conventional anti-cancer agents developed by having tumor cells occupying the majority in the cancer tissue as a target. As long as the tumor stem cell is present, the tumor may recur at any time, which is a key point of the tumor stem cell theory.
A theory of tumor stem cell was established by confirming the presence of the tumor stem cell in hematologic malignancy inducing leukemia for the first time in 1997 (Bonnet D. et al., Nat Med., 3(7):730-737, 1997). That is, it was confirmed that when cells determined as a cancer stem cell in an acute myeloid leukemia are extracted and transplanted into an immunosuppressive rat, human-derived leukemia is developed in a rat even with a small amount of cells. Then, evidence that tumor stem cells are present even in solid tumor cancers in breast cancer, colon cancer, prostate cancer, melanoma were suggested (Singh S. K. et al., Nature, 18; 432(7015):396-401, 2004).
The tumor stem cell has similar properties as a stem cell, for example, in the case of the acute myeloid leukemia, wherein cells having CD34+CD38-phenotype of hematopoietic stem cells have properties of the tumor stem cell (Bonnet D. et al., Nat Med., 3(7):730-737, 1997). In addition, brain tumor stem cells and normal nerve cells commonly express CD133, wherein CD133+ brain cancer cells even with 100 or less of a small amount thereof forms a tumor in the cranial cavity of a rat (Singh S. K. et al., Nature, 18; 432(7015):396-401, 2004; Kondo T. et al, Proc Natl Acad Sci USA, 20; 101(3):781-786, 2004). As another example of properties similar to stem cell, it is known that the brain tumor cell forms a sphere under specific conditions, like a nerve stem cell (Sanai N. et al., N Engl J Med., 353: 811-822, 2005). In addition, when serum is added to the brain tumor stem cell, the brain tumor stem cell may be similarly differentiated to the nerve stem cell (Rao J. S., Nat Rev Cancer, 3:489-501, 2003).
Meanwhile, in the case where expected effectiveness of an anti-cancer agent known to have excellent effects is not shown due to patient-specificity of cancer, trial and error for an appropriate treatment is inevitable, and risk and burdens of patients are increased. Thus, when a trial for reflecting personal characteristics in development and screening of an anti-cancer agent has been actively conducted, and it has been verified through various clinical tests that in the case where a customized targeted treatment having a target as a specific patient group is performed, treatment reaction of the patient is better than that of the existing standard anti-cancer treatment (Alterovitz G. et al., Oral Oncol., 47(10):951-5, 2011; Arnedos M. et al., Mol Oncol., 6(2):204-10, 2012; Black A. and Morris D., Curr Oncol., 19(Suppl 1):S73-85, 2012).
The beginning of the existing systematic drug screening method included injection of a mouse leukemia cell into an abdominal cavity and analysis of treatment effect of the drug at National Cancer Institute (NCI) in 1955 and establishment of a human cancer cell line xenograft transplantation model using immunodeficiency mouse established in the 1970s enables screening of main solid carcinoma (Hausser H. J. et al., Biochem Biophys Res Commun., 333:216-2, 2005). In 1989, NCI converted the basis of the screening strategy from a compound to a disease and then introduced an NCI-60 cell line panel consisting of human cancer cell lines having various histological and genetic properties, wherein in a retrospective analysis with respect to 39 drugs achieving up to clinical phase 2, in the case where over ⅓ of subcutaneous xenograft transplantation models show efficacy, it was reported that there is a significant relationship with a treatment reactivity in an actual patient (De Wever O. et al., J Pathol., 200:429-47, 2003).
However, since the above-described existing drug development system performs a drug screening based on a single cell line cultured in vitro for a long time, there are many cases where an efficacy of a developed drug is different from that in the actual clinical test. It is general that a proliferation assay constructing an anti-cancer agent screening is useful for evaluating an efficacy to an abnormal proliferation ability of a cancer cell; however, such has a limitation in reflecting sensitivity to the drug according to gene information. In particular, since a high throughput anti-cancer agent screening system constructed up to now demands an adherent culture of a cell onto an artifact surface, there is high probability of bringing genotypic and phenotypic changes and it is difficult to represent in an in vivo environment (US Patent Application Publication No. 2012-0077698). In order to overcome the above-described recent limitation, an effort to apply a three-dimensional culture to the high throughput screening system has been conducted; however, there are problems in that many cells are demanded for an analysis, and determination depends on a subjective determination of an inspector. In addition, in the case where the three-dimensional culture is a floating culture, since a focal distance for each area is different from each other, there are limitations in view of time and physical aspect in that each image should be taken from several thousands of wells for an automatic analysis (US Patent Application Publication No. 2009-0221441). Therefore, in order to precisely and rapidly conduct a screening method of anti-cancer materials with respect to various conditions, research into a technology of an automatic analysis method satisfying an environment capable of maximally maintaining properties of cancer cells, a demand on small number of cells, and an objective analysis is required.
Meanwhile, the genetically modified model and the xenograft transplantation model based on cancer cell lines among animal models easily cause a change in the cell lines, such that there are many cases of losing original properties as the cancer cell. In securing a required number of cell lines, the cell lines go through a long-time selection process under in vitro conditions. It was known that the above-described models are homogeneous and undifferentiated as compared to a tissue derived from an actual cancer patient (Hausser H. J. et al., Biochem Biophys Res Commun., 333:216-2, 2005). In addition, since human-derived stromal cells and immune cells configuring a microenvironment around cancer which is important for growth and metastasis of cancer are absent, original biological and molecular properties of a patient carcinoma are not reproduced any more (De Wever O. et al., J Pathol., 200:429-47, 2003).
As a useful method for overcoming the problem, patient-derived tumografts in which surgically removed patient-derived tumor tissue is directly transplanted into an immunodeficiency mouse was suggested (Rubio-Viqueira B. and Hidalgo M., Clin Pharmacol Ther., 85:217-21, 2009; Fichtner I et al., Eur J Cancer., 40:298-307, 2004). Since both of the cancer tissue and the stromal cell of microenvironment around cancer are derived from the same patient, the patient-derived tumorgrafts are evaluated as being that transplantation success, growth of cancer tissue, and reaction to drug are most similarly reproduced. However, about 90% of anti-cancer agents showing a remarkable anti-cancer effect in a preclinical model and entering a clinical test are not capable of reproducing effects in actual patients up to the present.
Therefore, in order to develop a screening method for effectively selecting an optimal anti-cancer agent and an optimal combination of anti-cancer agents with respect to an individual patient, a technology capable of reflecting gene information of a patient, mimicking an environment in a human body, and efficiently analyzing a large amount of samples is needed.
Accordingly, the present inventors made an effort to solve the problems of the related art as described above. As a result, the present inventors confirmed that in the case where a patient-derived cancer cell is subjected to a screening method including three-dimensional culture using a limiting dilution assay, patient-specific anti-cancer agents are capable of being efficiently selected by using an extremely small amount of cells as compared to the existing screening methods, thereby completing the present invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to video display terminals and is particularly directed to the smooth, continuous scrolling of the display of a cathode ray tube.
The inside face of a cathode ray tube (CRT) is coated with phosphor, or a similar light-emitting substance, in the form of individual pixels, or dots, which glow when struck by an electron beam. A complete image is generated on the CRT's screen, or faceplate, by scanning the screen with an electron beam generally in a left to right direction as viewed from the front of the video display in an individual line sequence where the electron beam is deflected downward one line at the end of one sweep to again provide another sweep line from left to right. Thus, when the movement of the electron beam across one horizontal scan line is complete, it drops down to the next horizontal scan line and sweeps across this line from left to right. When the electron beam scan reaches the bottom of the CRT's screen, the electron beam is deflected from the lower right hand corner of the screen to the upper left hand corner thereof in a vertical deflection period. During this interval the electron beam is "off" and the vertical deflection of the beam is thus not seen by the viewer.
When utilized in a computer terminal, the video display on the CRT is accomplished by a mapping process wherein memory bits representing specific points on the CRT's screen are stored in a random access memory (RAM). Each memory bit has a logical value of 1 or 0 with each bit thus representing a light or dark spot at a particular location on the raster of the video display, depending on the bit's value.
In a typical computer terminal with a video display, each alphanumeric character may be thought of as occupying a rectangular "frame" on the CRT's screen. This "frame" may be defined by a rectangular matrix comprised of m by n pixels, or elemental dots. For example, a character "frame" may be 8 pixels high by 10 pixels wide. Within this frame there are 2.sup.80 possible patterns of pixels, where each pixel may be on or off. Thus, each character is 8 scan lines high. In a typical video display terminal there are approximately 200-256 scan lines which provide from 25 to 32 lines of text, or characters.
One limitation in all video display terminals is that the amount of information which can be presented at a given time is finite, i.e., there is a maximum number of characters associated with the video display. One solution to this problem is to use a technique known as "scrolling". Scrolling is a process which moves data on the video display upward or downward one line at a time, thus freeing a scan line of the display to provide more information. For example, in an upward scroll the top line of characters in the display is removed, the remaining lines are moved up one line, and a new line of characters is inserted at the bottom of the display.
Many different methods are used to achieve scrolling in video display terminals, but the most common involves the manipulation of the addresses being read from a video memory for presentation on the video display. For example, if the video display unit begins its display at the second line of video memory rather than the first line, the display will appear to have moved upwards, or scrolled, one line. Systems which utilize this approach are further divided into two classes: line-at-a-time, or "jump", scrolling and sub-line-at-a-time, or "smooth", scrolling. Smooth scrolling provides what its name implies--the information on the video display is moved in increments small enough to make the text appear to move smoothly from one line to the next.
With many commercially available test generators, it is not generally possible to perform smooth scrolling. These systems typically are limited by the number of character rows which they can handle, as compared to the number of scan lines, or vertical character segments, in the video display. If the video display terminal hardware is capable of generating as many rows as there are scan lines and if the controlling computer, or central processing unit (CPU), has access to the individual dots of a character, then it is possible to perform smooth scrolling by treating each character as a sequence of characters. For example, for a character ten pixels tall, the video display may be programmed so that ten rows of information are treated as a single character. These ten rows will then appear as a single character if the pixels corresponding to the character are turned on in the correct location of each of the rows. By advancing the start-of-display a single row at a time, the display will move only 1/10th of a character each time scrolling is performed. This results in the smooth upward scrolling of the information presented on the video display. Unfortunately, as mentioned above, many video display units do not have the capability of addressing as many character rows as there are scan lines in the video display and are thus not capable of smooth scrolling.
The prior art discloses a variety of video display terminal scrolling approaches. For example, U.S. Pat. No. 4,342,991 to Pope et al discloses a scrolling arrangement which makes use of an indirect address counter for addressing data in a refresh memory during the CRT blanking interval and a refresh address counter for addressing data in the refresh memory during other intervals. U.S. Pat. No. 4,375,638 to O'Keefe et al discloses a scrolling display refresh memory address generation apparatus for a video display controller having a row register and PROMs precoded to perform modular addition and multiplication for generating an address used to access the display controller refresh memory such that all but one stationary row of information on the display screen may be scrolled upward. U.S. Pat. No. 4,404,554 to Tweedy, Jr., et al makes use of a smooth scroll offset register 204 which may be programmed with an offset of 0 in the first frame, 1 in the second frame, 2 in the third frame and so forth until N scan lines have been offset where N is the number of scan lines per data row. At this point an entire data row will have been scrolled off the smooth scroll area and the row table must then be manipulated to move each of the remaining data rows up one position. The smooth scroll offset register is then returned to 0 and the sequence is then repeated if additional scrolling is desired. U.S. Pat. No. 4,418,344 to Brown makes use of a CPU interrupt during each vertical retrace interval to update parameter byte information related to the scan line on which the display of a character row is to commence and the number of scan lines of that character row which are to be displayed during the current frame. Updating of the parameter byte information permits the incrementing and/or decrementing of the first scan line number and the number of scan lines. These and other prior art approaches provide a smooth scrolling capability but at considerable expense. This additional expense may take the form of additional components such as additional registers or multiplexers or more memory capacity, all of which increase video display terminal complexity and cost.
The present invention is intended to overcome the aforementioned limitations of the prior art by providing an inexpensive smooth scrolling capability which may be easily incorporated in most video display terminals. The present invention makes use of conventional start-of-display address modification techniques in combination with the alternating changing of the position of the display by means of a vertical position control to provide smooth scrolling in a raster scanned video display terminal. | {
"pile_set_name": "USPTO Backgrounds"
} |
Covers or tarps are typically used to cover and protect various objects from the elements. For example, tarps or covers may be fastened to a boat so as toprotect the cabin or seating area of the boat from the rain and other falling debris. Tarps and covers may also be fastened over truck loads to cover the cargo and inhibit loose debris from dislodging.
Such covers or tarps are typically fastened to the target object by way of male/female securing devices such as snap fasteners, lift-a-dot fasteners, and turnbuckles. In the case of snap fasteners, male screw studs are typically mounted around the perimeter of the object, such as around the perimeter of the seating area of a boat. Female sockets are mounted on the tarp material such that the tarp may be detachably fastened onto the male screw studs. To properly fit the tarp over the seating area of the boat, the position of the female sockets must correspond to the fixed position of the male screw studs. The female sockets are usually permanently mounted on selected locations of the tarp material so as to be engageable with the corresponding male screw studs mounted at fixed positions along the perimeter of the boat.
Typically, the female sockets are permanently mounted to the tarp material by riveting. The proper positioning of the female sockets on the tarp material is accomplished by securing the tarp material over the object and marking areas of the tarp material that correspond to the location of each of the male screw studs. The tarp material is then removed from the object to permanently attach the female sockets onto the marked areas on the tarp material.
The marking of the tarp material for proper positioning of the female sockets is a time consuming process and potentially subject to error. The process of securing the tarp material over the object, for example, by way of clamps, is a laborious process that may require multiple re-adjustments and re-securing of the clamps to properly position the tarp material over the object with the appropriate tension. Furthermore, because the female sockets are permanently secured onto the tarp material, any inaccuracies in marking of the tarp may be a costly and time consuming mistake to correct. For example, if the female socket is incorrectly secured onto the tarp material, removal of the female socket can only be accomplished by destroying the female socket such that it may not be reused again.
Applicant is aware of U.S. Pat. No. 5, 095,636 issued on Mar. 17, 1992 to Arnold which describes a fabric cover marking device and method for marking the location on a fabric cover for a female fastener portion engageable with a complementary male fastener portion mounted on a structure to be covered.
Applicant is also aware of U.S. Pat. No. 4,608,734 issued on Sep. 2, 1986 to Schiller which describes a quick release threadless fastener for connecting two pieces of material, the fastener including a male and a female fastener assembly each having a fastener element that are detachably engageable with each other.
Applicant is further aware of U.S. Pat. No. 5,490,309 issued on Feb. 13, 1996 to Velasquez et al. which describes a fastener assembly that is readily attached to fabric material without need of sewing, the fastener assembly including a pair of interlocking male and female members, each for placement on opposite side of the fabric material.
The problem with existing fasteners and fastener assemblies is that none of such devices are operable to mark and fasten onto a material. The device described in Arnold discloses a fabric cover marking device but the device itself may not be fastened to the fabric cover. The devices described in Schiller and Velasquez et al. fail to describe a device that may also function as a marking device.
Furthermore, none of the prior art devices provide for a detachably securable female member which enables re-usability of the male and female member for different applications and/or convenient adjustability of the material at any time so as to suitably position the material on the male member to align the male member with a corresponding securing member. Therefore, an unaddressed need for an improved fastening device exists to overcome the inadequacies and deficiencies in the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a substrate storing container for storing and conveying a substrate made of a semiconductor wafer, one has been known conventionally that has a configuration including a container main body and a lid body.
The container main body has a tubular wall portion in which a container main body opening portion is formed at one edge portion, and in which the other edge portion is closed. A substrate storing space is formed in the container main body. The substrate storing space is formed by being surrounded by the wall portion and can store a plurality of substrates. The lid body is removably attached to the container main body opening portion and can close the container main body opening portion.
A front retainer is provided at a portion of the lid body corresponding to a portion facing the substrate storing space when the container main body opening portion is closed. When the container main body opening portion is closed by the lid body, the front retainer can support edge portions of a plurality of substrates. In addition, a rear retainer is provided at the wall portion so as to form a pair with the front retainer. The rear retainer can support edge portions of a plurality of substrates. When the container main body opening portion is closed by the lid body, the rear retainer holds a plurality of substrates in a state in which adjacent substrates are arranged in parallel to be spaced by a predetermined interval by supporting the plurality of substrates in cooperation with the front retainer. The rear retainer has a plurality of grooves recessed in a direction away from the substrate storing space (for example, see Patent Document 1). In addition, there is a known configuration in which a portion of the rear retainer forming the grooves is elastically deformable, and a portion of the rear retainer supporting rear ends of the substrates is not elastically deformable (see Patent Document 2).
In the conventional substrate storing container described in the above publication, when the container main body opening portion is closed by the lid body and the substrates stored in the substrate storing space are conveyed, ends of the substrates abut on the rear retainer at all times. For this reason, particles are likely to be generated between the substrates and the rear retainer. When the substrate storing container receives an impact during conveyance of the substrates by the substrate storing container, the ends of the substrates slide against the rear retainer and particles are more likely to be generated.
Therefore, there is a known substrate storing container in which the ends of the substrates are not in contact and generation of particles is suppressed when the substrate storing container does not receive an impact during conveyance of the substrates by the substrate storing container and a wafer protective groove is included to protect the substrates when the substrate storing container receives an impact (see Patent Document 3). Patent Document 1: Japanese Patent No. 4338617 Patent Document 2: Japanese Unexamined Patent Application, Publication No. 2005-5525 Patent Document 3: PCT International Publication No. WO2013/025629 | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an image pickup apparatus for photoelectrically converting an optical image focused to an image sensor to thereby output a corresponding image signal and an image pickup control method therefor. More particularly, the present invention relates to an image pickup apparatus capable of outputting, when taking a still picture, an image signal while broadening the dynamic range of an image sensor and an image pickup control method therefor.
2. Description of the Background Art
A digital camera extensively used today includes a solid-state image sensor implemented by CCD (Charge Coupled Device) charge transfer paths or MOS (Metal Oxide Semiconductor) devices. In the image sensor, photosensitive cells implemented by photodiodes photoelectrically transform incident light to corresponding signal charges. The signal charges are read out to generate digital image data representative of a scene picked up. To meet an increasing demand for high definition images, digital still cameras with 2,000,000 or more pixels have recently been put on the market. The photosensitive array of the image sensor is not increasing in size with an increase in the number of pixels, but is decreasing in order to, e.g., increase yield. This allows optics including a lens to be reduced in size and therefore contributes to the reduction of the overall size and weight of the camera.
In the image sensor of the kind having a high pixel density arranged therein, the area and capacity to be allocated to the individual photodiode must be reduced. It is therefore necessary to reduce noise ascribable to the image sensor, i.e., to increase the S/N (Signal-to-Noise) ratio and to realize a dynamic range broad enough to sufficiently reproduce low brightness to high brightness. However, a decrease in the area of the individual photodiode directly translates into a decease in a signal charge generated thereby. This, coupled with the fact that a signal charge to be stored in the individual photodiode decreases with a decrease in capacity, makes it difficult to noticeably broaden the dynamic range of the image sensor of the kind described.
A progressive scan, CCD image sensor with a xc2xc 300,000 pixel configuration is disclosed in ITE Technical Report, Vol. 20, No. 23, pp. 43-48, Mar. 19, 1996 as a solution to the above-described problem. In accordance with this document, the maximum saturation charge of the image sensor is increased. Information identical with information stored in IT (Interline Transfer)-CCDs and information derived from a short exposure time are transferred to vertical transfer paths at the same time and then combined together by external circuitry.
Japanese patent laid-open publication No. 141229/1994 teaches an image pickup apparatus constructed to produce a composite image with a broad dynamic range by picking up two or more images different in charge storage time and combining them together. Japanese Patent No. 2755366 proposes an electronic camera capable of combining image data derived from a first exposure time and image data derived from a second exposure time longer than the first exposure time, thereby broadening the dynamic range of an image sensing array. Further, Japanese patent publication No. 97841/1995 discloses an image pickup apparatus constructed to select, out of signal levels of various portions of a plurality of frames that are different in the amount of exposure, portions having adequate levels and combining them together to output a composite image.
In any case, it has been customary to vary an exposure time determined by an electronic shutter function available with CCDs so as to pick up an image two times during a single field period. The resulting two images are combined in order to broaden the dynamic range.
However, a problem with the conventional technologies is that noticeable smears appear in an image signal derived from a high speed shutter although the dynamic range may be broadened. This, coupled with the fact that the image signal derived from a high speed shutter is increased in gain, degrades the combined image. More specifically, assume that while first pixel signals derived from a high speed shutter, which is opened only for a short period of time, are being transferred along vertical transfer paths, a second shot is effected over a period of time longer than the above period of time. Then, signal charges are caused to leak to the vertical transfer paths due to the second exposure and mixed with the first image signal, causing smears to appear in the first image signal. Smears are particularly conspicuous when a great amount of exposure is assigned to the second exposure.
Further, it is difficult to accurately combine two images because image signals are corrected in level in accordance with a ratio between the shutter open times and then combined. For example, to effect such consecutive exposure with a mechanical shutter and accurate shutter speeds, a highly accurate shutter opening and closing mechanism is required and must be provided with a sophisticated configuration for insuring stable operation. Such a shutter mechanism is therefore not feasible for a small size, light weight handy camera.
Moreover, even if exposure conditions for a shot are adequate, a scene to be shot sometimes includes a shadow portion and a highlight portion. In a highlight portion, in particular, the photodiodes of the image sensor are likely to saturate due to the brightness of a subject and the scatter of the image sensor itself. Therefore, simply combining two images is not successful to guarantee an attractive processed image.
It is therefore an object of the present invention to provide an image pickup apparatus capable of picking up a scene with a minimum of influence of smears and thereby producing an image signal with an adequately broadened dynamic range, and an image pickup control method therefor.
An image pickup apparatus of the present invention includes a shutter for intercepting, when an exposure time expires with photosensitive cells included in an image sensor generating signal charges, light incident to the image sensor. Image signals output from the image sensor are written to a memory. A controller determines an amount of exposure for picking up a scene in the form of a still picture. A combining circuit combines the image signals read out of the memory. The controller includes an exposure value determining circuit for determining a first exposure value based on the incident light and a second exposure value that effects lower exposure than the first exposure value. An exposure control circuit causes the optical image to be photoelectrically converted over the exposure time that consists of a first and a second period of time corresponding to the first and second exposure values, respectively. A first read control circuit causes, at a timing corresponding to the first period of time, signal charges generated by the photosensitive cells to be shifted to the transfer paths of the image sensor, thereby causing the image sensor to output a first signal corresponding to the signal charges. A light intercepting circuit causes, at the end of the exposure time, the shutter to intercept the incident light to thereby end the second period of time following the first period of time. A second read control circuit causes, after the image sensor has output the first signal, the image sensor to output a second signal corresponding to signal charges generated by the photosensitive cells during the second period of time. A ratio calculating circuit calculates an exposure amount ratio between the first and second signals. A correcting circuit corrects the level of the second signal in accordance with the exposure amount ratio. The combining circuit combines image signals, which respectively correspond to the first signal and the second signal corrected by the correcting circuit, for thereby outputting an image signal representative of a single frame picked up during the exposure time.
An image pickup control method of the present invention is applicable to the above image forming apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
A pressure sensor configured such that a pair of interdigtal electrodes and a resistor layer are stacked has been known (for example, Patent Document 1). Such a pressure sensor is configured such that a slight interval is provided between the interdgital electrodes and the resistor layer. At the time of application of a load in the stacking direction of the interdgital electrodes and the resistor layer, as the load increases, the surface area of contact between the interdgital electrodes and the resistor layer increases. With this configuration, an increase in the load applied to the pressure sensor reduces electric resistance between one interdigital electrode and the other interdigital electrode by the amount of the increase in the surface area of contact between the interdigital electrodes and the resistor layer. By reading this change in the electric resistance, pressure applied to the pressure sensor can be measured. | {
"pile_set_name": "USPTO Backgrounds"
} |
Thermoplastic vulcanizates (TPVs) comprise finely-divided rubber particles dispersed within a thermoplastic matrix. These rubber particles are crosslinked to promote elasticity. The dispersed rubber phase is typically referred to as the discontinuous phase, and the thermoplastic phase is typically referred to as the continuous phase, although co-continuous morphologies are possible.
Thermoplastic vulcanizates may advantageously be prepared by dynamically vulcanizing a rubber with a curative agent while the rubber is being mixed with a thermoplastic resin. The usefulness of these compositions can depend on the physical properties of the compositions as well as the aesthetics of the products prepared from the compositions. Some of the important physical properties of thermoplastic vulcanizate compositions include stress at break and maximum elongation, as well as resistance to compression set. Useful aesthetic characteristics include extrusion surface roughness (ESR).
Technologically useful thermoplastic vulcanizates, which have an advantageous balance of properties, have historically been prepared from mono-modal, high molecular weight ethylene-based elastomers such as ethylene-propylene (α-olefin)-diene (EPDM) elastomers. As the skilled person appreciates, high molecular weight EPDM elastomers may possess very high viscosities, e.g., Mooney viscosity greater than 200 ML(1+4@125° C.), which results in difficulties related to the processability of these polymers. Typically, these polymers are not processable when having Mooney viscosities above about 100 ML(1+4@125° C.). As a result, the EPDM often used in the manufacture of thermoplastic vulcanizates may include extender oil. The required level of extender oil can depend on the molecular weight of the elastomer, but is usually sufficient to reduce the apparent viscosity of the oil extended EPDM to a Mooney viscosity of about 100 ML(1+4@125° C.) or below. Commercially available, mono-modal high molecular weight EPDMs, which are useful in TPVs, typically contain from about 50 to about 125 phr (parts-by-weight per 100 parts-by-weight rubber) extender oil. For example, EPDM obtained under the tradename Vistalon™ 3666 (ExxonMobil Chemical Company) has been widely used for the manufacture of technologically useful thermoplastic vulcanizates.
Many attempts to alter the rubber used in the manufacture of thermoplastic vulcanizates have been reported. For example, WO 2009/123609 is directed to thermoplastic vulcanizates prepared by employing metallocene-synthesized bimodal EPDM polymer. This bimodal EPDM has an overall Mooney viscosity ML(1+4@125° C.) of at least 30, an average branching index that is greater than 0.8, and includes less than 10 parts by weight, per 100 parts by weight rubber, of extender oil. The EPDM is bimodal to the extent that it includes a first, high-Mooney polymer fraction having a Mooney viscosity MST(5+4@200° C.) of at least 120 and a second, lower-Mooney polymer fraction having a Mooney viscosity ML(1+4@125° C.) of less than 120. Both fractions, individually, are characterized by a molecular weight distribution of less than 4.
Bimodal EPDM terpolymers that have been prepared using Zeigler Natta catalysis have also been used in thermoplastic vulcanizates. For example, WO 2008/016429 is directed to thermoplastic vulcanizates prepared by using oil-extended bimodal EPDM having an oil-extended Mooney viscosity ML(1+4@125° C.) of from 20 to 70, a molecular weight distribution between 2 and 10, and a branching index between 0.3 and 1. The EPDM is bimodal to the extent that it includes a first polymer fraction having a Mooney viscosity MST(5+4@200° C.) between 30 and 100, and a second polymer fraction having a Mooney viscosity ML(1+4@125° C.) between 10 and 120.
Other potentially relevant references include U.S. Pat. No. 7,910,637, WO 2016/076969, WO 2009/035579, WO 2003/066725, and WO 2000/26296, and EP 552945.
While attempts to replace conventional oil-extended EPDM used in thermoplastic vulcanizates have proven useful, the ability to obtain certain aesthetic properties, such as extrusion surface roughness, that are equivalent to conventional oil-extended EPDM remains a challenge. | {
"pile_set_name": "USPTO Backgrounds"
} |
Memristors or “memory resistors” are nanoscale ionic systems that often rely on ion-migration-induced resistance changes in thin oxide films for their nonvolatile memory functionality. Memristive switching devices are of great interest in computer technology due to their potential integration into next generation nonvolatile memories. Memristor technology is nonvolatile, scalable down to less than 10 nm, and offers low-power nanosecond-timescale switching. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention is directed to an art of a land grid array (LGA) connector for electrically bridging two electrical interfaces such as a printed circuit board (PCB) and a central processing unit (CPU).
2. Description of Prior Arts
U.S. Pat. No. 7,179,092 issued on Feb. 20, 2007 discloses a plurality of LGA socket contacts for electrically connecting a Land Grid Package (LGP) to a printed circuit board (PCB). The LGA connector includes a housing, a number of terminals secured on the housing, a stiffener defining a middle window for receiving the housing, a clip pivotably engaged on one end of the stiffener, and a lever coupled with another end of the stiffener for fastening the clip onto the housing and having an operation lever and a mounting lever. The housing comprises a supporting portion for supporting the LGP, a mounting portion received in the window of the stiffener and a plurality of protrusions extending from two opposite sides of the mounting portion for engaging with corresponding recesses defined at two opposite edges of the window. The stiffener further has a latch extending outside from one side wall for engaging with the lever.
In use, the housing is retained in the window by the interference between the protrusions of the housing and the recesses of the stiffener. The operation lever is rotated to a horizontal position and locked by the latch of the stiffener. Considerably, the stiffener is given an upward force by the lever. The stiffener is limited rigid, and opposite ends of the stiffener tend to bend upward. At the time, the corresponding ends of the housing are prone to bend upward alone with the bended end of the stiffener. That is, the engagement between the stiffener and the housing is unreliable. Additionally, When the stiffener is designed smaller to enhance the engagement between the stiffener and the housing, the stiffener is easy to have a distortion by the engagement.
Hence, it is desirable to provide an improved land grid array connector to overcome the aforementioned disadvantages. | {
"pile_set_name": "USPTO Backgrounds"
} |
Early detection of malignant neoplastic tissue is absolutely critical for successful treatment of many types of cancer. Various methods have been used to detect neoplastic tissue, but to date non-invasive methods of detecting such tissue have shown only limited usefulness. Many attempts have centered around discovering imaging agents which localize in neoplastic tissue.
There are materials such as certain porphyrins which do localize in neoplastic tissue. The porphyrins are complex tetrapyrrole compounds normally found in plants and animals. Many of these porphyrins fluoresce when exposed to an appropriate light source. One particular porphyrin preparation which selectively localizes in neoplastic tissue is hematoporphyrin derivative (HPD) prepared by treating hematoporphyrin with concentrated sulfuric acid, resulting in a crude mixture of several porphyrins. (Lipson et al J. Natl. Cancer Institute. 26:1-11, 1961) When injected into tumor bearing animals it localizes in tumors and produces a brilliant red-orange fluorescence when exposed to ultraviolet light. It has been found that dihematoporphyrin ether (DHE) (see formula I) is the active component of hematoporphyrin derivative responsible for tumor localizing properties.
Although HPD and DHE localize in neoplastic tissue and can be detected by photodynamic methods, the usefulness of these compounds is limited. This is primarily due to the fact that these photodynamic methods require invasive procedures. The HPD and DHE must be activated in situ by exposure to appropriate wavelength light. Direct observation of tissue fluorescence at best is qualitative and subjective, and varies widely between different investigators. Quenching of the fluorescence by normal tissue, body fluids, and blood is another major obstacle in achieving significant reliability and reproducibility in the use of this technique.
HPD has been radio labeled in an attempt to eliminate the major problems encountered by the photodynamic technique. Nuclear scintillation imaging procedures employing radio pharmaceuticals are simple and not invasive. Following parenteral administration of the radio labeled HPD, the radiopharmaceutical concentrates in the tumors to be detected and is imaged using appropriate nuclear medicine imaging devices. Past attempts have met with only limited success. Protoporphyrin and hematoporphyrin labeled with .sup.64 Cu were shown to concentrate in mouse tumors in vitro but failed to achieve significant tumor uptake in vivo. Similar results were obtained with .sup.57 Co-labeled hematoporphyrin. More recent studies indicate that .sup.99 Tc and .sup.111 In labeled compounds localize in neoplastic tissue but have no therapeutic value. | {
"pile_set_name": "USPTO Backgrounds"
} |
Meters installed in buildings for industrial or domestic use measure a quantity of energy (electricity) or of fluid (water, gas) consumed; some meters are suitable for storing data relating to consumption in a memory, e.g. in accumulated form by means of a totalizer having wheels. This data is used by the operating organization to bill the consumer. To obtain the data, it is common practice to read each meter visually. In order to reduce personnel costs and the time taken by such operations, proposals have been made, in known manner, to read meters remotely by means of "remote reading" or "remote relaying" systems comprising centralized collection means connected to each meter by a network of wire connections and suitable for collecting and storing data from each of the meters, generally on a periodic basis. The output from the collection means is connected to processing and/or communication means.
In addition to the advantages mentioned above compared with visual meter reading, remote reading or remote relaying firstly provides better safety by monitoring meters on a quasi-continuous basis, and secondly provides better management of user consumption.
Such systems are already known, as applies in particular to water meters.
A first family of known systems makes use of an existing communications network.
In a first example (CMR), the system uses a coaxial television cable connecting a central transmitter to a plurality of buildings (each containing one or more meters). The centralized collection means are connected to said cable. Each meter is connected to the cable via a device suitable for interrogating the corresponding meter. Interrogation and data transmission are performed in a random sequence imposed by said interrogation device.
In a second example, the system uses a telephone network connecting buildings containing meters to a telephone exchange itself connected by telephone line to premises belonging to the organization that distributes energy, water, or gas, and where the collection means are situated. Each meter is connected to an interrogation device which is normally in a standby state. The connection means control the exchange to actuate the interrogation device which, once "woken up", interrogates the meter and transmits the data to the exchange which in turn transmits the data to the collection means.
In a third known example, each meter is connected to a memory, itself connected to means for telephone communication via a modem which is connected to the telephone network.
Although these prior systems are satisfactory from certain points of view such as security and reliability, they nevertheless suffer from drawbacks.
A system in accordance with the first example requires an electrical power supply for the interrogation device. The system of the third example is expensive given that each meter has its own modem and its own telephone number.
In addition, systems in accordance with the first, second, and third above examples all make use of interrogation devices that are relatively expensive, and since they rely on an existing communications network, they can firstly only be installed in areas that are already provided with such networks, and secondly special precautions need to be taken to avoid interference between transmitting meter data and the original function of the network.
A second family of systems is also known which are provided with their own communication means.
A first known type of system (AKUDOM) comprises centralized collection means connected by a star network to each of the meters. The meters are of the "pulse emitting" type and are suitable for delivering a signal comprising one pulse per unit volume of water flow.
Although relatively cheap and of satisfactory reliability (the data from each meter is correctly identified), this prior system suffers from the drawbacks of requiring individual connections to each meter, and of being suitable for a limited range of applications only, given limitations firstly on the number of meters that can be connected in the system and secondly on the distance that may exist between each meter and the collection means.
A second type of known system (MAYA) includes central collection means connected by a common connection to a series of primary collection devices, each of which is connected to a plurality of "pulse-emitting" meters. On instructions from the central collection means, each primary collection device sequentially interrogates each of its meters.
This known system suffers from unacceptable drawbacks. The identity code for each meter is located in its primary collection device, and this is inconvenient both with respect to reliability and with respect to flexibility (when changing meters). In addition, having a primary collection device sharing a plurality of meters implies that the meters are distant therefrom and consequently increases the cost and the complexity of cabling.
Furthermore, the first and second types of system mentioned above both suffer from a defect specific to pulse-emitting meters, namely that they allow only relative encoding of the quantity of water consumed.
From U.S. Pat. No. 3,445,813 and from French patent application FR-A-2 582 894 a system is also known for remote transfer and collection of data, the system comprising a central unit and a plurality of addressable satellite units connected to one another via a common line, and in which data transmitted by a satellite unit to the central unit may include, in particular, the address of the satellite unit. However, such a system suffers from a lack of flexibility in operation, particularly with respect to updating the central unit with information about the satellite units.
In conclusion, it will be understood that a need is felt for a remote meter reading system which is simultaneously cheap to manufacture, to install, and to operate, reliable (both with respect to data transmission and with respect to data origin), flexible in use (making it simple to change a meter and to add and/or remove meters on the communication network), and which does not rely on an existing communication network. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a cover layer preferably to be applied on the sample side of optical ion sensors, and to a method of preparing such a layer.
In clinical applications of analytical chemistry optical sensors have become increasingly important over the last few years; among other advantages, they are easier to miniaturize than conventional electrochemical sensors.
Optical sensors, so-called "optodes", essentially are transparent substrates on which indicators based on absorption dyes or fluorescent dyes are immobilized both chemically and physically.
The functional principle of such sensors is based on the specific interaction between the species to be analyzed and the indicator, and on the subsequent changes in the light-absorbing or fluorescent properties of the indicator--depending on the type of indicator used. | {
"pile_set_name": "USPTO Backgrounds"
} |
Coking coals are in short supply, that is why one of the most urgent problems of blast furnace production is to replace the coke by fuel mixtures based on noncoking coals, e.g. by coal-dust fuel whose resources are sufficiently large. With utilization of such fuel mixtures, it is especially important to provide for the uniformity of their supply to blast-furnace tuyeres.
Known in the art is a method of supplying coal-dust fuel to blast furnace tuyeres (see N. E. Dunayev et al., Vduvaniye pylevidnykh materialov v domennye pechi, Moscow, "Metallurgiya," 1977, p.p. 96-97), comprising transportation of the above fuel to conical dividers, dividing the fuel flow therewithin into a plurality of flows, the latter being directed along outgoing pipelines to the blast furnace tuyeres.
In the given case fuel is distributed to the tuyeres in a non-uniform manner because the values of hydraulic resistances of drain pipelines are different.
Also known in the art is a method of supplying pulverized fuel mixture, disclosed in the description of operation of the apparatus according to U.S. Pat. No. 3,204,942 and comprising batch loading a discharging chamber with a pulverized fuel mixture and subsequent continuous transportation thereof by means of carrier gas through calibrated openings of a distributor dividing the fuel flow into a plurality of flows, following which said mixture is supplied along outgoing pipelines to blast furnace tuyeres.
It is obvious that utilization of calibrated openings in the given method provides for equalization of the values of hydraulic pressures within the pipelines thereby improving uniformity of fuel distribution to the tuyeres. However, with oscillations of pressure at the blast furnace tuyeres and with wearing or stopping up at least one of the outgoing pipelines, the uniformity of fuel distribution to the tuyeres is upset. The above fact results in formation of conduits within the blast furnace shaft, in deterioration of descent of charge materials, i.e. in upsetting the optimum processing condition of the melting process. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a percussion electrical hand-held tool such as a combihammer or a chisel hammer.
2. Description of the Prior Act
Percussion electrical hand-held tools, which apply blows to a working tool, because of their interaction with a workpiece and the hand-arm-system of the tool user, and because of the mass and stiffness distribution, have a very complex self-excitation. The resulting self-vibrations, in particular in the region of the tool handle, should be suppressed to a most possible extent. The technical expenditure associated with passive damping or active controlled vibration suspending systems, increases with complexity of the to-be-compensated self-excitation.
European Publication EP-0107628 discloses a chisel hammer having a reluctance motor freely projecting along a rotor axis forming an extension of an eccentric of the percussion mechanism, i.e., the motor is arranged completely on one side of the percussion axis. In this chisel hammer, the center of gravity, which is offset from the percussion axis toward the reluctance motor leads, as a result of interaction with a workpiece and with the hand-arm-system of the user, to bending torques, which are very complex and differ from axial vibrations. In addition, the reluctance motor, which is directly connected with the eccentric, necessarily rotates slowly and, as a result, has a high, for a reluctance motor, mass/power ratio.
European Publication EP-1238759 discloses a chisel hammer having a percussion mechanism, and a symmetrical, to a most possible extent, with respect to the percussion axis, radial mass distribution. In this chisel hammer, the percussion mechanism drive gear is arranged, with respect to the percussion axis, diametrically relative to a portion of the motor. The space requirement of the motor in the core region of the percussion axis necessitates constructively a large axial spacing from the eccentric, which leads to generation of bending torques.
Accordingly, an object of the invention is a percussion electrical hand-held tool having an analytically simple, to a most possible extent, excitation. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a wire connector that crimps, solders, and seals a pair of wires together.
2. Background of the Prior Art
Many devices have been proposed to electrically connect two wires together when the wires are in an end-to-end orientation. U.S. Pat. No. 5,514,836 to Delalle et al., U.S. Pat. No. 5,393,932 to Young et al., U.S. Pat. No. 5,278,354 to Lhomme, U.S. Pat. No. 4,940,179 to Soni, U.S. Pat. No. 4,881,995 to Arenz, U.S. Pat. No. 4,341,921 to Simpson, and U.S. Pat. No. 4,144,404 to De Groef et al., are all examples of such electrical connection devices.
These and other devices in the art suffer from one or more drawbacks. Many devices are relatively complex in construction making them expensive to manufacture and difficult to use. Some devices provide a relatively weak electrical connection that can, over time, fail. Some devices, although providing a sufficiently strong electrical connection, provide a relatively weak mechanical connection that can, over time, fail, resulting in failure of the electrical connection.
Therefore, there is a need in the art for a wire connector that electrically connects two wires in end-to-end orientation that overcomes the above-mentioned drawbacks. Specifically, such a wire connector must be of relatively simple design and construction, must provide a solid electrical as well as mechanical connection of the two wires, and must be easily installed. Ideally, the wire connector will also provide a good insulation seal about the wire connection point. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention refers to an electrical machine including a stator, which has magnetic flux conductors and a winding extending through said magnetic flux conductors, and a movable element, which is movable in relation to the stator.
Linear electrical machines are known in various connections, for instance as free-piston engines, i.e. an engine with a piston, which is mechanically freely movable in a cylinder housing. Consequently, there is no mechanical element, such as a connecting rod or a crank shaft, for the transfer of energy from the piston, but the kinetic energy of the piston is transformed directly to electrical energy by means of the linear electrical machine. Such a linear generator could, for instance, include a magnetic element in the piston and an electromagnetic element in the wall of the cylinder housing.
U.S. Pat. No. 5,788,003 discloses such a combustion engine of a free-piston type for driving a motor vehicle. The engine cooperates with an integrated electric generator, wherein the piston, which has an inner electrically conducting winding, is arranged to perform a reciprocating movement in relation to a surrounding outer winding. During operation, the outer winding produces a magnetising field, wherein electric effect is generated in the inner winding. The generated electric effect is obtained from the inner winding by a mechanical commutator, wherein the electric effect then may be used by an electric motor for driving the vehicle. Such a commutator is subjected to wear and has a limited life time.
U.S. Pat. No. 5,347,186 refers to a linear electric generator in which a magnet and a winding are provided to move in relation to each other. The relative movement of the winding in the magnetic field generates a current in the winding, which may be used by an external current circuit. This document describes the basic principles for magnetic induction, a phenomenon which has been known since very long ago. The new matter appears to be a member, which is intended to maintain a neutral position for the relative movement.
Conventional electrical machines operate according to the longitudinal flux principle, which means that the magnetic flux plane of each stator element is parallel to the moving direction of the rotor. SE-B-463 061 discloses an electrical machine, which operates according to the transversal flux principle. This known machine includes a rotor with a number of permanent magnets and a stator with a corresponding number of stator elements, which are provided in such a manner that the induced magnetic flux mainly follows a path perpendicular to the rotary direction of the rotor. The known machine is characterised by a high effect density, i.e. a high effect in relation to the volume of the machine is obtained. The document discloses rotary machines with a transversal flux. Certainly, a linear design is disclosed in the document but merely for an illustrating purpose. The document gives no information about how the transversal principle can be transferred to linear machines, and in particular not, to linear machines with an element describing a reciprocating movement in relation to the stator.
DE-A-198 11 075 discloses a linear electric machine having a stator with a plurality of magnetic flux conductors and a movable element with a number of permanent magnet elements. A closed winding path extends substantially in parallel to the moving direction of the movable element. Each magnetic flux conductor forms together with a permanent magnet element a closed magnetic flux circuit. The direction of the magnetic flux is the same in each circuit along the movable element, and thus the magnetic flux conductors are provided at a distance from each other, which corresponds to the width of a permanent magnet element.
The object of the present invention is to provide an improved electrical machine with a stator and a reciprocating movable element. In particular, it is aimed at such a machine with a high efficiency.
This object is obtained by an electrical machine including at least one first machine unit, which includes
a stator, which includes a plurality of magnetic flux conductors and an electric conductor forming a winding extending in a substantially closed winding path through each magnetic flux conductor, and
a movable element, which includes a number of permanent magnet elements and which is movable in a reciprocating movement in relation to the stator along a movement path in a space having a finite length and being formed by at least some of said magnetic flux conductors,
wherein the substantially closed winding path includes a first current carrying portion, which extends substantially in parallel with the movement path,
wherein each magnetic flux conductor is arranged to form, together with one of said permanent magnet elements, a closed magnetic flux circuit extending around said current carrying portion, and
wherein the magnetic flux conductors are arranged in an alternating order with respect to the direction of the magnetic flux in relation to the permanent magnet elements in the respective magnetic flux circuit.
By such a design, an electrical machine is obtained, which operates according to the transversal flux principle and which includes a reciprocating movable element that advantageously may form or be fixedly connected to a piston of a mechanical machine such as an engine or a pump. Thanks to the extension of the winding in a substantially closed winding path through each magnetic flux conductor of the stator, the total quantity of the winding may be reduced, which leads to small losses. Furthermore, the magnetic flux conductors of the stator may be arranged relatively closed to each other, which provides a high effect density with regard to the weight as well as the volume of the electrical machine. In such a way, a high efficiency of the electrical machine may be obtained. Thanks to the alternating order, it is ensured that the voltage induced in the winding at each point of time has the same direction, and that the voltage through the winding changes direction simultaneously for each magnetic flux circuit when the movable element moves in such a way that the permanent magnet elements moves one step with regard to the magnetic flux conductors.
According to an embodiment of the invention, each magnetic flux circuit includes a magnetic flux, which is in parallel with a plane extending substantially perpendicularly to the movement path. The distance between a centre point of adjacent permanent magnet elements may thereby be substantially equal to the distance between a centre point of adjacent magnetic flux conductors. In such a way, the electrical machine according to the invention will, along a certain length of the stator, include the same number of stator elements, i.e. magnetic flux conductors, as permanent magnet elements of the movable element. Consequently, a high effect density of the electrical machine is obtained. Such a design may be provided by arranging the permanent magnet elements in an alternating order with respect to the magnetic direction of the permanent magnet elements.
According to a further embodiment of the invention, each magnetic flux circuit includes a first gap between a pole of the permanent magnet element of the circuit and an end surface of the magnetic flux conductor of the circuit, and a second gap between a second pole of the permanent magnet element of the circuit and a second end surface of the magnetic flux conductor of the circuit. The permanent magnet elements may thereby be arranged in such a way that the magnetic direction extends substantially perpendicularly to the moving direction of the movable element in the movement path. In such a manner, it is possible to design the movable element with at relatively small width and height since the movable element does not require any substantial further components. The movable element may thus be given a low weight, which is an important advantage for a movable element describing a reciprocating movement.
According to a further embodiment of the invention, the movable element is connected to at least one piston, which is movably arranged in a housing. The electrical machine may in such way be utilised as an electrical generator, wherein the piston is moved in the housing by means of a combustion process in a manner known per se. The electrical machine may also be utilised as an electrical engine for driving a piston pump, for instance.
According to a further embodiment of the invention, the substantially closed winding path includes a second current carrying portion, which extends substantially in parallel with the movement path. In such a way, a very large part of substantially closed winding path may be utilised for current generation, and thus the losses are kept at a very low level. Furthermore, the first current carrying portion of the winding path is associated substantially with a first half of said magnetic flux conductors, and the second current carrying portion of the winding path is associated substantially with a second half of said magnetic flux conductors. Preferably, the permanent magnet elements of the movable element are arranged to co-operate with the magnetic flux conductors that are associated with the first current carrying portion, and the magnetic flux conductors that are associated with the second current carrying-portion.
According to a further embodiment of the invention, adjacent permanent magnet elements of the movable element are separated from each other by an intermediate element, which is substantially magnetically non-conducting. Thereby, the permanent magnet elements and the intermediate elements of the movable element may be arranged to form a structure, which resists the forces acting on the movable element during the use of the electrical machine. Such a design may preferably have the shape of an elongated rod extending between and connecting two pistons. Such a rod may thus be constructed from merely permanent magnet elements and intermediate elements in an alternating configuration. Moreover, adjacent magnetic flux conductors of the stator may be separated from each other by an intermediate element, which is magnetically isolating.
According to a further embodiment of the invention, the electrical machine also includes a second machine unit, which includes
a stator, which includes a plurality of magnetic flux conductors and an electric conductor forming a winding extending in a substantially closed winding path through each magnetic flux conductor, and
a movable element, which includes a number of permanent magnet elements and which is movable in a reciprocating movement in relation to the stator along a movement path in a space having a finite length and being formed by at least some of said magnetic flux conductors,
wherein the substantially closed winding path includes a first current carrying portion, which extends substantially in parallel with the movement path,
wherein each magnetic flux conductor is arranged to form, together with one of said permanent magnet elements, a closed magnetic flux circuit extending around said current carrying portion,
wherein the magnetic flux conductors are arranged in an alternating order with respect to the direction of the magnetic flux in relation to the permanent magnet elements in the respective magnetic flux circuit, and
wherein the first machine unit is arranged to operate in a first phase position and the second machine unit is arranged to operate in a second phase position displaced from the first phase position by a phase angle.
By such a further machine unit, the electrical machine may be designed as a two phase machine, wherein the two machine units may be displaced from each other by a suitable phase angle, for instance 90xc2x0. It is to be noted, that it is of course possible to design the electrical machine with several phases, for instance three phases, wherein the electrical machine includes three such machine units. The different machine units may be arranged beside each other in such a way that the movable elements are moving in parallel to each other. Thereby, it is possible to connect the movable elements of the different machine units to one or two common pistons or two separate pistons for each machine unit. The different machine units may also be arranged in a line after each other, wherein the movable elements are formed of a common elongated element such as one single rod. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is related to, although not limited to, the computer-disk drive interface. More specifically, the invention is related to an electronic hardware for the hot swapping of individual disk drives or disk arrays from a microcomputer.
With the rapid development of micro-computers and associated peripherals of higher performance at ever decreasing cost, operating systems with ever increasing functionality and reliability, numerous application software for easy creation of multi-media, content rich information and the explosive advancement of the Internet infrastructure for information delivery and sharing, micro-computer users now routinely demand that their hard disk drives sustain a tremendous data transfer rate while storing voluminous data. For example, one of the latest industry standard definitions of the computer-disk drive Interface, or I/F, is called ATA100, and it specifies a data transfer rate of 100 MB/s (Megabyte/sec) through an 80 wire flat data cable. Additionally, these hard disk drives must be quickly interchangeable with data security followed by easy I/O in the course of data transfer. Since the traditional practice for disk swapping of power cycling and rebooting of the micro-computer is still quite time consuming and prone to system reliability problems, an emerging market requirement for the process of disk swapping is that the micro-computer power supply stay on throughout the process, or the so-called hot swapping of disk drive. With this technique, the hard disk drive can now be easily plugged into and pulled out of the drive rack. In other words, the hard disk drive now behaves more like a removable hard disk.
As the speed of Central Processing Unit (CPU) of the micro-computer continues to increase without bound, the corresponding data transfer rate between a single hard disk drive and the host adapter needs to be improved to maintain the system data throughput. In fact, even at the data transfer rate of 100 MB/s, it is much too slow compared to the speed of CPU and has become the data bottleneck of the computer system. A natural solution for this problem is the deployment of disk arrays working in parallel to ease this data bottleneck. Consequently, the same market requirement of hot swapping also gets applied to the disk array.
Therefore, a solution is needed to allow, with secured access, the hot swapping of individual hard disk drives and disk arrays from a micro-computer while maintaining an ATA100 data transfer rate of 100 MB/s across the computer-disk drive interface, which is an industry standard definition of the computer-disk drive interface.
The first objective of this invention is to devise a technique that allows the hot swapping of individual hard disk drives and disk arrays from a micro-computer, thus effectively making the hard disk drive or disk array behave more like a removable hard disk or removable disk array.
The second objective of this invention is to devise a technique that allows the hot swapping of individual hard disk drives and disk arrays from a micro-computer wherein the computer-disk drive interface is the industry standard ATA100.
The third objective of this invention is to devise a technique that allows the hot swapping of individual hard disk drives and disk arrays from a microcomputer with secured access.
Other objectives, together with the foregoing are attained in the exercise of the invention pursuant to the following description and resulting in the embodiment illustrated in the accompanying drawings. | {
"pile_set_name": "USPTO Backgrounds"
} |
In existing such systems, the bus length is limited to 6.0 meters and the stubs have a maximum length of 0.1 meters. The terminators each comprise a resistance divider formed by a pair of resistors, conveniently 220 ohms and 330 ohms, respectively. Hence a voltage of 4.0 volts applied to the terminator will give a "high" voltage of 2.4 volts on the bus, giving a margin of 400 millivolts over a "high" level threshold of 2.0 volts.
Waves propagate along the bus at approximately 200 meters per microsecond, so it takes less than 1 nanosecond for an incident wave to transit a 0.1 meter stub. This stub-transit time is much less than the typcial wavefront rise-time of 8 nanoseconds minimum, so the 0.1 meter stub behaves like a capacitor and reflections are not a serious problem.
In some applications, however, stub lengths up to 0.5 meters are preferred. An example of such an application is the DV-1.TM. system by Northern Telecom Limited employing several shared resource units. With 0.5 meter stubs, the transit time approaches the wavefront risetime and reflections become a matter of concern. Experiments have shown that for high-to-low transitions the reflections die out quickly and the receiver input voltages remain below the "low" level threshold specified in the afore-mentioned specification. On the other hand, low-to-high transitions often produce reflections which drive the receiver input voltages below the "high" levels. This is more likely to occur, of course, when the terminator bias voltage is at its "worst case" low value.
It is desirable, therefore, to maintain the terminator bias voltage at near the supply voltage, usually 5.0 volts, thus providing a margin large enough to tolerate reflections without the receiver input voltage being driven beyond the threshold.
Known current drivers for SCSI (Small Computer Standard Interface) systems, comprise a plurality of silicon diodes each connected to a corresponding one of a plurality of 5.0 volts sources. The diodes are connected, each by a fuse, in common to the terminator's power terminal. This arrangement provides individual overcurrent protection and source isolation.
Such known arrangements are not entirely satisfactory since the voltage drop across the diodes leaves insufficient margin for reflections. For example, for an applied voltage V.sub.CC of 4.8 volts, and a typical voltage drop across the diode of 800 millivolts, the terminator voltage would be only 4.0 volts. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a wheel and, more particularly, to a conductive wheel for a cart, such as a shopping cart and the like.
2. Description of the Related Art
A conventional cart comprises a skeleton, a plurality of wheel brackets swivelably mounted on the bottom of the skeleton, a plurality of wheels rotatably mounted on the wheel brackets by a plurality of screw members, and a plurality of bearings mounted between the wheel brackets and the wheels. However, the bearings frequently contact with and rub the wheel brackets and the screw members to produce and accumulate static charges which are transferred through the wheel brackets to the skeleton so that when a user touches the skeleton, the static charges are conducted through the skeleton to the user's body, thereby easily causing an electrical shock to the user, and thereby causing danger to the user. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to wheelchair brake assemblies and particularly to an assembly which is actuated by movement of the wheelchair arm rest.
Conventional wheelchairs, including the type which are folded for storage purposes, are invariably fitted with hand-operated brakes. These brakes engage the main drive wheels of the wheelchair, and are applied by the user, or a helper, before the user is seated in the wheelchair so that the wheelchair is stabilized. The brakes are released by hand once the user is seated to permit the wheelchair to become mobile. They are reapplied when the user wishes to leave the wheelchair.
Brakes of this conventional type are adequate when the user is not seriously physically handicapped and is in complete control of his mental faculties. However, when the user is handicapped to the point of being unable to operate the hand brake when he is occupying the chair, or being unable to stoop to operate the hand brake before he occupies the chair, they are quite inadequate. A seriously handicapped user, attempting unaided to get into a wheelchair, which is not locked into a stationary position, is faced with a difficult and dangerous task. Further, an unbraked wheelchair, which is used as a temporary support to assist in walking also presents a serious hazard to the user.
Because of this, various attempts have been made to provide an alternative wheelchair braking system.
The most pertinent known disclosure of an alternative wheelchair braking system which relates to the use of an arm rest in the operation of the system, is to be found in U.S. Pat. No. 2,426,451. This system relies for its operation on the use of a wheelchair arm rest which is in the form of an overhanging strip metal spring having a layer of brake shoe material underneath it which directly engages the wheel.
The present brake assembly represents an improvement over this and other known systems as will now be described. | {
"pile_set_name": "USPTO Backgrounds"
} |
System on Chip (SoC) Circuits often have embedded clock sources, frequently a phases locked loop (PLL) that generates the clock signal. Although these PLL circuits are the standard way of providing an accurate clock signal, they have some drawbacks, particularly for applications, such as small form factor memory cards like the MicroSD cards, for example. One of these drawbacks is that such devices have very small size boards, so that it becomes difficult to find space for an external crystal oscillator, which is needed as reference clock for PLLs. Another is that if the use of a crystal could be eliminated, the cost saving can be significant for a high volume product. The relaxation oscillator is widely used clock source as an alternative to PLLs. The relaxation oscillator does not need external reference clock, but suffers from large output frequency variation mainly due to process dependence and so requires calibration. This calibration time could be long due to manual intervention and needs costly equipment like high bandwidth oscilloscopes. | {
"pile_set_name": "USPTO Backgrounds"
} |
Cloud systems which are accessed by clients by causing a data center to operate a server have increased more and more. The data centers of the cloud systems are often located geographically far away or abroad. Accordingly, in the cloud systems, there is a tendency that a round trip time (RTT) between a client terminal and a server becomes more significant.
In an environment with a large RTT, when a transmission control protocol (TCP) communication is carried out, dropping of data causes reduction of throughput. This is caused by TCP characteristics that a long time is taken until the throughput is recovered after the throughput has once been lowered due to occurring of congestion. In general, the TCP adjusts the throughput by changing the size of a congestion window (cwin) on the basis of the congestion.
The methods of controlling a congestion window in the TCP are broadly classified into two types. One type is a congestion control algorithm of enlarging the congestion window depending on the number of ACKs received from a destination and an example thereof is a scalable algorithm. The other type is a congestion control algorithm of increasing the congestion window depending on the elapsed time from the generation of congestion and an example thereof is a cubic algorithm.
Recently, as a countermeasure for improvement of the throughput in an environment with a larger RTT, devices such as a wide area network (WAN) speed-up device have been used. The WAN accelerator is a device improving a decrease in average throughput of the TCP by replacing the TCP of an end device with a protocol having a higher line utilization rate and performing a communication. The WAN accelerator may be a dedicated appliance or may be a virtual appliance which is virtually executed on a computer or the like.
For example, in a cloud system, a WAN accelerator A and a WAN accelerator B are arranged with a network such as a WAN line connecting a server and a terminal interposed therebetween. The WAN accelerator A temporarily terminates a TCP session accepted from the terminal. Then, the WAN accelerator A replaces data received through the TCP session with speeded-up protocol (hereinafter, also referred to as a high-speed protocol) data and transmits and receives the replaced data to and from the opponent WAN accelerator B. Thereafter, the WAN accelerator B restores the data transmitted to and received from the opponent WAN accelerator A through the high-speed protocol to the normal TCP data and transmits the restored normal TCP data to the server.
A protocol obtained by improving a user datagram protocol (UDP) to add a retransmission control function or a congestion control function thereto or a protocol obtained by more efficiently improving the congestion control function of the existing TCP is used as the high-speed protocol. For example, a UDT (UDP-based data transfer) protocol is known as the UDP based protocol. A CUBIC protocol or a Scalable protocol is known as the improved TCP. Particularly, the Scalable TCP is a protocol dedicated to a recent WAN line with a large RTT. Patent Document 1: Japanese Laid-open Patent Publication No. 2010-74279
However, in the related art, there is a problem in that it is difficult to improve the latency for communications of transactions requiring a quick response.
Specifically, the WAN accelerator according to the related art uses a high-speed protocol with the maximum average throughput for communications in which a large amount of data are transmitted like bulk transfer and ACKs are frequently returned.
For example, in the bulk transfer, expected performance can be achieved by using the Scalable TCP more than the Cubic TCP, because the enlargement of a congestion window is more aggressive and the average window size is larger. Since the Cubic TCP enlarges the congestion window with the elapse of time after the congestion window has been reduced due to the occurrence of congestion, much time is taken until the congestion window is restored to the original state. That is, much time is taken until the average throughput reaches a desired value.
From this point of view, the WAN accelerator according to the related art often uses the Scalable TCP as a high-speed protocol with the maximum average throughput. However, in burst transmission like transactions, since the number of packets is small and the number of ACKs is also accordingly small, it is difficult to achieve desired performance through the use of the Scalable TCP. That is, since the WAN accelerator according to the related art often uses the Scalable TCP, it is difficult to say that the latency is improved for transaction communications requiring a quick response. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is directed to new and novel highly efficient liquid compounds for cleaning of glass and the like and the method for making same. While principally aimed at the cleaning of windows, mirrors and other objects made of glass, these compounds have been found to be equally useful for the cleaning of polished chromium, stainless steel, porcelain enamels, ceramic, plastics and many other such items that may need to be cleaned of oil, grease, dirt and other contaminants in a similar manner.
Typical liquid type window cleaners presently on the market utilize a water based system, usually combined with solvents such as isopropyl alcohol, butyl Cellosolve (2-butoxy ethanol) and the like, to which is added a highly efficient surfactant.
In addition, most such formulations also contain a percentage of ammonia, plus perhaps a phosphate or other such substance, to further enhance grease cutting action.
Special care is taken in the compounding of such formulations to achieve a good balance between evaporation rate of the cleaner applied to the glass and absorption rate into the toweling. Any solids included, such as phosphates, must be limited in amount so as not to leave an objectionable residue on the glass surface. Of particular importance is the achievement of good lubricity so as to reduce the physical effort required by the user during the wiping and drying process as much as possible.
U.S. Pat. No. 3,463,735 issued to Stonebraker and Wise, Aug. 26, 1969, covers such a glass cleaning composition and appears to be typical, with minor variations, of most of the window cleaning liquids presently available on the market going under such trade names as WINDEX, GLASS PLUS, EASY-OFF, AJAX window cleaner, and the like.
The basic principle of operation of these prior art window cleaners is to thoroughly emulsifying the oil and grease with the water based cleaning solution, along with loosening any dirt and other contamination. This oil, grease and dirt laden solution is then hopefully wiped from the glass by means of the paper towel or cloth used to wipe the surface dry.
In actuality, it is extremely difficult to thoroughly clean the glass in this manner. Oil and grease, in particular, are difficult to transfer completely to the toweling and at least a portion of the contamination invariably becomes redistributed on the glass as a re-adhering film. The result is the oil and grease streaked window or mirror that almost everyone has experienced with these liquid type cleaners after thinking that a thorough cleaning job had been done. | {
"pile_set_name": "USPTO Backgrounds"
} |
Businesses typically use a wide variety of display systems to display products and related information to consumers. In order to draw attention to the products displayed and/or to assist the consumer in locating the particular product for which they are searching, additional signs or other indicating means are becoming increasingly important. Such signs are typically mounted to the display systems to indicate the type of product, brand of product, advertising, sale status indicator, department, or other information relating to the displayed products and generally helpful to the consumer.
The above-described signs are generally positioned to correspond with particular products placed upon shelves, pegs, or other display devices. Signs of this type should be securely mounted to the shelf or display system to prevent inadvertent removal of the sign from the display, be effective in communicating the indicated information such as the product type, brand name, logo, etc., to the consumer, be aesthetically pleasing to consumers so as not to distract from the product display itself, and be configured so as not to interfere with inventory or other display maintenance activities. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention in general relates to the field of chemical analysis, more particularly to nuclear magnetic resonance spectroscopy (NMR) and high-pressure liquid chromatography (HPLC), and still more particularly to a dual-function NMR probe capable of functioning in alternative modes with either a stationary-sample vessel (test tube) or a flow cell.
An NMR apparatus is most often characterized in gross by cylindrical symmetry. A typical NMR magnet is of the superconducting variety and is housed in a dewar which includes a room temperature cylindrical bore in which a very carefully controlled homogeneous magnetic field is sustained by operation of the superconducting magnet in the interior of the dewar. An NMR probe holds a sample placed in the uniform magnetic field. The housing for the probe is typically cylindrical to fit within the bore of the magnet and the sample is generally positioned along the central (longitudinal) axis of the probe. A coil is disposed close to the sample within the probe to apply radio frequency (RF) pulses to the sample. The resultant resonance signal of the sample is picked up by the coil and delivered to measurement electronics. The measurement electronics generate an output signal, and take the Fourier transform of the signal to obtain an NMR spectrum.
NMR spectroscopy has been used with both flow-through and stationary samples. In flow-through NMR, measurements are run as the sample flows through a sample cell. Flow-through NMR is particularly useful when coupled to a separation technique such as high-pressure liquid chromatography. In stationary-sample NMR, the sample is usually placed in a closed test tube, and measurements are performed while the sample remains in the test tube.
Typical NMR probes are customized for use with either flow cells or test tubes. An end user is not typically able to use the same NMR probe with both flow cells and test tubes. While test tubes are easily replaced in conventional systems, conventional NMR flow cell assemblies, including the NMR sample flow cell together with its various connectors and associated tubing for attachment to an HPLC, are delicate, difficult to handle and not well suited for removal or insertion in the field. Removal and insertion of such assemblies in the NMR probe are risky and expensive, at least in part because the flow cells and attached connectors are positioned and secured to the NMR probe within nested assemblies of coils, dewars, and support structures. Many present designs require significant mechanical interaction with these closely mated subassemblies. Electrical manipulations are often needed to exchange the flow cell, such as unsoldering and resoldering of the RF and pulsed field gradient coils. Some designs have RF circuitry directly attached and secured to the flow cells. There is an additional cost and risk associated with exchange of the flow cell in these designs because of the directly secured RF circuitry. Moreover, some manufacturers void a system""s warranty if the end user removes the NMR probe housing. As a result, an end user who needs to run both stationary-sample and flow measurements typically uses a separate NMR probe for each measurement type.
The present invention provides NMR probes, systems, kits and methods allowing the use of a single NMR probe with both flow cells and stationary-sample vessels. The present invention allows an end user in the field to conveniently and quickly convert a probe between flow and stationary-sample configurations, without removing the probe""s housing, RF coils, electrical connections, or other sensitive components.
The present invention provides a dual-function nuclear magnetic resonance (NMR) probe comprising a radio-frequency (RF) coil, an upper insulator held in fixed position above the coil, a lower insulator held in fixed position below the coil, and a guide tube held in fixed position below the lower insulator. The upper insulator has an upper longitudinal sample-holding aperture for sequentially centering a stationary-sample vessel and a flow cell in the radio-frequency coil. The upper sample-holding aperture has a tapered guiding section for guiding the stationary-sample vessel from above through the upper insulator. The lower insulator has a lower longitudinal sample-holding aperture aligned with the upper sample-holding aperture, for centering the flow cell within the radio-frequency coil. The guide tube serves to guide the flow cell from below through the lower sample-holding aperture. The stationary-sample vessel and the flow cell are present in the probe sequentially (alternatively).
In the preferred embodiment, the upper insulator comprises an outer part having a longitudinal inner bore, and a guiding/pressing ring mounted within the inner bore. The guiding ring defines the tapered guiding section of the upper sample-holding aperture. The tapered guiding section is preferably formed by a chamfer at an upper edge of the guiding ring, although generally the tapered guiding section can be situated within the guiding/pressing ring. The guiding/pressing ring further serves to flexibly press longitudinally on an insert coupled to the RF coil, for reducing the vibration or other undesired motion of the insert and RF coil. The guiding/pressing ring comprising an outer contact section for engaging the outer part of the upper insulator, an inner contact section for engaging the probe insert, and a longitudinally-flexible intermediate section flexibly connecting the outer section and the inner section of the ring.
At least two longitudinal flow-connection tube apertures formed in the outer part of the upper insulator serve to accommodate a flow connection tube through the upper insulator. The flow connection tube passes through one of the flow-connection tube apertures when the probe is in a flow configuration, and through both flow-connection tube apertures when the probe is in a stationary-sample configuration. In the stationary-sample configuration, the flow connection tube extends out from one of the flow connection tube apertures and into another of the flow connection tube apertures on an external side of the insulator.
In an alternative embodiment, to allow the use of the probe with flow cells and stationary-sample vessels of different transverse sizes, different centering rings are provided for insertion in the upper insulator in the stationary-sample and flow configurations. In the stationary-sample configuration, the upper insulator is formed by an outer part having a longitudinal inner bore, and a stationary-sample vessel centering ring positioned within the inner bore. The stationary-sample vessel centering ring centers the stationary-sample vessel in the radio-frequency coil. In the flow configuration, the upper insulator is formed by the outer part and a flow cell centering ring positioned within the inner bore. The flow cell centering ring centers the flow cell in the radio-frequency coil. The two rings are provided as part of a kit for conveniently converting the NMR probe between its stationary-sample and flow configuration. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to a microporous inkjet receptor that provides excellent images with pigmented inks deposited thereon in a manner that allows fast drying of the pigmented inks when it is dispensed.
Inkjet imaging techniques have become vastly popular in commercial and consumer applications. The ability to use a personal computer and desktop printer to print a color image on paper or other receptor media has extended from dye-based inks to pigment-based inks. The latter provide brilliant colors and more durable images because pigment particles are contained in a dispersion before being dispensed using a thermal inkjet print head, such as those commercially available from Hewlett Packard Corporation or LexMark Corporation in inkjet printers commercially available from Hewlett Packard Corporation, Encad Inc., Mimaki Corporation, and others.
Inkjet printers have been in general use for wide-format electronic printing for applications such as, engineering and architectural drawings. Because of the simplicity of operation, economy of inkjet printers, and improvements in ink technology the inkjet imaging process holds a superior growth potential promise for the printing industry to produce wide format, image on demand, presentation quality durable graphics.
The components of an inkjet system used for making graphics can be grouped into three major categories:
1 Computer, software, printer.
2 Ink.
3 Receptor sheet.
The computer, software, and printer will control the size, number and placement of the ink droplets and will transport the receptor film. The ink will contain the colorant or pigments which form the image and the receptor film provides the medium which accepts and holds the ink. The quality of the inkjet image is a function of the total system. However, the composition and interaction between the ink and receptor film is most important in an inkjet system.
Image quality is what the viewing public and paying customers will want and demand to see. Many other demands are also placed on the ink jet media/ink system from the print shop, such as rapid drying, humidity insensitivity, extended shelf life, waterfastness and overall handleability. Also, exposure to the environment can place additional demands on the media and ink (depending on the application of the graphic).
Porous membrane is a natural choice to use as an ink jet receptive media because the capillary action of the porous membrane can wick the ink into the pores much faster than the absorption mechanism of film forming water soluble coatings. However, in the past, when a porous coating or film has been employed to achieve desired quick dry, optical density has suffered greatly because the colorant penetrates too deep into the porous network. This type of problem is magnified by printers that dispense high volumes of ink per drop because extra film thickness may be required to hold all the ink. When the pore size and pore volume of the membrane are opened to allow the pigments to penetrate, the pigments can be stratified in the membrane. Meaning, the black, cyan, magenta, and yellow will be predominately found at different depths depending on the order of application. Hence, some of the first color(s) applied is /are optically trapped in the image by subsequent application of other pigmented ink. Furthermore, lateral diffusion of the ink can also be a problem inherent in porous membranes used as receptive media. When pigmented inks are jetted onto a porous film that has a pore size that is too small, color pigments will be filtered on the top of the membrane rendering high image density, but the pigments could easily smear and have the effect of never drying. Also, excess fluid from the ink can coalesce, or even worse, pool and run on the image before the water/glycol carrier is wicked away.
The chemical formulation of the pigmented inkjet ink has considerable complexity due to the requirement of continued dispersion of the pigment particles in the remainder of the ink and during jetting of the ink.
The typical consumer medium for receiving dye-based inkjet inks has been paper or specially coated papers. However, with too much inkjet ink in a given area of the paper, one can see the over-saturation of the paper with the aqueous ink in which dye was dissolved.
As inkjet inks have become more commercially oriented and pigmented-based inks have become more prevalent, different media have been tried in an attempt to control the management of fluids in the ink.
Japanese Patent JP 61-041585 discloses a method for producing printing material using a ratio of PVA/PVP. The disadvantage is inadequate waterfastness and wet rub off properties.
Japanese Patent JP61-261089 discloses a transparent material with cationic conductive resin in addition to a mixture of PVA/PVP. The material is water fast and smudge proof but the wet rub off properties are poor.
European Patent Publication EP 0 716 931 A1 discloses a system using a dye capable of co-ordinate bonding with a metal ion in two or more positions. Again binder resins are used with inorganic pigments in the paper or film. The metal ion was preferred to be jetted on before imaging and additional heating is necessary to complete the reaction. This system was not claiming to be water fast, the focus was long term storage without fading from heat or light.
U.S. Pat. No. 5,537,137 discloses a system to achieve waterfastness by curing with heat or UV light. In the body of the patent, examples of their coatings contained Ca++ from CaCi2. This was added to provide reactive species for the acid groups on the dispersed polymer. The coating remains water soluble until UV or heat curing after imaging.
Hence, the current special ink jet media employ absorptive components, and sometimes optional additives to bind the inks to the media. As a consequence current media are inherently moisture sensitive and can be fragile to handling and subject to finger smearing. Moreover, the vehicle absorptive components usually consist of water soluble (or swelling) polymers which result in slower printing speeds and dry times.
Pigmented ink delivery systems have also dealt with pigment management systems, wherein the resting location of the pigment particles are managed to provide the best possible image graphic. For example, copending, coassigned, U.S. Pat. No. 5,747,148 (Warner et al.), now allowed, discloses a pigment management system in which a suitable supporting layer (including in a listing a microporous layer) has a two layer fluid management system: a protective penetrant layer and a receptor layer, both layers containing filler particles to provide two different types of protrusions from the uppermost protective penetrant layer. Electron microphotographs in that application show how the pigment particles of the ink encounter smooth protrusions that provide a suitable topography for pigment particle xe2x80x9cnestingxe2x80x9d and rocky protrusions that assist in media handling and the like.
Other ink receptors have been disclosed, including U.S. Pat. Nos. 5,342,688 (Kitchin); 5,389,723 and 4,935,307 (both Iqbal et al.); 5,208,092 (Iqbal) 5,302,437 (Idei et al); U.S. Pat. No. 5,206,071 (Atherton et al.); and EPO Patent Publication 0 484 016 A1.
One prior activity has combined a fluid management system with a pigment management system, as disclosed in copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Attorney Docket No.53473USA1A), the disclosure of which is incorporated herein by reference. This work solves the need for an ink jet receptor to have both a pigment management system for flocculating or agglomerating incoming ink and a fluid management system for efficiently dispensing with the carrier fluids within a porous substrate.
It has been found that inkjet receptor media requires durability for exposure to a variety of solvents, most often water in the form of humidity, rain, dew, snow, and the like.
It has also been found that pigment particles in aqueous inkjet ink formulations require time to establish a stable relationship with the medium upon which they have been deposited during inkjet printing.
It has been found that pigment-based inks are not completely rapidly free from smudging when it is dispensed onto a porous inkjet receptor medium, even if such receptor medium is impregnated with both a fluid management system and a pigment management system.
What the art needs is an inkjet receptor medium that assures rapid drying of the ink reflected in a bleed-free, feathering-free and smudge-free image whereby the ink is restrained onto and in the medium so that the image is dry and stable, particularly when the printed medium is likely to be exposed to water or other solvents shortly after printing.
Furthermore, the art needs an inkjet receptor medium that contains such ingredients, components or compounds to effectively interact with certain components such as the humectants of the inks being used so that a completely dry image surface is obtained after printing.
Furthermore, the art needs a drying agent for rapidly drying a printed inkjet image on a receptor medium. xe2x80x9cDrying agentxe2x80x9d means an agent, component, ingredient or compound which can dry or make the pigment feel dry to touch via chemically or physicochemically occlusion or interaction with certain components such as the humectant or other slow drying components in the pigmented inks used in printing the image onto the receptor medium. Specifically, xe2x80x9cdry to touchxe2x80x9d means, an indistinguishable xe2x80x9cfeelxe2x80x9d between the imaged and the unimaged areas of the substrate regardless of whether, technically, all volatiles have evaporated from the imaged area.
One aspect of the present invention is a drying agent for inkjet receptor media,comprising an aromatic or aliphatic acid having sulfonic, carboxylic, phenolic or mixed functionalities thereof, which in combination with a multivalent salt and a surfactant is capable of drying the medium in a manner to obtain a smudge-free rapidly dried image onto and in the medium when the image is printed. The aromatic acid can be heterocyclic. Preferably, the acid can be a sulfocarboxylic or sulfophenolic acid. Preferably, the invention provides its best features and advantages in wide-format inkjet printers, e.g., Hewlett Packard Corporation (HP) brand 2500 series printers that operate on low ink-drop volume. xe2x80x9cLow drop volumexe2x80x9d for this invention means below 70 picoliters per drop.
One feature of the present invention is an aromatic or aliphatic sulfocarboxylic or sulfophenolic acid such that when the medium is impregnated with such composition and dried, the image becomes rapidly smudge-free.
Other features and advantages of the invention will be disclosed in relation to the embodiments of the invention.
Inkjet Receptor Medium
The inkjet receptor medium can be any porous membrane or film known to those skilled in the art wherein it is desired to print inkjet inks on at least one major surface thereon. Preferably, the medium comprises an inkjet receptor medium, comprising a porous substrate having a fluid management system and having a pigment management system in contact with surfaces of pores of the substrate therein, such as disclosed in copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Attorney Docket No. 53473USA1A), the disclosure of which is incorporated herein. The pigment management system includes a multivalent metal salt coating or functionalized particulates impregnated in pores of the porous substrate such that they are in contact with surfaces of pores of the porous substrate. One embodiment of that medium is an inkjet receptor comprising a microporous membrane impregnated with a multivalent metal salt together with a surfactant or combination of surfactants chosen for the ink and membrane being employed.
Another embodiment is an inkjet receptor comprising a microporous membrane impregnated with a microporous fluorinated silica agglomerate together with a binder and a surfactant or a combination of surfactants for the ink and membrane being employed.
Another embodiment of the present invention is an inkjet receptor comprising a microporous membrane impregnated with a microporous fluorinated silica agglomerate together with a binder and a surfactant or combination of surfactants wherein the surfactants are selected from the group of hydrocarbon-based anionic surfactants, silicon-based non-ionic surfactants or fluorocarbon-based non-ionic based surfactants or a combination thereof.
These receptors, when imaged in an inkjet printer, provide very high density and very high quality images which are tack-free and instantaneously dry to touch.
The ink colorant is typically a pigment dispersion having a dispersant that binds to the pigment and that will destabilize, flocculate, agglomerate, or coagulate the pigments on contact with the media component. Depositing each of the colors at or just below the surface of the membrane allowing the carrier fluid to wick into the membrane where the fluid management system can take over while providing a sheltered location for the pigments as managed by the pigment management system.
More preferably, the inkjet receptor medium uses a Thermally Induced Phase Separated (T.I.P.S.) microporous membrane according the disclosures of U.S. Pat. Nos. 4,539,256 (Shipman et al.), U.S. Pat. No. 4,726,989 (Mrozinski), and more particularly U.S. Pat. No. 5,120,594 (Mrozinski), and available from 3M. For optimization, the pore size and pore volume of the porous film can be adjusted for the model or make of the ink jet printer to correctly hold the volume of ink dispensed by the printer ensuring the highest possible image quality. The coating on the preferred media/ink set has special utility in the demanding ink jet printing applications found in commercial printing. Thus, one can xe2x80x9cfine tunexe2x80x9d the properties of these receptors to deal with the variables of inkjet ink delivery, including without limitation: porosity of media, pore size, surface wetting energy, and other capacity issues for media to receive ink of various formulations and drop volumes. Moreover, these media exhibit a complex porosity in its porous material that provides both a tortuous path for fluid management and a tortuous path that ensnares the pigment initially and continually during ink delivery.
Pigment Drying agents
Pigment drying agents useful in the present invention can be an aromatic or aliphatic acids having sulfonic, carboxylic, phenolic or mixed functionalities thereof.
Preferably, aromatic sulfonic and carboxylic acids have been found in this invention to be very effective in the presence of multivalent metal salts and suitable surfactant and binder, to serve as drying agents for inkjet receptor media. These acids can be of various types, chosen according to properties and distinguished by extent of their solubility in water and how that solubility affects drying performance.
At one end of the range of candidate acids, their higher solubility in water can interfere with other components in the media, such as a migration inhibitor as disclosed in copending, coassigned, U.S. patent application Ser. No. 09/099,956 (Attorney Docket No. 54191USA7A) thereby perhaps requiring a greater concentration of drying agent to be included in the coating. One example of this type of acid is a sulfocarboxylic acid such as sulfosalicylic acid.
At the other end of the range of candidate acids, the candidate acids with lower solubility in water would perform the drying function excellently but could require more aggressive solvent(s) to be impregnated into the media. One example of this type of acid is a phthalic acid so long as it is recognized that impregnating the receptor media will be more challenging because of the acid""s lower solubility. To overcome impregnating limitations, lower solubility acid candidates, such as aromatic carboxylic acids, can be derivatized to become a monosodium salt (or any other similar alkali metal salt), the solubility of that salt in water is enhanced. One example of this type of acid-salt is an aromatic carboxylic acid, sodium salt such as ortho-phthalic acid-sodium salt. Furthermore, the aromatic carboxylic acids are also sufficiently soluble in water when the aromatic moiety contains at least one sulfonic acid group attached to the aromatic ring either as acid or as its sodium salt (or other alkali metal salts). Two examples of these candidates are 5-sulfoisophthalic acid and also its monosodium salt.
Other functional groups such as xe2x80x94OH group can be attached to the aromatic moiety to increase the solubility of the aromatic carboxylic group. Examples in this category are hydroxy-aryldicarboxylic acid isomers.
A related factor to choice of lower water solubility candidate acid is the amount of the acid to be included in the receptor media. The relationship is generally such that the lower solubility acid candidates are needed in smaller amounts than the higher solubility acid candidates. Generally, an acid used in the present invention can be present in the receptor medium in an amount ranging from about 1 to about 20 weight percent of the total coating weight of compositions with which the medium is impregnated with a fluid management system/pigment management system according to the disclosure of copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Waller et al.) Attorney Docket No. 53473USA1A), the disclosure of which is incorporated by reference herein. Preferably, the amount ranges from about 4 to about 15 weight percent. Thus, a sodium salt of an aromatic sulfocarboxylic acid should be present in an amount in the higher end of the range (e.g., about 15 weight percent), whereas a carboxylic acid should be present in an amount in the lower end of the range (e.g., about 5 weight percent).
Moreover, free acid and salt forms of that acid can be combined for controlled tailoring of impregnation processing and resulting drying performance.
The acid or its salt can be impregnated into the media by adding it to a coating solution otherwise being impregnated into the media for fluid management and pigment management purposes. Suitable coating solutions and impregnation techniques are disclosed in copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Attorney Docket No. 53473US1A), the disclosure of which is incorporated by reference herein, for coating on the inkjet receptor medium. Typically, the coating solution comprises a multivalent, a suitable surfactant, an alcohol and water. The weight percent of the acid/salt being used usually ranges from about 40 to about 60 weight percent and more preferably from about 45 to about 55 weight percent of the total solids in the composition.
The organic aromatic acids and their salts can be represented by the following general formula:
a: R1, R2, R3 may be xe2x80x94COOH, xe2x80x94SO3H or xe2x80x94OH groups and combination totaling 3-5 groups. R4 may be H. The acid functional groups may be in their alkali-metal salt form.
b: R4 may be another aromatic group linked via a xe2x80x94(CH2)nxe2x80x94, xe2x80x94Oxe2x80x94, xe2x80x94Sxe2x80x94, xe2x80x94NHxe2x80x94, xe2x80x94NHCOxe2x80x94, xe2x80x94COxe2x80x94bridge wherein n may vary from 0-3 and the second aromatic group may contain the same functionalities (R1, R2, R3) totaling 3-5 groups as the first aromatic group.
c: R4 may represent a part of a condensed aromatic system (a fused ring or rings, e.g., anthracene, phenanthrene etc).
The organic aliphatic acids used in the present invention can be represented by the following general formula:
a: R1, R2, R3 may be xe2x80x94COOH, xe2x80x94SO3H or xe2x80x94OH groups and combination thereof totatling 2-3 groups in the chain R4 may be H. The acid functional groups may be in their alkali-metal salt form.
b: R4 may be an aryl group containing sulfonic or sulfocarboxylic or sulfophenolic acid groups, their alkali metal salts, or combination thereof.
Nonlimiting examples of acceptable aromatic acids are sulfosalicyclic acid, disulfosalicylic acid, sulfophthalic acid, sulfoisophthalic acid, sulfoterephthalic acid, disulfodicarboxylic acid, sulfophenolic acid, hydroquinone sulfonic acid, hydroquinone disulfonic acids, sulfocarboxyphenolic acid, 5-hydroxy-phthalic acids, and the like. Also, the acids can be used in the present invention as their alkali metal salts (e.g., mono-, dicarboxylate or -sulfonates or phenolate). The di-, tri- and their higher homologues of the acids tend to be less soluble in water than both in their acid and mono-alkali-metal saltform. It is desirable that mono-, di- and tricarboxylic acids be used either as acids or their alkali-metal salts.
Additionally, aliphatic acids are candidates for use in the present invention because of their solubility in water. Non-limiting examples of these acids are sulfosuccinic acid, disulfosuccinic acid, aryl-succinic acid, sulfofumaric acid, disulfofumaric acid, succinic acid containing sulfobenzoic or sulfoarylcarboxylic acid groups, fumaric acid containing sulfobenzoic or sulfoarylcarboxylic acid groups, their respective salts, and the like.
Alternatively, heterocyclic acids can be used. Nonlimiting examples of such acids include pyrridine carboxylic acids (such as picolinic acid, pyrridine dicarboxylic acid, and the like); pyrrolidone carboxylic acids (such as 2-pyrrolidone-5carboxylic acid).
Optional Additives
Pigment migration inhibitors can be used in the present invention as an optional additive. These inhibitors can be homopolymers or copolymers having any number of hydrophilic monomers, each of whose homopolymers are hydrophilic, so long as the resulting copolymer is sparingly soluble in water. Pigment migration inhibitors are futher disclosed in copending, coassigned, U.S. patent Application Ser. No. 09/099,956(Attorney Docket No. 54191 USA7A), the disclosure of which is incorporated herein by reference.
Nonlimiting examples of hydrophilic monomers are methacrylic, ethacrylic acids, acrylic acid, N-Vinylphthalimide, Vinylimidazole, Vinylpyridine and N-vinyl-2-pyrrolidinone, with the last and acrylic acid being presently preferred. The homopolymer is a polyvinylpyrrolidinone (PVP) of relatively high molecular weight available from commercial sources.
Other ink receptive copolymers that are sparingly soluble in water include a copolymer of N-vinylpyrrolidone, acrylic acid, and trimethoxysilylethylmethacrylate (80/10/10); a copolymer of N-vinylpyrrolidone, acrylic acid, trimethoxysilylethylmethacrylate, and ethyleneoxide acrylate (75/10/5/10); a copolymer of N-vinylpyrrolidone, acrylic acid, and N,N,N-methyloctylheptadecafluorosulfonylethylacrylate (MeFOSEA) (80/10/10); a copolymer of N-vinylpyrrolidone, acrylic acid, trimethoxysilylethylmethacrylate and N,N,N-ethyloctylheptadecafluorosulfonylethylacrylate (MeFOSEA) (83/10/2/5); and); a copolymer of N-vinylpyrrolidone, acrylic acid, and Sulfonated Styrenexe2x80x94Sodium Salt (60/10/30).
Further information about these optional additives can be found in copending, coassigned, U.S. patent application Ser. No. 09/899,983 (Attorney Docket No. 54190USA9A), the disclosure of which is incorporated by reference herein.
The role of aluminum sulfate and dioctylsulfosuccinimate-sodium salt has previously been described for fluid management and pigment management in a microporous membrane in copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Waller et al.) (Attorney Docket No. 53473USA1A), the disclosure of which is incorporated by reference herein. These pigment management and fluid management systems are particularly useful for wide-format printers operating on high drop volume (xcx9c140 picoliter) e.g., an Encad-Novajet brand printer. The drying agents of the present invention are not as needed for these high drop volume-high drop size printing requirements.
However, as new printers become available with lower drop volumes and lower drop sizes, but more drops per unit area, (also known as dots per inch or xe2x80x9cdpixe2x80x9d forming a higher resolution image graphic), such as Hewlett Packard Corporation printers operating on a 30 picoliter drop volume or even smaller than that, the pigmented ink forming the higher resolution image graphic does not dry as rapidly as desired. The drying agents of the present invention, introduced into the same coating solutions as those used to provide the fluid management and the pigment management provide the unexpected advantage of drying to-the-touch pigmented ink nearly instantaneously, fundamentally expanding the opportunity toward even higher resolution image graphics that will not become distorted with physical contact against the image shortly after printing. Thus, this invention improves upon pigment management of the prior copending, coassigned, U.S. patent application Ser. No. 08/892,902 (Waller, Jr. et al.) (Attorney Docket No. 53473USA1A). The drying agents of the present invention induce more rapid stabilization of the pigment particles of the image graphic in and on the microporous membrane otherwise containing the fluid management system and the pigment management system until the advantages of the pigment management system and, optionally, the migration inhibitor can commence. The present invention solves a problem of pigment particle stabilization through interaction with ink components such as humectants that are required for proper passage of the ink through the printing head of the inkjet printer. While not limited to a particular theory, it is believed that drying agents of the present invention interact with humectants through chemical reaction to form esters that do not facilitate smudging of the image graphic. It is believed that, left unreacted, humectants residing in the image graphic will continue to permit smudging because of their low vapor pressure as well as inherent hydrophilicity that will continue to affect the image graphic in high humidity environments even if there is no actual physical contact with the image graphic. An ester formed from the combination of the drying agent and the humectants lacks sufficient hydrophilicity and reduces those properties of the humectant that are no longer needed once the image graphic has been printed. As a result, the potential for the image to smudge is significantly reduced. Moreover, the degree of dryness is, to a large extent, is determined by the type of functional groups attached to the aromatic ring of the drying agents of the present invention, other than the carboxylic groups on such ring. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to the field of dust removal from air, and, more particularly, to a new air filtration system for use in combination with an industrial sweeping and collection device for filtering dust from air pulled by high speed air flow through the collection device before exhausting the air therefrom.
Heretofore, industrial sweeper and scrubber machines existed for cleaning of large areas such as railroad tracks and pavement surfaces. In operation of such machines dirt and debris were collected by various means and mechanically or otherwise moved to a bin or hopper for temporary storage or transport. These machines traditionally had no provision whatsoever for dust control. Accordingly, the large quantities of airborne dust inherently created in such cleaning operations were an inconvenience and a health hazard for the operator of the machine, as well as other persons in the nearby vicinity of its operation.
With the advent of workers' compensation and clean air laws, as well as generally increased public health awareness, it has become desirable to include in industrial scrubbing and sweeping equipment some adaptation for eliminating fugitive dust raised in the sweeping operation, for the health of the operator of the equipment as well as to keep air pollution generally at a low level. One such adaptation was to use large quantities of water to dampen the surface being cleaned. This method proved to be messy and wasteful of both water and fuel. Water sprayed on the surface created mud that remained as the sweeper moved on, and increased fuel was necessary to transport the water.
Thus it was desired to develop a dust control system which did not make use of water and which was adaptable at least to some pre-existing sweeper machines. Previously, air filtration systems of various types have been known for use in particular industrial situations. Some industrial applications, including for example, certain railroad track and pavement sweepers, as well as some mining operations have used drum-type pleated paper filters with limited success.
These known filtration systems all have suffered from certain drawbacks which have made use thereof at least troublesome and inefficient. Of particular concern have been limitations on air flow rate through the filters and clogging of the filter media with fine particulate matter which is filtered from the system's exhaust air flow. Of course, as the porous membrane of a filter becomes blocked the flow of air therethrough becomes less and less efficient until the filter becomes essentially non-functional.
And, although previous attempts have been made at developing air filtration systems in which the filter media can be purged by backward flushing with bursts of air, to clear the media pores of blockage, these attempts have been unsatisfactory with regard to the thoroughness of the purging and the overall efficiency of the air filtration system, particularly in terms of volume of air filtered per unit time.
Accordingly, the new air filtration system addresses these past problems by provision of a particular arrangement of redesigned filter units mounted within a debris collection hopper having a unique wall arrangement therein which is particularly advantageous when used in combination with such redesigned filter units. Further, the new design of the barrel-type air filters and the particular arrangement thereof, along with a purge air diffuser adaptation, permits the filters to be much more thoroughly purged than previously possible. Consequently, the enhanced filter purging permits the new air filtration system as a whole to be much more effective in cleansing large volumes of air drawn through the sweeper unit.
Thus, it is an object of the present invention to provide an air filtration system for use in a sweeping device, which filtration system provides superior cleansing of a large volume of air at a high rate of speed on a constant basis while using a minimum amount of filtration substrate material.
It is further among the objects of the present invention, having the features enumerated, that means are provided for particularly proficient purging of the filters of the new system by selectively timed, strong bursts of air in a flow direction opposite to the normal filtration air flow direction.
It is also among the objects of the present invention, having the above-mentioned features, that the new air filtration system be structured in a such a manner as to enable improved economy of manufacture thereof.
Accordingly, in furtherance of the above objects, the present invention is, briefly, an air filtration system for use in capturing fugitive dust in industrial sweeping operations. The system includes a hopper having internal structure for causing change in the direction of flow of suction air which enters the hopper along with debris collected during an industrial sweeping operation. The system also has a plurality of filters disposed within the hopper for filtering the suction air. Each one of the plurality of filters has filter media therein which can be repeatedly purged for cleaning and continuous reuse thereof. And the system is adapted for providing repeated purging blasts of air to the plurality of filters. Also in the system is structure associated with each one of the plurality of filters for causing the purging blasts of air to clean substantially the entire filter media of each one of the filters, and structure for creating suction air which is pulled through the hopper and the filters disposed therein before exit of the suction air from the hopper substantially free from debris, particulate matter and fugitive dust which is collected by the system.
The invention is also, briefly, the system described wherein the hopper is enclosed and has a right side wall and a left side wall, with respect to the position of an operator of the system, a front wall and a rear wall, a floor and a roof, and wherein the internal structure in the hopper for causing change in direction of the suction air includes an arrangement of walls disposed within the hopper in transverse relationship to the longitudinal axis thereof.
The invention is further, briefly, the system described, wherein the arrangement of walls includes a first wall, a second wall and a third wall disposed in relationship to each other so as to cause the suction air flow to change in direction to such a degree as to, in combination with the effect of gravity, cause large pieces of debris and relatively smaller particulate matter to be removed from the flow of suction air prior to contacting the plurality of filters disposed within the hopper.
Moreover, the invention is, briefly, for use in an industrial sweeping apparatus for capturing fugitive dust created by the sweeping process, wherein the sweeping apparatus has debris collection structure for transfer of debris from a sweeping portion to a hopper portion, and an air filtration system which includes structure for creating suction air flow, structure for changing the direction of suction air flow, to thereby enhance removal of large debris and particulate matter from the suction air, filters for removal of dust and fine particulate matter from the suction air flow, structure for automatically purging the entire filters of dust and fine particulate matter removed from the suction air flow, and structure for removing the filtered suction air from the system.
Further objects will be in part apparent and in part pointed out hereinbelow. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a device which can be used to separate from each other a plurality of similar articles which are adjacent to each other.
More particularly, the present invention relates to a device which is particularly suitable for separating from each other the rolls of a series or plurality of rolls of wound-up webmaterial, for example of the type produced by what is known as a rewinding and cutting machine, or rolls of cardboard produced by a cutting machine, rolls of printing paper, rolls of adhesive tape or other.
In the paper converting industry use is made of machines for producing rolls of paper material, for example rolls of toilet paper of relatively large diameter, usable in dispensers or feeders for communal areas, public premises or similar. These machines unwind the webmaterial from an initial reel having a large axial length, and cut the webmaterial by means of normally rotating cutters located along the path of the advance of the strip, to produce a plurality of bands of webmaterial with a width equal to the axial length of the finished rolls. The individual bands are then wound into a plurality of rolls which are axially aligned with each other and which must then be sent individually to the packaging machines.
Machines of this type are produced by the applicant and marketed under the trade name of xe2x80x9cRodina 57.00xe2x80x9d and xe2x80x9cRodumat 58.00xe2x80x9d. Similar machines are produced, for example, by Jageneberg of Germany, and marketed under the name xe2x80x9cVari-Durxe2x80x9d.
One of the problems found in these machines is due to the fact that the bands of webmaterial tend to deviate in the area between the cutting and the winding, thus causing a partial overlapping and consequent interconnection of adjacent rolls caused by the partial penetration of the turns of one roil into those of the adjacent rolls. This causes problems in the subsequent packaging stages, since interconnected rolls cannot be packaged.
Similar problems occur, for example, in machines called cutting machines for producing rolls of cardboard from strips of cardboard of greater length, or in machines for producing paper rolls for calculating machines or other office machines. Similar requirements may also arise in the adhesive tape industry, where the rolls of adhesive tape are produced by longitudinal cutting and rewinding from reels of large axial length.
For separating rolls of paper material from each other, there are existing devices with rotating blades which act in a direction orthogonal to the advance of the rolls. These devices are not versatile and have considerable disadvantages in operation.
The object of the present invention is to provide a device which can be used to avoid the problems occurring at the packaging stage and which can be used to separate efficiently from each other the rolls produced by a rewinding and cutting machine or other similar machine.
More generally, the object of the present invention is to provide a device which can be used to separate efficiently from each other two or more similar articles which are adjacent to each other and may be partially adhering to each other.
These and other objects and advantages, which will be clearly understood by those skilled in the art from the reading of the following text, are essentially achieved by means of a device for separating from each other a plurality of objects which are adjacent to each other and are being fed in a direction of advance along an advance path, comprising a member which is rotatable about an axis of rotation and is positioned, with respect to the direction of advance, in such a way that it interferes with the articles fed along said advance path, the peripheral velocity of said rotatable member at the point of contact between said member and said articles having a component substantially matching the direction of advance of the articles.
The rotatable member strikes the areas of the individual articles approximately opposite the areas with which they rest on the advance path, in such a way as to force the individual articles to detach themselves from each other and also, if necessary, to tilt. The lower support terminates upstream of the point at which the rotatable member acts on the individual articles. The detachment is the result of a combined action of the thrust of the rotatable member and the end of the lower support. A device of this type is particularly advantageous if it is located at the discharge end of a rewinding and cutting machine or other machine capable of simultaneously producing series of rolls of wound-up webmaterial, from individual bands of material which are fed in parallel paths. Preferably, the axis of rotation of the rotatable member is orthogonal to the direction of advance of the articles.
In a particularly advantageous embodiment of the invention, the rotatable member comprises a wheel carrying a plurality of rollers arranged with their axes parallel to the axis of rotation of the wheel and positioned around a circumference whose center is on the axis of the wheel. The individual rollers strike adjacent articles which are advancing along the advance path, to push them apart from each other. The surface of the rollers may advantageously be shaped to match the shape of the articles. In the case of rolls of webmaterial, it is advantageous for the rollers to have a concave profile, and for the axial cross-section of the profile to have a radius of curvature equal to or slightly greater than the radius of curvature of the rolls. In the case of a device suitable for operating on rolls of variable diameter, the profile of the curve defining the outer surface of the concave roller may be equal to or greater than the maximum radius of the rolls to be handled.
In a particularly advantageous embodiment of the present invention, the rollers are supported so that they are free-running on said wheel. One result of this is to avoid the risk of damaging the articles on which the rollers act. This is particularly useful in the case of articles consisting of rolls of paper, for example tissue paper, such as rolls of toilet paper or similar products.
The rollers are preferably individually removable from the rotatable member. Additionally, this member is rotated by an actuator which allows the rotation speed to be modified (at least within certain limits). In this way it is possible to match the device to articles of various sizes. In the case of rolls of wound-up webmaterial, it is possible to arrange for each roll to be struck at least once by the rotatable member, in other words by one of the rollers supported by the aforesaid wheel. This is achieved by removing some of the rollers, if necessary, when the axial dimension of the rolls increases and/or by modifying the rotation speed.
It is advantageous to arrange for the rotary movement of the rotatable member to be in phase with the movement of displacement of the individual articles along the advance path, in such a way that each article always receives a thrust at the same point. This may be achieved by means of a suitable mechanical drive and timing members included in it. Alternatively, and preferably, the timing may be provided electronically by a control unit which controls two motors, one for the rotation of the rotatable member and the other for the advance of the articles.
In general, for optimal operation, the speed of rotation of the rotatable member is such that, in the area in which the impact with the articles to be separated takes place, the rotatable member has a peripheral velocity of, for example, 1.5 or 2 times the speed of advance of the articles.
The advance path may be defined by a conveyer of the belt or other type, on which the individual articles rest. However, in a particularly advantageous embodiment, the advance path of the articles is defined by a guide along which said articles are pushed by a pusher. The rotatable member is located above said guide.
Further possible advantageous characteristics of the invention are indicated in the attached dependent claims and described with reference to an example of an embodiment.
With the device according to the present invention, it is a simple matter to modify the direction and amount of the thrust exerted on the individual articles. The device can also be adapted easily to different sizes of the articles to be handled. | {
"pile_set_name": "USPTO Backgrounds"
} |
Intravenous medications are given in standardized doses as indicated by the pharmaceutical manufacturer. Currently these standardized doses of medicament are compounded and mixed in intravenous fluid, ideally in a laminar flow hood to limit possible contamination, by one licensed and skilled in the art, prior to delivery of the medicament to a patient. Following mixing, the medicament has only a finite life in its active form depending upon the individual drug (generally one day to one week at room temperature) and must be used within this period after which the medicament loses its activity and must be discarded.
Once mixed and prior to its infusion free air must be removed from the mixing and storage container so as to prevent the inadvertent delivery of free air into a patient's vein with resultant harmful consequences.
Container devices providing separate compartments in a single unit for separately enclosing incompatible materials in such a way that they may be later intermixed are described in U.S. Pat. No. 2,176,923 to Nitardy, U.S. Pat. No. 3,290,017 to Davies, et al., U.S. Pat. No. 3,532,254 to Burke, et al., U.S. Pat. No. 3,608,709 to Pike and U.S. Pat. No. 4,637,061 to Riese. These container devices are not believed to be able to maintain an effective fluid-tight seal or moisture barrier between the various spaces formed within the container for the purposes of preparation and storage of sterile medications. This is caused by the various barriers between the spaces not adequately withstanding the normal rigors of packaging, handling and shipping. If the fluid-tight seal or moisture barrier between the storage spaces is broken, premature mixing of the materials may occur which then renders them ineffective for eventual use. Additionally, for containers used in health care situations, sterility of the materials to be mixed must be strictly maintained.
Container devices are described in U.S. Pat. No. 4,458,811 to Wilkinson and U.S. Pat. No. 4,608,043 to Larkin. In these devices designed for intravenous fluid storage and mixing, there is employed a system designed around a central partition with a weakened portion that is frangible with direct external compression. Upon rupture of the weakened portion, the medicament is mixed with the diluent. Uncertainty exists as to the integrity of the weakened portion in the partition so as to guarantee a fluid-tight seal or moisture barrier that will withstand both the rigors of storage and handling, yet allow the weakened portion to be easily broken. There is also a question whether a sufficiently large opening is formed in the frangible section to allow easy mixing of substantially all of a powdered medicament with the diluent liquid. This stems from the fact that the requirements for such a seal are mutually incompatible. A strong seal is needed to prevent moisture transfer and to enable the seal to withstand the rigors of handling and storage. Yet the seal must be easily rupturable to form an opening large enough to allow complete intermixing of the components. Further, in these designs, any air or other gas within the container cannot be separated from the medicament infusion fluid after mixture. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.