contest
stringclasses 315
values | contest_url
stringclasses 1
value | url
stringlengths 53
65
| alphabet
stringclasses 20
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
467
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/5358 | A | OMC160(A) | 200 | 182 | 196 | [
{
"content": "ãçŽç· $AB$ ãš $CD$, $CD$ ãš $EF$, $EF$ ãš $GH$, $GH$ ãš $AB$ ã®äº€ç¹ããããã $X, Y, Z, W$ ãšããïŒæ¡ä»¶ãã\r\n$$ \\angle B + \\angle C = \\angle D +\\angle E = \\angle F + \\angle G = \\angle H + \\angle A = 270^\\circ $$\r\nã§ããããïŒäžè§åœ¢ $BCX, DEY, FGZ, HAW$ ã¯ååãªçŽè§äžè§åœ¢ãšãªãïŒãããã£ãŠåè§åœ¢ $XYZW$ ã¯æ£æ¹åœ¢ã§ããïŒ\r\n$$BX = DY = FZ = HW = x, \\quad CX = EY = GZ = AW = y$$\r\nãšããã°ïŒäžå¹³æ¹ã®å®çãã\r\n$$x^2 + y^2 = 13^2$$\r\nã§ããïŒãŸãïŒ$AB\\parallel CG$ ã§ããããïŒ\r\n$$x + 7 = y$$\r\nã§ããã®ã§ïŒããããé£ç«ããŠè§£ãããšã§ $x = 5, y = 12$ ãåŸãïŒä»¥äžããïŒæ±ããé¢ç©ã¯\r\n$$(x + y + 7)^2 - 4\\times\\frac{1}{2}xy = \\bf{456}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/5358"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ããåžå
«è§åœ¢ $ABCDEFGH$ ã®é¢ç©ãæ±ããŠãã ããïŒ
- $AB \parallel CG$
- $\angle A = \angle C = \angle E = \angle G$
- $\angle B = \angle D = \angle F = \angle H$
- $AB = CD = EF = GH = 7$
- $BC = DE = FG = HA = 13$ |
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/5823 | B | OMC160(B) | 300 | 77 | 147 | [
{
"content": "ãä»»æã® $A$ ã®å
$x$ ã«ã€ã㊠$g(x)=f(x)-x$ ãšãããšïŒ$g$ 㯠$A$ ãã $A$ ãžã®é¢æ°ã§ãããšã¿ãªããïŒ$g$ ãšããŠãããããã®ã®æ°ãæ±ããã°ããïŒ$2$ ã€ç®ã®æ¡ä»¶ã¯ $g^2(a_n)=a_{n+1}$ ãšèšãæããããã®ã§ïŒ$g^{2k}(a_n) = a_n$ ãšãªãæå°ã® $k$ ã¯å $n$ ã«ã€ã㊠$3$ ã§ããïŒåŸã£ãŠïŒ$g^{t}(a_n) = a_n$ ãšãªãæå°ã® $t$ ã¯å $n$ ã«ã€ã㊠$3, 6$ ã®ããããã§ããïŒ\r\n\r\n- é·ã $6$ ã®ãµã€ã¯ã«ããããšãïŒ${}\\_{7}\\mathrm{C}\\_{6}\\times 5! \\times 7^1=5880$ éãïŒ\r\n- é·ã $3$ ã®ãµã€ã¯ã«ã $2$ ã€ãããšãïŒ$70\\times (2!)^2\\times 7^1=1960$ éãïŒ\r\n- é·ã $3$ ã®ãµã€ã¯ã«ã $1$ ã€ä»¥äžãããšãïŒ${}\\_{7}\\mathrm{C}\\_{3}\\times 2! \\times 7^4-1960=166110$ éãïŒ\r\n\r\n以äžã«ããïŒæ±ããå Žåã®æ°ã¯ $5880 + 166110 = \\mathbf{171990}$ éãã§ããïŒ\r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/5823"
}
] | ã $A=\lbrace 1, 2, 3, 4, 5, 6, 7\rbrace$ ãšããŸãïŒ$A$ ã®åå
ã«å¯ŸããŠå®çŸ©ããæŽæ°å€ããšãé¢æ° $f$ ã§ãã£ãŠïŒä»¥äžããšãã«ã¿ãããã®ã¯ããã€ãããŸããïŒ
- ä»»æã® $A$ ã®å
$a$ ã«å¯ŸããŠïŒ$a\lt f(a)\lt a+8$ïŒ
- çžç°ãªã $A$ ã® $3$ å
$a_1, a_2, a_3$ ã§ãã£ãŠïŒ$n = 1,2,3$ ã«ã€ããŠ$$f\bigl(f(a_n)-a_n\bigr)-f(a_n)=a_{n+1}-a_n$$ããã¹ãŠæãç«ã€ãããªãã®ãååšããïŒãã ã $a_4 = a_1$ãšããïŒ |
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/4934 | C | OMC160(C) | 500 | 38 | 58 | [
{
"content": "ããŸãïŒæ£äºåé¢äœã®é ç¹ $X, Y$ ã«å¯Ÿã$\\Delta (X, Y)$ ãäžèšã®ããã«å®ããïŒ\r\n- $X, Y$ ãåäžã®é ç¹ã®ãšãïŒ$\\Delta (X, Y) = 0$ïŒ\r\n- $X, Y$ ãç°ãªãé ç¹ã®ãšãïŒ$\\Delta (X, Y)$ 㯠$X$ ãã $Y$ ãŸã§ã蟺ã«æ²¿ã£ãŠèŸ¿ããšãã«çµç±ãã蟺ã®åæ°ã®æå°å€ãšããïŒ\r\n\r\nä»åæ±ãããã®ã¯ïŒç§»ååŸã® $P, Q, R$ ã«å¯Ÿãã $\\Delta (P, Q) + \\Delta (P, R) + \\Delta (Q, R) + 1$ ã®æåŸ
å€ã§ããïŒ$\\Delta$ ã®ãšãåŸãå€ã¯æ倧 $3$ ã§ããããšã«æ³šæïŒãããŠïŒããã§ã¯æ£äºåé¢äœã®é ç¹ $X, Y$ ã«å¯ŸããŠä»¥äžã®æäœãèãããïŒ\r\n- $X, Y$ ã®ã©ã¡ããäžæ¹ãïŒãããšèŸºã§ç¹ãã£ãé ç¹ $5$ ã€ã®äžããç確çã«éžã°ãã $1$ ç¹ã«ç§»åããïŒ\r\n\r\nã$\\Delta(X, Y) = 0$ ã®ç¶æ
ãããã®æäœã $n$ åç¹°ãè¿ãããšãã«ïŒ$\\Delta(X, Y) = 0, 1, 2, 3$ ãšãªã確çããããã $Z_n, S_n, D_n, T_n$ ãšãããšïŒïŒååã§åãã $X, Y$ ã®æ±ºãæ¹ã«ãããïŒä»¥äžãæãç«ã€ïŒ\r\n$$Z_0 = 1,\\quad S_0 = D_0 = T_0 = 0$$\r\n$$Z_{n + 1} = \\frac{S_n}{5},\\quad S_{n + 1} = \\frac{2D_n + 2S_n + 5Z_n}{5},\\quad D_{n + 1} = \\frac{5T_n + 2D_n + 2S_n}{5},\\quad T_{n + 1} = \\frac{D_n}{5}$$\r\n\r\nãåé¡æã®æäœ $1$ åãã$P, Q$ ãé ã« $1$ åãã€åããããšèŠãªãã°ïŒåé¡æã®æäœ $n$ åæç¹ã§ $\\Delta(P, Q) = 0, 1, 2, 3$ ãšãªã確çã¯ãããã $Z_{2n}, S_{2n}, D_{2n}, T_{2n}$ ã§ããããšãåããïŒãã㧠$E_n = 3T_n + 2D_n + S_n$ ãšãããšïŒæ±ããã¹ãæåŸ
å€ã¯ $E_{12} + 2E_6 + 1$ ãšè¡šãããïŒãŸãïŒä»»æã® $n$ ã§ä»¥äžãæãç«ã€ïŒ\r\n$$3T_{n + 2} + D_{n + 2} - S_{n + 2} - 3Z_{n + 2} = \\frac{5T_{n + 1} + 3D_{n + 1} - 3S_{n + 1} - 5Z_{n + 1}}{5} = \\frac{3T_n + D_n - S_n - 3Z_n}{5}$$\r\n\r\nããã«ä»»æã® $n$ 㧠$T_n + D_n + S_n + Z_n = 1$ ã§ããããšãçšããã°ïŒ\r\n$$E_{2n} = \\frac{3T_{2n} + D_{2n} - S_{2n} - 3Z_{2n} + 3}{2} = \\frac{1}{2} \\left(\\frac{3T_0 + D_0 - S_0 - 3Z_0}{5^n} + 3\\right) =\\frac{3}{2} \\left( 1 - \\frac{1}{5^n} \\right)$$\r\nãå°ãããïŒããã«\r\n$$E_{12} + 2E_6 + 1 = \\frac{3}{2} \\left( 1 - \\frac{1}{5^6} \\right) + 3 \\left( 1 - \\frac{1}{5^3} \\right) + 1 = \\frac{85561}{15625}$$\r\n\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{101186}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/4934"
}
] | ãæ£äºåé¢äœãããïŒæ£äºåé¢äœã®åé¢ã¯æ£äžè§åœ¢ã§ãïŒïŒãã®é ç¹ã®ãã¡äžã€ã $R$ ãšããŸãïŒåç¹ $P, Q$ ãã¯ããé ç¹ $R$ ã«äœçœ®ããŠããïŒãã®ç¶æ
ãã以äžã®äžé£ã®æäœã $6$ åç¹°ãè¿ããŸãïŒããªãã¡ïŒç§»åã¯èš $12$ åèµ·ãããŸãïŒïŒ
- $P$ ãããŸäœçœ®ããŠããé ç¹ã«å¯ŸããŠïŒèŸºã§ç¹ãã£ãé ç¹ $5$ ã€ã®äžããç確çã« $1$ ã€ãéžã³ïŒ$P$ ãããã«ç§»åããïŒ
- $Q$ ãããŸäœçœ®ããŠããé ç¹ã«å¯ŸããŠïŒèŸºã§ç¹ãã£ãé ç¹ $5$ ã€ã®äžããç確çã« $1$ ã€ãéžã³ïŒ$Q$ ãããã«ç§»åããïŒ
ãæäœããã¹ãŠçµããã®ã¡ïŒæ£äºåé¢äœã®é ç¹ãããªãé·ã $r\\,(\geq 1)$ ã®å $V_1, \ldots, V_r$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããã¹ãŠã¿ãããã®ãèããŸãïŒ
- åé
$V_1$ ãšæ«é
$V_r$ ã¯åãé ç¹ã§ããïŒ
- ä»»æã® $i = 1, \ldots, r-1$ ã«å¯ŸããŠïŒ$V_i$ ãš $V_{i+1}$ ã¯èŸºã§ç¹ãã£ãŠããïŒ\
ãã ãïŒ$r=1$ ã®ãšããã®æ¡ä»¶ã¯èªåçã«ã¿ããããŠãããšã¿ãªãïŒ
- $R$ ããã³ç§»åããã¹ãŠçµããåŸã® $P, Q$ ã¯ïŒãããã $V_1, \ldots, V_r$ ã®ããããã«äžèŽããïŒ
$P,Q$ ã®ç§»åæ¹æ³ãåºå®ãããšãïŒãã®ãããªåã®é·ã $r\\,(\geq 1)$ ã®ãšãããæå°å€ã $m$ ãšããŸãïŒãã®ãšãïŒ$m$ ã®æåŸ
å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããæåŸ
å€ã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ã«ãã£ãŠ $\displaystyle \frac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/7602 | D | OMC160(D) | 500 | 23 | 74 | [
{
"content": "ãç°¡åã®ããïŒä»¥éã§ã¯ $A(m, n), G(m, n), H(m, n)$ ãïŒããããåã« $A, G, H$ ãšè¡šãããšã«ããïŒ\r\n$$A + 2G + H = N \\tag{1}$$\r\nç¹ã«ãããæçæ°ã§ããããšããïŒ$mn$ ã¯å¹³æ¹æ°ã§ããïŒãããã£ãŠïŒ$m$ ãš $n$ ã®æ倧å
¬çŽæ°ã $g$ ãšãããšïŒ\r\n$$m = a^2g,\\quad n = b^2g \\tag{2}$$\r\nãšè¡šããïŒãã㧠$a\\lt b$ ã¯äºãã«çŽ ã§ããïŒãã®ãšãïŒ\r\n$$H = \\dfrac{2a^2b^2g}{a^2 + b^2}ïŒ$$\r\n$a,b$ ã¯ãšãã«å¶æ°ã§ãªãããšããïŒ$a^2+b^2$ 㯠$4$ ã§å²ãåããªãïŒãããã£ãŠïŒ$H$ ã¯åæŽæ°ãšã¯ãªãããªãïŒããªãã¡ïŒ $A,G,H$ ã¯ãã¹ãŠæŽæ°ã§ããå¿
èŠãããããšãããã£ãïŒ\\\r\nãããŠïŒ$a^2$ ãš $a^2 + b^2$ïŒ$b^2$ ãš $a^2 + b^2$ ãããããäºãã«çŽ ã§ããããšãã $a^2 + b^2 \\mid 2g$ ãåŸãïŒããã§ïŒããæ£æŽæ° $k$ ãçšããŠ\r\n$$g = \\frac{1}{2}k(a^2 + b^2) \\tag{3}$$\r\nãšè¡šããïŒåŒ $(2)$ ãèžãŸããã°ïŒåŒ $(1)$ ã®å·ŠèŸºã¯\r\n\r\n$$\r\n\\begin{aligned}\r\nA + 2G + H &= \\frac{1}{4} k(a^2 + b^2)^2 + kab(a^2 + b^2) + ka^2b^2 \\\\\\\\\r\n&= \\frac{1}{4} k(a^2 + b^2 + 2ab)^2\\\\\\\\\r\n&= \\frac{1}{4} k(a + b)^4\r\n\\end{aligned}\r\n$$\r\n\r\nãšå€åœ¢ã§ããïŒããã«\r\n$$(a + b)^4 \\mid 4N \\tag{4}$$\r\nãåŸãããïŒ\r\n\r\nã次㫠$a \\lt b$ ãªãäºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ°ã®çµ $(a, b)$ ã§ãã£ãŠåŒ $(4)$ ãã¿ãããã®ãä»»æã«éžãã æã«ïŒ$m : n = a^2 : b^2$ ãªãæ£æŽæ°ã®çµ $(m, n)$ ã§ãã£ãŠåŒ $(1)$ ãã¿ãããã®ãäžæã«ååšããããšã瀺ããïŒãã®ãã㪠$m, n$ ã®æ倧å
¬çŽæ°ã $g$ ãšããã°ïŒ$m, n$ ã¯ããããåŒ $(2)$ ã®ããã«è¡šããïŒåŒ $(1)$ ã«ããã代å
¥ã $g$ ã«ã€ããŠè§£ãããšã«ãã£ãŠ\r\n$$g = \\frac{2N(a^2 + b^2)}{(a + b)^4}$$\r\nãåŸãããïŒãã $a, b$ ã®å¶å¥ãäžèŽããå Žå㯠$(a^2 + b^2)^2$ ãå¶æ°ã«ãªãããåŒ $(4)$ ãã $g$ ã¯æŽæ°å€ããšãïŒäžèŽããªãå Žåã§ãã£ãŠãåŒ $(4)$ ã $(a + b)^4 \\mid N$ ãšåå€ã§ããããïŒãã®å Žåã $g$ ã¯æŽæ°å€ããšãïŒããã§é©ãã $(m, n)$ ãäžæã«ååšããããšã瀺ãããïŒ\\\r\nã以äžã®è°è«ã«ããïŒåŒ $(1)$ ãã¿ãããã㪠$m \\lt n$ ãªãæ£æŽæ°ã®çµ $(m, n)$ ã®åæ°ã¯ïŒåŒ $(4)$ ãã¿ãããã㪠$a \\lt b$ ãªãäºãã«çŽ ãªæ£æŽæ°ã®çµ $(a, b)$ ã®åæ°ã«çããããšãåãã£ãïŒããã§è£é¡ãäžããïŒ\r\n\r\n---\r\n\r\n**è£é¡.**ã$a \\lt b$ ã〠$a + b = M$ ãªãäºãã«çŽ 㪠$2$ ã€ã®æ£æŽæ°ã®çµ $(a, b)$ ãã¡ããã© $1$ ã€ååšãããããªæ£æŽæ° $M$ 㯠$3, 4, 6$ ã«éãïŒãã®ãã㪠$(a, b)$ ã $1$ ã€ãååšããªããããªæ£æŽæ° $M$ 㯠$1, 2$ ã«éãïŒ\r\n\r\n<details><summary>è£é¡ã®èšŒæ<\\/summary>\r\nã$M = 1, 2$ ã®ãšãã«ååšããªãããšãšïŒ$M = 3, 4, 6$ ã®ãšãã«ãã $1$ ã€ååšããããšã¯ç°¡åã«ç¢ºãããããšãã§ããïŒ$M$ ã $5$ 以äžã®å¥æ°ã®ãšãã¯å°ãªããšã \r\n$$(a, b) = (1, M - 1), \\left (\\frac{M - 1}{2}, \\frac{M + 1}{2} \\right)$$\r\nã® $2$ çµãæ¡ä»¶ãã¿ããïŒ$M$ ã $8$ 以äžã® $4$ ã®åæ°ã®ãšãã¯å°ãªããšã\r\n$$(a, b) = (1, M - 1), \\left (\\frac{M}{2} - 1, \\frac{M}{2} + 1 \\right)$$\r\nã® $2$ çµãæ¡ä»¶ãã¿ããïŒ$M$ ã $10$ 以äžã® $4$ ã®åæ°ã§ãªãå¶æ°ã®ãšãã¯å°ãªããšã\r\n$$(a, b) = (1, M - 1), \\left (\\frac{M}{2} - 2, \\frac{M}{2} + 2 \\right)$$\r\nã® $2$ çµãæ¡ä»¶ãã¿ããïŒããªãã¡ $M = 5$ïŒ$M \\geq 7$ ã®ãšã㯠$2$ ã€ä»¥äžååšããïŒããã§è£é¡ã瀺ãããïŒ\r\n<\\/details>\r\n\r\n---\r\n\r\nã$123456$ 以äžã®æ£æŽæ° $N$ ã§ãã£ãŠä»¥äžãæºãããã®ã®åæ°ãæ±ããã°ããããšãïŒãã®è£é¡ããåããïŒ\r\n- $4N$ ãå²ãåãæ倧㮠$4$ ä¹æ°ã¯ $3^4$ ãŸã㯠$4^4$ ã§ããïŒ\r\n\r\nã$4N$ ãå²ãåãæ倧㮠$4$ ä¹æ°ã $3^4$ ã®ãšãïŒ\r\n$$6^4 \\lt 1524 \\lt \\frac{123456}{3^4} \\lt 1525 \\lt 7^4$$\r\nã§ããããšã«æ³šæããã°ïŒ$N$ 㯠$4, 3^4, 5^4$ ã®ãããã§ãå²ãåããªããã㪠$1524$ 以äžã®æ£æŽæ° $t$ ã«ãã£ãŠ $N = 3^4t$ ãšè¡šããïŒãã®ãã㪠$N$ ã®åæ°ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$1524 - \\left \\lfloor \\frac{1524}{4} \\right \\rfloor - \\left \\lfloor \\frac{1524}{3^4} \\right \\rfloor - \\left \\lfloor \\frac{1524}{5^4} \\right \\rfloor + \\left \\lfloor \\frac{1524}{4 \\times 3^4} \\right \\rfloor = 1127$$\r\nã$4N$ ãå²ãåãæ倧㮠$4$ ä¹æ°ã $4^4$ ã®ãšãïŒ\r\n$$6^4 \\lt 1929 = \\frac{123456}{2^6} \\lt 7^4$$\r\nã§ããããšã«æ³šæããã°ïŒ$N$ 㯠$2^4, 3^4, 5^4$ ã®ãããã§ãå²ãåããªããã㪠$1929$ 以äžã®æ£æŽæ° $t$ ã«ãã£ãŠ $N = 2^6t$ ãšè¡šããïŒãã®ãã㪠$N$ ã®åæ°ã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$1929 - \\left \\lfloor \\frac{1929}{2^4} \\right \\rfloor - \\left \\lfloor \\frac{1929}{3^4} \\right \\rfloor - \\left \\lfloor \\frac{1929}{5^4} \\right \\rfloor + \\left \\lfloor \\frac{1929}{2^4 \\times 3^4} \\right \\rfloor = 1784$$\r\n\r\nã以äžããïŒæ±ããåæ°ã¯å
šéšã§ $1127 + 1784 = \\mathbf{2911}$ åã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/7602"
}
] | ãæ£ã®å®æ° $x, y$ ã«å¯ŸãïŒ$A(x, y), G(x, y), H(x, y)$ ããããã以äžã§å®ããŸãïŒ
$$A(x, y) = \frac{x + y}{2},\quad G(x, y) = \sqrt{xy},\quad H(x, y) = \frac{2xy}{x + y}.$$
ãã®ãšãïŒæ¬¡ãã¿ãã $1$ ä»¥äž $123456$ 以äžã®æŽæ° $N$ ã¯ããã€ãããŸããïŒ
- $m \lt n$ ãªãæ£æŽæ°ã®çµ $(m, n)$ ã§ãã£ãŠïŒ
$$A(m, n) + 2 G(m, n) + H(m, n) = N$$
ãã¿ãããããªãã®ãã¡ããã© $1$ ã€ååšããïŒ |
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/5811 | E | OMC160(E) | 500 | 52 | 73 | [
{
"content": "ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$10^n$ æªæºã®éè² æŽæ°ã®çµ $(x, y)$ ãã¹ãŠã«å¯Ÿãã $f(x, y)$ ã®å¹³åã $c_n$ ãšè¡šãïŒ$10$ æªæºã®éè² æŽæ° $x, y$ ã«å¯ŸããŠã¯ $f(x, y) = x + y$ ãæãç«ã¡ïŒãããã£ãŠ $c_1 = 9$ ã§ããããšãåããïŒ\\\r\nããã㧠$10^n$ æªæºã®éè² æŽæ° $x, y$ ãïŒ$10$ æªæºã®éè² æŽæ° $a_0, \\cdots, a_{n-1}, b_0, \\cdots, b_{n-1}$ ã«ãã\r\n$$x = a_0 + 10a_1 + \\cdots + 10^{n-1}a_{n-1} \\\\\\\\\r\ny = b_0 + 10b_1 + \\cdots + 10^{n-1}b_{n-1}$$\r\nãš $10$ é²æ°å±éãããšãïŒ$a_0 + b_0, a_1 + b_1, \\cdots, a_{n-1} + b_{n-1}$ ã®äžã§ $10$ 以äžã§ãããã®ã®åæ°ã $g(x, y)$ ãšè¡šãïŒãã®ãšãïŒ$10^n$ æªæºã®éè² æŽæ° $x, y$ ãš $10$ æªæºã®éè² æŽæ° $w, z$ ã«é¢ããŠä»¥äžãæãç«ã€ïŒ\r\n$$f(x + 10^n z, y + 10^n w) = f(x, y) + 10^{n + g(x, y)} (z + w)$$\r\nãã®åŒã®äž¡èŸºã $(x, y, z, w)$ å
šäœã§å¹³ååããããšã§ä»¥äžã®æŒžååŒãåŸãããïŒ\r\n$$c_{n+1} = c_n + 9 \\cdot 10^n G$$\r\nãã ã $G$ 㯠$10^n$ æªæºã®éè² æŽæ°ã®çµ $(x, y)$ ãã¹ãŠã«å¯Ÿãã $10^{g(x, y)}$ ã®å¹³åã§ããïŒ\\\r\nã$10$ æªæºã®éè² æŽæ°ã®çµ $(x, y)$ ã§ãã£ãŠ $x + y \\geq 10$ ãšãªããã®ã®åæ°ã¯ $45$ åã§ããïŒããã§ãªããã®ã¯ $55$ åããïŒãã®ããšããïŒå€é
åŒ $P(X) = (45X + 55)^n$ ã«ããã $X^k$ ã®ä¿æ°ãïŒ$g(x, y) = k$ ãªã $10^n$ æªæºã®éè² æŽæ°ã®çµ $(x, y)$ ã®åæ°ã«äžèŽããããšãåããïŒããã«ïŒ\r\n$$G = \\frac{P(10)}{10^{2n}} = \\left(\\frac{101}{20}\\right)^n$$\r\nã§ããïŒããããïŒ\r\n$$c_{n+1} = c_n + 9 \\left(\\frac{101}{2}\\right)^n$$\r\nãåŸããïŒãã®æŒžååŒãã $c_n$ ã®äžè¬é
ã次ã®ããã«åŸãããšãã§ããïŒ\r\n$$c_n = \\frac{101^n - 2^n}{11 \\cdot 2^{n-1}}$$\r\nãæ±ããå¹³å㯠$\\displaystyle c_6 = \\frac{96501831867}{32}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{96501831899}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/5811"
},
{
"content": "ã$\\left\\\\{c\\_n\\right\\\\}$ ã®æŒžååŒã¯ïŒæ·»ãåã $1$ å¢ãããŠïŒ$a\\_0,\\\\, b\\_0$ ãæ°ãã«å ããããšãèããŠãæ±ããããïŒ \r\nãããªãã¡ïŒè¿œå ãã $(a\\_0, b\\_0)$ ã«ã€ããŠïŒãã®å€ã®çµãšããŠèãããã $100$ éãã®ãã¡ïŒ$45$ éãã¯åã $10$ 以äžïŒæ®ãã® $55$ éãã¯åã $10$ æªæºã§ããããïŒ$c\\_1 = 9$ ããã³ïŒæåŸ
å€ã®ç·åœ¢æ§ãã\r\n$$ c\\_{n+1} = \\left(\\frac{45}{100} \\times 10^2 + \\frac{55}{100} \\times 10\\right) \\times c_n + 9, \\qquad \\therefore c\\_{n+1} = \\frac{101}2\\\\, c_n + 9 $$\r\nãšãã挞ååŒãç«ã€ïŒ",
"text": "ãã 1 ã€ã®æŒžååŒ",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/5811/231"
}
] | ãéè² æŽæ° $x, y$ ã«ã€ããŠïŒ$0$ ä»¥äž $9$ 以äžã®æŽæ° $a_0,a_1,\ldots$ ããã³ $b_0,b_1,\ldots$ ãçšããŠ
$$x = \sum_{k = 0}^{\infty} 10^ka_k,\quad y = \sum_{k = 0}^{\infty}10^kb_k$$
ãšè¡šãããšãïŒãã ãïŒ$a_0,a_1,\ldots$ ããã³ $b_0,b_1,\ldots$ ã¯ããããååå
ã§ã¯ $0$ ã§ãããšããŸãïŒãã®ãããªè¡šãæ¹ã¯äžæã«ååšããŸãïŒïŒ
$$d_k = \begin{cases}
2 & (a_k + b_k \ge 10)\\\\
1 & (a_k + b_k \lt 10)
\end{cases}$$
ãšãïŒæ¬¡ã®ããã«ãããŸãïŒ
$$f(x, y) = (a_0 + b_0) + \sum_{k = 1}^{\infty}(a_k + b_k)10^{d_0 + d_1 + \cdots + d_{k-1}}.$$
ã$0$ ä»¥äž $10^6$ æªæºã®æŽæ°ã®çµ $(x, y)$ ãã¹ãŠã«å¯Ÿãã $f(x, y)$ ã®ïŒçžå ïŒå¹³åã解çããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $s, t$ ã«ãã£ãŠ $\dfrac{s}{t}$ ãšè¡šããã®ã§ïŒ$s + t$ ã解çããŠãã ããïŒ |
OMC160 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc160/tasks/7554 | F | OMC160(F) | 700 | 15 | 40 | [
{
"content": "<details><summary>æ··ç·å
æ¥åãšãã®åºæ¬çãªæ§è³ªã«ã€ããŠ<\\/summary>\r\nãäžè§åœ¢ $ABC$ ã®èŸº $AB,AC$ ãšå€æ¥åã«æ¥ããåãïŒäžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããæ··ç·å
æ¥åïŒãããã¯mixtilinear incircleãšããïŒãã®åãšäžè§åœ¢ $ABC$ ã®å€æ¥åïŒèŸº $AB,AC$ ã®æ¥ç¹ããããã $S,T,U$ ãšãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åïŒå
å¿ããããã $\\omega, I$ ãšãããšïŒæ¬¡ã®ãããªæ§è³ªãæãç«ã€ïŒ\r\n\r\n- çŽç· $IS$ 㯠$\\omega$ ã® $A$ ãå«ã匧 $BC$ ã®äžç¹ãéãïŒ\r\n- çŽç· $ST$ 㯠$\\omega$ ã® $C$ ãå«ãŸãªã匧 $AB$ ã®äžç¹ãéãïŒ\r\n- çŽç· $SU$ 㯠$\\omega$ ã® $B$ ãå«ãŸãªã匧 $AC$ ã®äžç¹ãéãïŒ\r\n- çŽç· $AI$ ãš $TU$ 㯠$I$ ã§çŽäº€ããïŒ\r\n- åè§åœ¢ $SBTI$ ãš $SIUC$ ã¯çžäŒŒã§ããïŒ\r\n<\\/details>\r\n\r\nãçŽç· $AI, MI$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ããããã $K,L$ ãšããïŒãŸãïŒçŽç· $KM$ ã« $I$ ããäžãããåç·ã®è¶³ã $H$ ãšããïŒ\\\r\nã$\\angle IAM = \\angle IHM = 90^\\circ$ ãã $4$ ç¹ $A,H,I,M$ ã¯åäžååšäžã«ããã®ã§ïŒ\r\n$$\\angle HAI = \\angle KML = \\angle IAL$$\r\nã§ããïŒãŸãïŒ$\\angle IHK = \\angle ILK = 90^\\circ$ ãã $4$ ç¹ $H,I,K,L$ ã¯åäžååšäžã«ããã®ã§ïŒ\r\n$$\\angle ALI = \\angle AKM = \\angle HLI$$\r\nã§ããïŒãã£ãŠïŒäžè§åœ¢ $AHL$ ã®å
å¿ã¯ $I$ ã§ããïŒåŸã£ãŠïŒçŽç· $HI$ 㯠$\\angle AHL$ ã®äºçåç·ã§ããïŒãã®çŽç·ã«åçŽã§ããçŽç· $KM$ 㯠$\\angle AHL$ ã®å€è§ã®äºçåç·ã§ããïŒãã£ãŠïŒç·å $AL$ ã®åçŽäºçåç·ãšçŽç· $KM$ ã®äº€ç¹ $O$ ã¯äžè§åœ¢ $AHL$ ã®å€æ¥åã® $H$ ãå«ã匧 $AL$ ã®äžç¹ã§ããïŒãŸãïŒ$M$ ã¯äžè§åœ¢ $AHL$ ã® $L$ ã«å¯Ÿããåå¿ã§ããããïŒåå¿ãšå
å¿ã®äžç¹ã§ãã $N$ ã¯äžè§åœ¢ $AHL$ ã® $L$ ãå«ãŸãªã匧 $AH$ ã®äžç¹ã§ããïŒä»¥äžããïŒ$6$ ç¹ $A,H,L,N,O,X$ ã¯åäžååšäžã«ããã®ã§ïŒæ··ç·å
æ¥åã®åºæ¬çãªæ§è³ªãã $X$ ã¯äžè§åœ¢ $AHL$ ã®å€æ¥åãš $H$ ã«å¯Ÿããæ··ç·å
æ¥åã®æ¥ç¹ã§ããïŒ\\\r\nããã£ãŠïŒäžè§åœ¢ $XAI$ ãš $XIL$ ã¯çžäŒŒã§ããïŒåŸã£ãŠïŒ$\\angle AXI = \\angle LXI$ ã§ããããïŒçŽç· $OX$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $A^\\prime$ ãšããã°ïŒ$A^\\prime$ ã¯çŽç· $LX$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã§ããïŒãã£ãŠïŒäžè§åœ¢ $ABC$ ã®å€æ¥åååŸã $R$ ãšãããšïŒ\r\n$$OX^2 - R^2 = A^\\prime X \\times LX = AX\\times LX = IX^2$$\r\nãæç«ããã®ã§ïŒ$R = 65$ ãåŸãïŒããã«ïŒäžè§åœ¢ $ABC$ ã®å
æ¥åååŸã $r$ ãšããã°ïŒChapple-Eulerã®å®çãã $OI^2 = R^2 - 2Rr$ ã§ããããïŒ$OI = OX - IX = 25$ ãšäœµã㊠$r = \\dfrac{360}{13}$ ãåŸãïŒãã£ãŠïŒ$AI = 45$ ãšäœµã㊠$\\sin \\dfrac12\\angle BAC = \\dfrac{8}{13}$ ã§ããããïŒ\r\n$$\\cos \\frac12\\angle BAC = \\frac{\\sqrt{105}}{13},\\quad \\sin \\angle BAC = \\dfrac{16\\sqrt{105}}{169}$$\r\nã§ããïŒåŸã£ãŠïŒäžè§åœ¢ $ABC$ ã®å
æ¥åãšèŸº $AB,AC$ ã®æ¥ç¹ããããã $E,F$ ãšãããšïŒ\r\n$$AE = AF = AI\\cos \\frac12\\angle BAC = \\frac{45\\sqrt{105}}{13},\\quad BE + CF = BC = 2R\\sin\\angle BAC = \\dfrac{160\\sqrt{105}}{13}$$\r\nã§ããã®ã§ïŒæ±ããé¢ç©ã¯ïŒ\r\n$$\\frac12r(AB+BC+CA) = \\frac12r(AE+AF+BE+CF+BC) = \\frac{73800\\sqrt{105}}{169}$$\r\nã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{74074}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/7554"
},
{
"content": "ã$ABC$ ã®å€æ¥åã®ååŸ $R=65$ ã瀺ãïŒ\\\r\nã$MO$ ãš $ABC$ ã®å€æ¥åã®äº€ç¹ã $K(\\neq M)$ïŒ$AON$ ã®å€æ¥åã $\\omega$ ãšããïŒäžè§åœ¢ $IMK$ ã§ïŒ$A$ 㯠$M$ ãã $IK$ ã«èœãšããå足ïŒ$O$ 㯠$MK$ ã®äžç¹ïŒ $N$ 㯠$MI$ ã®äžç¹ãªã®ã§ïŒ$\\omega$ 㯠$IMK$ ã®ä¹ç¹åã§ããïŒ$IK$ ã®äžç¹ã $T$ ãšãããšïŒ$T$ 㯠$\\omega$ ãéãïŒæ¹ã¹ãã®å®çããïŒ$$OI\\times IX=AI\\times IT$$ãªã®ã§ïŒ$IT=40$ïŒ$IK=2IT=80$ïŒãŸãæ¹ã¹ãã䜿ããšïŒ$$AI\\times IK=R^2-IO^2$$ãæãç«ã€ã®ã§ïŒ$R=65$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/7554/230"
},
{
"content": "ãçŽç· $AI,BI,CI$ ãšå $ABC$ ãšã®äº€ç¹ããããã $P(\\not =A),Q(\\not =B),R(\\not =C)$ ãšããïŒangle chaseãã $IQMR$ ãå¹³è¡å蟺圢ã§ããããšããããã®ã§ïŒ$N$ ã¯çŽç· $QR$ äžã«ããïŒ$\\angle IAM=90^\\circ$ ãã $AN=IN=MN$ ãªã®ã§ïŒ$NO\\perp QR$ ã€ãŸã $AP\\parallel NO$ ã§ããïŒãŸãïŒ$I$ ã¯äžè§åœ¢ $PQR$ ã®åå¿ãªã®ã§ïŒç·å $IP$ ã®äžç¹ã $Y$ ãšãããš $IY=\\dfrac{1}{2}IP=ON$ ã§ããïŒãããš $AY\\parallel NO$ ãã $OY=NI=NA$ ãšãªãïŒãã£ãŠïŒ$Y$ ã¯å $ANO$ äžã«ããã®ã§ïŒä»¥éã¯å
¬åŒè§£èª¬ãšåæ§ã§ããïŒ \r\nã(äœè«ã§ããïŒOMCE011ã®åæ¥ã®ç²Ÿé²ã§ãã®åé¡ã解ããéïŒ$M$ ã $A$ ã**å«ãŸãªã**匧 $BC$ ã®äžç¹ãšèª€èªããŠç¯çœªCAãããŠããŸããŸããâŠãã®è§£èª¬ãæžããã®ã§èš±ããŠãã ããâŠ)",
"text": "å¥è§£(ãšæºæ)",
"url": "https://onlinemathcontest.com/contests/omc160/editorial/7554/769"
}
] | ã$AB\neq AC$ ãªãäžè§åœ¢ $ABC$ ãããïŒãã®å
å¿ïŒå€å¿ããããã $I,O$ ãšããŸãïŒãŸãïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã® $A$ ãå«ãæ¹ã®åŒ§ $BC$ ã®äžç¹ã $M$ ãšãïŒç·å $IM$ ã®äžç¹ã $N$ ãšããŸãïŒããã«ïŒäžè§åœ¢ $AON$ ã®å€æ¥åãšçŽç· $IO$ ã $O$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ïŒãã®äº€ç¹ã $X$ ãšããŸãïŒ\
ã以äžãæç«ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠãã ããïŒ
$$AI = 45,\quad IX = 72,\quad OX=97.$$
ããã ãïŒæ±ããé¢ç©ã¯äºãã«çŽ ã§ããæ£ã®æŽæ° $a,c$ ãšå¹³æ¹å åããããªãæ£ã®æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt b}{c}$ ãšè¡šããã®ã§ïŒ$a+b+c$ ã解çããŠãã ããïŒ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/3390 | A | OMC159(A) | 100 | 320 | 323 | [
{
"content": "ãæ£ã®æŽæ° $n$ ã§ãã£ãŠïŒ$7$ é²æ³ã§è¡šèšãããšã $5$ æ¡ä»¥äžã®ãã®ã¯ $7^5-1$ åã§ããïŒãã®ãã¡ $4$ æ¡ä»¥äžã®ãã®ã¯ $7^4-1$ åã§ããïŒãããã£ãŠïŒæ±ããåæ°ã¯ $(7^5-1)-(7^4-1)=\\bf{14406}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/3390"
}
] | ã$7$ é²æ³ã§ïŒå
é ã«äœå㪠$0$ ãä»ããã«ïŒè¡šèšãããšãïŒã¡ããã© $5$ æ¡ãšãªããããªæ£ã®æŽæ°ã¯ããã€ãããŸããïŒ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/2418 | B | OMC159(B) | 100 | 308 | 313 | [
{
"content": "ãæ¡ä»¶ã«ããïŒä»»æã®å®æ° $p$ ã«ã€ã㊠$g(p)=2f(p\\/2)$ ã§ããããïŒ\r\n$$g(x)=2f\\left(\\frac{x}{2}\\right)=2\\left(\\frac{3}{2}x^2-\\frac{1}{2}x+5\\right)=3x^2-x+10. $$\r\nãããã£ãŠïŒè§£çãã¹ãå€ã¯ $\\textbf{12}$ ã§ããïŒ\\\r\nããªãïŒ$g(x)$ ãæ瀺çã«æžãäžããªããšãïŒ$a+b+c=g(1)=2f(1\\/2)$ ããæ±ãããšæ©ãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/2418"
}
] | ãå®æ°ä¿æ° $2$ 次å€é
åŒ $f(x)=6x^2-x+5$ïŒ$g(x)=ax^2+bx+c$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
- å®æ° $p,q$ ã $f(p)=q$ ãã¿ãããšãïŒ$g(2p)=2q$ ãæç«ããïŒ
ãã®ãšãïŒ$a+b+c$ ãæ±ããŠãã ããïŒ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/4849 | C | OMC159(C) | 200 | 303 | 310 | [
{
"content": "ããŸãïŒ$m$ ã¯ããçŽ æ° $p$ ã«ãã£ãŠ $m=p^{2}$ ãšè¡šããïŒããŸïŒ$m,n$ ãå
±éã®çŽ å æ°ãæããªããªãã°ïŒ$mn$ ã®æ£ã®çŽæ°ã®åæ°ã¯ $m,n$ ããããã®æ£ã®çŽæ°ã®åæ°ã®ç© $12$ ã«çããã¯ãã§ããããïŒæ¡ä»¶ãã¿ãããªãïŒãã£ãŠ $n$ ã¯ çŽ å æ° $p$ ãæã€ïŒããããïŒ$n$ 㯠$p$ ãšç°ãªãçŽ æ° $q$ ã«ãã£ãŠ $n=pq$ ãšè¡šããããïŒ$n=p^{3}$ ãšè¡šããããã®ããããã§ããïŒãããã $mn=p^{3}q,p^5$ ãšãªãããïŒæ¡ä»¶ãã¿ããã®ã¯åè
ã§ããïŒä»¥äžãã $m^{99}n^{99}=p^{297}q^{99}$ ãšçŽ å æ°å解ãããããïŒæ±ããçŽæ°ã®åæ°ã¯ $(297+1)(99+1)=\\mathbf{29800}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/4849"
}
] | ãæ£æŽæ° $m,n$ ã«ã€ããŠïŒ$m,n,mn$ ã¯ããããæ£ã®çŽæ°ã $3,4,8$ åãã¡ãŸãïŒãã®ãšãïŒ$m^{99}n^{99}$ ã®æ£ã®çŽæ°ã®åæ°ã¯äžæã«å®ãŸãã®ã§ïŒãã®å€ãæ±ããŠãã ããïŒ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/260 | D | OMC159(D) | 300 | 104 | 187 | [
{
"content": "ã$d_n=\\dfrac{2n+1}{5n}\\pi$ ãšããïŒ$m$ ã®å€ã«å¿ããŠå Žååããè¡ãïŒæ°å $\\\\{d_n\\\\}$ ã¯ç矩å調æžå°ã§ããããšã«æ°ãä»ããïŒ\r\n\r\n(ã¢) $m \\geq 6$ ã®ãšãïŒå€§ããã $\\dfrac{m-2}{m}\\pi$ 以äžã§ããå
è§ãå¿
ãååšãããïŒãã㯠$d_1$ ãã倧ããããäžé©ã§ããïŒ\r\n\r\n(ã€) $m=5$ ã®ãšãïŒ$md_1 = (m-2)\\pi$ ã§ããããïŒãã¹ãŠã®å
è§ã®å€§ããã $d_1$ ã§ããã»ããªã.\r\n\r\n(ãŠ) $m=4$ ã®ãšãïŒ$md_2 = (m-2)\\pi$ ã§ããããïŒãã¹ãŠã®å
è§ã®å€§ããã $d_2$ ã§ãããïŒããå
è§ã®å€§ããã $d_1$ ã§ããïŒããå
è§ã®å€§ããã $d_1$ ã§ãããšãïŒä»ã®äžã€ã®è§ã®å€§ããã $d_a, d_b, d_c$ $(a \\le b \\le c)$ ãšããïŒ$a = 1$ ãšãããšïŒ$d_b, d_c \\gt \\dfrac{2}{5}\\pi$ ã§ããããïŒåè§åœ¢ã®å
è§ã®å€§ããã¯\r\n$$(m-2)\\pi = d_1 + d_1 + d_b + d_c \\gt \\frac{3}{5}\\pi + \\frac{3}{5}\\pi + \\frac{2}{5}\\pi + \\frac{2}{5}\\pi = (m-2)\\pi$$\r\nãšãªãççŸããïŒ$a = 3$ ã®ãšãïŒ\r\n$$(m-2)\\pi = d_1 + d_3 + d_b + d_c \\ge d_1 + 3d_3 = (m-2)\\pi$$\r\nã§ããããïŒ$b = c = 3$ ã§ããã»ããªãïŒ$a = 2$ ã®ãšãïŒ$b = 2$ ãªãã° $d_c \\gt \\dfrac{2}{5}\\pi$ ã«ççŸãïŒ$b = 3, 4$ ã®ãšãã¯ãããã $c$ ã $6,4$ ãšãªãïŒ$b \\ge 5$ ã®ãšã㯠$b \\le c$ ã«ççŸããïŒ\\\r\nã以äžããŸãšãããšïŒ$m=4$ ã®å Žåã®å
è§ã®å€§ããã®çµã¿åãããšããŠããåŸããã®ã¯ïŒä»¥äžããã¹ãŠã§ããïŒ\r\n$$(d_1,d_2,d_3,d_6),(d_1,d_2,d_4,d_4),(d_1,d_3,d_3,d_3),(d_2,d_2,d_2,d_2)$$\r\n\r\n(ãš) $m=3$ ã®ãšãïŒåžžã« $d_n\\gt \\dfrac{2}{5}\\pi$ ã§ããããšããäžé©ã§ããïŒ\r\n\r\nããããã£ãŠïŒ$(\\alpha+\\beta)m$ ãšããŠããåŸãå€ã¯ $4\\pi,\\dfrac{62}{15}\\pi,\\dfrac{21}{5}\\pi,\\dfrac{64}{15}\\pi,6\\pi$ ã§ïŒè§£çãã¹ãå€ã¯ $\\textbf{118}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/260"
}
] | ãåžå€è§åœ¢ $S$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãããŸããïŒ
- ããããã®å
è§ã«ã€ããŠïŒããæ£æŽæ° $n$ ãååšããŠå€§ãããïŒåŒ§åºŠæ³ã§ïŒ$\dfrac{2n+1}{5n}\pi$ ãšè¡šãããïŒ
ãã®ãšãïŒ$S$ ã®å
è§ã®å€§ããã®ãã¡æ倧ã®ãã® $\alpha$ ããã³æå°ã®ãã® $\beta$ïŒãããã匧床æ³ïŒïŒãã㊠$S$ ã®é ç¹ã®åæ° $m$ ã«ã€ããŠïŒ$(\alpha+\beta)m$ ãšããŠããåŸãå€ããã¹ãŠæ±ããŠãã ããïŒãã ãïŒãããã®ç·åã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{q}\pi$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/4605 | E | OMC159(E) | 300 | 200 | 238 | [
{
"content": "ã$\\mathrm{ord}\\_2(x)$ 㧠$x$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãè¡šããšã\r\n$$\\mathrm{ord}\\_2(P_1)=2,ã\\mathrm{ord}\\_2(P_2)=2,ã\\mathrm{ord}\\_2(P_3)=5$$\r\nãçŽã¡ã«ãããïŒããŠïŒæ¬¡ã«ä»»æã® $n\\geq 4$ ã«ã€ã㊠$\\mathrm{ord}\\_2(P\\_n)=n$ ã§ããããšãåž°çŽæ³ã§ç€ºããïŒ$n=4$ ã®å Žåã¯å®¹æã§ããïŒ$k\\geq 4$ ã«ã€ããŠïŒ$n=k$ ã§æç«ãä»®å®ãïŒ$n=k+1$ ã®å Žåã瀺ãïŒ\r\n$$P_{k+1}=P\\_{k}\\times 10^{(2^{k+1} ã®æ¡æ°)}+2^{k+1}$$\r\nã§ããïŒ$2^{k+1}$ 㯠$2$ æ¡ä»¥äžã§ããããšãšåž°çŽæ³ã®ä»®å®ããïŒå³èŸºã®ç¬¬ $1$ é
㯠$2$ 㧠$k+2$ å以äžå²ãåããïŒãã£ãŠ $n=k+1$ ã®å Žåãæãç«ã€ããšããããããïŒåœé¡ã¯ç€ºãããïŒ\\\r\nã以äžããïŒæ±ããå€ã¯\r\n$$\\begin{aligned}\r\n\\mathrm{ord}\\_2 (P_1\\times P_2\\times \\cdots \\times P_{4605})&=\\mathrm{ord}\\_2(P_1)+\\cdots+\\mathrm{ord}\\_2(P_{4605})\\\\\\\\\r\n&= 2+2+5+4+5+\\cdots+4605 \\\\\\\\\r\n&= \\textbf{10605318}.\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/4605"
}
] | ãæ£æŽæ° $n$ ã«ã€ããŠïŒ$2^n$ 以äžã® $2$ ã¹ããå°ããé ã«ãã¹ãŠç¶ããŠäžŠã¹ãŠã§ããæ°ã $P_n$ ã§è¡šããŸãïŒäŸãã° $P_1=12$ïŒ$P_4=124816$ ã§ãïŒ\
ããã®ãšãïŒä»¥äžã®å€ã¯ $2$ ã§æ倧äœåå²ãåããŸããïŒ
$$P_1\times P_2\times \cdots \times P_{4605}$$ |
OMC159 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc159/tasks/247 | F | OMC159(F) | 400 | 85 | 123 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ ã®äžç¹ã $M_A$ ãªã©ãšãã.\r\n\r\n**è£é¡.**ãäžè§åœ¢ $ABC$ ã®éå¿ $G$ ã«ã€ããŠ, $AP^2+BP^2+CP^2=AG^2+BG^2+CG^2+3PG^2$.\r\n\r\n**蚌æ1.**ãç¹ $M_A$ ã«ã€ã㊠$G$ ãšå¯Ÿç§°ãªç¹ã $G_A$ ãšããã°, äžç·å®çãã\r\n$$\\begin{aligned}\r\nGB^2+GC^2&=2\\left(GM_A^2+BM_A^2\\right)=\\dfrac12AG^2+2BM_A^2 \\\\\\\\\r\nPA^2+PG_A^2&=2\\left(PG^2+AG^2\\right) \\\\\\\\\r\nPG^2+PG_A^2&=2\\left(PM_A^2+GM_A^2\\right)=2PM_A^2+\\dfrac 12AG^2 \\\\\\\\\r\nPB^2+PC^2&=2\\left(PM_A^2+BM_A^2\\right)\r\n\\end{aligned}$$\r\nããããé©åœã«è¶³ãåŒãããããšã§ææã®åŒãåŸã. (蚌æçµ)\r\n\r\n**蚌æ2.**ãããäžè¬ã«, $n$ åã®ç¹ $A_1,A_2,\\cdots,A_n$ ããã³ãããã®éå¿(幟äœäžå¿) $G$ ãšç©ºéäžã®ç¹ $P$ ã«å¯Ÿã\r\n$$\\sum^n_{k=1}A_kP^2=\\sum^n_{k=1}A_kG^2+nGP^2$$\r\nãæç«ããããšã瀺ã. $A_k,P$ ã® $x$ 座æšããããã $x_k,x$ ãšãã, $X = x_1 + x_2 + \\cdots + x_n$ ãšãã. ãã®ãšãïŒå·ŠèŸºïŒå³èŸºãããããžã® $x$ 座æšã®å¯äžã¯ãããã\r\n$$(\\text{巊蟺})=\\sum_{k=1}^n(x - {x_k})^2,\\quad\r\n(\\text{å³èŸº})=\\sum_{k=1}^n\\left(x_k-\\dfrac{X}{n}\\right)^2 + n\\left(x - \\dfrac{X}{n}\\right)^2$$\r\nã§ãã, ãããã¯ãšãã«\r\n$$nx^2-2xX+(x_1^2+x_2^2+\\cdots+x_n^2)$$\r\nã«äžèŽãã. $y,z$ 座æšã«ã€ããŠãåæ§ã§ãã. (蚌æçµ)\r\n\r\nãäžæ¹ã§äžç·å®çãã\r\n$$AB^2+AC^2=2\\left(AM_A^2+BM_A^2\\right)=2AM_A^2+\\frac 12BC^2$$\r\nãªã©ãæãç«ã€ãã, ãããå·¡åãããŠè¶³ãåãããããšã§\r\n$$\\frac 34\\left(AB^2+BC^2+CA^2\\right)=AM_A^2+BM_B^2+CM_C^2$$\r\nãããã£ãŠ, $AG:AM_A=2:3$ ãªã©ã«çæããã°\r\n$$AG^2+BG^2+CG^2=\\frac13(5^2+7^2+8^2)=46$$\r\nãåŸããã, ç¹ã«æ±ããé å㯠$G$ ãäžå¿ãšããååŸ $3\\sqrt 2$ ã®çã§ãã, ãã®äœç©ã¯ $72\\sqrt{2}\\pi=\\sqrt{\\textbf{10368}}\\pi$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/247"
},
{
"content": "ãå
¬åŒè§£èª¬ã®éå¿ãçšããæ¹æ³ã¯æãã€ããªãã£ãïŒç¥ããªãã£ãïŒããïŒåº§æšç³»ãçšããŸããïŒããŸã奜ãŸããæ¹æ³ã§ã¯ãªãããã§ããïŒçŽ¹ä»ããŠãããŸãïŒ\\\r\n\\\r\n ãäœåŒŠå®çãçšãããš $\\angle \\mathrm{A}=60^{\\circ}$ ã§ããããšããããïŒããã§ïŒç¹ $\\mathrm{B}$ ãã蟺 $\\mathrm{AC}$ ã«åç·ãäžããïŒãã®è¶³ãç¹ $\\mathrm{H}$ ãšãããšïŒ$\\mathrm{HA}=\\dfrac{5}{2}$ïŒ$\\mathrm{HB}=\\dfrac{5}{2}\\sqrt3$ïŒ\r\n$\\mathrm{HC}=\\dfrac{11}{2}$ ã§ããïŒ\\\r\n ãããã§ïŒæ¬¡ã®ãããªç©ºé座æšãèããïŒ$\\triangle \\mathrm{ABC}$ ãå«ãå¹³é¢ã $xy$ å¹³é¢ã§ïŒç¹ $\\mathrm{H}$ ãåç¹ïŒçŽç· $\\mathrm{HA}$ ã $x$ 軞ïŒçŽç· $\\mathrm{HB}$ ã $y$ 軞ïŒ\\\r\n ãïŒ$\\mathrm{A} \\left( \\dfrac{5}{2},0,0 \\right) $ïŒ$\\mathrm{B} \\left(0, \\dfrac{5}{2} \\sqrt{3},0 \\right) $ïŒ$\\mathrm{C} \\left( -\\dfrac{11}{2},0,0 \\right) $ ã§ããïŒïŒ\\\r\n ããã®ãšãïŒç¹ $\\mathrm{P}$ ã $\\left( x,y,z \\right)$ ãšãããšïŒ$\\mathrm{AP}^2+\\mathrm{BP}^2+\\mathrm{CP}^2âŠ100$ ãå€åœ¢ããããšã§ïŒæ¬¡ã®åŒãåŸãïŒ\\\r\n ã$(x+1)^2+ \\left( y-\\dfrac{5}{6} \\sqrt{3} \\right)^2+z^2âŠ18$\\\r\n ãåŸã£ãŠïŒç¹ $\\mathrm{P}$ ãééãåŸãé åã¯ïŒååŸ $3 \\sqrt{2}$ ã®çé¢åã³å
éšã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc159/editorial/247/228"
}
] | ã空éå
ã« $3$ ã€ã®å®ç¹ $A,B,C$ ãããïŒä»¥äžã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
$$AB=5, \quad BC=7, \quad CA=8$$
ç¹ $P$ ã $AP^2+BP^2+CP^2\leq 100$ ãã¿ããããã«ç©ºéå
ãåããšãïŒ$P$ ãééãããé åã®äœç© $V$ ãæ±ããŠãã ããïŒãã ãïŒæ±ããäœç©ã¯æ£æŽæ° $S$ ãçšã㊠$\sqrt{S}\pi$ ãšè¡šããã®ã§ïŒ$S$ ã解çããŠãã ããïŒ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/2001 | A | OMC158(A) | 200 | 258 | 306 | [
{
"content": "ã$bc$ ãšããŠããåŸããã®ã¯ $1\\times 201,2\\times 200,\\cdots,101\\times 101$ ã§ãããã, æ±ããç·åã¯\r\n$$\\sum_{k=0}^{100} (10404-(101+k)(101-k))=\\sum_{k=0}^{100} (203+k^2)=\\textbf{358853}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2001"
}
] | ãæ£æŽæ° $a,b,c$ ã以äžã®çåŒããšãã«ã¿ãããšãïŒ$a$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ããïŒ
$$a+bc=10404,\quad b+c=202$$ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/1690 | B | OMC158(B) | 200 | 169 | 216 | [
{
"content": "ãäžè§åœ¢ $ABD$ ãšäžè§åœ¢ $ACD$ ã¯ååã§ããããïŒ$B$ ããã³ $C$ ãããããã $AD$ ã«ããããåç·ã®è¶³ã¯äžèŽãïŒããã $H$ ãšããã° $BH=CH=4\\sqrt{3}$ ãæç«ããïŒãã£ãŠ $\\angle BHC=\\theta$ ãšããã°ïŒ$V=40\\sin\\theta$ ã§ããããïŒæ±ããç·å㯠$40$ 以äžã®æ£æŽæ°ã®ç·åïŒããªãã¡ $\\textbf{820}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/1690"
}
] | $$AB=AC=7,\quad BD=CD=8,\quad AD=5$$
ãªãåé¢äœ $ABCD$ ã«ã€ããŠïŒãã®äœç© $V$ ãšããŠããããæ£æŽæ°å€ã®ç·åãæ±ããŠãã ããïŒ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/5144 | C | OMC158(C) | 300 | 186 | 244 | [
{
"content": "ã$b_i=a_i-i+1 ~ (i=1,2,\\ldots,7)$ ãšå®ããïŒãã®ãšãïŒ$1 \\leq b_1 \\leq b_2 \\leq \\cdots \\leq b_7 \\leq 9$ ã§ããïŒ$b_1,b_2,\\ldots,b_7$ ã®å¶å¥ã¯å
šãŠçããïŒ$b_1,b_2,\\ldots,b_7$ ãå
šãŠå¥æ°ã®ãšã ${}_5 \\mathrm{H}_7=330$ éãïŒå¶æ°ã®ãšã ${}_4 \\mathrm{H}_7=120$ éãããããïŒè§£çãã¹ãå€ã¯ $330+120=\\mathbf{450}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/5144"
},
{
"content": "ãå
¬åŒè§£èª¬ã®æ¹æ³ã¯ãšã¬ã¬ã³ãã§ããïŒããå°ãå°éã«ããæ¹æ³ã玹ä»ããŸãïŒ\r\n\r\n ã$a_7-a_1$ ã¯ïŒ$6$ ä»¥äž $14$ 以äžã®å¶æ°ãªã®ã§ïŒãã®å€ã $6$ïŒ$8$ïŒ$10$ïŒ$12$ïŒ$14$ ã® $5$ çš®é¡ã®å Žåãèããã°ããïŒããããèšç®ãããšïŒ$9+42+105+168+126=\\mathbf{450}$ ã§ããïŒ\\\r\n ãããããã®å€ã®å°åºã«ã€ããŠã¯ïŒå
šãŠæžããšãããžããªã®ã§ïŒ$a_7-a_1=10$ ã®å Žåã®ã¿èª¬æããïŒ\\\r\n ããŸã $a_1$ ã®åãæ¹ã¯ïŒ$1$ïŒ$2$ïŒ$3$ïŒ$4$ïŒ$5$ ã® $5$ éãã§ããïŒ\\\r\n ã次ã«ïŒ$a_2-a_1$ïŒâŠïŒ$a_7-a_6$ ã¯å
šãŠå¥æ°ã§ïŒãã®åèšã $10$ ã§ããïŒãã㧠$a_2-a_1=1+2b_1$ïŒâŠïŒ$a_7-a_6=1+2b_6$ ãšãããšïŒ$b_1+âŠ+b_6=2$ ãšãªãå Žåã®æ°ãæ±ããåé¡ã«åž°çãããïŒãã㧠$b_n$ ã¯å
šãŠéè² æŽæ°ïŒïŒãã®ãããªå Žåã®æ°ã¯ ${}_7 \\mathrm{C}_2$ éãã§ããïŒ\\\r\n ããã£ãŠïŒ$a_7-a_1=10$ ãæºããå Žåã®æ°ã¯ïŒ$5Ã{}_7 \\mathrm{C}_2=105$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/5144/225"
},
{
"content": "ã$1\\leq a_1\\lt a_2 \\lt \\dots \\lt a_7\\leq 15$ ã«å¯Ÿã,\r\n - $b_1=a_1-1$.\r\n- $b_i=b_i-b_{i-1}\\\\;\\(i=2,\\dots,7)$\r\n- $b_{8}=15-a_7$.\r\n\r\nãšãããš, $b_i$ ã¯éè² æŽæ°ã§ãã, 以äžãæºãã.\r\n\r\n- $b_1+b_2+\\dots+b_{8}=15-1=14$.\r\n- $b_2,b_3,\\dots,b_7$ ã¯ããããå¥æ°..\r\n\r\nãã£ãŠ, çãã¯ä»¥äžã®ããã«èšç®ã§ãã.\r\n\r\n$$\r\n\\begin{aligned}\r\n&\\[x^{14}\\](1+x+x^2+\\dots)(x+x^3+x^5+\\dots)^6(1+x+x^2+\\dots)\\\\\\\\\r\n&=\\[x^{14}\\]\\frac{1}{1-x}\\Big(\\frac{x}{1-x^2}\\Big)^6\\frac{1}{1-x}\\\\\\\\\r\n&=\\[x^{14}\\]\\frac{1+x}{1-x^2}\\Big(\\frac{x}{1-x^2}\\Big)^6\\frac{1+x}{1-x^2}\\\\\\\\\r\n&=\\[x^{14}\\]\\frac{x^6(1+2x+x^2)}{(1-x^2)^8}\\\\\\\\\r\n&=\\[x^{8}\\] \\frac{1+2x+x^2}{(1-x^2)^8}\\\\\\\\\r\n&=\\[(x^2)^4\\] \\frac{1}{(1-x^2)^8}+\\[(x^2)^3\\] \\frac{1}{(1-x^2)^8} \\\\\\\\\r\n&=\\binom{4+7}{7}+\\binom{3+7}{7}\\\\\\\\\r\n&=330+120=\\mathbf{450}.\r\n\\end{aligned}\r\n$$",
"text": "圢åŒçåªçŽæ°ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/5144/699"
}
] | ã$1 \leq a_1 \lt a_2 \lt \cdots \lt a_7 \leq 15$ ãæºããæŽæ°ã®çµ $(a_1,a_2,\ldots,a_7)$ ã§ãã£ãŠïŒ
$$a_2-a_1,ãa_3-a_2,ã\ldotsãa_7-a_6$$
ãå
šãŠå¥æ°ã§ãããããªãã®ã¯ããã€ãããŸããïŒ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/4082 | D | OMC158(D) | 400 | 117 | 142 | [
{
"content": "ãæå°ã®è§£ã $c \\gt 0$ ãšãããšïŒ$4$ 解㯠$r \\gt 1$ ãçšã㊠$c, cr, cr^2, cr^3$ ãšè¡šããïŒè§£ãšä¿æ°ã®é¢ä¿ãã\r\n$$ 35c(1 + r + r^2 + r^3) = -140s = 4c^3(r^3 + r^4 + r^5 + r^6).$$\r\nããã«ãã $\\displaystyle c^2r^3 = \\frac{35}{4}$ ãåŸãããïŒäžæ¹ã§ïŒåã³è§£ãšä¿æ°ã®é¢ä¿ãçšããŠä»¥äžã®åŒãåŸãïŒ\r\n$$ c^2(r + r^2 + 2r^3 + r^4 + r^5) = t = c^4r^6 $$\r\nããã« $\\displaystyle 1 + r + 2r^2 + r^3 + r^4 = c^2r^5 = \\frac{35}{4} r^2 $ ã§ããïŒæŽçãããšä»¥äžã®æ¹çšåŒãæãç«ã€ïŒçžåæ¹çšåŒã§ããããšã«çç®ãããšèšç®ã容æã§ããïŒïŒ\r\n$$ (r-2)(2r-1)(2r^2 + 7r + 2) = 0 $$\r\n$r \\gt 1$ ãšããã㊠$r = 2$ ãåŸãããïŒãããã£ãŠ $\\displaystyle c = \\sqrt{\\frac{35}{4r^3}} = \\sqrt{\\frac{35}{32}}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{67}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/4082"
}
] | ã$s, t$ ãå®æ°ãšããŸãïŒ$x$ ã«ã€ããŠã® $4$ 次æ¹çšåŒ
$$ x^4 + 4sx^3 + tx^2 + 35sx + t = 0 $$
ã¯çžç°ãªã $4$ ã€ã®æ£ã®å®æ°è§£ããã¡ïŒããããå°ããé ã«äžŠã¹ããš**çæ¯**æ°åããªããŸããïŒãã®æ¹çšåŒã®è§£ãšããŠããåŸãæå°ã®å€ã¯ïŒäºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\displaystyle \sqrt{\frac{a}{b}}$ ãšè¡šããã®ã§ïŒ$a + b$ ã®å€ã解çããŠãã ããïŒ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/2061 | E | OMC158(E) | 400 | 64 | 105 | [
{
"content": "ãæ°å $\\\\{b_n\\\\}$ ã以äžã§å®ããïŒ \r\n $$b_1 = k,\\quad b_2 = 2k^2 - 1,\\quad b_{n+2} = 2kb_{n+1} - b_n$$ \r\n\r\nãã®ãšãïŒ $Ξ = k + \\sqrt{k^2-1}$ ãšããã°ïŒ\r\n$$a_n = \\dfrac{Ξ^n - Ξ^{-n}}{2\\sqrt{k^2 - 1}},\\quad b_n = \\dfrac{Ξ^n + Ξ^{-n}}{2}$$ ã§ããïŒç¹ã« $a_{2n} = 2a_nb_n$ \r\nãæãç«ã€ïŒãŸãïŒåž°çŽçã«\r\n$$v_2(a_{2n+1})=0,\\quad\r\nv_2(b_n)=\\begin{cases}\r\n0 & (2\\mid n)\\\\\\\\\r\nv_2(k) & (2\\nmid n)\r\n\\end{cases}$$\r\nã§ããããšã確èªã§ããã®ã§ïŒ$n$ ãå¶æ°ã®ãšãïŒ\r\n$$v_2(a_n)=v_2(n)+v_2(k)$$\r\nã§ããïŒ$10^{10}$ 以äžã® $k$ 㧠$v_2(k)$ ãæ倧ã«ãªãã®ã¯ $k=2^{33}$ ã®æã§ããããïŒæ±ããçã㯠$\\bf{133}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2061"
},
{
"content": "ãå³å¯æ§ã¯æ¬ ããŸããïŒä»¥äžã®ããã«æšæž¬ã«ãã£ãŠè§£ããŸãïŒ\r\n\r\n ã$a_{10^{100}}=b_1k+b_3k^3+b_5k^5+âŠ$ ãšãªãïŒ\\\r\n ã$a_{8}$ ããããŸã§æŒžååŒã«åŸã£ãŠä»£å
¥ããŠã¿ããšïŒ$b_1=-10^{100}$ïŒ$v_2(b_1)âŠv_2(b_3),v_2(b_5),âŠâŠ$ ãæšæž¬ã§ããïŒ\\\r\n ã以äžã®ä»®å®ãåºã«ãããšïŒ$k=2^{33}$ ã®ãšã $f(k)$ ã¯æ倧ã«ãªãïŒçã㯠$\\mathbf{133}$ ã§ããïŒ\\\r\n\\\r\n ããªãïŒ$b_1=-10^{100}$ïŒ$v_2(b_1)âŠv_2(b_3)$ éšåã®æšæž¬ãæ£ããããšã¯ïŒæ¬¡ã®åŒãåž°çŽæ³ã§ç€ºãããšã§èšŒæã§ããŸãããïŒ$b_5$ 以éã«ã€ããŠã¯ããããã£ãŠããŸããïŒ\\\r\n ã$a_{2n}=2(-1)^{n-1}nk+\\dfrac{4}{3}(-1)^{n}n(n+1)(n-1)k^3+âŠâŠ$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2061/223"
},
{
"content": "ãç·åœ¢ä»£æ°ãçšããŠè§£ããŠã¿ãŸã. ããã§ã¯, $2N=10^{100}$ ãšããŸã.\r\n$a_0=0,a_1=1$ ã§ãã, 以äžãæç«ããŸã.\r\n$$\r\n\\begin{pmatrix}\r\na_{n+2} \\\\\\\\\r\na_{n+1} \\\\\\\\\r\n\\end{pmatrix}\r\n=\r\n\\begin{pmatrix}\r\n2k & -1 \\\\\\\\\r\n1 & 0 \\\\\\\\\r\n\\end{pmatrix}\r\n\\begin{pmatrix}\r\na_{n+1} \\\\\\\\\r\na_{n} \\\\\\\\\r\n\\end{pmatrix}\r\n$$\r\nããã£ãŠ,\r\n$$\r\n\\begin{aligned}\r\n\\begin{pmatrix}a_{2N+1} \\\\\\\\\r\na_{2N} \\\\\\\\\r\n\\end{pmatrix}\r\n&=\r\n\\begin{pmatrix}\r\n2k & -1 \\\\\\\\\r\n1 & 0 \\\\\\\\\r\n\\end{pmatrix}^{2N}\r\n\\begin{pmatrix}\r\n1 \\\\\\\\\r\n0 \\\\\\\\\r\n\\end{pmatrix}\\\\\\\\\r\n&=\r\n\\begin{pmatrix}\r\n4k^2-1 & -2k \\\\\\\\\r\n2k & -1 \\\\\\\\\r\n\\end{pmatrix}^{N}\r\n\\begin{pmatrix}\r\n1 \\\\\\\\\r\n0 \\\\\\\\\r\n\\end{pmatrix}\\\\\\\\\r\n&=\\Bigg(\r\n2k\r\n\\begin{pmatrix}\r\n2k & -1 \\\\\\\\\r\n1 & 0\\\\\\\\\r\n\\end{pmatrix}-I\\Bigg)^{N}\r\n\\begin{pmatrix}\r\n1 \\\\\\\\\r\n0 \\\\\\\\\r\n\\end{pmatrix}\\\\\\\\ \r\n\\end{aligned}\r\n$$\r\nãããã§, $A=\r\n\\begin{pmatrix}\r\n2k & -1 \\\\\\\\\r\n1 & 0\\\\\\\\\r\n\\end{pmatrix}$ ãšããŸã. äžã®åŒã $2$ é
å±éãããšä»¥äžã®ããã«ãªããŸã.\r\n$$(2kA-I)^{N}=I-N\\cdot 2kA+\\dots+\\binom{N}{m}(-2k)^mA^m+\\cdots$$\r\nã$k$ ãå¶æ°ã§ãããšã, $m\\gt2$ ã«ã€ããŠ, $v_2(N\\cdot 2k)\\lt v_2\\Big(\\binom{N}{m}(2k)^m\\Big) $ ãæç«ããŸã.\r\n<details> \r\n<summary> 蚌æ <\\/summary>\r\n $$\r\n\\begin{aligned}\r\n&v_2\\Bigg(\\binom{N}{m}(2k)^m\\Bigg)-v_2(N\\cdot 2k)\\\\\\\\\r\n&=v_2\\Bigg(m\\cdot \\binom{N}{m}(2k)^m\\Bigg)-v_2(m\\cdot N\\cdot 2k)\\\\\\\\\r\n&=v_2\\Bigg(N\\cdot \\binom{N-1}{m-1}(2k)^m\\Bigg)-v_2(m\\cdot N\\cdot 2k)\\\\\\\\\r\n&=v_2\\Bigg(\\binom{N-1}{m-1}\\Bigg)+(m-1)v_2(2k)-v_2(m)\\\\\\\\\r\n&\\geq (m-1)v_2(2k)-v_2(m)\\\\\\\\\r\n&\\geq 2(m-1)-v_2(m)\\gt 0\\\\\\\\\r\n\\end{aligned}\r\n$$\r\n<\\/details>\r\nããããã $M=v_2(N\\cdot2k)$ ãšãããšã以äžãæç«ããŸã.\r\n$$(2kA-I)^{N}\\equiv I-N\\cdot 2kA\\pmod{2^{M+1}}$$\r\n$(I-N\\cdot 2kA)\r\n\\begin{pmatrix}\r\n1\\\\\\\\\r\n0\\\\\\\\\r\n\\end{pmatrix}\r\n=\r\n\\begin{pmatrix}\r\n\\cdots\\\\\\\\\r\n-N\\cdot 2k\\\\\\\\\r\n\\end{pmatrix}$\r\nãã, $v_2(a_{2N})=M=100+v_2(k)$ ã§ãã, $k$ ãå¶æ°ã§ãããšã $k=2^{33}$ ã«ãŠ, æå€§å€ $\\mathbf{133}$ ãåã.",
"text": "ç·åœ¢ä»£æ°ãçšãã解æ³(kãå¶æ°ã®ãšãã®ã¿)",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2061/618"
}
] | ãæ£æŽæ° $k$ ã«å¯ŸããŠïŒä»¥äžã§æ°å $\\{a_n\\}$ ãå®ãããšãïŒ$a_{10^{100}}$ ã $2$ ã§å²ãåããæ倧ã®åæ°ã $f(k)$ ãšããŸãïŒ
$$a_1 = 1,\quad a_2 = 2k,\quad a_{n+2} = 2ka_{n+1} - a_n.$$
$k \leq 10^{10}$ ã®ç¯å²ã§ïŒ$f(k)$ ã®ãšãããæ倧å€ã解çããŠãã ããïŒ |
OMC158 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc158/tasks/2553 | F | OMC158(F) | 500 | 13 | 68 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®ä¹ç¹åã $\\Gamma$ ãšããã°ïŒ$\\Omega$ 㯠$H$ ãäžå¿ã« $\\Gamma$ ã $2$ åã«æ¡å€§ãããã®ã§ããããïŒ$\\Gamma$ 㯠$AH$ ã®äžç¹ $P$ ããã³ $XH$ ã®äžç¹ $N$ ãéãïŒ$XH$ ãš $\\Gamma$ ã®äº€ç¹ã $Y(\\neq N)$ ãšãããšïŒ$PH=NH$ ãã $YH=DH$ ãæç«ããïŒãã£ãŠ $AD=XY$ ã§ããïŒ$B$ ãã $AC$ ã«ããããåç·ã®è¶³ã $E$ ãšããã°ïŒ\r\n$$XD\\times XM=XN\\times XY=AP\\times AD=AE\\times AM$$\r\nãã㧠$DM=12$ ãæç«ããããïŒäžåŒãã $AE=9$ ãåŸãïŒãŸãïŒ$XM$ ãš $\\Omega$ ã®äº€ç¹ã $Z(\\neq X)$ ãšããã°ïŒ\r\n$$AM\\times MC=XM\\times MZ$$\r\nãã $MZ=8$ ãåŸãïŒ$AD$ ãš $\\Omega$ ã®äº€ç¹ã $S(\\neq A)$ ãšãããšãïŒæåäºå®ãã $DS=DH$ ãæç«ãïŒ\r\n$$AD\\times HD=AD\\times DS=XD\\times DZ=120$$\r\nãåŸãïŒäžæ¹ã§ $AH\\times AD=AE\\times AC=216$ ããïŒ\r\n$$AD^2=HD\\times AD+AH\\times AD=336$$\r\nã§ããïŒãã£ãŠ $CD=4\\sqrt{15}, BD=2\\sqrt{15},AB=6\\sqrt{11}=\\sqrt{\\textbf{396}}$ ãšé 次èšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2553"
},
{
"content": "ãäžè§æ¯ãçšãã解æ³ã§ããïŒ\\\r\n ã$\\angle \\mathrm{CAD}=\\theta$ ãšãããšïŒ$\\mathrm{CD}=24 \\sin \\theta$ïŒ$\\mathrm{AD}=24 \\cos \\theta$ ã§ããïŒ\\\r\n ãåçŽç· $\\mathrm{DM}$ ãšå $\\Omega$ ã®äº€ç¹ã $\\mathrm{Z}$ ãšããïŒ$\\mathrm{MD}=12$ ã§ããïŒç¹ $\\mathrm{M}$ ã®åšãã§æ¹ã¹ãã®å®çãçšãããšïŒ$\\mathrm{MZ}=8$ ã§ããïŒ\\\r\n ã以äžã®ããšããïŒç¹ $\\mathrm{D}$ ã®åšãã§æ¹ã¹ãã®å®çãçšããŠïŒ$\\mathrm{BD}=\\dfrac{5}{\\sin \\theta}$ ã§ãããšãããïŒããã« $\\angle \\mathrm{DBH}=\\theta$ ãçšãããšïŒ$\\mathrm{DH}=\\dfrac{5}{\\cos \\theta}$ ã§ããïŒ\\\r\n ããã㧠$\\triangle \\mathrm{XHD}$ ã«äœåŒŠå®çãçšãããšïŒ\\\r\n ã$\\mathrm{XH}^2=6^2+\\left(\\dfrac{5}{\\cos \\theta}\\right)^2-2 \\cdot 6 \\cdot \\left(\\dfrac{5}{\\cos \\theta}\\right) \\cos(180^ \\circ - \\theta)$\\\r\n ãäžæ¹ïŒ$\\mathrm{AH}=\\mathrm{AD}-\\mathrm{HD}=24 \\cos \\theta -\\dfrac{5}{\\cos \\theta}$ ã§ããïŒ\\\r\n ã$\\mathrm{AH}=\\mathrm{XH}$ ãçšããŠæ¹çšåŒã解ããšïŒ$\\cos \\theta=\\dfrac{\\sqrt{21}}{6}$ ãåŸãã®ã§ïŒä»¥äž $\\mathrm{AD}$ïŒ$\\mathrm{BD}$ïŒ$\\mathrm{AB}$ ã®é ã«é·ããæ±ããã°ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2553/224"
},
{
"content": "ãOMC ãšããŠã¯æè²çãããããªã解æ³ã§ãïŒ\r\n\r\n---\r\n\r\nãåçŽç· $AD, DM$ ãš $\\Omega$ ã®äº€ç¹ããããã $E, Y$ ãšããïŒ$M$ ã«ãããæ¹ã¹ããã $MY=8$ ã§ããïŒããã« $D$ ã«ãããæ¹ã¹ããã $AD\\times AE=120$ ãåŸãïŒæåäºå®ãšã㊠$HD=DE$ ã ããïŒ$AD=x$ ãšãããš\r\n$$AH=AD-DE =x-\\frac{120}{x} \\tag{1}$$\r\nãåŸãïŒäžæ¹ã§ïŒ$X$ ããçŽç· $DH$ ã«äžãããåç·ã®è¶³ã $Z$ ãšããã°ïŒçžäŒŒãã $DZ=\\dfrac{x}{4}$ ã§ããïŒäžå¹³æ¹ã®å®çãã\r\n$$\\begin{aligned}\r\nXH^2 &= XD^2 - DZ^2 + HZ^2 \\\\\\\\\r\n&= 6^2 - \\biggl( \\frac x4 \\biggr)^2 + \\left( \\frac{120}{x} + \\frac x4 \\right)^2 \\tag{2}\r\n\\end{aligned}$$\r\nãåŸãïŒ$(1), (2)$ ãš $AH=XH$ ãã $x^2=336$ ãåŸãïŒãããã $CD^2=240, BD^2=60$ ãé 次åããããïŒ$AB^2=AD^2+BD^2=\\textbf{396}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc158/editorial/2553/227"
}
] | ãå€æ¥åã $\Omega$ïŒåå¿ã $H$ ãšããéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $D$ïŒ$AC$ ã®äžç¹ã $M$ ãšãïŒåçŽç· $MD$ ãš $\Omega$ ã®äº€ç¹ã $X$ ãšãããšãïŒ$AH=XH$ ãæç«ããŸããïŒ\
ã$AC=24,XD=6$ ã®ãšãïŒ$AB$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/5506 | A | OMC157(A) | 100 | 321 | 334 | [
{
"content": "ãæãå³ã«ãã $p$ 以å€ã® $p$ ã®äžã€å³ã¯ $k$ ã§ããã®ã§ïŒãã® $p$ ãš$k$ ããŸãšããŠèããããšã§ïŒæ±ããçã㯠${}_6 \\mathrm{C}_3=\\mathbf{20}$ ãšåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/5506"
}
] | ãã¢ã«ãã¡ã¹ããã® $k$ ã $5$ ã€ãš $p$ ã $3$ ã€ãäžåã«äžŠã¹ãŸãïŒ$p$ ãé£ãåããªã䞊ã¹æ¹ã¯äœéããããŸããïŒãã ãïŒåãæåã¯åºå¥ããŸããïŒ |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/4729 | B | OMC157(B) | 100 | 286 | 329 | [
{
"content": "ãæ±ããã¹ã確çã¯, ( $3$ è»ç®ã§åžœåãå¿ãã確ç) $\\div$ (åžœåãå¿ãã確ç) ã§è¡šããããïŒ\r\n$$\\dfrac{\\dfrac{2}{3} à \\dfrac{2}{3} à \\dfrac{1}{3}}{1- \\biggl(\\dfrac{2}{3}\\biggr)^3}=\\dfrac{4}{19}$$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\mathbf{23}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/4729"
}
] | ãOMCåã¯åžœåã被ã£ãŠä»äººã®å®¶ã蚪ãããš $\dfrac{1}{3}$ ã®ç¢ºçã§åžœåãå¿ããŠããŸãïŒ\
ãããæ¥OMCåã¯åžœå $1$ ã€ã被ã£ãŠå®¶ãåºãŠïŒ$3$ è»ãé ã«èšªããŠå®¶ã«åž°ã£ãŠããŸãããïŒããã§åžœåãç¡ãããšã«ã¯ãããŠæ°ä»ããŸããïŒãã®ãšãïŒ$3$ è»ç®ã®å®¶ã«åžœåãå¿ãã確çã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$aïŒb$ ã解çããŠãã ããïŒ\
ããã ãïŒOMCåã¯èšªãã家以å€ã§åžœåãèœãšãããšã¯ãããŸããïŒ |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/4730 | C | OMC157(C) | 200 | 165 | 187 | [
{
"content": "ãæ¹ã¹ãã®å®çãã\r\n$$CP^2 = BC(BC + 11) = CQ^2$$\r\nã§ãããã, $CP = CQ = 100$ ã§ãã. ãããäžã®åŒã«ä»£å
¥ããŠè§£ãããšã§, \r\n$$BC = \\frac{-11+\\sqrt{40121}}{2}$$\r\nãåããã®ã§, ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{40134}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/4730"
}
] | ãå $O_1$ ãš $O_2$ 㯠$2$ ç¹ $A,B$ ã§äº€ãã£ãŠããïŒçŽç· $\ell$ 㯠$O_1$ ãš $O_2$ ã®äž¡æ¹ã«æ¥ããŠããŸãïŒ$\ell$ ãš $O_1,O_2$ ã®æ¥ç¹ããããã $P,Q$ ãšãïŒçŽç· $AB$ ãš $\ell$ ã®äº€ç¹ã $C$ ãšãããšãïŒä»¥äžãæç«ããŸããïŒ
$$AB = 11,\quad PQ = 200.$$
ããã«ïŒ$B$ ãç·å $AC$ äžã«ãããšãïŒç·å $BC$ ã®é·ãã¯äºãã«çŽ ãªæŽæ° $a,b,c$ ãçšã㊠$\dfrac{\sqrt a - b}{c}$ ãšè¡šããã®ã§ïŒ$a + b + c$ ã解çããŠãã ãã. |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/5498 | D | OMC157(D) | 300 | 220 | 281 | [
{
"content": "ã$5$ ã§å²ãåãããã®ã¯ãã¹ãŠäžã®äœã¯ $5$ ã§ããïŒæ®ãã® $3^{11}\\times 7^{17}$ ã®çŽæ°ã«ã€ããŠã¯ïŒä»¥äžã®è¡šã®ããã«äžã®äœãèããããšã§ïŒ$12\\times 18$ åã®ãã¡ã« $1,3,7,9$ ãåãæ°ãã€çŸããããšããããïŒ\r\n\r\n$$\\begin{array}{c||c|c|c|c|c}\r\n\\times & 3^0 & 3^1 & 3^2 & 3^3 & 3^4 \\\\\\\\ \\hline \\hline \r\n7^0 & 1 & 3 & 9 & 7 & 1 \\\\\\\\ \\hline\r\n7^1 & 7 & 1 & 3 & 9 & 7 \\\\\\\\ \\hline\r\n7^2 & 9 & 7 & 1 & 3 & 9 \\\\\\\\ \\hline\r\n7^3 & 3 & 9 & 7 & 1 & 3 \\\\\\\\ \\hline\r\n7^4 & 1 & 3 & 9 & 7 & \\cdots\r\n\\end{array}$$\r\n\r\n以äžããïŒãã¹ãŠã®çŽæ°ã«ã€ããŠäžã®äœã®å¹³åã $5$ ãšãªãïŒæ±ããç·å㯠$5\\times (12\\times 14\\times 18)=\\textbf{15120}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/5498"
}
] | ã$3^{11}Ã5^{13}Ã7^{17}$ ã®æ£ã®çŽæ°ãã¹ãŠã«ã€ããŠïŒããããã®äžã®äœã®ç·åãæ±ããŠãã ããïŒ |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/5550 | E | OMC157(E) | 300 | 98 | 198 | [
{
"content": "ã$(6,6)$ ãéäžã§çµç±ã§ããã®ã¯ $12$ åç®ã®ç§»ååŸã $14$ åç®ã®ç§»ååŸã§ããïŒ\\\r\nã$12$ åç®ã« $(6,6)$ ãçµç±ãã移åæ¹æ³ãèããïŒ$12$ åç®ãŸã§ã¯æççµè·¯ãã ${}\\_{12}\\mathrm{C}\\_{6}$ éãïŒ$13$ åç®ä»¥é㯠$\\\\{A,B\\\\}$ ãš $\\\\{C,D\\\\}$ ãçµã¿åãããŠïŒåããã®ã $2$ åçšããŠãããïŒåŸãããããïŒãã®ç·æ°ã¯ä»¥äžã§äžããããïŒ\r\n$${}\\_{12}\\mathrm{C}\\_{6}Ã(2à {}\\_{4}\\mathrm{C}\\_{2}+4!)=33264$$\r\nã$14$ åç®ã« $(6,6)$ ãçµç±ãã移åæ¹æ³ãèããïŒ$14$ åç®ãŸã§ã¯ïŒä»¥äžã®ããããã§ããïŒ\r\n- $A$ ã $7$ åïŒ$B$ ã $1$ åïŒ$C$ ã $6$ å\r\n- $A$ ã $6$ åïŒ$C$ ã $7$ åïŒ$D$ ã $1$ å\r\n\r\nãŸã $15$ åç®ä»¥é㯠$\\\\{A,B\\\\}$ ã $\\\\{C,D\\\\}$ ã®ããããã ããïŒç·æ°ã¯ä»¥äžã§äžããããïŒ\r\n$$\\biggl(2Ã\\dfrac{14!}{7!\\times 6!\\times 1!}\\biggr)Ã4=192192$$\r\nãäžæ¹ã§ïŒéè€ãã $12$ åç®ãš $14$ åç®ã«ãšãã« $(6,6)$ ãçµç±ãã移åæ¹æ³ã®ç·æ°ã¯ïŒä»¥äžã§äžããããïŒ\r\n$${}\\_{12}\\mathrm{C}\\_{6}Ã4^2=14784$$\r\nã以äžããïŒå
šäœã§ã¯ $33264+192192-14784=\\textbf{210672}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/5550"
}
] | ã$xy$ 座æšå¹³é¢äžã® $(0,0)$ ã«ç¹ $P$ ãããïŒç¹ $P$ ã¯ä»¥äžã®ãããªç§»å $A,B,C,D$ ãè¡ããŸã.
- $A: (x,y)$ ãã $(x,y+1)$ ã«ç¬é移åãã.
- $B: (x,y)$ ãã $(x,y-1)$ ã«ç¬é移åãã.
- $C: (x,y)$ ãã $(x+1,y)$ ã«ç¬é移åãã.
- $D: (x,y)$ ãã $(x-1,y)$ ã«ç¬é移åãã.
ããŸïŒç§»å $A,B,C,D$ ãåèšã§ $16$ åè¡ã£ããšãïŒç¹ $P$ 㯠$(6,6)$ ã«å°éãïŒããããåã«ã $1$ åºŠä»¥äž $(6,6)$ ãçµç±ããŠããŸããïŒãã®ãšãïŒç¹ $P$ ã®ç§»åæ¹æ³ãšããŠãããããã®ã¯äœéããããŸããïŒ\
ããã ãïŒ$A, B, C, D$ ã®ãã¡ïŒäžåºŠã䜿ããªã移åããã£ãŠãè¯ããã®ãšããŸãïŒ |
OMC157 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc157/tasks/5522 | F | OMC157(F) | 400 | 46 | 89 | [
{
"content": "$M$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $X$ ãšãã. ãã®ãšã, åè§åœ¢ $BXCH$ ã¯å¹³è¡å蟺圢ã§ãããã, \r\n$$\\angle BXC = \\angle BHC = 180^\\circ - \\angle BAC$$\r\nã§ããã®ã§ $X$ 㯠$\\Gamma$ äžã«ãã. ãã£ãŠ\r\n$$OMÃOP=OC^2=OX^2$$\r\nããäžè§åœ¢ $OMX$ ãš $OXP$ ã¯çžäŒŒã§ãããã, $OM=HM = MX$ ãšäœµã㊠$OX=PX$ ã§ãã. ããã§, äžè§åœ¢ $HOX$ ãçŽè§äžè§åœ¢ã§ããããšã«æ°ãã€ã, \r\n$$PX^2=OX^2=HX^2-OH^2=9$$\r\nãã $OX=XP=3$ ã§ãã. ãŸã $OX^2=OMÃOP$ ãªã®ã§ $OP=\\dfrac{9}{2}$ ã§ãããã, $MP=\\dfrac{5}{2}$ ã§ãã. 以äžãã, äžç·å®çãã\r\n$$2(HM^2+MP^2)=PX^2+HP^2$$\r\nã§ãããã, $HP^2=\\dfrac{23}{2}$ ã§ãã. ç¹ã«è§£çãã¹ãå€ã¯ $\\bf{25}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/5522"
},
{
"content": "ãå€å¿ $\\mathrm{O}$ ãå§ç¹ãšãïŒ$\\mathrm{A}(\\vec{a})$ïŒ$\\mathrm{B}(\\vec{b})$ïŒ$\\mathrm{C}(\\vec{c})$ïŒ$\\mathrm{H}(\\vec{h})$ïŒ$\\mathrm{M}(\\vec{m})$ïŒ$\\mathrm{P}(\\vec{p})$ãšããïŒå¹Ÿäœçæ¡ä»¶ããïŒ$\\vec{m}=\\dfrac{\\vec{b}+\\vec{c}}{2}$ïŒ$\\vec{h}=\\vec{a}+\\vec{b}+\\vec{c}=\\vec{a}+2 \\vec{m}$ ã§ããïŒ\\\r\n ãé·ãã®æ¡ä»¶ããïŒ$\\mathrm{OM}=|\\vec{m}|=2$ïŒ$\\mathrm{HM}=|\\vec{a}+\\vec{m}|=2$ïŒ$\\mathrm{OH}=|\\vec{a}+2 \\vec{m}|=\\sqrt{7}$ïŒ\\\r\n ããããã $2$ ä¹ããŠé£ç«æ¹çšåŒã解ãã°ïŒ$|\\vec{a}|=3$ïŒ$\\vec{a} \\cdot \\vec{m}=-\\dfrac{9}{2}$ ãåŸãïŒ\\\r\n ãããã§ïŒ$\\triangle \\mathrm{OBM}$ ãš $\\triangle \\mathrm{OPB}$ ãçžäŒŒã§ããããšãçšããã°ïŒ$\\mathrm{OP}=\\dfrac{9}{2}$ ã§ããïŒ$\\mathrm{O}$ïŒ$\\mathrm{P}$ïŒ$\\mathrm{M}$ ã¯äžçŽç·äžã«ããã®ã§ïŒ$\\vec{p}=\\dfrac{9}{4} \\vec{m}$ïŒ\\\r\n ãæåŸã« $\\mathrm{HP}^2=|\\vec{h}-\\vec{p}|^2=|\\vec{a}-\\dfrac{1}{4}\\vec{m}|^2$ ãèšç®ããã°æ±ãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc157/editorial/5522/226"
}
] | ãå€æ¥åã $\Gamma$ ãšããäžè§åœ¢ $ABC$ ãããïŒãã®åå¿ã $H$ïŒå€å¿ã $O$ ãšããŸãïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãïŒ$\Gamma$ ã® $B, C$ ã«ãããæ¥ç·ã®äº€ç¹ã $P$ ãšãããšïŒä»¥äžãæç«ããŸããïŒ
$$HM=OM=2,\quad OH=\sqrt7$$
ãã®ãšãïŒ$HP^2$ ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a + b$ ã解çããŠãã ããïŒ |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/7088 | A | OMC156(A) | 100 | 279 | 290 | [
{
"content": "ã$\\lceil x \\rceil \\neq \\lfloor x \\rfloor$ ããïŒäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$1 + \\frac{1}{\\lfloor x \\rfloor} = \\frac{\\lfloor x \\rfloor + 1}{\\lfloor x \\rfloor} = \\frac{\\lceil x \\rceil}{\\lfloor x \\rfloor} \\leq 1 + \\frac{12}{2345}$$\r\nããã解ããŠïŒ$\\lfloor x \\rfloor \\geq \\left \\lceil \\dfrac{2345}{12} \\right \\rceil = \\bf{196}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/7088"
}
] | $$1 \lt \dfrac{\lceil x \rceil}{\lfloor x \rfloor} \leq \dfrac{2357}{2345}$$
ãã¿ãã $1$ 以äžã®å®æ° $x$ ã«ã€ããŠïŒ$\lfloor x \rfloor$ ã®ãšãããæå°å€ãæ±ããŠãã ããïŒ
<details><summary>åºèšå·ã»å€©äºèšå·<\/summary>
ãå®æ° $x$ ã«å¯ŸããŠïŒ$x$ 以äžã®æ倧ã®æŽæ°ã $\lfloor x\rfloor$ ã§ïŒ$x$ 以äžã®æå°ã®æŽæ°ã $\lceil x\rceil$ ã§è¡šããŸãïŒ
<\/details> |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/2765 | B | OMC156(B) | 200 | 258 | 279 | [
{
"content": "ã$3$ åç®ã®æäœåŸã«åã㊠$(0,k)\\\\, (0 \\leq k \\leq 100)$ ãšãªããã, $2$ åç®ã®æäœåŸã¯ $(k,k)\\\\,(0 \\lt k \\leq 100)$ ã§ãã, $1$ åç®ã®æäœåŸã¯ $(k,2k)\\\\,(0 \\lt k \\leq 50)$ ã§ãã. ããªãã¡, æåã®ç¶æ
ãšããŠããåŸããã®ã¯\r\n$$(a,b)=(k,3k),(2k,3k)\\quad (0 \\lt k \\leq 33)$$\r\nãã£ãŠ, æ±ããç·åã¯\r\n$$\\sum_{k=1}^{33}(k+3k+2k+3k)=9Ã\\left(\\frac{1}{2}Ã33Ã34\\right)=\\bm{5049}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/2765"
}
] | ãé»æ¿ã«ã¯ããæ£æŽæ° $a,b~~ (a \leq b \leq 100)$ ãæžãããŠããŸãïŒããŸïŒä»¥äžã®æäœãïŒé»æ¿ã«æžããã $2$ æ°ã®ãã¡å°ãªããšãäžæ¹ã $0$ ã«ãªããŸã§è¡ããŸãïŒ
- é»æ¿ã«æžãããŠãã $2$ æ°ã $s,t ~~ (s\leq t)$ ã§ãããšãïŒ$t$ ã $t-s$ ã«æžããããïŒ
ãã¡ããã© $3$ åã§æäœãçµãããããªãã¹ãŠã®çµ $(a,b)$ ã«å¯ŸããŠïŒ$a+b$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/3129 | C | OMC156(C) | 300 | 216 | 238 | [
{
"content": "ã$\\angle BAE = Ξ$ ãšãããšïŒ$\\angle AEF = \\angle AFE = 90^\\circ - Ξ$ ãšãªãããšãããããã $AE=AF$ ã§ããïŒããªãã¡ $E$ ãš $F$ 㯠$AC$ ã«ã€ããŠå¯Ÿç§°ã§ããïŒãããš $\\angle EAF = 2Ξ$ ããïŒ$AE$ 㯠$\\angle BAC$ ã®äºçåç·ãšãªãããïŒ\r\n$$BE = BC à \\frac{AB}{AB + AC} = 10(\\sqrt{2} - 1)$$\r\n$AC$ ãš$EF$ ã®äº€ç¹ã $G$ ãšããã°ïŒäžè§åœ¢ $ABE$ ãšäžè§åœ¢ $AGE$ ã¯ååã ããïŒæ±ããé¢ç©ã¯\r\n$$\\left( \\frac{1}{2} à AB à BE \\right) à 2 = 100(\\sqrt{2} - 1)$$\r\nãã£ãŠïŒæ±ããã¹ãå€ã¯ $20000 + 100 = \\textbf {20100}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/3129"
}
] | ãäžèŸºã®é·ãã $10$ ã®æ£æ¹åœ¢ $ABCD$ ã«ãããŠïŒãããã蟺 $BC,CD$ äžã«ããç¹ $E,F$ ã以äžãã¿ãããŸãïŒ
$$\angle BAE:\angle CEF:\angle AFD=1:2:3$$
ãã®ãšãïŒäžè§åœ¢ $AEF$ ã®é¢ç©ã¯æ£æŽæ° $a,b$ ãçšã㊠$\sqrt{a}-b$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/6078 | D | OMC156(D) | 400 | 151 | 212 | [
{
"content": "ã$a_1 + a_4 + a_7 = x, \\gcd(a_1, a_4, a_7) = g$ ãšããïŒ$\\dfrac{x}{g}$ ã¯æŽæ°ã§ããïŒãŸãããæŽæ° $k$ ãçšããŠ\r\n$$a_2+a_3=k\\cdot \\frac{a_1}{g},\\quad a_5+a_6=k\\cdot \\frac{a_4}{g},\\quad a_8+a_9=k\\cdot \\frac{a_7}{g}$$\r\nãšè¡šãããããïŒ\r\n$$a_2+a_3+a_5+a_6+a_8+a_9=k\\cdot \\frac{x}{g}$$\r\nã§ããïŒãã£ãŠ $a_1+a_2+\\cdots+a_9=45$ 㯠$\\dfrac{x}{g}$ ã®åæ°ã§ããããïŒ$\\dfrac{x}{g}$ 㯠$45$ ã®çŽæ°ã§ããïŒç¹ã« $9$ ãŸã㯠$15$ ã§ããïŒ\r\n\r\n- $g = 1$ ã®ãšã\r\n - $x = 9$ ã®ãšãïŒ$4a_7 = a_8 + a_9 \\leq 17$ ãã $(a_1, a_4, a_7) = (2, 3, 4)$ïŒ\r\n - $x = 15$ ã®ãšãïŒ$2a_1 = a_2 + a_3 \\geq 3, 2a_7 = a_8 + a_9 \\leq 17$ ãã\r\n$$(a_1, a_4, a_7)=(2, 5, 8), (2, 6, 7), (3, 4, 8), (3, 5, 7), (4, 5, 6).$$\r\n* $g = 2$ ã®ãšã\\\r\n$x = 18$ ãå¿
èŠã§ïŒ$(a_1, a_4, a_7) = (4, 6, 8)$ïŒ\r\n* $g \\geq 3$ ã®ãšãïŒ$x \\geq 9g \\geq 27$ ããäžé©ïŒ\r\n\r\n$(a_1, a_4, a_7) = (2, 3, 4)$ ã®ãšã $(a_2 + a_3, a_5 + a_6, a_8 + a_9) = (8, 12, 16)$ ã§ãããïŒãããæºãã $6$ æ°ã®çµã¯ååšããªãïŒæ®ãã®å Žåã«ã€ããŠã¯ããããäžæã« $6$ æ°ã®çµãååšããŠïŒæ±ããå€ã¯ $213546879 + 213648759 + 315426879 + 324519768 + 417528639 + 415627839 = \\bf{1900298763}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/6078"
}
] | ã$(1, 2, \ldots , 9)$ ã®äžŠã¹æ¿ã $(a_1, a_2, \ldots , a_9)$ ã«ã€ããŠïŒä»¥äžãæãç«ã¡ãŸããïŒ
- $\dfrac{a_1}{a_2 + a_3} = \dfrac{a_4}{a_5 + a_6} = \dfrac{a_7}{a_8 + a_9}$ïŒ
- $a_1 \lt a_4 \lt a_7$ ã〠$a_2 \lt a_3$ ã〠$a_5 \lt a_6$ ã〠$a_8 \lt a_9$ïŒ
ãããããã¹ãŠã®äžŠã¹æ¿ãã«å¯ŸããŠïŒ$a_1,a_2,\ldots,a_9$ ããã®é ã«ã€ãªããŠåŸããã $9$ æ¡ã®æ°ãèãïŒãããã®ç·åãæ±ããŠãã ããïŒ |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/5222 | E | OMC156(E) | 500 | 50 | 117 | [
{
"content": "ãæ£ã®å¹³æ¹æ°å
šäœã®éåã $D$ ãšããïŒãŸãïŒ\r\n$$f(x^2)=f(x)^2=xf\\bigl(f(x)\\bigr)$$\r\nãã¿ããé¢æ° $f$ ã®æ§è³ªã«ã€ããŠäžè¬çã«èãããïŒããŸïŒ\r\n$$f(x^2)^2=x^2f(f(x))^2=x^2f\\bigl((f(x)^2\\bigr)=x^2f\\bigl(f(x^2)\\bigr)$$\r\nãšããå€åœ¢ãå¯èœã§ããããšããïŒæ¡ä»¶ã¯äžåŒãã以äžã®ããã«åŒ±ããããããšããããïŒ\r\n$$\\begin{cases}\r\nf(x)^2=xf(f(x))&(x \\notin D)\\\\\\\\\r\nf(x)= f(\\sqrt{x})^2&(x \\in D)\r\n\\end{cases}$$\r\nããããç¹ã«ïŒ$x\\in D \\iff f(x)\\in D$ ã§ããããšããããïŒç¬¬äºåŒãã $f(1)=1$ ã«æ³šæããïŒ\\\r\nãããã§ïŒç¬¬äžåŒã¯ $x, f(x), f(f(x)), f(f(f(x))), \\ldots$ ãçæ¯æ°åããªãããšãšåå€ã§ããïŒããŸïŒåé
ãæ£æŽæ°ã§ããããšããïŒå
¬æ¯ãæ£æŽæ°å€ã§ãªããã°ãªããªãïŒç¹ã«ïŒ$f(x)$ 㯠$x$ ã§å²ãåããããšã«æ³šæããïŒïŒä»¥äžã®èå¯ã«ããïŒåé¡ã¯å¹³æ¹æ°ã§ãªãæ£æŽæ°ãã¹ãŠãçæ¯æ°åã«åå²ããããšã«åž°çãããïŒ\\\r\nãããããèžãŸããŠïŒ$f(1)+\\cdots+f(9)=67$ ãèãããšïŒãŸã以äžã®ããã«ããã€ãã®å€ã¯ç¢ºå®ããïŒ\r\n\r\n- $f(9)\\leq 67-(1+2+\\cdots+8)=31$ ã«ãã $f(9)=9$ ãå¿
èŠã§ããïŒããã㊠$f(3)=3$ ããããïŒ\r\n- $f(4)\\neq 4$ ã®ãšã $f(4)\\leq 67-(1+2+\\cdots+9)$ ã«ãã $f(4)=16$ ãå¿
èŠã ãïŒãã®ãšã $f(2)=4\\in D$ ãšãªãäžé©ïŒãã£ãŠ $f(4)=4$ ã§ïŒããã㊠$f(2)=2$ ããããïŒ\r\n\r\nãããšã¯ $f(5)+f(6)+f(7)+f(8)=48$ ãèããã°ãããïŒé©ããçµã¿åããã¯ä»¥äžã® $3$ ã€ã®ã¿ã§ããïŒ\r\n$$ (5,12,7,24), \\quad (15,18,7,8), \\quad (20,6,14,8)$$\r\nãã ãïŒããããå¹³æ¹æ°ã§ãã£ãŠã¯ãªããªãããšã«æ³šæããïŒãããé€ãã° $(5,6,21,16)$ ãå
¥ãïŒïŒ\\\r\nãããã§äžã€ç®ã®å Žåã«ã€ããŠïŒ$f(6)=12$ ãã $f(24)=48$ ã ãïŒäžæ¹ $f(8)=24$ ãã $f(24)=72$ ãå¿
èŠã§ããããççŸããïŒæ®ãã®äºã€ã«ã€ããŠã¯ïŒããããéè€ã®ãªãäºã€ã®çæ¯æ°åãåŒãèµ·ãããïŒãããã«å
¥ããªãéšåã«ã€ããŠã¯ $f$ ã¯æçååãšããã°ïŒå
šäœã§é©ãã $f$ ãšãªãïŒä»¥äžããïŒæ±ããã¹ãå€ã¯\r\n$$12341518789+12342061489=\\mathbf{24683580278}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/5222"
}
] | ãæ£æŽæ°ã«å¯ŸããŠå®çŸ©ããæ£æŽæ°å€ããšãé¢æ° $f$ ã¯ïŒä»»æã®æ£æŽæ° $x$ ã«å¯ŸããŠ
$$f(x^2)=f(x)^2=xf\bigl(f(x)\bigr)$$
ãã¿ããïŒããã«
$$f(1)+f(2)+\cdots+f(9)=67$$
ãã¿ãããŸãïŒãã®ãšãïŒ$f(1),f(2),\ldots,f(9)$ ã®çµã¿åãããšããŠããåŸããã®ãã¹ãŠã«ã€ããŠïŒãããããã®é ã«ç¹ããŠåŸãããå€ã®ç·åãæ±ããŠãã ããïŒ
<details><summary>解ç圢åŒã®äŸ<\/summary>
ãäŸãã°ïŒ$f(1),f(2),\ldots,f(9)$ ã®çµã¿åãããšããŠããåŸããã®ã
$$(8,14,5,30,3,7,51,2,13),\quad (16,55,2,4,5,7,13,9,10)$$
ã® $2$ éãã®ãšãïŒè§£çãã¹ãå€ã¯
$$8145303751213+1655245713910$$
ãã $9800549465123$ ãšãªããŸãïŒ
<\/details> |
OMC156 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc156/tasks/4390 | F | OMC156(F) | 600 | 11 | 32 | [
{
"content": "ãè¯ãé
眮ã«ãããŠïŒä»»æã« $2$ è¡ïŒåïŒãéžã³ãããã®è¡ïŒåïŒã«çœ®ãããç³ãå
¥ãæ¿ããŠãè¯ãé
眮ã§ããïŒ$R_1\\leq R_2\\leq\\cdots \\leq R_{13}$ ããã³ $C_1\\leq C_2\\leq\\cdots\\leq C_{11}$ ãã¿ããããã«é©åœã«è¡ïŒåãå
¥ãæ¿ããæäœã**æ£èŠå**ãšåŒã¶ããšãšããïŒ\\\r\nã以äžïŒ$(i,j)$ ã«çœ®ãããç³ã®åæ°ã $C(i,j)$ ã§è¡šãïŒæ£èŠåãããè¯ãé
眮ã«ã€ããŠèããïŒãã $i,j$ ã§ãã£ãŠ $C(i,j)=1,C(i+1,j)=0$ ãã¿ãããã®ãååšãããšä»®å®ãããšïŒ$R_i\\leq R_{i+1}$ ãããã $k$ ãååšã㊠$C(i,k)=0,C(i+1,k)=1$ ãšãªããã®ãååšããïŒãã®ãšã $4$ ãã¹ã®ãç³ã眮ãããŠãããããå転ãããé
眮ã¯åãç¹æ§çµãæã€ããïŒããšã®é
眮ãè¯ãé
眮ã§ãããšããä»®å®ãšççŸããïŒåŸã£ãŠ $C(i,j)=1$ ãªãã° $C(i+1,j)=1$ ãåŸãïŒãã®è°è«ããïŒè¯ãé
眮ã¯æ£èŠåãããšé段ç¶ã«ãªã£ãŠãããã®ïŒå³ãåç
§ïŒã«éãããããšãæå³ããïŒéã«ïŒæ£èŠåããåŸã§é段ç¶ã«ãªã£ãŠããé
眮ãè¯ãé
眮ã§ããããšããããïŒ\\\r\nããŸãïŒäŸãã°å·ŠåŽã®å³ã®ãããªæ£èŠåãããè¯ãé
眮ã«ã€ããŠïŒè¯ãé§ã眮ããããã¹å
šäœã¯å³ã§èµ€ãå¡ããããã¹ã§ããïŒäžè¬ã®é
眮ã«ã€ããŠãåæ§ã§ããïŒããããïŒè¯ãé
眮ã«ãããŠè¯ãé§ããã¹ãŠåæã«åãé€ããŠãè¯ãé
眮ã§ããïŒãŸã $1$ å以äžç³ã®çœ®ãããŠããè¯ãé
眮ã«ãããŠã¯è¯ãé§ã $1$ å以äžååšããããšããããïŒãã£ãŠ $4$ åã®æäœåŸã«é§ã¯ $0$ åã«ãªãïŒæäœãéã«èŸ¿ãã°ïŒå³åŽã®å³ïŒãŸãã¯ãã®è¡ãšåãå
¥ãæ¿ãããã®ïŒã®ããã«é»ïŒé»ïŒéïŒèµ€ã®é ã«é§ã®é
眮ãå®ãŸãïŒããããã«å¯Ÿãæ£èŠåããåã®é
眮ãšããŠããåŸããã®ã®åæ°ãèããã°ïŒæ±ããå€ã¯\r\n$${}\\_{13}\\mathrm{P}\\_{4}\\times\\frac{{}\\_{11}\\mathrm{P}\\_{7}}{2^3}+{}\\_{11}\\mathrm{P}\\_{4}\\times\\frac{{}\\_{13}\\mathrm{P}\\_{7}}{2^3}={\\bf 12129717600}.$$ \r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc156/editorial/4390"
}
] | ã$13$ è¡ $11$ åã®ãã¹ç®ãããïŒåãã¹ã«ã€ãé«ã
$1$ åã®é§ã眮ãããšãèããŸãïŒ\
ãããããã®é§ã®é
眮ã«ã€ããŠïŒäžãã $i$ è¡ç®ã«çœ®ãããé§ã®ç·æ°ã $R_i$ïŒå·Šãã $j$ åç®ã«çœ®ãããé§ã®ç·æ°ã $C_j$ ãšãããšãïŒé åºä»ããçµ $(R_1,R_2,\dots,R_{13},C_1,C_2,\dots,C_{11})$ ã**ç¹æ§çµ**ãšåŒã¶ããšãšããŸãïŒããŸïŒç¹æ§çµããé§ã®é
眮ãäžæã«æ±ºå®ããããšãïŒãã®é
眮ã**è¯ãé
眮**ãšåŒã¶ããšãšããŸãïŒãŸãïŒè¯ãé
眮ã§ãã£ãŠããªããŠãããä»»æã®ïŒé§ã®é
眮ã«ãããŠïŒçœ®ãããŠããé§ã®ãã¡ïŒãã®é§ã®ã¿ãåãé€ããšè¯ãé
眮ã§ãããããªé§ã**è¯ãé§**ãšåŒã¶ããšãšããŸãïŒ
<details><summary>è¯ãé
眮ã»è¯ãé§ã®äŸ<\/summary>
ãäžãã $i$ è¡ç®ïŒå·Šãã $j$ åç®ã®ãã¹ã $(i,j)$ ã§è¡šããŸãïŒ\
ãããšãã°ïŒ$(1,1),(1,2),(2,1)$ ã®ã¿ã«é§ã眮ããé
眮ã¯è¯ãé
眮ã§ãïŒãŸããã®é
眮㧠$(1,2),(2,1)$ ã«çœ®ãããé§ã¯è¯ãé§ã§ããïŒ$(1,1)$ ã«çœ®ãããé§ã¯è¯ãé§ã§ã¯ãããŸããïŒ
<\/details>
ã次ã®æ¡ä»¶ããã¹ãŠã¿ããè¯ãé
眮ã¯ããã€ãããŸããïŒ
- ã¯ããã«ïŒè¯ãé§ã¯ $7$ åããïŒ
- åæç¹ã§ã®è¯ãé§ããã¹ãŠåæã«åãé€ãæäœã $4$ åç¹°ãè¿ããšãïŒ$1,2,3,4$ åç®ã®æäœåŸã®è¯ãé§ã®åæ°ããããã $5,3,2,0$ åã§ããïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/3330 | A | OMC155(A) | 100 | 293 | 295 | [
{
"content": "ã$X$ 㯠$4(12+X)=74+2X$ ãã¿ãã. 解ãã° $X=\\bf{ 13 }$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/3330"
}
] | ãä»ïŒå€ªéå㯠$12$ æïŒæ¯ã¯ $35$ æïŒç¶ã¯ $39$ æã§ãïŒä»ãã $X$ 幎åŸã®åãæ¥ïŒæ¯ã®å¹Žéœ¢ãšç¶ã®å¹Žéœ¢ã®åãïŒå€ªéåã®å¹Žéœ¢ã® $4$ åã«ãªããŸãïŒæ£æŽæ° $X$ ãæ±ããŠãã ããïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/4044 | B | OMC155(B) | 100 | 270 | 286 | [
{
"content": "ããã¹ç®ã®æšªã®å¢çç· $11$ æ¬ïŒäž¡ç«¯ã®ç·åãå«ãïŒããçžç°ãªã $2$ æ¬ã®å¢çç·ãéžã³äžãã $x_1, x_2$ ãšãïŒãã¹ç®ã®çžŠã®å¢çç· $11$ æ¬ããçžç°ãªã $2$ æ¬ã®å¢çç·ãéžã³å·Šãã $y_1, y_2$ ãšãã. $i = 1, 2, j = 1, 2$ ã«ã€ã㊠$x_i$ ãš $y_j$ ã®äº€ç¹ã $P_{i, j}$ ãšãããšïŒ$4$ ç¹ã®çµ $P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}$ ã¯æ¡ä»¶ãæºããïŒéã«ïŒæ¡ä»¶ãæºãã $4$ ç¹ã®çµã«å¯ŸããŠïŒäžæã«äžã®ãããªçžŠã®å¢çç· $2$ æ¬ãšæšªã®å¢çç· $2$ æ¬ã®çµãå®ãŸãïŒãã£ãŠ $\\big({{}\\_{11}\\mathrm{C}\\_2}\\big)^2=\\bf{3025}$ ãæ±ããçãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/4044"
}
] | ã $10\times10$ ã®ãã¹ç®ããããŸãïŒãããã¹ã®é ç¹ã«åœããç¹ $121$ åã®ãã¡çžç°ãªã $4$ ã€ãéžã¶æ¹æ³ã§ãã£ãŠïŒä»¥äžãã¿ãããã®ã¯ããã€ãããŸããïŒ
- $4$ ç¹ã¯é·æ¹åœ¢ãæãïŒãã®èŸºã¯ã©ããåãã¹ã®ããããã®èŸºã«å¹³è¡ã§ããïŒ
ãªãïŒæ£æ¹åœ¢ã¯é·æ¹åœ¢ã«å«ãŸããŸãïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/1657 | C | OMC155(C) | 200 | 173 | 264 | [
{
"content": "**解æ³1.**ãäžè§åœ¢ $AED$ ãš $AOD$ ã¯ååã§ãããã, $\\angle OAD=\\angle EAD=36^\\circ$. ããã§äžç·é£çµå®çãã $OA$ ãš $ML$, $BC$ ãš $MN$ ã¯ããããå¹³è¡ã§ãã, äžæ¹ã§æ£äºè§åœ¢ã®æ§è³ªãã $BC$ 㯠$AD$ ãšãå¹³è¡ã§ãããã, æ±ããè§ã¯ $180^\\circ-\\angle OAD=\\textbf{144}^\\circ$ ã§ãã.\r\n\r\n**解æ³2.**ã$O-ABCDE$ ã¯æ£äºåé¢äœã®äžéšãšã¿ãªãã. ããã«ãããŠ, $E$ ã®å¯Ÿè¹ ç¹ã $E^\\prime$ ãšã, ãããš $E$ ããã®è·é¢ãçããç¹ã®éåã§ããé¢ã§æ£åäºé¢äœãåæãããš, æé¢ã¯æ£åè§åœ¢ã§ãã. $L,M,N$ ã¯ãã®é£ç¶ãã $3$ é ç¹ã§ãããã, æ±ããè§ã¯ $\\textbf{144}^\\circ$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/1657"
}
] | ããã¹ãŠèŸºã®é·ããçããæ£äºè§é $O-ABCDE$ ã«ãããŠïŒèŸº $AB,OB,OC$ ã®äžç¹ããããã $L,M,N$ ãšãããšãïŒ$\angle LMN$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/2847 | D | OMC155(D) | 200 | 130 | 193 | [
{
"content": "ã$4$ 解ã (éè€åºŠã蟌ããŠ) $s\\leq t\\leq u\\leq v$ ãšããã°ïŒè§£ãšä¿æ°ã®é¢ä¿ã«ãã\r\n$$(s+1)(t+1)(u+1)(v+1)=a_{1}+a_{2}+a_{3}+a_{4}+1=120.$$\r\nãããã£ãŠïŒ$(s,t,u,v)$ ãšããŠããåŸããã®ã¯\r\n$$(1,2,3,4),\\quad (1,1,4,5),\\quad (1,1,2,9),\\quad (1,1,1,14)$$\r\nã§ããïŒ$a_{1}=s+t+u+v$ ããïŒç¹ã«æ±ããå€ã¯ $\\textbf{51}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/2847"
}
] | ã$a_{1}+a_{2}+a_{3}+a_{4}=119$ ãªãå®æ° $a_1,a_2,a_3,a_4$ ã«å¯ŸãïŒ$x$ ã® $4$ 次æ¹çšåŒ
$$x^4-a_{1}x^3+a_{2}x^2-a_{3}x+a_{4}=0$$
ã®ãã¹ãŠã®è€çŽ æ°è§£ãæ£æŽæ°ã§ãããšãïŒ$a_{1}$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/3291 | E | OMC155(E) | 300 | 35 | 88 | [
{
"content": "ã$p={10}^{100}-1$ ãšããïŒ$i$ è¡ç® $j$ åç®ã®ãã¹ç®ãå«ããããªéšåé·æ¹åœ¢ã®ç·æ°ã $T(i,j)$ ãšãããšïŒ$T(i,j)$ ã¯éšåé·æ¹åœ¢ã®å·Šäžã®é ç¹ã®éžã³æ¹ $i\\times j$ éãïŒå³äžã®é ç¹ã®éžã³æ¹ $(p-i+1)\\times(p-j+1)$ éãã®ç©ã§ããããïŒæ±ããã¹ã³ã¢ã®ç·å $S$ ã¯æ¬¡ã®éãã§ããïŒ\r\n$$S=\\sum_{i,j=1,3,5,\\cdots ,p}T(i,j)=\\Biggl(\\sum_{i=1,3,5,\\dots,p}i(p-i+1)\\Biggr)^2$$\r\nãããã§äžè¬ã«æ£æŽæ° $m$ ã«ã€ããŠ\r\n$$\\sum_{i=1}^{m}i(m-i+1)=1\\times m+2\\times(m-1)+\\cdots+(m-1)\\times2+m\\times 1= {}\\_{m+2}\\mathrm{C}\\_{3}$$\r\nãæãç«ã€ããïŒ$p$ ãå¥æ°ã§ããããšã«æ³šæããã°æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\begin{aligned}\r\n\\sqrt{S}=\\sum_{i=1,3,5,\\dots,p}i(p-i+1)&=\\sum_{i=1}^{p}i(p-i+1)-\\sum_{i=1}^{(p-1)\\/2}2i(p-2i+1)\\\\\\\\\r\n&=\\sum_{i=1}^{p}i(p-i+1)-4\\sum_{i=1}^{(p-1)\\/2}i\\Bigl(\\frac{p-1}{2}-i+1\\Bigr)\\\\\\\\\r\n&= {}\\_{p+2}\\mathrm{C}\\_{3}-4 \\times {}\\_{\\frac{p+3}{2}}\\mathrm{C}\\_{3}\\\\\\\\\r\n&=\\dfrac{(p+1)(p^2+2p+3)}{12}\\\\\\\\\r\n&= \\dfrac{10^{100}\\times 5\\overbrace{00\\cdots00}^{198å}1}{6}=8\\overbrace{33\\cdots33}^{198å}5\\times10^{99}\\end{aligned}$$\r\nããããã解çãã¹ãå€ã¯ $\\bf{607}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/3291"
}
] | ã$({10}^{100}-1)\times ({10}^{100}-1)$ ã®ãã¹ç®ãããïŒäžããå¥æ°è¡ç®ãã€å·Šããå¥æ°åç®ã®ãã¹ïŒãã ãïŒ$1$ ããå§ãããã®ãšããïŒãé»ãïŒä»ã®ãã¹ã¯çœãå¡ãããŠããŸãïŒäžã€ã®é·æ¹åœ¢ç¶ã«äžŠãã $1$ ã€ä»¥äžã®ãã¹ãããªãéåã**éšåé·æ¹åœ¢**ãšãã³ïŒéšåé·æ¹åœ¢ã«å¯Ÿãã**ã¹ã³ã¢**ããã®éšåé·æ¹åœ¢ãå«ãé»ããã¹ã®åæ°ã§å®ããŸãïŒ\
ãããŸïŒãã¹ãŠã®éšåé·æ¹åœ¢ã«å¯Ÿããã¹ã³ã¢ã®ç·åã $S$ ãšããŸãïŒãã®ãšã $\sqrt{S}$ ã¯éè² æŽæ°ã«ãªãã®ã§ïŒ$\sqrt{S}$ ãåé²æ³ã§è¡šèšãããšãã®åæ¡ã®ç·åãæ±ããŠãã ããïŒ
---
ã圢åŒçã«ã¯ïŒ**éšåé·æ¹åœ¢**ãšã¯ïŒãã $1\leq i_1\leq i_2\leq 10^{100}-1$ïŒ$1\leq j_1\leq j_2\leq 10^{100}-1$ ã«ã€ããŠïŒ$i_1,i_1+1,\dots,i_2$ è¡ç®ã®ããããã«ããïŒã〠$j_1,j_1+1,\dots,j_2$ åç®ã®ããããã«ãããã¹å
šäœã®ããšããããŸãïŒ |
OMC155 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc155/tasks/302 | F | OMC155(F) | 400 | 33 | 88 | [
{
"content": "ã$BD=a,CD=b$ ãšããã°, äžè§åœ¢ $ABD$ ã«ãããäœåŒŠå®çãã\r\n$$AD^2=AB^2+BD^2-2AB\\times BD\\times\\cos 60^\\circ=(a+b)^2+a^2-a(a+b)=a^2+ab+b^2$$\r\näžæ¹ã§ãã㯠$(a+b-20^{22})^2$ ã«ãçãã, ãããé£ç«ãããŠæç«ããããšã§\r\n$$(a-2\\times20^{22})(b-2\\times 20^{22})=3\\times(20^{22})^2=2^{88}\\times3\\times5^{44}$$\r\nãããã§, $a,b\\lt 2\\times 20^{22}$ ãšãããš, çžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$4\\times 20^{22}-a-b\\geq 2\\sqrt{(a-2\\times20^{22})(b-2\\times 20^{22})}=2\\sqrt{3}\\times20^{22}$$\r\nãæãç«ã¡, ãã㯠$a+b=BC=AD+20^{22}\\gt 20^{22}$ ã«åãã.\\\r\nããããã£ãŠ, $AB=2^{88}\\times3\\times5^{44}$ ãªãæ£æŽæ°ã®çµ $(A,B)$ ã«ã€ããŠ, $A+B$ ãšããŠããåŸãå€ã¯ããã€ã§ãããæ±ããåé¡ã«åž°çããã. ããã¯, $2^{88}\\times3\\times5^{44}$ ãå¹³æ¹æ°ã§ãªãããšã«çæããã°, ãã®æ£ã®çŽæ°ã®åæ°ã®ååã«çãã, ãã㯠$(88+1)(1+1)(44+1)\\/2=\\textbf{4005}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc155/editorial/302"
}
] | ãæ£äžè§åœ¢ $ABC$ ããã³èŸº $BC$ ã®ç¹ $D$ ã«ã€ããŠïŒç·å $AD,BD,CD$ ã®é·ãã¯ãã¹ãŠæ£ã®æŽæ°å€ã§ããïŒããã« $BC=AD+20^{22}$ ãæç«ããŸããïŒãã®ãšãïŒèŸº $BC$ ã®é·ããšããŠããããå€ã¯ããã€ãããŸããïŒ |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/2768 | A | OMC154(A) | 200 | 239 | 248 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã,\r\n$$AC^2-AB^2=CH^2-BH^2=(CH+BH)(CH-BH)=2000\\times 2^{1001}$$\r\nã§ãã. äžæ¹ã§,\r\n$$AC^2-AB^2=(AC-AB)(AC+AB)$$\r\nã§ãã, æ¡ä»¶ãã $AB+AC=2^{1005}$ ã§ãããã, ç¹ã«æ±ããå€ã¯ $\\bf{ 125 } $ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/2768"
}
] | ãéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒ$A$ ãã蟺 $BC$ ã«ããããåç·ã®è¶³ã $H$ ãšãããšïŒ
$$BH=2^{1000}-1000,\quad CH=2^{1000}+1000$$
ã§ããïŒããã« $AB+AC=2^{1005}$ ã®ãšãïŒ$|AB-AC|$ ãæ±ããŠãã ããïŒ |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/3419 | B | OMC154(B) | 300 | 194 | 206 | [
{
"content": "ãä»»æã®å¹³æ¹æ°ã«å¯ŸãïŒ$3$ ã§å²ã£ãäœã㯠$0$ ãŸã㯠$1$ ã§ããïŒ\r\n$$p^6+1\\equiv r^6 \\pmod{3}$$\r\nãã $p=3$ ãå¿
èŠã§ããïŒããã«ïŒä»»æã® $6$ ä¹æ°ã«å¯Ÿã $7$ ã§å²ã£ãäœã㯠$0$ ãŸã㯠$1$ ã§ããïŒ\r\n$$3q^6+4\\equiv r^6 \\pmod{7}$$\r\nãã $r=7$ ãå¿
èŠã§ããïŒãã®ãšã $q=5$ ãšãªãããïŒè§£çãã¹ãå€ã¯ $\\bf{105}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/3419"
}
] | $$97p^6+3q^6+61=r^6$$
ãã¿ããçŽ æ°ã®çµ $(p,q,r)$ ããããã«å¯ŸããŠïŒ$pqr$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/4228 | C | OMC154(C) | 300 | 127 | 165 | [
{
"content": "ã$P(x)$ ã¯å®æ°ãä¿æ°ãšãã $9$ 次å€é
åŒã§ããããïŒå®æ° $a,b,c$ ããã³ $6$ 次以äžã®å€é
åŒ $R(x)$ ãçšããŠ\r\n$$\\\\begin{aligned}\r\nP(x)=&~a(x+1)(x+2)\\cdots(x+9)\\\\\\\\\r\n&+b(x+1)(x+2)\\cdots(x+8)\\\\\\\\\r\n&+c(x+1)(x+2)\\cdots(x+7)\\\\\\\\\r\n&+R(x)\r\n\\\\end{aligned}$$\r\nãšè¡šãããïŒ$P(x)$ ã®æé«æ¬¡ã®ä¿æ°ã¯ $10$ ã§ãããã $a=10$ ã§ããïŒãŸãïŒ$P(x)$ ã\r\n$$(x+1)(x+2)\\cdots(x+9)$$\r\nã§å²ã£ãäœãã¯\r\n$$b(x+1)(x+2)\\cdots(x+8)+c(x+1)(x+2)\\cdots(x+7)+R(x)$$\r\nã§ããïŒãã® $8$ 次ã®ä¿æ°ã $9$ ã§ããããšããïŒ$b=9$ ãåŸãïŒåæ§ã«ïŒ$P(x)$ ã\r\n$$(x+1)(x+2)\\cdots(x+8)$$\r\nã§å²ã£ãäœããèããããšã§ $c=8$ ãåŸãïŒä»¥äžãã $P(x)$ ã® $7$ 次ã®ä¿æ°ã¯\r\n$$10\\sum_{1\\leq k\\lt l\\leq 9}kl+9\\sum_{k=1}^{8}k+8=\\bf{9032}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4228"
},
{
"content": "ãã®è§£èª¬ã§ã¯ïŒæ°å $a$ ããä»»æã® $n$ ã«å¯ŸããŠã $a_n$ ã $P(x)$ ã® $n$ 次ã®ä¿æ°ãçãããããªãã®ããšããŠå®çŸ©ããŸãïŒ \r\n \r\n $n=9$ ã®å Žåã§é¡æãæºããããã®æ¡ä»¶ãèããŸãïŒ $(x+1)(x+2)\\cdots(x+9)$ ã® $8$ 次ã®ä¿æ°ã¯ $1+2+{\\cdots}+9=45$ ã§ãïŒãã®ããšããïŒ ${a_{8}} = 45 {\\times} {a_{9}}+9= 459$ ãå¿
èŠæ¡ä»¶ã§ããããšãåãããŸãïŒ \r\n \r\nç¶ã㊠$n=8$ ã®å ŽåãèããŸãïŒ $(x+1)(x+2)\\cdots(x+8)$ ã® $7$ 次ã®ä¿æ°ã¯ $1+2+{\\cdots}+8=36$ ã§ããïŒ $6$ 次ã®ä¿æ°ã¯ $$\\sum^{7} _ {i=1}\\sum^{8} _ {j=i+1} ij = \\frac{1}{2}{\\times}\\Biggl({\\biggl(\\sum^{8} _ {i=1}i\\biggr)^2}-{\\sum^{8} _ {i=1} i^2}\\Biggr) =546$$ ã§ãïŒãããèžãŸããŠèãããšïŒ ${a_{7}} = 546{\\times}{a_{9}}+({a_{8}}-36{a_{9}}){\\times}{36}+8 = \\textbf{9032}$ ã§ããããšãåããïŒãããçããšãªããŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4228/220"
}
] | ãå®æ°ãä¿æ°ãšãïŒæé«æ¬¡ã®ä¿æ°ã $10$ ã§ãã $9$ 次å€é
åŒ $P(x)$ ããããŸãïŒ\
ã$n=1,2,\ldots,9$ ããããã«å¯ŸããŠïŒ$P(x)$ ã $x$ ã®å€é
åŒ
$$(x+1)(x+2)\cdots(x+n)$$
ã§å²ã£ãäœããèãããšïŒ$n-1$ 次ã®ä¿æ°ã $n$ ã«ãªããŸããïŒ\
ããã®ãšãïŒ$P(x)$ ã® $7$ 次ã®ä¿æ°ãæ±ããŠãã ããïŒ |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/3096 | D | OMC154(D) | 400 | 120 | 178 | [
{
"content": "ãæ£æŽæ° $n,n+1,\\dots,n+k$ ããã®é ã«æååãšããŠçµåãïŒå床æ°åãšããŠè§£éãããã®ã $S(n,k)$ ã§è¡šãããšã«ããïŒäŸãã° $S(8,2)=8910$ ã§ããïŒããã« \r\n$$\\Delta(n,k)=S(n,k)-\\sum_{i=n}^{n+k}i$$\r\nãšããïŒä»»æã®æ£æŽæ° $n,k$ ã«ã€ã㊠$\\Delta(n,k)\\geq 0$ ã§ããããšã«æ³šæããïŒ\\\r\n ã$+$ ãäžã€ãæžãå¿ããªãã£ããšãã®å€ã¯ $5050$ ã§ããããïŒæ£ããå€ãšã®ããã $6930$ ãšãªãã°ããïŒ\\\r\nã$a$ ãš $a+1$ïŒ$b$ ãš $b+1$ïŒ$c$ ãš $c+1$ ã®éã® $+$ ãæžãå¿ãã $(a\\lt b\\lt c)$ ãšãããïŒ\r\n- $a+2=b+1=c$ ã®ãšã $\\Delta(a,3)=6930$ ã§ãããïŒããã¯å®çŸãããªãïŒ\r\n- $a+2=b+1\\lt c$ ã®ãšã $\\Delta(a,2)+\\Delta(c,1)=6930$ ã§ããïŒãã®ãšã $a\\leq 7$ ã§ããïŒ\r\n$$6930\\geq \\Delta(c,1)=6930-\\Delta(a,2)\\geq 6930-765=6165$$\r\nãã $9\\leq c\\leq 98$ïŒããªãã¡ $\\Delta(c,1)=99c$ïŒãããïŒ$\\Delta(a,2)=9(12a+1)$ 㯠$11$ ã®åæ°ã«ãªããªãïŒ\r\n- $a+2\\lt b+1=c$ ã®ãšãïŒäžãšåæ§ã« $b\\leq 7$ ã ãïŒãã®ãšã $\\Delta(a,1)+\\Delta(b,2)\\leq 45+765$ ã§äžé©ïŒ\r\n\r\nã以äžãã $a+2\\lt b+1\\lt c$ ã®ãšã $\\Delta(a,1)+\\Delta(b,1)+\\Delta(c,1)=6930$ ã«ã€ããŠèããã°ããïŒ\r\n$$\\Delta(x,1)=9x\\ (1\\leq x\\leq 8),\\quad \\Delta(x,1)=99x\\ (9\\leq x\\leq 98)$$\r\nã§ããããšãçšããã°ïŒæ¬¡ã®ããããã§ããããšããããïŒ\r\n- (a)ïŒ$9\\leq a,b,c\\leq 98$ ã〠$a+b+c=70$ \r\n- (b)ïŒ$1\\leq a,b\\leq 8$ ã〠$a+b=11,c=69$\r\n\r\nã(a)ã®å ŽåïŒ$x=a-9,y=(b-11)-x,z=(c-13)-y$ ãšããã°\r\n$$3x+2y+z=37$$\r\nãæºããéè² æŽæ°çµ $(x,y,z)$ ãæ°ããããšãšèšãæãããïŒãã®åæ°ã¯æ¬¡ã§æ±ããããïŒ\r\n$$\\sum_{x=0}^{12}\\biggl\\lfloor\\frac{37-3x}{2}+1\\biggr\\rfloor=\\sum_{k=0}^{6}(19-3k)+\\sum_{i=0}^{5}(18-3k)=133$$\r\n\r\nã(b)ã®å ŽåïŒããããçµã¿åãã㯠$(3,8,69),(4,7,69)$ ã® $2$ éãã§ãã.\\\r\nã以äžããæ±ããå Žåã®æ°ã¯ $\\bf{135}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/3096"
}
] | ãOMCå㯠$1$ ãã $100$ ãŸã§ã®æŽæ°ã®åãèšç®ããããçŽã«
$$1+2+3+\cdots+99+100$$
ãšïŒéäžãçç¥ããããšãªãïŒæžããã€ããã§ãããïŒæ
ãŠãŠããã®ã§ $+$ ãã¡ããã© $3$ ãææžãå¿ããŠããŸããŸããïŒOMCåãå®éã«æžããåŒã®å€ãèšç®ããçµæ $11980$ ãšãªã£ããšãïŒOMCåãå®éã«æžããåŒãšããŠãããããã®ã¯ããã€ãããŸããïŒ\
ãããšãã°ïŒ$10$ ãš $11$ ã®éã® $+$ ã®ã¿ãæžãå¿ãããšãïŒ$10$ ãš $11$ ã®ãããã« $1011$ ã足ããã®ãšè§£éããŠïŒèšç®çµæ㯠$6040$ ãšãªããŸã. |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/4048 | E | OMC154(E) | 500 | 41 | 72 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã® $A$ ã«å¯Ÿããåå¿ã $I_A$ ãšãã. \r\n$$AI:DI=AB:DB=AI_{A}:DI_{A}$$\r\nã§ãã, ç·å $II_A$ 㯠$\\Gamma$ ã®çŽåŸãæãã®ã§, $\\Gamma$ 㯠ç·å $AD$ ã«å¯Ÿããã¢ããããŠã¹ã®åã§ãã. ãã£ãŠ\r\n$$\\angle DEI = \\angle IEA = \\angle II_AE$$\r\nã§ããããäžè§åœ¢ $DEI$ ãšäžè§åœ¢ $EI_AI$ ã¯çžäŒŒã§ãã. ãã£ãŠ $\\angle IDE = \\angle IEI_A = 90^\\circ$ ãåŸã. åŸã£ãŠ, äžå¹³æ¹ã®å®çãã\r\n$$AE = \\sqrt{AD^2 + DE^2} = 2\\sqrt{13}$$\r\nãåŸã. ãŸã, å
ã®çžäŒŒãšæ¹ããã®å®çãã\r\n$$BD = \\frac{ID\\times I_AD}{CD} = \\frac{DE^2}{CD} = \\frac{16}{5}$$\r\nã§ãã. $\\Gamma$ ã¯ç·å $AD$ ã«å¯Ÿããã¢ããããŠã¹ã®åã§ãããã, \r\n$$AB = DB\\times\\frac{AE}{DE} = \\frac{8\\sqrt{13}}{5}$$\r\nãåŸã. ç¹ã«è§£çãã¹ã㯠$\\bf{520}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4048"
},
{
"content": "ã$A$ ãå«ãŸãªã匧 $BC$ ã®äžç¹ã $M$ ãšããïŒå $BIC$ ã«ããå転ãèãããšïŒå $ABC$ ã¯çŽç· $BC$ ã«ç§»ãïŒçŽç· $AI$ ã¯äžå€ã§ããããïŒ$A$ 㯠$D$ ã«ç§»ãïŒãã£ãŠïŒ$\\angle ADE=90^\\circ$ ãåããïŒäžå¹³æ¹ã®å®çã«ããïŒ$ME=\\dfrac{4\\sqrt{13}}{3}$ ãšãªãïŒ$\\triangle ABM\\sim\\triangle ADC$ ãªã®ã§ïŒ\r\n$$AB=\\dfrac{AD\\times BM}{CD}=\\dfrac{AD\\times ME}{CD}=\\dfrac{8\\sqrt{13}}{5}$$",
"text": "å転",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4048/725"
}
] | ãå
å¿ã $I$ ãšããéè§äžè§åœ¢ $ABC$ ã«ãããŠïŒçŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšããŸãïŒäžè§åœ¢ $IBC$ ã®å€æ¥åã $Î$ ãšãïŒ$A$ ãéã $Î$ ã®æ¥ç·ãš $Î$ ã®æ¥ç¹ã $E$ ãšããŸãïŒããã§ïŒ$E$ ã¯çŽç· $AD$ ã«å¯Ÿã㊠$C$ ãšåãåŽã«ãããã®ãšããŸãïŒ
$$AD=6,ãCD=5,ãDE=4$$
ãæç«ãããšãïŒèŸº $AB$ ã®é·ãã¯æ£æŽæ° $a,b,c$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ïŒãã ãïŒ$b$ ã¯å¹³æ¹å åãæããïŒ$a,c$ ã¯äºãã«çŽ ïŒãšè¡šããã®ã§ïŒ**ç©** $abc$ ã解çããŠãã ããïŒ |
OMC154 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc154/tasks/4386 | F | OMC154(F) | 500 | 24 | 78 | [
{
"content": "ããµã€ã³ããäžåãã« $1$ å転ãã移åã $A$ïŒå³åãã« $1$ å転ããæäœã $B$ ãšããïŒç§»åå
šäœã¯ $A,B$ ãããã $12$ åãã€ã®çµã¿åãããããªãïŒæåã« $6$ ãäžãåãã®ã¯ïŒæ©ã㊠$2$ åç®ã§ããïŒãŸãïŒ$6$ ãäžãåããŠãã次㫠$6$ ãäžãåããŸã§ã«ïŒç§»åã¯æäœ $4$ åå¿
èŠãšããïŒãã£ãŠïŒã¹ã³ã¢ã¯ããã ã $6$ ã§ããããšããããïŒ\\\r\nãããŠïŒ$6$ ãäžã«åããŠãã次㫠$6$ ãäžã«åããŸã§ã«ïŒå¿
ã $1$ ã¯äžã«åãïŒãŸãïŒ$6$ ãçäžãåããŠããç¶æ
㧠$A\\/B$ ãå®è¡ããã°ïŒæ¬¡ã« $A\\/B$ ãå®è¡ãããšãïŒãŸããã®ãšãã«éã $1$ ãäžãåãïŒãããã¯éãåæ§ã§ããïŒãããã®ããšã«çæããŠïŒã¹ã³ã¢ã $6$ ãšãªã移åæ¹æ³ãæ°ãäžãããïŒã¹ã³ã¢ã $6$ ã§ãããšãïŒ$AA$ ããã³ $BB$ ã®ãå¡ããå°ãªããšã $11$ åå¿
èŠã§ããããïŒäžæ¹ã $6$ åã§ããäžæ¹ã $5$ åã§ããïŒãã ãïŒãå¡ãã12åã®å Žåã«ã¯ïŒãå
é ãããã®11åãèãããã®ãšããïŒïŒ$BB$ ã $6$ åã§ãããšãããïŒ\\\r\nããã®ãšãïŒ$AA$ ã $5$ ã€ãš $BB$ ã $6$ ã€ã $1$ åã«äžŠã¹ãæ¹æ³ã¯ ${}\\_{11}\\mathrm{ C }\\_5=462$ éãããïŒããããã«ã€ããŠïŒ$A$ ã $2$ ã€é©åã«æ¿å
¥ããã°ãããïŒé©åãªäœçœ®ã¯ã$B$ ãš $B$ ã®éããŸãã¯ãæ«å°Ÿãã® $7$ ç®æã§ããïŒãå¡ãã®éã« $2$ ã€ãŸãšããŠæ¿å
¥ããããšãå¯èœã§ãããïŒãã㯠$AA$ ã $6$ åã®å Žåãšéè€ããããé€å€ããïŒïŒãã£ãŠïŒæ¿å
¥ã®æ¹æ³ã¯ $a_1+a_2+\\cdots+a_7=2$ ãªãéè² æŽæ°ã®çµ $(a_1,a_2,\\ldots,a_7)$ ã®ç·æ°ã«å¯Ÿå¿ãïŒ${}_{8}\\mathrm{ C }_2=28$ éãã§ããïŒ\\\r\nã$AA$ ã $6$ åã§ããå Žåãåæ§ã§ããïŒãããã®éã«éè€ã¯èµ·ããªãããšããããïŒä»¥äžããïŒæ±ããã¹ãå€ã¯ $462\\times 28\\times 2=\\bf{25872}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4386"
},
{
"content": "ãäžåãã®é¢ã $6$ ãããŸã $6$ ãåºããŸã§ã«, å¿
ã $1$ ãåºãããšãå®éšãããšããã. \r\n$1(6)$ ãåºãŠãã, $6(1)$ ãåºããŸã§ã«, æç㧠$2$ åãµã€ã³ãã転ããããšãã $M\\leq 6$ ã§ããããšãåãã. ä» $1(6)$ ãåºãŠãã, $6(1)$ ãåºããŸã§ã®äžé£ã®æäœãè©Šè¡ $Q$ ãšåŒã¶ããšã«ãã. (ã¹ã³ã¢) $=6$ ãéæããã«ã¯, è©Šè¡ $Q$ ã $11$ åè¡ãå¿
èŠããã. è©Šè¡ $Q$ ã $11$ åè¡ã£ãŠãã¹ç®ããã¯ã¿åºããªããããªçµè·¯ã«ã€ããŠèãã.è©Šè¡ $Q$ ã®ãã¡, $i$ åå³ã«é²ã¿ $j$ è¡äžã«é²ãæ¹æ³ã®æ°ã $x^iy^j$ ã®ä¿æ°ã«æã€ãããªæ¯é¢æ° $f$ ãèãããš, ããã¯\r\n$$f=\\frac{x^2}{1-y}+\\frac{y^2}{1-x}=\\frac{x^2-x^3+y^2-y^3}{(1-x)(1-y)}$$\r\nã§ãã. \r\n$$f^{11}=(x^2-x^3+y^2-y^3)^{11}\\times(1-x)^{-11}\\times(1-y)^{-11}$$ \r\nã«ã€ããŠ, èãã. \r\n$$(x^2-x^3+y^2-y^3)^{11}$$\r\n ãå±éããé, $x^2,-x^3,y^2,-y^3$ ããããã $a,b,c,d$ å$( $ãã ã$a+b+c+d=11)$ éžãã ãšèãããš, $x,y$ ããããã®æ¬¡æ°ããšãã« $12$ ãè¶
ããªããããªãã®ã«å¯Ÿå¿ãã $(a,b,c,d)$ ã¯ä»¥äžã®éãã§ãã.\r\n$$\r\n\\begin{aligned}\r\n&(5,0,6,0),(4,1,6,0),(3,2,6,0)\\\\\\\\\r\n&(6,0,5,0),(6,0,4,1),(6,0,3,2)\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãããã察å¿ãã $x,y$ ã®åé
åŒã¯ \r\n$$462x^{10}y^{12},-2310x^{11}y^{12},4620x^{12}y^{12},462x^{12}y^{10},-2310x^{12}y^{10},4620x^{12}y^{12}$$\r\nã§ãã, ãããã«\r\n$$(1-x)^{-11}\\times(1-y)^{-11}=(1+11x+{}\\_{12}C\\_{2}x^2+\\dots)(1+11y+{}\\_{12}C\\_{2}y^2+\\dots)$$ ãããããšã, $x,y$ ã®æ¬¡æ°ããšãã« $12$ ãè¶
ããªããããªãã®ã«ã€ããŠèããã, 察称æ§ããäžã® $6$ ã€ã®ãã¡ $462x^{10}y^{12},-2310x^{11}y^{12},4620x^{12}y^{12}$ ã®ã¿ã«ã€ããŠèãã. ãã®ãšã\r\n$$462x^{10}y^{12},(462\\times11-2310)x^{11}y^{12},(462\\times{}\\_{12}C\\_{2}-2310\\times11+4620)x^{12}y^{12}$$\r\nã§ãã, ããããã® $x,y$ ã®æ¬¡æ°ã¯è©Šè¡ $Q$ ã $11$ åè¡ã£ãããšã®ãã¹ã®äœçœ®ã«å¯Ÿå¿ããŠããŠ, ããããæ®ãã¯äžåºŠãåããå€ããã«å³äžã®ãã¹ã«åããã»ããªããããããã®ä¿æ°ã®ç·åããšãã°ãã, (ããã»ã©å¯Ÿç§°æ§ããç¡èŠããé
ãèæ
®ã㊠$2$ åãã). çã㯠$12936\\times2=\\mathbf{25872}$.",
"text": "圢åŒçåªçŽæ°ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc154/editorial/4386/617"
}
] | ã$13\times 13$ ã®ãã¹ç®ãšïŒäžèŸºã®é·ãã $1$ ã§ããéåžžã®ç«æ¹äœã®ãµã€ã³ãããããŸãïŒãµã€ã³ãã¯ã¯ãã $1$ ã®ç®ãäžã«åããŠïŒãã£ãšãå·Šäžã®ãã¹ã«ãŽã£ãã眮ãããŠããŸãïŒ\
ãããŸïŒãã®ãµã€ã³ããïŒèŸºãå
±æãããã¹ã«èŸºã«ãã£ãŠè»¢ããïŒåãïŒããšãç¹°ãè¿ãïŒãã£ãšãå³äžã®ãã¹ãŸã§æçã®åæ°ã§ç§»åãããããšãèããŸãïŒãã®ãšãïŒãã移åæ¹æ³ã«å¯ŸããŠïŒãã®**ã¹ã³ã¢**ã以äžã§å®ããŸãïŒ
- ãµã€ã³ããéäžã§ééããå
š $25$ ãã¹ïŒå§ç¹ãšçµç¹ãå«ãïŒã®ãã¡ïŒãµã€ã³ãã® $6$ ã®ç®ãäžã«åããŠãããã¹ã®æ°
ã¹ã³ã¢ãšããŠããããæ倧å€ã $M$ ãšãããšãïŒã¹ã³ã¢ã $M$ ãšãªã移åã«ãããŠãµã€ã³ããééããå
š $25$ ãã¹ã®éåãšããŠãããããã®ã¯äœéããããŸããïŒ
***
ããã ãïŒ**éåžžã®ç«æ¹äœã®ãµã€ã³ã**ã®åé¢ã«ã¯ïŒ$1$ ãã $6$ ãŸã§ã®æŽæ°ã®ãã¡ããããäžã€ã«å¯Ÿå¿ããç®ãäžåºŠãã€æžãããŠããïŒåããåãäœçœ®ã«æžãããç®ã«å¯Ÿå¿ããæŽæ°ã®åã¯ã€ãã« $7$ ã§ãïŒãªãïŒ**ãµã€ã³ãã®ç®ã®é
眮ãïŒæåã®ãã¹ã§ã®çœ®ãæ¹ã¯è€æ°ããããŸããïŒãã®åé¡ã®çãã¯ãããã«ãããŸãã**ïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/3819 | A | OMC153(A) | 100 | 295 | 316 | [
{
"content": "ã åé¡ã®æ¡ä»¶ãæºããæŽæ°ã®ãã¡ïŒ$10^3$ ã®äœïŒ$10^2$ ã®äœïŒ$10^1$ ã®äœïŒ$1$ ã®äœã $k~(k=1,2,7,9)$ ã§ãããããªæ°ã¯ãããã $4^3=64$ åååšããïŒãã£ãŠïŒåæ¡ããšã«èšç®ããããšã«ããïŒæ±ããã¹ãç·åã¯\r\n$$(10^3+10^2+10^1+1)Ã(1+2+7+9)Ã64=\\textbf{1350976}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/3819"
}
] | ãåé²æ³è¡šèšã§åæ¡ã®æ°åã $1,2,7,9$ ã®ããããã§ãããããªïŒ$4$ æ¡ã®æ£æŽæ° $4^4$ åã®ç·åãæ±ããŠãã ããïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/4452 | B | OMC153(B) | 200 | 235 | 291 | [
{
"content": "ãäžè§åœ¢ã® $3$ ã€ã®å
è§ã $40^\\circ,60^\\circ,80^\\circ$ ã§ãããšãïŒ$3$ ç¹ã¯å€æ¥åã $2:3:4$ ã«åå²ããäœçœ®ã«ããããïŒ$n$ 㯠$9$ ã§å²ãåããïŒåæ§ã«ïŒäžè§åœ¢ã® $3$ ã€ã®å
è§ã $24^\\circ,48^\\circ,108^\\circ$ ã§ãããšãïŒ$3$ ç¹ã¯å€æ¥åã $2:4:9$ ã«åå²ããäœçœ®ã«ããããïŒ$n$ 㯠$15$ ã§å²ãåããïŒéã«ããããååæ¡ä»¶ã§ããããïŒä»¥äžããïŒæ±ãã $n$ ã®æå°å€ã¯ $9$ ãš $15$ ã®æå°å
¬åæ°ã® $\\mathbf{45}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/4452"
}
] | ã以äžã®æ¡ä»¶ãã¿ããïŒæå°ã® $3$ 以äžã®æŽæ° $n$ ãæ±ããŠãã ããïŒ
- æ£ $n$ è§åœ¢ã®çžç°ãªã $3$ é ç¹ãããªãäžè§åœ¢ã§ãã£ãŠïŒ$3$ ã€ã®å
è§ã $40^\circ,60^\circ,80^\circ$ ã§ãããã®ãšïŒ$3$ ã€ã®å
è§ã $24^\circ,48^\circ,108^\circ$ ã§ãããã®ãããããååšããïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/4851 | C | OMC153(C) | 200 | 208 | 240 | [
{
"content": "ãäžè¬ã«æ£ã®æŽæ° $n$ ã«å¯Ÿã㊠\r\n$$\\frac{1}{(n+2)n!}=\\frac{1}{(n+1)!}-\\frac{1}{(n+2)!}$$\r\nãæãç«ã€ãã,\r\n$$\\begin{aligned}\\sum_{n=1}^{10} \\frac{1}{(n+2)n!} &= \r\n\\sum_{n=1}^{10}\\left\\\\{\\frac{1}{(n+1)!}-\\frac{1}{(n+2)!} \\right\\\\} \\\\\\\\\r\n&= \\frac{1}{2!}-\\frac{1}{12!}\\\\\\\\\r\n&=\\frac{6\\cdot 11!-1}{12!}\r\n\\end{aligned}$$\r\næåŸã®åæ°ã¯æ¢çŽã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $6\\cdot 11!-1=\\mathbf{239500799}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/4851"
}
] | $$\sum_{n=1}^{10} \frac{1}{(n+2)n!} $$
ã®å€ãæ¢çŽåæ°ã§è¡šãããšãã®ååãæ±ããŠãã ããïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/3818 | D | OMC153(D) | 300 | 68 | 113 | [
{
"content": "ã$0$ ä»¥äž $9$ 以äžã®æŽæ°ãããªãç矩å調å¢å å $C=(c_1,c_2,\\dots,c_n)$ ããããã«ã€ããŠ\r\n$$(|a_{1}-b_{1}| , |a_{2}-b_{2}| , \\cdots , |a_{n}-b_{n}|) = (c_{1},c_{2},\\cdots , c_{n})$$\r\nãšãªããã㪠$(A,B)$ ã®åæ°ãæ±ããã°ããïŒæããã« $n\\leq 10$ ã§ããïŒ\\\r\nã$0$ ä»¥äž $9$ 以äžã®æŽæ° $x$ ã«ã€ã㊠$|a-b|=x$ ãæºãããã㪠$10$ 以äžã®æ£ã®æŽæ°ã®çµ $(a,b)$ ã®åæ°ã $f(x)$ ãšããã°ïŒå $C$ ã«ã€ããŠå¯Ÿå¿ããçµ $(A,B)$ ã®åæ°ã¯\r\n$$\\prod_{k=1}^{n} f(c_{k})$$\r\nã§ããïŒããã§\r\n$$f(x)=\\begin{cases}\r\n10 & (x=0)\\\\\\\\\r\n2(10-x) & (1 \\leq x \\leq 9)\r\n\\end{cases}$$\r\nãæãç«ã€ããšã«æ³šæããã°ïŒ$C$ ãšããŠããåŸããã®ãã¹ãŠã«å¯ŸããäžåŒã®ç·åïŒããªãã¡è§£çãã¹ãå€ã¯æ¬¡ã®ããã«æ±ãããã(å±éããæ§åãèãã)ïŒ\r\n$$\\begin{aligned}\r\n&\\quad\\bigl(f(0)+1\\bigr)\\bigl(f(1)+1\\bigr)\\cdots \\bigl(f(9)+1\\bigr)-1\\\\\\\\\r\n&=11\\times 19\\times 17\\times\\cdots\\times 3-1\\\\\\\\\r\n&={\\bf 7202019824}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/3818"
},
{
"content": "ãé£æ床ã«å¯ŸããŠè§£èª¬ãããã€ãæ°ãããã®ã§åã¿ç ããæãã«æžããŠã¿ãŸãïŒæ¬è³ªã¯äžç·ã§ãïŒ\r\n\r\n---\r\n\r\nãæ°åã®åæ°ãæå®ãããŠããªãã®ã§ïŒããããäžã®åé¡ã¿ãããªæãã§è§£ãããã§ããïŒ\r\n\r\n- å
šãŠã®æ°åã $1$ ä»¥äž $10$ 以äžã§ããïŒ$1$ ã€ä»¥äžã®é
ãããªãå調å¢å ãªæ°åã¯ããã€ïŒ\r\n\r\nãã®åé¡ã§ã¯æåã«æ°å $\\lbrace 1,2,3,4,5,6,7,8,9,10\\rbrace$ ãèãïŒããããããããã®æ°å€ã«ã€ããŠæ¶ãïŒæ¶ããªããéžã¹ã°ããã®ã§ $2^{10}-1=\\boxed{1023}$ åã ãšåãããŸããïŒå
šéšã®é
ãæ¶ãããã€ãåŒãã®ãå¿ããã«ïŒ(èªæ)\r\n\r\nãå
ã®åé¡ã«æ»ããŸãããïŒ$a_k$ ãš $b_k$ ã®å·®ãšããŠèããããå€ã $0$ ãã $9$ ãŸã§ãã£ãŠïŒããããå調å¢å ã«ãªãã°OKïŒã§ïŒå·®ã $0,1,2,3,4,5,6,7,8,9$ ã«ãªãçµã¯ãããã $10,18,16,14,12,10,8,6,4,2$ åããã®ã§ïŒæ±ããçµã®åæ°ã¯ä»¥äžã®ããã«ãªããŸãïŒ\r\n$$(10+1)(18+1)(16+1)\\cdots(4+1)(2+1)-1=\\boxed{ã§ã£ããæ°}$$\r\nããã§ïŒå
šéšã« $1$ ã足ããŠããã®ã¯ãã®é
ãæ¶ããã¿ãŒã³ãå«ããããã§ïŒæåŸã«åŒããŠãã®ã¯å
šéšã®é
ãæ¶ãããã¿ãŒã³ã®ãã€ã§ãïŒããå¿ããã«ïŒ(èªæ)\r\n\r\n\r\nã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/3818/222"
}
] | ã次ã®æ¡ä»¶ããã¹ãŠã¿ããæŽæ°åã®çµ $(A,B)$ ã¯ããã€ãããŸããïŒ
- $A,B$ ã®åèŠçŽ ã¯ãããã $1$ ä»¥äž $10$ 以äžã§ããïŒ
- $A,B$ ã®é·ãã¯çãã $n\~(\geq 1)$ ã§ããïŒ
- $A,B$ ã® $k$ çªç®ã®èŠçŽ ããããã $a_k,b_k$ ãšãããšãïŒ
$$|a_1-b_1|\lt|a_2-b_2|\lt\cdots\lt|a_n-b_n|$$
ãæãç«ã€ïŒ$n=1$ ã®å Žåã¯ã€ãã«æãç«ã€ãã®ãšããïŒïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/3863 | E | OMC153(E) | 300 | 59 | 109 | [
{
"content": "$$\\quad AB=2AP=12\\sqrt{3}, \\quad HP=BP-BH=\\sqrt3AP - BH = 5$$\r\nã§ããïŒãŸãïŒäžè§åœ¢ $AHP$ ãšäžè§åœ¢ $BCP$ ãçžäŒŒã§ããããšããïŒ\r\n$$HP:PC=AP:BP=1:\\sqrt{3}$$\r\nã§ããïŒ$PC=5\\sqrt{3}$ ãåããïŒãããã£ãŠ $AC=AP+PC=11\\sqrt{3}$ ãšãªãããïŒ \r\n$$\\triangle ABC =\\frac{1}{2} \\times AB \\times AC \\times \\sin{60^\\circ}=99\\sqrt{3}$$\r\nã§ããïŒ\\\r\nãäžè§åœ¢ $ABC$ ã®å€å¿ã $O$ ãšããïŒèŸº $BC$ ã®äžç¹ã $N$ ãšããã°ãªã€ã©ãŒç·ã®æ§è³ªãã $AH=2ON$ ã§ãã $\\angle A=60^\\circ$ ã§ããããïŒ$2ON$ ã¯äžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸ $OA$ ã«çããïŒããªãã¡\r\n$$AO=AH=\\sqrt{(6\\sqrt{3})^{2}+5^2}=\\sqrt{133}$$\r\nã§ããïŒåŸã£ãŠïŒèŸº $AB$ ã®äžç¹ã $L$ ãšãããšïŒäžè§åœ¢ $APH$ ãšäžè§åœ¢ $ALO$ ã¯ååã§ããïŒãã£ãŠ\r\n$$ML=OM-OL=AH-HP=\\sqrt{133}-5$$\r\nã§ããïŒããã«\r\n$$\\triangle AMB =\\frac{1}{2}\\times AB\\times ML=6\\sqrt{399}-30\\sqrt{3}$$ \r\n\r\n以äžããïŒåè§åœ¢ $AMBC$ ã®é¢ç©ã¯\r\n$$ \\triangle ABC +\\triangle AMB =6\\sqrt{399}+69\\sqrt{3}=\\sqrt{14364}+\\sqrt{14283} $$\r\nãšãªãããïŒç¹ã«åçãã¹ãå€ã¯ $\\mathbf{28647}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/3863"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ïŒçŽç· $BH$ ãšèŸº $AC$ ã®äº€ç¹ã $P$ ãšãããš
$$\angle A = 60^\circ,\quad BH=13,\quad AP=6 \sqrt{3}$$
ãæãç«ã¡ãŸããïŒäžè§åœ¢ $ABC$ ã®å€æ¥åã® $C$ ãå«ãŸãªã匧 $AB$ ã®äžç¹ã $M$ ãšãããšãïŒåè§åœ¢ $AMBC$ ã®é¢ç©ãæ±ããŠãã ããïŒãã ãïŒæ±ããé¢ç©ã¯æ£æŽæ° $p,q$ ãçšããŠ
$\sqrt{p}+\sqrt{q}$ ã®åœ¢ã§è¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC153 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc153/tasks/3575 | F | OMC153(F) | 400 | 15 | 51 | [
{
"content": "ã$A$ ã $(0,0)$ ãšãïŒå°æ£æ¹åœ¢ã®é ç¹ã®ãã¡ $A$ ããæãé¢ãããã®ã $(n,n)$ ãšããŠåº§æšãå®ããïŒããŸïŒå°æ£æ¹åœ¢ã®é ç¹å
šãŠãé ç¹ãšãïŒ$S$ ã«**å«ãŸããªã**éå
šãŠã蟺ãšããã°ã©ã $G$ ãèããã°ïŒEuler ã®å®çãã $G$ ã«å¯Ÿå¿ãã OMC åã®çµè·¯ãååšããããšã®å¿
èŠååæ¡ä»¶ã¯æ¬¡ã®ããã«è¡šããïŒ\r\n- $G$ ã®è£ã°ã©ãïŒããªãã¡ $S$ ã蟺éåãšããã°ã©ãïŒã®å
šãŠã®é ç¹ã®æ¬¡æ°ãå¶æ°ã§ããïŒ\\\r\n$\\iff$ $G$ ã® $(0,k), (n,k), (k,0), (k,n) ~ (k=1,\\ldots,n-1)$ ã®æ¬¡æ°ãå¥æ°ã§ããïŒãã以å€ã®é ç¹ã®æ¬¡æ°ãå¶æ°ã§ããïŒ\r\n- $G$ ã®è£ã°ã©ãã®é£çµæåãã¡ããã©äžã€ã§ããïŒã〠$A$ ã«æ¥ç¶ãã蟺ãååšããïŒ\r\n\r\nãã®æ¡ä»¶ã®äžã§ $G$ ã®èŸºã®æ°ãæå°åããã°ããïŒããã¯åé ç¹ã®æ¬¡æ°ã®ç·åãæå°åããããšãšèšãæããããïŒå¥æ°æ¬¡ã®é ç¹ã $4n-4$ åååšããããšããïŒæ¬¡æ°ã®ç·åã¯æå°ã§ã $4n-4$ ã§ããïŒ\\\r\nã$n$ ãå¥æ°ã®ãšãïŒæ¬¡æ°ã®ç·åã $4n-4$ ã§ããããã«èŸºãèšå®ã§ããããšãåããïŒãŸãããã¯äžæã§ãããã $f(n)=1$ ã§ããïŒ\\\r\nã$n$ ãå¶æ°ã®ãšãïŒ$i+j$ ãå¶æ°ãšãªã $(i,j)$ ãçœïŒå¥æ°ãšãªã $(i,j)$ ãé»ã§å¡ãããšãèããïŒãã®ãšãé»ã§å¡ãããé ç¹ã®æ¬¡æ°ã®ç·åã¯æå°ã§ã $2n$ ã§ããïŒ$2$ è²ããããã®æ¬¡æ°ã®ç·åã¯çããããšããïŒæ¬¡æ°ã®ç·åã¯æå°ã§ã $4n$ ã§ããïŒéã«ïŒä»¥äžã® $6$ éãã®æ¹æ³ã§æ¬¡æ°ãå®ããããšã§æ¬¡æ°ã®ç·åã $4n$ ãšãªãïŒããã«æ¬¡æ°ãåãããã«ããããäžæã«èŸºãèšå®ã§ããïŒ\r\n- å¥æ°æ¬¡ã®é ç¹ã®æ¬¡æ°ã $1$ïŒå¶æ°æ¬¡ã®é ç¹ã $0$ ãšããïŒãã ã以äžã® $2$ é ç¹ã®ã¿æ¬¡æ°ã $2$ ãšããïŒ\r\n\t- $(1,1)$ ãšïŒ$(n-1,n-1)$ ãš $(n,n)$ ã®äžããäžã€ïŒ\r\n\t- ãŸãã¯ïŒ$(n,0)$ ãš $(n-1,1)$ ã®äžããäžã€ãšïŒ$(0,n)$ ãš $(1,n-1)$ ã®äžããäžã€ïŒ\r\n\r\nãã㧠$A$ ã®æ¬¡æ°ã $2$ ã«ãªãåŸãªãããšã«çæããïŒãã以å€ã®æ¬¡æ°ã®å®ãæ¹ã«ã¯å¯Ÿå¿ããããã«èŸºãèšå®ã§ããªãããšã確èªã§ããããïŒ$f(n)=6$ ã§ããïŒãã ãïŒ$n=2$ ã§ã¯ $n-1=1$ ã«çæã㊠$f(n)=5$ ã§ããïŒãŸãïŒ$n=2$ ã«éãïŒæ¬¡æ° $4$ ã® $1$ é ç¹ãäœãæ§æãçãŸããããšã«æ³šæããïŒïŒ\\\r\nã以äžããïŒæ±ããå€ã¯\r\n$$1+5+1+6+\\cdots+6+1=7\\times (3574\\div 2)=\\textbf{12509}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc153/editorial/3575"
}
] | ã$n$ ãæ£æŽæ°ãšããŸãïŒé ç¹ã®äžã€ã $A$ ãšããäžèŸº $n$ ã®æ£æ¹åœ¢ãäžèŸº $1$ ã®å°æ£æ¹åœ¢ã«åå²ãããŠããïŒå°æ£æ¹åœ¢ã®èŸºã**é**ãšåŒã¶ããšãšããŸãïŒããã§ïŒè€æ°ã®å°æ£æ¹åœ¢ã«å
±æãããŠããéãäžã€ãšæ°ããŸãïŒããªãã¡ïŒéã¯å
šéšã§ $2n(n+1)$ æ¬ååšããŸãïŒ\
ãã㟠OMC å㯠$A$ ãåºçºããŠéã®ã¿ãéãïŒéã®éäžã§åŒãè¿ãããšãªãïŒåãéã¯é«ã
$1$ åã ãéã£ãŠ $A$ ãŸã§æ»ã£ãŠãããã§ãïŒOMC åãéã£ãéã®éåïŒ**éãé åºã¯èããªã**ïŒã $S$ ãšãïŒ$S$ ãšããŠããåŸããã®ã®ãã¡ ãã®èŠçŽ æ°ãæ倧å€ããšããã®ã®åæ°ã $f(n)$ ã§è¡šããŸãïŒä»¥äžã®ç·åãæ±ããŠãã ããïŒ
$$f(1)+f(2)+\cdots+f(3575)$$ |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/1776 | A | OMC152(A) | 200 | 182 | 196 | [
{
"content": "ã$S$ 㯠$OA$ ãæ蟺ãšããçŽè§äžè§åœ¢ $2$ ã€ãšæ圢ãçµã¿åãããå³åœ¢ã§ããïŒçŽè§äžè§åœ¢ã®é¢ç©ã¯ãåºèŸº$\\ \\times\\ $é«ã$\\ \\div\\ 2$ãïŒæ圢ã®é¢ç©ã¯ã匧é·$\\ \\times\\ $ååŸ$\\ \\div\\ 2$ãã§è¡šãããããïŒçµå± $S$ ã®é¢ç©ã¯ãåšé·$\\ \\times\\ 5\\div 2$ãã§ããïŒãã£ãŠïŒåšé·ã $10\\pi$ ããã倧ãã $999=3^3\\times 37$ ã®çŽæ°ã§ããããšã«æ³šæããã°ïŒæ±ããç·å㯠$(1+3+9+27)\\times37\\times 5\\div 2=\\mathbf{3700}$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/1776"
}
] | ãå¹³é¢äžã® $2$ å®ç¹ $O,A$ ã $OA\gt 5$ ãã¿ãããŸãïŒç¹ $P$ ã $OP=5$ ãã¿ãããªããåããšãïŒç·å $AP$ ãééãããé å $S$ ã«ã€ããŠïŒãã®å€åšã®é·ã㯠$999$ ãå²ãåãæ£æŽæ°å€ãšãªããŸããïŒãã®ãšãïŒ$S$ ã®é¢ç©ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/3701 | B | OMC152(B) | 300 | 102 | 175 | [
{
"content": "ã$0$ ä»¥äž $3$ 以äžã®æŽæ° $x$ ã¯ïŒ$0$ ãŸã㯠$1$ ã§ããæŽæ° $y, z$ãçšã㊠$x=2y+z$ ãšäžæã«è¡šãããããïŒ$f(X)$ ã®å€ã¯ $X$ ã $2^{10} - 1$ 以äžã®éè² æŽæ° $Y, Z$ ãçšã㊠$X = 2Y + Z$ ãšè¡šãå Žåã®æ°ã«çããïŒãã㧠$X$ ãš $Z$ ã®å¶å¥ã¯äžèŽããããšããïŒ$f(X)$ ã¯é«ã
$2^9$ ã§ããïŒ$f(X)=2^9$ ãªã $X$ ã«ã€ããŠèããïŒ\\\r\nã$X$ ãå¶æ°ã®ãšãïŒ$Z=0$ ã§å¯Ÿå¿ãã $Y$ ãååšããããšãã $X\\leq 2^{11}-2$ ã§ããïŒäžæ¹ $Z=2^{10}-2$ ã§å¯Ÿå¿ãã $Y$ ãååšããããšãã $X\\geq 2^{10}-2$ ã§ããïŒéã«ïŒãã®ç¯å²ã®å¶æ° $X$ ã§ã¯ç¢ºãã« $f(X)=2^9$ ãšãªãïŒ\\\r\nã$X$ ãå¥æ°ã®ãšããåæ§ã«èããããšã§ïŒå
šäœã§æ±ããã¹ã $X$ ã $2^{10} - 2=1022$ ä»¥äž $2^{11} - 1=2047$ 以äžã®å
šãŠã®æŽæ°ã§ããããšããããïŒ\r\nãã£ãŠïŒæ±ããã¹ãç·å㯠$\\mathbf{1574397}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/3701"
},
{
"content": "ã$f(m)$ ã¯\r\n$$(x^{2^00}+x^{2^01}+x^{2^02}+x^{2^03}) (x^{2^10}+x^{2^11}+x^{2^12}+x^{2^13})\\cdots\r\n(x^{2^90}+x^{2^91}+x^{2^92}+x^{2^93})$$\r\nãå±éãããšãã®$x^m$ã®ä¿æ°ã«çãã.äžã®å€é
åŒãåŒå€åœ¢ãããš,\r\n$$\r\n\\begin{aligned}\r\n\\Big(\\frac{1-x^{2^04}}{1-x^{2^01}}\\Big)\\Big(\\frac{1-x^{2^14}}{1-x^{2^11}}\\Big) \\cdots\r\n\\Big(\\frac{1-x^{2^94}}{1-x^{2^91}}\\Big)&=\\frac{(1-x^{2^84})(1-x^{2^94})}{(1-x^{2^01})(1-x^{2^11})}\\\\\\\\\r\n&=\\frac{1-x^{2^01024}}{1-x^{2^01}}\\frac{1-x^{2^11024}}{1-x^{2^11}}\\\\\\\\\r\n&=(x^{2^00}+x^{2^01}+\\dots+x^{2^01023})(x^{2^10}+x^{2^11}+\\dots+x^{2^11023})\r\n\\end{aligned}$$\r\nãšãªã, $f(m)$ 㯠$x+2y=m$ ãæºãã, $0$ ä»¥äž $1023$ 以äžã®æŽæ°ã®çµ $(x,y)$ ã®åæ°ã«çãã. åŸã¯å
¬åŒè§£èª¬åæ§.",
"text": "å€é
åŒã§èãã.",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/3701/647"
}
] | ãéè² æŽæ° $X$ ã«å¯ŸãïŒ$0$ ä»¥äž $3$ 以äžã®æŽæ° $x_0, x_1, \ldots, x_9$ ãçšããŠ
$$
X = 2^0 x_0 + 2^1 x_1 + \cdots + 2^9 x_9
$$
ãšè¡šãæ¹æ³ã®ç·æ°ã $f(X)$ ã§è¡šããŸãïŒ\
ã$f(X)$ ãæ倧å€ããšããã㪠$X$ ã®ç·åãæ±ããŠãã ããïŒãã ãïŒ$f(X)$ ã«æ倧å€ãååšãïŒãã®å€ãäžãã $X$ ã¯æéåã§ããããšãä¿èšŒãããŸãïŒ |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/3921 | C | OMC152(C) | 400 | 71 | 130 | [
{
"content": "ãäžè¬ã« $N=12 \\left( \\gt 4 \\right)$ ãšãã.\r\n島ãé ç¹ $1, 2, \\ldots, N$, æ©ã蟺ãšããããšã§OMCåœãç¡åã°ã©ããšã¿ãªã.\\\r\nããã®ãšã, åé¡æäžã®æ¡ä»¶ã¯ä»¥äžã®ããã«èšãæãããã.\r\n\r\n- ã©ã®è²ã«ã€ããŠã, ãã®è²ä»¥å€ã§å¡ããã蟺ãå
šãŠåãé€ããåŸã®ã°ã©ãã¯é£çµã§ãªã.\r\n- ã©ã®é ç¹ã«ã€ããŠã, $1$ æ¬ä»¥äžã®èµ€è²ã§å¡ããã蟺ã®ç«¯ç¹ãšãªã£ãŠãã. \r\n\r\nãããã®æ¡ä»¶ã®ããšã§, èµ€è²ä»¥å€ã§å¡ããã蟺ã®æ° $m$ ãæå°å€ããšããããªãã®ãèããããšã«ãã.\\\r\nãèµ€è²ã§å¡ããã蟺ã®ã¿ãæ®ãããšã, åé£çµæåã«å«ãŸãããããªé ç¹éåã \r\n$V_1, V_2, \\ldots, V_k$ ãšãã. ããã§\r\n$$\r\n|V_1| \\leq |V_2| \\leq \\cdots \\leq |V_k|\r\n$$\r\nãšãã. æ¡ä»¶ãã $k \\geq 2$ ããã³ $ 2 \\leq |V_1| \\leq \\dfrac{N}{2}$ ã§ãã. \r\nãã®ãšã, 蟺æ°ãèããã°\r\n\r\n$$\r\n|V_1|\\sum_{i=2}^{k}|V_i| + |V_2|\\sum_{i=3}^{k}|V_i| + \\cdots + |V_{k-1}|\\sum_{i=k}^{k}|V_i| \\leq m\r\n$$\r\n\r\nãæç«ãã. ãªã, çå·ã¯åé£çµæåã«èµ€è²ä»¥å€ã®èŸºãå«ãŸããªãå Žåã«æç«ãã.\\\r\nãããã§, $N=|V_1|+\\cdots+|V_k|$ ã«æ³šæããã°, 巊蟺ã¯ä»¥äžã®ããã«è¡šçŸã§ãã.\r\n$$\r\n\\dfrac{1}{2}\\left( N^2-|V_1|^2-\\cdots-|V_k|^2 \\right)\r\n$$\r\nãããã£ãŠ, ã㟠$|V_1|^2+\\cdots+|V_k|^2$ ã®æ倧åãèãã. ããã§\r\n$$\r\n\\big(|V_{k-1}|+|V_k|\\big)^2\\gt |V_{k-1}|^2+|V_k|^2\r\n$$\r\nã§ããããšãã $k=2$ ã®å Žåã®ã¿ãèããã°ãã, ãã®ãšã $|V_1|=2$ ãšããã®ãäžæã«æåã§ãã.\\\r\nãããªãã¡ $m\\geq 2N-4$ ãšè©äŸ¡ã§ãã. çå·ãæãç«ã€ãšããã°, ããé ç¹ $v_1\\lt v_2$ ãååšã, ããããšããã以å€ã®é ç¹ãçµã¶èŸºã¯ãã¹ãŠèµ€è²ã§ãªã, ãã以å€ã®èŸºã¯ãã¹ãŠèµ€è²ã§ãã.\\\r\nãã㟠$v_1,v_2$ ãåºå®ããŠèãã. 以äžã§äžããæ¡ä»¶ã®ã¿ã§ã¯ $2^{2N-4}$ éãã§ããã, ãã®ãã¡æ¡ä»¶ãã¿ãããªããã®ãé€å€ãã. ããã§, $v_1, v_2$ ãšç°ãªãé ç¹ $v$ ã§ãã£ãŠ, \r\n$v$ ãš $v_1$, $v$ ãš $v_2$ ãçµã¶èŸºãå
±ã«ç·è²ã§å¡ãããŠãããã®ãååšãããªãã°, \r\nãã®ãã¡äžã€ãéžã³ $v_g$ ãšãã. \r\néè²ã«ã€ããŠãåæ§ã«, ååšãããªãã°ãã®ãã¡äžã€ã $v_b$ ãšãã.\r\n\r\n- $v_g$, $v_b$ ããšãã«ååšããªããšã, \r\néè², ç·è²ããããã®è²ã®èŸºã«ã€ã㊠$v_1, v_2$ ãé£çµã§ãªããã, é©ãã.\r\n- $v_g$, $v_b$ ã®äžæ¹ã®ã¿ãååšãããšã, \r\nãã®è²ã $C$ ãšãããš, $v_1, v_2$ ã¯è² $C$ ã®èŸºã«ãã£ãŠé£çµã§ãã, \r\n$v_1, v_2$ ãšç°ãªãä»»æã®é ç¹ $v$ ã«ã€ããŠ, \r\n$v$ 㯠$v_1, v_2$ ã®å°ãªããšãããããäžæ¹ãšè² $C$ ã«ãã£ãŠé£çµã§ãããã, äžé©ã§ãã. \r\n- $v_g$, $v_b$ ããšãã«ååšãããšã, \r\néè², ç·è²ããããã®è²ã®èŸºã«ã€ã㊠$v_g, v_b$ ãé£çµã§ãªããã, é©ãã.\r\n\r\nããã£ãŠ, äžã§å®ãããã㪠$v_g$, $v_b$ ã®äžæ¹ã®ã¿ãååšããå Žåãé€ãã°ãã.\r\n$v_1, v_2$ ãšç°ãªã $N - 2$ åã®é ç¹ $v$ ã«ã€ããŠæ¥ç¶ãã $2$ åã®èŸºã®è²ãèããããšã§,\r\nãã㯠$2 \\left( 3^{N-2} - 2^{N-2}\\right)$ éãã§ããããšãããã. \\\r\nã以äžãã, å
šäœã§æ±ããã¹ãå¡ãåãæ¹ã¯\r\n$$\\dbinom{N}{2} \\left( 2^{2N-4} - 2 \\left( 3^{N-2} - 2^{N-2}\\right) \\right)$$\r\néãã§ãã. 解çãã¹ãå€ã¯ç¹ã« $N = 12$ ã®å Žåã§äžããããŠ, \r\n$\\mathbf{61546716}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/3921"
}
] | ãOMCåœã¯ $12$ åã®å³¶ãããªãïŒã©ã®çžç°ãªã $2$ åã®å³¶ã«ã€ããŠãïŒã¡ããã©äžæ¬ã®æ©ã§åæ¹åã«çµã°ããŠããŸãïŒããã¡åã¯ãããã®æ©ãïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«èµ€è²ã»ç·è²ã»éè²ã®ããããã§å¡ãåããããšã«ããŸããïŒ
- ã©ã®è² $C$ ã«å¯ŸããŠãïŒçžç°ãªã $2$ åã®å³¶ $I_1,I_2$ ãååšãïŒ$C$ ã§å¡ãããæ©ã®ã¿ãæž¡ãããšãç¹°ãè¿ã㊠$I_1$ ãã $I_2$ ã«å°éã§ããªãïŒ
- ã©ã®å³¶ã«å¯ŸããŠãïŒããä»ã®å³¶ãååšãïŒãããã¯èµ€è²ã§å¡ãããæ©ã§çµã°ããŠããïŒ
ãã®ãããªå¡ãåãæ¹ã®ãã¡ïŒèµ€è²ã§å¡ãããæ©ã®æ¬æ°ãæ倧å€ããšããããªãã®ãããã€ããããæ±ããŠãã ããïŒãã ãïŒãã¹ãŠã®å³¶ã¯åºå¥ããŠèãããã®ãšããŸãïŒ |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/6167 | D | OMC152(D) | 500 | 23 | 55 | [
{
"content": "ã$x = 1\\/a - 1, y = 1\\/b - 1, z = 1\\/c - 1$ ãšãããšïŒ æææ¡ä»¶ïŒäžåŒã¯ãããã以äžã®éãã«å€åœ¢ã§ããïŒ\r\n$$x,y,z\\gt 0, \\quad \\frac{1}{xy} + \\frac{1}{yz} + \\frac{1}{zx} = 1,\\quad 4xy + 2yz + 3zx - 9 \\ge M$$\r\nåŸã£ãŠïŒCauchy-Schwarzã®äžçåŒãã以äžãæç«ããïŒ\r\n$$\\begin{aligned}\r\n4xy + 2yz + 3zx - 9\r\n&=(4xy + 2yz + 3zx)\\bigg(\\frac{1}{xy} + \\frac{1}{yz} + \\frac{1}{zx}\\bigg) - 9\\\\\\\\\r\n&\\ge (2 + \\sqrt2 + \\sqrt3)^2 - 9\\\\\\\\\r\n&= 2\\sqrt6 + 4\\sqrt2 + 4\\sqrt3\r\n\\end{aligned}$$\r\nå®éã«çå·ãæç«ãã $a,b,c$ ã¯ååšããã®ã§ïŒ$M$ ã®æ倧å€ã¯ $2\\sqrt6 + 4\\sqrt2 + 4\\sqrt3$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{104}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/6167"
},
{
"content": "ãããã§ã¯ïŒå
¬åŒè§£èª¬ã«ãã $x=\\dfrac{1}{a}-1,y=\\dfrac{1}{b}-1,z=\\dfrac{1}{c}-1$ ãªã眮ãæããã©ã®ããã«ããã°æ¯èŒçèªç¶ã«æãã€ãããã«ã€ããŠè§£èª¬ããŠãããŸãïŒ \r\n \r\n$$\\begin{aligned}\r\n& 2a+3b+4c-5ab-7bc-6ca\\geq Mabc \\\\\\\\\r\n& \\Leftrightarrow\\dfrac{2}{bc}+\\dfrac{3}{ca}+\\dfrac{4}{ab}-\\dfrac{5}{c}-\\dfrac{7}{a}-\\dfrac{6}{b}\\geq M\r\n\\end{aligned}$$ããïŒ$L=\\dfrac{2}{bc}+\\dfrac{3}{ca}+\\dfrac{4}{ab}-\\dfrac{5}{c}-\\dfrac{7}{a}-\\dfrac{6}{b}$ã®äžéã $M$ ã®æ倧å€ã§ããïŒ \r\n\r\nããã§ïŒ$L$ 㯠$\\dfrac{1}{a},\\dfrac{1}{b},\\dfrac{1}{c}$ ã«ã€ããŠã®åŒãšèŠãæ¹ãè¯ããããªã®ã§ïŒ$p=\\dfrac{1}{a},q=\\dfrac{1}{b},r=\\dfrac{1}{c}$ ãšãããšïŒ$1$ ãã倧ããªå®æ° $p,q,r$ ã $\\dfrac{2}{pqr}+1=\\dfrac{1}{p}+\\dfrac{1}{q}+\\dfrac{1}{r}$ ã€ãŸã $pqr-pq-qr-rp+2=0$ ãæºãããªããåããšãã® $L=2qr+3rp+4pq-5r-7p-6q$ ã®äžéã $M$ ã®æ倧å€ã§ãããšèšãæããããïŒ \r\n\r\nããã«ïŒ$5=2+3,6=2+4,7=3+4$ ãçšããŠè¯ãæãã« $L$ ã®åŒãå解ããŠåŒå€åœ¢ããŠãããšïŒ$$\\begin{aligned} \r\n& L=2(qr-q-r)+3(rp-r-p)+4(pq-p-q) \\\\\\\\\r\n& \\phantom{L}=2(q-1)(r-1)+3(r-1)(p-1)+4(p-1)(q-1)-9\r\n\\end{aligned}$$ãšãªãã®ã§ïŒ$x=p-1,y=q-1,z=r-1$ ãšãããšïŒæ£ã®æ° $x,y,z$ ã $(x+1)(y+1)(z+1)-(x+1)(y+1)-(y+1)(z+1)-(z+1)(x+1)+2=0$ ã€ãŸã $xyz=x+y+z$ ãåããšãã® $L=2yz+3zx+4xy-9$ ã®äžéã $M$ ã®æ倧å€ã§ãããšèšãæããããïŒ\r\n\r\nããã§ïŒå
¬åŒè§£èª¬ã®æ¹éã«åž°çããããšãåºæ¥ãïŒ",
"text": "ã©ã眮ãæããæãã€ãã",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/6167/301"
}
] | ã$0$ ãã倧ãã $1$ æªæºã®å®æ° $a, b, c$ ãïŒä»¥äžã®çåŒãã¿ãããŸãïŒ
$$2abc + 1 = a + b+ c.$$
ãã®ãšãïŒä»¥äžã®äžçåŒãã€ãã«ã¿ãããããªå®æ° $M$ ã®æ倧å€ãæ±ããŠãã ããïŒ
$$2a + 3b + 4c - 5ab - 7bc - 6ca \geq Mabc.$$
ãã ãïŒæ±ããæ倧å€ã¯çžç°ãªãæ£æŽæ° $p, q, r$ ãçšã㊠$\sqrt{p} + \sqrt{q} + \sqrt{r}$ ãšè¡šãããã®ã§ïŒ$p + q + r$ ã解çããŠãã ãã. |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/4527 | E | OMC152(E) | 600 | 29 | 53 | [
{
"content": "ãçŽ æ° $p,q,r$ ããã³æ£æŽæ° $a,b,c$ ã«ãã£ãŠ\r\n$$BD=p^a,\\quad DE=q^b,\\quad EC=r^c$$\r\nãšããïŒå¯Ÿç§°æ§ãã $p\\leq r$ ãšããŠããïŒ\\\r\nãç¹ $B$ ãçŽç· $AD$ ã«å¯ŸããŠå¯Ÿç§°ç§»åããç¹ãšç¹ $C$ ãçŽç· $AE$ ã«å¯ŸããŠå¯Ÿç§°ç§»åããç¹ã¯äžèŽããããïŒãã®ç¹ã $F$ ãšããïŒãã®ãšã $\\angle DFE=120°$ ã§ããããïŒäœåŒŠå®çãã $$DF^2+DF\\cdot EF+EF^2=DE^2$$ ããªãã¡ $$p^{2a}+p^ar^c+r^{2c}=q^{2b},\\quad(p^a+q^b+r^c)(p^a-q^b+r^c)=p^ar^c$$ ããããïŒéã«ãã®ãããªäžè§åœ¢ $DEF$ ãäžããããã°ïŒæ¡ä»¶ãã¿ããå³ãååšããããšããããïŒãã®ãšã $p,q,r$ ã¯ãã¹ãŠçžç°ãªãããšã確èªã§ãïŒ$(p^a+q^b+r^c)-(p^a-q^b+r^c)=2q^b$ ã«æ³šæããã° $p^a+q^b+r^c$ ãš $p^a-q^b+r^c$ ã®æ倧å
¬çŽæ°ã¯ $1$ ãŸã㯠$2$ ã§ããïŒ\r\n- æ倧å
¬çŽæ°ã $1$ ã®å ŽåïŒ$p^a+q^b+r^c\\gt p^a, r^c$ ãã $(p^a+q^b+r^c, p^a-q^b+r^c)=(p^ar^c, 1)$ ãšãªãã»ããªãïŒãã®ãšã $$p^ar^c+1=(p^a+q^b+r^c)+(p^a-q^b+r^c)=2p^a+2r^c$$\r\nãã $(p^a-2)(r^c-2)=3$ ãæãç«ã€ããšãã $(p,r,a,c)=(3, 5, 1, 1)$ ãåŸããïŒãã®ãšã $(q, b)=(7,1)$ ã§ããããããã¯é©ããïŒãã®ãšã $BC=15$ïŒ\r\n- æ倧å
¬çŽæ°ã $2$ ã®å ŽåïŒ $p\\leq r$ ãšä»®å®ããŠãããã $p=2$ ã§ããïŒäžè§åœ¢ $DFE$ ã«ã€ããŠã®äžè§äžçåŒã«ãã $2^a+q^b+r^c\\gt 2^{a}, 2r^c$ ãæãç«ã€ããïŒ$(2^a+q^b+r^c, 2^a-q^b+r^c)=(2^{a-1}r^c,2)$ ãšãªãã»ããªãïŒãã®ãšã\r\n$$2^{a-1}r^c+2=(p^a+q^b+r^c)+(p^a-q^b+r^c)=2\\cdot 2^a+2r^c$$\r\nãã $(2^{a-2}-1)(r^c-4)=3$ ãæãç«ã€ããšãã $(a, r, c)=(3, 7, 1), (4, 5, 1)$ ãåŸããïŒããããã«ã€ã㊠$(q, b)=(13, 1), (19, 1)$ ã§ããããããããé©ããïŒããããèšç®ããã° $BC=28, 40$ïŒ\r\n\r\nã以äžãã解çãã¹ãå€ã¯ $15+28+40=\\mathbf{83}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/4527"
}
] | ãæ£äžè§åœ¢ $ABC$ ã«ãããŠïŒæ¬¡ã®æ¡ä»¶ããã¹ãŠã¿ããããã«ç·å $BC$ äžïŒäž¡ç«¯ãé€ãïŒã« $2$ ç¹ $D,E$ ããšãããšãã§ããŸããïŒ
- $4$ ç¹ $B,D,E,C$ ããã®é ã§äžŠã¶ïŒ
- $\angle DAE=30^\circ$ïŒ
- ç·å $BD, DE, EC$ ã®é·ãã¯ïŒããããçŽ å æ°ãã¡ããã© $1$ ã€ãã€æ£æŽæ°å€ïŒïŒ$2$ 以äžã®çŽ ã¹ãïŒã§ããïŒ
ããã®ãšãïŒç·å $BC$ ã®é·ããšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC152 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc152/tasks/2521 | F | OMC152(F) | 700 | 2 | 26 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ïŒé¢ç©ã $S$ïŒåé¢äœ $ABCD$ ã®äœç©ã $V$ ãšãïŒä»¥äžã®ããã«ããïŒ\r\n$$a=BC,\\quad b=CA,\\quad c=AB.$$\r\n----\r\n**å®ç.**ã$P$ 㯠$\\triangle ABC$ ã®åå¿ $H$ ãå€å¿ $O$ ã«é¢ããŠå¯Ÿç§°ç§»åããç¹ïŒde Longchampsç¹ïŒã§ããïŒ\\\r\n**蚌æ.**ãåè§åœ¢ $ABA^{\\prime}C$, $BCB^{\\prime}A$, $CAC^{\\prime}B$ ãå¹³è¡å蟺圢ãšãªãããã«ç¹ $A^{\\prime},B^{\\prime},C^{\\prime}$ ããšãïŒ\\\r\nãããã§ç¹ $A^{\\prime}$ ãéã蟺 $BC$ ã«åçŽãªå¹³é¢ã $\\alpha$ ãšãããšïŒ$\\triangle A^{\\prime}BC\\equiv\\triangle DBC$ ãã $D$ 㯠$\\alpha$ äžã«ããïŒããã« $\\alpha\\perp\\triangle ABC$ ã§ãããã $P$ ã $\\alpha$ äžã«ããïŒ\r\nåŸã£ãŠ $PA^{\\prime}\\perp B^{\\prime}C^{\\prime}$ ã§ããïŒ\\\r\nã$PB^{\\prime},PC^{\\prime}$ ã«ã€ããŠãåæ§ã§ããããïŒ $P$ 㯠$\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ ã®åå¿ã§ããïŒ$\\triangle ABC$ ãš $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ ã®çžäŒŒæ¡å€§ã®äžå¿ãåæ¹ã®éå¿ã§ããããšãšïŒ$H$ ã $\\triangle A^{\\prime}B^{\\prime}C^{\\prime}$ ã®å€å¿ã§ããããšãèžãŸããã°ïŒEulerç·ã®æ§è³ªããçµè«ãåŸãïŒ\r\n---- \r\nãäžè¿°ã®å®çããã³äžç·å®çããïŒ\r\n$$AP^2+AH^2=BP^2+BH^2=CP^2+CH^2=2(R^2+OH^2) \\tag{\\*}$$\r\nãåŸãããïŒäžæ¹ïŒç°¡åãªé·ãèšç®ã«ãã\r\n$$AH^2=4R^2-a^2,\\quad BH^2=4R^2-b^2,\\quad CH^2=4R^2-c^2,\\quad OH^2=9R^2-a^2-b^2-c^2$$\r\nã§ããïŒãã£ãŠ $PA^2=4k,PB^2=5k,PC^2=6k$ ãšããïŒ$(\\*)$ åŒã«ãããã代å
¥ããŠæŽçããããšã§\r\n$$a^2=b^2-k,\\quad c^2=b^2+k,\\quad 16R^2=5c^2. \\tag{\\*\\*}$$\r\nããŸãHeronã®å
¬åŒãªã©ãã $S$ ã«å¯Ÿã次ãæãç«ã€ïŒ\r\n$$S=\\frac{1}{4}\\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}=\\frac{abc}{4R}$$\r\nããã« $(\\*\\*)$ åŒã代å
¥ã $b$ ã«ã€ããŠè§£ãã°\r\n$$b=\\sqrt{(8\\pm 2\\sqrt{11})k}$$\r\nãåŸããïŒãã®ãã¡åé¢äœ $ABCD$ ãååšããã®ã¯è€å·ãæ£ã®å Žåã®ã¿ã§ããïŒçŽäžã®è°è«ã䜿ãã°ããïŒïŒ\\\r\nãããã§ïŒæ£å®æ° $x,y,z$ ãçšããŠ\r\n$$a^2=y^2+z^2,\\quad b^2=z^2+x^2,\\quad c^2=x^2+y^2$$\r\nãšããã°åé¢äœ $ABCD$ ã¯å蟺ã®é·ãã $x,y,z$ ã®çŽæ¹äœãžåã蟌ããŠïŒãŸã $x,y,z$ ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$x=\\sqrt{(3+\\sqrt{11})k},\\quad y=\\sqrt{(4+\\sqrt{11})k},\\quad z=\\sqrt{(5+\\sqrt{11})k}$$\r\nãã®ãšãåé¢äœ $ABCD$ ãå
æ¥ããçã®çŽåŸã¯ $\\sqrt{x^2+y^2+z^2}$ ã§ããããïŒ\r\n$$\\pi=\\frac{1}{6}(x^2+y^2+z^2)^{3\\/2}\\pi=\\frac{1}{6}\\bigl(3(4+\\sqrt{11})k\\bigr)^{3\\/2}\\pi$$\r\nãã $k=\\dfrac{6^{2\\/3}}{3(4+\\sqrt{11})}$ ãåŸãïŒ\r\n以äžãã\r\n$$V=\\frac{1}{3}xyz=\\sqrt{\\frac{-8+32\\sqrt{11}}{675}}$$\r\nãšèšç®ã§ãïŒç¹ã«è§£çãã¹ãå€ã¯ $-8+32+11+675=\\textbf{710}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/2521"
},
{
"content": "ãåé¢äœ $ABCD$ ãš(åãã蟌ããŠ)çžäŒŒãªåé¢äœ $XYZW$ ã§ãã£ãŠ, $P$ ã«å¯Ÿå¿ããç¹ã $Q$ ãšãããšã,\r\n$$QX=2,\\\\:\\ QY=\\sqrt{5},\\\\:\\ QZ=\\sqrt{6}$$\r\n ãšãªããã®ãèãã. $WQ=x$ ãšãããšã, \r\n$$\r\n\\begin{aligned}\r\nYZ=WX=\\sqrt{WQ^2+QX^2}=\\sqrt{x^2+4}\\\\\\\\\r\nZX=WY=\\sqrt{WQ^2+QY^2}=\\sqrt{x^2+6}\\\\\\\\\r\nXY=WZ=\\sqrt{WQ^2+QZ^2}=\\sqrt{x^2+5}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãåé¢äœ $XYZW$ ã®äœç© $V$ ã $2$ éãã®æ¹æ³ã§è¡šãããšãèãã.\\\r\nãâ $V=\\frac{1}{3}\\times$ (äžè§åœ¢ $XYZ$ ã®é¢ç©) $\\times WQ$ ãçšããŠèšç®ãã.\\\r\nããã³ã®å
¬åŒãã,\r\n$$\r\n\\begin{aligned}\r\n(äžè§åœ¢ XYZ ã®é¢ç©)&=\\frac{1}{4}\\sqrt{2(XY^2YZ^2+YZ^2ZX^2+ZX^2XY^2)-(XY^4+YZ^4+ZX^4)}\\\\\\\\\r\n&=\\frac{1}{4}\\sqrt{2(3x^4+30x^2+74)-(3x^4+30x^2+77)}\\\\\\\\\r\n&=\\frac{1}{4}\\sqrt{3x^4+30x^2+71}\r\n\\end{aligned}\r\n$$\r\nãã£ãŠ,\r\n$$V=\\frac{1}{12}x\\sqrt{3x^4+30x^2+71}$$.\\\r\nãâ¡çé¢åé¢äœãåã蟌ãçŽæ¹äœãçšãã.\\\r\nçŽæ¹äœã® $3$ 蟺ã®é·ãã $a,b,c$ ãšãããš,\r\n$$\r\n\\begin{aligned}\r\na^2+b^2=WX^2=x^2+4\\\\\\\\\r\nb^2+c^2=WY^2=x^2+6\\\\\\\\\r\nc^2+a^2=WZ^2=x^2+5\r\n\\end{aligned}\r\n$$\r\nããã解ããš, \r\n$$(a,b,c)=\\Big(\\sqrt{\\frac{x^2+3}{2}},\\sqrt{\\frac{x^2+5}{2}},\\sqrt{\\frac{x^2+7}{2}}\\Big)$$\r\n$V$ ã¯ãã®çŽæ¹äœã®äœç©ã® $\\frac{1}{3}$ åã§ãããã,\r\n$$\r\n\\begin{aligned}\r\nV&=\\frac{1}{3}abc\\\\\\\\\r\n&=\\frac{1}{6\\sqrt{2}}\\sqrt{(x^2+3)(x^2+5)(x^2+7)}\r\n\\end{aligned}\r\n$$\r\nãâ ,â¡ã®çµæãæ¯èŒãããš, \r\n$$(x^2+6)(x^2-3-2\\sqrt{11})(x^2-3+2\\sqrt{11})=0$$\r\nãåŸããã. ãã£ãŠ, $x=\\sqrt{3+2\\sqrt{11}}$ ã§ãã, ãã®åé¢äœã®å€æ¥çã®ååŸ $r^{\\prime}$ ã¯, \r\n$$r^{\\prime}=\\sqrt{\\Big(\\frac{1}{2}a\\Big)^2+\\Big(\\frac{1}{2}b\\Big)^2+\\Big(\\frac{1}{2}c\\Big)^2}=\\sqrt{\\frac{3}{8}(x^2+5)}$$\r\n ã§ãã, åé¢äœ $ABCD$ ã®å€æ¥çã®ååŸ $r$ 㯠$\\frac{4}{3}\\pi r^3=\\pi$ ãã, $r=\\sqrt[3]{\\frac{3}{4}}$ ã§ãã. ãã£ãŠ,\r\n$$\r\n\\begin{aligned}\r\n(åé¢äœ ABCD ã®äœç©)&=\\frac{r^3}{(r^{\\prime})^3}V\\\\\\\\\r\n&=\\frac{3}{4}\\Big(\\sqrt{\\frac{8}{3(x^2+5)}}\\Big)^3\\frac{1}{6\\sqrt{2}}\\sqrt{(x^2+3)(x^2+5)(x^2+7)}\\\\\\\\\r\n&=\\frac{2}{3\\sqrt{3}}\\sqrt{\\frac{(x^2+3)(x^2+7)}{(x^2+5)^2}}\\\\\\\\\r\n&=\\frac{2}{3\\sqrt{3}}\\sqrt{\\frac{(6+2\\sqrt{11})(10+2\\sqrt{11})}{(8+2\\sqrt{11})^2}}\\\\\\\\\r\n&=\\sqrt{\\frac{-8+32\\sqrt{11}}{675}}\r\n\\end{aligned}\r\n$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc152/editorial/2521/646"
}
] | ãäœç© $\pi$ ã®çã«å
æ¥ãïŒãã¹ãŠã®é¢ãååã§ããåé¢äœ $ABCD$ ãããïŒç¹ $D$ ããå¹³é¢ $ABC$ ãžäžãããåç·ã®è¶³ã $P$ ãšãããšïŒæ¬¡ãæãç«ã¡ãŸããïŒ
$$PA:PB:PC=2:\sqrt{5}:\sqrt{6}$$
ãã®ãšãïŒåé¢äœ $ABCD$ ã®äœç©ã¯æŽæ° $p,q$ ããã³æ£æŽæ° $r,s$ïŒãã ãïŒ$p,q,s$ ã¯æ倧å
¬çŽæ°ã $1$ ã§ïŒ $r$ ã¯å¹³æ¹å åããããªãïŒãçšããŠ
$$\sqrt{\dfrac{p+q\sqrt{r}}{s}}$$
ãšè¡šãããã®ã§ïŒ $p+q+r+s$ ã®å€ã解çããŠãã ããïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8464 | A | 第26åçäžå
¥è©Šæš¡è©Š(A) | 100 | 185 | 254 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8464"
},
{
"content": "ãã,ã,ãããããã $a,b,c$ ãšããïŒ \r\n $a(10b+a)^2+a(10c+a)^2\\equiv a(b+a)^2+a(c+a)^2\\equiv a((b+a)^2+(c+a)^2)\\pmod{9}$ \r\nããïŒäžåŒã $9$ ã®åæ°ãšãªãã®ã¯ïŒ \r\n- $a=9$ ã®ãšã \r\n $b,c$ ã¯ãªãã§ãããïŒ$b,c$ ã®æ±ºãæ¹ã¯ $8\\times7=56$ éãïŒ \r\n- $a=3,6$ ã®ãšã \r\n $(b+a)^2+(c+a)^2$ ã $3$ ã®åæ°ãšãªãã®ã¯ $b,c$ ããšãã« $3$ ã®åæ°ãšãªããšãã§ïŒ$b,c$ ã®æ±ºãæ¹ã¯ $2$ éãïŒ \r\n- $a=1,2,4,5,7,8$ ã®ãšã \r\n $(b+a)^2+(c+a)^2$ ã $9$ ã®åæ°ãšãªãã®ã¯ $b+a,c+a$ ããšãã« $3$ ã®åæ°ãšãªããšãã§ïŒ$b,c$ ã®æ±ºãæ¹ã¯ $6$ éãïŒ \r\n\r\nã以äžããïŒæ±ããå Žåã®æ°ã¯ $56+2\\times2+6\\times6=\\textbf{96}$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8464/208"
}
] | äœåïŒå
ç
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã$\boxed{ã}$ïŒ$\boxed{ã}$ïŒ$\boxed{ã}$ ã« $1$ ä»¥äž $9$ 以äžã®æ°åãããŠã¯ããŠïŒ
$$ \boxed{ã} \times \boxed{ã}\boxed{ã} \times \boxed{ã}\boxed{ã} + \boxed{ã} \times \boxed{ã}\boxed{ã}\times\boxed{ã}\boxed{ã} $$
ã $9$ ã®åæ°ã«ããæ¹æ³ã¯ $\boxed{\phantom{nada}}$ éããããŸãïŒããã§ïŒåãæåã«ã¯åãæ°åãïŒ**éãæåã«ã¯éãæ°åã**ããŠã¯ããªããã°ãªããªããšããŸãïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8465 | B | 第26åçäžå
¥è©Šæš¡è©Š(B) | 100 | 95 | 161 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8465"
},
{
"content": "ãç¹°ãäžããã $1$ åèµ·ããããšã«åäœã®åã $9$ æžå°ããããšã«æ³šæããïŒ \r\n $1,2,\\ldots,2023$ ã®åäœã®åã®ç·åãé 匵ã£ãŠèšç®ãããš $28162$ ã§ããïŒ$1+2+\\cdots+2023=2047276$ ã®åäœã®å㯠$28$ ã§ããããïŒç¹°ãäžããã®åæ°ã¯ $(28162-28)\\div9=\\textbf{3126}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8465/209"
}
] | äœåïŒå
ç
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã$1$ ã« $2$ ã足ãïŒæ¬¡ã« $3$ ã足ãïŒæ¬¡ã« $4$ ã足ãïŒ$\ldots$ ïŒæ¬¡ã« $2022$ ã足ãïŒæåŸã« $2023$ ã足ããšãïŒåèš $\boxed{\phantom{nada}}$ åç¹°ãäžãããŸãïŒãã ãïŒããšãã° $12$ ã« $88$ ã足ããšã㯠$2$ åç¹°ãäžãã£ããšæ°ããŸãïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8467 | C | 第26åçäžå
¥è©Šæš¡è©Š(C) | 100 | 131 | 171 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8467"
},
{
"content": "ã$A$ ã $9$ ã€äžŠãã ç¶æ
ããæäœãè¡ã£ãŠåŸãããæååãšããŠããåŸããã®ãäœéãããããèããã°ããïŒ \r\nå·Šãã $k,k+1,k+2$ çªç®ã®æåãå
¥ãæ¿ãããšããæäœã $X_i$ ãšãïŒ$X_i$ ãè¡ã£ãåæ°ã $x_i$ ãšãããšïŒåºæ¥ãæåå㯠$x_1,x_2,\\ldots,x_7$ ã®å¶å¥ã®ã¿ã«äŸåãïŒæäœåæ°ãæäœã®é çªã«äŸããªãããšã«æ³šæãããšïŒ$A,B$ ãããªã $9$ æåã®æååã $A$ ã $9$ ã€äžŠãã ç¶æ
ããåºçºããŠäœãããšãèãããšïŒå·Šãã $i$ çªç®ãŸã§ã®æååãã $x_i$ ã®å¶å¥ãåž°çŽçã«å®ãŸãïŒå·Šãã $7$ çªç®ãŸã§ã®æååãå®æãããããã® $x_1,x_2,\\ldots,x_7$ ã®å¶å¥ã¯äžæã«å®ãŸã£ãŠããŸãïŒãã®æäœãè¡ã£ããšãã®å·Šãã $8,9$ çªç®ã®æåãäžæã«å®ãŸãïŒ \r\nããã£ãŠïŒæ±ããå Žåã®æ°ã¯å·Šãã $7$ çªç®ãŸã§ã®æåã®æ±ºãæ¹ãèããã°ããïŒ$2^7=\\textbf{128}$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8467/210"
}
] | äœåïŒå
ç
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã暪äžåã«äžŠãã $9$ åã®ãã¹ã®ããããã« $\text{A}$ ãš $\text{B}$ ã®ã©ã¡ãããæžã蟌ãæ¹æ³ã¯ $512$ éããããŸãïŒãã®ãã¡ïŒæ¬¡ã®æ¡ä»¶ãã¿ãããã®ã¯ $\boxed{\phantom{nada}}$ éããããŸãïŒ
- ãé£ç¶ãã $3$ ãã¹ãéžã³ïŒåãã¹ã«ã€ã㊠$\text{A}$ ã $\text{B}$ ã«ïŒ$\text{B}$ ã $\text{A}$ ã«æžãããããããšãé©åã«äœåºŠãç¹°ãè¿ãããšã§ïŒãã¹ãŠã®ãã¹ã« $\text{A}$ ãæžãããç¶æ
ã«ã§ããïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8468 | D | 第26åçäžå
¥è©Šæš¡è©Š(D) | 100 | 77 | 108 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8468"
},
{
"content": "ããã¹ãåžæŸæš¡æ§ã«èµ€ãšéã§å¡åããŠïŒèµ€ã®é¢ã«å¡ãããè²ãçœã®æã¯é»ã«ïŒé»ã®æã¯çœã«å
¥ãæ¿ããããšã§ïŒãé£æ¥ããè²ãç°ãªããã¹ã«ç§»åããããšããæ¡ä»¶ããé£æ¥ããè²ãåããã¹ã«ç§»åããããšããæ¡ä»¶ã«èšãæããããšãåºæ¥ãã®ã§ïŒä»¥äžïŒåŸè
ã®æ¡ä»¶ãæºããå¡ãæ¹ã®ç·æ°ãæ±ããïŒ \r\nåã«å¯ŸããŠäžãã (é»,é»),(é»,çœ),(çœ,é»),(çœ,çœ)ã§å¡ãããšã $P,Q,R,S$ ãšãããšïŒ$A,B$ ããšãã«é»ã§å¡ããšãã¯ïŒ$P,Q,R$ ã®äžŠã¹æ¿ãã®ãã¡ïŒ$Q,R$ ãé£ãåããïŒå·Šã $P,Q$ ã®ãããã㧠å³ã $P,R$ ã®ããããã§ãããããªãã®ã®ç·æ°ãé 匵ã£ãŠæ±ãïŒ$49$ éããšãããïŒ \r\nåæ§ã« $A,B$ ããšãã«çœã§å¡ããšãã $49$ éãããã®ã§ïŒæ±ããå Žåã®æ°ã¯ $49\\times2=\\textbf{98}$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8468/211"
}
] | äœåïŒå
ç
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã$2\times 5$ ã®ãã¹ç®ãããïŒãã®å·Šäžã®ãã¹ã $\text{A}$ïŒå³äžã®ãã¹ã $\text{B}$ ãšããŸãïŒãããã®ãã¹ã®ãããããçœãŸãã¯é»ã®ãããã $1$ è²ã§å¡ãæ¹æ³ã¯ $1024$ éããããŸããïŒãã®ãã¡æ¬¡ã®æ¡ä»¶ãã¿ãããã®ã¯ $\boxed{\phantom{nada}}$ éããããŸãïŒ
- $\text{A}$ ããå§ããŠïŒãä»ãããã¹ãšèŸºãå
±æãïŒä»ãããã¹ãšéãè²ãå¡ããããã¹ã«ç§»åãããããšãç¹°ãè¿ããŠïŒ $\text{B}$ ã«ç§»åã§ããïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8469 | E | 第26åçäžå
¥è©Šæš¡è©Š(E) | 100 | 110 | 121 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8469"
},
{
"content": "æåã® $3$ 人ã (çœ,çœ,çœ),(çœ,çœ,èµ€),(çœ,èµ€,çœ),(çœ,èµ€,èµ€),(èµ€,çœ,çœ)ã®é ã§ãããšã㯠$4$ çªç®ã®çåŸã¯ãããè¯ã䞊ã³ã§ãªããšå€å®ã§ããïŒ \r\næåã® $3$ 人ã (èµ€,èµ€,èµ€)ã®æã¯æ®ãã(èµ€,çœ,çœ,çœ,çœ)ã®ãšãã¯è¯ã䞊ã³ã ãïŒ(çœ,çœ,çœ,çœ,èµ€)ã®æã¯è¯ã䞊ã³ã§ãªãã®ã§ïŒ$4$ çªç®ã®çåŸã¯å
é $3$ 人ã®æ
å ±ã ãããã¯è¯ã䞊ã³ãåŠãå€æã§ããªãïŒ \r\næåã® $3$ 人ã(èµ€,èµ€,çœ),(èµ€,çœ,èµ€) ã®æã¯æ®ãã(èµ€,èµ€,çœ,çœ,çœ)ã®ãšãã¯è¯ã䞊ã³ã ãïŒ(çœ,çœ,çœ,èµ€,èµ€)ã®æã¯è¯ã䞊ã³ã§ãªãã®ã§ïŒ$4$ çªç®ã®çåŸã¯å
é $3$ 人ã®æ
å ±ã ãããã¯è¯ã䞊ã³ãåŠãå€æã§ããªãïŒ \r\n以äžããïŒæåã® $3$ 人ã(èµ€,èµ€,èµ€),(èµ€,èµ€,çœ),(èµ€,çœ,èµ€)ã§ãããããªäžŠã³ã®ç·æ°ãæ±ãïŒ $5+10+10=\\textbf{25}$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8469/212"
}
] | äœåïŒå
ç
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæŽæ°ã解çããŠäžãã.
***
ã$8$ 人ã®çåŸãåããåŸãã«äžåã«äžŠãã§ããŸãïŒãããã®çåŸã®ãã¡ $4$ 人ã«èµ€ãåžœåãïŒæ®ãã® $4$ 人ã«çœãåžœåããã¶ããŸãïŒæ¬¡ã®æ¡ä»¶ãæãç«ã€ãšãïŒçåŸã®äžŠã³ã¯**è¯ã䞊ã³**ã§ãããšããããšã«ããŸãïŒ
- ãåã®çåŸãèµ€ãåžœåïŒåŸãã®çåŸãçœãåžœåããã¶ã£ãŠãããããªïŒååŸã«é£ãåã $2$ 人ã®çåŸãéžã³ïŒãã® $2$ 人ãåããæãããããããšãç¹°ãè¿ããŠïŒãã¹ãŠã®çåŸãåããæããããããšãã§ããïŒ
ãããããã®çåŸã¯ïŒèªåããåã«äžŠãã§ããçåŸïŒèªåãé€ãïŒã®åžœåã®è²ã®ã¿ãç¥ãããšãã§ããŸãïŒåžœåã®ãã¶ãæ¹ã¯å
šéš $70$ éããããŸããïŒãã®ãã¡åãã $4$ çªç®ã®çåŸãïŒèªåãã¡ã®äžŠã³æ¹ãè¯ã䞊ã³ãã©ããå€æã§ããªããããªåžœåã®ãã¶ãæ¹ã¯ $\boxed{\phantom{nada}}$ éããããŸãïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8470 | F | 第26åçäžå
¥è©Šæš¡è©Š(F) | 100 | 35 | 45 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8470"
},
{
"content": "ãé¢åãªã®ã§ç°¡åã«çµè«ã ãè¿°ã¹ãïŒä»¥äžïŒæéã®åäœã¯åã§ïŒè·é¢ã®åäœã¯ $m$ ã§çµ±äžããïŒ \r\n$C$ ã®é床ã $0$ ãšããŠèã㊠$120$ å㧠$A$ 㯠$4$ åšïŒ$B$ 㯠$2$ åšããããšã«ãªãïŒ \r\nãã£ãŠïŒ$A,B$ ã®é床ã®å·®ã¯äžå®ãªã®ã§ïŒ$A,B$ ãåºäŒãã®ã«ãããæéã¯äžå®ã§ããããïŒ$A,B$ 㯠$60$ åããšã«åºäŒãããšãšãªãïŒ \r\nããšã¯é 匵ã£ãŠèšç®ãããšïŒ $A,B$ ã®æåã®é床㯠$\\dfrac{275}{6},\\dfrac{125}{6}$ 㧠$60$ åããšã«é床㯠$\\dfrac{50}{6}$ ãã€å¢ãããšãããïŒæ±ããè·é¢ã¯ $\\dfrac{13500}{11}$ ãšãªãïŒãã£ãŠïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{1633500}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8470/213"
}
] | äœåïŒå®®æ
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãåšå²ã®é·ãã $1500~\textrm{m}$ ã®æ± ã®åšããïŒ$\text{A}$ åãš $\text{B}$ åã¯æèšåãã«ïŒ$\text{C}$ åã¯åæèšåãã«ïŒããããäžå®ã®éãã§åãå Žæããåæã«èµ°ãåºããŸãïŒæåïŒ$\text{A}$ å㯠$\text{B}$ åãããéãèµ°ãïŒãã®åŸ $\text{A}$ åã $\text{B}$ åãè¿œãè¶ããã³ã«äºäººãšãéããäžå®ã®å€ã ãå¢ãããŸãïŒããã§ïŒå¢ããå€ã¯ $2$ 人ãšãåãã§ããïŒãã€è¿œãè¶ãã®ã¿ã€ãã³ã°ã«ãããªããšããŸãïŒïŒ$\text{C}$ åã®éãã¯å€ãããŸããïŒããŸïŒ$\text{A}$ åã $\text{B}$ åã $3$ åç®ã«è¿œãè¶ããã®ã¯ïŒ$\text{B}$ åã $\text{C}$ åãš $3$ åç®ã«åºäŒã£ã $20$ ååŸã§ããïŒ$3$ 人ãåããŠåæã«åãå°ç¹ã«éãŸã£ãã®ã¯èµ°ãå§ããŠãã $2$ æéåŸã§ïŒãããããåã« $\text{A}$ åãš $\text{C}$ å㯠$3$ ååºäŒã£ãŠããŸããïŒ$\text{B}$ åãš $\text{C}$ åã $5$ åç®ã«åºäŒã£ããšãïŒ$\text{A}$ å㯠$\text{B}$ åã®å Žæããæèšåãã« $\boxed{\phantom{nada}} ~\textrm{m}$ é²ãã å Žæã«ããŸãïŒãã ãïŒåºäŒã£ãåæ°ãæ°ããéã«ïŒã¹ã¿ãŒãã¯å«ããªããã®ãšããŸãïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8471 | G | 第26åçäžå
¥è©Šæš¡è©Š(G) | 100 | 83 | 88 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8471"
},
{
"content": "ãè¹ãšãã¿ãžãåãšå·ã®æµããéãããããã $x,y,z$ ãšãïŒæ±ããæå»ã $t$ ãšããïŒ \r\n $34(y-z)+20z=14(x-z)$ ããïŒ$x:y=17:7$ ãšãªãïŒ \r\n ãŸãïŒ$(t-34)(y-z)+40z+14(x-z)=(60-t)(x+z)$ ããïŒ$t=\\dfrac{46x+34y}{x+y}=\\dfrac{46\\times17+34\\times7}{17+7}=\\dfrac{85}{2}$ ãšãªãïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{340}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8471/214"
}
] | äœåïŒäžžå²¡
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ããã¿ãžãåãšè¹ã»ããšã«ãå·ãïŒåãå°ç¹ããåæã«åºçºããŠå·ãé²ã¿ãŸãïŒããšã«ãå·ã¯ã¯ãããšã³ãžã³ããã©ãã«ã§æ¢ãŸã£ãŠããããå·ã®æµéãšåãéãã§å·ãäžãïŒãã¿ãžãåã¯å·ãæ³³ãã§äžããŸããïŒããšã«ãå·ã¯åºçºã® $20$ ååŸã«ãšã³ãžã³ã埩æ§ãïŒå·ãäžãå§ããŸããïŒãã®éïŒããšã«ãå·ã¯åŸ©æ§ããå°ç¹ã«æµ®ã茪ãèœãšããŸããïŒæµ®ã茪ã¯å·ã®æµéãšåãéããšå·ãäžããŸãïŒããšã«ãå·ã¯ã¯ããã®åºçºãã $34$ ååŸã«ãã¿ãžãåã«è¿œãã€ããŸããïŒãã®åŸïŒãã°ããããŠããããšã«ãå·ã¯å·ãäžãæ¹åã«åŒãè¿ãããšããïŒã¯ããã®åºçºãã $\boxed{\phantom{nada}}$ ååŸã«ãã¿ãžãåã«åºäŒãïŒã¯ããã®åºçºãã $60$ ååŸã«æµ®ã茪ã«è¿œãã€ããŸããïŒããã§ïŒããšã«ãå·ã®éæ°Žã§ã®éãã»ãã¿ãžãåãæ³³ãéãã»å·ã®æµéã¯ããããäžå®ã§ãããšããŸãïŒ |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8472 | H | 第26åçäžå
¥è©Šæš¡è©Š(H) | 100 | 63 | 74 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8472"
},
{
"content": "ã$A$ ãéã $CD$ ã«å¹³è¡ãªç·ãš $DE$ ã®äº€ç¹ã $G$ ãšããïŒ$BC=CD=DE=7x,AB=EG=7y$ ãšããïŒ$AF=9y,FD=9x$ ãšãªãïŒçèå°åœ¢ $ACDG$ ã«ãããŠïŒãã¬ããŒã®å®çããïŒ$(7(x+y))^2+7x\\times{AG}=(9(x+y))^2$ ãšãªãïŒ$AG=\\dfrac{32(x+y)^2}{7x}$ ãšãªãïŒ \r\nãã£ãŠïŒ$EF=AG\\times\\dfrac{x}{x+y}=\\dfrac{32}{7}(x+y)$ ãšãªãïŒ$\\dfrac{EF}{AC}=\\dfrac{32}{7}\\div7=\\dfrac{32}{49}$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{76832}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8472/215"
}
] | äœåïŒå
è€
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãäžå³ã«ãããŠïŒåè§åœ¢ $BCDE$ ã¯èŸº $BE$ ãšèŸº $CD$ ãå¹³è¡ãªå°åœ¢ã§ïŒèŸº $BC$ ãšèŸº $DE$ ã¯å¹³è¡ã§ãªããã®ãšããïŒïŒèŸº $BC,CD,DE$ ã®é·ãã¯ãã¹ãŠçããã§ãïŒ$AB:AF=7:9$ ã§ãããšãïŒç·å $EF$ ã®é·ãã¯ç·å $AC$ ã®é·ãã® $\boxed{\phantom{nada}}$ åã§ãïŒ
***
ã5\/3 1:21 ä¿®æ£ãåé¡æãä¿®æ£ããŸããïŒ$BCDE$ ã¯å¹³è¡å蟺圢ã§ãªããšããä»®å®ãè¿œå ïŒ
 |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8473 | I | 第26åçäžå
¥è©Šæš¡è©Š(I) | 100 | 86 | 102 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8473"
},
{
"content": "ã$AD=x,AE=y,\\triangle{ABD}=S,\\triangle{ADE}=T,\\triangle{AEC}=U$ ãšããïŒ \r\n$S:U=7x:5y,(S+T):(T+U)=7y:5x,(S+T):U=5:1$ ãšãªãã®ã§ïŒããšã¯èšç®ããããš $\\dfrac{x}{y}=\\dfrac{35}{29}$ ãšãããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{29435}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8473/216"
}
] | äœåïŒå±±å£
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ倧ã®æ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãäžå³ã«ãããŠïŒç·å $AB,BC,CA,EC$ ã®é·ãããããã $7~ \textrm{cm}, ~ 6~ \textrm{cm}, ~ 5~ \textrm{cm}, ~ 1~ \textrm{cm}$ ã§ããïŒ$\angle{BAD}=\angle{CAE}$ ã§ãããšãïŒç·å $AD$ ã®é·ãã¯ç·å $AE$ ã®é·ãã® $\boxed{\phantom{nada}}$ åã§ãïŒ
 |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8474 | J | 第26åçäžå
¥è©Šæš¡è©Š(J) | 100 | 115 | 133 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8474"
},
{
"content": "$O(0,0),P(15,0),Q(15,15),R(0,15),S(12,0),T(0,5)$ ãšããïŒ$ST$ ãš $QR$ ã®äº€ç¹ã $U$ ãšãïŒ$Q$ ãã $SU$ ã«äžãããåç·ã®è¶³ã $H$ ãšããïŒ \r\n$\\triangle{OST},\\triangle{RUT},\\triangle{HUQ}$ ã¯äžèŸºæ¯ã $5:12:13$ ã®çŽè§äžè§åœ¢ãªã®ã§ïŒ$U(-24,15)$ ãšãªãïŒ$UQ=39$ ãã $UH=36$ ãšãªãïŒ \r\nãã£ãŠïŒ$TH=TR=10,SH=SP=3$ ã«æ³šæããŠïŒ$\\triangle{QRT}\\equiv\\triangle{QHT},\\triangle{QPS}\\equiv\\triangle{QHS}$ ãšãªãïŒ$\\angle{SQT}=45^\\circ$ ãšãªãïŒ\r\nãã£ãŠïŒ$\\triangle{ABC}$ 㯠$\\triangle{QUS}$ ã $\\dfrac{1}{13}$ åã«çžäŒŒæ¡å€§ãããã®ãšååã§ïŒ$\\triangle{ABC}=\\dfrac{\\triangle{QUS}}{169}=\\dfrac{1}{2}\\cdot39\\cdot15\\cdot\\dfrac{1}{169}=\\dfrac{45}{26}$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{30420}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8474/217"
}
] | äœåïŒå°åº
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãäžå³ã«ãããŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $\boxed{\phantom{nada}} ~ \textrm{cm}^2$ ã§ãïŒãã ãïŒäžèŸºã®é·ãã®æ¯ã $3:4:5$ïŒ$5:12:13$ïŒ$7:24:25$ïŒ$8:15:17$ ã®äžè§åœ¢ãããããçŽè§äžè§åœ¢ã§ããããšãçšããŠãæ§ããŸããïŒ
 |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8475 | K | 第26åçäžå
¥è©Šæš¡è©Š(K) | 100 | 54 | 60 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8475"
},
{
"content": "$AB=x,AE=y$ ãšãïŒæ±ããé¢ç©ã $S$ïŒäžèŸºã $x,y,5$ ã®äžè§åœ¢ã®é¢ç©ã $T$ïŒäžèŸºã $x,y,1$ ã®äžè§åœ¢ã®é¢ç©ã $U$ ãšãïŒäžèŸº $n$ ã®æ£äžè§åœ¢ã®é¢ç©ã $A_n$ ãšè¡šãïŒ \r\n$\\triangle{BEF}$ ãæ£äžè§åœ¢ãšãªããã $F$ ã( $CD$ ã«ã€ã㊠$A$ ã®å察åŽã«)ãšããšïŒ$ABFE$ ã®é¢ç©ã«çç®ããŠïŒ$T+A_5=S+T+T+U$ ããïŒ$S=A_5-T-U\\cdots(1)$ \r\n$\\triangle{CDG}$ ãæ£äžè§åœ¢ãšãªããã $G$ ã $ABCDE$ ã®å
éšã«ãšããšïŒ$S=A_1+2T+2U\\cdots(2)$ \r\nãã£ãŠïŒ$(2\\times(1)+(2))\\div3$ ããïŒ$S=(2A_5+A_1)\\div3$ ãšãªãïŒ$S$ ã¯äžèŸº $1$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $\\textbf{17}$ åïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8475/218"
}
] | äœåïŒäœè€
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãäžå³ã«ãããŠïŒäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $ADE$ ã¯ãšãã«æ£äžè§åœ¢ã§ããïŒè§ $CAD$ ã®å€§ãã㯠$20$ 床ïŒç·å $BE,CD$ ã®é·ãã¯ãããã $5 ~ \textrm{cm}, ~ 1 ~ \textrm{cm}$ ã§ãïŒãã®ãšãïŒäºè§åœ¢ $ABCDE$ ã®é¢ç©ã¯ïŒäžèŸºã $1 ~ \textrm{cm}$ ã®æ£äžè§åœ¢ã®é¢ç©ã® $\boxed{\phantom{nada}}$ åã§ãïŒ
 |
第26åçäžå
¥è©Šæš¡è©Š | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/nadachu2023/tasks/8476 | L | 第26åçäžå
¥è©Šæš¡è©Š(L) | 100 | 17 | 33 | [
{
"content": null,
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8476"
},
{
"content": "ãäžèŸº $3$ ã®ç«æ¹äœã®åé¢ã«å¯ŸãïŒäžå¿ããå³ã« $1$ïŒäžã« $\\dfrac{1}{2}$ ã ãé²ãã ç¹ãäžã€ã®é ç¹ãšããå
ã®æ£æ¹åœ¢ãšäžå¿ãäžèŽãããããªäžèŸºã $\\dfrac{\\sqrt{10}}{2}$ ã®æ£æ¹åœ¢ãæãïŒããã $6$ ã€ã®æ£æ¹åœ¢ã®é ç¹ $24$ åãé©åã«çµã¶ããšã§ïŒæ±ããç«äœãåŸãïŒ \r\nããšã¯äœç©ãé 匵ã£ãŠèšç®ãããš $\\dfrac{41}{2}$ ãšãªãïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{164}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/nadachu2023/editorial/8476/219"
}
] | äœåïŒäœè€
ã以äžã® $\boxed{\phantom{nada}}$ ã«åœãŠã¯ãŸãæ°ã¯ïŒæ倧å
¬çŽæ°ã $1$ ã§ããæŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}$ ãšè¡šããŸãïŒ$m\times n\times n$ ã解çããŠäžããïŒãã ãïŒ$n$ 㯠$1$ 以äžãšããŸãïŒ
***
ãäžå³ã®å±éå³ã¯ïŒæ£æ¹åœ¢ $6$ åïŒååãªäºç蟺äžè§åœ¢ $24$ åïŒæ£äžè§åœ¢ $8$ åãããªãïŒãããçµã¿ç«ãŠããšæ£æ¹åœ¢ã $2$ åã〠$3$ çµå¹³è¡ã«åããåãïŒæ£äžè§åœ¢ã $2$ åã〠$4$ çµå¹³è¡ã«åããåããŸããïŒãŸãïŒåããåãæ£æ¹åœ¢ã®éã®è·é¢ã¯ $3 ~ \textrm{cm}$ ã«ãªãïŒåããåãæ£äžè§åœ¢ã®éã®è·é¢ã¯äžèŸº $2 ~ \textrm{cm}$ ã®ç«æ¹äœã®å¯Ÿè§ç·ïŒäœå¯Ÿè§ç·ïŒã®é·ãã«çãããªããŸããïŒãã®ãšãïŒçµã¿ç«ãŠãŠåºæ¥ãç«äœã®äœç©ã¯ $\boxed{\phantom{nada}} ~ \textrm{cm}^3$ ã§ãïŒ
 |
SOMC003 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc003/tasks/5133 | A | SOMC003(A) | 100 | 146 | 160 | [
{
"content": "ãäžåŒã¯ $x^5-x=0$ ã〠$y^5-y=0$ ã〠$z^5-z=0$ ãšåå€ã§ããïŒ\\\r\nãããããã®æ¹çšåŒã¯å®æ°è§£ã $3$ ã€ãã€æã€ããïŒæ±ããçã㯠$3^3=\\mathbf{27}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc003/editorial/5133"
}
] | $$x^5+y+z=x+y^5+z=x+y+z^5=x+y+z$$
ãã¿ããå®æ°ã®çµ $(x,y,z)$ ã¯ããã€ãããŸããïŒ |
SOMC003 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc003/tasks/5130 | B | SOMC003(B) | 200 | 112 | 137 | [
{
"content": "ã$S$ ã®éšåéåãšãã®è£éåãããªã $2^{11}$ çµã®ãã¢ãèããïŒ$N\\le 2^{11}$ ãªãã°ïŒãããã®çµããããããé«ã
$1$ ã€ãã€éåãéžã¶ããšã§æ¡ä»¶ãã¿ãããªãããã«ã§ããïŒäžæ¹ã§ $N\\ge 2^{11}+1$ ãªãã°ïŒé³©ã®å·£åçã«ããå¿
ãæ¡ä»¶ãã¿ããããšããããïŒåŸã£ãŠïŒæ±ããçã㯠$2^{11} + 1 =\\bf{2049}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc003/editorial/5130"
}
] | ã$S=\\{1,2,3,\ldots,12\\}$ ãšãããŸãïŒæ¬¡ã®æ¡ä»¶ãã¿ãã $1$ ä»¥äž $4096~(=2^{12})$ 以äžã®æŽæ° $N$ ã®ãã¡ïŒæå°ã®ãã®ãæ±ããŠäžããïŒ
- çžç°ãªã $S$ ã®éšåéåïŒç©ºéåã§ãããïŒã $N$ åéžãã ãšãïŒè£éåã®é¢ä¿ã«ãã $2$ ã€ãå¿
ãå«ãŸããïŒ
ãããã§ïŒ$S$ ã®éšåéå $A,B$ ãè£éåã®é¢ä¿ã«ãããšã¯ïŒ$A\cap B=\emptyset$ïŒ$A\cup B=S$ ãã¿ããããšããããŸãïŒ |
SOMC003 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc003/tasks/6874 | C | SOMC003(C) | 200 | 114 | 127 | [
{
"content": "ã蟺 $BC$ äžã« $BQ=CP$ ãªãç¹ $Q$ ããšãïŒãã®ãšãïŒäžè§åœ¢ $ABQ$ ãšäžè§åœ¢ $ACP$ ã¯ååã§ããããïŒ\r\n$$AP=AQ,\\quad PQ=18,\\quad \\angle PAQ=120^\\circ$$\r\næãç«ã€ïŒããã«ãã $AP=6\\sqrt{3}=\\sqrt{\\mathbf{108}}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc003/editorial/6874"
}
] | ã$AB=AC$ ãªãäžè§åœ¢ $ABC$ ãããïŒèŸº $BC$ äžã«ç¹ $P$ ããšã£ããšãã
$$BP=20, \quad CP=2,\quad \angle BAP-\angle CAP=120^\circ$$
ãæç«ããŸããïŒãã®ãšãïŒç·å $AP$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
SOMC003 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc003/tasks/6432 | D | SOMC003(D) | 400 | 51 | 87 | [
{
"content": "ãå æ°å®çã«ããïŒä»»æã®çžç°ãªãæŽæ° $x,y$ ã«ã€ããŠïŒ\r\n$$\\dfrac{P(x)-P(y)}{x-y}$$\r\nã¯æŽæ°ã§ããïŒãã£ãŠïŒ$n = P(P(P(1)))$ ãšããã°ïŒ \r\n$$\\dfrac{P(P(P(1)))-P(P(1))}{P(P(1))-P(1)}=\\frac{n-22}{20},\\quad \\dfrac{P(P(P(1)))-P(1)}{P(P(1))-1}=\\frac{n-2}{21}$$ \r\nã¯ãšãã«æŽæ°ã§ããããïŒ$n$ 㯠$420$ ã§å²ã£ãŠ $2$ äœãæŽæ°ã§ããïŒ\\\r\nãéã«ïŒ$n=420k+2$ ãšãªãæŽæ° $k$ ãååšãããšãïŒ\r\n$$P(x)=(k-1)(x-1)(x-2)+20x-18$$\r\nã¯ä»¥äžãã¿ããããïŒ$P(P(P(1)))$ ãšããŠããããå€ã¯ $420$ ã§å²ã£ãŠ $2$ äœãæŽæ°å
šäœã§ããïŒ\r\n$$P(1)=2,ãP(P(1))=22,ãP(P(P(1)))=n.$$\r\nç¹ã«ïŒ$|P(P(P(1)))|$ ãšããŠããããå€ã¯ïŒæ£ã®æŽæ° $t$ ãçšã㊠$420t-418$ ãŸã㯠$420t-2$ ãšè¡šãããã®å
šäœã§ããããïŒæ±ããçã㯠$420Ã5-2=\\mathbf{2098}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc003/editorial/6432"
},
{
"content": "ã$P(1)=2,P(P(1))=P(2)=22$ ãšããæ¡ä»¶ã¯å°äœå®çããïŒ$P(x)$ ã $x-1,x-2$ ã§å²ã£ãäœãããããã $2,22$ ã§ãããšèšãæããããïŒ \r\nããã§ïŒ$P(x)$ ã $(x-1)(x-2)$ ã§å²ã£ãäœããæ±ãããïŒ \r\nã$P(x)$ ã $(x-1)(x-2)$ ã§å²ã£ããšãã®åã $Q(x)$ ãšãïŒäœãã $ax+b$ ãšããïŒãã®ãšãïŒ $Q(x)$ ã¯æŽæ°ä¿æ°å€é
åŒãšãªãïŒ \r\n$P(x)=Q(x)\\times(x-1)(x-2)+ax+b$ ã« $x=1,2$ ã代å
¥ããŠïŒ$P(1)=a+b=2,P(2)=2a+b=22$ ããïŒ$a=20,b=-18$ïŒ \r\nãã£ãŠïŒ$P(x)=Q(x)\\times(x-1)(x-2)+20x-18$ ã§ããïŒ$P(22)=420Q(22)+422$ïŒ \r\nããã§ïŒ$Q(x)$ ã¯æŽæ°ä¿æ°å€é
åŒãªã®ã§ïŒ$Q(22)$ ã¯æŽæ°ã§ããïŒ$P(22)$ 㯠$420$ ã§å²ã£ãŠ $2$ äœãæŽæ°ãšãªãïŒ \r\nãéã«ïŒæŽæ° $k$ ã«å¯ŸãïŒ$P(22)=420k+2$ ãšãªãæ¡ä»¶ãæºãã $P(x)$ ãšããŠïŒ $P(x)=(k-1)(x-1)(x-2)+20x-18$ ããšããã®ã§ïŒ$P(22)$ ã®å€ãšããŠèãããããã®ã¯ $420$ ã§å²ã£ãŠ $2$ äœãæŽæ°å
šäœã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{2098}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc003/editorial/6432/207"
}
] | ãæŽæ°ä¿æ°å€é
åŒ $P(x)$ ã¯ïŒä»¥äžãã¿ãããŸãïŒ
$$P(1)=2,ãP(P(1))=22.$$
$| P(P(P(1))) |$ ãšããŠããããå€ã®ãã¡ïŒ$10$ çªç®ã«å°ãããã®ãæ±ããŠãã ãã. |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/238 | A | OMC151(A) | 100 | 343 | 360 | [
{
"content": "ãçŽç· $AB$ ãšçŽç· $CD$ ã®äº€ç¹ã $E$ ãšããã°ïŒäžè§åœ¢ $BCE$ ã¯çŽè§äºç蟺äžè§åœ¢ã§ããïŒ$BE=CE=x$ ãšããã°ïŒäžè§åœ¢ $ADE$ ã«ãããäžå¹³æ¹ã®å®çã«ãã $(x-1)^2+(x-2)^2=5$ ãåŸãããïŒããã解ã㊠$x=3$ ãåŸãïŒä»¥äžã«ããïŒ$BC=3\\sqrt{2}=\\sqrt{\\textbf{18}}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/238"
}
] | ãåžåè§åœ¢ $ABCD$ ã
$$AB=1,\quad AD=\sqrt{5},\quad CD=2,\quad \angle B=\angle C=45^\circ$$
ãã¿ãããšãïŒèŸº $BC$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/2608 | B | OMC151(B) | 200 | 213 | 271 | [
{
"content": "ã$α^3=7α-3$ ããã³ $β^3=7β-3$ ã«ãã $α^3-β^3=7α-7β$ ã§ããããïŒ\r\n$$α^2+αβ+β^2=\\dfrac{α^3-β^3}{α-β}=7.$$\r\nåæ§ã« $β^2+βγ+γ^2=γ^2+γα+α^2=7$ ãªã®ã§ïŒæ±ããå€ã¯ $7^3=\\textbf{343}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/2608"
}
] | ãæ¹çšåŒ $x^3-7x+3=0$ ã®çžç°ãªã $3$ ã€ã®å®æ°è§£ã $x=α,β,γ$ ãšãããšãïŒ
$$(α^2+αβ+β^2)(β^2+βγ+γ^2)(γ^2+γα+α^2)$$
ã®å€ãæ±ããŠãã ããïŒ |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/278 | C | OMC151(C) | 200 | 162 | 276 | [
{
"content": "ãçšãã $1\\times 1$ ã®ææ°ãæå°åããããšãèããã°ããïŒãã¹ã®ç·æ° $2043231$ 㯠$5$ ã®åæ°ã§ãªãããšããïŒ$1\\times 1$ ã¯å°ãªããšã $1$ æå¿
èŠã§ããïŒä»¥äžïŒéã« $1\\times 1$ ãã¡ããã© $1$ æã®ã¿çšããŠæ·ãè©°ãå¯èœã§ããããšã瀺ããïŒ\\\r\nããŸãïŒä»¥äžã«ç€ºã $S_7$ ã®ãããªèŠé ã§ïŒ$1\\times 1$ ã $1$ æãš $1\\times2$ïŒ$1\\times 3$ ããããã $1010$ æãã€é
眮ããïŒãã®ãšãïŒæ®ãã®ãã¹ç®ã¯ $2$ åã«æ¡å€§ããã $S_{1009}$ ã®ãããªåœ¢ç¶ãšãªãïŒãããžïŒãŸãäžãã $i$ æ®µç® ($i=4,5,\\cdots,1012)$ ã«ã€ããŠïŒãã®æ®µã®æ®ããã¹æ°ãåã㊠$5$ ã®åæ°ãšãªããŸã§å·Šè©°ãã« $1\\times 2$ ãé
眮ãïŒ$2025-i$ 段ç®ã«ã€ããŠãããšåãææ°ã® $1\\times 3$ ãå·Šè©°ãã§é
眮ããïŒãã®ãšãïŒ$1013$ 段ç®ä»¥äžã§ãæ®ããã¹æ°ã¯ $5$ ã®åæ°ã«ãªãããïŒæ®ãã¯ç°¡åã«åããããšãã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $1+2043230\\times 2\\/5=\\textbf{817293}$ ã§ããïŒ\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/278"
},
{
"content": "ã$1 \\times n \\ \\left(n \\ge 2\\right)$ ã®é·æ¹åœ¢ã $1 \\times 2$ ãš $1 \\times 3$ ã®ã¿ã€ã«ã®ã¿ã§åããããšãèãïŒããããã®ææ°ã®çµã以äžã®ããã«ããïŒ\r\n* $n = 5m$ ã®ãšã $(m, m)$\r\n* $n = 5m + 1$ ã®ãšã $(m - 1, m + 1)$\r\n* $n = 5m + 2$ ã®ãšã $(m + 1, m)$\r\n* $n = 5m + 3$ ã®ãšã $(m, m + 1)$\r\n* $n = 5m + 4$ ã®ãšã $(m + 2, m)$\r\n\r\nãã㟠$S_n$ ãïŒäžãã $k$ 段ç®ã $1 \\times k$ ã®é·æ¹åœ¢ã«ãªã£ãŠããå³åœ¢ãšã¿ãŠïŒäžã®æ®µããåããŠããããšãèãããšïŒ$5$ 段ãã€ã§ $1 \\times 2$ ãš $1 \\times 3$ ã®ã¿ã€ã«ã®ææ°ãçãããªãïŒãããã£ãŠ $S_{2021}$ ã®ä»®å®ã®æ·ãè©°ãæ¹ã«ã€ããŠïŒ$1$ 段ç®ä»¥å€ã¯ãã¹ãŠïŒåæ°ã® $1 \\times 2$ ãš $1 \\times 3$ ã®ã¿ã€ã«ã§æ·ãè©°ãããïŒæ±ããå€ã¯\r\n$$ \\frac25 \\times \\left(\\frac{2022 \\times 2021}2 - 1\\right) + 1 = \\bm{817293}. $$",
"text": "1 段ãã€åŠç",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/278/205"
}
] | ã$n$ 段ã®é段ç¶ã«äžŠãã ãã¹ç®ã®éåã $S_n$ ãšããŸãïŒäŸãã°ä»¥äžã« $S_7$ ã瀺ããŸãïŒ\
ãããŸïŒ$1\times1$ïŒ$1\times2$ïŒ$1\times3$ ã® $3$ çš®é¡ã®ã¿ã€ã«ãããããç¡æ°ã«ããïŒå転ãããŠãããïŒïŒããããçšããŠééã»éãªãã»ã¯ã¿åºããäœãããšãªã $S_{2021}$ ãæ·ãè©°ããããšãèããŸãïŒããã§ïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«ããŸãïŒ
- $1\times2$ ãš $1\times3$ ã®ã¿ã€ã«ã¯åãææ°ã ãçšããïŒ
ããã®ãšãïŒæ·ãè©°ãã«çšããã¿ã€ã«ã®ç·æ°ãšããŠããããæå°å€ãæ±ããŠãã ããïŒ
 |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/3268 | D | OMC151(D) | 300 | 140 | 222 | [
{
"content": "$$p=a+b+c, \\quad q=-(ab+bc+ca)$$\r\nãšããã°ïŒäžåŒã¯ $abc=-pq$ ãšèšãæãããïŒãã®ãšã解ãšä¿æ°ã®é¢ä¿ãã $x=a, b, c$ 㯠$3$ 次æ¹çšåŒ\r\n$$x^3-px^2-qx+pq=0$$\r\nã®ïŒéè€åºŠã蟌ããŠïŒ$3$ ã€ã®è§£ã§ããïŒäžæ¹ã§ãã㯠$x=p, \\sqrt{q}, -\\sqrt{q}$ ã $3$ 解ã«æã€ã®ã§ïŒ$(a, b, c)$ 㯠$-10$ ä»¥äž $10$ 以äžã® $0$ ã§ãªãæŽæ° $m, n$ ãçšã㊠$(m, n, -n)$ ãããã¯ãã®äžŠã³æ¿ããšããŠè¡šãããšãã§ããïŒéã«ãã®ãšãäžåŒãæºããã®ã§ïŒ$|m|=|n|$ ã®å Žåã«æ³šæããŠæ±ããã¹ãçµã®æ°ã¯ $3\\times20+6\\times10\\times18=\\mathbf{1140}$ ã§ããïŒ\\\r\nããªãïŒäžåŒã¯é©åœã«æŽçããããšã§ç¢ºãã« $(a+b)(b+c)(c+a)=0$ ãšãªãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/3268"
}
] | ã$-10$ ä»¥äž $10$ 以äžã〠$0$ ã§ãªãæŽæ°ã®çµ $(a, b, c)$ ã§ãã£ãŠïŒ$a+b+c\neq 0$ ãã€
$$\frac1a+\frac1b+\frac1c=\frac1{a+b+c}$$
ãæºãããã®ã®åæ°ãæ±ããŠãã ããïŒ |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/1648 | E | OMC151(E) | 300 | 104 | 142 | [
{
"content": "ã$V$ ã®é ç¹ã®æ°ã $v$ïŒèŸºã®æ°ã $e$ïŒæ£äžè§åœ¢ã®é¢ã®æ°ã $f_3$ïŒæ£äºè§åœ¢ã®é¢ã®æ°ã $f_5$ ãšããïŒãã®ãšãïŒ$V$ ã¯åžã§ããããEulerã®å€é¢äœå®çã«ãã\r\n$$v - e + f_3 + f_5 = 2\\tag1$$\r\nãæç«ããïŒ\\\r\nãäžã€ã®é ç¹ã«éãŸãé¢ã®æ°ã¯ $3$ 以äžã§ããïŒæ£äžè§åœ¢ãšæ£äºè§åœ¢ãåæ°ïŒããã $n$ ãšããïŒéãŸãã®ã§å¶æ°ã§ããïŒãŸãïŒ$V$ ã¯åžã§ããããïŒäžã€ã®é ç¹ã«éãŸãè§ã®å€§ããã®ç·å㯠$360^\\circ$ æªæºã§ããïŒã€ãŸãïŒ$$n(60^\\circ + 108^\\circ) \\lt 360^\\circ$$\r\nãæç«ããã®ã§ïŒ$n=2$ ã§ããïŒç¹ã«ïŒã©ã®é ç¹ã«ãã¡ããã© $4$ åã®é¢ãéãŸãã®ã§ïŒã©ã®é ç¹ã«ãã¡ããã© $4$ æ¬ã®èŸºãæ¥ç¶ããïŒããã«ïŒã©ã®èŸºãã¡ããã©äºã€ã®é ç¹ã«æ¥ç¶ããã®ã§ïŒ\r\n$$v = \\frac{2e}{4} = \\frac{1}{2}e\\tag2$$\r\nãæç«ããïŒ\\\r\nãå蟺ã¯ïŒã¡ããã©äžã€ã®æ£äžè§åœ¢ãšã¡ããã©äžã€ã®æ£äºè§åœ¢ã«æ¥ããŠããã®ã§ïŒæ¬¡ãæãç«ã€ïŒ\r\n$$3f_3 = e = 5f_5$$\r\nåŸã£ãŠïŒããæ£ã®æŽæ° $a$ ãååšããŠ\r\n$$f_3 = 5a,\\quad f_5 = 3a,\\quad e = 15a\\tag3$$ãæç«ããïŒ\\\r\nã以äžã«ããïŒ$(1),(2),(3)$ ãé£ç«ããŠè§£ãããšã§ïŒ$e = 60$ ãåŸãïŒãã£ãŠïŒæ±ããçã㯠$\\mathbf{60}$ ã§ããïŒ\\\r\nããªãïŒå®éã«**äºåã»åäºé¢äœ**ïŒ[icosidodecahedron](https:\\/\\/ja.wikipedia.org\\/wiki\\/%E4%BA%8C%E5%8D%81%E3%83%BB%E5%8D%81%E4%BA%8C%E9%9D%A2%E4%BD%93)ïŒãªã©ãšåŒã°ããæºæ£å€é¢äœãæ¡ä»¶ãã¿ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/1648"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ããåžå€é¢äœ $V$ ããããŸãïŒ
- ãã¹ãŠã®èŸºã®é·ããçããïŒåé¢ã¯æ£äžè§åœ¢ãŸãã¯æ£äºè§åœ¢ã§ããïŒ
- ãã¹ãŠã®èŸºã«ã€ããŠïŒæ£äžè§åœ¢ã®é¢ãšæ£äºè§åœ¢ã®é¢ãäžã€ãã€æ¥ããŠããïŒ
ãã®ãšãïŒ$V$ ã®èŸºæ°ãšããŠããããæ£æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
OMC151 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc151/tasks/287 | F | OMC151(F) | 400 | 81 | 139 | [
{
"content": "ã$\\sum_{m=1}^{n}m^3=\\frac{n^2(n+1)^2}{4}$ ã«æ³šæããã°åž°çŽçã«ä»¥äžãæãç«ã€ããšããããïŒ\r\n$$a_n=\\dfrac{n\\times n!}{4^{n-1}}.$$\r\nããã§ïŒLegendreã®å®çã«ãã $287!$ 㯠$2$ ã§ã¡ããã© $281$ åå²ãåããããšããããã®ã§ïŒ$q=2^{291}$ ã§ããïŒããã $100$ ã§å²ã£ãäœãã¯Eulerã®å®çã«ãã $48$ ã§ããïŒä»¥äžïŒ\r\n$$p=\\dfrac{287\\times 287!}{2^{281}}$$\r\nã $100$ ã§å²ã£ãäœããèããã°ããïŒããã§ïŒããã¯æããã« $25$ ã®åæ°ã§ããïŒ$287$ ã $4$ ã§å²ã£ãŠ $3$ äœãããšãšããããŠïŒçµå± $\\dfrac{287!}{2^{281}}$ ã $4$ ã§å²ã£ãäœãããããã°ããïŒäºééä¹ãçšããã°ïŒãã®å€ã¯\r\n$$\\dfrac{287!}{2^{281}}=287!!\\times143!!\\times71!!\\times35!!\\times17!!\\times7!!\\times3!!\\times1!!\\times1!!$$\r\nãšè¡šããïŒäžæ¹ã§ïŒåž°çŽçã« $n\\equiv 1,7\\pmod{8}$ ã®ãšã $n!!\\equiv 1\\pmod{4}$ ã§ïŒ$n\\equiv 3,5\\pmod{8}$ ã®ãšã $n!!\\equiv 3\\pmod{4}$ ã§ããããšããããããïŒç¹ã«äžåŒã $4$ ã§å²ã£ãäœã㯠$1$ ã§ããïŒ\\\r\nããã£ãŠ $p$ ã $100$ ã§å²ã£ãäœã㯠$75$ ã§ããïŒè§£çãã¹ãå€ã¯ $75+48-100=\\textbf{23}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc151/editorial/287"
}
] | ãå®æ°å $\\{a_n\\}\_{n=1,2,\cdots}$ ã¯ïŒ$a_1=1$ ããã³ä»»æã®æ£ã®æŽæ° $n$ ã«å¯ŸããŠæŒžååŒ
$$a_{n+1}=a_n\sum_{m=1}^{n}\biggl(\dfrac{m}{n}\biggr)^3$$
ãã¿ãããŸãïŒãã®ãšãïŒ$a_{287}$ ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã $100$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/4757 | A | OMC150(A) | 100 | 328 | 328 | [
{
"content": "ãå·Šãã $n\\ (1 \\leq n \\leq 2023)$ çªç®ã®æ€
åã $c_n$ ãšè¡šãïŒå $k = 1, 2, \\cdots, 674$ ã«å¯Ÿãæ€
åã®éå $\\\\{ c_{3k - 2}, c_{3k - 1}, c_{3k} \\\\}$ ã $X_k$ ãšè¡šãïŒ\\\r\nã$676$ 人以äžã®äººã座ããšïŒããéå $X_k$ ã«ã¯äººã座ã£ãŠããæ€
åã $2$ ã€ä»¥äžå±ããïŒãããã®éã«ããæ€
å㯠$1$ å以äžã§ããããïŒæ¡ä»¶ã¯ã¿ããããªãïŒ\\\r\nãäžæ¹ã§ïŒ$c_1, c_4, \\dots, c_{2023}$ ã«åº§ãããšã§ $675$ 人ãå®çŸã§ããããïŒæ±ããæ倧å€ã¯ $\\mathbf{675}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/4757"
}
] | ã$2023$ åã®æ€
åãå·Šå³äžåã«äžŠãã§ããïŒããããã®æ€
åã«ã¯æ倧㧠$1$ 人ãã€ã座ãããšãã§ããŸãïŒãŸãïŒã©ã®äººãåæã« $2$ ã€ä»¥äžã®æ€
åã«ã¯åº§ããŸããïŒææç察çã®ãã以äžã®æ¡ä»¶ãã¿ããããã«ãããšãïŒå
šäœã§æ€
åã«åº§ãããšãã§ããã®ã¯æ倧ã§äœäººã§ããïŒ
- 人ã座ã£ãŠããã©ã® $2$ ã€ã®æ€
åã«ã€ããŠãïŒãã®éã«ã¯å°ãªããšã $2$ ã€ã®æ€
åãããïŒ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/6549 | B | OMC150(B) | 300 | 235 | 285 | [
{
"content": "ã$20$ 以äžã®çŽ æ°ã¯å
šéšã§ $8$ åããããšããïŒãããæ Œåç¹ã $15$ åçµç±ããã®ã¯ä»¥äž $2$ æ¡ä»¶ãæºããçµè·¯ã«éãããïŒ\r\n- $2$ ç¹ $(2, 2), (19, 19)$ ãã©ã¡ããçµç±ããïŒ\r\n- ãããæ Œåç¹ $(p_1, p_2)\\ (\\neq (19, 19))$ ãçµç±ãããªãã°ïŒ$p_1$ ã®æ¬¡ã«å°ããçŽ æ°ã $q_1$ïŒ$p_2$ ã®æ¬¡ã«å°ããçŽ æ°ã $q_2$ ãšãããšãïŒ$(p_1, p_2)$ ãã $(q_1, p_2), (p_1, q_2)$ ã®ã©ã¡ããã«çŽé²ããïŒ\r\n\r\nãã®ãããªçµè·¯ã«ã€ããŠïŒåç¹ãã $(2, 2)$ ãŸã§ã®ãã©ãæ¹ã¯ ${}\\_{4}\\mathrm{C}\\_{2}$ éãïŒ$(2, 2)$ ãã $(19, 19)$ ãŸã§ã®ãã©ãæ¹ã¯ ${}\\_{14}\\mathrm{C}\\_{7}$ éãïŒ$(19, 19)$ ãã $(20, 20)$ ãŸã§ã®ãã©ãæ¹ã¯ ${}\\_{2}\\mathrm{C}\\_{1}$ éãããïŒããã«æ±ããçµè·¯ã®åæ°ã¯å
šéšã§\r\n$${}\\_{4}\\mathrm{C}\\_{2} \\times {}\\_{14}\\mathrm{C}\\_{7} \\times {}\\_{2}\\mathrm{C}\\_{1} = \\mathbf{41184}$$\r\n\r\nåã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/6549"
}
] | ã$xy$ å¹³é¢ã«ãããŠïŒ$x$ 座æšããã³ $y$ 座æšããšãã«**çŽ æ°**ã§ãããããªç¹ãã**ãããæ Œåç¹**ããšãã¶ããšã«ããŸãïŒ\
ãç¹ $P$ ãã¯ãã $xy$ å¹³é¢ã®åç¹ã«ãããŸãïŒãã®ç¹ $P$ ã«å¯ŸãïŒä»¥äžã® $2$ çš®é¡ã®ç§»åããããã $20$ åãã€é©åœãªé åºã§çµã¿ããããŠïŒç¹ $(20, 20)$ ãŸã§è³ãçµè·¯ãèããŸãïŒ
- ç¹ $(x, y)$ ã«ãããšãïŒããããç¹ $(x + 1, y)$ ãžçŽé²ããïŒ
- ç¹ $(x, y)$ ã«ãããšãïŒããããç¹ $(x, y + 1)$ ãžçŽé²ããïŒ
ç¹ $P$ ã®çµè·¯ãšããŠãããããã®ã§ãã£ãŠïŒãããæ Œåç¹ãã¡ããã© $15$ åçµç±ãããã®ã¯å
šéšã§ããã€ãããŸããïŒ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/6446 | C | OMC150(C) | 300 | 142 | 205 | [
{
"content": "ã蟺 $AB, CD$ ã®äžç¹ããããã $M, N$ ãšãïŒ$PM = x, PN = y$ ãšããïŒãã®ãšã\r\n$$ \\angle BMP = \\angle PNC = 90^{\\circ},\\quad \\angle MBP = \\dfrac{1}{2} \\angle CPD = \\angle NPC$$\r\nã§ããããïŒäºè§çžçã«ããäžè§åœ¢ $BMP$ ãš $PNC$ ã¯çžäŒŒã§ããïŒãã£ãŠ\r\n$$xy = BM \\cdot CN = 72 \\tag{1}$$\r\nãæºããïŒããã§ïŒ\r\n$$\\angle APB + \\angle CPD = \\angle APB + \\angle PAB + \\angle PBA = 180^\\circ$$\r\nã§ããããïŒ\r\n$$\\angle BPC + \\angle DPA = 360^\\circ - (\\angle APB + \\angle CPD) = 180^\\circ$$\r\nãåããïŒããã§ïŒäžå¹³æ¹ã®å®çãã\r\n$$AP = BP = \\sqrt{x^2 + 64},\\quad CP = DP = \\sqrt{y^2 + 81}$$\r\nã§ããããïŒ$\\angle BPC = \\theta$ ãšãããšïŒäœåŒŠå®çãã\r\n$$\\begin{aligned}\r\n17^2 &= BP^2 + CP^2 - 2BP\\cdot CP\\cos\\theta = 145+x^2+y^2-2\\cos\\theta\\sqrt{(x^2+64)(y^2+81)}\\\\\\\\\r\n19^2 &= DP^2 + AP^2 + 2DP\\cdot AP\\cos\\theta = 145+x^2+y^2+2\\cos\\theta\\sqrt{(x^2+64)(y^2+81)}\r\n\\end{aligned}$$\r\nã§ããããïŒäžã®åŒãšäžã®åŒã足ãåãããããšã§\r\n$$x^2 + y^2 = 180 \\tag{2}$$\r\nãšãªãïŒåŒ $(1), (2)$ ãã $(x, y) = (6, 12), (12, 6)$ ãåŸããïŒæ¡ä»¶ãæºããã®ã¯\r\n- $AP = BP = 10ïŒCP = DP = 15$\r\n- $AP = BP = 4 \\sqrt{13}ïŒCP = DP = 3 \\sqrt{13}$\r\n\r\nã® $2$ ã€ã®ã±ãŒã¹ã«éãããïŒå®éã©ã¡ãã®ã±ãŒã¹ãå®çŸãå¯èœã§ããïŒä»¥äžã«ããæ±ããå€ã¯ $\\bf{308}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/6446"
}
] | $$AB = 16, \quad BC = 17, \quad CD = 18, \quad DA = 19$$
ãªãåžåè§åœ¢ $ABCD$ ã®å
éšã«ç¹ $P$ ããšã£ããšããïŒ
$$AP = BP,\quad CP = DP,\quad 2 \angle ABP = \angle CPD$$
ãæãç«ã¡ãŸããïŒãã®ãšãïŒ$AP^2$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/6420 | D | OMC150(D) | 400 | 84 | 131 | [
{
"content": "ãç«æ¹äœã®åããåãé¢ $3$ çµã«å¯ŸãïŒããããã®çµã§é¢ã«å²ãåœãŠãæ°ã®çµã¿åããã $(a, b), (c, d), (e, f)$ ãšããïŒäžè¬æ§ã倱ããã« $a + b \\leq c + d \\leq e + f$ïŒ$a \\lt b$ïŒ$c \\lt d$ïŒ$e \\lt f$ ãšä»®å®ããïŒ\\\r\nããã¹ãŠã®é¢ã»èŸºã»é ç¹ã«å²ãåœãŠããã $26$ åã®æ°ã®ç·åã¯\r\n\r\n$$(a + b + 1)(c + d + 1)(e + f + 1) - 1$$\r\nãšè¡šãããšãã§ããïŒããã«ïŒ\r\n\r\n$$(a + b + 1)(c + d + 1)(e + f + 1) = 1155$$\r\nãæºããå¿
èŠãããïŒ$26$ æ°ãçžç°ãªããšããæ¡ä»¶ããïŒ$a, c, e$ ã¯ãããã $1$ ãå€ã«ãšãããšãã§ããªãïŒãã£ãŠïŒ\r\n$$a + b + 1 \\geq 2 + 3 + 1 = 6$$\r\n\r\nã§ããïŒ$1155$ ã $6$ 以äžã®æŽæ° $3$ ã€ã®ç©ã®åœ¢ã§è¡šãæ¹æ³ã¯ $1155 = 7 \\times 11 \\times 15$ ãããªãïŒãããã\r\n$$a + b = 6ïŒc + d = 10ïŒe + f = 14$$\r\nãåŸãïŒ$a, b, c, d, e, f$ ã $1$ ãå«ãŸãã«çžç°ãªããããªçµ $(a, b, c, d, e, f)$ ã¯ïŒ\r\n$$(2, 4, 3, 7, 5, 9)ïŒ(2, 4, 3, 7, 6, 8)$$\r\n\r\nã® $2$ ã€ã«éãããïŒ$(a, b, c, d, e, f) = (2, 4, 3, 7, 6, 8)$ ã®å Žå㯠$ac = e = 6$ ãšãªãäžé©ã§ããïŒäžæ¹ã§ $(a, b, c, d, e, f) = (2, 4, 3, 7, 5, 9)$ ã®å Žåã¯æ¡ä»¶ãã¿ããããšã確èªãã§ããïŒãã®ãšã\r\n$$S = ace + bdf = 30 + 252 = \\mathbf{282}$$\r\nã§ããïŒããã解çãã¹ãå€ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/6420"
}
] | ãç«æ¹äœã®åé¢ã« $1$ ã€ãã€æ£æŽæ°ãå²ãåœãŠïŒãã®ããã§ããã«ãã¹ãŠã®èŸºããã³é ç¹ã«ã以äžã®ã«ãŒã«ã§æ°ãå²ãåœãŠãŸãïŒ
- å蟺ã«å¯ŸãïŒããã蟺ã«ã〠$2$ é¢ã«å²ãåœãŠããã $2$ æ°ã®ç©ãå²ãåœãŠãïŒ
- åé ç¹ã«å¯ŸãïŒãããé ç¹ã«ã〠$3$ é¢ã«å²ãåœãŠããã $3$ æ°ã®ç©ãå²ãåœãŠãïŒ
ããã®ããã«ãã¹ãŠã®é¢ã»èŸºã»é ç¹ã«æ°ãå²ãåœãŠããšããïŒå²ãåœãŠãããèš $26$ åã®æ°ã¯çžç°ãªã£ãŠããïŒããã«ãã® $26$ æ°ãåèšãããš $1154$ ãšãªããŸããïŒ\
ããã®ãšãïŒé ç¹ã«å²ãåœãŠã $8$ æ°ã®ãã¡ïŒæ倧ã®ãã®ãšæå°ã®ãã®ã®åã $S$ ãšããŸãïŒ$S$ ãšããŠããããå€ã®ç·åã解çããŠãã ããïŒ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/6893 | E | OMC150(E) | 400 | 104 | 144 | [
{
"content": "ãæ°å $\\\\{a_n \\\\}$ ã®å
¬å·®ã $d$ ãšãããšïŒ$a_{1066} = a_{676} + 390d = 1$ ãæãç«ã¡ïŒãŸãïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{n=1}^{1351} {a_n}^2 &= \\sum_{i=-675}^{675} (a_{676} + di)^2 = 1351 {a_{676}}^2 + 2 d^2 \\sum_{i=1}^{675} i^2 \\\\\\\\\r\n&= 1351 {a_{676}}^2 + 2 d^2 \\cdot \\frac{675 \\cdot 676 \\cdot 1351}{6} \\\\\\\\\r\n&= 1351({a_{676}}^2 + (390d)^2) = 1111\r\n\\end{aligned}\r\n$$\r\n\r\nããïŒ${a_{676}}^2 + (390d)^2 = \\dfrac{1111}{1351}$ ãåŸãïŒãã£ãŠïŒ\r\n$$a_{676} \\cdot 390d = \\frac{(a_{676} + 390d)^2 - ({a_{676}}^2 + (390d)^2)}{2} = \\frac{120}{1351}$$\r\n\r\nãåŸãïŒããã§ïŒ$x$ ã«ã€ããŠã® $2$ 次æ¹çšåŒ\r\n$$x^2 - x + \\frac{120}{1351} = 0$$\r\n\r\nãèãããšïŒãã®æ¹çšåŒã¯çžç°ãªã $2$ ã€ã®å®æ°è§£ããã¡ïŒãã® $2$ 解ã $\\alpha, \\beta$ ãšãããšãïŒä»¥äž $2$ ã€ã®ã±ãŒã¹ãããåŸãïŒ\r\n- $a_{676} = \\alpha$ ã〠$390d = \\beta$\r\n- $a_{676} = \\beta$ ã〠$390d = \\alpha$\r\n\r\nãããã£ãŠïŒ$a_{806} = a_{676} + 130d$ ã®ãšãåŸãå€ã¯ $\\alpha + \\dfrac{\\beta}{3}, \\beta + \\dfrac{\\alpha}{3}$ ã® $2$ ã€ã§ããããšãåããïŒä»¥äžããïŒæ±ããç·ç©ã¯\r\n$$\\bigg( \\alpha + \\frac{\\beta}{3} \\bigg)\\bigg( \\beta + \\frac{\\alpha}{3} \\bigg) = \\frac{4}{9} \\alpha \\beta + \\frac{1}{3} (\\alpha + \\beta)^2 = \\frac{4}{9} \\cdot \\frac{120}{1351} + \\frac{1}{3} = \\frac{1511}{4053}$$\r\n\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\mathbf{5564}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/6893"
}
] | ãçå·®æ°å $\\{ a_n \\}\_{n=1,2,\ldots}$ ã以äžã® $2$ åŒãã¿ãããšãïŒ$a_{806}$ ããšãããå€ã®**ç·ç©**ã¯äºãã«çŽ ãªæ£æŽæ° $p, q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§ïŒ$p + q$ ã®å€ã解çããŠãã ããïŒ
$${a_1}^2+{a_2}^2+\cdots+{a_{1351}}^2 = 1111, \quad a_{1066} = 1$$ |
OMC150 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc150/tasks/5973 | F | OMC150(F) | 500 | 52 | 94 | [
{
"content": "ãäžããããå³åœ¢ã¯ã©ã®é ç¹ãã¡ããã© $3$ æ¬ã®èŸºãšã€ãªãã£ãŠãããšããããšã«æ³šç®ããïŒãããšåé¡ã®æ¡ä»¶ãæºããå¡ãæ¹ãæœãããšãïŒã©ã®é ç¹ãè²ãå¡ãããŠããªã蟺㚠$0$ æ¬ãŸã㯠$2$ æ¬ã€ãªããç¶æ
ãšãªãïŒã€ãŸãå¡ãããŠããªã蟺ã«ãã£ãŠéè·¯ãæ§æãããããšãåããïŒãã£ãŠïŒ$12$ æ¬ã®èŸºãéžã³ïŒäºãã«èŸºãå
±æããªã $1$ å以äžã®éè·¯ãäœãæ¹æ³ãäœéããã調ã¹ãã°ããïŒ\\\r\nã$36$ æ¬ã®èŸºã®ãã¡ïŒå³åœ¢ã®å€åŽã®é åã«è§Šãã $12$ æ¬ã**å€èŸº**ïŒåäºè§åœ¢ã®é åã«è§Šãã $12$ æ¬ã**å
蟺**ïŒæ®ãã® $12$ æ¬ã**æ¥èŸº**ãšåŒã¶ããšã«ããïŒïŒæ¬¡ã®å³ã§ïŒå€èŸºã»å
蟺ã»æ¥èŸºãããããæ©è²ã»æ°Žè²ã»ç°è²ã§ç€ºãïŒïŒ\r\n\r\n\r\n**Case 1.**ãã©ã®éè·¯ãåäºè§åœ¢ã®é åãå²ãŸãªããšã\\\r\nãéè·¯ã«å²ãŸããåè§åœ¢ã®é åã®åæ°ã $m$ïŒãã®ãã¡èŸºãå
±æãã $2$ ã€çµã®åæ°ã $n$ ãšãããšãïŒ$4m - 2n = 12$ ãæãç«ã€ïŒ$m \\gt n$ ã§ããããšã«æ³šæããã° $(m, n) = (3, 0), (4, 2), (5, 4)$ ãåŸãããïŒ\\\r\nã$(m, n) = (3, 0)$ ã®å Žåã¯é£æ¥ããªãåè§åœ¢ã®é åã $3$ ã€éžã¹ã°ããïŒéžã°ããåè§åœ¢ã®ãã¡ $1$ ã€ãåºå®ãããšïŒæ®ãã® $2$ ã€ã®éžã³æ¹ã¯ ${}\\_{8}\\mathrm{C}\\_{2} = 28$ éãã§ããããšãåããïŒåºå®ããåè§åœ¢ $12$ éãã«å¯Ÿãéžã³æ¹ããã¹ãŠåæãããšïŒæ¡ä»¶ãæºããéžã³æ¹ããããã $3$ åãã€æ°ããããããšã«ãªãã®ã§ïŒçµå±ãã®ã±ãŒã¹ã§ã®å
šäœã®éžã³æ¹ã¯ $28 \\times 12 \\div 3 = 112$ éãã§ããïŒ\\\r\nã$(m, n) = (4, 2)$ ã®å Žå㯠$2$ ç®æé£æ¥ããããã«åè§åœ¢ã®é åã $4$ ã€éžã¹ã°ããïŒé£æ¥ã«ããé£ç¶ããåè§åœ¢ã®åæ°ã®å
蚳㯠$1, 3$ ãŸã㯠$2, 2$ ã§ããïŒåè
㯠$12 \\times 7 = 84$ éãïŒåŸè
㯠$12 \\times 7 \\div 2 = 42$ éãããããšãåããïŒ\\\r\nã$(m, n) = (5, 4)$ ã®å Žåã¯é£ç¶ã§é£æ¥ãã $5$ ã€ã®åè§åœ¢ãéžã¹ã°ããïŒãã®æ¹æ³ã¯ $12$ éãã§ããïŒ\r\n\r\n**Case 2.**ãããéè·¯ãåäºè§åœ¢ã®é åãå²ããšã\\\r\nãåäºè§åœ¢ã®é åãå²ãéè·¯ã¯å€èŸºãšå
蟺ãåãã㊠$12$ æ¬å¿
èŠã§ããïŒãã®ããšããæ¡ä»¶ãæºããã®ã¯ïŒå€èŸºãã¹ãŠã䜿ãå Žåãšå
蟺ãã¹ãŠã䜿ãå Žåã® $2$ éãã®ã¿ã§ããããšãåããïŒ\r\n\r\nã以äžããïŒæ¡ä»¶ãæºãã蟺ã®å¡ãæ¹ã¯å
šéšã§\r\n$$112 + 84 + 42 + 12 + 2 = \\mathbf{252}$$\r\néãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc150/editorial/5973"
}
] | ãå³ã®ãããªïŒ$24$ åã®é ç¹ãšïŒé ç¹å士ãã€ãªã $36$ æ¬ã®èŸºãããªãå³åœ¢ãèããŸãïŒããããã¡ããã© $24$ æ¬ã®èŸºãéžãã§èµ€è²ã«å¡ããšãïŒã©ã®é ç¹ãèµ€è²ã§å¡ããã蟺ãšå¥æ°æ¬ã€ãªãããããªæ¹æ³ã¯å
šéšã§äœéããããŸããïŒ\
ããã ãïŒå転ãå転ã«ãã£ãŠäžèŽããå¡ãæ¹ãåºå¥ããŠæ°ãããã®ãšããŸãïŒ
 |
SOMC002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc002/tasks/3237 | A | SOMC002(A) | 100 | 117 | 131 | [
{
"content": "ãæ±ããå€ã $m$ ãšããïŒé£ç¶ãã $3$ æŽæ°ãæžã蟌ããªãããšããïŒæ¬¡ãæãç«ã€ããšããããïŒ\r\n$$m\\geq 1+2+4+5+7+8=27.$$\r\nããšãã°ïŒ$5$ çªç®ã«å°ããæ°ãåç¬ã§èããã° $7$ 以äžã§ãããšãããïŒããããè©äŸ¡ãç¬ç«ã«ãã¹ãŠè¶³ãåãããããšã§åŸãããïŒ\\\r\nãéã« $1$ ãš $2$ïŒ$4$ ãš $5$ïŒ$7$ ãš $8$ ããããã察é¢ã«æžãããšãæ¡ä»¶ã¯ã¿ããããããïŒ$m=\\textbf{27}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc002/editorial/3237"
}
] | ãç«æ¹äœã®åé¢ã«ïŒæ¬¡ãã¿ããããã«**çžç°ãªã**æ£ã®æŽæ°ã $1$ ã€ãã€æžã蟌ã¿ãŸãïŒ
- 蟺ãå
±æããã©ã® $2$ é¢ã«ã€ããŠãïŒããããã«æžãããæ°ã®å·®ïŒã®çµ¶å¯Ÿå€ïŒã¯ $1$ ã§ãªãïŒ
åé¢ã«æžãããæ°ã®ç·åãšããŠããããæå°ã®å€ãæ±ããŠãã ããïŒ |
SOMC002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc002/tasks/2096 | B | SOMC002(B) | 200 | 93 | 116 | [
{
"content": "$$(a,b,c,d)=(1,1,1,1),~ (2,1,1,1),~ (1,2,1,1)$$\r\nãå°ããæ¹ããé ã« $3$ ã€ã®å€ãäžããïŒå
·äœçã«ã¯ïŒãããã $26,29,31$ ã§ããïŒãŸãïŒ\r\n$$(a,b,c,d)=(3,1,1,1),~ (1,1,2,1)$$\r\nã§ãããã $32,33$ ãåŸãããïŒ$N$ ãåŸããããªãã° $N+3$ ãåŸãããããšããïŒæ±ããç·åã¯\r\n$$1+2+\\cdots+25+27+28+30= \\mathbf {410}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc002/editorial/2096"
}
] | ãïŒçžç°ãªããšã¯éããªãïŒæ£ã®æŽæ° $a,b,c,d $ ãçšããŠ
$$3a+5b+7c+11d$$
ãšè¡šãããšã®**ã§ããªã**æ£ã®æŽæ°ã®ç·åãæ±ããŠãã ããïŒ |
SOMC002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc002/tasks/3515 | C | SOMC002(C) | 300 | 31 | 48 | [
{
"content": "ã$2$ åã®å
±éå
æ¥ç·ã $m$ ãšãïŒ$\\ell$ ãš $m$ ã®äº€ç¹ã $R$ ãšããïŒãã®ãšãïŒ \r\n$$\r\nP_1R=PR=P_2R\r\n$$ \r\nã§ããããïŒäžè§åœ¢ $PP_1P_2$ ã«æ³šç®ããããšã§ $\\angle{P_1PP_2}=90^\\circ$ ããããïŒãããã£ãŠïŒç·å $P_1Q_1$ ã¯å $C_1$ ã®çŽåŸïŒç·å $P_2Q_2$ ã¯å $C_2$ ã®çŽåŸã§ããïŒãŸãïŒæ¥åŒŠå®çã«ãã \r\n$$\r\n\\angle{PP_1P_2}=\\angle{PQ_1P_1},ã \\angle{PP_2P_1}=\\angle{PQ_2P_2}\r\n$$\r\nã§ããããïŒäžè§åœ¢ $P_1P_2Q_2$ïŒ$Q_1P_1P_2$ïŒ$Q_1PP_1$ïŒ$P_2PQ_2$ ã¯ãã¹ãŠçžäŒŒã§ããïŒç¹ã« $P_1P_2=48$ ã«ããïŒãããã®äžè§åœ¢ã®èŸºã®é·ãã®æ¯ã¯ $3:4:5$ ã§ããããïŒ\r\n$$\r\nPQ_1+PQ_2=\\frac{36 \\cdot 3}{5}+ \\frac{64\\cdot 4}{5}=\\frac{364}{5}\r\n$$ \r\nã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{369}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc002/editorial/3515"
}
] | ãããããååŸ $18,~ 32$ ã®å $C_1,~ C_2$ ãããïŒãããã¯ç¹ $P$ ã§å€æ¥ããŠããŸãïŒ$2$ åã®å
±éå€æ¥ç·ã®äžã€ã $\ell$ ãšãïŒ$\ell$ ãš $C_1, ~ C_2$ ã®æ¥ç¹ããããã $P_1,~ P_2$ ãšããŸãïŒããã«ïŒçŽç· $PP_2$ ãš $C_1$ ã®äº€ç¹ã®ãã¡ $P$ ã§ãªãæ¹ã $Q_1$ïŒçŽç· $PP_1$ ãš å $C_2$ ã®äº€ç¹ã®ãã¡ $P$ ã§ãªãæ¹ã $Q_2$ ãšãããšãïŒ$PQ_1+PQ_2$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ããïŒ |
SOMC002 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc002/tasks/4810 | D | SOMC002(D) | 300 | 24 | 50 | [
{
"content": "ã$B_1$ ããé ã«éžæããŠããããšãèãããšïŒããæç¹ã§ãã§ã«éžã°ããé ç¹ã¯ãã¹ãŠé£ç¶ããŠããããšããããïŒäºã€ç®ã®æ¡ä»¶ããã£ããç¡èŠããã°ïŒ$B_1$ ããŸã $10$ éãïŒãã以é㯠$B_9$ ãŸã§ãããã $2$ éããã€ã®éžæãå¯èœã§ããïŒ\\\r\nãããŠïŒäºã€ç®ã®æ¡ä»¶ãã察è§ç·ã«ãããç·åã $4$ æ¬ããšèªã¿æ¿ããïŒ$B_1B_2$ ãš $B_9B_{10}$ ã¯å¯Ÿè§ç·ãšãªãåŸãªãããšã«æ³šæããïŒ$B_3$ ãã $B_9$ ãŸã§ãéžã¶ãšãïŒ$2$ éãã®ãã¡äžæ¹ã蟺ãïŒããäžæ¹ã察è§ç·ãçã¿åºãããïŒä»¥äžã«ããæ±ããç·æ°ã¯ $10Ã2Ã{}_7\\mathrm{C}_4=\\mathbf{700}$ éãã§ããããšããããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc002/editorial/4810"
}
] | ãæ£åè§åœ¢ $A_1A_2\cdots A_{10}$ ããããŸãïŒ$10$ åã®é ç¹ $A_1,A_2,\ldots,A_{10}$ ã®äžŠã¹æ¿ã $B_1,B_2,\ldots,B_{10}$ ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ããšãã«ã¿ãããã®ã¯äœéããããŸããïŒ
- ç·å $B_1B_2,B_2B_3,\ldots,B_9B_{10}$ ã¯ïŒã©ã®äºã€ãïŒç«¯ç¹ãé€ããŠïŒäº€ãããªãïŒ
- ç·å $B_1B_2,B_2B_3,\ldots,B_9B_{10}$ ã®ãã¡ïŒæ£åè§åœ¢ã®èŸºã«ããããã®ã¯ã¡ããã© $5$ æ¬ã§ããïŒ |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/232 | A | OMC149(A) | 100 | 350 | 388 | [
{
"content": "ãã¡ãã©ãŠã¹ã®å®çã«ãã以äžãæãç«ã€ããïŒç¹ã« $CP:PD=28:15$ ã§ããïŒ\r\n$$\\dfrac{CP}{PD}\\times\\dfrac{DB}{BA}\\times\\dfrac{AE}{EC}=1.$$\r\nããã«ãã以äžãæãç«ã¡ïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{63}$ ã§ããïŒ\r\n$$\\triangle PBC=\\dfrac{28}{43}\\triangle BCD=\\dfrac{28}{43}\\times\\dfrac{5}{7}\\triangle ABC=\\dfrac{20}{43}\\triangle ABC.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/232"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AB,AC$ äžã«ããããç¹ $D,E$ ãããïŒ$AD:DB=2:5$ ããã³ $AE:EC=3:4$ ãã¿ãããŠããŸãïŒç·å $BE$ ãšç·å $CD$ ã®äº€ç¹ã $P$ ãšãããšãïŒäžè§åœ¢ $PBC$ ã®é¢ç©ã¯äžè§åœ¢ $ABC$ ã®é¢ç©ã®äœåã§ããïŒããã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/224 | B | OMC149(B) | 200 | 220 | 327 | [
{
"content": "ãæ£ã®å¥æ° $k$ ã«å¯ŸããŠïŒ$2k$ ã®æ£ã®çŽæ°ã®ç·åãå¥æ°ã§ããããšã¯ïŒ$k$ ãæ£ã®çŽæ°ãå¥æ°åãã€ããšãšåå€ã§ããïŒããã«ãã㯠$k$ ãå¹³æ¹æ°ã§ããããšãšåå€ã§ããïŒãã£ãŠïŒ$10^5$ 以äžã®å¥å¹³æ¹æ°ã®åæ°ãæ±ããçãã§ããïŒãã㯠$\\textbf{158}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/224"
}
] | ã$4$ ã§å²ãåããªã $1$ ä»¥äž $2\times10^5$ 以äžã®å¶æ°ã§ãã£ãŠïŒãã®æ£ã®çŽæ°ã®ç·åãå¥æ°ã§ãããããªãã®ã¯ããã€ãããŸããïŒ |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/1880 | C | OMC149(C) | 300 | 217 | 289 | [
{
"content": "ã$X=x-3,Y=y-7$ ãšçœ®æããã°ïŒæ±ãããã®ã¯ $X^2+Y^2+(z-6)^2=8$ ã®äžã§ã® $(XY-21)^2$ ã®æå°å€ã§ïŒ$z$ ãç¡èŠããã°æçžæ¡ä»¶ã $X^2+Y^2\\leq 8$ ã§ãããšããŠããïŒããã§ïŒ$XY$ å¹³é¢äžã®é å $X^2+Y^2\\leq 8$ ãšæ²ç· $XY=a$ ã®é¢ä¿ãèããããšã§ïŒ$XY$ ã®ãšãåŸãç¯å²ã¯ $-4$ ä»¥äž $4$ 以äžã§ããããšããããïŒæ±ããæå°å€ã¯ $(4 - 21)^2=\\textbf{289}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/1880"
}
] | ãå®æ° $x,y,z$ ã
$$x^2+y^2+z^2-6x-14y-12z+86=0$$
ãã¿ãããšãïŒ$(xy-7x-3y)^2$ ã®ãšãããæå°å€ãæ±ããŠãã ããïŒ |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/1743 | D | OMC149(D) | 300 | 133 | 214 | [
{
"content": "ãéäžã§äžåºŠã§ãè² ãè¶ããŠãã $8$ å $5$ æ $2$ åãšãªããããªå Žåã«ã€ããŠèãããšïŒåããŠè² ãè¶ããè©ŠåãŸã§ã®åæããã¹ãŠå
¥ãæ¿ããããšã§ïŒ$9$ å $4$ æ $2$ åãšãªããããªå Žåãäœãããšãã§ããïŒ\\\r\nãéã«ïŒ$9$ å $4$ æ $2$ åãšãªããããªå Žåã¯åããŠåã¡è¶ããè©Šåãååšããã®ã§ïŒãã以åã®è©Šåã®åæãå
šãŠå
¥ãæ¿ããããšã§äžåºŠã§ãè² ãè¶ããŠãã $8$ å $5$ æ $2$ åãšãªããããªå Žåãäœãããšãã§ããïŒ\\\r\nããã£ãŠïŒäžåºŠã§ãè² ãè¶ããŠãã $8$ å $5$ æ $2$ åãšãªããããªå Žåãš $9$ å $4$ æ $2$ åãšãªããããªå Žåã¯äžå¯Ÿäžã«å¯Ÿå¿ããïŒãããã£ãŠïŒåŒãåããè©Šåã®äœçœ®ãå
ã«åºå®ããã°ïŒ$\\mathrm{{}\\_{15}C\\_2\\times({}\\_{13}C\\_5-{}\\_{13}C\\_4)}=\\textbf{60060}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/1743"
}
] | ãããªããšOMCåãããã²ãŒã 㧠$15$ åç¶ããŠå¯ŸæŠããŸãïŒãã®ã²ãŒã ã«ã¯åŒãåãããããŸãïŒããªããéäžã§äžåºŠãè² ãè¶ããïŒã€ãŸãïŒè² ããåæ°ãåã£ãåæ°ãè¶
ããïŒïŒãã€ããªããæçµçã« $8$ å $5$ æ $2$ åãšãªããããªåæã®çµã¿åããã¯äœéããããŸããïŒ |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/297 | E | OMC149(E) | 300 | 94 | 130 | [
{
"content": "ãå $O$ ã«ããå転ãå®è¡ããïŒå³åœ¢ $A$ ããã®å転ã«ãã£ãŠç§»ãå
ã $A^\\prime$ ãšããïŒãã®ãšãïŒçŽç· $P^{\\prime}_3$ ãš $Q^{\\prime}_7$ ã®äº€ç¹ $X^\\prime$ ã«ã€ããŠïŒ${OX^{\\prime}}^2$ ãæ±ããã¹ãå€ã§ããïŒ\r\n\r\n\r\nã$O$ ããçŽç· $P_3^\\prime, Q_7^\\prime$ ã«äžãããåç·ã®è¶³ããããã $A,B$ ãšãããšïŒ$OA=8,OB=128$ ã§ããïŒãŸãïŒ$\\angle AX^\\prime B=60^\\circ$ ã§ããããïŒ$O$ ãéã $Q_7^\\prime$ ã«å¹³è¡ãªçŽç·ãš $P_3^\\prime$ ã®äº€ç¹ã $C$ïŒ$O$ ãéã $P_3^\\prime$ ã«å¹³è¡ãªçŽç·ãš $Q_7^\\prime$ ã®äº€ç¹ã $D$ ãšãããšïŒ\r\n$$BX^\\prime=BD+OC=\\dfrac{OB}{\\sqrt{3}}+\\dfrac{2OA}{\\sqrt{3}}=48\\sqrt{3}.$$\r\n以äžã«ããïŒ$OX^\\prime=\\sqrt{BO^2+{BX^\\prime}^2}=\\sqrt{\\textbf{23296}}\\\\,(=16\\sqrt{91})$ ãåŸãïŒ\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/297"
}
] | ãç¹ $O$ ãäžå¿ãšããååŸ $1$ ã®åã«ååŸ $\dfrac{1}{2}$ ã®å $P_0,Q_0,R_0$ ãå
æ¥ããŠããïŒãããã®äžå¿ã¯æ£äžè§åœ¢ããªããŸãïŒããã§äžå³ã®ããã«ïŒ $2$ å $P_0,Q_0$ ã® $2$ 亀ç¹ãçµã¶ç·åãçŽåŸãšããåã $R_1$ ãšããèŠé ã§ïŒæ£æŽæ° $n$ ã«å¯Ÿãå $P_n,Q_n,R_n$ ãåž°çŽçã«å®ããŸãïŒ$P_3$ ãš $Q_7$ ã®äº€ç¹ã®ãã¡ $O$ ã§ãªãæ¹ã $X$ ãšãããšãïŒ$\dfrac{1}{OX^2}$ ãæ±ããŠãã ããïŒ
 |
OMC149 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc149/tasks/3634 | F | OMC149(F) | 400 | 51 | 100 | [
{
"content": "ãæéåã®å®æ°ãããªãéå $A$ ã«å¯ŸãïŒ\r\n- $A$ ã®å¥æ°åã®èŠçŽ ãããªãéšåéåãéžãã§èŠçŽ ã®ç·ç©ãåããšãïŒéžã³æ¹å
šãŠã«ã€ããŠã®ç©ã®ç·åã $S(A)$ ãšããïŒ\r\n- $A$ ã®å¶æ°åã®èŠçŽ ãããªãéšåéåïŒç©ºéåã§ãè¯ãïŒãéžãã§èŠçŽ ã®ç·ç©ãåããšãïŒéžã³æ¹å
šãŠã«ã€ããŠã®ç©ã®ç·åã $T(A)$ ãšããïŒ\r\n\r\n----\r\n**è£é¡ïŒ**$A$ ãæéåã®å®æ°ãããªãéåãšãããšãïŒæ¬¡ã®äºåŒãæç«ããïŒ\r\n$$S(A) + T(A) = \\prod_{a\\in A}(a+1),\\qquad S(A) - T(A) = (-1)^{|A|+1}\\prod_{a\\in A}(a-1).$$\r\n**蚌æïŒ**äž¡åŒãšãïŒå³èŸºãå±éãããšïŒä»»æã® $A$ ã®éšåéåã«ã€ããŠãã®èŠçŽ ã®ç·ç©ã®é
ãäžåºŠãã€çŸããïŒãŸãïŒ$1$ åŒç®ã«ã€ããŠã¯ãããã®ä¿æ°ãã©ãã $1$ ã§ããïŒ$2$ åŒç®ã«ã€ããŠã¯å¶æ°åã®ç©ã®é
ã®ä¿æ°ã $-1$ïŒå¥æ°åã®ç©ã®é
ã®ä¿æ°ã $1$ ãšãªã£ãŠãããã瀺ãããïŒ\r\n----\r\n\r\nãæ±ãããã®ã¯ $S(\\\\{100,101,\\ldots,999\\\\})$ ã§ããïŒããã¯è£é¡ã«ãã次ã®ããã«èšç®ã§ããïŒ\r\n\r\n$$\\begin{aligned}\r\nS(\\\\{100,101,\\ldots,999\\\\})\r\n&= \\frac{101\\times102\\times\\cdots\\times1000}{2} + \\frac{(-1)^{901}\\times99\\times100\\times\\cdots\\times 998}{2}\\\\\\\\\r\n&= \\frac{1000!}{2\\times100!} - \\frac{998!}{2\\times98!}\\\\\\\\\r\n&= \\frac{494550\\times998!}{100!}.\r\n\\end{aligned}$$\r\n\r\nããã $3$ ã§å²ãåããåæ°ã¯ïŒLegendre ã®å®çã«ãã $\\mathbf{449}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc149/editorial/3634"
}
] | ã$3$ æ¡ã®ïŒïŒ$100$ ä»¥äž $999$ 以äžã®ïŒæ£æŽæ°ã®ãã¡ïŒçžç°ãªãå¥æ°åãéžãã§ãããã®ç©ããšããšãïŒéžã³æ¹ãã¹ãŠã«ã€ããŠã®ç©ã®ç·å㯠$3$ ã§æ倧äœåå²ãåããŸããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/4619 | A | OMC148(A) | 100 | 338 | 340 | [
{
"content": "ãè§ã®äºçåç·å®çã«ããïŒ\r\n$$AB:BD=AI:ID=AC:CD$$\r\nãæãç«ã¡ïŒãã㯠$(AB+AC):BC$ ã«çããã®ã§ïŒ$BC=4619Ã\\dfrac{1}{30+1}=\\textbf{149}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4619"
}
] | ãåšé·ã $4619$ ã§ããäžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®å
å¿ã $I$ ãšãïŒçŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãããšïŒ$AI:ID=30:1$ ãæç«ããŸããïŒãã®ãšãïŒèŸº $BC$ ã®é·ããæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/4902 | B | OMC148(B) | 100 | 353 | 358 | [
{
"content": "ãé解ã®æ¡ä»¶ã¯ $b^2=4ac$ ãšèšããããããïŒãããš $4a^2+c^2=b^2$ ãã $4a^2-4ac+c^2=(2a-c)^2=0$ïŒãã£ãŠ $a+c=12$ ããã³ $2a=c$ ã«ãã $(a,b,c)=(4,\\pm 8\\sqrt{2},8)$ ã§ããïŒæ±ããå€ã¯ $\\mathbf {131072}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4902"
}
] | ãå®æ° $a,b,c$ ã以äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$a\neq0, \quad a+c=12, \quad 4a^2+c^2=b^2.$$
$x$ ã® $2$ 次æ¹çšåŒ $ax^2+bx+c=0$ ãé解ããã€ãšãïŒ$(abc)^2$ ãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/4606 | C | OMC148(C) | 300 | 238 | 316 | [
{
"content": "ãå®æ° $a_k$, $a_{k+1}$ ã $a_k+\\dfrac{1}{a_k}=a_{k+1}+\\dfrac{1}{a_{k+1}}$ ãã¿ããããšã¯ïŒ$a_k=a_{k+1}$ ãŸã㯠$a_k=\\dfrac{1}{a_{k+1}}$ ã§ããããšãšåå€ã§ããïŒãã£ãŠ $a_1$ ãã $a_{3939}$ ã¯ãã¹ãŠ $a_1$ ãŸã㯠$\\dfrac{1}{a_1}$ ã§ããããïŒãã®ãã¡ $a_1$ ã®æ°ã $n$ åãšãããšïŒ$a_1=1$ ã®ãšã㯠$n$ ã¯ããã€ãšããŠãããïŒïŒ\r\n$$a_1n+ \\frac{3939-n}{a_1}=3939$$\r\nã§ããïŒãã㯠$(n(a_1+1)-3939)(a_1-1)=0$ ãšåå€ã§ããããïŒæ¡ä»¶ãã¿ãã $a_1$ 㯠$(3939ã®çŽæ°)-1$ ã§è¡šãããã®ã $1$ ã§ããïŒ$3939=3\\times13\\times101$ ããïŒ$3939$ ã®çŽæ°ã®åæ°ã¯ $2^3=8$ åïŒçŽæ°ã®ç·å㯠$4\\times14\\times102=5712$ ãªã®ã§ïŒæ±ããç·å㯠$5712-8+1=\\mathbf {5705}$ ãšãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4606"
}
] | ãæ£ã®å®æ°ãããªãæ°å $\\{a_n\\}\_{n=1,2,..3939}$ ã¯ïŒä»»æã® $1$ ä»¥äž $3938$ 以äžã®æŽæ° $k$ ã«ã€ããŠ
$$a_k+\dfrac{1}{a_k}=a_{k+1}+\dfrac{1}{a_{k+1}}$$
ãã¿ãããŸãïŒããã« $a_1+a_2+\cdots+a_{3939}=3939$ ã§ãããšãïŒ$a_1$ ãšããŠãããã**æ£ã®æŽæ°å€**ã®ç·åãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/5748 | D | OMC148(D) | 300 | 165 | 262 | [
{
"content": "ãäžè¬ã« $2022$ ã $N$ ã«çœ®ãããïŒç·ç©ã $3$ ã§å²ã£ãäœãã $1,2$ ã§ããçµããããã $X_N,Y_N$ åãããšããïŒ\\\r\nããã®ãšãïŒ$7, 13$ 㯠$3$ ã§å²ã£ãŠ $1$ äœãïŒ$2, 5, 11$ 㯠$3$ ã§å²ã£ãŠ $2$ äœãããšããïŒä»¥äžã®ããã«æŒžååŒãç«ãŠãããïŒ\r\n$$X_{N+1}=2X_N+3Y_N, \\quad Y_{N+1}=3X_N+2Y_N$$\r\n$X_1=2,Y_1=3$ ãšããããŠããã解ãã° $X_N=\\dfrac{5^N+(-1)^N}{2}$ ãšãªãïŒFermatã®å°å®çãã以äžã®ããã«èšç®ã§ããïŒ\r\n$$X_{2022} \\equiv \\dfrac{5^{2022}+1}{2} \\equiv \\dfrac{5^6+1}{2} \\equiv \\textbf{1762} \\pmod{2017}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748"
},
{
"content": "æ¡ä»¶ãæºããçµã®åæ°ã¯ïŒ$2, 5, 7, 11, 13$ ã®äžãã $2022$ åããããã®æ°ãéžã¶éžã³æ¹ã®ãã¡ïŒ$2, 5, 11$ ãåèšå¶æ°åéžã°ãããã®ã®æ°ã§ãã. ããã¯ïŒ$f(x)=(3x+2)^{2022}$ ã®å¶æ°æ¬¡ã®ä¿æ°ã®ç·åã«çããïŒä»¥äžã®ããã«æ±ãããã.\r\n$$\\dfrac{f(1)+f(-1)}{2}\\equiv \\dfrac{5^{2022}+(-1)^{2022}}{2}\\equiv \\dfrac{5^{2022}+1}{2}\\equiv \\dfrac{5^6+1}{2}\\equiv \\textbf{1762} \\pmod{2017}$$\r\n(ãã ãïŒfermatã®å°å®çãçšãã. )",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748/201"
},
{
"content": "ã$13$ 以äžã®çŽ æ°ã®ãã¡ïŒ$7,13$ 㯠$3$ ã§å²ã£ãŠ $1$ äœãïŒ$2,5,11$ 㯠$3$ ã§å²ã£ãŠ $2$ äœãã®ã§ïŒ$a_1,a_2,\\ldots,a_{2022}$ ã®ãã¡ïŒ$7,13$ ãåèšå¶æ°åïŒ$2,5,11$ ãåèšå¶æ°ååºçŸããã°ããïŒããããïŒ\r\n$$N = \\sum_{k=0}^{1011} {}\\_{2022}\\mathrm{C}\\_{2k} \\cdot 2^{2k} \\cdot 3^{2022-2k} $$\r\nãšæ±ããããïŒããã§ïŒæçåŒ\r\n$$\\frac{(x+y)^{2n} + (x-y)^{2n}}{2} = \\sum_{k=0}^{n} {}\\_{2n}\\mathrm{C}\\_{2k} x^{2k} y^{2n-2k}$$\r\nã« $x = 2 , y = 3 , n = 1011$ ã代å
¥ããããšã§\r\n$$N = \\frac{5^{2022} + (-1)^{2022}}{2} = \\frac{5^{2022} + 1}{2}$$\r\nãåŸãããïŒãã£ãŠïŒFermatã®å°å®çãçšããŠïŒæ±ãããã®ã¯ $\\mathbf{1762}$ ãšåããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5748/202"
}
] | ã$13$ 以äžã®çŽ æ°ã®çµ $(a_1, a_2, âŠ, a_{2022})$ ã§ãã£ãŠïŒ
$$\prod_{k=1}^{2022} a_k \equiv 1 \pmod 3$$
ãã¿ãããã®ã¯ $N$ åååšããã®ã§ïŒ$N$ ãçŽ æ° $2017$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/4190 | E | OMC148(E) | 500 | 34 | 86 | [
{
"content": "ã$F_1 = F_2 = 1$ ãã€ä»»æã®æŽæ° $n$ ã«å¯Ÿã㊠$F_{n+2} = F_{n+1} + F_{n}$ ãæºããããã«æ°å $\\\\{F_n\\\\}$ ãå®ãããšïŒ$$f(n,m) = (-1)^{n+m}F_{n-m-2} + F_{m+2}$$ ã§ããããšãåž°çŽçã«ç¢ºãããããïŒåŸã£ãŠïŒ$F_{-n} = (-1)^{n+1}F_{n}$ ã«æ°ãã€ããã°ïŒ\r\n$$(-1)^{a}F_{7880-a} + F_{a+2} = F_{3943} - F_{3939}$$\r\nãæºããæ£ã®æŽæ° $a$ ãæ±ããã°è¯ãããšãåããïŒ$a$ ã $3942$ 以äžãŸã㯠$3936$ 以äžã®ãšãïŒ\r\n$$|(-1)^aF_{7880-a} + F_{a+2}| \\ge |F_{a+2} - F_{|7880 - a|}| \\ge F_{3944} - F_{3938} \\gt F_{3943} - F_{3939}$$\r\nããäžé©ã§ããããïŒãã以å€ã®å Žåã«ã€ããŠããããèšç®ããããšã§ïŒé©ããã®ã¯ $a = 3938,3940,3941$ ã§ããããšãåããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{11819}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4190"
},
{
"content": "ãå
¬åŒè§£èª¬åæ§\r\n$$f(n,m)=(-1)^{n+m}F_{n-m-2}+F_{m+2}$$\r\nã§ãã. $x^2-x-1=0$ ã® $2$ 解ã, $\\alpha,\\beta$ ãšãããš, $n$ ãå¶æ°ã®ãšã, \r\n$$\r\n\\begin{aligned}\r\nf(n,m)&=(-1)^{n+m}\\frac{\\alpha^{n-m-2}-\\beta^{n-m-2}}{\\alpha-\\beta}+\\frac{\\alpha^{m+2}-\\beta^{m+2}}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{(-\\alpha)^{n-m-2}-(-\\beta)^{n-m-2}+\\alpha^{m+2}-\\beta^{m+2}}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{(-\\alpha)^n(-\\alpha)^{-m-2}-(-\\beta)^n(-\\beta)^{-m-2}+\\alpha^{m+2}-\\beta^{m+2}}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{\\alpha^n\\beta^{m+2}-\\beta^n\\alpha^{m+2}+\\alpha^{m+2}-\\beta^{m+2}}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{\\beta^{m+2}(\\alpha^{n}-1)-\\alpha^{m+2}(\\beta^{n}-1)}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{\\alpha^{n\\/2}\\beta^{m+2}(\\alpha^{n\\/2}-\\alpha^{-n\\/2})-\\beta^{n\\/2}\\alpha^{m+2}(\\beta^{n\\/2}-\\beta^{-n\\/2})}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{(-\\beta)^{-n\\/2}\\beta^{m+2}(\\alpha^{n\\/2}-(-\\beta)^{n\\/2})-(-\\alpha)^{-n\\/2}\\alpha^{m+2}(\\beta^{n\\/2}-(-\\alpha)^{n\\/2})}{\\alpha-\\beta}\\\\\\\\\r\n&=(-1)^{n\\/2}\\frac{\\beta^{m+2-(n\\/2)}(\\alpha^{n\\/2}-(-\\beta)^{n\\/2})-\\alpha^{m+2-(n\\/2)}(\\beta^{n\\/2}-(-\\alpha)^{n\\/2})}{\\alpha-\\beta}\\\\\\\\\r\n&=(-1)^{n\\/2}\\frac{\\beta^{m+2-(n\\/2)}(\\alpha^{n\\/2}-(-\\beta)^{n\\/2})+(-1)^{n\\/2}\\alpha^{m+2-(n\\/2)}(\\alpha^{n\\/2}-(-\\beta)^{n\\/2})}{\\alpha-\\beta}\\\\\\\\\r\n&=\\frac{(\\alpha^{m+2-(n\\/2)}+(-1)^{n\\/2}\\beta^{m+2-(n\\/2)})(\\alpha^{n\\/2}-(-\\beta)^{n\\/2})}{\\alpha-\\beta}\r\n\\end{aligned}\r\n$$\r\nãšãªã. ($n-m-2$ ãš $n+m$ ã®å¶å¥ãäžèŽããããš, $n$ ãå¶æ°ã§ããããšãš, $\\alpha\\beta=-1$ ãªã©ãçšãã.)\r\nãã£ãŠ, $f(7882,a)=f(4,3941)$ ã¯ä»¥äžã®ããã«å€åœ¢ã§ãã.\r\n$$\r\n\\begin{aligned}\r\nf(7882,a)&=f(4,3941)\\\\\\\\\r\n\\iff \\frac{(\\alpha^{a+2-(7882\\/2)}+(-1)^{7882\\/2}\\beta^{a+2-(7882\\/2)})(\\alpha^{7882\\/2}-(-\\beta)^{7882\\/2})}{\\alpha-\\beta}\r\n&=\\frac{(\\alpha^{3941+2-(4\\/2)}+(-1)^{4\\/2}\\beta^{3941+2-(4\\/2)})(\\alpha^{4\\/2}-(-\\beta)^{4\\/2})}{\\alpha-\\beta}\\\\\\\\\r\n\\iff\\frac{(\\alpha^{a-3939}-\\beta^{a-3939})(\\alpha^{3941}+\\beta^{3941})}{\\alpha-\\beta}&=\\frac{(\\alpha^{3941}+\\beta^{3941})(\\alpha^{2}-\\beta^{2})}{\\alpha-\\beta}\\\\\\\\\r\n\\iff\\frac{\\alpha^{a-3939}-\\beta^{a-3939}}{\\alpha-\\beta}&=\\frac{\\alpha^{2}-\\beta^{2}}{\\alpha-\\beta}\\\\\\\\\r\n\\iff F_{a-3939}&=F_{2}\\\\\\\\\r\n\\end{aligned}\r\n$$\r\nãã£ãŠ, $a-3939=-1,1,2$ ã§ãã, æ±ãã $a$ 㯠$3938,3940,3941$ ã§ãã.",
"text": "äžçåŒè©äŸ¡ã䜿ããªãæ¹æ³",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/4190/645"
}
] | ãæ£ã®æŽæ° $2$ ã€ã®çµã«å¯ŸããŠå®çŸ©ããæŽæ°å€ããšãé¢æ° $f$ ã¯ïŒä»»æã®æ£ã®æŽæ° $n, m$ ã«å¯ŸããŠä»¥äžãã¿ãããŸãïŒ
- $f(n, m) + f(n, m+1) = f(n, m+2)$
- $f(n,1) + 1 = f(n+1, 2)$
- $f(n,2) + 2 = f(n+1, 3)$
- $f(1,1) = f(1,2) = 1$
ãã®ãšãïŒ$f(7882,a) = f(4,3941)$ ãšãªãããæ£ã®æŽæ° $a$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC148 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc148/tasks/5909 | F | OMC148(F) | 500 | 11 | 54 | [
{
"content": "ãåè§åœ¢ $AXYP$ ã¯é·æ¹åœ¢ã§ããããšã«æ°ãã€ããã°ïŒ\r\n$$\\sin \\angle XIY=\\sin \\angle PYQ=\\sin \\angle PAQ$$\r\nã§ããã®ã§ïŒ$IX=4x, IY=5x, XY=3x$ ãšãããïŒãŸãïŒ$\\angle AIO=90^\\circ$ ã§ãããã $AI=IX=4x$ ã§ããïŒåŸã£ãŠïŒæ¹ã¹ãã®å®çãã\r\n$$QI=\\dfrac{AIÃIX}{IY}=\\dfrac{16x}{5}$$\r\nã§ããã®ã§ïŒ\r\n$$PI-QI=IY-QI=\\dfrac{9x}{5}=1$$\r\nããããïŒ$x=\\dfrac{5}{9}$ ã§ããïŒ\r\nããã§ïŒ$$PX=AY=\\sqrt{AX^2+XY^2}=\\sqrt{73}x$$ ã§ããïŒãŸãïŒ$BC$ ã®äžç¹ã $M$ ãšãããšïŒ$P, O, M, X$ ã¯åäžçŽç·äžã«ããããïŒ$XI^2=XB^2=XM\\times XP$ ã§ããïŒãããã£ãŠïŒäžè§åœ¢ $XIM$ ãš $XPI$ ã¯çžäŒŒã§ããããïŒ$$PI:IM=PX:IX=\\sqrt{73}:4.$$ ãã£ãŠïŒ$$IM=\\dfrac{4}{\\sqrt{73}}Ã5x=\\dfrac{20x}{\\sqrt{73}}$$ ãåŸãããïŒãŸãïŒ$$XM=\\dfrac{XI^2}{XP}=\\dfrac{16}{\\sqrt{73}}x$$ ã§ããïŒãããã£ãŠïŒ$$BM^2=PMÃMX=\\dfrac{57x}{\\sqrt{73}}Ã\\dfrac{16x}{\\sqrt{73}}=\\dfrac{912x^2}{73}$$ ã§ããããïŒäžç·å®çãã\r\n$$IB^2+IC^2=2(BM^2+IM^2)=\\dfrac{2624}{73}x^2=\\dfrac{2624}{73}Ã\\dfrac{25}{81}=\\dfrac{65600}{5913}$$\r\nãšãªãïŒãã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{71513}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5909"
},
{
"content": "ã$\\angle AIO = 90^\\circ$ ããã³åè§åœ¢ $AXYP$ ãé·æ¹åœ¢ã§ããããšãå©çšããŠ\r\n$$ IY = PI = 5x,\\qquad XY = 3x,\\qquad IX = AI = 4x $$\r\nãšããããšãããŸã§ã¯[å
¬åŒè§£èª¬](.\\/)ãšåãïŒããã« $IO = \\dfrac32\\\\,x$ ããïŒ$\\triangle ABC$ ã®å€æ¥åã®ååŸã $\\dfrac{\\sqrt{73}}2\\\\,x$ ã§ããããšãåããïŒãŸã $x = \\dfrac59$ ã¯ïŒå
¬åŒè§£èª¬ã®æ¹ã¹ãã«æ°ãä»ããªããŠãïŒæ±ããããšã¯ã§ããïŒ\r\n<details><summary>æ¹ã¹ãã䜿ããªãæ¹æ³<\\/summary>\r\n\r\nã$Q$ ãã $IO$ ã«äžããåç·ã®è¶³ã $H$ ãšããŠïŒ$\\triangle IXY$ ãš $\\triangle QHI$ ã®çžäŒŒãã\r\n$$\\begin{aligned}\r\n&\\frac{73}4\\\\,x^2 = OQ^2 = QH^2 + (HI + IO)^2 = \\left(\\frac45\\\\,QI\\right)^2 + \\left(\\frac35\\\\,QI + \\frac32\\\\,x\\right)^2 = QI^2 + \\frac95\\\\,x\\times QI + \\frac94\\\\,x^2\\\\\\\\\r\n&\\mathopen{}\\Longrightarrow\\\\;\\left(QI + 5x\\right)\\left(QI - \\frac{16}5\\\\,x\\right) = 0 \\qquad\\therefore 1 = PI - QI = 5x - \\frac{16}5\\\\, x = \\frac95\\\\, x\\\\;\\Longrightarrow\\\\; x = \\frac59.\r\n\\end{aligned}$$\r\n<\\/details>\r\n\r\nããã㊠$BX = CX = IX\\\\;(=4x)$ ãšãªãããšã¯æåäºå®ã§ïŒ$\\alpha \\coloneqq \\angle BXO = \\angle CXO,$ã$\\beta \\coloneqq \\angle IXO$ \r\nãšãããš\r\n$$ \\cos \\alpha = \\frac{BX\\/2}{OX} = \\frac4{\\sqrt{73}},\\qquad \\cos \\beta = \\frac{IX}{OX} = \\frac8{\\sqrt{73}},$$\r\n$$ \\begin{aligned}\r\nIB ^2 + IC^2\\\\!\\\\! &\\stackrel{\\phantom{ãã}}{=} \\left(2 \\times 4x \\sin\\frac{\\alpha - \\beta}2\\right)^2 + \\left(2 \\times 4x \\sin\\frac{\\alpha + \\beta}2\\right)^2 \\\\\\\\\r\n&\\stackrel{\\text{åè§}}{=}64x^2\\left(\\frac{1-\\cos(\\alpha - \\beta)}2 + \\frac{1-\\cos(\\alpha + \\beta)}2\\right) \\\\\\\\\r\n&\\stackrel{\\text{ç©å}}{=} 64x^2\\left(1 - \\cos \\alpha \\cos \\beta\\right) = 64 \\times \\left(\\frac59\\right)^2 \\left(1 - \\frac4{\\sqrt{73}} \\times \\frac8{\\sqrt{73}}\\right) = \\frac{65600}{5913}.\r\n\\end{aligned} $$\r\nããªãã¡çã㯠$\\bm{71513}$ïŒ",
"text": "äžè§é¢æ°",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5909/203"
},
{
"content": "ã$\\angle AIO=90^\\circ$ ãã $AX=2IX=2DX$ ã§ããïŒçŽç· $AX$ ãšçŽç· $BC$ ãšã®äº€ç¹ã $D$ ãšãããšïŒ$\\triangle ABX\\sim \\triangle BDX$ ãã $DX=2BX=2IX$ïŒã€ãŸã $D$ ã¯ç·å $IX$ ã®äžç¹ã§ããïŒãã£ãŠïŒ$I$ ããçŽç· $PX$ ãžäžããåç·ã®è¶³ã $H$ ãšãããšäžç·å®çãã\r\n$$IB^2+IC^2=2(IM^2+BM^2)=2(IM^2+BX^2-MX^2)=2(IX^2+IM^2-MH^2)=2(IX^2+IH^2)=2IX^2(1+\\cos^2\\angle APX)$$\r\nããããš $IX=\\dfrac{20}{9},\\cos \\angle APX=\\dfrac{3}{\\sqrt{73}}$ ããå€ãæ±ãŸãïŒ",
"text": "length chase?",
"url": "https://onlinemathcontest.com/contests/omc148/editorial/5909/762"
}
] | ãéè§äžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®å€æ¥åã $\Gamma$ïŒå
å¿ã $I$ïŒå€å¿ã $O$ ãšãïŒçŽç· $AI, AO$ ãš $\Gamma$ ã®äº€ç¹ããããã $X, Y(\neq A)$ ãšããŸã. ããã«ïŒçŽç· $XO, YI$ ãš $\Gamma$ ã®äº€ç¹ããããã $P(\neq X), Q(\neq Y)$ ãšãããšïŒä»¥äžãæç«ããŸããïŒ
$$\sin \angle PAQ=\dfrac{3}{5},\quad \angle AIO=90^\circ,\quad PI-QI=1.$$
ãã®ãšãïŒ$IB^2+IC^2$ ã®å€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ãæ±ããŠãã ããïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc147/tasks/229 | A | OMC147(A) | 100 | 413 | 428 | [
{
"content": "ãé äœãäžãã£ã人ã¯å¿
ãååšãïŒã〠$200$ 人以äžã§ããïŒ\\\r\nãéã«ïŒ$1$ æ¥ç®çµäºæç¹ã« $i$ äœã ã£ã人ã $A_i$ ãšããã°ïŒ$200$ 以äžã®æ£æŽæ° $n$ ã«å¯Ÿã $2$ æ¥ç®ã®æ瞟ã $1$ äœããé ã«\r\n$$A_{n+1},A_{n+2},\\cdots,A_{n+200},A_{1},A_{2},\\cdots,A_{n},A_{n+201},\\cdots,A_{400}$$\r\nã§ããå Žåãèããããšã§ïŒã¡ããã© $n$ 人ã®é äœãäžããç¶æ³ãåŸãããïŒ\\\r\nã以äžããïŒè§£çãã¹ãå€ã¯ $1+2+\\cdots+200=\\textbf{20100}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/229"
}
] | ãããã³ã³ãã¹ã㯠$2$ æ¥éãããªãïŒ$400$ 人ãåå ããŸããïŒ$1$ æ¥ç®çµäºæç¹ãš $2$ æ¥ç®çµäºæç¹ã®æ瞟ãæ¯èŒãããšãã«ïŒé äœã®äžãã£ã人ãã¡ããã© $200$ 人ãããšãïŒé äœã®äžãã£ã人ã®æ°ãšããŠããããå€ã®ç·åã解çããŠãã ããïŒ\
ããã ãïŒåæ¥çµäºæç¹ã§ $2$ 人以äžãåãé äœã«ãªãããšã¯ç¡ããã®ãšããŸãïŒ |
OMC147 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc147/tasks/223 | B | OMC147(B) | 200 | 325 | 359 | [
{
"content": "ã$D$ ã¯äžè§åœ¢ $ABE$ ã®å€å¿ã§ããããïŒ$BD=DE=EC=4$ ãåŸãïŒãã£ãŠïŒå¯Ÿç§°æ§ã«ãã $ADE$ ã¯æ£äžè§åœ¢ã§ããããšããããããïŒäžè§åœ¢ $ABC$ ã® $BC$ ãåºèŸºãšãããšãã®é«ã㯠$2\\sqrt{3}$ ã§ããïŒåŸã£ãŠïŒé¢ç©ã¯ \r\n$$12\\times2\\sqrt3\\div2=12\\sqrt{3}=\\sqrt{\\textbf{432}}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc147/editorial/223"
}
] | ã$AB=AC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ äžã® $2$ ç¹ $D,E$ ã
$$AD=BD=4,\quad CE=DE,\quad \angle BAE=90^\circ$$
ãã¿ãããšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
Subsets and Splits