contest
stringclasses 315
values | contest_url
stringclasses 1
value | url
stringlengths 53
65
| alphabet
stringclasses 20
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
467
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
SOMC006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc006/tasks/3663 | A | SOMC006(A) | 200 | 80 | 90 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ã«ããïŒä»¥äžãåŸãïŒ\r\n$$1=(\\beta-\\alpha)^2=(\\alpha+\\beta)^2-4\\alpha\\beta=a^2-4b=a^2-4a-4.$$\r\nããã«ãã $(a,b)=(-1,0),(5,6)$ ãåŸãããããïŒ$f(x)$ ãšããŠããåŸããã®ã¯\r\n$$x^2+x, \\quad x^2-5x+6$$\r\nã§ããïŒãããã $x=10$ ã代å
¥ããã°ïŒè§£çãã¹ãå€ã¯ $110+56=\\textbf{166}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc006/editorial/3663"
}
] | ãå®æ° $a,b$ ã«ã€ã㊠$f(x)=x^2-ax+b$ ãšããŸãïŒæ¹çšåŒ $f(x)=0$ 㯠$2$ ã€ã®å®æ°è§£ $x=\alpha,\beta$ ããã¡ïŒ
$$b-a=\lvert \alpha-\beta\rvert=1$$
ãæãç«ã¡ãŸããïŒ$f(10)$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ãã. |
SOMC006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc006/tasks/6438 | B | SOMC006(B) | 200 | 76 | 87 | [
{
"content": "ãæ¡ä»¶ã¯ $p_1\\lt p_3\\lt \\cdots\\lt p_{15}$ ã〠$p_2\\lt p_4\\lt \\cdots\\ p_{14}$ ãšèšãæããããšãã§ããããïŒ$\\\\{p_1,p_3,\\ldots,p_{15}\\\\}$ ã«çŸãã $8$ æ°ã決ããã°ïŒäžŠã¹æ¿ãã¯äžæã«å®ãŸãïŒãã£ãŠïŒæ±ããå Žåã®æ°ã¯ ${}\\_{15}\\mathrm{C}\\_{8} = \\textbf{6435}$ éãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc006/editorial/6438"
}
] | ã$(1,2,3\ldots,15)$ ã®äžŠã³æ¿ã $(p_{1}, p_{2}, p_3, \ldots, p_{15})$ ã§ãã£ãŠïŒä»¥äžãã¿ãããã®ã¯ããã€ãããŸããïŒ
$$p_{1}p_{2} \lt p_{2}p_{3} \lt p_{3}p_{4} \lt\cdots\lt p_{14}p_{15}$$ |
SOMC006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc006/tasks/2435 | C | SOMC006(C) | 200 | 28 | 37 | [
{
"content": "ãåè§åœ¢ $BPDQ$ ããã³ $ABPR$ ã¯åã«å
æ¥ãïŒ\r\n$$\\angle ADQ=\\angle BPQ=\\angle BPA=\\angle QRA$$\r\nã«ããåè§åœ¢ $AQDR$ ãåã«å
æ¥ããïŒãã£ãŠïŒæ¹ã¹ãã®å®çã«ãã\r\n$$2AB^2=AB\\times BD=BQ\\times BR=840$$\r\nã§ããïŒè§£çãã¹ãå€ã¯ $2+105=\\textbf{107}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc006/editorial/2435"
}
] | ãåäžçŽç·äžã«ãã®é ã§çééã«äžŠãã§ããç¹ $A,B,C,D$ ããããŸãïŒãŸãïŒç¹ $P,Q,R$ ã次ã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
- $P ~ (\neq B)$ 㯠ç·å $AC$ ã®åçŽäºçåç·äžã«ïŒ$Q ~ (\neq P)$ ã¯çŽç· $PC$ äžã«ïŒ$R ~ (\neq B)$ ã¯çŽç· $BQ$ äžã«ããïŒ
- $DQ\perp PQ$ïŒ$AR \perp PR$ïŒ
ããã« $BQ=24,BR=35$ ã§ãããšãïŒç·å $AB$ ã®é·ãã¯æ£æŽæ° $a$ ãšå¹³æ¹å åãæããªãæ£æŽæ° $b$ ã«ãã£ãŠ $a \sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
SOMC006 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc006/tasks/4467 | D | SOMC006(D) | 200 | 53 | 64 | [
{
"content": "ã$\\\\{a_n\\\\}$ ã«ã¯ïŒ$2$ 以äžã®æŽæ° $m$ ãçšã㊠$m^2 + 1$ ãšè¡šããæ£æŽæ°ã¯ç»å ŽããªããïŒãã以å€ã®æ£æŽæ°ã¯ãã¹ãŠäžåºŠãã€ç»å ŽããããšããããïŒãã£ãŠïŒ$44^2\\lt 2000\\lt 45^2$ ã«ããïŒ$a_{2000}=\\mathbf{2044}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc006/editorial/4467"
}
] | ã以äžã§å®ããããæ°å $\\{a_n\\}$ ã«ã€ããŠïŒ$a_{2000}$ ãæ±ããŠãã ããïŒ
$$a_1=1,\quad a_{n+1}=\lfloor \sqrt{a_n}\rfloor+n \quad (n=1,2,\ldots)$$ |
SOMC005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc005/tasks/2071 | A | SOMC005(A) | 200 | 63 | 92 | [
{
"content": "ãæ£æŽæ° $x,y$ ããããã $2$ ã§ã¡ããã© $a,b$ åå²ãåãããšãïŒ$x-y$ ã $2$ ã§å²ãåããåæ°ã¯\r\n$$\\begin{cases} a & (a\\lt b) \\\\\\\\ a+1\\ ä»¥äž & (a=b) \\\\\\\\ b & (a\\gt b) \\end{cases}$$\r\nã§ããïŒ$x=6^5,y=m$ ã®å Žåãèããããšã§ïŒæ¡ä»¶ã¯ $m$ ã $2$ ã§å²ããåæ°ã $4$ å以äžã§ããïŒããªãã¡ $m$ ã $32$ ã®åæ°ã§ãªãããšãšåå€ã§ããïŒæ±ããåæ°ã¯ $2^4\\times 3^5-[2^4\\times 3^5\\/32]=\\textbf{3767}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc005/editorial/2071"
}
] | ã$m+n=6^5$ ã〠$m\leq n$ ãªãæ£æŽæ°ã®çµ $(m,n)$ ã§ãã£ãŠïŒ$m,n$ ããããã $2$ ã§å²ããæ倧ã®åæ°ãçãããã®ã¯ããã€ãããŸããïŒ |
SOMC005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc005/tasks/4056 | B | SOMC005(B) | 200 | 45 | 74 | [
{
"content": "ãæåŸã«åºãç®ã $6$ ã§ãããšãïŒ$1\\to 2\\ \\to 4\\to 6\\to 6$ ã®ããã«ïŒãµã€ã³ãã®ç®ã¯ç矩å調ã«å¢å ããããã§æåŸã« $6$ ãäºåºŠåºãŠçµããïŒç¹ã«ïŒãµã€ã³ããæ¯ãåæ°ã¯é«ã
$7$ åã§ããïŒåæ°ã«ãã£ãŠå Žååãããããšã§ç¢ºçã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\Biggl(\\sum_{k=0}^{5} \\dfrac{ {}\\_{5}\\mathrm{C}\\_k }{6^k}\\Biggr) \\times \\dfrac{1}{6}\\times\\dfrac{1}{6}= \\frac{7^5}{6^7}=\\frac{16807}{279936}.$$\r\nãã ãïŒç·åã $(7\\/6)^5$ ã«çããããšã¯ïŒäºé
å®çã«ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{296743}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc005/editorial/4056"
}
] | ã $1$ ãã $6$ ãŸã§ã®ç®ãç確çã§åºããµã€ã³ãããããŸãïŒãŸãæåã«ãµã€ã³ããäžåºŠæ¯ãïŒãã®åŸã¯çŽåã«åºãç®ä»¥äžã®ç®ãåºããŸã§ãµã€ã³ããæ¯ãç¶ããŸãïŒããšãã°ïŒãµã€ã³ãã®ç®ã®æšç§»ãšããŠã¯ $1\to 3\to 5\to 2$ ã $4\to 4$ ãããããŸãïŒãã®ãšãïŒæåŸã«åºãç®ã $6$ ãšãªã確çãæ±ããŠãã ããïŒãã ãæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ãåçããŠãã ããïŒ |
SOMC005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc005/tasks/2454 | C | SOMC005(C) | 300 | 55 | 72 | [
{
"content": "$$f(x)=(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)(x^{64}+1)(x^{128}+1)$$\r\nã§ããïŒ$\\rm{mod}\\ 4$ ã§èãããšæåã®äºã€ä»¥å€ã®å æ°ã¯ãã¹ãŠ $2$ ã§é«ã
$1$ åããå²ãåããªãïŒãŸãïŒ$x-1, x+1$ ã®ãã¡å°ãªããšãäžæ¹ã¯ $2$ ã§é«ã
$1$ åããå²ãåããïŒããäžæ¹ã¯ $2^9 \\le 1001\\lt 2^{10}$ ãã $2$ ã§é«ã
$9$ åããå²ãåããªãïŒãã£ãŠïŒ$f(2), f(3), \\ldots, f(1000)$ ã¯ãã¹ãŠ $2$ ã§é«ã
$17$ åããå²ãåããªãïŒ\\\r\nãäžæ¹ã§ $f(511)$ 㯠$2$ 㧠$17$ åå²ãåããã®ã§ïŒ$\\textbf{17}$ ãæ±ããå€ã§ããïŒ\\\r\nããªãäžè¬ã«**LTEã®è£é¡**ã«ããïŒ$n$ ãå¶æ°ã§ $x$ ãš $y$ ã®å¶å¥ãäžèŽãããšãïŒä»¥äžãæãç«ã€ïŒ\r\n$$v_2(x^n-y^n) = v_2(x+y) + v_2(x-y) + v_2(n) - 1. $$\r\nããã¯äžèšãšåæ§ã«ããŠèšŒæå¯èœã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc005/editorial/2454"
}
] | ãé¢æ° $f$ ã $f(x)=x^{256}-1$ ã§å®ããŸãïŒãã®ãšãïŒ$f(2), f(3), \ldots, f(1000)$ ããããã $2$ ã§å²ãåããåæ°ã®ãã¡ïŒæ倧ã®ãã®ãæ±ããŠãã ããïŒ |
SOMC005 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc005/tasks/1898 | D | SOMC005(D) | 300 | 24 | 51 | [
{
"content": "ãæ¡ä»¶ãã¿ããå³åœ¢ã¯äžæã«äœå³å¯èœã§ããããšã«çæããïŒ\\\r\n ã$ABD$ ãæ£äžè§åœ¢ãšãªããããªç¹ $D$ ã $AB$ ã«é¢ã㊠$C$ ã®å察åŽã«ãšãã°ïŒããã¯äžè§åœ¢ $APB$ ã®å€å¿ã§ããïŒ$\\angle BDP=20^\\circ$ ãåŸãïŒããã§ïŒçŽç· $DP$ äžã« $BD=BC^\\prime$ ãªãç¹ $C^\\prime(\\neq D)$ ããšãã°ïŒ$\\angle ABC^\\prime=80^\\circ$ ã«ãã $\\angle AC^\\prime P=30^\\circ$ ã§ããïŒããªãã¡ $C^\\prime$ 㯠$C$ ã«äžèŽããïŒä»¥äžã«ããïŒ$\\angle BPC=\\textbf{100}^\\circ$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc005/editorial/1898"
},
{
"content": "$BP$ ã«å¯Ÿã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $Aâ$ ãšãããšïŒ$AP=AâP, \\angle APAâ=360^\\circ -2\\angle APB=60^\\circ$ ãªã®ã§ïŒ$APAâ$ ã¯æ£äžè§åœ¢ïŒ$\\angle AAâP=2\\angle ACP$ ãªã®ã§ïŒ$Aâ$ ã¯äžè§åœ¢ $ACP$ ã®å€å¿ã§ãã $AAâ=CAâ, \\triangle BAAâ\\equiv \\triangle BCAâ$ ïŒ$\\angle ABC=2\\angle ABAâ=80^\\circ$ ãã $\\angle BCP= \\angle BCA -\\angle PCA=20^\\circ, \\angle BPC=\\mathbf{100}^\\circ$ ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc005/editorial/1898/269"
}
] | ã$AB=BC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã®å
éšã«ç¹ $P$ ããšããšïŒ
$$\angle PAB=10^\circ,\quad â PBA=20^\circ,\quad \angle PCA=30^\circ$$
ãæç«ããŸããïŒãã®ãšãïŒè§ $BPC$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ããïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/3012 | A | OMC173(A) | 100 | 360 | 375 | [
{
"content": "ã$0$ ãã $9$ ã®ãã¡ïŒæ¡ã«éžã°ããªã $2$ æ°ã«ã€ã㊠$a\\gt b$ ãšãããšãïŒæ¡ä»¶ã¯ $a+b=9$ ãšåå€ã§ããïŒããã« $a$ ãæå°ã«ããŠåæ¡ã倧ããé ã«äžŠã¹ãã°ããïŒãããã£ãŠïŒæ±ããå€ã¯ $\\textbf{98763210}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/3012"
}
] | ã $9$ ã§å²ãåãïŒãã€ïŒåé²æ³è¡šèšã§ïŒåæ¡ãçžç°ãªã $8$ æ¡ã®æ£ã®æŽæ°ã®ãã¡ïŒæ倧ã®ãã®ãæ±ããŠãã ããïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/6803 | B | OMC173(B) | 100 | 284 | 355 | [
{
"content": "ã人ãé ç¹ãšãïŒäºãã«æå·®ããŠãããã¢ã®éã«èŸºã匵ãããšã§ç¡åã°ã©ããæ§æãããšïŒãã¹ãŠã®é ç¹ã®æ¬¡æ°ã $2$ ãšãªãïŒãã®ãããªã°ã©ãã¯ïŒããã€ãã®é·ã $3$ 以äžã®ãµã€ã¯ã«ã«å解ãããããïŒä»åã¯é·ã $5$ ã®ãµã€ã¯ã«ãã¡ããã©äžã€ã§ããããšã«ãªãïŒãã£ãŠïŒæ±ããå€ã¯é·ã $5$ ã®æ°ç é åã®åæ°ã ããïŒ$\\textbf{12}$ éã.\r\n<details><summary>ãç¡åã°ã©ãããšã¯<\\/summary>\r\nãç¡åã°ã©ãããšã¯ïŒããã€ãã®é ç¹ã®éå $V$ ãšïŒããã€ãã® $2$ ã€ã®é ç¹ã®éãçµã¶èŸºã®éå $E$ ã®çµ $(V,E)$ ã®ããšã§ããïŒæ¬è§£èª¬ã§ã¯ïŒ$5$ 人ã®çåŸã®éåã $V$ ãšãïŒãäºãã«æãå·®ãåã£ãŠãã $2$ 人çµã®éåã $E$ ãšããŠããïŒ\r\n<\\/details>\r\n<details><summary>ã次æ°ããšã¯<\\/summary>\r\nç¡åã°ã©ãã«ãããããé ç¹ã®ã次æ°ããšã¯ïŒãã®é ç¹ã端ç¹ã«æã€èŸºã®æ°ã®ããšãæãïŒæ¬åã®å ŽåïŒã©ã®çåŸã«ã€ããŠãïŒã¡ããã© $2$ 人ãæå·®ããŠããïŒæãå·®ããçžæããã¯æãå·®ãè¿ãããŠããããšãä¿èšŒãããŠããã®ã§ïŒå
šãŠã®çåŸã«ã€ããŠæ¬¡æ°ã¯ $2$ ã§ããïŒ\r\n<\\/details>\r\n<details><summary>ããµã€ã¯ã«ããšã¯<\\/summary>\r\nç¡åã°ã©ãã«ãããããµã€ã¯ã«ããšã¯ïŒçžç°ãªã $3$ ã€ä»¥äžã®é ç¹ $V_1, V_2, \\ldots,V_k$ ã§ãã£ãŠïŒ$V_1$ ãš $V_2$ïŒ$V_2$ ãš $V_3$ïŒ$\\ldots$ ïŒ$V_k$ ãš $V_1$ ãçµã¶èŸºãããããšãæãïŒãªãïŒ$E$ ã«å€ééåãèš±ãå Žåã¯ïŒçžç°ãªã $2$ ã€ã®é ç¹ã§ãã£ãŠïŒãã®éã« $2$ æ¬ä»¥äžã®èŸºãååšãããã®ããµã€ã¯ã«ã§ããïŒ\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/6803"
}
] | ã$ 5 $ 人ã®çåŸãããïŒãããããäžæã«èªå以å€ã® $ 2 $ 人ãæå·®ãããšãïŒã©ã® $ 2 $ 人ã®çåŸã«ã€ããŠãäºãã«æå·®ããŠãããïŒäºãã«æå·®ããŠããªããã®ã©ã¡ããã§ããïŒãã®ãããªæå·®ãæ¹ã¯äœéããããŸããïŒãã ãïŒããããã®çåŸã¯åºå¥ããŸãïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/6804 | C | OMC173(C) | 200 | 171 | 287 | [
{
"content": "ãå¶æ°å士ã¯ãã¢ã«ã§ããªãããšããïŒããããã®å¶æ°ã«å¯ŸããŠå¥æ°ã $1$ ã€ãã€å²ãåœãŠãããšãèããã°ããïŒ$\\mathrm{mod}\\ 6$ ã§èãããš\r\n- $ 0 $ ããã¢ã«ã§ããã®ã¯ $1$ ã $5$\r\n- $ 2 $ ããã¢ã«ã§ããã®ã¯ $3$ ã $5$\r\n- $ 4 $ ããã¢ã«ã§ããã®ã¯ $1$ ã $3$\r\n\r\nã§ããïŒ$6$ ãš $12$ ã®ããããã®ãã¢ã®çžæã $\\mathrm{mod}\\ 6$ ãäžèŽãããšãïŒæ®ãã®å¶æ°ã«ã€ããŠãçžæ $\\mathrm{mod}\\ 6$ ã確å®ããããïŒãã®ãããªãã®ã¯ $2\\cdot 8=16$ éãããïŒããã§ãªããšãïŒ$8\\times 8=64$ éãããããšãåããããïŒæ±ããå€ã¯ $\\mathbf{80}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/6804"
}
] | ã$ 1 $ ä»¥äž $ 12 $ 以äžã®æ£æŽæ°ã $2$ æ°ã〠$6$ çµã®ãã¢ã«åãããšãïŒã©ã®ãã¢ã $2$ æ°ã®åã $ 2 $ ã§ã $ 3 $ ã§ãå²ãåããŸããã§ããïŒãã®ãããªåãæ¹ã®åæ°ãæ±ããŠãã ããïŒãã ãïŒãã¢å士ãïŒåããã¢ã® $2$ æ°ã®é åºã¯åºå¥ããªããã®ãšããŸãïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/6649 | D | OMC173(D) | 200 | 241 | 299 | [
{
"content": "ãäžåŒã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$2^{8a}=b^{a-1}$$\r\nããã«ããïŒæ£ã®æŽæ° $c$ ãååšã㊠$b=2^c$ãšè¡šãïŒ$8a=c(a-1)$ ãšãªãã®ã§ïŒ\r\n$\\dfrac{8a}{a-1}$ ã¯æŽæ°ã§ããïŒãŸãïŒ$a$ ãš $a-1$ ã¯äºãã«çŽ ãªã®ã§ïŒ$a=2, 3, 5, 9$ ã§ããïŒããããã®å Žåã«ã€ã㊠$b=2^{16}, 2^{12}, 2^{10}, 2^{9}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\mathbf{71187}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/6649"
}
] | ãæ£æŽæ°ã®çµ $(a, b)$ ã§ãã£ãŠä»¥äžã®çåŒ
$$a+\log_{256} b=a\log_{256} b$$
ãã¿ãããã®ãã¹ãŠã«ã€ããŠïŒ$a+b$ ã®ç·åãæ±ããŠãã ããïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/4786 | E | OMC173(E) | 300 | 115 | 194 | [
{
"content": "ã $CD$ ãš $AB$ ã®äº€ç¹ã $P$ ãšãããš, äžè§åœ¢ $ABC$ ãšäžè§åœ¢ $ACP$ ã¯çžäŒŒã§ãã. ãã£ãŠ\r\n$$\\frac{AP}{AB}=\\frac{AP}{AC}\\times\\frac{AC}{AB}=\\bigg(\\frac{AC}{AB}\\bigg)^2=\\frac{16}{25}$$\r\nã§ãã. åŸã£ãŠ, $AP:BP=16:9$ ã§ãããã, Menelausã®å®çãã\r\n$$\\frac{AD}{DM}=\\frac{AP}{BP}\\times \\frac{BC}{CM}=\\frac{16}{9}\\times 2=\\frac{32}{9}$$\r\nã§ãã. ãã£ãŠ, \r\n$$AD=3\\times \\dfrac{32}{32+9}={\\dfrac{96}{41}}$$\r\nã§ãã. ç¹ã«, 解çãã¹ãå€ã¯ $\\bf{137}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/4786"
},
{
"content": "ã$AM$ ã®å»¶é·äžã« $AM=ME$ ãªãç¹ $E$ ããšãïŒ$ABEC$ ã¯å¹³è¡å蟺圢ãšãªãïŒ$\\angle{ACD}=\\angle{ABM}=\\angle{ECM}$ ãªã®ã§ïŒ$CD$ ã¯äžè§åœ¢ $CAE$ ã®é¡äŒŒäžç·ïŒãã£ãŠïŒé¡äŒŒäžç·ã®æ§è³ªããïŒ$AD:DE={CA}^2:{CE}^2=16:25$ ãªã®ã§ïŒ$AD=6\\times\\dfrac{16}{41}=\\dfrac{96}{41}$ ã§ããïŒç¹ã«ïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{137}$ ãšãªãïŒ",
"text": "é¡äŒŒäžç·",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/4786/267"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $BC$ ã®äžç¹ã $M$ ãšãããšãïŒ
$$AB=5,\quad AC=4,\quad AM=3$$
ãæç«ããŸããïŒ
ç·å $AM$ äžã« $\angle ABC=\angle ACD$ ãªãç¹ $D$ ããšã£ããšãïŒ$AD$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§ $a+b$ ã解çããŠãã ããïŒ |
OMC173 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc173/tasks/6802 | F | OMC173(F) | 400 | 53 | 121 | [
{
"content": "ãçµè«ããè¿°ã¹ããšïŒ$ f(N) $ ã¯ïŒ$2 ^ {t} - 1 \\leq N$ ãã¿ããæ倧㮠$ t $ ã«å¯ŸããŠïŒ$ a = 2 ^ {t} - 1$ ã®ãšãã®å€ã§ããïŒ\\\r\nãéè² æŽæ° $ x $ ã®äºé²æ³ã§ã®è¡šèšã«ãããŠïŒäžãã $ i $ æ¡ç®ã®æ¡ã $ x_i $ ãšãããšïŒä»¥äžãæãç«ã€ããšããããïŒ\r\n\r\n- $ a_{i} $ ãš $ b_{i} $ ã¯ä»»æã«äº€æå¯èœïŒç¹ã« $a_i = 0$ ãªãã° $b_i=0$ ãšããŠããïŒ\r\n- äžåŒãæ倧å€ããšã $ a,b $ ã«å¯ŸãïŒ$ a_{i+1} = b_{i+1} = 1$ ã〠$ a_i = b_i = 0 $ ãªã $ i $ ã¯ååšããªãïŒ\\\r\nïŒ$a_{i+1}=1, ~ b_{i+1}=0, ~ a_i=b_i=1$ ã«çœ®ãæããã°ããïŒ \r\n\r\nãããèžãŸããã°ïŒäžåŒãæ倧ãšãªãçµ $(a,b)$ ã®ãã¡ïŒ$ a = 2 ^ {t} -1 $ ãªããã®ãååšããïŒããããæ±ããå€ã¯ïŒ\r\n$$\\begin{aligned} \r\n\\sum_{i=1}^{7} \\bigl( i \\cdot 2^{i} + i \\cdot 2^{i-1} \\bigr) + 8 + 9 & = \\sum_{i=1}^{7} 3 \\cdot i \\cdot 2^{i-1} + 17 \\\\\\\\\r\n& = 3 \\cdot 769 + 17 \\\\\\\\\r\n& = \\mathbf{2324}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/6802"
},
{
"content": "ã挞ååŒãç«ãŠãæ¹æ³ã§ãïŒ\r\n***\r\n$$ S_N = \\sum_{n=1}^{N} f(n) $$ \r\nãšããïŒ\\\r\nã$n$ ãèªç¶æ°ãšããŠä»¥äžãåŸãããšãåããïŒ\r\n- $ f(2n) = f(n-1) + 2 $ïŒ\r\n- $ f(2n + 1) = f(n) + 1 $ïŒ\r\n\r\nããããã $ f(2n + 1) + f(2n + 2) = 2 f(n) + 3$ ãæç«ããããïŒ\r\n$$ S_{256} = \\sum_{n=1}^{256} f(n) = \\sum_{n=0}^{127} (2 f(n) + 3) = 2 S_{127} + 384$$\r\nãšãªãïŒãã®äœæ¥ãç¹°ãè¿ãè¡ãããšã§ïŒ$S_{256} = \\mathbf{2324} $ ãšæ±ãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc173/editorial/6802/268"
}
] | ãåã $N$ ã§ããéè² æŽæ° $a,b$ ã«å¯ŸããŠïŒ$\text{popcount}(a)+\text{popcount}(b)$ ã®ãšãããæ倧å€ã $f(N)$ ãšãããŸãïŒãã®ãšãïŒ ä»¥äžã®å€ãæ±ããŠãã ããïŒ
$$ f(1)+f(2)+f(3)+\cdots+f(255)+f(256). $$
ããã ãïŒ$\text{popcount}(x)$ 㧠$ x $ ãäºé²æ³ã§è¡šãããšãã®åæ¡ã®åãè¡šããŸãïŒ |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/2008 | A | OMC172(A) | 200 | 262 | 327 | [
{
"content": "ã$6^5$ ã®æ£ã®çŽæ° $k$ ããããã«ã€ããŠïŒãã®å¯äžãèãããš $6^5\\/k$ åã§ããïŒããªãã¡ïŒæ±ããç·åã¯çµå± $6^5$ ã®æ£ã®çŽæ°ã®ç·åã«çããããšãåãã${}^*$ïŒãã㯠$(2^0+2^1+\\cdots+2^5)(3^0+3^1+\\cdots+3^5)=\\textbf{22932}$ ã§ããïŒ\r\n\r\n\r\n<details>\r\n<summary>$*$ ã®è£è¶³<\\/summary>\r\n\r\nã$*$ ã«ã€ããŠïŒ$d$ ã $6^5$ ã®çŽæ°ã®ãšã $\\dfrac{6^5}{d}$ ã $6^5$ ã®çŽæ°ãšãªãããšããïŒæ±ããã¹ãå€ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\n\\sum_{n=1}^{6^5} f(n) &= \\sum_{n=1}^{6^5} \\\\# \\left\\\\{ d \\in \\mathbb N \\mathrel{}\\middle|\\mathrel{} \\frac{n}{d}, \\frac{6^5}{d} \\in \\mathbb N \\right\\\\} \\\\\\\\\r\n&= \\\\# \\left\\\\{ (d, n) \\in \\mathbb N^2 \\mathrel{}\\middle|\\mathrel{} \\frac{n}{d}, \\frac{6^5}{d} \\in \\mathbb N, 1 \\le n \\le 6^5 \\right\\\\} \\\\\\\\\r\n&= \\sum_{d 㯠6^5 ã®çŽæ°} \\\\# \\left\\\\{ n \\mathrel{}\\middle|\\mathrel{} \\frac{n}{d} \\in \\mathbb N, 1 \\le n \\le 6^5 \\right\\\\} \\\\\\\\\r\n&= \\sum_{d 㯠6^5 ã®çŽæ°} \\frac{6^5}{d} \\\\\\\\\r\n\\end{aligned}\r\n$$\r\nããã§ïŒ$6^5$ ã®ãã¹ãŠã®çŽæ°ãå°ããé ã« $d_1, d_2, \\ldots, d_{36}$ ãšããã°ïŒä»»æã® $1 \\le i \\le 36$ ã«ã€ã㊠$d_i d_{37-i} = 6^5$ ãæãç«ã€ã®ã§ïŒ \r\n$$ \\sum_{d 㯠6^5 ã®çŽæ°} \\frac{6^5}{d} = \\sum_{i=1}^{36} \\frac{6^5}{d_i} = \\sum_{i=1}^{36} d_{37-i} = \\sum_{i=1}^{36} d_i $$\r\nãšãªãïŒçµå±æ±ããã¹ã㯠$6^5$ ã®çŽæ°ã®ç·åãšãªãïŒ\r\n\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/2008"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$n$ ãš $6^5$ ã®æ£ã®å
¬çŽæ°ã®åæ°ã $f(n)$ ãšãããŸãïŒãã®ãšãïŒä»¥äžã®ç·åãæ±ããŠãã ããïŒ
$$f(1)+f(2)+f(3)+\cdots+f(6^5)$$ |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/6408 | B | OMC172(B) | 200 | 191 | 231 | [
{
"content": "ã$3$ ç¹ $P,Q,R$ 㯠$y=x^2-\\sqrt{5}x-2\\sqrt{6}+1$ ãš $xy=0$ ãåæã«æºãã $3$ ç¹ã§ããïŒ\r\n$$\\begin{aligned}\r\n&(y=x^2-\\sqrt{5}x-2\\sqrt{6}+1)\\land(xy=0) \\\\\\\\\r\n \\implies & (y^2=-(2\\sqrt{6}-1)y)\\land(y=x^2-\\sqrt{5}x-2\\sqrt{6}+1)\\\\\\\\\r\n \\implies & x^2+y^2-\\sqrt{5}x+(2\\sqrt{6}-2)y-2\\sqrt{6}+1=0 \\\\\\\\\r\n\\iff & \\Bigl(x-\\dfrac{\\sqrt{5}}{2}\\Bigr)^2+(y+\\sqrt{6}-1)^2=\\dfrac{29}{4}\r\n\\end{aligned}$$\r\nããïŒ$3$ ç¹ $P,Q,R$ ã¯å $\\Bigl(x-\\dfrac{\\sqrt{5}}{2}\\Bigr)^2+(y+\\sqrt{6}-1)^2=\\dfrac{29}{4}$ äžã«ããïŒãã®åã®é¢ç©ã¯ $\\dfrac{29}{4}\\pi$ ã§ããããïŒæ±ããå€ã¯ $29+4=\\mathbf{33}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/6408"
},
{
"content": "ãå
¬åŒè§£èª¬ã®åŒå€åœ¢ã¯ãšã¬ã¬ã³ãã§çŽ æŽãããã§ããïŒå°éãªèšç®ã«ãã£ãŠäžå¿ãæ±ããããšãå¯èœã§ãïŒ\r\n\r\nãå€æ¥åã®äžå¿ã¯ïŒç·å $PQ$ ã®åçŽäºçåç·äžã«ããããïŒ$x$ 座æšã¯ããã«ãããïŒããã§ïŒå€æ¥åã®äžå¿ã®åº§æšã $A\\left( \\dfrac{\\sqrt{5}}{2}ïŒt \\right)$ãšããïŒ$PQ$ ã®é·ã㯠$\\sqrt{1+8\\sqrt{6}}$ ã§ããïŒãããçšããã° $ AP^2=\\dfrac{1+8\\sqrt{6}}{4}+t^2$ïŒ\\\r\nãäžæ¹ïŒ$AR^2=( \\dfrac{\\sqrt{5}}{2} )^2+(t+2\\sqrt{6}-1)^2$ ã§ããïŒ$AP^2ïŒAR^2$ ãã $t$ ãæ±ããã°ïŒåã®äžå¿ã®åº§æšïŒããã«ã¯åã®ååŸïŒãæ±ãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/6408/260"
},
{
"content": "$y$ 軞ãšã®ããäžã€ã®äº€ç¹ãèããæ¹éïŒ\\\r\n\\\r\n$R$ ã®åº§æšã¯ $(0,-2\\sqrt{6} +1)$ ã§ããïŒ\\\r\nãŸãïŒåç¹ã $O$ ãšãããšïŒè§£ãšä¿æ°ã®é¢ä¿ãèã㊠$OP\\cdot OQ=OR$ ã§ããïŒç¹ $O$ ã¯äžè§åœ¢ $PQR$ ã®å€æ¥åã®å
éšã«ããã®ã§ïŒæ¹ã¹ãã®å®çããäžè§åœ¢ $PQR$ ã®å€æ¥åã¯ç¹ $(0,1)$ ãéã(ãã®ç¹ã $S$ ãšãã)ïŒ\\\r\næŸç©ç·ã®è»žã®äœçœ®ãèããã° $PQ$ ã®äžç¹ã® $x$ 座æšã¯ $\\frac{\\sqrt{5}}{2}$ ã§ããïŒ$RS$ ã®äžç¹ã® $y$ 座æšã¯ $-\\sqrt{6}+1$ ã ããïŒåã®äžå¿ã®åº§æšã¯ $(\\frac{\\sqrt{5}}{2},-\\sqrt{6}+1)$ ïŒãã®ç¹ãšç¹ $S$ ãšã®è·é¢ã®äºä¹ã¯ $\\frac{5}{4}+6=\\frac{29}{4}$ ãªã®ã§å€æ¥åã®é¢ç©ã¯$\\displaystyle \\frac{29}{4}\\pi$ ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/6408/266"
}
] | ã$2$ 次é¢æ° $y=x^2-\sqrt{5}x-2\sqrt{6}+1$ ã® $x$ 軞ãšã® $2$ 亀ç¹ïŒ$y$ 軞ãšã®äº€ç¹ããããã $P,Q,R$ ãšãããšãïŒäžè§åœ¢ $PQR$ ã®å€æ¥åã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}\pi$ ãšè¡šãããã®ã§ïŒ $a+b$ ã®å€ã解çããŠãã ãã. |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/3566 | C | OMC172(C) | 300 | 171 | 240 | [
{
"content": "ã$BD$ ã«ã€ã㊠$C$ ãšå¯Ÿç§°ãªç¹ã $E$ ãšãããšïŒ$BCDE$ ã¯ã²ã圢ã§ããããïŒ\r\n$$\\angle ABE=(\\angle ABC+\\angle BCD)-(\\angle EBC+\\angle BCD)=240^{\\circ}-180^{\\circ}=60^{\\circ}$$\r\nãåŸãïŒãã£ãŠäžè§åœ¢ $ABE$ ã¯æ£äžè§åœ¢ã§ããããïŒ\r\n$$\\angle DAE=\\dfrac{1}{2}(180^{\\circ}-116.55^{\\circ}-60^{\\circ})=\\dfrac{69}{40}^{\\circ},\\quad \\angle DAB=60^{\\circ}-\\dfrac{69}{40}^{\\circ}=\\dfrac{2331}{40}^{\\circ}$$\r\nã§ããïŒç¹ã«æ±ããã¹ãå€ã¯ $\\textbf{2371}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/3566"
},
{
"content": "ãç¹ $B$ ãäžå¿ã§ååŸ $BA$ ã®åïŒç¹ $C$ ãäžå¿ã§ååŸ $CD$ ã®åãèããïŒãããã®äº€ç¹ã®ãã¡äžæ¹ã¯ç·å $AD$ äžã«ååšãïŒä»æ¹ã®ç¹ $P$ ã¯ïŒ$\\triangle{PAD}$ ãæ£äžè§åœ¢ãšãªããããªç¹ã§ããïŒ\\\r\nããã®ããšãçšããã°ïŒå®¹æã«è§£ãããšãã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/3566/258"
},
{
"content": "ã$AB=CD,\\angle BAD+\\angle ADC=120^\\circ$ ããïŒåè§åœ¢$ABCD$ã®åœ¢ãããã¿ã€ã«ã$6$ã€ã€ãªãããšäžå³ã®ããã«æ£å
è§åœ¢ã$2$ã€ã§ããããšãåãããŸãïŒããšã¯ç蟺ã®æ¡ä»¶ãçšããŠè¯ãæãã«è§åºŠè¿œè·¡ïŒåŸè¿°ïŒãããã°è¯ãã§ãïŒ\r\n\r\n泚ïŒåé¡æãšç¹ã®æåãç°ãªããŸãïŒãŸãïŒå³ãäœãééããŠ$BH=HG$ã«ããã®ãå¿ããŸããïŒå¿ã®ç®ã§èŠãŠãã ããïŒ\r\n\r\n\r\n\r\n<details>\r\n<summary>è¯ãæãã®è§åºŠè¿œè·¡ïŒéã§ãïŒ<\\/summary>\r\nãç¹ã®èšå·ã¯äžå³ãåç
§ããŠãã ããïŒ$\\angle BHG=123.45^\\circ, \\angle OHG=60^\\circ$ãã$\\angle BHO=176.55^\\circ$ãããããŸãïŒ$\\triangle HBO$ã$HB=HO$ãªãäºç蟺äžè§åœ¢ã§ããããšããïŒ$\\angle HBO=1.725^\\circ$ã§ããïŒ$\\angle ABO=60^\\circ$ãšããã$\\angle ABH=58.275^\\circ$ã§ããããšãåãããŸããïŒ\r\n<\\/details>\r\n\r\n___\r\n\r\nãäžè¬ã«ïŒ$AD$ã$BC$ã«ãã€ãçžäŒŒæ¡å€§ã®äžå¿ïŒäžã®æ¡ä»¶ã§ã¯å
è§åœ¢ã®äžå¿ïŒã$O$ãšãããšãïŒ$O$ã¯ïŒå®å
šïŒåè§åœ¢$ABCD$ã®ãã±ã«ç¹ãšåŒã°ããŸãïŒãããããšè¯ãæ§è³ªãããã®ã§è¹æ
æ¬ã®10ç« ãåç
§ããããšãããããããŸãïŒãŸãïŒOMCã«éå
ããäŸãšããŠã¯[OMC100(D)](https:\\/\\/onlinemathcontest.com\\/contests\\/omc100\\/tasks\\/2630)ãªã©ãæããããŸãïŒ\r\n\r\n___\r\n\r\nããŸãïŒé¡é¡ãšããŠä»¥äžã®åé¡ã玹ä»ããŸãïŒãªãïŒãã®åé¡ã«ã¯ãã±ã«ç¹ã䜿ããªãæ¯èŒçåçŽãªè§£æ³ãååšããŸãïŒ\r\n\r\n___\r\n\r\n$$AB=5,BC=14,CD=8,\\angle ABC=80^\\circ,\\angle BCD=40^\\circ$$\r\nãã¿ããåè§åœ¢$ABCD$ã«ã€ããŠïŒèŸº$BC,AD$ã®äžç¹ããããã$M,N$ãšãããšãïŒç·å$MN$ã®é·ããæ±ããïŒ\r\n\r\n\r\n<details>\r\n<summary>ãã±ã«ç¹ãå©çšãã解æ³<\\/summary>\r\nãçŽç·$AB$ãšçŽç·$CD$ã®äº€ç¹ã$P$ãšãïŒå$PAD$ãšå$PBC$ã®äº€ç¹$(\\neq P)$ã$Q$ãšããïŒãã®ãšãïŒååšè§ã®å®çãã$\\triangle QAD\\sim\\triangle QBC$ãæãç«ã¡ïŒãããã$\\triangle QAB \\sim\\triangle QDC$ãæãç«ã€ããšããããïŒïŒãã®ç¹$Q$ãåè§åœ¢$ABCD$ã®ãã±ã«ç¹ã§ããïŒïŒ$\\angle BQC=\\angle BPC=60^\\circ$ãš$QB:QC=AB:DC=5:8$ããäœåŒŠå®çãã$QB=10, QC=16$ããããïŒ$\\triangle QBC$ã«äžç·å®çãé©çšãããš$2(QM^2+BM^2)=QB^2+QC^2$ãåŸããïŒãããã$QM=\\sqrt{129}$ããããïŒ$\\triangle QAD$ãš$\\triangle QBC$ã®çžäŒŒã§ç¹$M$ãšç¹$N$ã察å¿ããã®ã§$\\triangle QAN \\sim \\triangle QBM$ããªãã¡$\\triangle QAB \\sim \\triangle QNM$ãæãç«ã€ã®ã§ïŒ$QM:MN=QB:BA=2:1$ã§ããããïŒ$MN=\\dfrac{QM}{2}=\\boxed{\\dfrac{\\sqrt{129}}{2}}$ãåŸãïŒ\r\n<\\/details>\r\n\r\n<details>\r\n<summary>ãã±ã«ç¹ãå©çšããªã解æ³ã®æŠç¥ïŒè¡šçŸãéã§ãïŒ<\\/summary>\r\nã$DN$ã$AN$ã«ãã£ã€ãããã«åè§åœ¢$NMCD$ãå転ããåè§åœ¢$ABMN$ãšãã£ã€ããŸãïŒ$C,M$ãåããå
ã$C^\\prime,M^\\prime$ãšãããšïŒåè§åœ¢$BMC^\\prime D^\\prime$ã¯å¹³è¡å蟺圢ã«ãªããŸãïŒãŸãïŒè§åºŠã®æ¡ä»¶ããè¯ãæãã«$120^\\circ$ãåºãŠããã®ã§ïŒäœåŒŠå®çãå©çšããããšã«ããçããæ±ãŸããŸãïŒ\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/3566/265"
}
] | ãåžåè§åœ¢ $ABCD$ ã
$$AB=BC=CD,\quad \angle ABC=123.45^{\circ},\quad \angle BCD=116.55^{\circ}$$
ãæºãããšãïŒ$\angle DAB$ ã®å€§ããã¯åºŠæ°æ³ã§äºãã«çŽ ãªæ£æŽæ° $a, b$ ã«ãã£ãŠ $\dfrac{a}{b}$ 床ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/2303 | D | OMC172(D) | 400 | 42 | 69 | [
{
"content": "ã$3$ ç¹ $P, O_1, O_2$ ããã³ $P, R, S$ ã¯åäžçŽç·äžã«ããïŒããã« $O_1P = O_1S, O_2P=O_2R$ ã§ããã®ã§ïŒ$O_2R \\parallel O_1S$ ãåŸãïŒåæ§ã« $O_3R \\parallel O_1T$ ãåŸããïŒ$3$ ç¹ $O_2, R, O_3$ ã¯åäžçŽç·äžã«ããããïŒ$3$ ç¹ $S, O_1, T$ ãåäžçŽç·äžã«ããïŒ$S$ ãš $T$ 㯠$O_1$ ã«ã€ããŠå察åŽã«ããããïŒç·å $ST$ 㯠$C_1$ ã®çŽåŸãšãªãïŒãŸãïŒ$PO_2=O_2R$ ããã³ $QO_3=O_3R$ ããïŒ$3$ çŽç· $PO_2,O_2O_3,QO_3$ ã«ããããç¹ $P,R,Q$ ã§æ¥ããåïŒããªãã¡äžè§åœ¢ $O_1O_2O_3$ ã®åæ¥åïŒãååšãïŒç¹ã«ãã®äžå¿ã¯ $U$ ã§ããïŒ\\\r\nããããã£ãŠïŒ $i = 1, 2, 3$ ã«ã€ã㊠$C_i$ ã®ååŸã $r_i$ ã§è¡šãã°\r\n$$\\triangle O_1O_2O_3=\\frac{1}{2}\\times \\\\{(r_1-r_2)+(r_1-r_3)-(r_2+r_3)\\\\}\\times UP =(120-77)\\times47=2021$$\r\nã§ããïŒäžæ¹ã§äžè§åœ¢ $O_1O_2O_3$ ã®å
æ¥åã®ååŸã $r$ ãšããã°\r\n$$\\triangle O_1O_2O_3=\\frac{1}{2}\\times \\\\{(r_1-r_2)+(r_1-r_3)+(r_2+r_3)\\\\}\\times r=120r$$\r\nã§ããã®ã§ïŒ$r=\\dfrac{2021}{120}$ ãšãªãïŒè§£çãã¹ãå€ã¯ $2021+120=\\textbf{2141}$ ã§ããïŒ\r\n\r\n<details>\r\n<summary>è£è¶³<\\/summary>\r\nãç·å $ST$ ã $C_1$ ã®çŽåŸãšãªãããšã«ã€ããŠã¯ïŒä»¥äžã®ããã«èããããšãã§ããïŒ\r\n\r\nã$C_2,C_3$ ã®å
±éå
æ¥ç·ãš $C_1$ ãšã®äº€ç¹ã $A,B$ ãšããïŒ$P$ ãäžå¿ãšãå $C_2$ ãå $C_1$ ã«ç§»ãçžäŒŒæ¡å€§ãèãããšïŒç¹ $R$ ã¯ ç¹ $S$ ãžïŒçŽç· $AB$ ã¯å $C_1$ ã® $S$ ã§ã®æ¥ç· $\\ell_S$ ãžç§»ãïŒãã®ãšã $AB \\parallel \\ell_S$ ã§ããã®ã§ïŒæ¥åŒŠå®çãšããã㊠$\\angle SAB = \\angle SBA$ ããããïŒãã£ãŠ $SA = SB$ ã§ããã®ã§ïŒ$S$ ã¯åŒ§ $AB$ ã®äžç¹ã§ããïŒ$T$ ã«ã€ããŠãåæ§ã§ãããïŒãã㧠$S$ ãš $T$ 㯠ç·å $AB$ ã«ã€ããŠå察åŽã«ããããïŒç·å $ST$ 㯠$C_1$ ã®çŽåŸãšãªãïŒ\r\n<\\/details>",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/2303"
}
] | ãå¹³é¢äžã«äžå¿ããããã $O_i$ ãšãã $3$ ã€ã®å $C_i\ (i=1,2,3)$ ããããŸãïŒ$C_2,C_3$ 㯠$C_1$ã«ããããç¹ $P,Q$ ã§å
æ¥ããŠããïŒ$C_2$ ãš $C_3$ ã¯ç¹ $R$ ã§å€æ¥ããŠããŸãïŒããã§ïŒçŽç· $PR,QR$ ãš $C_1$ ãšã®äº€ç¹ã®ãã¡ãããã $P,Q$ ã§ãªãæ¹ã $S,T$ ãšãïŒããã«ç¹ $P,Q$ ããããã«ããã $C_1$ ã®æ¥ç·ã®äº€ç¹ã $U$ ãšãããšïŒä»¥äžãæç«ããŸããïŒ
$$ST=240,\quad O_2O_3=77,\quad UP=47$$
ãã®ãšãïŒäžè§åœ¢ $O_1O_2O_3$ ã®å
æ¥åã®ååŸã¯ïŒäºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/4423 | E | OMC172(E) | 400 | 26 | 82 | [
{
"content": "ãåé
ã® $1$ ãã¹ã®ã¿ã§ããºã«ãæ§æãããã® $4$ éããå
ã«é€å€ããŠããïŒ\\\r\nã以äžïŒåãã¹ãçœé»ã§å¡ãåãïŒåè²ãããºã«ããªãããã«ããåé¡ãšè§£éããïŒãã ãïŒãã®ãŸãŸã§ã¯åãé
眮ãäºéã«æ°ããŠããŸãããïŒä»¥äžã§ã¯ãã®éè€ãé€ããªããæ°ãäžããŠããïŒ\\\r\nãå³ã®ããã«ïŒèµ€è²ã§ç€ºããã蟺㫠$a_1$ ãã $a_{12}$ ãŸã§ã®èšå·ãäžããïŒãŸãïŒéè²ã§ç€ºãã $4$ ãã¹ã**å
éš**ãšãã³ïŒæ®ãã® $12$ ãã¹ã**å€çž**ãšãã¶ïŒ$2$ ã€ã®ããºã«ã®å¢çã¯ã²ãšã€ãªããã®ç·ãšãªãããïŒèµ€è²ã® $12$ 蟺ã«ã€ããŠïŒããºã«ã®å¢çãšãªãã®ã¯ $0$ æ¬ãŸã㯠$2$ æ¬ã§ããïŒ\\\r\nã$0$ æ¬ã®ãšãïŒå€çžã¯ãã¹ãŠåãè²ã§ããïŒé»ãšããŠããïŒïŒãã®ãšãïŒå
éšã¯ããã¹ãŠé»ããé£ãåããªã $2$ ãã¹ãã€ãåãè²ããé€ããŠèªç±ã«å¡ããããïŒå
šéšã§ $13$ éãååšããïŒä»¥äžïŒèµ€è²ã®èŸºã®ãã¡ $2$ æ¬ãå¢çãšãªãå ŽåãèãïŒãã® $2$ æ¬ã®éžã³æ¹ã ${}\\_{12}\\mathrm{C}\\_{2}-4=62$ éãããäžã€åºå®ããïŒæåŸã® $-4$ ã¯åé ã®é€å€ã«åºã¥ãïŒïŒ\\\r\nãå
éšã® $4$ ãã¹ã®ãã¡ïŒé»ãããã€ãããã§å ŽååãããïŒé»ã $2$ ã€ä»¥äžã§ãããšããŠããïŒ\r\n\r\n* $4$ ãã¹ãšãé»ãå ŽåïŒ\\\r\nãå€çžã®å¡ãæ¹ã¯ã€ãã« $2$ éããã€ååšããããïŒ$2\\times 62=124$ éãïŒ\r\n* $3$ ãã¹ãé»ãå ŽåïŒå·Šäžã®ã¿ãçœãšããŠïŒ$4$ åããã°ããïŒïŒ\\\r\nã$a_{12},a_1$ ãã $1$ ã€ïŒ$a_3, a_4, \\ldots, a_{10}$ ãã $1$ ã€éžã¶ãšãã¯å€çžã®å¡ãæ¹ã¯ $2$ éãïŒãã以å€ã¯ $1$ éããã€ååšããããïŒ$2\\times 16 + 46=78$ éãïŒ\r\n* é£ãåã $2$ ãã¹ãã€ãåè²ã®å ŽåïŒå·ŠåŽãé»ãšããŠïŒ$2$ åããã°ããïŒïŒ\\\r\nã$a_{12},a_1,a_2, a_3, a_4$ ãã $1$ ã€ïŒ$a_6, a_7, \\ldots, a_{10}$ ãã $1$ ã€éžã¶ãšãã¯å€çžã®å¡ãæ¹ã¯ $2$ éãïŒãã以å€ã¯ $1$ éããã€ååšããããïŒ$2\\times 25+37=87$ éãïŒ\r\n* é£ãåããªã $2$ ãã¹ãã€ãåè²ã§ããããã«ããããšã¯ã§ããªãïŒ\r\n\r\nã以äžããïŒæ±ããçã㯠$4+13+124+78\\times 4+87\\times 2 = \\bf{627}$ éãã§ããïŒ\r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/4423"
},
{
"content": "ãããããæ§ã
ãªæ°ãäžãã®æ¹æ³ããããšæããŸãïŒå
¬åŒè§£èª¬ãšç°ãªãæ¹æ³ãæžããŠãããŸãïŒ\\\r\nãå
¬åŒè§£èª¬ãšåãããã«ïŒåãã¹ãçœé»ã§å¡ãåãïŒåè²ãããºã«ããªãããã«ããåé¡ãšè§£éããŸãïŒãŸãïŒ$4Ã4$ ã®ãã¹ç®ã«ã€ããŠïŒ$x$ è¡ $y$ åç®ã®ãã¹ã $(x,y)$ ãšèšãããšã«ãïŒ$(2,2),(2,3),(3,2),(3,3)$ ã® $4$ ç¹ã**å
éš**ïŒãã®ä»ã®ãã¹ã**å€çž**ãšåŒã¶ããšã«ããŸãïŒå
éšã»å€çžã«ã€ããŠã¯ïŒå
¬åŒè§£èª¬ãšåãè¡šçŸã§ãïŒïŒ\r\n___\r\nïŒè§£ïŒïŒå
éšã«æ³šç®ããŠæ°ãäžããæ¹æ³\r\n- å
éšã® $4$ ãã¹ãå
šãŠåè²ã®å ŽåïŒé»ãšããïŒ\\\r\nãé»ãå€çžã®ãã¡ $0$ ãã¹ãå¡ãæ¹æ³ã¯ $1$ éãïŒ$1$ ãã¹ãå¡ãæ¹æ³ã¯ $8$ éãïŒ$2$ ïœ $11$ ãã¹ãå¡ãæ¹æ³ã¯ãããã $12$ éãååšããïŒãã£ãŠïŒ$1+8+10Ã12=\\underline{129}$ éãïŒ\r\n- å
éšã® $3$ ãã¹ãåè²ã®å ŽåïŒ$3$ ãã¹ã¯é»ãšãïŒæ®ãã® $1$ ãã¹ã¯ $(2,2)$ ãšããïŒæåŸã« $4$ åããªããã°ãªããªãç¹ã«æ³šæïŒïŒ\\\r\nã$(1,2),(2,1)$ ã® $2$ ãã¹ãçœãåŠãã§ããã«å ŽååããããïŒ \\\r\nã$2$ ãã¹ãšãçœã§ããå ŽåïŒ$(1,1)$ ã¯çœã§ç¢ºå®ããïŒæ®ãã®ãã¡ïŒ $9$ ãã¹ãé»ã§ããå Žåãã $0$ ãã¹ãé»ã§ããå ŽåãŸã§ãèããŠïŒ$1+2+3+4+5+6+7+8+6+1=43$ éãïŒ\\\r\nã$1$ ãã¹ã ãçœã§ããå ŽåïŒ$(1,2)$ ãçœãšãããšïŒ$(2,1)$ ãé»ã§ããïŒ$(1,1)$ ã®å¡ãæ¹ã¯ $2$ éãããïŒãã®ä»ã®å¡ãæ¹ã¯ $9$ éãããïŒ$(1,3)$ ãã$(3,1)$ ãŸã§ïŒçœãã©ããŸã§é²ããããšèããã°ããïŒïŒãã£ãŠïŒ$2Ã9Ã2=36$ éãïŒ\\\r\nã$0$ ãã¹ãçœã§ããå ŽåïŒèªæ㪠$1$ éãã®ã¿ïŒ\\\r\nã以äžããŸãšããŠïŒ$(43+36+1)Ã4=\\underline{320}$ éãïŒ\r\n- å
éšã $2$ ãã¹ïŒ$2$ ãã¹ãšåãããå ŽåïŒ$(2,2),(2,3)$ ãçœã§ãããšããïŒæåŸã« $2$ åããªããã°ãªããªãç¹ã«æ³šæïŒïŒ\\\r\nã$(2,1),(2,4)$ ã® $2$ ãã¹ãçœãåŠãã§ããã«å ŽååããããïŒ \\\r\nã$2$ ãã¹ãšãçœã§ããå Žåã¯ïŒ$(1,k)$ ã¯å
šãŠçœã§ããïŒæ®ãã®ãã¡ïŒ $6$ ãã¹ãé»ã§ããå Žåãã $0$ ãã¹ãé»ã§ããå ŽåãŸã§ãèããŠïŒ$1+2+3+4+5+4+1=20$ éãïŒ\\\r\nã$1$ ãã¹ã ãçœã§ããå ŽåïŒ$(2,1)$ ãçœãšãããšïŒ$(2,4)$ ãé»ã§ããïŒ$(1,k)$ ã®å¡ãæ¹ã¯ $5$ éãããïŒ$(3,1),(4,k)$ã®å¡ãæ¹ã¯ $6$ éãããïŒ$5Ã6Ã2=60$ éãïŒ\\\r\nã$0$ ãã¹ãçœã§ããå ŽåïŒ$(2,1),(2,4)$ ãé»ã§ïŒ$(3,k),(4,k)$ ã¯å
šãŠé»ã§ããïŒ$(1,k)$ ã®å¡ãæ¹ã¯ $9$ éãïŒ\\\r\nã以äžããŸãšããŠïŒ$(20+60+9)Ã2=\\underline{178}$ éãïŒ\r\n\r\nã以äžã§å
šãŠã®å Žåã網çŸ
ããã®ã§ïŒããšã¯è¶³ãåãããã°ããïŒ$129+320+178=\\mathbf{627}$ éãïŒ\r\n___\r\nïŒè§£ïŒïŒå€çžã«æ³šç®ããŠæ°ãäžããæ¹æ³\\\r\nãå€çžã $k$ ãã¹ïŒ$12-k$ ãã¹ãšåãããå ŽåïŒ $k$ ãã¹ã®æ¹ãé»ãšããïŒã $0âŠkâŠ6$ ã®ç¯å²ã§èããŠããïŒ$1âŠk$ ã®ç¯å²ã§ã¯ïŒå€çžã®å¡ãåãæ¹ã¯ïŒé©åœãªå転ã»å転ãèããããšã§ïŒæ¬è³ªçã« $2$ éãã«åž°çãããç¹ã«æ³šæããïŒ\r\n- å€çžã®ãã¡ $0$ ãã¹ãé»ã§ããå Žå\\\r\nãå
éšã«ã€ããŠèãããšïŒ$\\underline{13}$ éãïŒ\r\n- å€çžã®ãã¡ $1$ ãã¹ãé»ã§ããå Žå\\\r\nã$(1,1)$ ãé»ã®å ŽåïŒãã® $1$ éãã®ã¿ã§ããïŒ$(1,2)$ ãé»ã®å ŽåïŒå
éšã¯ $8$ éãèããããïŒ\\\r\nããã£ãŠïŒ$4Ã1+8Ã8=\\underline{68}$ éãïŒ\r\n- å€çžã®ãã¡ $2$ ãã¹ãé»ã§ããå Žå\\\r\nã$(1,1)$ å«ã $2$ ãã¹ãé»ã®å ŽåïŒå
éšã¯ $8$ éãèããããïŒããã§ãªãå ŽåïŒå
éšã¯ $11$ éãïŒ\\\r\nããã£ãŠïŒ$4Ã11+8Ã8=\\underline{108}$ éãïŒ\r\n- å€çžã®ãã¡ $3$ ãã¹ãé»ã§ããå Žå\\\r\nã$4Ã8+8Ã11=\\underline{120}$éãïŒ\r\n- å€çžã®ãã¡ $4$ ãã¹ãé»ã§ããå Žå\\\r\nã$4Ã11+8Ã10=\\underline{124}$éãïŒ\r\n- å€çžã®ãã¡ $5$ ãã¹ãé»ã§ããå Žå\\\r\nã$4Ã12+8Ã10=\\underline{128}$éãïŒ\r\n- å€çžã®ãã¡ $6$ ãã¹ãé»ã§ããå Žå\\\r\nã$2Ã9+4Ã12=\\underline{66}$éãïŒ\r\n\r\nã以äžã§å
šãŠã®å Žåã網çŸ
ããïŒ$13+68+108+120+124+128+66=\\mathbf{627}$ éãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/4423/263"
}
] | ã$4\times 4$ ã®ãã¹ç®ã«ãããŠïŒ$1$ ã€ä»¥äžã®ãã¹ãããªãéå $P$ ã**ããºã«**ã§ãããšã¯ïŒæ¬¡ã®æ¡ä»¶ãã¿ããããšããããŸãïŒ
* ä»»æã®çžç°ãªã $P$ ã® $2$ ãã¹ã®éãïŒé£æ¥ãã $P$ ã«å±ãããã¹ãããã€ã蟿ã£ãŠç§»åã§ããïŒãã ãïŒ$1$ ãã¹ã®ã¿ãããªãéåã¯ããºã«ã§ãããšããïŒ
å
šéšã§ $16$ åã®ãã¹ã $2$ ã€ã®ç©ºã§ãªãéåã«åå²ããæ¹æ³ïŒé åºã¯åºå¥ããªãïŒã§ãã£ãŠïŒåå²ãããéåã®ãããããããºã«ãšãªããã®ã¯äœéããããŸããïŒãã ãïŒå転ãããè£è¿ãããããŠäžèŽãããã®ãåºå¥ãããã®ãšããŸãïŒ
<details>
<summary>éåã®åå²ãšã¯ã»ããºã«ã®åå²ã®äŸ<\/summary>
ã$2$ ã€ã®ç©ºã§ãªãéå $P_1, P_2$ ãéå $G$ ã®**åå²**ã§ãããšã¯ïŒ
$$ P_1 \cap P_2 = \empty, \quad P_1 \cup P_2 = G$$
ããšãã«æºããããããšããããŸãïŒ\
ãããšãã°ïŒäžå³å·Šã®ãããªãã¹ç®ã®åå²ã¯ïŒç°è²ã®ãã¹ã»çœã®ãã¹ã®éåããšãã«ããºã«ã§ããããïŒåé¡æã®æ¡ä»¶ãæºãããŸããïŒäžå³å³ã®ãããªãã¹ç®ã®åå²ã¯ïŒç°è²ã®ãã¹ãããªãéåãããºã«ã§ãªãããïŒåé¡æã®æ¡ä»¶ãæºãããŸããïŒãªãïŒçœã®ãã¹ãããªãéåãããºã«ã§ã¯ãããŸããïŒæ¡ä»¶ãã¿ããã«ã¯ïŒåå²åŸã®éåã®**äž¡æ¹**ãããºã«ãšãªãããšãå¿
èŠã§ããããšã«æ³šæããŠãã ããïŒïŒ

<\/details> |
OMC172 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc172/tasks/4279 | F | OMC172(F) | 600 | 36 | 68 | [
{
"content": "ãäžåè§ã®å
¬åŒãã次ãæãç«ã€ïŒ\r\n$$4\\cos^3\\frac{\\pi}{9}-3\\cos\\frac{\\pi}{9}=\\cos\\frac{\\pi}{3}=\\frac{1}{2}$$\r\nãã£ãŠ$\\cos\\dfrac{\\pi}{9}$ ã¯äžæ¬¡æ¹çšåŒ $8x^3-6x-1=0$ ã®è§£ã®äžã€ã§ããïŒ\r\n$x$ ã $\\dfrac{x-1}{2}$ ãšçœ®ãå€ããã°ïŒ$1+2\\cos\\dfrac{\\pi}{9}$ ã¯äžæ¬¡æ¹çšåŒ $x^3-3x^2+1=0$ ã®è§£ã®äžã€ã§ããããšããããïŒ\r\n\r\nã$f(x):=x^3-3x^2+1$ ãšããïŒ\r\n$$f(-1)=-3,\\quad f(0)=1,\\quad f\\left(\\frac{1}{\\sqrt{2}}\\right) = \\frac{\\sqrt{2}-2}{4}, \\quad f(2)=-3,\\quad f(3)=1$$\r\nããïŒäžæ¬¡æ¹çšåŒ $f(x)=0$ 㯠$(-1,0),\\left(0,\\dfrac{1}{\\sqrt2}\\right),(2,3)$ ã®ç¯å²ã«ããããå®æ°è§£ãå°ãªããšãäžã€æã€ïŒ\r\nãã£ãŠä»£æ°åŠã®åºæ¬å®çïŒãŸã $1+2\\cos\\dfrac{\\pi}{9}\\gt 1$ ãšåãããã°äžæ¬¡æ¹çšåŒ $f(x)=0$ ã¯å®æ°è§£ã $3$ ã€æã¡ïŒãããã $\\alpha,\\beta,\\gamma\\~(\\alpha\\lt\\beta\\lt\\gamma)$ ãšããã°æ¬¡ãæãç«ã€ïŒ\r\n$$-1\\lt\\alpha\\lt 0\\lt\\beta\\lt \\dfrac{1}{\\sqrt2},\\quad \\gamma=1+2\\cos\\dfrac{\\pi}{9}$$\r\nããã« $f(-\\alpha)=-2\\alpha^3\\gt 0$ ã«æ³šæããã° $-\\alpha=|\\alpha|\\lt\\beta$ ããããããïŒä»»æã®æ£æŽæ° $n$ ã«ã€ã㊠$0\\lt\\alpha^n+\\beta^n\\lt 1$ ã§ããããšã瀺ããïŒ\r\nãªããããã®çµè«ã¯åŸ®åãçšããè°è«ã«ãã£ãŠã瀺ãããïŒ\r\n\r\nã$b_n=\\alpha^n+\\beta^n+\\gamma^n$ ãšããïŒ\r\n解ãšä¿æ°ã®é¢ä¿ãã \r\n$$\\alpha+\\beta+\\gamma=3,\\quad\\alpha\\beta+\\beta\\gamma+\\gamma\\alpha=0,\\quad\\alpha\\beta\\gamma=-1$$\r\nã§ããããïŒèšç®ã«ãã£ãŠ\r\n$$b_1=3,\\quad b_2=9,\\quad b_3=24,\\quad b_{n+3}=3b_{n+2}-b_n$$\r\nãåŸãããïŒ\r\nããããæããã«ä»»æã® $n$ ã«ã€ã㊠$b_n$ ã¯æŽæ°ã§ããããïŒ$0\\lt\\alpha^n+\\beta^n\\lt 1$ ãã $a_n$ 㯠$b_n-1$ ã $9$ ã§å²ã£ãããŸãã§ããããšããããïŒ\r\n$b_n$ ã®åãã®æ°é
ã $9$ ã§å²ã£ãããŸããèšç®ããã°\r\n$$\\begin{array}{c|cccccccccc}\r\nn&1&2&3&4&5&6&7&8&9&\\cdots\\\\\\\\\r\n\\hline\r\nb_n\\bmod 9&3&0&6&6&0&3&3&0&6&\\cdots\r\n\\end{array}\r\n$$\r\nãšãªãããšããïŒ$b_n$ ã $9$ ã§å²ã£ãäœãã¯åšæ $6$ 㧠$3,0,6,6,0,3$ ãç¹°ãè¿ãããšãåãã. ããã« $a_n$ ã¯åšæ $6$ 㧠$2,8,5,5,8,2$ ãç¹°ãè¿ãããïŒæ±ããå€ã¯\r\n$$(2+8+5+5+8+2)\\times166+2+8+5+5={\\bf 5000}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc172/editorial/4279"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸãïŒ$\Bigl(1+ 2\cos\dfrac{\pi}{9}\Bigr)^n$ ã®æŽæ°éšåã $9$ ã§å²ã£ãäœãã $a_n$ ãšãããšãïŒ
$$a_1+a_2+\cdots+a_{1000}$$
ãæ±ããŠãã ããïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/1460 | A | OMC171(A) | 100 | 375 | 378 | [
{
"content": "$$\\begin{aligned}\r\nS-T\r\n&=(1 + 3 + 5 + \\cdots + 12345) - (0 + 2 + 4 + \\cdots + 12344)\\\\\\\\\r\n&=(1 - 0) + (3 - 2) + \\cdots + (12345-12344)\\\\\\\\\r\n&=\\overbrace{1 + 1 + 1 + \\cdots + 1}^{(12345 + 1)\\div 2å}\\\\\\\\\r\n&=\\textbf{6173}.\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/1460"
}
] | ã$1$ ä»¥äž $12345$ 以äžã®ç¯å²ã«ãããŠïŒå¥æ°ã®ç·åã $S$ïŒå¶æ°ã®ç·åã $T$ ãšãããšãïŒ$S-T$ ãæ±ããŠãã ããïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/3253 | B | OMC171(B) | 100 | 301 | 333 | [
{
"content": "ãæ¹ã¹ãã®å®çãã $AB=\\sqrt{BD\\cdot{BC}}=60=AC$ ã§ãããã $\\angle ABD=\\angle ACD$ïŒäžæ¹ã§æ¥åŒŠå®çãã $\\angle ACD=\\angle BAD$ ãæãç«ã€ããïŒ$\\angle ABD=\\angle BAD$ ãã $AD=BD=\\textbf{40}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/3253"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã«ç¹ $D$ ãããïŒäžè§åœ¢ $ACD$ ã®å€æ¥åã¯ç¹ $A$ ã§çŽç· $AB$ ãšæ¥ããŠããŸãïŒ
$$AC=60,\quad BD=40,\quad CD=50$$
ãæãç«ã€ãšãïŒç·å $AD$ ã®é·ããæ±ããŠãã ããïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/2031 | C | OMC171(C) | 200 | 229 | 310 | [
{
"content": "ã$x\\geq 0$ ã«ãã㊠$f(x)=x^2+\\lfloor2x\\rfloor+7x\\/2$ ã§ããïŒãã㯠$x$ ã«ã€ããŠå調å¢å ã§ããããïŒ$f(0)=0$ ã§æå°å€ãåãïŒãããã£ãŠïŒ$x\\lt 0$ ã«ãã㊠$f(x)\\lt 0$ ãšãªãéšåã«ã€ããŠã®ã¿èããã°è¯ãïŒ$x\\lt 0$ ã«ãããŠ\r\n$$f(x)=x^2-\\lfloor2x\\rfloor+\\dfrac{9}{2}x$$\r\nã§ããïŒ$x\\leq -5\\/2$ ã«ãããŠ\r\n$$f(x) \\ge x^2 - 2x + \\frac92x = \\frac12x(2x-5)$$\r\nã§ãããã $f(x)$ ã¯éè² ã§ããïŒ$x\\gt -5\\/2$ ã®ç¯å²ã§ $1\\/2$ ããšã«èª¿ã¹ãã°ïŒ$f(-3\\/2)=f(-1)=-3\\/2$ ãæ±ããæå°å€ã§ããããšããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{5}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/2031"
}
] | ãå®æ° $x$ ã«å¯ŸããŠïŒä»¥äžã§å®ãŸãé¢æ° $f(x)$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ããïŒ
$$f(x)=x^2+\bigl\lvert\lfloor2x\rfloor\bigr\rvert+4x-\biggl\lvert\frac{x}{2}\biggr\rvert$$
ãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $-\dfrac{p}{q}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒããã§ïŒ$\lfloor x\rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããã®ãšããŸãïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/2136 | D | OMC171(D) | 300 | 118 | 180 | [
{
"content": "ãå
è§åœ¢ã®é ç¹ã $ABCDEF$ ãšããïŒäžè¬æ§ã倱ãã $AF=1$ ãšããïŒå蟺ã延é·ããŠæ£äžè§åœ¢ãäœãããšã§\r\n$$1+AB+BC=BC+CD+DE=DE+EF+1$$\r\nãã㧠$AB+BC=DE+EF=k$ ãšãããšïŒä»¥äžãã $CD$ ã¯å¶æ°ã§ããïŒ\r\n$$CD=(2+3+4+5+6)-2k=2(10-k)$$\r\nããããïŒ$(AB,BC,CD,DE,EF)$ ã®çµãåæããã° (察称ãªãã®ã¯é€å€)\r\n$$(4,5,2,3,6),\\quad (5,3,4,2,6)$$\r\nããããã®é¢ç©ã¯ä»¥äžã§äžããããããïŒãã®ç·åã®å¹³æ¹ã¯ $\\textbf{3267}$ ã§ããïŒ\r\n$$\\dfrac{\\sqrt{3}}{4}(10^2-1^2-3^2-5^2),\\quad \\dfrac{\\sqrt{3}}{4}(9^2-1^2-2^2-3^2)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/2136"
}
] | ããã¹ãŠã®è§ã®å€§ããã $120$ 床ã§ããïŒ$6$ 蟺ã®é·ãããããã $1,2,3,4,5,6$ ã§ãããããªå
è§åœ¢ã«ã€ããŠïŒãã®é¢ç©ãšããŠããåŸãå€ã®**ç·åã®äºä¹**ãæ±ããŠãã ããïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/4553 | E | OMC171(E) | 300 | 102 | 171 | [
{
"content": "ãé åã決ããããšã¯ïŒ$1$ ãã $11$ ã®æŽæ°ãæžãããèµ€ç $11$ åãš $4$ ãã $14$ ã®æžãããéç $11$ åã«å¯ŸããŠèµ€çãšéçã®ã㢠$11$ çµãäœãããšã«å¯Ÿå¿ãïŒã¹ã³ã¢ã¯äºãã«ãã¢ãšãªã£ãããŒã«ã«æžãããæ°ã®å·®ã®ç·åãšãªãïŒ \r\nãç·åã®èšç®ã§ã¯ç»å Žãã $22$ åã®æ°ã®ãã¡ $11$ åãå ç®ãã $11$ åãæžç®ãããã®ã§ïŒç·åã®äžçãšããŠ\r\n$$\\sum\\_{r=8}\\^{11}r+\\sum\\_{b=8}\\^{14}b-\\sum_{r=1}\\^{7}r-\\sum_{b=4}^{7}b=65$$\r\nãèããããïŒãããéæããã®ã¯\r\n- èµ€ç $1,2,\\dots,7$ ã®ãã¢ã®çžæã¯éç $8,9,\\dots,14$ ã®ããããïŒ\r\n- èµ€ç $8,9,10,11$ ã®ãã¢ã®çžæã¯éç $4,5,6,7$ ã®ããããïŒ\r\n\r\nãã¿ããçµã¿åããã«éããïŒãã®ãããªçµã¿åããæ¹ãå®éã«ååšããããšã¯å®¹æã«ãããïŒåŸã£ãŠè§£çãã¹ãå€ã¯ $7!\\times4!=\\mathbf{120960}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/4553"
}
] | ã$1,2,\dots,11$ ã䞊ã¹æ¿ããŠã§ããé å $(p\_{1},p\_{2},\dots,p\_{11})$ ã«å¯ŸãïŒãã® **ã¹ã³ã¢** ã
$$\sum\_{i=1}\^{11}|p\_{i}-i-3|$$
ã§å®ããŸãïŒã¹ã³ã¢ãšããŠããããæ倧ã®å€ã $M$ ãšãããšãïŒã¹ã³ã¢ã $M$ ãšãªãé åã¯ããã€ãããŸããïŒ |
OMC171 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc171/tasks/3571 | F | OMC171(F) | 400 | 27 | 93 | [
{
"content": "ã$n$ ã $2$ é²æ³ã§\r\n$$n=2^{a_k}+2^{a_{k-1}}+\\cdots+2^{a_1}ã(a_k \\gt a_{k-1} \\gt \\cdots \\gt a_1 \\geq 0)$$\r\nãšè¡šããããšãïŒ$n!$ ãå²ãåãæ倧㮠$2$ ã¹ãã¯\r\n$$2^{n-k}=2^{2^{a_k}-1}\\times 2^{2^{a_{k-1}}-1}\\times \\cdots \\times 2^{2^{a_1}-1}$$\r\nã§ããããšã«çæããã°ïŒèããã¹ãç·å $S$ ã«ã€ããŠ\r\n$$S =(2^{2^0-1}+1)(2^{2^1-1}+1)\\cdots(2^{2^{3570}-1}+1)$$\r\nãåããïŒãŸãïŒ$a$ ã $3$ ã§å²ãåããæ倧ã®åæ°ã $\\mathrm{ord}_3 (a)$ ã§è¡šãã°ïŒLTEã®è£é¡ãã\r\n$$\\begin{aligned}\r\n\\mathrm{ord}_3 (S) &= \\mathrm{ord}_3 (2^{2^1-1}+1) + \\mathrm{ord}_3 (2^{2^2-1}+1)+ \\cdots + \\mathrm{ord}_3 (2^{2^{3570}-1}+1) \\\\\\\\\r\n&= 3570+\\mathrm{ord}_3 (2^1-1)+\\mathrm{ord}_3 (2^2-1)+\\cdots+\\mathrm{ord}_3 (2^{3570}-1)\\\\\\\\\r\n&= 3570+1785+\\mathrm{ord}_3 (1)+\\mathrm{ord}_3 (2)+\\cdots+\\mathrm{ord}_3 (1785)\\\\\\\\\r\n&= 3570+1785+\\mathrm{ord}_3 (1785!).\r\n\\end{aligned}$$\r\nããã«Legendreã®å®çããïŒæ±ããå€ã¯ $3570+1785+890=\\textbf{6245}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc171/editorial/3571"
}
] | ãéè² æŽæ° $n$ ã«å¯ŸãïŒ$n!$ ãå²ãåãæ倧㮠$2$ ã¹ãã $f(n)$ ã§è¡šããŸãïŒãã®ãšãïŒ
$$f(0)+f(1)+f(2)+\cdots+f(2^{3571}-1)$$
㯠$3$ ã§æ倧äœåå²ãåããŸããïŒ\
ããã ãïŒ$0!=1$ ãšããŸãïŒããªãã¡ $f(0)=f(1)=1$ ã§ãïŒ |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/5236 | A | OMC170(A) | 100 | 319 | 322 | [
{
"content": "ãçŽåãããããšã«ããïŒäžããããåŒã¯\r\n$$\r\n\\frac{p^2 \\cdot o^2 \\cdot d \\cdot r}{j \\cdot e \\cdot s \\cdot i \\cdot 3 \\cdot 5 \\cdot 7}\r\n$$\r\nãšãªãïŒã㟠$p^2 \\cdot o^2 \\cdot d \\cdot r \\le 10^2 \\cdot 9^2 \\cdot 8 \\cdot 7$ ããã³ $j \\cdot e \\cdot s \\cdot i \\ge 1 \\cdot 2 \\cdot 3 \\cdot 4$ ããïŒ\r\n$$\r\n\\frac{p^2 \\cdot o^2 \\cdot d \\cdot r}{j \\cdot e \\cdot s \\cdot i \\cdot 3 \\cdot 5 \\cdot 7} \\le \r\n\\frac{10^2 \\cdot 9^2 \\cdot 8 \\cdot 7}{1 \\cdot 2 \\cdot 3 \\cdot 4 \\cdot 3 \\cdot 5 \\cdot 7}\r\n= \\mathbf{180}\r\n$$\r\nãåŸãïŒçå·ã¯ïŒäŸãã°\r\n$$\r\n(a, d, e, i, j, m, o, p, r, s)=(5, 8, 4, 3, 2, 6, 10, 9, 7, 1)\r\n$$\r\nã§æãç«ã€ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/5236"
}
] | ã$10$ åã®ã¢ã«ãã¡ããã $a, d, e, i, j, m, o, p, r, s $ ã« $1$ ä»¥äž $10$ 以äžã®æŽæ°ããããã $1$ ã€ãã€å
¥ãïŒç°ãªãã¢ã«ãã¡ãããã«ã¯ç°ãªãæŽæ°ãå
¥ããšãããšãïŒ
$$
\frac{p \cdot o \cdot m \cdot o \cdot d \cdot o \cdot r \cdot a \cdot p}{o \cdot j \cdot a \cdot m \cdot e \cdot s \cdot i \cdot 1 \cdot 3 \cdot 5 \cdot 7}
$$
ã®ãšãããæ倧å€ãæ±ããŠãã ããïŒ |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/5434 | B | OMC170(B) | 200 | 239 | 280 | [
{
"content": "ãä»»æã®æ£ã®æŽæ° $p, q$ $(p \\ge q)$ã«å¯Ÿã㊠$q\\times {}\\_{p}\\mathrm{C}\\_{q} = p \\times {}\\_{p-1}\\mathrm{C}\\_{q-1}$ ãæãç«ã€ã®ã§ïŒ\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^{1234} \\bigl( k\\times {}\\_{1234}\\mathrm{C}\\_{k}\\bigr)\r\n&=1234\\sum_{k=1}^{1234}{}\\_{1233}\\mathrm{C}\\_{k-1}\\\\\\\\\r\n&=1234\\sum_{k=0}^{1233}{}\\_{1233}\\mathrm{C}\\_{k}\\\\\\\\\r\n&= 1234\\times2^{1233}\\\\\\\\\r\n&= 617\\times 2^{1234}\r\n\\end{aligned}$$\r\nããããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $\\bf{2470}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/5434"
},
{
"content": "å
¬åŒè§£èª¬ãšãã£ãŠããããšã¯ããŸãå€ãããŸãããïŒåœ¢åŒçå€é
åŒãçšããŠè§£ãããšãã§ããŸãïŒ\r\n\r\nç¹ã«é«é£æ床ã®Cåéã§ã¯åœ¢åŒçå€é
åŒã»åªçŽæ°ãçšãããšèŠéãããããªãããšããããŸãïŒ\r\n\r\n$$f(x)=(1+x)^{1234}$$ãšãããšäºé
å®çãã\r\n$$f(x)=\\sum_{k=0}^{1234} {}\\_{1234}\\mathrm{C}\\_{k} x^k$$ãã®åŒã®äž¡èŸºã埮åãããš\r\n$$f^{\\prime}(x)=\\sum_{k=1}^{1234} k{}\\_{1234}\\mathrm{C}\\_{k} x^{k-1}$$\r\nãã£ãŠ\r\n$$f^{\\prime}(1)=\\sum_{k=1}^{1234} k{}\\_{1234}\\mathrm{C}\\_{k}$$\r\nãããã£ãŠæåã®åŒã埮åããŠ$1$ã代å
¥ããã°ãã\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=1}^{1234} k{}\\_{1234}\\mathrm{C}\\_{k}&=\\left. \\frac{d}{dx}(1+x)^{1234} \\right|_{x=1}\\\\\\\\\r\n&=1234(1+1)^{1233}\\\\\\\\\r\n&=1234Ã2^{1233}\\\\\\\\\r\n&=617Ã2^{1234}\r\n\\end{aligned}\r\n$$\r\n\r\nããã«ïŒè§£çãã¹ãå€ã¯$\\mathbf{2470}$ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/5434/262"
},
{
"content": "ã$n=1234$ ãšããïŒ\r\n$$\\sum_{k=1}^{n}k{}\\_{n}\\mathrm{C}\\_{k}=\\sum_{k=0}^nk{}\\_{n}\\mathrm{C}\\_{k}=\\frac{1}{2}\\left (\\sum_{k=0}^{n}k{}\\_{n}\\mathrm{C}\\_{k}+\\sum_{k=0}^{n}(n-k){}\\_{n}\\mathrm{C}\\_{k}\\right )=\\frac{n}{2}\\sum_{k=0}^{n}{}\\_{n}\\mathrm{C}\\_{k}=n2^{n-1}=617\\times 2^{1234}$$\r\nãã£ãŠïŒè§£çãã¹ãå€ã¯ $\\mathbf{2479}$ ã§ããïŒ\r\n---\r\nã$\\displaystyle \\sum_{k=0}^{n}f(k)=\\displaystyle \\sum_{k=0}^{n}f(n-k)$ ã¯ä¿ã« *Queen Property* ãšåŒã°ããŠããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/5434/264"
}
] | ã次ã®æŽæ°ã®æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ
$$\sum\_{k=1}^{1234} \bigl( k\times {}\_{1234}\mathrm{C}\_{k}\bigr)$$ |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/7067 | C | OMC170(C) | 300 | 59 | 128 | [
{
"content": "ãçŽç· $CH$ ãš $AB$ïŒ$BH$ ãš $AC$ ã®äº€ç¹ããããã $F, G$ ãšããïŒ\\\r\nã$\\angle BHC = 180^\\circ - \\angle BAC$ ã§ããããïŒ\r\n$$\\angle ADC = 180^\\circ - \\angle BDC = 180^\\circ - \\angle BHC = \\angle BAC$$\r\nã§ããïŒåŸã£ãŠïŒäžè§åœ¢ $ADC$ 㯠$C$ ãé è§ãšããäºç蟺äžè§åœ¢ã§ããã®ã§ïŒ$F$ ã¯ç·å $AD$ ã®äžç¹ã§ããïŒãŸãïŒåæ§ã«ããŠïŒ$G$ ã¯ç·å $AE$ ã®äžç¹ã§ããïŒãã£ãŠïŒ$FG=DE\\/2=5$ ã§ããã®ã§ïŒäžè§åœ¢ $AGF$ ãš $ABC$ ã®çžäŒŒãã $AB:AG=AC : AF = 13:5$ ã§ããïŒåŸã£ãŠïŒ\r\n$$AG=AB\\times\\frac{5}{13} = \\dfrac{60}{13},\\quad \\frac{CG}{CH} = \\frac{CF}{AC} = \\frac{\\sqrt{AC^2-AF^2}}{AC} = \\frac{12}{13}$$\r\nã§ããïŒãŸãïŒäžå¹³æ¹ã®å®çãã\r\n$$GC^2=BC^2 + AG^2 -AB^2 = \\frac{7825}{169}$$\r\nã§ããããïŒæ±ããçãã¯ä»¥äžã®ããã«èšç®ã§ãã.\r\n$$HC=\\dfrac{13}{12}GC=\\dfrac{13}{12}Ã\\dfrac{\\sqrt{7825}}{13}=\\dfrac{\\sqrt{7825}}{12}$$\r\nãããã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{7837}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/7067"
}
] | ãéè§äžè§åœ¢ $ABC$ ã®åå¿ã $H$ ãšããŸãïŒäžè§åœ¢ $HBC$ ã®å€æ¥åãšç·å $AB, AC$ ã¯ãããã $D, E$ $(B \neq D, C \neq E)$ ã§äº€ãããŸããïŒããã«ïŒ
$$AB=12,\quad BC=13,\quad DE=10$$
ãæç«ããŸããïŒãã®ãšãïŒç·å $HC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a, b$ ãçšã㊠$\dfrac{\sqrt{a}}{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã®å€ã解çããŠãã ãã. |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/5150 | D | OMC170(D) | 400 | 116 | 226 | [
{
"content": "ã 䟿å®äžïŒåé å $A_n$ ã¯é ç¹ãå«ããïŒãã以å€ã®å€åšãå«ãŸãªããšããŠèããïŒ$A$ ãã $A_1, A_2, \\ldots, A_n$ ãåãåã£ãåŸã«æ®ãé åã $\\bar\\{A\\}_n$ ãšããã°ïŒããã¯ããã€ãã®å€è§åœ¢ãšèŸºïŒããé ç¹ãé€ãããã®ïŒãããªãïŒäžè¬ã«ïŒ$1$ ã€ã®åžå€è§åœ¢ããæ¡ä»¶ãæºããããã«ãã $129$ è§åœ¢ $A_i$ ãåãåããšïŒå
ã®åžå€è§åœ¢ã¯ $A_i$ ã®èŸºã«ãã£ãŠ $130$ åã®é£çµæåã«åå²ãããïŒãã®ãã¡ $1$ ã€ã¯ $A_i$ ãšããŠæ°ããããããïŒçµå± $A_i$ ãåãåãããšã«ããïŒ$A$ ã®é£çµæåã®åæ°ã¯å·®ãåŒã㧠$128$ å¢ããããšã«ãªãïŒãããã£ãŠïŒ$\\bar\\{A\\}_n$ 㯠$128n+1$ åã®é£çµæåãããªãïŒ\\\r\nãæ¡ä»¶ãæºããããã« $A_1, A_2, \\ldots, A_N$ ãåãåãããïŒ$A_\\{N+1\\}$ ã¯åãåããªãç¶æ³ãèãããïŒ$\\bar{A}_n$ ã®åé£çµæåã«ãããŠïŒãã®ãé ç¹ãã®ãã¡ïŒ$A_1, A_2, \\cdots A_N$ ã®ãããã®é ç¹ã§ããªããã®ã®åæ°ã¯ $0$ ä»¥äž $128$ 以äžã§ãªããã°ãªããªãïŒ$0$ ã®å Žåã¯èŸºã«å¯Ÿå¿ããïŒïŒãããã£ãŠïŒé ç¹ã®åæ°ã«ã€ããŠä»¥äžã®äžçåŒãæç«ããïŒ\r\n$$\r\n129N \\leq 10^7 \\leq 129N+128(128N+1)=(128^2+129)N+128\r\n$$\r\nããã $N$ ã«ã€ããŠè§£ãããšã«ããïŒ\r\n$$\r\n606=\\Bigl\\lceil \\frac{10^7-128}{128^2+129} \\Bigl\\rceil \\leq N \\leq \\Bigl \\lfloor \\frac{10^7}{129} \\Bigl\\rfloor =77519\r\n$$\r\nãåŸãïŒé£æ¥ãã $129$ è§åœ¢ã®éãå $129$ è§åœ¢ã®é£æ¥ããé ç¹ã®éãé©åãªé ç¹ã®åæ°ã ã空ããªããåãåã£ãŠããããšã§ïŒäžçåŒã®çå·ãæºããããã« $129$ è§åœ¢ãåãåãããšãã§ããïŒãããã£ãŠïŒæ±ããã¹ãå€ã¯ $77519\\times 606=\\mathbf{46976514}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/5150"
}
] | ãæ£ $10^7$ è§åœ¢ç¶ã®æ¿ $A$ ãããïŒãããã $129$ è§åœ¢ç¶ã®æ¿ã $1$ æãã€åãåã£ãŠãããŸãïŒãã®éçšã§ïŒ$A$ ã $2$ æ以äžã«åãããŠãæ§ããŸããïŒããã§ïŒ$n$ æç®ã«åãåãæ¿ $A_n$ ã«ã€ããŠïŒæ¬¡ã®èŠåãã¿ããããã«ããŸãïŒ
- $A_n$ ã®é ç¹ã¯ãã¹ãŠ $A$ ã®é ç¹ã§ããïŒ
- $i=1, 2, \ldots, n-1$ ããããã«ã€ããŠïŒ$A_i$ ãš $A_n$ ã¯èŸºãé ç¹ãå«ããŠå
±ééšåããããªãïŒ$n=1$ ã®ãšãã¯ãã®èŠåã¯èããªãïŒïŒ
ããã®ããã«ã㊠$N$ æã®æ¿ãåãåã£ããšããïŒèŠåã«ã®ã£ãšã£ãŠ $N+1$ æç®ã®æ¿ãåãåãããšãã§ããªããªããŸããïŒãã®ãšãïŒ$N$ ãšããŠããããæ倧å€ãšæå°å€ãããããæ±ãïŒãããã®**ç©**ã解çããŠãã ããïŒ
<details><summary>æ£äžè§åœ¢ã®æ¿ããïŒäžè§åœ¢ã®æ¿ãåãåãäŸ<\/summary>
ãåæ§ã®èŠåã«ã®ã£ãšããšãïŒä»¥äžã®ããããã®ç¶æ
ããäžè§åœ¢ã®æ¿ãããã«åãåãããšã¯ã§ããŸããïŒãŸãïŒ$3$ æ以äžã®æ¿ãåãåãããšã¯ã§ããªãããšããããã®ã§ïŒæ倧å€ã¯ $2$ïŒæå°å€ã¯ $1$ ã§ãïŒ

<\/details> |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/6386 | E | OMC170(E) | 500 | 14 | 31 | [
{
"content": "ã$AB = 1, \\angle B = 2b,\\angle C = 2c$ ãšããïŒãã®ãšãïŒ$BH = \\cos2b$ ãš $BH = HI$ ãã\r\n$$ BI = 2BH\\cos b = 2\\cos b\\cos 2b$$\r\nãåŸãã®ã§ïŒäœåŒŠå®çãã\r\n$$AI = \\sqrt{AB^2 + BI^2 - 2AB\\times BI\\cos b} = \\sqrt{1 - 4\\cos^2 b\\cos 2b + 4\\cos^2b\\cos^22b} $$\r\nã§ããïŒåŸã£ãŠïŒæ£åŒŠå®çããïŒ\r\n$$\\cos c = \\sin\\angle AIB = \\frac{AB}{AI}\\sin b = \\frac{\\sin b}{\\sqrt{1 - 4\\cos^2 b\\cos 2b + 4\\cos^2b\\cos^22b}}$$\r\nã§ããã®ã§ïŒ\r\n$$\\tan c = \\frac{\\sqrt{(1 - 4\\cos^2 b\\cos 2b + 4\\cos^2b\\cos^22b) - \\sin^2 b}}{\\sin b} = \\frac{\\cos b\\ |2\\cos2b - 1|}{\\sin b}$$\r\nã§ããïŒããã§ïŒ$\\angle AIB$ ã¯éè§ã§ããããïŒ$AI^2 + BI^2 \\lt AB^2$ ãæç«ããã®ã§ïŒä»£å
¥ããŠæŽçããããšã§ $1 \\gt 2\\cos2b$ ãåããïŒåŸã£ãŠïŒ\r\n$$\\tan c = \\frac{\\cos b\\ (1 - 2\\cos2b)}{\\sin b}$$\r\nã§ããïŒããã§ïŒ\r\n$$16\\tan b = \\frac{16DI}{BD} = \\frac{25DI}{CD} = 25\\tan c$$\r\nã§ããããïŒä»£å
¥ããŠæŽçããããšã§\r\n$$100\\cos^4b - 91\\cos^2 b + 16 = 0$$\r\nãåŸãïŒåŸã£ãŠïŒ$\\cos^2 b$ ã®æå°å€é
åŒã¯ $Q(x) = x^2 - \\dfrac{91}{100}x + \\dfrac{4}{25}$ ã§ããïŒä»ïŒ\r\n$$\\frac{EI}{AE} = \\frac{DI}{AH} = \\frac{BI\\sin b}{\\sin2b} = \\frac{2\\sin b\\cos b\\cos 2b}{\\sin2b} = 2\\cos^2b - 1$$\r\nã§ããããïŒ\r\n$$P(x) = 4Q\\bigg(\\frac{x+1}{2}\\bigg) = x^2 + \\frac{9}{50}x - \\frac{9}{50}$$\r\nãåŸãïŒç¹ã«ïŒè§£çãã¹ãå€ã¯ $\\bf{1000179}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386"
},
{
"content": "åç解ã§ã. æåºæã«ã¯ãã®è§£æ³ãæ³å®ããŠããŸãã. \r\n\r\n---\r\nãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\\Gamma$ ãšãïŒ$IE=1, AE=x$ ãšãã. $AI, CI$ ãš $\\Gamma$ ã®äº€ç¹ããããã $M, N$ ãšãããšïŒ$MB=MI, NB=NI$ ãã $M, N, H$ ã¯ãããã $BI$ ã®åçŽäºçåç·äžã«ããïŒãã£ãŠå
±ç·. ãããã£ãŠïŒ$$\\angle BNM=\\angle BAM=\\angle BCM=\\angle MBC$$ ã ããäžè§åœ¢ $MHB$ ãš $MBN$ïŒ$MEB$ ãš $MBA$ ã¯çžäŒŒãªã®ã§ïŒ$MHÃMN=MB^2=MEÃMA$ ãã $A, N, H, E$ ã¯å
±å. ãã£ãŠ $\\angle ANE=90^{\\circ}$ ããïŒ$AO$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã $P(\\neq A)$ ãšãããšïŒ$N, E, P$ ã¯å
±ç·. ããã§ïŒ$$\\angle APN=\\angle ACN=\\angle ICB,ã\\angle AEN=90^{\\circ}-\\angle NAE=90^{\\circ}-\\angle NCM=\\angle IMC\\/2=\\angle IBC$$\r\nã ããïŒ$\\angle ANP=90^{\\circ}$ ãšäœµãïŒäžè§åœ¢ $IBD$ ãš $AEN$ïŒ$ICD$ ãš $APN$ ã¯ããããçžäŒŒ. ãã£ãŠ $NE=16y, NP=25y$ ãšããã. ããã§ïŒäžè§åœ¢ $ABC$ ã® $\\angle A$ å
ã®åå¿ã $I_A$ ãšãããšïŒ$$IEÃEI_A=BEÃCE=NEÃPE$$ ãã $N, I, P, I_A$ ã¯å
±å. ãã㧠$$MI=MI_A,ã\\angle AMP=90^{\\circ}$$ ã ããïŒ$PI=PI_A$ ã§ãã. ãããã£ãŠ $$\\angle PII_A=\\angle PI_AI=\\angle PNI$$ ãªã®ã§ïŒäžè§åœ¢ $PEI$ ãšäžè§åœ¢ $PIN$ ã¯çžäŒŒ. ãã£ãŠïŒ$$PI=\\sqrt{PEÃPN}=15y,ãNA=NI=\\dfrac{5}{3}.$$\r\nãšããã§ïŒ$MI=MI_A$ ã§ããïŒãŸã $AEÃME=BEÃCE=IEÃI_AE$ ãã $I_AE:ME=AE:IE=x:1$ ã ããïŒ$ME=\\dfrac{1}{x-2}$. ãã£ãŠ $$16yÃ9y=NEÃEP=AEÃME=\\dfrac{x}{x-2}$$ ã ããïŒ$y=\\dfrac{\\sqrt{x}}{12\\sqrt{x-2}}$ ã§ããïŒãã£ãŠ $NE=16y=\\dfrac{4\\sqrt{x}}{3\\sqrt{x-2}}$ ãªã®ã§ïŒäžå¹³æ¹ã®å®çãã $NE^2-NI^2=EIÃEA$ ããïŒ$$x=\\dfrac{50-9x}{9x-18}$$. ãã£ãŠ $x^2-x-\\dfrac{50}{9}=0$ ã§ãã. $z=\\dfrac{1}{x}$ ãšãããšïŒæ±ãããã®ã¯ $z$ ã®æå°å€é
åŒã§ããããïŒ$$P(z)=z^2+\\dfrac{9}{50}z-\\dfrac{9}{50}.$$ ãã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{1000179}$.",
"text": "æåºæã®è§£æ³ïŒåç解ïŒ",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386/252"
},
{
"content": "ãã¶ãçãæãã€ãã§ããã座æšèšç®ã§ãã£ãŠã¿ãŸã.\r\n\r\nçŽäº€åº§æšã«ãããŠ\r\n\r\n$B(-16,0), D(0,0), C(25,0), I(0,r)$ ãšãã. ãã ã $r$ ã¯æ£ã®å®æ°ãšãã. \r\n\r\nããã§, $\\angle IBC+\\angle ICB=\\dfrac{1}{2}(\\angle ABC+\\angle ACB)\\lt90^\\circ$ ã§ãããã, $r\\lt20$ ã§ãªããã°ãªããªãããšã«çæããŠãã. ïŒ $r$ ã倧ãããš$\\angle BIC$ ã $90^\\circ$ 以äžã«ãªã£ãŠããŸãå³ãæç«ããªãããã«ãªãïŒ\r\n\r\nãã®èšå®ã®ããš, $BH=HI$ ãšãªããã㪠$r$ ãæ±ããŠãããã.\r\n\r\nç¹ $B$ ãéã, çŽç· $BC$ ã§ã¯ãªãçŽç·ã¯å®æ° $b$ ãçšããŠ, $x+by+16=0$ ãšè¡šãããšãã§ãã. çŽç· $AB$ ãšç¹ $I$ ãšã®è·é¢ã¯ $r$ ã§ãããã, $\\dfrac{|br+16|}{\\sqrt{1+b^2}}=r$ ã解ã㊠$b=\\dfrac{r^2-256}{32r}$ ã§ãã, çŽç· $AB$ ãè¡šãåŒã¯ $x+\\dfrac{r^2-256}{32r}y+16=0$ ã§ãã.\r\n\r\nåæ§ã«ããŠ, çŽç· $AC$ ãè¡šãåŒã¯ $x+\\dfrac{625-r^2}{50r}y-25=0$ ã§ãã.\r\n\r\nç¹ $A$ ã¯çŽç· $AB$ãšçŽç· $AC$ ã®äº€ç¹ã§ãããã, ç¹ $A$ ã®åº§æšã¯ $(\\dfrac{-9r^2}{400-r^2},\\dfrac{800r}{400-r^2})$ ã§ãã. ç¹ $H$ ã¯ç¹ $A$ ããçŽç· $BC$ ã«ããããåç·ã®è¶³ã§ãããã, ç¹ $H$ ã®åº§æšã¯ $(\\dfrac{-9r^2}{400-r^2},0)$ ã§ãã.\r\n\r\nããã§, $HI$ ã®é·ããçŽ çŽã«æ±ã㊠$BH=HI$ ãæºãã $r$ ãæ±ããããšããã®ã§ãã, èªåã§ã¯ãã®æ¹çšåŒã解ããªãã£ã. ïŒojamesi1357ããã«ãããš, $BH^2-DH^2=DI^2$ ãšå€åœ¢ããŠãã解ãã°ãããŸã§å€§å€ã§ã¯ãªãããã.ïŒ\r\n\r\nããã§, ç·å $BI$ ã®åçŽäºçåç·ãšçŽç· $BC$ ã®äº€ç¹ã $H$ ã«ãªããã㪠$r$ ãæ±ãããšããæ¹éãæ°ãã«èãã. ãã®æ¹éã¯, ç·å $BI$ ã®åçŽäºçåç·ãšçŽç· $BC$ ã®äº€ç¹ã®åº§æšã¯æ¯èŒçåçŽã«è¡šããã®ã§, ãªããšããªããããšããåžæç芳枬ã®ããšç«ãŠã. ãããªæãã ã£ããšæ¶ããŠãã.\r\n\r\nçŽç· $BI$ ã®åŸã㯠$\\dfrac{r}{16}$ ã§ãããã, ãã®åçŽäºçåç·ã®åŸã㯠$-\\dfrac{16}{r}$ ã§ãã. ããã¯, $BI$ ã®äžç¹ $(-8,\\dfrac{r}{2})$ ãéã£ãŠããã®ã§, çŽç· $BC$ ãšã®äº€ç¹ã®åº§æšã¯ $(-8+\\dfrac{r^2}{32},0)$ ã§ãã.\r\n\r\nããã, $H$ ãšäžèŽãããã㪠$r$ 㯠$\\dfrac{-9r^2}{400-r^2}=-8+\\dfrac{r^2}{32}$ ãæºããããšãå¿
èŠã§, ãããæŽçããŠ, $0\\lt r\\lt 20$ ã§ããããšã«æ³šæãããš, $r=\\sqrt{472-24\\sqrt{209}}$ ã«éãããããšãããã. \r\n\r\nããŠ, ä»åæ±ããã $\\dfrac{EI}{AE}$ ã«ã€ããŠ, $\\dfrac{EI}{AE}=\\dfrac{DI}{AH}=\\dfrac{r}{\\frac{800r}{400-r^2}}=\\dfrac{1}{2}-\\dfrac{r^2}{800}=\\dfrac{-9+3\\sqrt{209}}{100}$ ã§ãã. ãã®å€ã $z$ ãšãã.\r\n\r\nãŸã, $(100z+9)^2=1881$ ã§ããããšãã, $z^2+\\dfrac{9}{50}z-\\dfrac{9}{50}=0$ ã§ããããšãããã. ãŸã, $z$ ã¯ç¡çæ°ã§ãããã $z$ ã解ã«æ〠$1$ 次ã®æçæ°ä¿æ°å€é
åŒã¯ååšããªãããšãããã. 以äžãã, æåºããã¹ãå€ã¯ $\\lfloor1000^2+\\dfrac{9}{50}\\cdot1000-\\dfrac{9}{50}\\rfloor=\\mathbf{1000179}$ ã§ãã.\r\n\r\näœè«: ãã®åé¡ã«ãããå
æ¥åã®ååŸ $\\sqrt{472-24\\sqrt{209}}$ ã¯å®ã®ãšãã $6\\sqrt{11}-2\\sqrt{19}$ ã«çããã®ã ã, ä»åã®åé¡ã§ã¯ãã®ããšã¯çšããªãã§æžã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386/256"
},
{
"content": "ãé¡æã®å³åœ¢ã¯çžäŒŒæ¡å€§ã¶ãã®èªç±åºŠãããã®ã§ïŒ$AB = a+16, BC = 41, CA = a+25$ ãšãããŠããïŒ$B, H, D, E, C$ ããã®é ã«äžŠã¶ããšã«æ³šæããïŒããŸäœåŒŠå®çãã\r\n$ \\cos B = \\dfrac {16 \\cdot 41 - 9a}{41} $\r\nãªã®ã§ïŒ$DH = \\dfrac{9a}{41}$ ãåŸãïŒããã«å
æ¥åã®ååŸã $r$ ãšãããšïŒããã³ã®å
¬åŒãã\r\n$$ \\frac{1}{2} \\cdot r \\cdot (2a+82) = \\sqrt{(a+41) \\cdot 25 \\cdot 16 \\cdot a} $$\r\nãªã®ã§ $r^2 = \\dfrac{400a}{a+41}$ ãåŸãïŒããŸäžå¹³æ¹ã®å®çãã $BH^2 = DH^2 + DI^2$ ãªã®ã§ïŒ\r\n$$ \\left( 16 - \\frac{9a}{41} \\right)^2 = \\left( \\frac{9a}{41} \\right)^2 + \\dfrac{400a}{a+41} $$\r\nãã $a$ ã®ã¿ããäºæ¬¡æ¹çšåŒã§ãã $25 \\cdot 41 a = (16 \\cdot 41 - 18a)(a+41)$ ãåŸãïŒæ¬²ããã®ã¯ $x = \\dfrac{EI}{AE} = \\dfrac{41}{2(a+41)}$ ã§ããããšãè§ã®äºçåç·å®çã $2$ åçšããã°ãããã®ã§ïŒ$a+41$ ã«åãããŠæŽçããã°\r\n$x^2 + \\dfrac{9}{50} x - \\dfrac{9}{50} = 0$\r\nãåŸããïŒããã¯æçæ°è§£ããããªãïŒ$(\\ddot\\smile)$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386/257"
},
{
"content": "ãäžè§åœ¢ $ABC$ ã® $\\angle A$ å
ã®åæ¥åãšèŸº $BC$ ã®æ¥ç¹ã $F$ãšããã°ïŒ$H, D, E, F$ ã¯èª¿åç¹åã§ããïŒ$CF=BD$ ãã $BD:DF=16:9$ ã§ããïŒ$BH=HI$ ãã $\\angle HIB = \\angle HBI =\\angle ABI$ ãã $HI\\/\\/BA$ ã§ããïŒ\r\n$$\\dfrac {DE}{HD} =\\dfrac {IE}{AI} =\\dfrac{HE}{BH}$$\r\n調åç¹åã®æ§è³ªãã\r\n$$\\dfrac{DE}{HD}=\\dfrac{FE}{HF}$$\r\nãã®äºã€ãã\r\n$$\\dfrac{DE+HE}{HD+BH}=\\dfrac{FE-DE}{HF-HD} \\rArr \\dfrac{DE+HE}{BD}=\\dfrac{FE-DE}{DF}$$\r\nããïŒ$(DE+HE):(FE-DE)=BD:DF=16:9$ ã§ãã $25DE+9HE=16FE$ ãåããïŒ\\\r\nããã§ïŒ$HD=1-x, DE=x$ ãšããã° $\\dfrac{EI}{AE}=x$ ã§ããïŒ$\\dfrac{DE}{HD}=\\dfrac{FE}{HF}$ ãã $EF=\\dfrac x {1-2x}$ ãšãªãã®ã§ïŒå
ã®é¢ä¿åŒã«åœãŠã¯ããã°ïŒ$50x^2+9x-9=0$ ãåŸãããïŒ\\\r\nãããšã¯å€ã代å
¥ããããšã§è§£çãã¹ãå€ãåŸãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386/259"
},
{
"content": "ã$\\angle ABI=\\angle HBI=\\angle BIH$ ãã $AB\\parallel IH$ ã§ããïŒ$IE:AE=1:x,DE=16$ ãšãããšïŒ$AB:BH=AB:IH=x:1$ ãªã©ãã\r\n$$DH=16(x-1),BH=16x(x-1),AB=16x^2(x-1),CE=25x^2-41,AC=(x-1)(25x^2-41)$$\r\nãšãªãïŒãããš $AB^2-BH^2=AC^2-CH^2$ ããïŒãªãããã£ã±ãå æ°å解ã§ããŠçµå± $x^2-x-\\dfrac{50}{9}=0$ ããããïŒ",
"text": "äœè²",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6386/763"
}
] | ãäžè§åœ¢ $ABC$ ãããïŒãã®å
å¿ã $I$ ãšããŸãïŒãŸãïŒäžè§åœ¢ $ABC$ ã®å
æ¥åãšèŸº $BC$ ã®æ¥ç¹ã $D$ ãšãïŒçŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $E$ ãšãïŒ$A$ ããçŽç· $BC$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããšïŒä»¥äžãæç«ããŸãã.
$$BH=HI,\quad BD:CD=16:25$$
ãã®ãšãïŒ$\dfrac{EI}{AE}$ ã®æå°å€é
åŒ $P$ ãååšããã®ã§ïŒ$\lfloor P(1000)\rfloor$ ã解çããŠãã ããïŒ\
ãããã§å®æ° $r$ ã®**æå°å€é
åŒ**ãšã¯ïŒ$r$ ãæ ¹ã«ãã€æé«æ¬¡ã®ä¿æ°ã $1$ ã®æçæ°ä¿æ°å€é
åŒã§ãã£ãŠïŒãã®æ¬¡æ°ãæå°ã§ããïŒå¯äžã®ïŒãã®ããããŸãïŒ |
OMC170 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc170/tasks/6411 | F | OMC170(F) | 500 | 14 | 47 | [
{
"content": "ã$N(m)$ ã«ã€ããŠã¯ïŒ$m=1,2,\\ldots,8$ ã®ãšã Legendre ã®å®çã«ãã $N(m)=p^{p-1} + p^{p-2} + \\cdots +p+1$ ãšæ±ãŸãïŒããã $N$ ãšããïŒïŒ\\\r\nã$R_{m,n}$ ã«ã€ããŠèããïŒä»¥äžïŒåååŒã®æ³ã¯ç¹ã«æ瀺ãããŠããªãéã $p$ ãšããïŒ$1$ ãã $p^p-1$ ãŸã§ã®æŽæ°ã§ãã£ãŠïŒ$p^k$ ã§å²ãåããã $p^{k+1}$ ã§ã¯å²ãåããªããã®ã®éåã $A_k$ ãšããïŒãã ã, $k$ 㯠$0$ ä»¥äž $p-1$ 以äžã®æŽæ°ïŒïŒãã®ãšãïŒ\r\n$$\r\n|A_k|=(p-1) p^{p-1-k}\r\n$$\r\nã§ããïŒãŸãïŒå $i=1, 2, \\cdots p-1$ ã«ã€ããŠïŒ$\\dfrac{x}{p^k} \\equiv i$\r\nãæºããæŽæ° $x\\in A_k$ ã¯ãããã\r\n$$\r\n\\dfrac{|A_k|}{p-1}=p^{p-1-k}\r\n$$\r\nåååšããããïŒWillson ã®å®çãã\r\n$$\r\n\\prod_{x\\in A_k} \\frac{x}{p^k} \\equiv \\\\{ (p-1)! \\\\}^{p^{p-1-k}} \\equiv -1\r\n$$ \r\nã§ããïŒããã $k=0, 1, \\cdots p-1$ ã®å ŽåãŸã§æãåãããã®ã¡ã«ïŒ$p^p (p^p+1)\\cdots (p^p+m)$ ãä¹ããã°\r\n$$\r\n\\frac{(p^p+m)!}{p^{N}} \\equiv - m!\r\n$$\r\nãåŸãïŒããã«ïŒ$2^{n}$ ã $p$ ãšäºãã«çŽ ã§ããããšããµãŸãããšïŒæ¬¡ã®ããã«ãªãïŒ\r\n$$\r\n\\frac{(p^p+m)!}{(2^{n} p)^{N}} \\equiv - m! \\cdot 2^{-nN}\r\n$$\r\nããã§ïŒ$N \\equiv 1 \\pmod {p-1}$ ãš Fermat ã®å°å®çãã $2^N \\equiv 2$ ãåŸãã®ã§ïŒ$2^{-nN}\\equiv 2^{-n}$ ãšãªãïŒä»¥äžãš $2^{2203}\\equiv 1$ ã«çæããã°ïŒ\r\n$$\r\n\\frac{(p^p+m)!}{(2^{n} p)^{N}} \\equiv - m! \\cdot 2^{2203-n} \r\n$$\r\nãåŸãïŒãã®å·ŠèŸºã¯æŽæ°ã§ããããïŒ\r\n$$ R_{m, n} = - m! \\cdot 2^{2203 - n} - p \\cdot \\left \\lfloor \\frac{-m! \\cdot 2^{2203-n}}{p} \\right \\rfloor $$\r\nãšãªããïŒ\r\n$$ - \\left( \\frac{m!}{2^n} + 1 \\right) \\le - \\frac{m! \\cdot 2^{2203-n}}{p} = - \\frac{m!}{2^n} \\cdot \\frac{2^{2203}}{2^{2203}-1} \\lt - \\frac{m!}{2^n} $$\r\nã§ããã®ã§ïŒ\r\n$$\r\nR_{m, n}=\\Bigl( \\Bigl\\lfloor \\frac{m!}{2^n} \\Bigl\\rfloor + 1 \\Bigl) p - m! \\cdot 2^{2203-n} \r\n$$\r\nãšè¡šããïŒæŽæ° $a$ ãäºé²æ°è¡šèšãããšãã®æ¡åã $\\mathrm{popcount}(a)$ ãšè¡šèšããããšã«ãããšïŒãããã®ç·åã¯\r\n$$\r\n\\begin{aligned}\r\n\\sum_{n=1}^{2203} R_{m, n}\r\n& = 2203p + p \\sum_{n=1}^{2203} \\Bigl\\lfloor \\frac{m!}{2^n} \\Bigl\\rfloor - m! \\sum_{n=0}^{2202} \r\n 2^n \\\\\\\\\r\n& = 2203p + (m! - \\mathrm{popcount}(m!))p - m!\\cdot p\\\\\\\\\r\n& = (2203 - \\mathrm{popcount}(m!))p\r\n\\end{aligned}\r\n$$\r\nãšãªãïŒ$m=1, 2, \\cdots , 8$ ã«ã€ããŠïŒ$\\mathrm{popcount}(m!)$ ã®å€ã¯ãããã $1, 1, 2, 2, 4, 4, 6, 6$ ã ããïŒæ±ããçãã¯ä»¥äžã®èšç®ã§æ±ããããïŒ\r\n$$\r\n2203\\times 8 - (1+1+2+2+4+4+6+6)=\\mathbf{17598}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc170/editorial/6411"
}
] | ã$p=2^{2203}-1$ ã¯çŽ æ°ã§ãïŒ$1 \le m \le 8$ ããã³ $1 \le n \le 2203$ ãã¿ããæŽæ° $m, n$ ã«å¯ŸãïŒ$(p^p+m)!$ ã $p$ ã§å²ãåããæ倧ã®åæ°ã $N(m)$ ãšãããšïŒ
$$\dfrac{(p^p+m)!}{(2^{n} p)^{N(m)}}$$
ã¯æŽæ°ãšãªãã®ã§ïŒããã $p$ ã§å²ã£ãäœãã $R_{m, n}$ ãšããŸãïŒ\
ããã®ãšãïŒä»¥äžã¯æŽæ°ãšãªãã®ã§ïŒãã®å€ã解çããŠãã ããïŒ
$$
\sum_{m=1}^{8} \sum_{n=1}^{2203} \frac{R_{m, n}}{p} .
$$ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/3987 | A | OMC169(A) | 100 | 359 | 366 | [
{
"content": "ã$BM = CM = AM = AB = 4$ ããïŒäžè§åœ¢ $ABM$ ã¯äžèŸºã®é·ãã $4$ ã®æ£äžè§åœ¢ã§ããããïŒãã®é¢ç©ã¯ $4\\sqrt3$ ã§ããïŒããã§ïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯äžè§åœ¢ $ABM$ ã®é¢ç©ã® $2$ åã§ããããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $8\\sqrt3$ ãšåããïŒç¹ã«è§£çãã¹ã㯠$\\bf{192}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/3987"
}
] | ãäžè§åœ¢ $ABC$ ã«ã€ããŠïŒèŸº $BC$ ã®äžç¹ã $M$ ãšãããš $AB=AM=CM=4$ ãšãªããŸããïŒãã®ãšãäžè§åœ¢ $ABC$ ã®é¢ç©ã®äºä¹ãæ±ããŠãã ããïŒ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/3139 | B | OMC169(B) | 100 | 353 | 365 | [
{
"content": "ã$1+2+\\cdots +n$ ã $5$ ã§å²ã£ãäœã㯠$1,3,1,0,0$ ã§åšæããããïŒæ¡ä»¶ãã¿ãã $n$ 㯠$5$ ã€ããšã« $2$ ã€ãã€çŸããïŒãŸãïŒ$10000$ 㯠$5$ ã®åæ°ã§ããããïŒæ±ããåæ°ã¯ $10000\\times 2\\/5=\\textbf{4000}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/3139"
}
] | ã$1+2+\cdots + n$ ã $5$ ã§å²ãåãããããªïŒ$1$ ä»¥äž $10000$ 以äžã®æŽæ° $n$ ã¯ããã€ãããŸããïŒ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/1739 | C | OMC169(C) | 200 | 183 | 234 | [
{
"content": "ã$t=10^{10}$ ãšãããšïŒ\r\n$$E=t^2+22t+57=(t+3)(t+19)$$\r\nã§ããïŒããã« $t+3$ 㯠$7$ ã§å²ãåããããšããïŒä¿èšŒãããŠããäºå®ããïŒæ±ããå€ã¯\r\n$$p+q=7+(t+19)=\\textbf{10000000026}$$\r\nã¡ãªã¿ã« $(t+3)\\/7$ ãçŽ æ°ã§ããïŒããªãã¡ $E$ ã¯ã¡ããã© $3$ ã€ã®çŽ å æ°ããã€ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/1739"
}
] | ã$21$ æ¡ã®æŽæ°
$$E=100,000,000,220,000,000,057$$
ã®çŽ å æ°ã«ã€ããŠïŒä»¥äžã®äºå®ãä¿èšŒãããã®ã§ïŒ$p+q$ ã®å€ã解çããŠäžããïŒ
- $E$ 㯠$1$ æ¡ ã®çŽ æ°ïŒ$p$ ãšããïŒããã³ $11$ æ¡ã®çŽ æ°ïŒ$q$ ãšããïŒãããããã¡ããã©äžã€ãã€çŽ å æ°ã«ãã€ïŒ
ããã ãïŒã$,$ ã㯠$3$ æ¡ããšã®åºåãã§ãïŒ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/6445 | D | OMC169(D) | 200 | 187 | 216 | [
{
"content": "$x^2 - 2x + 4 = 0$ ã®è§£ã $ x = 1 \\pm \\sqrt{3}i = 2\\bigg( \\mathrm{cos} \\dfrac{\\pi}{3} + i\\mathrm{sin} \\dfrac{\\pm\\pi}{3} \\bigg)$ ãšãªãããšãçšãããšïŒde Moivreã®å®çããïŒ\r\n\r\n$$\\begin{aligned}\r\n\\dfrac{(\\alpha ^ {50} + \\beta ^ {50}) ^ {2}}{\\alpha ^ {123} + \\beta ^ {123}} \r\n& = \\frac{\\bigg(2^{50} \\times \\bigg(\\mathrm{cos} \\dfrac{50\\pi}{3}+ i\\mathrm{sin} \\dfrac{50\\pi}{3} + \\mathrm{cos} \\dfrac{-50\\pi}{3}+ i\\mathrm{sin} \\dfrac{-50\\pi}{3}\\bigg) \\bigg) ^ {2}}\r\n{2^{123} \\times \\bigg(\\mathrm{cos} \\dfrac{123\\pi}{3} + i\\mathrm{sin} \\dfrac{123\\pi}{3} + \\mathrm{cos} \\dfrac{-123\\pi}{3} + i\\mathrm{sin} \\dfrac{-123\\pi}{3}\\bigg)}\\\\\\\\\r\n& = \\dfrac{\\bigg(\\mathrm{cos} \\dfrac{-2\\pi}{3} + \\mathrm{cos} \\dfrac{2\\pi}{3} \\bigg) ^ 2} {2^{23} \\times \\big(\\mathrm{cos} \\pi + \\mathrm{cos} (-\\pi) \\big)}\\\\\\\\\r\n&= -\\dfrac{1}{2^{24}}\r\n\\end{aligned}$$\r\n\r\nã§ããïŒãã£ãŠïŒè§£çãã¹ãå€ã¯ $2^{24} + 1 = \\bf16777217$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/6445"
},
{
"content": "ãè€çŽ æ°ã䜿ããªãæ¹éãæžããŠãããŸãïŒ\\\r\nã$(x+2)(x^2-2x+4)=x^3+8$ ããïŒ$x^2-2x+4=0$ ã®è§£ã¯ïŒ$x^3=-8$ ãæºããïŒ\\\r\nããããçšããã°ïŒåæ¯ã¯ $\\alpha^{123}+\\beta^{123}=(-8)^{41}Ã2$ ã§ããïŒåå㯠$\\alpha^{50}+\\beta^{50}=(-8)^{16}(\\alpha^2+\\beta^2)$ ããèšç®ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/6445/254"
}
] | ã$x$ ã«ã€ããŠã®äºæ¬¡æ¹çšåŒ $x^2 - 2x + 4 = 0$ ã®äºã€ã®è€çŽ æ°è§£ã $x=\alpha, \beta$ ãšãããšãïŒ
$$\dfrac{(\alpha ^ {50} + \beta ^ {50}) ^ {2}}{\alpha ^ {123} + \beta ^ {123}} $$
ã¯äºãã«çŽ ãªæ£ã®æŽæ° $p, q$ ãçšã㊠$-\dfrac{p}{q}$ ãšè¡šããã®ã§ïŒ$p+q$ ã解çããŠãã ããïŒ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/1760 | E | OMC169(E) | 300 | 153 | 200 | [
{
"content": "ã$6.125 = \\dfrac{49}{8}$ ã§ãããã $n$ 㯠$8$ ã®åæ°ã§ããïŒãã®ãšã $n=8k$ ã«ã€ã㊠$A_6,\\ldots,A_n$ ã®åèšåŸç¹ã¯ $49k-35$ ã§ããïŒãã® $n-5$ 人ããšãåŸãåèšåŸç¹ã¯é«ã
$6(8k-5)$ ç¹ã§ããïŒããã $49k - 35$ 以äžã§ããããšãã $k\\leq 5$ ãåŸãïŒãã®ãšãæ±ããå Žåã®æ°ã¯ïŒæšªäžåã«äžŠãã $6(8k - 5) - (49k - 35)$ åã®çã $8k-6$ åã®ä»åãã§åããæ¹æ³ã®æ°ãšåãã ããïŒ${}\\_{7k-1}\\mathrm{C}\\_{5-k}$ éãã§ããïŒä»¥äžããæ±ããç·åã¯\r\n$$\\sum_{k=1}^5 {}\\_{7k-1}\\mathrm{C}\\_{5-k} =\\textbf{519}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/1760"
}
] | ã$n$ ã $6$ 以äžã®æŽæ°ãšããŸãïŒ$n$ 人ã®åŠç $A_1,\ldots,A_n$ ã $7$ ç¹æºç¹ã®ãã¹ããåéšãããšããïŒãã®å¹³åç¹ã¯ $6.125$ ç¹ã§ããïŒ$A_1,\ldots,A_5$ ã® $5$ 人ã®ã¿ãæºç¹ãç²åŸããŸããïŒãã¹ãã®åŸç¹ãšããŠãããããã®ã $0$ ãã $7$ ãŸã§ã®æŽæ°å€ã§ãããšãïŒ$A_6,\ldots,A_n$ ã®åŸç¹ã®çµã¿åããïŒååŠçãåºå¥ããïŒãšããŠãããããã®ã®åæ°ãããããã® $n$ ã«ã€ããŠæ±ãïŒãã¹ãŠã® $n\geq 6$ ã«ã€ããŠãããã®ç·åã解çããŠãã ããïŒ |
OMC169 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc169/tasks/1844 | F | OMC169(F) | 400 | 44 | 76 | [
{
"content": "ãéè§äžè§åœ¢ $ABC$ 㯠$\\angle BHC=180^{\\circ}-\\angle A$ ãªã©ãæãç«ã€ããïŒäžã€ç®ã®æ¡ä»¶ã¯æ¬¡ã®ããã«å€åœ¢ã§ããïŒ\r\n$$3\\angle B - 3\\angle C = 180^\\circ - \\angle A = \\angle B + \\angle C$$\r\nãããã£ãŠïŒ$\\angle B=2\\angle C$ ãåŸãïŒãŸãïŒç¹ $C$ ã®çŽç· $AH$ ã«é¢ãã察称ç¹ã $D$ ãšãããšïŒ\r\n$$\\angle DAB = \\angle B - \\angle C = \\angle C$$\r\nã§ãããã $BA=BD$ ã§ããïŒäºç蟺äžè§åœ¢ $BAD,ADC$ ã¯çžäŒŒã§ããïŒãŸãïŒé¢ç©æ¯ã¯ $DB:DC=4:9$ ã§ããã®ã§ïŒçžäŒŒæ¯ã¯ $2:3$ ãšãªãïŒãã£ãŠïŒ\r\n$$AB : AC = 2 : 3,\\quad AB : BC = DB : BC = 4 : 5$$\r\nã§ããããïŒ$AB : BC : CA = 4 : 5 : 6$ ãåŸãïŒ\\\r\nãäžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã $R$ ãšãããšïŒ$AH = 2R\\cos A$ ãªã©ãæãç«ã¡ïŒããã«äœåŒŠå®çãã\r\n$$\\cos A = \\frac{9}{16},\\quad \\cos B = \\frac{1}{8},\\quad \\cos C = \\frac{3}{4}$$\r\nã§ããïŒããŸïŒäžã€ç®ã®æ¡ä»¶ãã\r\n$$2R( - \\cos A + \\cos B + \\cos C) = 1000$$\r\nãæãç«ã€ã®ã§ïŒããã解ãããšã§ $R = \\textbf{1600}$ ãåŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/1844"
},
{
"content": "ã$AH$ ãš $BC$ ã®äº€ç¹ã $D$ ãšãïŒ$BD=x,DC=9x$ ãšããŸãïŒ$\\angle B=2\\angle C$ ãã $9\\tan{2C}=\\tan{C}$ ãåããïŒåè§å
¬åŒãã $\\tan{C}=\\dfrac{\\sqrt{7}}{3}$ ãåãããŸãïŒãããã£ãŠ $AD=3\\sqrt{7}x$ ãšãªãïŒè¯ãæãã«å³åœ¢ã確å®ããŠãããŸããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc169/editorial/1844/255"
}
] | ãåå¿ã $H$ ãšããéè§äžè§åœ¢ $ABC$ ã以äžã®æ¡ä»¶ãã¿ãããšãïŒãã®å€æ¥åã®ååŸãæ±ããŠãã ããïŒ
- $3(\angle AHB-\angle AHC)=\angle BHC$ïŒ
- äžè§åœ¢ $AHC$ ã®é¢ç©ã¯ $AHB$ ã®é¢ç©ã® $9$ åã§ããïŒ
- $BH+CH=AH+1000$ïŒ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/5536 | A | OMC168(A) | 200 | 206 | 220 | [
{
"content": "ãäžåŒã® $x$ ã $\\dfrac{1}{x}$ ã§çœ®ãæããããšã§\r\n$$ 100f\\biggl(\\dfrac{1}{x}\\biggr)-f(x)=\\dfrac{9999}{x} $$\r\nãåŸãïŒãããšäžåŒãã $f\\biggl(\\dfrac{1}{x}\\biggr)$ ãæ¶å»ããããšã§\r\n$$f(x)=100x+\\dfrac{1}{x}$$\r\nãšãªãïŒããã¯ç¢ºãã«äžåŒãã¿ããïŒç¹ã«ïŒæ±ããæå°å€ã¯çžå ã»çžä¹å¹³åã®é¢ä¿ãã $2\\sqrt{100}=\\mathbf{20}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/5536"
}
] | ãæ£ã®å®æ°ã«å¯ŸããŠå®çŸ©ããæ£ã®å®æ°å€ããšãé¢æ° $f$ ã§ãã£ãŠïŒä»»æã®å®æ° $x\gt 0$ ã«å¯ŸããŠä»¥äžã®çåŒãæãç«ã€ãã®ã¯äžæã«å®ãŸããŸãïŒ
$$100f(x)-f\biggl(\dfrac{1}{x}\biggr)=9999x$$
ã$x$ ããã¹ãŠã®æ£ã®å®æ°ãåããšãïŒ$f(x)$ ã¯æå°å€ $m$ ããã€ã®ã§ïŒ$m$ ã®å€ã解çããŠãã ããïŒ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/2694 | B | OMC168(B) | 500 | 37 | 65 | [
{
"content": "ã$3$ åã亀ããäžç¹ã $X(\\ne A)$ ãšããïŒæ¬¡ã®äºå®ãæãç«ã€ïŒ\r\n\r\n---\r\n**äºå®.**ã$\\displaystyle\\frac{1}{BF} - \\frac{1}{CF} = \\frac{1}{DF} - \\frac{1}{EF}$\r\n\r\n**蚌æ.**ã$AX$ ãš $BC$ ã®äº€ç¹ããæ¹ã¹ãã®å€ãèšç®ããŠããããïŒç¹ $F$ ãäžå¿ã«ååŸ $1$ ã®å転ãè¡ãïŒå転åŸã®ç¹ã $^{\\prime}$ ãä»ããèšå·ã§è¡šãïŒãã®ãšã, $A^{\\prime}X^{\\prime}\\parallel B^{\\prime}C^{\\prime}$ã§ããïŒåè§åœ¢ $A^{\\prime}X^{\\prime}C^{\\prime}B^{\\prime},A^{\\prime}X^{\\prime}E^{\\prime}D^{\\prime}$ ã¯åã«å
æ¥ããïŒããªãã¡, åè§åœ¢ $A^{\\prime}X^{\\prime}C^{\\prime}B^{\\prime},A^{\\prime}X^{\\prime}E^{\\prime}D^{\\prime}$ ã¯ããããçèå°åœ¢ã§ããïŒãã£ãŠ $B^{\\prime}F - C^{\\prime}F = D^{\\prime}F - E^{\\prime}F$ ãã瀺ãããïŒ\r\n\r\n---\r\nãäºå®ãã $\\displaystyle\\frac{1}{EF}-\\frac{1}{DF}=\\frac{1}{11110}$ ãåŸãïŒäžæ¹ $DF + EF = 101$ ãã $\\displaystyle\\frac{DF}{EF}-\\frac{EF}{DF}=\\frac{1}{110}$ ã§ããããïŒ\r\n$$DF:EF=1+\\sqrt{48401}:220$$\r\nãšèšç®ã§ããïŒãã£ãŠ, 解çãã¹ãå€ã¯ $\\textbf{48622}$ ã§ããïŒãªãïŒæ¡ä»¶ $AB=2022, AC=2200$ ã¯äœå°ã§ãããïŒãããã¿ããå³ã¯ååšããïŒ\r\n\r\nãåèã«å³ãäžã«ç€ºãïŒç¹ç·ã¯å転åã®åïŒå®ç·ã¯å転åŸã®åãŸãã¯çŽç·ãè¡šããŠããããšã«æ³šæããïŒ\r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/2694"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã«ç¹ $D,E,F$ ããããŸãïŒããã㯠$B,D,F,E,C$ ã®é ã«äžŠãã§ããïŒæ¬¡ãæãç«ã¡ãŸãïŒ
$$AB=2022,\quad AC=2200,\quad BF=1111,\quad CF=1010,\quad DE=101$$
ãããã«ïŒäžè§åœ¢ $ABC$ ã®å€æ¥åïŒäžè§åœ¢ $ADE$ ã®å€æ¥åïŒããã³ $A$ ãéã蟺 $BC$ ã« $F$ ã§æ¥ããåãïŒ$A$ ãšç°ãªãäžç¹ã§äº€ãã£ãŠããŸãïŒãã®ãšã $DF : EF$ ã¯æ£ã®æŽæ° $x,y,z$ïŒ $y$ ã¯å¹³æ¹å åããããªãïŒãçšããŠ
$$DF:EF=x+\sqrt{y}:z$$
ãšè¡šãããã®ã§ïŒ$x+y+z$ ã®å€ãæ±ããŠãã ããïŒ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/5003 | C | OMC168(C) | 500 | 96 | 142 | [
{
"content": "ããŸãïŒä»¥äžã®è£é¡ã瀺ããïŒ\r\n\r\n------\r\n**è£é¡ïŒ**æ£ã®æŽæ° $n$ ããã³çŽ æ° $p$ ã«ã€ããŠïŒ$n$ ã® $p$ é²æ°è¡šç€ºã«ãããåæ¡ã®åã $s_p(n)$ ãšãããšïŒ$n!$ 㯠$p$ ã§ã¡ããã© $\\dfrac{n-s_p(n)}{p-1}$ åå²ãåããïŒ\\\r\n**蚌æïŒ**$n = 1$ ã®ãšãïŒè£é¡ã¯æããã«æç«ããïŒè£é¡ãããæ£ã®æŽæ° $n$ ã§æç«ãããšä»®å®ããïŒãã®ãšãç¹°ãäžãããèããããšã§\r\n$$s_p(n+1) - s_p(n) = 1-(p-1)v_p(n+1)$$\r\nãæãç«ã€ããïŒ\r\n$$\\frac{{n+1}-s_p(n+1)}{p-1}-\\frac{n-s_p(n)}{p-1} = v_p(n+1)$$\r\nãšãªãïŒè£é¡ã $n+1$ ã§ãæç«ããããšãåããïŒãªãïŒæ£ã®æŽæ° $x$ ã«å¯ŸãïŒ$p^m$ ã $x$ ãå²ãåããããªæ倧ã®æŽæ° $m$ ã $v_p(x)$ ã§è¡šããŠããïŒ\r\n------\r\nãè£é¡ããïŒ$k=1,2,...,n$ ã«å¯Ÿã㊠${}\\_{n}\\mathrm{C}\\_{k}$ 㯠$7$ 㧠$\\dfrac{s_7(k)+s_7(n-k)-s_7(n)}{6}$ åå²ãåããïŒãããã£ãŠïŒ${}\\_{n}\\mathrm{C}\\_{k}$ ã $7$ ã®åæ°ã§ãªãããšã¯ $s_7(k)+s_7(n-k)=s_7(n)$ ãæãç«ã€ããšãšåå€ã§ããïŒãã£ãŠïŒ$n, k$ ã® $7$ é²æ³è¡šç€ºããããã\r\n$$n=a_07^0+a_17^1+...+a_{9}7^{9},\\quad k=b_07^0+b_17^1+...+b_{9}7^{9}$$\r\nãšãããšïŒ${}\\_{n}\\mathrm{C}\\_{k}$ ã $7$ ã§å²ãåããªãããšã¯ $0\\le i\\le 9$ 㧠$a_i\\ge b_i$ ãæç«ããããšãšåå€ãšãªãïŒãã®ãã㪠$k$ ã¯\r\n$$(a_0+1)(a_1+1)(a_2+1)\\cdots(a_9+1)$$\r\nã ãããïŒããã $10^4$ ã«çããã®ã§ïŒ$a_0,a_1,a_2,...,a_9$ ã¯æ¬¡ã®ãã¡ããããã®äžŠã¹æ¿ãã§ããïŒ\r\n$$\\begin{aligned}\r\n0,0,1,1,1,1,4,4,4,4\\\\\\\\\r\n0,0,0,1,1,3,4,4,4,4\\\\\\\\\r\n0,0,0,0,3,3,4,4,4,4\r\n\\end{aligned}$$\r\nåã
ã®çµã«ã€ããŠçµ $(a_0,a_1,a_2,...,a_9)$ ã®æ°ãæ°ãäžããã°ããïŒæ±ãã $n$ ã®åæ°ã¯\r\n$$\\frac{10!}{2!\\times4!\\times4!}+\\frac{10!}{3!\\times2!\\times1!\\times4!}+\\frac{10!}{4!\\times2!\\times4!}=\\mathbf{18900}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/5003"
}
] | ã$10^4-1$ ä»¥äž $7^{10}-1$ 以äžã®æŽæ° $n$ ã§ãã£ãŠïŒæ¬¡ã® $n+1$ æ°ã®ãã¡ã¡ããã© $10^4$ åã $7$ ã§**å²ãåããªã**ãããªãã®ã¯ããã€ãããŸããïŒ
$${}\_{n}\mathrm{C}\_{0},\quad
{}\_{n}\mathrm{C}\_{1},\quad
{}\_{n}\mathrm{C}\_{2},\quad \ldots,\quad
{}\_{n}\mathrm{C}\_{n}$$ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/7293 | D | OMC168(D) | 600 | 47 | 67 | [
{
"content": "ã$N=61^{45^{45}}$ ãšããïŒ\r\n\r\n**è£é¡1ïŒ**$M_n=\\dbinom{N-1}{3n-1}$ ã§ããïŒ\\\r\n**蚌æïŒ**æ¡ä»¶ãã次ãæãç«ã€ïŒ\r\n$$c_1+c_2+...+c_n=Nã(*)$$\r\n$$a_i\\lt b_i\\lt c_iã(i=1,2,...,n)$$\r\nå $c_i$ ã«å¯ŸããŠæ£ã®æŽæ°ã®çµ $(a_i,b_i)$ 㯠$\\dbinom{c_i-1}{2}$ çµã ãããã®ã§ïŒ$(\\*)$ ãæºãã $c_1,...,c_n$ ã«å¯ŸããŠæ¬¡ã®å€ã足ãåããããã®ã $M_n$ ã«çããïŒãã ã $\\dbinom{0}{2}=\\dbinom{1}{2}=0$ ãšããïŒ\r\n$$m=\\prod_{i=1}^n\\dbinom{c_i-1}{2}$$\r\nããã§äžåŒã® $m$ ã¯æ¬¡ã®ããã«è§£éã§ããïŒ\r\n- 暪äžåã«äžŠãã $c_1+...+c_n-1$ åã®çœäžžãã $3n-1$ åãé»äžžã«å¡ããšã,å·Šãã $3,6,...,3(n-1)$ çªç®ã®é»äžžãããããå·Šãã $c_1,c_1+c_2,...,c_1+...+c_{n-1}$ çªç®ã®çœäžžã§ãã£ããããªå¡ãæ¹ã®æ°\r\n\r\n $(\\*)$ ããçµå±ïŒ$m$ ã®ç·å $M_n$ 㯠$\\dbinom{N-1}{3n-1}$ ã«çããïŒ $\\square$ \r\n\r\n\r\n**è£é¡2ïŒ** $\\displaystyle\\sum_{n=1}^{\\lfloor N\\/3\\rfloor}M_n=\\frac{2^{N-1}-1}{3}$ \\\r\n**蚌æïŒ** $\\omega=\\dfrac{-1+\\sqrt{3}i}{2}$ ãšããïŒäºé
å®çãã次ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\n(1+1)^{N-1} &= \\binom{N-1}{0}+\\binom{N-1}{1}+\\binom{N-1}{2}+...+\\binom{N-1}{N-1} \\\\\\\\\r\n\\omega(1+\\omega)^{N-1} &= \\omega\\binom{N-1}{0}+\\omega^2\\binom{N-1}{1}+\\binom{N-1}{2}+...+\\binom{N-1}{N-1} \\\\\\\\\r\n\\omega^2(1+\\omega^2)^{N-1} &= \\omega^2\\binom{N-1}{0}+\\omega\\binom{N-1}{1}+\\binom{N-1}{2}+...+\\binom{N-1}{N-1}\r\n\\end{aligned}$$\r\n $N\\equiv 1\\pmod6$ ããã³ $1+\\omega+\\omega^2=0$ ã«æ³šæããŠèŸºã
足ãåããããšïŒæ¬¡ãåŸãïŒ\r\n$$2^{N-1}-1=3\\sum_{n=1}^{\\lfloor N\\/3\\rfloor}M_n$$\r\nãã£ãŠè£é¡ã¯ç€ºãããïŒ $\\square$ \r\n\r\nãããŠïŒLTEã®è£é¡ãã次ãæãç«ã€ïŒ\r\n$$\\begin{aligned}\r\ni &= v_3\\left(\\frac{2^{N-1}-1}{3}\\right)=v_3(16^{\\frac{N-1}{4}}-1)-1=v_3(15)+v_3(N-1)-1=v_3(61-1)+v_3(45^{45})=91 \\\\\\\\\r\nj &= v_5\\left(\\frac{2^{N-1}-1}{3}\\right)=v_5(16^{\\frac{N-1}{4}}-1)=v_5(15)+v_5(N-1)=v_5(61-1)+v_5(45^{45})+1=47\r\n\\end{aligned}$$\r\n以äžããïŒè§£çãã¹ãå€ã¯ $91\\times 47^2=\\mathbf{201019}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/7293"
}
] | ã $n$ ãæ£ã®æŽæ°ãšãïŒ$3n$ åã®æ£ã®æŽæ° $a_i,b_i,c_i$ $(i=1,2,...,n)$ ã«å¯ŸããŠïŒ$O$ ãåç¹ãšãã座æšå¹³é¢äžã® $3n$ åã®ç¹ $A_i(i,a_i),B_i(i,b_i),C_i(i,c_i)$ ãèããŸãïŒç¹ $X$ ã®åº§æšã $(n+1,0)$ ãšãïŒä»¥äžã®ããã«å®ããŸãïŒ
- $n+2$ åã®ç¹ $O,A_1,...,A_{n},X$ãé ã«çµãã§ã§ããæãç·ïŒ$\alpha$
- $n+2$ åã®ç¹ $O,B_1,...,B_{n},X$ãé ã«çµãã§ã§ããæãç·ïŒ$\beta$
- $n+2$ åã®ç¹ $O,C_1,...,C_{n},X$ãé ã«çµãã§ã§ããæãç·ïŒ$\gamma$
ããå³å¯ã«ã¯ïŒããšãã° $\alpha$ ã¯ç·å $OA_1,A_1A_2,...,A_nX$ ãã€ãªãã§åŸãããŸãïŒ
ã次ã®æ¡ä»¶ãæºãã $3n$ åã®æ£ã®æŽæ° $a_i,b_i,c_i$ $(i=1,2,...,n)$ ã®çµã¯ $M_n$ åãããŸãïŒ
- $\gamma$ ããã³ $x$ 軞ã§å²ãŸããé¢ç©ã¯ $61^{45^{45}}$ ã§ããïŒ
- $O,X$ ãé€ã㊠$\alpha,\beta,\gamma$ ã¯ã©ã® $2$ ã€ãå
±æç¹ãæããªãïŒ
- $a_1\lt b_1\lt c_1$ ãæãç«ã€ïŒ
ãã ãïŒ$61^{45^{45}} = 61^{(45^{45})}$ã§ãïŒãã®ãšãïŒ$M_n$ ãæ±ãïŒ
$$\sum_{n=1}^{\left\lfloor 61^{45^{45}}\/3 \right\rfloor}M_n$$
ã $3$ ã§å²ãåããåæ°ã $i$ åïŒ$5$ ã§å²ãåããåæ°ã $j$ ãšãããšãã®ïŒ$ij^2$ ã®å€ã解çããŠãã ããïŒ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/8088 | E | OMC168(E) | 700 | 12 | 30 | [
{
"content": "ãç·å $PQ$ ã®äžç¹ã $M$ ãšããïŒãŸã以äžã®è£é¡ã確èªããïŒ\r\n\r\n-----\r\n**è£é¡1ïŒ**$MA=MG$ ãæãç«ã€ïŒ\\\r\n**蚌æïŒ**\r\n$AE, AF$ ã®äžç¹ããããã $N, L$ ãšãããšïŒ$3$ ç¹ $N,L,M$ ã¯ããããçŽç· $AQ,EF$ ãžã®è·é¢ãçããã®ã§å
±ç·ã§ããïŒãŸãïŒç¹ $A$ ãååŸ $0$ ã®å $\\Omega$ ãšèŠãªããšïŒ$N,L$ ã® $2$ å $\\omega,\\Omega$ ã«é¢ããæ¹ã¹ãã®å€ã¯çããïŒ\\\r\nããããã£ãŠ2åã®æ ¹è»ž $NL$ äžã®ç¹ $M$ ã«ããã $2$ å $\\omega,\\Omega$ ã«é¢ããæ¹ã¹ãã®å€ã¯çããïŒãã£ãŠ $MA=MG$ ã§ããïŒ$\\square$\r\n-----\r\n**è£é¡2ïŒ**$X$ ã§ã® $\\omega$ ã®æ¥ç·ã $m$ ãšãããšïŒ$m$ 㯠$P$ ãéãïŒçŽç· $AM$ ã«å¹³è¡ã§ããïŒ\\\r\n**蚌æïŒ**$\\omega$ ã«é¢ãã $A$ ã®æ¥µç·äžã« $P$ ãååšããã®ã§ïŒLa Hire ã®å®çããïŒçŽç· $AG$ 㯠$\\omega$ ã«é¢ãã $P$ ã®æ¥µç·ã§ããããïŒ$P$ 㯠$m$ äžã«ååšããïŒãããšïŒ\r\n$$ \\angle MAG = \\angle MGA = \\angle PGX = \\angle PXG $$\r\nã§ããã®ã§ïŒ$AM \\parallel XP$ ããããïŒ$\\square$\r\n-----\r\n**è£é¡3ïŒ**$\\alpha = \\angle MAX$ãšãããšãïŒåè§åœ¢ $AQRX$ ã®é¢ç©ã¯ $AE^2 \\tan \\alpha$ ã«çããïŒ\\\r\n**蚌æïŒ**$ |\\triangle MAQ| = |\\triangle MAP| = |\\triangle MAX|$ ã§ããã®ã§ïŒ\r\n$$ |\\square AQRX| = 2 \\cdot (|\\triangle MAQ| + |\\triangle MAX|) = 4 \\cdot |\\triangle MAX| $$\r\nã§ããïŒããã§ïŒ$AG \\cdot AX = AE^2$ ã§ããã®ã§ïŒ\r\n$$ |\\triangle MAX| = \\frac{1}{2} AM \\cdot AX \\sin \\alpha = \\frac{AM \\cdot AE^2}{2AG} \\sin \\alpha = \\frac{AM \\cdot AE^2}{2 \\cdot 2AM\\cos \\alpha} \\sin \\alpha = \\frac{AE^2}{4} \\tan \\alpha $$\r\nããïŒ$|\\square AQRX| = AE^2 \\tan \\alpha$ ãåŸãïŒ\r\n$\\square$\r\n-----\r\n\r\nãããŠïŒã㟠$y \\lt z$ ãªãæ£ã®å®æ° $x, y, z$ ã«ãã\r\n$$AE=AF=x, \\quad BF=BD=y, \\quad CD=CE=z$$\r\nãšãããšïŒ$AB=x+y,BC=y+z,CA=z+x$ ãšè¡šãããšãã§ããïŒ\r\n$AX$ ãš $BC$ ã®äº€ç¹ã $Z$ ãšãããšïŒæåäºå®ãšã㊠$BZ=CD = z$ ã§ããïŒ\r\n $A$ ãã $BC$ ãžäžãããåç·ã®è¶³ã $H$ ãšãããšæ¬¡ã®ããã« $AH$ ã®é·ããæ±ããããïŒ\r\n$$AH=\\frac{2|\\triangle ABC|}{BC}=\\frac{2\\sqrt{xyz(x+y+z)}}{y+z}$$\r\nãã£ãŠ $HZ$ ã®é·ãã¯æ¬¡ã®ããã«æ±ãŸãïŒ\r\n$$ \\begin{aligned}\r\nHZ &= BZ-BH \\\\\\\\\r\n&=BZ-\\sqrt{AB^2-AH^2} \\\\\\\\\r\n&=z-\\sqrt{(x+y)^2 - \\frac{4xyz(x+y+z)}{(y+z)^2}} \\\\\\\\\r\n&= z - \\frac{xy+yz-zx+y^2}{y+z} \\\\\\\\\r\n&= \\frac{(z-y)(x+y+z)}{y+z}\r\n\\end{aligned}$$\r\n $MG\\parallel HZ$ ã§ããããšã«æ°ãä»ãããš $\\angle AZH=\\alpha$ ãªã®ã§æ¬¡ãæãç«ã€ïŒ\r\n$$\\tan \\alpha=\\frac{AH}{HZ}=\\frac{2\\sqrt{xyz}}{(z-y)\\sqrt{x+y+z}}$$\r\n以äžã®ããšãšè£é¡3ããïŒåè§åœ¢ $AQRX$ ã®é¢ç©ã® $2$ ä¹ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$|\\square AQRX|^2 = AE^4 \\tan^2\\alpha = \\frac{4x^5yz}{(z-y)^2(x+y+z)}$$\r\nããŸïŒ$x= 6\\sqrt{727}, y = \\sqrt{727}-2, z = \\sqrt{727}+2$ ã§ããããïŒè§£çãã¹ãå€ã¯ \r\n$$\\frac{4 \\cdot 6^5 \\cdot 727^2 \\cdot \\sqrt{727} \\cdot (727-2^2)}{4^2 \\cdot 8\\sqrt{727}} = \\mathbf{92856731481}$$ \r\nã§ãã ïŒ\r\n\r\n",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/8088"
},
{
"content": "ãããŸã奜ãŸããæ¹æ³ã§ã¯ãªãããã§ããïŒåº§æšãçšããæ ¹æ§æµã§ãïŒ\\\r\nããŸãïŒåº§æšç³»ã䜿ãããšèããã«è³ããŸã§ã®æèãèšããŠãããŸãïŒ\r\n\r\nãç°¡åã®ããïŒ$\\sqrt{727}=t$ ãšããïŒ$AF=AE=6t$ïŒ$BF=BD=t-2$ïŒ$CD=CE=t+2$ ã§ããïŒ\\\r\nãç¹ $A$ ãã蟺 $BC$ ã«äžããåç·ã®è¶³ã $H$ ãšããïŒããã³ã®å
¬åŒãã $\\triangle{ABC}$ ã®é¢ç©ã¯ $4t\\sqrt{3(t^2-4)}$ ã§ããïŒ$AH=4\\sqrt{3(t^2-4)}$ ã§ããïŒããã«ïŒå
æ¥åã®ååŸã«ã€ããŠãïŒ$r=\\dfrac{\\sqrt{3(t^2-4)}}{2}$ ãåŸãïŒ\\\r\nãããã§è©Šãã«ïŒäžå¹³æ¹ã®å®çãçšã㊠$BH$ ã®é·ããæ±ããŠã¿ããšïŒ$t-14$ ãšãªãïŒ\\\r\nã以äžã®èšç®ããïŒç¹ $H$ ãåç¹ãšãã座æšç³»ãåã£ããšãïŒå°ãªããšãç¹ $A$ïŒ$B$ïŒ$C$ïŒ$D$ïŒ$E$ïŒ$F$ïŒ$G$ ã® $7$ ç¹ã«ã€ããŠã¯ $y$ 座æšã«åºãŠãã $\\sqrt{3(t^2-4)}$ ãé€ãã°ïŒã²ã©ãè€éãªåœ¢ã¯ããŠããªãããšããããïŒããã§ïŒç¹ $H$ ãåç¹ãšãã座æšç³»ãåãïŒ\r\n___\r\nãç°¡åã®ããïŒ$\\sqrt{3(t^2-4)}=s$ ãšããïŒãããŸã§ã®è°è«ããïŒ$A(0, 4s)$ïŒ$B(-t+14,0)$ïŒ$C(t+14,0)$ïŒ$D(12,0)$ïŒ$G(12,s)$ ã§ããïŒ$E$ïŒ$F$ ã¯äœ¿ããªãããç¥ïŒïŒ\\\r\nã次ã«ïŒç¹ $P$ïŒ$Q$ïŒ$R$ ã«ã€ããŠèããŠããïŒ$AE$ ãš $l$ ã®äº€ç¹ã $E^\\prime$ïŒ$AF$ ãš $l$ ã®äº€ç¹ã $F^\\prime$ ãšããïŒ\\\r\nã$\\triangle{AF^\\prime E^\\prime} \\text{âœ} \\triangle{ABC}$ ã§ããïŒãã®çžäŒŒæ¯ã $3:4$ ã§ããããšãçšããã°ïŒèŸº $AF^\\prime$ ãªã©ã®é·ããæ±ããããïŒããã§ïŒ$\\triangle{AEF}$ ãšçŽç· $l$ ã«ãã£ãŠã§ããå³åœ¢ã«ã¡ãã©ãŠã¹ã®å®çãé©çšããã°ïŒ$F^\\prime E^\\prime : E^\\prime P$ ãæ±ãŸãïŒããã«ãã£ãŠïŒç¹ $P$ ã®åº§æšãæ±ãŸãïŒãŸãïŒ$\\triangle{AQF^\\prime} \\text{âœ} \\triangle{FPF^\\prime}$ ãªã©ãçšããã°ïŒç¹ $Q$ ã®åº§æšãæ±ãŸãïŒç¹ $R$ ã«ã€ããŠãç°¡åã«æ±ãŸãïŒèšç®çµæã ããèšããšïŒä»¥äžã®ãšããã§ããïŒ\\\r\n$$P\\Bigl(\\dfrac{3}{8}(t^2+28),s \\Bigr)ïŒQ\\Bigl(-\\dfrac{21}{8}(t^2-4),s \\Bigr)ïŒR\\Bigl(-\\dfrac{9}{4}t^2+21,-2s \\Bigr)$$\r\nãããŸæ±ããããã®ã¯åè§åœ¢ $AQRX$ ã®é¢ç©ã§ããïŒãã®ãã¡ïŒ$\\triangle{AQR}$ ã®éšåã¯ïŒ$\\triangle{APQ}$ ã®é¢ç©ãšçããïŒç°¡åã«èšç®ã§ããïŒæ®ã $\\triangle{ARX}$ ã®éšåã«ã€ããŠã¯ïŒæ ¹æ§ã§ç¹ $X$ ãèšç®ããã°è§£æ±ºãããã§ããïŒ\\\r\nãæ¹ã¹ãã®å®çããïŒ$AG \\cdot AX=AE^2$ ã§ããïŒãã®ããšé©å®èšç®ãããããšã§ïŒç¹ $X\\Bigl(\\dfrac{48t^2}{3t^2+4},\\dfrac{16s}{3t^2+4} \\Bigr)$ ãåŸãïŒ$\\triangle{ARX}$ ã®é¢ç©ã¯ïŒå
šãŠã®ç¹ã $4s$ äžã«åããã°äžè§åœ¢ã®é¢ç©ãæ±ããå
¬åŒ $S=\\dfrac{1}{2}|a_1 b_2-a_2 b_1|$ ãçšããããšãã§ããïŒèšç®ããã°ïŒåæ¯ã® $3t^2+4$ ãçŽåããïŒå®å¿ã§ããïŒ\\\r\nã以äžã®èšç®ãéããŠïŒåè§åœ¢ $AQRX$ ã®é¢ç©ã¯ïŒ$\\triangle{AQR}+\\triangle{ARX}=\\dfrac{9}{2}st^2+\\dfrac{9}{2}st^2=9st^2=9 \\cdot 727\\sqrt{3 \\cdot 723}$ ãšæ±ãŸãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/8088/253"
}
] | ãäžç蟺äžè§åœ¢ $ABC$ ã®å
æ¥åã $\omega$ ãšãïŒ$\omega$ ãšèŸº $BC,CA,AB$ ã®æ¥ç¹ããããã $D,E,F$ ãšããŸãïŒ$\omega$ äžã« $D$ ã§ãªãç¹ $G$ ãããïŒ$G$ ã«ããã $\omega$ ã®æ¥ç· $l$ ã¯çŽç· $BC$ ã«å¹³è¡ã§ããïŒçŽç· $AG$ ãš $\omega$ ã®äº€ç¹ã®ãã¡ $G$ ã§ãªãæ¹ã $X$ ãšããŸãïŒãŸãïŒçŽç· $EF$ ãš $l$ ã®äº€ç¹ã $P$ïŒç¹ $A$ ãéãçŽç· $EF$ ã«å¹³è¡ãªçŽç·ãš $l$ ã®äº€ç¹ã $Q$ ãšãïŒåè§åœ¢ $APRQ$ ãå¹³è¡å蟺圢ãšãªããããªç¹ $R$ ããšããŸãïŒããŸïŒ
$$AB=7\sqrt{727}-2, \quad BC=2\sqrt{727}, \quad CA=7\sqrt{727}+2$$
ã§ãããšãïŒåè§åœ¢ $AQRX$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC168 (for experts) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc168/tasks/5006 | F | OMC168(F) | 800 | 5 | 27 | [
{
"content": "ã$N=10000,A=7,B=4$ ãšããïŒäžäºã€ã®æ¡ä»¶ã¯æ¬¡ãšåå€ã§ããïŒ\r\n$$(x_{k+1}-x_k,x_{k+2}-x_{k+1})\\in\\bigl\\\\{(-1,0),(-1,2),(0,0),(0,2),(1,-1),(1,1),(2,-1),(2,1)\\bigr\\\\}$$\r\nããã®æ¡ä»¶ãš $x_1=B$ ãã¿ããæŽæ°ã®çµ $(x_1,\\dots,x_N)$ ã**æŽã£ãçµ**ãšåŒã¶ããšãšããïŒæŽã£ãçµ $(x_1,\\dots,x_N)$ ã«å¯ŸãïŒãã¹ã«ã«ã®äžè§åœ¢ã«ãããŠå $k=1,\\dots,N$ ã«ã€ã㊠$\\dbinom{A+k}{x_k}$ ã«å¯Ÿå¿ããç¹ãèµ€è²ã«å¡ãããšãèããïŒãã®ãšãïŒãã¹ã«ã«ã®äžè§åœ¢ã® $A+1$ è¡ç®ãã $A+N+1$ è¡ç®ã®åè¡ããããŸãäžã€ãã€ç¹ãéè²ã«å¡ã次ã®æ¡ä»¶â»ãã¿ããããã«ã§ããïŒ\r\n\r\n- **æ¡ä»¶â»** ïŒ $i=A+1,A+2,...,A+N$ ã«ã€ããŠïŒ$i$ è¡ç®ã®èµ€è²ã«å¡ãããç¹ïŒèµ€ç¹ïŒãšéè²ã«å¡ãããç¹ïŒéç¹ïŒã¯é£ãåã£ãŠããïŒãã®2ç¹ã®ã¡ããã©äžã« $i+1$ è¡ç®ã®éç¹ãããïŒ\r\n\r\nãé£æ¥ããè¡ã®éç¹ãã€ãªããæãç·ã**é**ãšåŒã¶ããšãšããïŒ$\\dbinom{A+1}{B}$ ãèµ€ç¹ãšãªããããªéãäžã€åºå®ãããšãïŒæ¡ä»¶â»ãæºããéç¹ã®éåãäžãããããªæŽã£ãçµã¯ãã äžã€ååšããããšã確èªã§ããïŒããªãã¡ $\\dbinom{A+1}{B}$ ãèµ€ç¹ãšãªããããªéãšæŽã£ãçµã¯1察1ã§å¯Ÿå¿ããïŒ\r\n<details>\r\n<summary>å³ïŒ$N=10$ ã®å Žåã®ç¹ã»éã®äŸ<\\/summary>\r\nãèµ€ç¹ãããïŒéç¹ããã«ã§è¡šããŠããïŒ\r\n\r\n<\\/details>\r\n\r\nãããã§ç«¯ç¹ã $\\dbinom{A+1}{i},\\dbinom{A+N+1}{j}$ ã«å¯Ÿå¿ããéããã³ïŒããã«å¯Ÿå¿ããèµ€ç¹ã«å¯Ÿå¿ããçµ $(x_1,\\dots,x_N)$ ã«ã€ããŠïŒäºé
ä¿æ°ã®èšç®ã«ãã次ãæãç«ã€ããšããããïŒ\r\n$$\\sum_{k=1}^{N}\\binom{A+k}{x_k}=\\binom{A+N+1}{j}-\\binom{A+1}{i}$$\r\n\r\nã$\\dbinom{A+1}{B}$ ãèµ€ç¹ãšãªããããªéã® $A+1$ è¡ç®ã®éç¹ãšããŠããããã®ã¯ $\\dbinom{A+1}{B-1}$ ãŸã㯠$\\dbinom{A+1}{B +1}$ ã§ããïŒåè
ã®å ŽåïŒ$A+N+1$ è¡ç®ã®éç¹ãšããŠããããã®ã¯ $\\dbinom{A+N+1}{B+i}\\ (i=0,1,\\dots,N-1)$ ã§ããïŒãããã察å¿ããé㯠$\\dbinom{N-1}{i}$ éãããããæ±ããå€ãžã®å¯äžã¯\r\n$$\\sum_{i=0}^{N-1}\\binom{N-1}{i}\\Biggl(\\binom{A+N+1}{B+i}-\\binom{A+1}{B-1}\\Biggr)=\\binom{A+2N}{N+B-1}-2^{N-1}\\binom{A+1}{B-1}.$$\r\n\r\nåŸè
ã®å ŽåïŒ$A+N+1$ è¡ç®ã®éç¹ãšããŠããããã®ã¯ $\\dbinom{A+N+1}{B+1+i}\\ (i=0,1,\\dots,N-1)$ ã§ããïŒãããã察å¿ããé㯠$\\dbinom{N-1}{i}$ éãããããæ±ããå€ãžã®å¯äžã¯\r\n$$\\sum_{i=0}^{N-1}\\binom{N-1}{i}\\Biggl(\\binom{A+N+1}{B+1+i}-\\binom{A+1}{B+1}\\Biggr)=\\binom{A+2N}{N+B}-2^{N-1}\\binom{A+1}{B+1}.$$\r\n\r\nãã£ãŠæ±ããç·å $X$ ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$X=\\binom{A+2N+1}{N+B}-2^{N-1}\\Biggl(\\binom{A+1}{B-1}+\\binom{A+1}{B+1}\\Biggr)$$\r\nç¹ã« $N=10000,A=7,B=4$ ã®ãšã $X$ ã $20011$ ã§å²ã£ãããŸãã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n\r\n$$\\begin{aligned}\r\nX\r\n&=\\dbinom{20008}{10004}-7\\cdot2^{10003}\\\\\\\\\r\n&\\equiv\\frac{(-3)(-4)\\cdots(-10006)}{10004!}-\\frac{7}{4}\\times 2^{\\frac{20011-1}{2}}\\\\\\\\\r\n&\\equiv\\frac{1}{2}\\times\\frac{20011-1}{2}\\times\\frac{20011+1}{2}-\\frac{7}{4}\\times (-1)^{\\frac{20011^2-1}{8}}\\\\\\\\\r\n&\\equiv\\frac{13}{8}\\\\\\\\\r\n&\\equiv \\bm{2503}\\pmod{20011}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/5006"
},
{
"content": "$$X=\\sum_{k=1}^{10000}\\sum_{l=-\\infty}^{\\infty}\\Big(x_k=lãšãªãæŽæ°ã®çµã®åæ°\\Big)\\times\\binom{7+k}{l}$$\r\nã§ãããã, $x_k=l$ ãšãªãæŽæ°ã®çµã®åæ°ãæ±ããŠãã.\\\r\n$x_{k+1}-x_k\\in \\\\{-1,1,0,2\\\\}$ ãš $2x\\_{k+2}âx \\_{k+1}âx\\_k\\in\\\\{â1,0,3,4\\\\}$ ãã以äžãæãç«ã€.\r\n$$x_{k+1}\\in\\\\{x_k-1,x_k\\\\}\\Rightarrow x_{k+2}\\in\\\\{x_{k+1},x_{k+1}+2\\\\},$$\r\n$$x_{k+1}\\in\\\\{x_k+1,x_k+2\\\\}\\Rightarrow x_{k+2}\\in\\\\{x_{k+1}-1,x_{k+1}+1\\\\},$$\r\n$k\\geq2$ ã«ã€ããŠ, \\\r\n$x_k\\in\\\\{x_{k-1}-1,x_{k-1}\\\\}$ ã〠$x_k=l$ ãšãªã $(x_1,x_2,\\dots,x_k)$ ãšããŠãããããã®ã®åæ°ã $a_{k,l}$,\\\r\n $x_k\\in\\\\{x_{k-1}+1,x_{k-1}+2\\\\}$ ã〠$x_k=l$ ãšãªã $(x_1,x_2,\\dots,x_k)$ ãšããŠãããããã®ã®åæ°ã $b_{k,l}$ ãšãããš, 以äžãæç«.\r\n\r\n- $a_{2,3}=a_{2,4}=b_{2,5}=b_{2,6}=1$.\r\n- $k\\geq3$ ã«ã€ã㊠$a_{k,l}=a_{k-1,l}+b_{k-1,l+1}$.\r\n- $k\\geq3$ ã«ã€ã㊠$b_{k,l}=a_{k-1,l-2}+b_{k-1,l-1}$.\r\n\r\nãããããåž°çŽçã«$k\\geq2$ ã«ã€ããŠä»¥äžãæç«ããããšåãã.\r\n$$a_{k,l}=\\binom{k-1}{l-3},\\quad b_{k,l}=\\binom{k-1}{l-5}$$\r\n\r\n $(x_1,x_2,\\dots,x_k)$ ãåºå®ãããšã $(x_1,x_2,\\dots,x_{10000})$ ã®ãšãããæŽæ°çµã®åæ°ã¯, $2^{10000-k}$ ã§ãããã, $k\\geq2$ ã«ã€ããŠ,\r\n$$\r\n\\begin{aligned}\r\n\\Big(x_k=lãšãªãæŽæ°ã®çµã®åæ°\\Big)\r\n&=(a_{k,l}+b_{k,l})\\times 2^{10000-k}\\\\\\\\\r\n&=\\Bigg(\\binom{k-1}{l-3}+\\binom{k-1}{l-5}\\Bigg)2^{10000-k}\r\n\\end{aligned}$$ \r\nåã§ãã. ãããã£ãŠ $k (\\geq2)$ ã«ã€ããŠ\r\n$$\r\n\\begin{aligned}\r\n&\\sum_{l=-\\infty}^{\\infty}\\Big(x_k=lãšãªãæŽæ°ã®çµã®åæ°\\Big)\\times\\binom{7+k}{l}\\\\\\\\\r\n=&\\sum_{l=-\\infty}^{\\infty}\\Bigg(\\binom{k-1}{l-3}+\\binom{k-1}{l-5}\\Bigg)2^{10000-k}\\times\\binom{7+k}{7+k-l}\\\\\\\\\r\n=&2^{10000-k}\\sum_{l=-\\infty}^{\\infty}\\Bigg(\\binom{k-1}{l-3}\\binom{7+k}{k+4-(l-3)}+\\binom{k-1}{l-5}\\binom{7+k}{k+2-(l-5)}\\Bigg)\\\\\\\\\r\n=&2^{10000-k}\\Bigg(\\binom{2k+6}{k+4}+\\binom{2k+6}{k+2}\\Bigg)\\\\\\\\\r\n=&2^{10001-k}\\binom{2k+6}{k+2}\r\n\\end{aligned}$$\r\nããããã£ãŠ,$$X=\\binom{8}{4}\\times4\\times2^{9998}+\\sum_{k=2}^{10000}2^{10001-k}\\binom{2k+6}{k+2}$$\r\nãããã§ä»¥äžã®è£é¡ã玹ä»ãã.\r\n----\r\n**è£é¡.**\r\n$$\\sum_{k=0}^{N}2^{N-k}\\binom{2k}{k-1}=\\frac{1}{2}\\binom{2(N+1)}{N+1}-2^{N}$$.\r\n\r\n**蚌æ**\\\r\nã$f(x)=\\sum_{k=0}^{\\infty}\\binom{2k}{k-1}x^k$ãšãã. ãã®ãšã以äžãæç«ãã.(åç
§:[OMCE002-F解説\r\n](https:\\/\\/onlinemathcontest.com\\/contests\\/omce002\\/editorial\\/8694))\r\n$$\\begin{aligned}\r\nf(x)&=\\sum_{k=0}^{\\infty}\\binom{2k}{k-1}x^k\\\\\\\\\r\n&=x\\sum_{k=0}^{\\infty}\\binom{2k+2}{k}x^k\\\\\\\\\r\n&=x\\Bigg(\\sum_{k=0}^{\\infty}\\frac{1}{k+1}\\binom{2k}{k}x^k\\Bigg)^2\\Bigg(\\sum_{k=0}^{\\infty}\\binom{2k}{k}x^k\\Bigg)\\\\\\\\\r\n&=x\\Bigg(\\frac{1-\\sqrt{1-4x}}{2x}\\Bigg)^2\\Bigg(\\frac{1}{\\sqrt{1-4x}}\\Bigg)\\\\\\\\\r\n&=\\dfrac{1}{2x}\\Bigg(\\dfrac{1-2x}{\\sqrt{1-4x}}-1\\Bigg).\r\n\\end{aligned}$$\r\nã$\\sum_{k=0}^{N}2^{N-k}\\binom{2k}{k+1}$ ã¯$$\\dfrac{1}{1-2x}f(x)=\\dfrac{1}{2x}\\Bigg(\\dfrac{1}{\\sqrt{1-4x}}-\\dfrac{1}{1-2x}\\Bigg)$$ ã«ããã $x^N$ ã®ä¿æ°ã§ãããã,\r\n$$\r\n\\begin{aligned}\r\n\\sum_{k=0}^{N}2^{N-k}\\binom{2k}{k+1}&=[x^N]\\frac{1}{2x}\\Bigg(\\frac{1}{\\sqrt{1-4x}}-\\frac{1}{1-2x}\\Bigg)\\\\\\\\\r\n&=\\frac{1}{2}\\Bigg([x^{N+1}]\\frac{1}{\\sqrt{1-4x}}-[x^{N+1}]\\frac{1}{1-2x}\\Bigg)\\\\\\\\\r\n&=\\frac{1}{2}\\binom{2(N+1)}{N+1}-2^{N}\r\n\\end{aligned}\r\n$$\r\n----\r\nããããã£ãŠ,\r\n$$\r\n\\begin{aligned}\r\nX&=\\binom{8}{4}\\times4\\times2^{9998}+\\sum_{k=2}^{10000}\\binom{2k+6}{k+4}2^{10001-k}\\\\\\\\\r\n&=\\binom{8}{4}\\times2^{10002}+2\\sum_{k=5}^{10003}\\binom{2k}{k+1}2^{10003-k}\\\\\\\\\r\n&=\\binom{8}{4}\\times2^{10002}+2\\Big(\\frac{1}{2}\\binom{20008}{10004}-2^{10003}-\\sum_{k=0}^{4}\\binom{2k}{k+1}2^{10003-k}\\Big)\\\\\\\\\r\n&=\\binom{8}{4}\\times2^{10002}+\\binom{20008}{10004}-2^{10004}-\\sum_{k=0}^{4}\\binom{2k}{k+1}2^{10004-k}\\\\\\\\\r\n\\end{aligned}\r\n$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc168/editorial/5006/626"
}
] | ã次ã®æ¡ä»¶ããã¹ãŠã¿ãã $10000$ åã®æŽæ°ã®çµ $(x_1,x_2,...,x_{10000})$ ãèããŸãïŒ
- $x_1=4$ïŒ
- $k = 1,2,\ldots,9999$ ã«ã€ã㊠$x_{k+1}-x_k\in\\{-1,0,1,2\\}$ïŒ
- $k = 1,2,\ldots,9998$ ã«ã€ã㊠$2x_{k+2}-x_{k+1}-x_k\in\\{-1,0,3,4\\}$ïŒ
ãã®ãããªçµãšããŠãããããã®ãã¹ãŠã«å¯ŸããŠïŒæ¬¡ã®å€ã足ãåããããã®ã $X$ ãšããŸãïŒ
$$\sum_{k=1}^{10000}{}\_{7+k}\mathrm{C}\_{x_k}$$
$X$ ãçŽ æ° $20011$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ \
ããªãïŒå¥çŽ æ° $p$ ã«å¯ŸããŠïŒä»¥äžãæãç«ã€ããšãçšããŠæ§ããŸããïŒ
$$2^{\frac{p-1}{2}}\equiv(-1)^{\frac{p^2-1}{8}}\pmod p$$ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/8935 | A | æµæŸ2023(A) | 100 | 411 | 414 | [
{
"content": "ãåãé€ããå®æ°ã $x$ïŒä»ã® $2022$ åã®å®æ°ã $y_1, y_2, \\ldots, y_{2022}$ ãšãããšïŒæ¡ä»¶ã«ãã\r\n$$ \\frac{x + y_1 + y_2 + \\cdots y_{2022}}{2023} = 2, \\quad \\frac{y_1 + y_2 + \\cdots y_{2022}}{2022} = 1.5 $$\r\nã§ããã®ã§ïŒ\r\n$$x = 2 \\times 2023 - 1.5 \\times 2022 = \\mathbf{1013} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/8935"
}
] | ãçžç°ãªã $2023$ åã®å®æ°ãããïŒãããã®å¹³åã¯ã¡ããã© $2$ ã§ãïŒãã®ãã¡ $1$ ã€ãé€ããŠæ®ãã® $2022$ åã®å¹³åããšã£ããšããïŒã¡ããã© $1.5$ ã«ãªããŸããïŒ\
ãé€ãã $1$ ã€ã®æ°ã¯ããã€ã§ããïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/8934 | B | æµæŸ2023(B) | 100 | 385 | 396 | [
{
"content": "ãå°åã®ååŸã $r$ ãšãããšïŒ$6$ ã€ã®å°åã®äžå¿ã¯äžèŸºã $2r$ ã®æ£å
è§åœ¢ããªãïŒå€§åã®ååŸã¯ $2r + r = 3r$ ãšãªãïŒåé¡ã®æ¡ä»¶ãã $\\sqrt3 r = 10$ïŒãããã£ãŠå€§åã®ååŸã¯ $10 \\sqrt3$ ã§ããã®ã§ïŒå€§åã®é¢ç©ã¯ $\\mathbf{300} \\pi$ ã§ããïŒ\r\n\r\n----\r\n\r\nã**åè**ãæ¬åé¡ã®å³ã¯ïŒåŸ³å·å®¶ã®å®¶çŽãšããŠæåãªãäžã€èèµãã«ã€ã³ã¹ãã€ã¢ããããã®ã§ãïŒæµæŸåãªã©ã®åæãæããæµæŸåžã¯ïŒåŸ³å·å®¶åº·å
¬ãããã®å°ãšããŠãæåã§ãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/8934"
}
] | ãäžå³ã®ããã«ïŒå€§åã®å
éšã«ååŸã®çãã $6$ ã€ã®å°åãé
眮ãããŠããïŒæ¬¡ã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
- ããããã®å°åã¯å€§åã«å
æ¥ããïŒ
- ããããã®å°åã¯ã¡ããã© $2$ ã€ã®å°åãšå€æ¥ããïŒ
å°åã©ããã®æ¥ç¹ãšå€§åã®äžå¿ãçµã¶ç·åã®é·ãã $10$ ã§ãããšãïŒå€§åã®é¢ç©ã¯æ£ã®æŽæ° $a$ ãçšã㊠$a\pi$ ãšè¡šãããã®ã§ïŒ$a$ ã®å€ã解çããŠãã ããïŒ
 |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/4123 | C | æµæŸ2023(C) | 100 | 304 | 383 | [
{
"content": "ã$10$ åã®ããããã®åºãç®ã $A_1,A_2, \\ldots,A_{10}$ ãšãããšãïŒ$A_i \\in \\\\{1,2,3,6\\\\}$ ã§ããïŒ$A_i$ ããããã«ã€ã㊠$2$ ããã³ $3$ ã§å²ãåãããåŠããããããå®ããããšã§å€ãäžæã«å®ãŸãïŒåºãç®ã®æå°å
¬åæ°ã $6$ ã§ããããšã¯ïŒ$A_i$ ã®ãã¡ã« $2$ ã§å²ãåãããã®ãš $3$ ã§å²ãåãããã®ããšãã«ååšããããšãšåå€ã§ããããïŒæ±ããå€ $6^{10}\\times p$ 㯠$(2^{10}-1)^2=\\textbf{1046529}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/4123"
}
] | ãäžè¬çãªå
é¢äœã®ãµã€ã³ãã $10$ ååæã«æãããšãïŒåºãç®ã®æå°å
¬åæ°ã $6$ ãšãªããããªç¢ºçã $p$ ãšããŸãïŒ$6^{10}\times p$ ãæ±ããŠãã ããïŒ ãã ãïŒ**äžè¬çãªå
é¢äœã®ãµã€ã³ã**ã¯ïŒ$1,2,\ldots,6$ ããããã®ç®ãç確çã§åºããã®ãšããŸãïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/7741 | D | æµæŸ2023(D) | 100 | 361 | 394 | [
{
"content": "ã$5$ ç¹æºç¹ã®åé¡ã¯ $6$ åãããªãïŒ$5$ ç¹æºç¹ã®åé¡ã®ã¿ã§ $5$ ãš $7$ ã®æå°å
¬åæ°ã§ãã $35$ ç¹ãäœãããšãã§ããªãã®ã§ïŒããç¹æ°ãåãåŸããªãã°ãã®ç¹ãåãããã«è§£ãã $5$ ç¹ã®åé¡ã®æ°ãš $7$ ç¹ã®åé¡ã®æ°ã®çµã¯äžæã§ããïŒåŸã£ãŠïŒåãåŸãç¹æ°ã®çš®é¡æ°ã¯ $(6+1)(10+1) = 77$ çš®é¡ã§ããïŒ\\\r\nãããã«ïŒ$n$ ç¹ãåãåŸããšã $100-n$ ç¹ããšãããããšã«æ°ãã€ããã°ïŒæ±ããçãã¯ä»¥äžã®ããã«èšç®ã§ããïŒ\r\n$$100\\times \\frac{77}{2} ~ \\Biggl( =100\\times\\frac{77-1}{2}+50 \\Biggr) = \\bf{3850}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/7741"
}
] | ãOMCããã¯ïŒ$100$ ç¹æºç¹ã®ãã¹ããåããŠããŸãïŒãã®ãã¹ãã¯ïŒé
ç¹ã $5$ ç¹ã®åé¡ $6$ åãšïŒé
ç¹ã $7$ ç¹ã®åé¡ $10$ åã®ïŒèš $16$ åãããªããŸãïŒãã®ãšãïŒOMCãããåŸç¹ãšããŠåãããéè² æŽæ°å€ããã¹ãŠæ±ãïŒãããã®ç·åã解çããŠãã ããïŒ\
ããã ãïŒååé¡ã«éšåç¹ã¯ãªããã®ãšããŸãïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/5603 | E | æµæŸ2023(E) | 100 | 199 | 255 | [
{
"content": "ãèµ€çãšéçãå
¥ã£ãç®±ã®åæ°ã $x_{RB}$ïŒé»çãšç·çãå
¥ã£ãç®±ã®åæ°ã $x_{YG}$ ãªã©ãšè¡šãïŒèµ€çã«æ³šç®ããã° $x_{RB}+x_{RY}+x_{RG}=150$ ã§ããããïŒããŸãããã¿ããéè² æŽæ°ã®çµ $(x_{RB},x_{RY},x_{RG})$ ãä»»æã«åºå®ãããšïŒ\r\n$$\r\n\\begin{cases}\r\nx_{RB}+x_{BY}+x_{BG} = 200 \\\\\\\\\r\nx_{RY}+x_{BY}+x_{YG} = 250 \\\\\\\\\r\nx_{RG}+x_{BG}+x_{YG} = 400\r\n\\end{cases}\r\n$$\r\nã $x_{BY},x_{BG},x_{YG}$ ã«ã€ããŠã®æ¹çšåŒãšèŠç«ãŠãŠè§£ãããšã§ä»¥äžã®ããã«å®ãŸãïŒ$x_{RG}\\geq 50$ ãå¿
èŠã§ããïŒ\r\n$$ x_{BY} = x_{RG}-50, \\quad x_{BG} = x_{RY}+100, \\quad x_{YG}=x_{RB}+150. $$\r\nãããã£ãŠïŒçã㯠$x+y+z=100$ ãã¿ããéè² æŽæ°ã®çµ $(x,y,z)$ ã®åæ°ã«äžèŽãïŒãã㯠${}_{102}{\\rm C}_2=\\bf{5151}$ ã§ããïŒ\r\n\r\n----\r\n\r\n**å¥è§£.**ãç·çãå
¥ã£ãŠããªã $100$ åã®ç®±ã«æ³šç®ãããšïŒãèµ€éããèµ€é»ããéé»ããä»»æåæ°ãã€çµã¿åãããããã®ã§ïŒãã¯ã $x+y+z=100$ ãã¿ããéè² æŽæ°ã®çµã®åæ°ãæ±ããã°ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/5603"
}
] | ãèµ€çïŒéçïŒé»çïŒç·çããããã $150$ åïŒ$200$ åïŒ$250$ åïŒ$400$ åïŒããªãã¡èš $1000$ åïŒããïŒç®±ã $500$ åãããŸãïŒåãè²ã®çãåãç®±ã«å
¥ããªãããã«ïŒããããã®ç®±ã«çãã¡ããã© $2$ åãã€å
¥ããæ¹æ³ã¯äœéããããŸããïŒ\
ããã ãïŒç®±ããã³åãè²ã®çã¯ãããã**åºå¥ããªã**ãã®ãšããŸãïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/2795 | F | æµæŸ2023(F) | 100 | 165 | 235 | [
{
"content": "ãå®æ° $0 \\lt s, t \\lt 1$ ã«ãã $AP : PB = s : 1-s$ïŒ$AS : SD = t : 1-t$ ãšããïŒãã®ãšã $AC \\parallel PQ$ ãã $BQ : QC = 1-s : s$ ã§ããïŒåæ§ã« $DR : RC = 1-t : t$ ããããïŒããŸïŒ\r\n$$ \\begin{aligned}\r\n89 &= \\triangle APS = st \\triangle ABD = 617 st, \\\\\\\\\r\n656 &= \\square APCS = \\triangle APC + \\triangle ASC = 617(s+t)\r\n\\end{aligned}$$\r\nãã $st = \\dfrac{89}{617}$ ããã³ $s+t = \\dfrac{656}{617}$ ãåŸãïŒæ±ããã¹ãå€ã¯ïŒ\r\n$$ (\\triangle CPR - \\triangle CQS)^2 = (617t - 617s)^2 = 617^2 ((s+t)^2 - 4st) = \\textbf{210684} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/2795"
}
] | ãå¹³è¡å蟺圢 $ABCD$ ã®èŸº $AB, BC, CD, DA$ äžïŒç«¯ç¹ãé€ãïŒã«ããããç¹ $P, Q, R, S$ ãããïŒ$PQ \parallel AC \parallel RS$ ãã¿ãããŠããŸãïŒå¹³è¡å蟺圢 $ABCD$ ã®é¢ç©ã $1234$ïŒäžè§åœ¢ $CPS$ ã®é¢ç©ã $567$ïŒäžè§åœ¢ $APS$ ã®é¢ç©ã $89$ ã§ãããšãïŒäžè§åœ¢ $CPR$ ãšäžè§åœ¢ $CQS$ ã®é¢ç©ã®å·®ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/4205 | G | æµæŸ2023(G) | 100 | 152 | 261 | [
{
"content": "ãæŽæ° $m, n \\geq 3$ ã«å¯ŸãïŒãã³ãå«ã $m$ çš®é¡ã®é£æã以äžã®æ¡ä»¶ãæºããããã«ç©ã¿äžãããã®ã $m$ çš®é¡ã®é£æã䜿ã£ã $n$ 段ã®**ãµã³ãã€ãã**ãšãã¶ïŒ\r\n- é£æãã¡ããã© $n$ 段ç©ã¿äžãããã®ã§ããïŒ\r\n- æãäžã®æ®µããã³æãäžã®æ®µã®é£æã¯ãã³ã§ããïŒ\r\n- åãå
·ãé£ç¶ããŠç©ã¿äžããããšã¯ãªãïŒ\r\n- ããã£ã¯å«ãŸããŠããªããŠãæ§ããªãïŒ\r\n\r\nããã³ããŒã¬ãŒã¯ããã£ãå«ãŸãããµã³ãã€ããã§ããããïŒ$m$ çš®é¡ã®é£æã䜿ã£ã $n$ 段ã®ãµã³ãã€ããã®çš®é¡æ°ã $f_m(n)$ ãšãããšïŒãã³ããŒã¬ãŒã®çš®é¡æ°ã¯ $f_5(10) - f_4(10)$ ã§ããïŒ$n+2$ 段ã®ãµã³ãã€ããã®çš®é¡æ°ãèãããšïŒããã® $1, n+2$ 段ç®ã¯ãã³ã§ããïŒ\r\n\r\n- $3$ 段ç®ã«ãã³ä»¥å€ã®é£æãå
¥ãå ŽåïŒ$3$ 段ç®ãã $n+1$ 段ç®ãŸã§ã®é£æã®äžŠã³æ¹ã¯ $n+1$ 段ã®ãµã³ãã€ããã®çš®é¡æ°ãšçãã $f_m(n+1)$ éãããïŒãã®ãšã $2$ 段ç®ã«å
¥ãé£æ㯠$m-2$ éãããã®ã§ïŒãã®å Žåã® $n+2$ 段ã®ãµã³ãã€ãã㯠$(m-2)f_m(n+1)$ éãããïŒ\r\n\r\n- $3$ 段ç®ã«ãã³ãå
¥ãå ŽåïŒ$4$ 段ç®ãã $n+1$ 段ç®ãŸã§ã®é£æã®äžŠã³æ¹ã¯ $n$ 段ã®ãµã³ãã€ããã®çš®é¡æ°ãšçãã $f_m(n)$ éãããïŒãã®ãšã $2$ 段ç®ã«å
¥ãé£æ㯠$m-1$ éãããã®ã§ïŒãã®å Žåã® $n+2$ 段ã®ãµã³ãã€ãã㯠$(m-1)f_m(n)$ éãããïŒ\r\n\r\nã以äžã®è°è«ããïŒ\r\n$$ f_m(n+2) = (m-2)f_m(n+1) + (m-1)f_m(n) $$\r\nã§ããïŒ$f_m(3) = m-1$ïŒ$f_m(4) = (m-1)(m-2)$ ãšåãããŠ\r\n$$ f_m(n) = \\frac{m-1}{m} \\left( (m-1)^{n-2} - (-1)^{n-2} \\right) $$\r\nãåŸãïŒæ±ããå€ã¯\r\n$$ f_5(10) - f_4(10) = \\frac{4}{5} \\left( 4^8 - (-1)^8 \\right) - \\frac{3}{4} \\left( 3^8 - (-1)^{8} \\right) = \\frac{4^{10} - 5 \\cdot 3^9 - 1}{20} = \\textbf{47508} $$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/4205"
},
{
"content": "**å
é€åçãçšããå¥è§£**\r\n\r\n以äžã® 4 æ¡ä»¶ãæºããé·ã $10$ ã®æŽæ°å $a$ ãæ°ãäžããã°ããïŒ\r\n- $(1): 1\\leq a_i\\leq 5$\r\n- $(2): a_1 = a_{10} = 1 $\r\n- $(3): a_i\\neq a_{i+1}$\r\n- $(4):a$ 㯠$5$ ãå«ã\r\n\r\nããã¯ïŒã$(1)$ ã〠$(2)$ ã〠$(3)$ããæºããæ°å $a$ ã®åæ°ãã ã$1\\leq a_i\\leq 4$ ã〠$(2)$ ã〠$(3)$ããæºããæ°å $a$ ã®åæ°ãåŒããå€ãšçããïŒ\r\n\r\nã$(1)$ ã〠$(2)$ ã〠$(3)$ããæºããæ°å $a$ ã®åæ°ã®æ±ãæ¹ã«ã€ããŠïŒå
é€åçãé©çšã§ããïŒå¿
ã $a_i=a_{i+1}$ ãšãªã $i$ ã®åæ°ã決ãæã£ããšãïŒæ±ºãæã€åæ°ã $c$ ãšããïŒïŒã$(1)$ ã〠$(2)$ããæºããæ°å $a$ 㯠$0\\leq c\\lt 9$ ã®ãšã $\\dbinom{9}{c}5^{8-c}$ïŒ$c=9$ ã®ãšã $1$ ã§ããããïŒæ±ããåæ°ã¯\r\n$$\\begin{aligned}\r\n\\sum_{c=0}^9 \\dbinom{9}{c}5^{8-c}(-1)^c+(-1)^91&=\\dfrac{1}{5}\\sum_{c=0}^9 \\dbinom{9}{c}5^{9-c}(-1)^c-\\dfrac{4}{5}\\\\\\\\\r\n&=\\dfrac{4^9-4}{5}\r\n\\end{aligned}$$\r\n\r\nã§ããïŒã$1\\leq a_i\\leq 4$ ã〠$(2)$ ã〠$(3)$ãã®åæ°ãåæ§ã«èšç®ããããšã§ $\\dfrac{3^9-3}{4}$ ã§ãããšåããããïŒæ¬åé¡ã®çã㯠$\\dfrac{4^9-4}{5}-\\dfrac{3^9-3}{4}=47508$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/4205/249"
}
] | ã$5$ çš®é¡ã®é£æïŒãã³ïŒããã£ïŒããŒãºïŒã¬ã¿ã¹ïŒãããïŒãïŒæ¬¡ã®æ¡ä»¶ãã¿ããããã«äžäžã«ã¡ããã© $10$ 段ç©ã¿äžããŠïŒ**ãã³ããŒã¬ãŒ**ãäœããŸãïŒ
- æãäžã®æ®µããã³æãäžã®æ®µã®é£æã¯ãã³ã§ããïŒ
- å°ãªããšã $1$ ã€ã®ããã£ãå«ãïŒ
- åãé£æãé£æ¥ããŠã¯ãªããªãïŒ
- 䜿ããªãé£æããã£ãŠãããïŒ
ãã®ãšãïŒãã³ããŒã¬ãŒãšããŠãããããã®ã¯äœéããããŸããïŒ\
ããã ãïŒäžäžã¯åºå¥ããŠèãïŒåãé£æã¯åºå¥ããªããã®ãšããŸãïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/2637 | H | æµæŸ2023(H) | 100 | 73 | 126 | [
{
"content": "ã端çã«è¿°ã¹ãã°ïŒçµè«ã¯ä»¥äžã§ããïŒ\r\n\r\n- $n, m$ ããšãã«å¶æ°ã§ããå ŽåïŒ$A$ ãããåã€ïŒ\\\r\nãã¯ããã« $A$ ãã㯠$\\left(\\dfrac n2, \\dfrac m2 \\right)$ ãéžæãïŒæäœãããïŒ\\\r\nããã以éã¯ïŒ$B$ ãããçŽåã« $(x, y)$ ãéžãã ãšãïŒ$(n - x, m - y)$ ãå¿
ãéžæã§ããããšããããïŒ\r\n\r\n- $n, m$ ã®ãã¡å°ãªããšãäžæ¹ãå¥æ°ã§ããå ŽåïŒ$B$ ãããåã€ïŒ\\\r\nã察称æ§ã«ããïŒ$n$ ãå¥æ°ã§ããå Žåã«ã®ã¿è¿°ã¹ãïŒ\\\r\nããã®ãšãïŒ$B$ ããã¯ïŒ$A$ ãããçŽåã« $(x, y)$ ãéžãã ãšãïŒ$(n - x, y)$ ãå¿
ãéžæã§ããããšããããïŒ\r\n\r\n以äžã«ããïŒæ±ããçã㯠$2501^2 = \\bf{6255001}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/2637"
}
] | ã$n, m$ ã $0$ ä»¥äž $5000$ 以äžã®æŽæ°ãšããŸãïŒ$xy$ å¹³é¢äžã§ $0 \le x \le n$ ã〠$0 \le y \le m$ ãã¿ããé åå
ã®æ Œåç¹ãçœã«å¡ãããŠããïŒãã以å€ã®æ Œåç¹ãé»ã«å¡ãããŠããŸãïŒ\
ã$A$ ãããš $B$ ãããïŒ$A$ ãããå
æïŒ$B$ ãããåŸæãšããŠæ¬¡ã®ãããªã²ãŒã ãè¡ããŸãïŒ$2$ 人ã¯äº€äºã«æçªãè¡ãïŒããããã®æçªã§ã¯ä»¥äžã®äžé£ã®æäœãè¡ããŸãïŒ
- ãŸãïŒçœã§å¡ãããæ Œåç¹ãäžã€éžã¶ïŒ
- éžãã æ Œåç¹ããã¡ããã© $\sqrt5$ ã®è·é¢ã«ããæ Œåç¹ã®ãã¡çœã§å¡ããããã®ãã¹ãŠïŒããã³éžãã æ Œåç¹ãã®ãã®ãïŒé»ã§å¡ã.
ãçœã§å¡ãããæåŸã®æ Œåç¹ãé»ã§å¡ã£ãæ¹ãåã¡ãšãªããŸãïŒãã®ãšãïŒ$B$ ããã®æäœã«ããã $A$ ãããåã€ããšãã§ãããããªçµ $(n, m)$ ã¯ããã€ãããŸããïŒ\
ããã ãïŒ**æ Œåç¹** ãšã¯ïŒ$x$ 座æšãš $y$ 座æšããšãã«æŽæ°å€ã§ããç¹ããããŸãïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/8785 | I | æµæŸ2023(I) | 100 | 30 | 123 | [
{
"content": "**è£é¡.**ã$k=\\dfrac{1}{60}$ ã§ããïŒ\r\n\r\n**蚌æ.**ã$\\displaystyle x=\\frac{3b}{a},y=\\frac{4c}{b},z=\\frac{5d}{c},w=\\frac{ka}{d}$ ãšããã° $xyzw=60k$ ãæãç«ã¡ïŒäžåŒã¯\r\n$$F(a,b,c,d)=\\sqrt{\\frac{1}{(1+x)(1+y)}}+\\sqrt{\\frac{1}{(1+z)(1+w)}}$$\r\nãšå€åœ¢ã§ããïŒããŸïŒCauchy-Schwarzã®äžçåŒãã\r\n$$\\sqrt{(1+x)(1+y)}\\geq 1+\\sqrt{xy}, \\quad \\sqrt{(1+z)(1+w)}\\geq 1+\\sqrt{zw}$$\r\nãæç«ããïŒãŸãïŒäžè¬ã«æ£ã®å®æ° $u,v$ ã«ã€ããŠïŒ$uv=1$ ã§ãããšã\r\n$$\\frac{1}{1+u}+\\frac{1}{1+v}=1$$\r\nãæãç«ã€ããïŒç¹ã« $xyzw=1$ïŒããªãã¡ $k=\\dfrac{1}{60}$ ã®ãšã以äžãæç«ããïŒ\r\n$$F(a,b,c,d)\\leq \\frac{1}{1+\\sqrt{xy}}+\\frac{1}{1+\\sqrt{zw}}=1.$$\r\nçå·æç«æ¡ä»¶ã¯ $x=y,z=w$ ã§ããïŒéã« $k\\neq \\dfrac{1}{60}$ ã®ãšãæ¡ä»¶ãã¿ãããªãããšããããïŒ\r\n\r\n----\r\n\r\nã以äžã®è°è«ã«ãã£ãŠïŒä»¥äžã®ããšããããïŒ\r\n$$F(p,q,r,s)=1 \\iff \\frac{3q}{p}=\\frac{4r}{q}, ~ \\frac{5s}{r}=\\frac{p}{60s} \\iff 3q^2=4pr, ~ 300 s^2=pr.$$\r\nãã£ãŠïŒ\r\n\r\n- $s=1$ ã®ãšãïŒããšãã° $(p,q,r,s)=(20,20,15,1)$ 㧠$p+q+r+s$ ã¯æå°å€ $56$ ããšãïŒ\r\n- $s\\geq 2$ ã®ãšãïŒ$p+r\\geq 2\\sqrt{pr}=2\\sqrt{300s^2}\\geq 2\\sqrt{1200}\\geq 56$ïŒ\r\n\r\nã以äžã«ããïŒè§£çãã¹ãå€ã¯ $\\textbf{56}$ ã§ããïŒ\r\n\r\n----\r\n\r\n**äœè«.**ãããäžè¬ã«ïŒ$pqrs\\leq 1$ ãªãæ£ã®å®æ° $a,b,c,d,p,q,r,s$ ã«å¯ŸããŠïŒ\r\n$$\\sqrt{\\frac{ab}{(a+pb)(b+qc)}}+\\sqrt{\\frac{cd}{(c+rd)(d+sa)}}\\leq\\dfrac{2}{1+\\sqrt[4]{pqrs}}$$\r\nãæãç«ã¡ãŸãïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/8785"
}
] | ã$k$ ãïŒåºå®ãããïŒæ£ã®å®æ°ãšããŸãïŒ$a,b,c,d$ ãæ£ã®å®æ°ãä»»æã«åããšãïŒ
$$F(a,b,c,d)=\sqrt{\frac{ab}{(a+3b)(b+4c)}}+\sqrt{\frac{cd}{(c+5d)(d+ka)}}$$
ãšå®ãããšïŒ$F(a,b,c,d)$ ã®ãšãããæ倧å€ãååšã㊠$1$ ãšãªããŸããïŒãã®ãããªæ£ã®å®æ° $k$ ãäžæã«ååšããããšãä¿èšŒãããŸãïŒãã®ãšãïŒ$F(p,q,r,s)=1$ ãšãªãæ£æŽæ°ã®çµ $(p,q,r,s)$ ã«ã€ããŠïŒ$p+q+r+s$ ã®ãšãããæå°å€ãæ±ããŠãã ããïŒ |
é«æ ¡çæ°åŠã³ã³ãã¹ã in Hamamatsu äºéž | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/hamamatsu2023/tasks/8929 | J | æµæŸ2023(J) | 100 | 36 | 144 | [
{
"content": "ã$\\angle ABC = \\theta$ ãšããïŒ$\\angle BAC = 3\\theta$ ã§ããïŒïŒèŸº $BC$ äžã«ç¹ $D, E$ ã $\\angle BAD = \\angle DAE = \\theta$ ã〠$B, D, E, C$ ããã®é ã«äžŠã¶ããã«ãšãïŒãã®ãšã $\\triangle CAE \\sim \\triangle CBA$ ãã \r\n$$ CE = \\frac{CA^2}{BC}, \\quad AE = \\frac{AB \\cdot CA}{BC} $$\r\n ã§ããïŒãŸã $\\angle CAD = \\angle CDA = 2\\theta$ ãã $CA=CD$ïŒ$\\angle DAB = \\angle DBA = \\theta$ ãã $AD = BD$ ããããïŒ$\\triangle EAD \\sim \\triangle EBA$ ãã $EA : AD = EB : BA$ ãªã®ã§ïŒ \r\n$$ \\frac{AB \\cdot CA}{BC} : (BC - CA) = \\Biggl( BC - \\frac{CA^2}{BC} \\Biggr) : AB $$\r\nãã\r\n$AB^2 \\cdot CA = (BC - CA)^2 (BC + CA) $\r\nãåŸãïŒ\r\n\r\nã$g$ ã $BC, CA, AB$ ã®æ倧å
¬çŽæ°ãšãïŒ$(BC, CA, AB) = (ga, gb, gc)$ ãšããïŒãã®ãšãäžåŒã¯\r\n$$ bc^2 = (a-b)^2(a+b) \\tag{â} $$\r\nãšãªãïŒä»»æã®çŽ æ° $p$ ãš $0$ ã§ãªãæŽæ° $x$ ã«ã€ããŠïŒ$x$ ã $p^m$ ã§å²ãåããæ倧ã®æŽæ° $m$ ã $\\nu_p(x)$ ã§è¡šãããšã«ããïŒã㟠$\\nu_p(b) = 3q + r$ $(0 \\le r \\le 2)$ ãšãããšïŒãã $r \\neq 0$ ãªã $a$ 㯠$p$ ã®åæ°ã§ããã®ã§ïŒ$c$ 㯠$p$ ã®åæ°ã§ã¯ãªãïŒ\r\n$$ 3q + r = 2 \\nu_p(a-b) + \\nu_p(a+b) $$\r\nãæãç«ã€ïŒãã£ãŠ $\\nu_p(a-b)$ ãš $\\nu_p(a-b)$ ã®å°ãªããšãäžæ¹ã¯ $q+1$ 以äžã§ããã®ã§ïŒ$\\nu_p(a) \\ge q+1$ ãåŸãããïŒ$\\nu_p(a-b)$ ãš $\\nu_p(a-b)$ ã®äž¡æ¹ã $q+1$ 以äžãšãªãïŒãããš $3q+r \\ge 3q+3$ ãšãªãççŸããïŒãããã£ãŠä»»æã®çŽ æ° $p$ ã«ã€ã㊠$\\nu_p(b)$ 㯠$3$ ã®åæ°ãªã®ã§ïŒããæ£ã®æŽæ° $m$ ã«ãã $b = m^3$ ãšãããïŒ$p^3$ ã $CA$ ãå²ãåããããªçŽ æ° $p$ ãååšããªãå ŽåïŒ$m = 1$ ãšãªãã®ã§äžè§åœ¢ã®æç«æ¡ä»¶ãã $a = c$ ã§ïŒããã¯ççŸã§ããïŒ\\\r\nãéã«ïŒãã $p \\ge 2, x \\ge 1$ ã«å¯ŸããŠ\r\n$$ (BC, CA, AB) = \\left( px(p-1)(3p-1), p^3x, x(2p^2-4p+1)(2p-1) \\right) $$\r\nãšãããšïŒãã㯠$\\angle A = 3 \\angle B$ ãã¿ããäžè§åœ¢ã® $3$ 蟺ãšãªã£ãŠããããšã確èªã§ããïŒããªãã¡ïŒäžè§åœ¢ã®æç«æ¡ä»¶ãš(â)ãå
±ã«æºããããããšããããïŒïŒ\\\r\nããã£ãŠæ¡ä»¶ã¯ $p^3$ ã $CA$ ãå²ãåããããªçŽ æ° $p$ ãååšããããšïŒ$CA$ ãç«æ¹å åããã€ããšïŒãšåå€ã§ããïŒãããã¿ãã $999$ 以äžã® $CA$ ã®åæ°ãæ°ããã°ããïŒ$2^3, 3^3, 5^3, 7^3$ ã®åæ°ã®åæ°ããéè€ãã $2^3 3^3$ ã®åæ°ã®åæ°ãåŒãã°ããïŒ\r\n$$ \\left\\lfloor \\frac{999}{8} \\right\\rfloor + \\left\\lfloor \\frac{999}{27} \\right\\rfloor + \\left\\lfloor \\frac{999}{125} \\right\\rfloor + \\left\\lfloor \\frac{999}{343} \\right\\rfloor - \\left\\lfloor \\frac{999}{216} \\right\\rfloor = 124 + 37 + 7 + 2 - 4 = \\mathbf{166} $$\r\nãçãã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/8929"
},
{
"content": "ãäžè§æ¯ïŒäžè§é¢æ°ïŒãçšããæ¹æ³ã§ãïŒ\r\n\r\n ã$\\angle B=\\theta$ ãšããïŒæ£åŒŠå®çããïŒ$\\dfrac{BC}{ \\sin 3 \\theta}=\\dfrac{AB}{\\sin 4 \\theta}=\\dfrac{CA}{ \\sin \\theta}$\\\r\n ãããããïŒé©åœã«å€åœ¢ãããšæ¬¡ã®åŒãåŸãïŒ$BC=(4 \\cos^2 \\theta-1)CA$ïŒ$AB=4\\cos \\theta(2 \\cos^2 \\theta-1) CA$\\\r\n ã$3$ 蟺ã®é·ããèªç¶æ°ã§ããããšããïŒ$\\cos \\theta$ ã¯æçæ°ã§ããããšããããïŒããã«ïŒ$4 \\theta \\lt 180^\\circ$ ãã $\\cos \\theta \\gt \\dfrac{1}{\\sqrt{2}}$ïŒããããïŒ$\\cos \\theta$ ã®åæ¯ã¯ $4$ 以äžã§ããïŒ\\\r\n\\\r\n ã$\\cos \\theta=\\dfrac{t}{s}$ ãšãããšïŒé©åœãªèšç®ã«ãã£ãŠïŒæ¬¡ã®ããšããããïŒ\r\n- $s$ ãå¥æ°ãªãã°ïŒ$CA$ 㯠$s^3$ ã®åæ°\r\n- $s$ ãå¶æ°ãªãã°ïŒ$CA$ 㯠$(s\\/2)^3$ ã®åæ°\r\n\r\nããšã¯ïŒ$s=4$ ããé ã«èããŠè¡ãã°ïŒ$s=4$ïŒ$5$ïŒ$6$ïŒ$7$ ã®å Žåã ãèããã°ååã ãšãããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/hamamatsu2023/editorial/8929/250"
}
] | ããã¹ãŠã®èŸºã®é·ããæ£æŽæ°å€ã§ããïŒééåãªïŒäžè§åœ¢ $ABC$ ã $\angle A = 3 \angle B$ ãã¿ãããšãïŒèŸº $CA$ ã®é·ããšããŠãããã $999$ 以äžã®å€ã¯ããã€ãããŸããïŒ
<details><summary>ééåãªäžè§åœ¢ãšã¯<\/summary>
ãäžè§åœ¢ã**éå**ããŠãããšã¯ïŒ3ã€ã®é ç¹ãåäžçŽç·äžã«äžŠã¶ããšããããŸãïŒ**ééå**ãªäžè§åœ¢ãšã¯ïŒéåããŠããªãäžè§åœ¢ïŒããªãã¡3ã€ã®é ç¹ãåäžçŽç·äžã«äžŠã°ãªãäžè§åœ¢ããããŸãïŒ
<\/details> |
SOMC004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc004/tasks/4358 | A | SOMC004(A) | 100 | 163 | 174 | [
{
"content": "ã$n=p_1^{a_1}\\cdots p_k^{a_k}$ ãšçŽ å æ°å解ããããšãïŒæ¡ä»¶ã¯\r\n$$(4a_1+1)\\cdots (4a_k+1)=45$$\r\nããããïŒçžç°ãªãçŽ æ° $p,q$ ãçšã㊠$n=p^2Ãq$ ãŸã㯠$n=p^{11}$ ãšè¡šããããšãšåå€ã§ãããšãããããïŒæ±ããæå°ã® $n$ 㯠$2^2Ã3=\\textbf{12}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc004/editorial/4358"
}
] | ã$n^4$ ãæ£ã®çŽæ°ãã¡ããã© $45$ åãã€ãããªïŒæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ããïŒ |
SOMC004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc004/tasks/4000 | B | SOMC004(B) | 200 | 124 | 134 | [
{
"content": "ããã¹ãŠã®èŸºã®é·ãã $1$ ã®åè§é $X-Y_1Y_2Y_3Y_4$ ã«ãããŠïŒ$X$ ãã $Y_1Y_2Y_3Y_4$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããšïŒ$XH=\\dfrac{\\sqrt 2}{2}$ ã§ããïŒãã£ãŠïŒ$QS=RT=1+\\sqrt 2$ ã§ããïŒ$P$ ãšé¢ $QRST$ ã®è·é¢ã¯ $\\dfrac{1+\\sqrt2}{2}$ ã§ããïŒä»¥äžããïŒæ±ããäœç©ã¯ \r\n$$\\frac{1}{3}\\times\\frac{(1 + \\sqrt2)^2}{2}\\times\\frac{1+\\sqrt2}{2} = \\frac{7+5\\sqrt2}{12}$$ \r\nã§ããããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{26}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc004/editorial/4000"
}
] | ãäžèŸºã®é·ãã $1$ ã®ç«æ¹äœ $ABCD-EFGH$ïŒããšãã° $A$ ãšèŸºãå
±æããé ç¹ã¯ $B,D,E$ïŒã«ã€ããŠïŒãã®å€éšã«ç¹ $P, Q, R, S, T$ ããšã£ããšããïŒåè§é
$$P-ABCD, ~ Q-ABFE, ~ R-BCGF, ~ S-CDHG, ~ T-DAEH$$
ã®ãã¹ãŠã®èŸºã®é·ãã $1$ ã«ãªããŸããïŒãã®ãšãïŒåè§é $P-QRST$ ã®äœç©ã¯æ£ã®æŽæ° $a,b,c,d$ ãçšã㊠$\dfrac{a+b\sqrt c}{d}$ ãšè¡šããïŒãã ã $a,b,d$ ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ããïŒ$c$ ã¯å¹³æ¹å åãæããªãïŒã®ã§ïŒ$a+b+c+d$ ã解çããŠãã ããïŒ |
SOMC004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc004/tasks/3927 | C | SOMC004(C) | 200 | 58 | 101 | [
{
"content": "ãæã«å±ããããããžã¥ãŒã¹ã $M$ ãªããã«ã§ãã£ããšããïŒæ人 $1$ ãšæ人 $2$ ã®ããããªã³ãŽãžã¥ãŒã¹ã®éãçããããšãã以äžãæç«ãïŒããã解ããš $M=9801$ ãåŸãïŒ\r\n$$1+\\frac{M-1}{100}=2+\\cfrac{M-\\bigg(1+\\cfrac{M-1}{100}\\bigg)-2}{100}$$ \r\nãããã£ãŠïŒããããã®æ人ã¯ã€ãã« $99$ ãªããã«ããããããšã«ãªãïŒ$N \\le \\dfrac{9801}{99} = 99$ ãåŸãïŒéã«ïŒ$N$ ã $99$ 以äžã®ãšãæ¡ä»¶ãæºããããšãåããããïŒæ±ããçã㯠$\\bf{4949}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc004/editorial/3927"
}
] | ãOMCæã«ã¯ $N(\geq 2)$ 人ãäœãã§ããïŒæ人 $1$ ããæ人 $N$ ãŸã§çªå·ãä»ããŠããŸãïŒããæ¥ïŒæã«ããããã®ããããžã¥ãŒã¹ãå±ããã®ã§ïŒ$i=1,\ldots,N$ ã®é ã«ä»¥äžã®èŠåã«ã®ã£ãšã£ãŠãããé
ãããšã«ããŸããïŒ
- æ人 $i$ ãïŒãŸã $i$ ãªããã«ãããïŒ
- $i$ ãªããã«ããã£ãåŸã§ã®æ®ãïŒ$0$ ãªããã«ã§ãããïŒã® $1~\\%$ ãæ人 $i$ ãããã«ãããïŒ
ãã®ãšãïŒèŠåéãã«å
šå¡ãžããããžã¥ãŒã¹ãé
åããããšãã§ãïŒãã€å
šå¡ãåãéã®ããããžã¥ãŒã¹ãããã£ããšãããŸãïŒãã®ãããªããšããããã $2$ 以äžã®æŽæ° $N$ ã®ç·åãæ±ããŠãã ããïŒ |
SOMC004 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/somc004/tasks/2019 | D | SOMC004(D) | 300 | 22 | 52 | [
{
"content": "ã$2$ ã§ã¡ããã© $k$ åå²ãåãããããªæ£æŽæ° $m$ ã«ã€ããŠ, è¢ $m$ ãã $2$ ã§ã¡ããã©ããåæ°å²ãåããæ°ãæžãããçãåãåºããã確çã¯åžžã« $1\\/(k+1)$ ã§ããããšã«çæãã. ãããã, ãŸãç·ç©ãå¥æ°ãšãªã確ç $Q$ ã¯\r\n$$Q=\\left(\\dfrac{1}{1}\\right)^{256}\\times\\left(\\dfrac{1}{2}\\right)^{128}\\times\\left(\\dfrac{1}{3}\\right)^{64}\\times\\cdots\\times\\left(\\dfrac{1}{8}\\right)^{2}\\times\\left(\\dfrac{1}{9}\\right)^{1}\\times\\left(\\dfrac{1}{10}\\right)^{1}=\\dfrac{1}{2^{207}\\times3^{74}\\times5^{17}\\times7^4}$$\r\nåæ§ã«ããŠã$2$ ã§ã¡ããã© $1$ åå²ããæ°ã $2$ ã€éžã¶æ¹æ³ãããã³ã$4$ ã®åæ°ãäžã€éžã¶æ¹æ³ããèããã°,\r\n$$P=\\left({}\\_{2^8}\\mathrm{C}\\_{2}+2^7\\right)Q=2^{15}Q=\\dfrac{1}{2^{192}\\times 3^{74}\\times 5^{17}\\times 7^4}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $192+74+17+4=\\textbf{287}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/somc004/editorial/2019"
}
] | ã$1$ ãã $2^9$ ãŸã§ã®æŽæ°ãæ¯ããã $2^9$ åã®è¢ãããããäžã€ãã€ããïŒè¢ $n$ ã«ã¯ãã¹ãŠã® $n$ ã®æ£ã®çŽæ°ã«ã€ããŠãããæžãããçãããããäžã€ãã€å
¥ã£ãŠããŸãïŒäŸãã°ïŒè¢ $12$ ã«ã¯ $6$ åã®çãå
¥ã£ãŠããŸãïŒããããã®è¢ããç確çã«äžã€ãã€çãåãåºãããšãïŒãããã«æžããã $2^9$ åã®æ°ã®ç·ç©ã $2$ ã§ã¡ããã© $2$ åå²ãåãã確çãæ±ããŠãã ããïŒãã ãïŒæ±ãã確ç $P$ ã¯æ£æŽæ° $a,b,c,d$ ãçšããŠä»¥äžã®ããã«è¡šãããã®ã§ïŒ$a+b+c+d$ ã解çããŠãã ããïŒ
$$P=\dfrac{1}{2^aÃ3^bÃ5^cÃ7^d}.$$ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/5141 | A | OMC167(A) | 100 | 331 | 373 | [
{
"content": "ã$b=k ~ (k=1,2,\\ldots,60)$ ã®ãšã, $a$ ãšããŠããããå€, $c$ ãšããŠããããå€ã¯ãããã $k$ éããã. åŸã£ãŠ, $(a,b,c)$ ãšããŠãããããã®ã¯ $k^2$ éããããã, 解çãã¹ãå€ã¯\r\n$$\\sum_{k=1}^{60} k^2=\\mathbf{73810}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/5141"
}
] | ã$1$ ä»¥äž $60$ 以äžã®æŽæ°ã®çµ $(a,b,c)$ ã§ãã£ãŠïŒ$a\leq b$ ã〠$b\geq c$ ãã¿ãããã®ã¯ããã€ãããŸããïŒ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/5337 | B | OMC167(B) | 100 | 347 | 366 | [
{
"content": "ãå硬貚ã»çŽå¹£ã«ã€ããŠïŒãããå«ããã¢ã¯ $8$ éãååšããïŒãŸãïŒçžç°ãªãéžã³æ¹ããããšãåèšéé¡ã¯äžèŽããªãã®ã§ïŒæ±ããå€ã¯\r\n$$8\\times (1+5+10+50+100+500+1000+5000+10000)=\\mathbf{133328}$$ \r\nã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/5337"
}
] | ã1åçïŒ5åçïŒ10åçïŒ50åçïŒ100åçïŒ500åçïŒ1000åæïŒ5000åæïŒ10000åæã1ã€ãã€ãããŸãïŒãããã®äžããã¡ããã©2ã€ãéžã¶ãšãïŒäœãããšãã§ããéé¡ã®ç·åãæ±ããŠãã ããïŒ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/3479 | C | OMC167(C) | 200 | 262 | 321 | [
{
"content": "ãOMCåã $13$ åã®ãã¡ $k~(=9,10,11,12)$ åç·Žç¿ã«åå ãããšããïŒãã®ãšãã®å Žåã®æ°ã¯ïŒ\r\n$k$ åã®ãåããããªãæååã®æåã®ééãŸãã¯äž¡ç«¯ã« $13-k$ åã®ãäŒãã®æåãå
¥ããæ¹æ³ïŒåãå Žæã«ã¯ $1$ åãŸã§ïŒãšäžå¯Ÿäžã«å¯Ÿå¿ãïŒ\r\nå
·äœçã«ã¯ ${}\\_{k+1}\\mathrm{C}\\_{13-k}$ éãã§ããïŒãããã£ãŠïŒè§£çãã¹ãå€ã¯$$\r\n{}\\_{10}\\mathrm{C}\\_{4}+{}\\_{11}\\mathrm{C}\\_{3}+{}\\_{12}\\mathrm{C}\\_{2}+{}\\_{13}\\mathrm{C}\\_{1}=\\textbf{454}.\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/3479"
}
] | ãOMCåã¯ããéšæŽ»ã«æå±ããŠããŸãïŒãã®éšæŽ»ã§ $13$ æ¥éé£ç¶ã§ç·Žç¿ã®äºå®ãããããšãç¥ã£ãOMCåã¯ïŒé¢åã ãšæã£ãã®ã§ïŒä»¥äžã®èŠåã«åŸã£ãŠ $13$ åã®ç·Žç¿ã®ãã¡ $1$ å以äžãäŒãããšã«ããŸããïŒ
- $2$ æ¥ä»¥äžé£ç¶ããŠç·Žç¿ãäŒãŸãªãïŒ
- $13$ åã®ç·Žç¿ã®ãã¡ $9$ å以äžã¯åå ããïŒ
ãã®ãšãïŒ$13$ æ¥éå
šäœã§äŒãæ¥ã®éžã³æ¹ã¯äœéããããŸããïŒ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/1913 | D | OMC167(D) | 300 | 184 | 256 | [
{
"content": "ãæ¡ä»¶ãã¿ããæ£æŽæ°ã«ã€ããŠ, äžããæ°ããŠå¥æ°æ¡ã®æ°ã®åã $A$, å¶æ°æ¡ã®æ°ã®åã $B$ ãšãããš, $A-B$ 㯠$11$ ã®åæ°ã§ãã, $A+B=45$ ãã $A-B$ ã¯å¥æ°ã§ãã. ããã«ããåŸãç¯å²ãèããã° $\\\\{A,B\\\\}=\\\\{17,28\\\\}$ ã§ãã.\\\r\nããããå©çšããŠ, äžã®æ¡ãã $987\\cdots$ ãšåããŠæ¡ä»¶ãã¿ãããã®ãååšãããé 次詊ãããšã§, æå€§å€ $9876524130$ ãåŸãã, åæ§ã«ããŠæå°å€ $1024375869$ ãåŸããã. ãããã®å·®ã¯ $\\textbf{8852148261}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/1913"
}
] | ãåæ¡ã« $0$ ãã $9$ ãŸã§ã®æŽæ°ãäžåºŠãã€ç»å Žãã $10$ æ¡ã®æ£æŽæ°ã§ãã£ãŠïŒãã ãïŒæé«äœã¯ $0$ ã§ãªããã®ãšããïŒïŒ$11$ ã®åæ°ã§ãããã®ã«ã€ããŠïŒæ倧å€ãšæå°å€ã®å·®ãæ±ããŠãã ããïŒ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/1931 | E | OMC167(E) | 300 | 79 | 121 | [
{
"content": "ã$D$ ã«é¢ã㊠$A$ ãšå¯Ÿç§°ãªç¹ã $A^\\prime$ ãšãããš, $AC=A^\\prime E$ ããã³ $\\angle CAD+\\angle EA^\\prime D=60^\\circ$ ãæç«ãã. ããããåè§åœ¢ $ACEA^\\prime$ ã $3$ ã€çµã¿åããããš, äžèŸº $14$ ã®æ£äžè§åœ¢ããäžèŸº $4$ ã®æ£äžè§åœ¢ãåãé€ãã圢ã«ãªã. æ±ããé¢ç©ã¯ $ACEA^\\prime$ ã®ããã«çãããã,\r\n$$\\dfrac{1}{3}\\left(14^2\\times\\frac{\\sqrt3}{4}-4^2\\times\\frac{\\sqrt3}{4}\\right)=15\\sqrt3=\\sqrt{\\textbf{675}}$$\r\nããªã, äœåŒŠå®çãšäžç·å®çã«ãã£ãŠ $BC^2$ ã $2$ éãã«è¡šçŸããæ¹éã«ãã£ãŠã解ãããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/1931"
},
{
"content": "ãèšç®äž»äœã®è§£æ³ã§ãïŒ\r\n$BD=x,CD=y$ ãšããïŒååšè§ã®å®çããïŒ\r\n$$\\angle ADB=\\angle ADC=\\angle CDE=60\\degree$$\r\nã§ããïŒ$\\triangle{DEC}$ ã«ãããŠäœåŒŠå®çãçšã㊠$16=x^2+y^2-xyâŠâ $ïŒãŸãïŒ\r\n$\\triangle{ABD},\\triangle{ADC},\\triangle{BDC}$ ã«ãããŠãäœåŒŠå®çãçšããŠ\r\n$$AB^2=x^2-7x+49=y^2-7y+49=x^2+y^2+xyâŠâ¡$$\r\n\r\næ±ããå€ã¯ïŒ$$\\begin{aligned}\r\nåè§åœ¢ABEC &=\\triangle{ABD}+\\triangle{ADC}+\\triangle{CDE}\r\n\\\\\\\\&=\\frac{7\\sqrt{3}x}{4}+ \\frac{7\\sqrt{3}y}{4} + \\frac{\\sqrt{3}xy}{4}\\\\\\\\& = \\frac{7\\sqrt{3}(x+y)}{4} + \\frac{\\sqrt{3}xy}{4}\r\n\\end{aligned}$$\r\nã®äºä¹ã§ããããïŒ$x+y$ ãš $xy$ ã®å€ãæ±ããã°ããïŒ$â ,â¡$ ããïŒ$x+y=7,xy=11$ ã§ããïŒæ±ããå€ã¯ $(\\frac{49\\sqrt3}{4}+\\frac{11\\sqrt{3}}{4})^2=\\bf{675}$ ã§ããïŒ\r\n\r\n(ã¡ãªã¿ã«ãæ£äžè§åœ¢ $ABC$ ã«ãããŠãå€æ¥åäžã® $D$ ãå£åŒ§ $BC$ äžã«ãããšãã$BD+CD=AD$ ãäžè¬ã«æãç«ã€ã®ã§ç¥ã£ãŠãããšæ©ã解ãããšæããŸãïŒ)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/1931/244"
},
{
"content": "ãäžè§åœ¢ $ABD$ ã $B$ ã $C$ ã«ãã€ãããã« $A$ ãäžå¿ã« $60^\\circ$ å転ãããããšã§ïŒåè§åœ¢ $ABCD$ ã®é¢ç©ã¯äžèŸº $7$ ã®æ£äžè§åœ¢ã®é¢ç©ã«çããããšãš $BD+CD=7$ ã§ããããšããããïŒ \r\nããã£ãŠïŒ$CD+DE=7$ ãšãªãããšãš $\\angle{CDE}=60^\\circ$ ã«æ³šæããŠïŒäžè§åœ¢ $CDE$ ã®é¢ç©ãæ±ããã°ããïŒ \r\n(äœåŒŠå®çãçšããŠæ±ããŠããããïŒ)äžèŸº $4$ ã®æ£äžè§åœ¢ã«äžè§åœ¢ $CDE$ ã $3$ ã€ãã£ã€ããŠäžèŸº $7$ ã®æ£äžè§åœ¢ãäœããã®ã§ïŒ äžè§åœ¢ $CDE$ ã®é¢ç©ã¯ $\\dfrac{\\sqrt{3}}{4}(7^2-4^2)\\times\\dfrac{1}{3}=\\dfrac{11\\sqrt{3}}{4}$ ãšãããïŒ \r\n 以äžããïŒæ±ããé¢ç©ã¯ $\\dfrac{\\sqrt{3}}{4}\\times7^2+\\dfrac{11\\sqrt{3}}{4}=15\\sqrt{3}$ ã§ããïŒç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{675}$ïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/1931/245"
}
] | ãæ£äžè§åœ¢ $ABC$ ã«ãããŠïŒãã®å€æ¥åã®å£åŒ§ $BC$ äžïŒç«¯ç¹ãé€ãïŒã«ç¹ $D$ ããšãïŒ$D$ ã«é¢ã㊠$B$ ãšå¯Ÿç§°ãªç¹ã $E$ ãšãããšãïŒ$AD=7$ ããã³ $CE=4$ ãæç«ããŸããïŒãã®ãšãïŒ åè§åœ¢ $ABEC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC167 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc167/tasks/4673 | F | OMC167(F) | 400 | 39 | 93 | [
{
"content": "ããŸãïŒ$ \\\\{ 1,2,âŠ,30\\\\} $ ã®éšåéåã®èŠçŽ ã®ç·åã $5$ ã§å²ã£ãäœãã $a$ ã®ãšãã®å Žåã®æ°ãæ±ããïŒ\r\n$$ f(x)=((1+x)(1+x^2)(1+x^3)(1+x^4)(1+x^5))^{6} $$\r\nãšãããšïŒ$x^5=1$ ãšãããšãã® $f(x)$ ã® $x^a$ ã®ä¿æ°ãšäžèŽããïŒ å¯Ÿç§°æ§ããïŒ$a$ ã $1$ ä»¥äž $4$ 以äžã®æã®ä¿æ°ã¯å
šãŠçããã®ã§ããã $ s $ ãšãïŒ$a=0$ ã®æã®ä¿æ°ã $t$ ãšããïŒä¿æ°ã®ç·åãèãããš $4s+t=2^{30}$ ãæãç«ã¡ïŒ$1$ ã® $5$ ä¹æ ¹ã®ãã¡ $1$ 以å€ã®ãã $1$ ã€ã $Ï$ ãšãããšïŒ\r\n$$ t=\\frac{f(1)+f(Ï)+f(Ï^2)+f(Ï^3)+f(Ï^4)}{5} $$\r\nãæãç«ã€ïŒããã§ïŒå æ°å®çãã\r\n$$(x-\\omega)(x-\\omega^2)(x-\\omega^3)(x-\\omega^4) = x^4 + x^3 + x^2 + x + 1$$\r\nã§ããããïŒäž¡èŸºã« $x = -1$ ã代å
¥ããããšã§\r\n$$(1+\\omega)(1+\\omega^2)(1+\\omega^3)(1+\\omega^4) = 1$$\r\nã§ããïŒãã£ãŠïŒ$t = \\dfrac{2^{30} + 2^8}{5}$ ãšèšç®ã§ããïŒãããã $ s=\\dfrac{2^{30}-2^{6}}{5}$ ããããïŒæ±ããå Žåã®æ°ã¯ $ 6s+2t$ ã«çããããïŒæ±ããçã㯠$\\bf{1717986944}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/4673"
},
{
"content": "å
¬åŒè§£èª¬ã«å¯ŸããŠã®ããŸããŸãªè£è¶³ã§ãïŒ \r\n\r\n[è£è¶³ $1$ ] $x^5=1$ ã®ãšã $f(x)$ ã® $x,x^2,x^3,x^4$ ã®ä¿æ°ãçããçç± \r\n$f(x)={((1+x)(1+x^2)(1+x^3)(1+x^4)(1+x^5))}^6$ \r\n$\\phantom{f(x)}={((1+x^2)(1+x^4)(1+x^6)(1+x^8)(1+x^{10}))}^6$ \r\nã§ããïŒ$x^2=t$ ãšãããšïŒ \r\n$f(x)=(1+t)(1+t^2)(1+t^3)(1+t^4)(1+t^5)$ ã§ããïŒ$f(x)$ ã® $x$ ã®ä¿æ°ãš $f(x)$ ã® $t$ ã®ä¿æ°ã¯äžèŽããã®ã§ïŒ$f(x)$ ã® $x,x^2$ ã®ä¿æ°ã¯äžèŽããïŒ$x^3,x^4$ ã®ä¿æ°ã«ã€ããŠãåæ§ã§ããïŒ \r\n\r\n[è£è¶³ $2$ ] $t$ ã®èšç®éçš \r\n$x^5=1$ ã®è§£ã $x=1,\\omega,\\omega^2,\\omega^3,\\omega^4$ ã§ããã®ã§ïŒ$x^5-1=(x-1)(x^4+x^3+x^2+x+1)$ ããïŒ$x^4+x^3+x^2+x+1=0$ ã®è§£ã $x=\\omega,\\omega^2,\\omega^3,\\omega^4$ ãšãªãïŒ$(x-\\omega)(x-\\omega^2)(x-\\omega^3)(x-\\omega^4)=x^4+x^3+x^2+x+1$ ã§ããïŒ \r\nãã®åŒã« $x=-1$ ã代å
¥ããŠïŒ$(1+\\omega)(1+\\omega^2)(1+\\omega^3)(1+\\omega^4)=1$ ã§ããïŒ \r\nãã£ãŠïŒ$\\omega^5=1$ ãå å³ããŠïŒ$f(\\omega)=f(\\omega^2)=f(\\omega^3)=f(\\omega^4)=2^6,f(1)=2^{30}$ ãšãªãïŒ$t=\\dfrac{2^{30}+2^8}{5}$\r\n\r\n[è£è¶³ $3$ ] $s$ ã®æ±ãæ¹ã®å¥è§£ \r\n$A_k=\\\\{5k-4,5k-3,\\ldots,5k\\\\}$ ã®éšåéåã®ãã¡ïŒ$A_k$ èªèº«ã§ã空éåã§ããªã $2^5-2=30$ éãã«å¯ŸãïŒèŠçŽ ã®åèšã $5$ ã§å²ã£ãäœãã $0,1,2,3,4$ ã§ãããã®ã¯ $6$ éããã€ããïŒ$\\cdots(1)$ \r\n以äžïŒ$\\\\{1,2,\\ldots,30\\\\}$ ã®éšåéåã«å¯ŸãïŒ$5k-4,5k-3,5k-2,5k-1,5k$ ãå
šãŠèŠçŽ ã«å«ãã§ãããŸãã¯å
šãŠèŠçŽ ã«å«ãã§ããªããšããæ¡ä»¶ã $P_k$ ãšããïŒ \r\n $\\\\{1,2,\\ldots,30\\\\}$ ã®éšåéåã®ãã¡ $P_1$ ãæºãããªããã®ããç¡äœçºã«äžã€éžãã æïŒèŠçŽ ã®åèšã $5$ ã§å²ã£ãäœãã $1$ ã§ãã確ç㯠$(1)$ \r\nãã $\\dfrac{1}{5}$ ã§ããïŒ \r\nåæ§ã«ïŒ$\\\\{1,2,\\ldots,30\\\\}$ ã®éšåéåã®ãã¡ $P_1,\\ldots,P_n$ ãæºããã $P_{n+1}$ ãæºãããªããã®ããç¡äœçºã«äžã€éžãã æïŒèŠçŽ ã®åèšã $5$ ã§å²ã£ãäœãã $1$ ã§ãã確ç㯠$(1)$ ãã $\\dfrac{1}{5}$ ã§ãããšããäºå®ã $n=1,2,3,4,5$ ã§æãç«ã€ïŒ\r\nãã£ãŠïŒ$\\\\{1,2,\\ldots,30\\\\}$ ã®éšåéåã®ãã¡ $P_1,\\ldots,P_6$ ãæºãã $2^6$ éãã¯ããããèŠçŽ ã $5$ ã§å²ã£ãäœãã $0$ ãšãªãããšã«æ³šæããŠïŒ$s=\\dfrac{2^{30}-2^6}{5}$ ãšãªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/4673/246"
},
{
"content": "ãå¥è§£ã®ç¥è§£ã§ã. \\\r\nã$\\emptyset$ ã¯æ¡ä»¶ãæºãããªãããšã«æ³šæ. \\\r\nã$\\bmod5$ 㧠$0, 1, 2, 3, 4$ 㯠$6, 7, 7, 7, 6$ åã§ãã. $0$ ã®å¯äžã¯ $\\times2^6$ ããã°ok. \\\r\nããã以å€ã¯, $\\bmod5$ ã®å€ééåãšããŠ\r\n$$\\\\{2^0, 2^1, 2^2, ..., 2^{25}\\\\}\\equiv\\\\{1, 2, 4, 3, 1, 2, 4, 3, ..., 1, 2\\\\}$$\r\nã§ãã, ãã®éšåéåã®ç·åãšã㊠$0$ ãã $2^{26}-1$ ãŸã§ã $1$ åãã€äœããããšã«æ³šæããã°, é€ããã \"$3$\" ãå«ãããå«ããªããã§å ŽååããããŠ\r\n$$\\left(\\left\\lceil\\dfrac{2^{26}-1}5\\right\\rceil+\\left\\lceil\\dfrac{2^{26}-1}5\\right\\rceil\\right)Ã2^6=Ans.$$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/4673/248"
},
{
"content": "[3b1b Japan ã«ããé¡é¡ã®è§£èª¬](https:\\/\\/youtube.com\\/watch?v=FR6_JK5thCY)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc167/editorial/4673/271"
}
] | ã$\\{ 1,2,âŠ,33\\} $ ã®ç©ºã§ãªãéšåéåã®ãã¡ïŒãã®èŠçŽ ã®ç·åã $5$ ã§å²ããš $1$ äœããã®ã®ç·æ°ãæ±ããŠãã ããïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/5766 | A | OMC166(A) | 200 | 313 | 325 | [
{
"content": "ã$d_O+d_M+d_C=8$ ããïŒæ¡ä»¶ã¯\r\n$$2=|d_O-d_M+d_C|=|8-2d_M|$$\r\nãšãªãããïŒ$d_M$ ã $3$ ãŸã㯠$5$ ã§ããããšãå¿
èŠååæ¡ä»¶ã§ããïŒ\\\r\nãäžè¬ã«, $d_M=i$ ãšãªããããªæåå㯠${}_8\\mathrm{C}_i \\times 2^{8-i}$ åãããã, 解çãã¹ãå€ã¯\r\n$${}_8 \\mathrm{C}_3 \\times 2^5+{}_8 \\mathrm{C}_5 \\times 2^3=\\mathbf{2240}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/5766"
}
] | ãåæåã $O, M, C$ ã®ããããã§ããïŒã〠$8$ æåãããªãæåå㯠$3^8$ éããããŸãïŒãã®ãã¡ïŒå«ãŸããæå $O,M,C$ ã®åæ°ããããã $d_O, d_M, d_C$ ãšãããšãã«
$$|d_O-d_M+d_C|=2$$
ãæãç«ã€ãã®ã¯ããã€ãããŸããïŒ\
ããã ãïŒäœ¿ãããªãæåããã£ãŠããããã®ãšããŸãïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/5125 | B | OMC166(B) | 200 | 285 | 314 | [
{
"content": "ãäžåŒã $f(n)$ ãšããã°ïŒä»¥äžãæãç«ã€ïŒ\r\n$$\\frac{f(n+1)}{f(n)} = \\frac{\\frac{2005!}{5^{n+1} \\cdot (n+1)! \\cdot (2004-n)!}}{\\frac{2005!}{5^{n} \\cdot n! \\cdot (2005-n)!}} = \\frac{2005-n}{5(n+1)} =\\frac{2005-n}{5n+5} $$\r\nãããã£ãŠïŒ$f(n+1)\\/f(n)$ ãš $1$ ã®å€§å°é¢ä¿ãæ¯èŒããããšã§ä»¥äžãåŸããïŒè§£çãã¹ãå€ã¯ $\\mathbf{334}$ïŒ\r\n$$f(1) \\lt f(2) \\lt \\cdots \\lt f(333) \\lt f(334) \\gt f(335) \\gt \\cdots \\gt f(2005)$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/5125"
}
] | ã$0\leq n \leq 2005$ ã®ç¯å²ã«ãããŠïŒ$\dfrac{{}\_{2005} \mathrm{ C } \_n}{5^{n}}$ ãæ倧å€ããšããããªæŽæ° $n$ ãæ±ããŠãã ããïŒãã ãïŒãã®ãã㪠$n$ ãã¡ããã©äžã€ååšããããšãä¿èšŒãããŸãïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/2868 | C | OMC166(C) | 300 | 180 | 221 | [
{
"content": "ã$\\angle GDB=\\angle GDC=90^{\\circ}$ ãã, $D$ 㯠$G$ ããçŽç· $BC$ ã«ããããåç·ã®è¶³ã§ãã. åæ§ã« $E,F$ 㯠$G$ ããçŽç· $CA,AB$ ã«ããããåç·ã®è¶³ã§ããããšãããã.\\\r\nãããŸ, $H$ ã $A$ ãã $BC$ ã«ããããåç·ã®è¶³ãšãããš, çžäŒŒãã $GD=\\dfrac{AH}{3}$ ãæãç«ã¡, äžæ¹ã§é¢ç©ãèããããšã§ $AH=\\dfrac{2\\times 8}{BC}$ ãªã®ã§, $GD=\\dfrac{16}{3BC}$ ãæãç«ã€. åæ§ã« $GE,GF$ ã«ã€ããŠãæãç«ã€ãã, \r\n$$GD \\times GE \\times GF=\\frac{16^{3}}{3^{3}\\times AB \\times BC \\times CA}=\\frac{16^3}{3^3\\times96}= \\frac{128}{81}$$\r\nããã£ãŠ, 解çãã¹ãå€ã¯ $128+81=\\textbf{209}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/2868"
}
] | ãéå¿ã $G$ ãšããéè§äžè§åœ¢ $ABC$ ã¯ïŒé¢ç©ã $8$ ïŒ äžèŸºã®é·ãã®ç©ã $96$ ã§ãïŒããŸïŒ$GA, GB, GC$ ãçŽåŸãšããåããããã $C_{1}, C_{2}, C_{3}$ ãšãïŒ$C_{2}$ ãš $C_{3}$ïŒ$C_{3}$ ãš $C_{1}$ïŒ$C_{1}$ ãš $C_{2}$ ã®äº€ç¹ã®ãã¡ $G$ ã§ãªãæ¹ããããã $D,E,F$ ãšãããšãïŒ$GDÃGEÃGF$ ã®å€ãæ±ããŠãã ããïŒãã ãïŒçãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/2432 | D | OMC166(D) | 300 | 154 | 236 | [
{
"content": "ã$f(x)$ ã® $2$ 次ã®ä¿æ°ã $a$ïŒ$f(x)=0$ ã® $2$ 解ã $\\alpha\\leq \\beta$ ãšããã°ïŒä»¥äžãæãç«ã€ïŒ\r\n$$(\\alpha +1)(\\beta +1)=\\frac{f(-1)}{a}=\\frac{N}{a}$$\r\nãããã $a$ 㯠$N$ ã®æ£ã®çŽæ°ã§ããå¿
èŠããã, ãã®ãšã, $\\alpha +1,\\beta +1$ ã¯ç©ã $N\\/a$ ã§ãããã㪠$N\\/a$ ã®æ£ã®çŽæ°ãšããŠå®ããã°æ¡ä»¶ãã¿ãã $f(x)$ ãåŸããã. $f(x)$ ã¯ãã® $(a,\\alpha,\\beta)$ ã®çµã¿åããããäžæçã«å®ãŸã.\\\r\nãããŸ, $50$ 以äžã®çŽ æ°ã $15$ åã§ããããšã«æ³šæããã°, $a$ ã $k$ å ($k=0,1,\\cdots ,14$) ã®çŽ å æ°ããã€ãšã, $a$ ãšããŠããåŸãå€ã¯ ${}\\_{15}\\mathrm{C}\\_{k}$ éããã, ãã®ãšã $N\\/a$ ã®çŽæ°ã¯ $2^{15-k}$ åååšãããã, çµ $\\alpha\\leq\\beta$ 㯠$2^{15-k-1}$ éããã. ãŸã, $k=15$ ã®ãšã㯠$f(x)$ ãšããŠããåŸããã®ã¯ $1$ éãã§ããããïŒè§£çãã¹ãå€ã¯\r\n$$1+\\sum_{k=0}^{14} {}\\_{15}\\mathrm{C}\\_{k}\\times 2^{15-k-1}=1+\\frac{(1+2)^{15}-1}{2}=\\textbf{7174454}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/2432"
}
] | ãæŽæ° $N$ ã $50$ 以äžã®çŽ æ° $15$ åã®ç·ç©ãšããŸãïŒ\
ããã®ãšãïŒä»¥äžãã¿ããæŽæ°ä¿æ° $2$ 次å€é
åŒ $f(x)$ ã¯ããã€ãããŸããïŒ
- $f(-1)=N$ ã§ããïŒ
- $f(x)=0$ ã®è€çŽ æ°è§£ã¯ãã¹ãŠéè² æŽæ°ã§ããïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/2846 | E | OMC166(E) | 500 | 42 | 88 | [
{
"content": "ãäžè¬ã« $3Ãn$ ã®ãã¹ç®ã«æ¡ä»¶ãæºããããã« $1$ ä»¥äž $n$ 以äžã®æŽæ°ããããã $1$ åãã€ãš $0$ ã $2n$ åæžã蟌ãæ¹æ³ã $T_n$ éããããšãã. $0$ ãšæžã蟌ãŸãããã¹ç®ã®å³åŽã¯å¿
ã $0$ ãæžã蟌ãŸããã®ã§, $1$ ä»¥äž $n$ 以äžã®æŽæ°ã巊端ããè©°ããŠæžã蟌ã¿, æ®ãã®ãã¹ã«å
šãŠ $0$ ãæžã蟌ãã°ãã. ãããã£ãŠ, ä»¥äž $0$ ã¯ç©ºçœæ±ãããŠè°è«ãé²ãã. \\\r\nãããŠ, $3Ã(n-1)$ ã®ãã¹ç®ã«æ¡ä»¶ãæºããããã«æžã蟌ãŸãããã®ã«, $n$ ãæžããããã¹ãæ¿å
¥ããŠåãè¡ãå³ã«ã·ããããããšãèããã°ãã. 巊端㮠$3$ ãã¹ãš, $n\\/2$ 以äžã®æŽæ°ãæžã蟌ãŸãããã¹ã®å³é£ãã«æ¿å
¥å¯èœã§ãã,\r\n$$T_{n}=T_{n-1}\\times \\left( \\left\\lfloor \\dfrac{ n }{ 2 } \\right\\rfloor+3\\right)$$\r\n$T_1=3$ ããèšç®ãè¡ãã° $T_{8}=3Ã4Ã4Ã5Ã5Ã6Ã6Ã7=\\textbf{302400}$ ãæ±ããã¹ãçãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/2846"
},
{
"content": "ã$0$ ã®é£ã« $0$ 以å€ã®æ°ãæ¥ãããšã¯ãªãã®ã§, $1,2,\\dots,8$ ãåã®æ¡ä»¶ãæºãã(é åºãåºå¥ãã) $3$ ã€ã®æ°å(空ã§ãè¯ã)ã«åå²ããããšãèãã. ãã®ãšã, é£ããã£ããšãæ¡ä»¶ã«éåããŠããŸãã®ã¯, 以äžã®çµã§ãã.\r\n$$\r\n\\begin{aligned}\r\n(1,3),(1,4),(1,5),&(1,6),(1,7),(1,8),\\\\\\\\\r\n(2,5),(2,6),&(2,7),(2,8),\\\\\\\\\r\n(3,7),&(3,8)\r\n\\end{aligned}\r\n$$\r\néåããŠããŸãçµã«ã€ããŠ, å¿
ãå·ŠåŽã¯ $1,2,3$ ã®ããããã§ãããã, äžåºŠã«éåããŠããŸãçµã¯é«ã
$3$ çµã§ãã. ãã£ãŠ, äžã®çµã®ãã¡å¿
ãéåããŠããŸãçµã $i\\\\:\\(i=0,1,2,3)$ çµ (ãã以å€ã®çµãéåããªããšã¯éããªã) ãããããªãã®ã®åå²ã®ä»æ¹ã $a_i$ éããšãã.\r\n\r\n- $a_0$ã®èšç®\\\r\nãäœãå¶çŽã¯ãªãã®ã§, $1,2,3,\\dots,8$ ãš $2$ ã€ã®ä»åãã䞊ã³å€ããã®ã¡ä»åãã«åå²ããã $3$ ã€ã®æŽæ°ã®äžŠãã éšåããã®ãŸãŸæ°åãšããŠè§£éããã°ãã, ãã㯠$a_0=\\frac{10!}{(1!)^82!}=1814400$ éã.\r\n- $a_1$ ã®èšç®\\\r\nãéåããŠããŸãçµã $(x,y)$ ã§ãããšã, $x,y$ ã®äžŠã³ãäžã€ã®ãããã¯ãšããŠæã, $a_0$ ã®ãšããšåæ§ã« $7$ ã€ã®åºå¥ã§ããæ°å(ããããã¯)ãš $2$ ã€ã®ä»åã䞊ã³æ¿ãã. éåããŠããŸãçµã®éžã³æ¹ã¯, $12$ éããã, $a_1=12\\times\\frac{9!}{(1!)^72!}=2177280$.\r\n- $a_2$ ã®èšç®\\\r\nãéåããŠããŸãçµã $(x,y),(z,w)$ ($x,y,z,w$ ã¯çžç°ãªã) ã®ãšã, $a_1$ ã®èšç®ãšåæ§ã«ãããããäžã€ã®ãããã¯ãšããŠ, æãããšåèš $6$ ã€ã®æ°å(ããããã¯)ã $2$ ã€ã®ä»åããšãšãã«äžŠã³æ¿ããäºã«ãªã.\\\r\nãéåããŠããŸãçµã $(x,y),(y,z)$ ã§ãããšã, $x,y,z$ ã®äžŠã³ããããã¯ãšããŠæãããšåèš $6$ ã€ã®æ°å(ããããã¯)ã $2$ ã€ã®ä»åããšãšãã«äžŠã³æ¿ããããšã«ãªã.ãã£ãŠ, åæã«éåãããããšãå¯èœãª $2$ ã€ã®éžã³æ¹ããããã«ã€ããŠåå²ã®ä»æ¹ã¯ $\\frac{8!}{(1!)^62!}$ éãã§ãã, åæã«éåãããããšãå¯èœãª $2$ ã€ã®çµã®éžã³æ¹ã¯,æçŽã«æ°ãäžãããš $36$ éã. ãã£ãŠ, $a_2=36\\times\\frac{8!}{(1!)^62!}=725760 $.\r\n- $a_3$ ã®èšç®\\\r\nãå®ã¯ $a_2$ ã®èšç®ã®æãšåæ§ã«éåãããçµå士ã«æ°åã®éè€ããã£ãŠããªããŠã,ãã®åŸã®åå²ã®ä»æ¹ã¯å€ãããªã.ãªããªãäžã€éåããããšã, æ°å $1$ ã€åä»ã®æ°å(ããããã¯)ãšåäœããŠæžãããã§ãã. ãã£ãŠ, éåããã $3$ ã€ã®çµãéžãã ãšã, åå²ã®ä»æ¹ã¯ $\\frac{7!}{(1!)^52!} $ éãã§ãã. åæã«éåãããããšãå¯èœãª $3$ ã€ã®çµã¿ã®éžã³æ¹ã¯, æçŽã«æ°ãäžãããš(å·ŠåŽã $3,2,1$ ã®çµããé çªã«æ±ºããŠãããšæ°ãããã) $24$ éãã§ããã®ã§, $a_3=24\\times\\frac{7!}{(1!)^52!}=60480$.\r\n\r\nããã£ãŠ, å
é€åçããæ±ããçãã¯, $a_0-a_1+a_2-a_3=\\mathbf{302400}$ ãšèšç®ã§ãã.",
"text": "å
é€åçãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/2846/648"
}
] | ã$3$ è¡ $8$ åã®ãã¹ç®ã«ïŒéè² æŽæ°ã $1$ ã€ãã€æžã蟌ã¿ãŸãïŒããã§ïŒ$1$ ä»¥äž $8$ 以äžã®æŽæ°ãã¡ããã© $1$ åãã€äœ¿ãããŠããïŒæ®ãã® $16$ åã¯ãã¹ãŠ $0$ ã§ãããšããŸãïŒãã®ãšãïŒæ¬¡ã®æ¡ä»¶ãã¿ãããããªæžã蟌ã¿æ¹ã¯äœéããããŸããïŒ
- æãå·Šã®å以å€ã«å±ããä»»æã®ãã¹ç®ã«ã€ããŠïŒæžã蟌ãŸããæ°ãå·Šé£ã«æžã蟌ãŸããæ°ã® $2$ å以äžãšãªãïŒ
ããã ãïŒå転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ãããã®ãšããŸãïŒ |
OMC166 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc166/tasks/7278 | F | OMC166(F) | 600 | 19 | 54 | [
{
"content": "ã$s_i,t_i$ ã次ã®ããã«å®ããïŒ\r\n$$s_0=t_0=0,ãs_i=\\sum_{k=1}^{i} x_k,ãt_i=\\sum_{k=1}^{i} y_k ~ (1 \\leq i \\leq N)$$\r\nããã®ãšãïŒ$M$ ã®æ¡ä»¶ã¯æ¬¡ã®ããã«æžãæããããïŒ\r\n- ä»»æã®å®æ°ã®çµ $(s_0,s_1,\\dots,s_{N}, t_0, t_1, \\dots, t_{N})$ ãïŒ$s_0=t_0=0$ ãã€ïŒ$0 \\leq i \\lt j \\leq N$ ãªãä»»æã®æŽæ°ã®çµ $(i,j)$ ã«ã€ããŠïŒ\r\n$$|s_j-s_i|+|t_j-t_i| \\geq 1$$\r\nãã¿ãããªãã°ïŒä»»æã®å®æ° $a,b$ ã«ã€ããŠïŒãã $i ~ (0 \\leq i \\leq N)$ ãååšãïŒ\r\n$$|s_i+a|+|t_i+b| \\gt M$$\r\nãæãç«ã€ïŒ\r\n\r\nãããŠïŒå®æ° $s,t$ ã«å¯ŸãïŒ$xy$ å¹³é¢ã«ãããé å $S(s,t)$ ã\r\n$$S(s,t):|x-s|+|y-t| \\lt \\frac{1}{2}$$\r\nã§å®ããïŒãã®é åã¯ïŒç¹ $(s,t)$ ãäžå¿ãšããïŒäžèŸºã®é·ãã $1\\/\\sqrt{2}$ ã®æ£æ¹åœ¢ã§ããïŒå蟺ã®åŸã㯠$1$ ãŸã㯠$-1$ ã§ããïŒããã«ïŒå®æ° $(a,b)$ ã«å¯ŸãïŒé å $T_M(a,b)$ ã\r\n$$T_M(a,b):|x+a|+|y+b| \\leq M+\\frac{1}{2}$$\r\nãšå®ããïŒãã®é åã¯ïŒç¹ $(-a,-b)$ ãäžå¿ãšããïŒäžèŸºã®é·ãã $(2M+1)\\/\\sqrt{2}$ ã®æ£æ¹åœ¢ã§ããïŒå蟺ã®åŸã㯠$1$ ãŸã㯠$-1$ ã§ããïŒããããçšãããšïŒ$M$ ã®æ¡ä»¶ã¯ããã«æ¬¡ã®ããã«æžãæããããïŒ\r\n- ä»»æã®å®æ°ã®çµ $(s_0,s_1,\\dots,s_{N}, t_0, t_1, \\dots, t_{N})$ ãïŒ$s_0=t_0=0$ ãã¿ããïŒããã« $0 \\leq i \\lt j \\leq N$ ãªãä»»æã®æŽæ°ã®çµ $(i,j)$ ã«ã€ããŠïŒ$S(s_i,t_i)$ ãš $S(s_j,t_j)$ ãå
±ééšåããããªããªãã°ïŒä»»æã®å®æ° $a,b$ ã«ã€ããŠïŒãã $i ~ (0 \\leq i \\leq N)$ ãååšãïŒ$S(s_i,t_i)$ 㯠$T_M(a,b)$ ã«å«ãŸããªãïŒ\r\n\r\n$M$ ãæŽæ°ã§ããããšã«æ³šæãããšïŒ$N+1\\leq (2M+1)^2$ ãã¿ãããªãã°ïŒæ£æ¹åœ¢ $S(s_1,t_1),\\dots,S(s_N,t_N)$ ãããŸãé
眮ããããšã§ïŒããæ£æ¹åœ¢ $T_M(a,b)$ ã«å«ãŸããããã«ããããšãã§ããããïŒæ¡ä»¶ã¯ã¿ããããªãïŒäžæ¹ã§ $(2M+1)^2\\lt N+1$ ãã¿ãããªãã°ïŒé¢ç©ã®ç·åãèããããšã«ããïŒæ¡ä»¶ãã¿ããããããšã確èªã§ããïŒãã£ãŠïŒæ¡ä»¶ãã¿ãã $M$ ã®æ倧å€ã¯\r\n$$\\bigg\\lfloor \\dfrac{\\sqrt{N}-1}{2} \\bigg\\rfloor = \\mathbf{15810}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc166/editorial/7278"
}
] | ã$N=10^9$ ãšããŸãïŒä»¥äžãã¿ããæ£ã®**æŽæ°** $M$ ã®æ倧å€ãæ±ããŠäžããïŒ
- å®æ° $a,b$ ããã³ $2N$ åã®å®æ°ã®çµ $(x_1,x_2,\ldots,x_{N},y_1,y_2,\ldots,y_N)$ ãïŒ$|a|+|b| \leq M$ ããã³ïŒ $1 \leq i \leq j \leq N$ ãªãä»»æã®æŽæ°ã®çµ $(i,j)$ ã«ã€ããŠ
$$\bigg|\sum_{k=i}^{j} x_k \bigg| + \bigg|\sum_{k=i}^{j} y_k \bigg| \geq 1$$
ãã¿ãããªãã°ïŒãã $i ~ (1 \leq i \leq N)$ ãååšãïŒ
$$\bigg|a + \sum_{k=1}^{i} x_k \bigg| + \bigg|b + \sum_{k=1}^{i} y_k \bigg| \gt M$$
ãæãç«ã€ïŒ |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/3788 | A | OMC165(A) | 100 | 307 | 313 | [
{
"content": "ã$4x=3(674-y)$ ãšå€åœ¢ã§ããããšããïŒ$y\\equiv 674\\equiv 2 \\pmod4$ ãå¿
èŠã§ããïŒ$x\\gt 0$ ãã $y\\leq 670$ ãå¿
èŠã§ããïŒéã«ïŒ$y=2,6,\\ldots,670$ ããããã«å¯Ÿãæ£ã®æŽæ° $x$ ã察å¿ããããïŒæ±ããå€ã¯ $\\textbf{168}$ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/3788"
}
] | ã$4x+3y=2022$ ãæºããæ£ã®æŽæ°ã®çµ $(x,y)$ ã¯äœéããããŸããïŒ |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/3581 | B | OMC165(B) | 100 | 292 | 306 | [
{
"content": "ã$7$ é²æ³è¡šèšã®ãŸãŸèšç®ããã°ïŒ$q=12345,r=6$ ã§ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{12354}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/3581"
}
] | ã$7$ é²æ³è¡šèšã§ $123456$ ãšè¡šãããæ°ã $7$ ã§å²ã£ãåã $q$ ãšãïŒäœãã $r$ ãšããŸãïŒ$q+r$ ã $7$ é²æ³è¡šèšã§è§£çããŠãã ãã. |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/1560 | C | OMC165(C) | 200 | 223 | 252 | [
{
"content": "ãäžè§åœ¢ $AMC$ ã®å€æ¥åã«ãããŠïŒ$\\angle AMC=90^\\circ$ ãã $AC$ ã¯çŽåŸããªãããïŒ$N$ ã¯ãã®äžå¿ã§ããïŒãã£ãŠïŒ$AC = 2PN = 14$ ã§ããïŒãŸãïŒç·å $BN$ ãšäžè§åœ¢ $AMC$ ã®å€æ¥åã®äº€ç¹ã $Q$ ãšããã°ïŒ$PQ$ ãçŽåŸã§ããïŒ$BQ=BN-NQ=11-7=4$ ãåŸãïŒãã®ãšãïŒæ¹ã¹ãã®å®çãã $BC^2\\/2=BQ\\times BP=72$ ã§ããããïŒ$BC=12$ ã§ããïŒãã£ãŠïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯\r\n$$\\frac{1}{2}\\times BC\\times AM = \\frac{1}{2}\\times BC\\times\\sqrt{AC^2 - CM^2} = \\sqrt{\\textbf{5760}}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/1560"
}
] | ã$AB=AC$ ãªãäºç蟺äžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC,AC$ ã®äžç¹ããããã $M,N$ ãšããŸãïŒäžè§åœ¢ $AMC$ ã®å€æ¥åãšçŽç· $BN$ ã®äº€ç¹ã®ãã¡ $B$ ããé ãæ¹ã $P$ ãšãããšãïŒ$BN=11,NP=7$ ãæãç«ã¡ãŸããïŒ\
ããã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ããïŒ |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/2735 | D | OMC165(D) | 300 | 119 | 218 | [
{
"content": "ã$a = b = 1$ ã代å
¥ããããšã§ïŒ$f(1)=1$ ãåããïŒ\\\r\nã$(a,b) = (2,2), (2, 3), (3,2)$ ããããã代å
¥ããããšã§ïŒä»¥äžãåããïŒ\r\n$$f(4)=f(2)^{f(2)}, \\quad f(8)=f(2)^{f(3)},\\quad f(9)=f(3)^{f(2)}$$\r\nåŸã£ãŠ $f(2) \\leq 2$ ã§ããïŒ\r\n$$f(2)=1\\implies f(3) \\leq 10, \\quad f(2)=2\\implies f(3) \\leq 3$$\r\nã§ããïŒãŸãïŒ$a,b$ ã®ãã¡äžæ¹ã $4$ 以äžã®ãšãããäžæ¹ã¯ $1$ ã§ããããïŒäžã®äžçåŒãæºãããšãåžžã«çåŒã¯æç«ããïŒããã«ïŒ$f(5),f(6),f(7),f(10)$ ã®å€ã¯ç¬ç«ã«å®ãŸãããïŒæ±ããçãã¯\r\n$$1Ã(10+3)Ã10^4= \\bm{130000}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/2735"
}
] | ãéå $\\{1,2,3, \ldots ,10\\}$ ã $S$ ãšãããŸãïŒ$S$ ã®åèŠçŽ ã«å¯ŸããŠå®çŸ©ããïŒ$S$ äžã«å€ããšãé¢æ° $f$ ã§ãã£ãŠïŒä»»æã® $a^b \leq 10$ ãªã $a,b â S$ ã«å¯ŸããŠ
$$f(a^b)=f(a)^{f(b)}$$
ãæºãããã®ã¯ããã€ãããŸããïŒ |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/4199 | E | OMC165(E) | 300 | 129 | 198 | [
{
"content": "$$p(a_1+\\cdots+a_7) = p(p(a_1+\\cdots+a_6) +a_7)=p(2a_7)$$\r\nã§ããïŒåæ§ã«ããããšã§\r\n$$p(a_1+\\cdots+a_7) = p(2a_1)=\\cdots=p(2a_7)$$\r\nãåããïŒåŸã£ãŠ $a_1\\equiv \\cdots \\equiv a_7 \\pmod 5$ ãåããã®ã§ïŒ$4$ 以äžã®éè² æŽæ° $k$ ãš $b_1\\in \\\\{0,1\\\\}$ ãªã©ãçšããŠ\r\n$$a_1=5b_1+k,\\quad a_2=5b_2+k,\\quad\\dots, \\quad a_7=5b_7+k$$\r\nãšã§ããïŒããããæ¡ä»¶ãæºããå¿
èŠååæ¡ä»¶ã¯\r\n$$p(2k) = p(a_1+\\cdots+a_7) = p(5(b_1+\\cdots+b_7+k)+2k)$$\r\nãæºããããšã§ããïŒãã㯠$b_1+\\cdots+b_7+k$ ãå¶æ°ã§ããããšãšåå€ïŒãã£ãŠïŒ$b_1, b_2,\\ldots, b_6$ ãèªç±ã«éžã¹ã°ããã«å¯Ÿå¿ãã $b_7$ ãäžæã«å®ãŸãã®ã§ïŒæ±ããçã㯠$5\\times 2^6 = \\bf{320}$ \r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/4199"
}
] | ãéè² æŽæ° $x$ ã«ã€ããŠïŒ$x$ ã®äžã®äœã $p(x)$ ãšããŸãïŒ$0$ ä»¥äž $9$ 以äžã®æŽæ°ã®çµ $(a_1,a_2,\dots,a_7) $ ã§ãã£ãŠä»¥äžã®æ¡ä»¶ãæºãããã®ã¯ããã€ãããŸããïŒ
$$\begin{cases}
p(a_1+a_2+a_3+a_4+a_5+a_6)=a_7\\\\
p(a_1+a_2+a_3+a_4+a_5+a_7)=a_6\\\\
p(a_1+a_2+a_3+a_4+a_6+a_7)=a_5\\\\
p(a_1+a_2+a_3+a_5+a_6+a_7)=a_4\\\\
p(a_1+a_2+a_4+a_5+a_6+a_7)=a_3\\\\
p(a_1+a_3+a_4+a_5+a_6+a_7)=a_2\\\\
p(a_2+a_3+a_4+a_5+a_6+a_7)=a_1
\end{cases}$$ |
OMC165 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc165/tasks/6394 | F | OMC165(F) | 400 | 22 | 77 | [
{
"content": "ãæ¡ä»¶ãæºããããã«ãããšãïŒ$i$ è¡ç®ã« $2$ å以äžã®é§ã $a_{i, j_1}, a_{i, j_2}, ..., a_{i, j_n}\\ (n \\geq 2)$ ã«çœ®ããšïŒ$j_1, j_2, ..., j_n$ åç®ã«ã¯ãã以äžã®é§ã眮ãããšãã§ããªãïŒ\r\nãã®ããšããåè¡ã«çœ®ãé§ã®åæ° $5$ ã€ã®äžã§ïŒ $2$ 以äžã§ãããã®ã®ç·å㯠$5$ 以äžã§ãªããã°ãªããªãïŒåè¡ã«çœ®ãé§ã®åæ°ã®ãã¡ $2$ 以äžã§ãããã®ã®å
èš³ã¯ä»¥äž $7$ éãã§ããïŒ\r\n$$\\\\{5\\\\}ïŒ\\\\{4\\\\}ïŒ\\\\{3\\\\}ïŒ\\\\{2\\\\}ïŒ\\\\{3, 2\\\\}ïŒ\\\\{2, 2\\\\}ïŒ\\\\{\\\\}$$\r\n\r\nãã ãæåŸã® $\\\\{\\\\}$ ã¯é§ã $2$ å以äžçœ®ãè¡ããªãã±ãŒã¹ãè¡šãïŒåã±ãŒã¹ã«å¯ŸãïŒ\r\n- é§ã $2$ å以äžçœ®ãè¡ã®æ±ºãæ¹ã¯äœéãã\r\n- $2$ å以äžçœ®ãè¡ã«é§ã䞊ã¹ãæ¹æ³ã¯äœéãã\r\n- $1$ å以äžçœ®ãè¡ããããã«å¯ŸãïŒé§ãã©ã®ãã¹ã«ãããïŒãããã¯çœ®ããªããã決ããæ¹æ³ã¯äœéãã\r\n\r\nãé ã«èšç®ãïŒããããä¹ããã°ããïŒïŒ$\\\\{\\\\}$ ã®ã±ãŒã¹ã«éã£ãŠã¯ $3$ çªç®ã®ã¿èšç®ããã°ããïŒïŒ\\\r\nã$7$ ã±ãŒã¹ã«å¯Ÿãããããèšç®ãããšä»¥äžã®éãã«ãªãïŒ\r\n$$\r\n\\begin{aligned}\r\n\\\\{5\\\\} &\\rightarrow 5 \\times {}\\_{5}\\mathrm{C}\\_{5} \\times 1^4 = 5 \\\\\\\\\r\n\\\\{4\\\\} &\\rightarrow 5 \\times {}\\_{5}\\mathrm{C}\\_{4} \\times 2^4 = 400 \\\\\\\\\r\n\\\\{3\\\\} &\\rightarrow 5 \\times {}\\_{5}\\mathrm{C}\\_{3} \\times 3^4 = 4050 \\\\\\\\\r\n\\\\{2\\\\} &\\rightarrow 5 \\times {}\\_{5}\\mathrm{C}\\_{2} \\times 4^4 = 12800 \\\\\\\\\r\n\\\\{3, 2\\\\} &\\rightarrow {}\\_{5}\\mathrm{P}\\_{2} \\times {}\\_{5}\\mathrm{C}\\_{2} \\times 1^3 = 200 \\\\\\\\\r\n\\\\{2, 2\\\\} &\\rightarrow {}\\_{5}\\mathrm{C}\\_{2} \\times \\frac{5!}{2!2!} \\times 2^3 = 2400 \\\\\\\\\r\n\\\\{\\\\} &\\rightarrow 6^5 = 7776 \\\\\\\\\r\n\\end{aligned}\r\n$$\r\n\r\nããã«ïŒæ¡ä»¶ãæºããé§ã®çœ®ãæ¹ã®ç·æ°ã¯\r\n$$5 + 400 + 4050 + 12800 + 200 + 2400 + 7776 = \\mathbf{27631}$$\r\n\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc165/editorial/6394"
}
] | ã$5$ è¡ $5$ åã«äžŠãã $25$ åã®ãã¹ç®ãããªãç€é¢ãããïŒç€é¢ã® $i$ è¡ $j$ åç®ã«ããããã¹ã $a_{i, j}$ ã§è¡šããŸãïŒãã®ç€é¢ã®ãã¹ã« $0$ å以äžã®é§ã眮ãããšãèããŸãïŒãã ãããããã®ãã¹ã«ã¯ $1$ åãŸã§é§ã眮ãããšãã§ããŸãïŒé§ã眮ãæ¹æ³ã§ãã£ãŠïŒä»¥äžã®æ¡ä»¶ãã¿ããé§ã®çœ®ãæ¹ã¯äœéããããŸããïŒ
- ä»»æã® $1 \leq i_1 \lt i_2 \leq 5$ïŒ$1 \leq j_1 \lt j_2 \leq 5$ ãªãæŽæ°ã®çµ $(i_1, i_2, j_1, j_2)$ ã«å¯ŸãïŒ$4$ ã€ã®ãã¹ $a_{i_1, j_1}, a_{i_1, j_2}, a_{i_2, j_1}, a_{i_2, j_2}$ ã®ãã¡é«ã
$2$ ç®æã«ããé§ã眮ãããŠããªãïŒ
<details><summary>æ¡ä»¶ãæºããäŸãšæºãããªãäŸ<\/summary>
ãäŸãã°ïŒå³ã®å·Šã®ããã«é§ã眮ããå Žåã¯æ¡ä»¶ãæºãããŸããïŒå³ã®å³ã®ããã«é§ã眮ããšïŒç°è²ã§ç€ºããã $4$ ã€ã®ãã¹ã®ãã¡ $3$ ç®æã«é§ã眮ããŠããïŒæ¡ä»¶ãæºãããŸããïŒ

<\/details> |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/7080 | A | OMC164(A) | 100 | 288 | 301 | [
{
"content": "ãããç¹ $(a,b)$ ãéžã¶ãšãïŒæ®ãã®ç¹ã¯ãã¹ãŠ $x=a$ ãŸã㯠$y=b$ äžã«ããç¹ããéžã¶å¿
èŠãããïŒãŸãïŒ$x=a$ äžããã³ $y=b$ äžãããããã $(a,b)$ ã§ãªãç¹ãéžãã å Žåã¯æ¡ä»¶ãæºãããªãããïŒçµå±ïŒæ¡ä»¶ã¯ãã¹ãŠã®ç¹ã $x$ 軞ãŸã㯠$y$ 軞ã«å¹³è¡ãªäžçŽç·äžã«ããããšã§ããïŒãã£ãŠæ±ããå€ã¯\r\n$$2\\times 100 \\times {}\\_{100} \\mathrm{C}\\_{97}=\\textbf{32340000}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/7080"
}
] | ã$xy$ å¹³é¢äžã§ $1\leq x\leq 100$ ã〠$1\leq y\leq 100$ ã®ç¯å²ã«ããæ Œåç¹ $100^2$ åã®ãã¡ïŒçžç°ãªã $97$ ç¹ãéžã¶æ¹æ³ã§ãã£ãŠïŒæ¬¡ã®æ¡ä»¶ãã¿ãããã®ã¯ããã€ãããŸããïŒ
- éžã°ããç¹ã®ãã¡ã©ã® $2$ ã€ã«ã€ããŠãïŒããããçµã¶ç·åã $x$ 軞ãŸã㯠$y$ 軞ã«å¹³è¡ã§ããïŒ
ããã ãïŒéžã¶é çªã¯èããªããã®ãšããŸãïŒ |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/5447 | B | OMC164(B) | 200 | 274 | 284 | [
{
"content": "ã$A_{101}=A_1,B_{101}=B_1$ ãšãïŒ$|\\triangle XYZ|$ 㧠$\\triangle XYZ$ ã®é¢ç©ãè¡šããšïŒä»»æã® $1\\leq k\\leq 100$ ã«ã€ããŠ\r\n$$|\\triangle PB_k B_{k+1}| : |\\triangle PA_k A_{k+1}| = (4\\times 7) : (9\\times 11)$$\r\nãåããïŒãã£ãŠïŒå
šäœã§ã $B_1B_2\\ldots B_{100}$ ã®é¢ç©ã¯ $A_1 A_2 \\ldots A_{100}$ ã®é¢ç©ã® $\\dfrac{28}{99}$ åã§ããããïŒè§£çãã¹ãå€ã¯ $\\textbf{127}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/5447"
}
] | ãé¢ç© $1$ ã®åž $100$ è§åœ¢ $A_1A_2\ldots A_{100}$ ãšãã®å
éšã®ç¹ $P$ ãããïŒç¹ $B_1, B_2, \ldots, B_{100}$ ã以äžãã¿ãããŸãïŒ
- $B_1, B_3, \ldots, B_{99}$ ã¯ããããç·å $A_1P, A_3P, \ldots, A_{99}P$ ã $5:4$ ã«å
åããïŒ
- $B_2, B_4, \ldots, B_{100}$ ã¯ããããç·å $A_2P, A_4P, \ldots, A_{100}P$ ã $4:7$ ã«å
åããïŒ
ãã®ãšãïŒ$100$ è§åœ¢ $B_1B_2\ldots B_{100}$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/2754 | C | OMC164(C) | 300 | 87 | 136 | [
{
"content": "ã $N=2022^{2022^{2022}} -2022$ ãšããïŒãã®ãšã, $2022^{2022^{2023}} = (N+2022)^{2022}$ ã§ããïŒå³èŸºã $N$ ã®å€é
åŒãšããŠå±éãããšãåä¿æ°ã¯æããã« $N-1$ ããå°ããã®ã§ïŒçµå±\r\n$$a_k x^k + \\cdots + a_2 x^2 + a_1 x + a_0=(x+2022)^{2022}.$$\r\nãããã£ãŠ, æ±ããå€ã¯ $(1-2022)(-1-2022)=\\bf{4088483}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/2754"
}
] | ã$10$ é²æ³ã«ããã $2022^{2022^{2023}}$ ã¯ïŒ$2022^{2022^{2022}} -2022$ é²æ³ã§èãããš $k+1$ æ¡ã§ïŒ
$$\overline{a_k \cdots a_1 a_0}$$
ãšè¡šããããšããŸãïŒããã§ïŒ$a_i$ ã¯ããããã®æ¡ïŒ$0,1,\ldots, 2022^{2022^{2022}}-2023$ ã®ããããïŒãè¡šãïŒãŸã $a_k\neq 0$ ã§ãïŒãã®ãšãïŒ$x$ ã® $k$ 次æ¹çšåŒ
$$a_k x^k + \cdots + a_2 x^2 + a_1 x + a_0 - 1 = 0$$
ã®çžç°ãªã**å®æ°**解ã®ç·ç©ã $10$ é²æ³ã§è§£çããŠãã ããïŒãã ãïŒ$s^{t^u}=s^{(t^u)}$ ã§ãïŒ |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/5448 | D | OMC164(D) | 400 | 30 | 90 | [
{
"content": "ãæ¡ä»¶ã®çå·®æ°åã«ãããŠïŒããæ£æŽæ° $n$ ãæ°åã«å«ãŸãããšã $n+P$ ãå«ãŸããããïŒç差㯠$1$ ãŸã㯠$P$ ã§ããïŒåŸã£ãŠæ¡ä»¶ã¯ä»¥äžã®ããã«èšãæããããïŒ\r\n- $ax^2+bx+c\\equiv 0\\pmod P$ ãªã $1$ ä»¥äž $P$ 以äžã®æŽæ° $x$ ãïŒã¡ããã© $1$ åãŸã㯠$P$ åååšããïŒ\r\n\r\n$P$ åã®å Žå㯠$a=b=c=P$ ã®ã¿ã§ããããšãåããããïŒä»¥äž $1$ åã®å ŽåãèããïŒ\r\n\r\n- $a=P$ ã®ãšãïŒ$b\\neq P$ ã§ããïŒ$c$ ã¯ä»»æã§ããããïŒãã®å Žå㯠$P(P-1)$ éãã§ããïŒ\r\n- $a\\neq P$ ã®ãšãïŒäžè¬çãªå®æ°ä¿æ°ã® $2$ 次æ¹çšåŒã解ãã®ãšåãèŠé ã§ïŒæ¡ä»¶ã¯ $b^2-4ac\\equiv 0\\pmod P$ ãšåå€ã§ããããšããããïŒãŸã解ãæã€ããã«ã¯ $b^2-4ac$ ã $P$ ãæ³ãšããŠå¹³æ¹å°äœã§ããããšãå¿
èŠã§ããïŒãã®ãšãäžè¬çãªè§£ã®å
¬åŒãšåæ§ã«èšè¿°ã§ããïŒäžè¬è«ãšããŠçŽ æ°ãæ³ãšãã $n$ 次æ¹çšåŒã®è§£ã¯é«ã
$n$ åã§ããïŒïŒãã£ãŠïŒä»»æã® $(a,b)$ ã§å¯Ÿå¿ãã $c$ ãäžæã«å®ãŸãïŒãã®å Žåã $(P-1)P$ éãã§ããïŒ\r\n\r\nã以äžãã $M = 2P^2-2P+1$ ã§ããïŒãããã\r\n$$M\\equiv 1 \\pmod{107},ãM\\equiv 57 \\pmod{109}$$\r\nã確èªã§ããããïŒäžåœå°äœå®çããæ±ããå€ã¯ $\\textbf{8668}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/5448"
},
{
"content": "ã$a=P$ ã®ãšãã¯ïŒ$b \\neq P$ ãŸã㯠$(b,c)=(P,P)$ ãæ¡ä»¶ã§ããã®ã§ $P(P-1)+1$ åïŒ\r\n\r\nã$a \\neq P$ ã®ãšããèããïŒãã®ãšã\r\n$$ax^2+bx+c \\equiv a(x-\\alpha)^2 + \\beta \\pmod P$$\r\nãšãªã $\\alpha,\\beta ~ (0 \\leq \\alpha,\\beta \\lt P)$ ãäžæã«ååšããïŒãªããªãïŒ$(a,b)$ ã決ãããš\r\n$$b \\equiv -2a\\alpha \\pmod P$$\r\nãšãªã $\\alpha$ ãäžæã«ååšãïŒ$\\beta$ ãé©åœã« $1$ ã€éžã¶ããšã§\r\n$$a\\alpha^2+\\beta \\equiv c \\pmod P$$\r\nãšã§ãããã(ãšãã«éå
ã®ååšãã)ïŒåé¡ã®æ¡ä»¶ãæºããã®ã¯ $\\beta = 0$ ã®ãšãã§ããããïŒãã®ãšã㯠$P(P-1)$ åïŒ\r\n\r\nããã£ãŠ $M = 2P^2 - 2P + 1$ ãšåããïŒããšã¯å
¬åŒè§£èª¬ãšåæ§ïŒ",
"text": "å¹³æ¹å®æ",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/5448/453"
}
] | ãçŽ æ° $P=2^{107}-1$ ã«ã€ããŠïŒä»¥äžãã¿ãã $1$ ä»¥äž $P$ 以äžã®æŽæ°ã®çµ $(a,b,c)$ 㯠$M$ åãããŸãïŒ$M$ ã $11663=107\times 109$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
- $ax^2+bx+c\equiv 0 \pmod P$ ãªãæ£æŽæ° $x$ ãç¡æ°ã«ååšãïŒããã«ããããå°ããé ã«äžŠã¹ããšçå·®æ°åãšãªãïŒ |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/2016 | E | OMC164(E) | 400 | 91 | 175 | [
{
"content": "ãäžã€ç®ã®æ¡ä»¶ã¯ïŒ$n-1$ ãæ£ã®çŽæ°ãã¡ããã© $3$ åæã€ããšãšåå€ã§ããïŒ ãããã£ãŠïŒ$n-1$ ã¯çŽ æ° $s$ ã®å¹³æ¹ãšããŠè¡šãããïŒå€§å°é¢ä¿ãã $s$ 㯠$5$ 以äžã§ããïŒãããã $n-1\\equiv 1\\pmod{24}$ ããããïŒ\\\r\nãããã§ïŒæ£ã®çŽæ°ãã¡ããã©å¥æ°åãã€æ£æŽæ°ã¯ãã¹ãŠå¹³æ¹æ°ã§ããïŒãããã¯é£ç¶ããªãããšããïŒäºã€ç®ã®æ¡ä»¶ã¯ $n-2$ ãæ£ã®çŽæ°ãã¡ããã© $24$ åãã€å¶æ°ã§ãããšèšãæããããïŒ\\\r\nã以äžããïŒ$n-2$ ã $24=2^3\\times 3$ ã®åæ°ã§ããããšãšããããã°ïŒ$n-2$ ã¯çžç°ãªãçŽ æ° $p,q,r$ ãçšããŠ\r\n$$p^{11}q,ãp^7q^2,ãp^5q^3,ãp^5qr,ãp^3q^2r$$\r\nã®ããããã§è¡šãããïŒåã® $3$ ã€ã¯ãã¹ãŠäžé©ã§ããããšãå
·äœçèšç®ã«ãããããïŒ\\\r\nã$p^5qr$ ã®ãšã $p=2$ ã§ããïŒããã«å¯Ÿç§°æ§ãã $q=3$ ãšããŠããïŒãã®ãšãïŒ \r\n$$96r = (s+1)(s-1)$$\r\n巊蟺ã®åå²æ¹æ³ãèããã°, $(r,s)=(23,47)$ ã®ã¿ããããæºããããšã容æã«ç¢ºèªã§ããïŒ\\\r\nã$p^3q^2r$ ã®ãšãïŒåæ§ã« $q=3$ ãŸã㯠$r=3$ ã«ã€ããŠ\r\n$$8q^2r = (s-1)(s+1)$$\r\nã§ããïŒ$(q,r,s)=(3,5,19), (3,19,37)$ ã®ã¿ããããæºããããšã容æã«ç¢ºèªã§ããïŒ\\\r\nã以äžããïŒæ±ããç·å㯠$(47^2+1)+(19^2+1)+(37^2+1)=\\bf{3942}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/2016"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ããæ£æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ
- $n$ 以äžã®æ£æŽæ°ã§ãã£ãŠïŒ$n$ ãå²ã£ãäœãã $1$ ã§ãããã®ãïŒã¡ããã© $2$ åååšããïŒ
- $n$ 以äžã®æ£æŽæ°ã§ãã£ãŠïŒ$n$ ãå²ã£ãäœãã $2$ ã§ãããã®ãïŒã¡ããã© $22$ åååšããïŒ |
OMC164 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc164/tasks/4675 | F | OMC164(F) | 500 | 11 | 22 | [
{
"content": "ãäžè§åœ¢ $ABP$ ãš $ABD$ïŒäžè§åœ¢ $ACP$ ãš $ACE$ ãããããååã§ããããšãšïŒå
è§ãŸãã¯å€è§ã®äºçåç·å®çã«ãã\r\n$$BD : BF = AD : AF = AE : AF = CE : CF$$\r\nã§ããããïŒçŽç· $BC$ ãš $DE$ ã¯å¹³è¡ã§ããïŒãŸã $\\angle DAE = \\angle BOC$ ã«ããïŒãšãã«äºç蟺äžè§åœ¢ã§ããããšããïŒäžè§åœ¢ $ADE$ ãšäžè§åœ¢ $OBC$ ã¯çžäŒŒã§ããïŒåŸã£ãŠ $F$ ãäžå¿ãšãã $\\dfrac{FB}{FD}$ åã®çžäŒŒæ¡å€§ã«ãã£ãŠ $A$ 㯠$O$ ã«ç§»ãïŒä»¥äžããïŒ$4$ ç¹ $A, F, O, P$ ã¯åäžçŽç·äžã«ããïŒããã«\r\n$$AF : AP = AF : AD = OF : OB = OF : OA$$\r\nãæç«ããããšãåããïŒ\r\n- $F$ ã $O$ ã«é¢ã㊠$A$ ãšå察åŽã«ããå Žå\\\r\nã$P$ ã $O$ ã«é¢ã㊠$A$ ãšå察åŽã«ããããšããããïŒåŸã£ãŠ\r\n$$AF : AP = OF : OA = (AF - AP + OP) : (AP - OP)$$\r\nãåããã®ã§ïŒããã解ãããšã§ $AF = \\dfrac{187}{6}$ ãåŸãïŒ\r\n\r\n- $F$ ã $O$ ã«é¢ã㊠$A$ ãšåãåŽã«ããå Žå\\\r\nã$P$ ã $O$ ã«é¢ã㊠$A$ ãšåãåŽã«ããããšããããïŒåŸã£ãŠ\r\n$$AF : AP = OF : OA = (AF + AP + OP) : (AP + OP)$$\r\nãåããã®ã§ïŒããã解ãããšã§ $AF = \\dfrac{391}{6}$ ãåŸãïŒ\r\n\r\nã以äžããæ±ããç·ç©ã¯ $\\dfrac{73117}{36}$ ã§ããïŒè§£çãã¹ãå€ã¯ $\\textbf{73153}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc164/editorial/4675"
}
] | ãå€å¿ã $O$ ãšããäžè§åœ¢ $ABC$ ã®å
éšã«ç¹ $P$ ããšãïŒçŽç· $AB,AC$ ã«ã€ã㊠$P$ ãšå¯Ÿç§°ãªç¹ããããã $D,E$ ãšããŸãïŒãã®ãšãäžçŽç· $DB, CE, AP$ ã¯äžç¹ $F$ ã§äº€ããïŒããã«ä»¥äžãæç«ããŸããïŒ
$$AP=17, \quad OP=6, \quad DF:EF=8:9.$$
ãã®ãšãïŒç·å $AF$ ã®é·ããšããŠããããå€ã®**ç·ç©**ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac ab$ ãšè¡šããŸãïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/2149 | A | OMC163(A) | 100 | 271 | 300 | [
{
"content": "ã$AC=x$ ãšããã°ïŒäžè§åœ¢ã®æç«æ¡ä»¶ã«ãã以äžãæç«ãïŒ$1 \\lt x \\lt 2001$ ãåŸãïŒ\r\n$$x + 1001 \\gt 1000,\\quad x+1000 \\gt 1001,\\quad 1000+1001 \\gt x.$$\r\nããã«ïŒè§åºŠã®æ¡ä»¶ã«ãã $x \\lt 1000$ ãå¿
èŠã§ããããïŒçµå± $1 \\lt x \\lt 1000$ ãªãæ£æŽæ° $x$ ã®æ°ãæ±ããã°ããïŒãã㯠$\\bf{998 }$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/2149"
}
] | ã以äžã®æ¡ä»¶ãã¿ããäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $AC$ ã®é·ããšããŠããããæ£æŽæ°å€ã¯ããã€ãããŸããïŒ
$$AB=1000,\quad BC=1001,\quad \angle B \lt \angle C$$ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/1499 | B | OMC163(B) | 200 | 154 | 190 | [
{
"content": "ã$\\angle BAP=\\angle PRS=\\angle DQS$ ãã $AB \\parallel QS$ ã§ããïŒåæ§ã« $PR \\parallel DC$ã§ããïŒããã« $P$ 㯠$AQ$ ã®ïŒ$R$ 㯠$BS$ ã®äžç¹ã§ããããšããïŒ$AB\\parallel PR$ ãåŸãïŒãã£ãŠ $AB\\parallel DC$ ã§ããïŒããã« $\\angle BAP=\\angle PRS=\\angle ABR$ ããåè§åœ¢ $ABCD$ ã¯çèå°åœ¢ã§ããïŒç¹ã«æ±ããé¢ç©ã¯ïŒäžå¹³æ¹ã®å®çãªã©ãã $(11+25)\\times 8\\/2=\\bf{144}$ ãšèšç®ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/1499"
}
] | ã$AB=BC=25, CD=11$ ãªãåžåè§åœ¢ $ABCD$ ã«ãããŠïŒèŸº $AD$ ãäžçåããç¹ã $A$ ã«è¿ãé ã« $P, Q$ ãšãïŒèŸº $BC$ ãäžçåããç¹ã $B$ ã«è¿ãé ã« $R, S$ ãšããŸãïŒåè§åœ¢ $ABRP, PRSQ, QSCD$ ããã¹ãŠå€æ¥åããã€ãšãïŒåè§åœ¢ $PRSQ$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/6271 | C | OMC163(C) | 200 | 159 | 239 | [
{
"content": "ã暪綱以å€ã® $99$ 人ãå士 $1,2,\\ldots ,99$ ãšåŒã¶ïŒ\\\r\nãå
šå¡ã®å士ã®åã¡æã®ç·æ°ã¯ $4950$ ã§ããïŒãã®ãã¡ $99$ ååã¯æšªç¶±ã®åã§ããããïŒå士 $1,2,\\ldots,99$ ã®åã¡æã®åèšã¯ $4851$ ã§ããïŒããå士ãåã¡è¶ãã«ã¯æäœ $50$ åãå¿
èŠã§ããã®ã§ïŒ å士 $1,2,\\ldots,99$ ã®ãã¡åã¡è¶ããå士ã®æ°ã¯ $4851\\div 50 = 97.02$ 以äžã§ããïŒãã£ãŠïŒæšªç¶±ã¯åã¡è¶ããŠããããšã«æ°ãä»ããã° $M$ 㯠$98$ 以äžã§ããïŒãŸãïŒå士 $98,99$ ãå
šæãïŒä»»æã® $1\\le a \\lt b \\le 97$ ãªãæŽæ° $a,b$ ã«å¯ŸããŠïŒ$a + b$ ãå¥æ°ã§ãããªãã°å士 $a$ ãåã¡ïŒ$a+b$ ãå¶æ°ã§ãããªãã°å士 $b$ ãåã€ãšãïŒå士 $1,2,\\ldots, 99$ ã®ãã¡ $97$ 人ãåã¡è¶ãã®ã§ïŒ$M = 98$ ã§ããïŒ\\\r\nã次ã«ïŒæšªç¶±ã¯åã¡è¶ãã®ã§ $m$ 㯠$1$ 以äžã§ããïŒãŸãïŒä»»æã® $1\\le a \\lt b \\le 99$ ãªãæŽæ° $a,b$ ã«å¯ŸããŠïŒ$a + b$ ãå¥æ°ã§ãããªãã°å士 $a$ ãåã¡ïŒ$a+b$ ãå¶æ°ã§ãããªãã°å士 $b$ ãåã€ãšãïŒå士 $1,2,\\ldots ,99$ ã¯å
šå¡ãè² ãè¶ãã®ã§ïŒ$m = 1$ ã§ããïŒ\\\r\nã以äžããïŒæ±ããçã㯠$\\bf99$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/6271"
}
] | ãOMCå
¬åœã§çžæ²ã®å€§äŒãè¡ãããŸããïŒ$100$ åã®å士ãåå ãïŒãã®ãã¡ã¡ããã©äžäººã暪綱ã§ããïŒå€§äŒã¯ç·åœããæŠã§ããïŒããªãã¡ïŒåèš $4950$ åã®è©Šåãè¡ãããŸããïŒã©ã®è©Šåãåæã決ãïŒæšªç¶±ã¯å
šåã§ããïŒãã®ãšãïŒ$100$ åã®å士ã®ãã¡ïŒåã¡è¶ããå士ã®æ°ãšããŠããããæ倧ã®å€ã $M$ ãšãïŒæå°ã®å€ã $m$ ãšããŸãïŒ$M+m$ ã解çããŠãã ããïŒ\
ããã ãïŒåã¡è¶ããšã¯ïŒåã£ãåæ°ãè² ããåæ°ãããå€ãããšãæããŸãïŒ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/1433 | D | OMC163(D) | 200 | 178 | 220 | [
{
"content": "ã$\\lfloor \\sqrt{n} \\rfloor = k$ ãšãããšïŒ$n=k^2+r ~ (0 \\leq r \\leq 2k)$ ãšè¡šããïŒãã®ç¯å²ã§ $k$ ã®åæ°ã¯ $k^2, k^2+k, k^2+2k$ ã§ããïŒ\r\n$n \\leq 10^6-1$ ãš $k \\leq 10^3-1$ ã¯åå€ã§ããããïŒæ±ããç·åã¯\r\n$$ \\sum_{k=1}^{10^3-1} (k^2 + (k^2+k) + (k^2+2k)) = \\sum_{k=1}^{10^3-1} (3k^2 + 3k) = \\textbf{999999000}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/1433"
}
] | ã$n$ ã $\lfloor \sqrt{n} \rfloor$ ã®åæ°ã§ãããã㪠$1$ ä»¥äž $10^6$ æªæºã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ããïŒ\
ããã ãïŒå®æ° $r$ ã«å¯ŸããŠïŒ$\lfloor r \rfloor$ 㧠$r$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸãïŒ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/3513 | E | OMC163(E) | 300 | 31 | 86 | [
{
"content": "ãåã®æ¡ä»¶ãã¿ãããã¹ç®ã®å¡ãæ¹ã¯ïŒå $1\\leq n\\leq 24$ ã«ã€ã㊠$\\sigma(n)=a_n$ ãšããã° $24$ 次ã®çœ®æ $\\sigma$ ã«äžå¯Ÿäžã§å¯Ÿå¿ããïŒãã®ãšã $\\sigma(b_n)=n,\\sigma^2(b_n)=a_n$ ã§ãããã䞊ã¹æ¿ãäžçåŒãã次ãåŸãããïŒ\r\n$$S=1\\cdot\\sigma^2(1)+\\cdots+24\\cdot\\sigma^2(24)\\geq 1\\cdot 24+\\cdots+24\\cdot 1$$\r\nãç¹ã«çå·ãæç«ããã®ã¯å $1\\leq n\\leq 24$ ã«å¯Ÿã $\\sigma ^2(n)=25-n$ ãæãç«ã€ãšãã®ã¿ã§ããïŒãã£ãŠãã®ãããªçœ®æ $\\sigma$ ã**è¯ã眮æ**ãšåŒã¶ããšã«ããã°ïŒ$X$ ã¯è¯ã眮æã®ç·æ°ã§ããïŒ\r\nå $1\\leq n\\leq 12$ ã«å¯Ÿã $\\sigma^{-1}(n),\\sigma(n)$ ã®ã¡ããã©äžæ¹ã $12$ 以äžã§ããããïŒè¯ã眮æ㯠$1$ ä»¥äž $12$ 以äžã®æŽæ°ã $6$ åã®é åºã¥ããçµ $(x_i,y_i)$ ã«åããæ¹æ³ã«äžå¯Ÿäžã§å¯Ÿå¿ããããšããããïŒ\r\nåŸã£ãŠ $X=\\dfrac{12!}{6!} = \\bf665280$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/3513"
},
{
"content": "ãå
¬åŒè§£èª¬ã® $S_{\\mathrm{min}}=1 \\cdot 24+ \\cdots + 24 \\cdot 1$ ã®ç¶ããã解説ã§ãïŒãã®å€ã«ãªãããã« $a_1, \\cdots, a_{24}$ïŒ$b_1, \\cdots, b_{24}$ ãæ§æããŸãïŒ\\\r\n\\\r\n$a_k=1$ïŒ$b_k=24$ ãšä»®å®ãããšïŒãã®ããšé ã«èããŠïŒ$a_{24}=k$ïŒ$b_1=k$ïŒ$a_1=24-k$ïŒ$b_{24}=24-k$ïŒ$a_{24-k}=24$ïŒ$b_{24-k}=1$ ãšãªãïŒ\\\r\n ãããã§ïŒ$k$ ã®åãæ¹ã¯ $22$ éãã§ãã£ãïŒç¶ããŠïŒæ®ã£ãŠãã $k$ ã®ãã¡æå°ã®ãã®ãã©ãã«åœãŠã¯ãããèããŠããã°ïŒæ±ããã¹ãå€ã¯ $22Ã18Ã14Ã10Ã6Ã2=\\mathbf{665280}$ ãšãªãïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/3513/239"
}
] | ã$24\times 24$ ã®ãã¹ç®ã®ãã¡ $24$ ãã¹ãïŒä»¥äžã®æ¡ä»¶ãã¿ããããã«é»ãå¡ããŸãïŒ
- ã©ã®è¡ããã³ã©ã®åã«ãïŒé»ãå¡ããããã¹ç®ãã¡ããã© $1$ ã€ãã€ååšãã.
ãããã«ïŒãã®æ¡ä»¶ãæºããå¡ãæ¹ã«å¯ŸããŠïŒæ°å $\\{a_n\\}\_{n=1,\ldots,24},\\{b_n\\}\_{n=1,\ldots,24}$ ã次ã§å®ãïŒããã«ããããçšããŠå¡ãæ¹ã®ã¹ã³ã¢ $S$ ãå®ããŸãïŒ
- äžãã $m$ è¡ç®ïŒå·Šãã $n$ åç®ã®ãã¹ãé»ããšãïŒ$a_m=n$ïŒ$b_n=m$ïŒ
- $S=a_1b_1+a_2b_2+\cdots +a_{23}b_{23}+a_{24}b_{24}$ïŒ
ããã®ãšãïŒã¹ã³ã¢ $S$ ãæå°ã«ããå¡ãæ¹ã¯å
šéšã§äœéããããŸããïŒãã ãïŒå転ãå転ã§äžèŽãããã®ãåºå¥ããŸãïŒ |
OMC163 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc163/tasks/5471 | F | OMC163(F) | 400 | 32 | 81 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã\r\n$$α+β=15-m,\\quad αβ=16m-69$$\r\nãåŸãïŒãŸãïŒ$\\alpha$ ãš $\\beta$ ãå
±åœ¹ã®é¢ä¿ã«ããããšã«æ³šæããã°ïŒ\r\n$$α^{6}=\\overline{α^6}=(\\overline{\\alpha})^6 = β^{6}$$\r\nãšãªãïŒããŸïŒ$α^6-β^6$ ã®å æ°å解ãèããã°ïŒä»¥äžã®ãããããæãç«ã€ïŒãããã¯ååæ¡ä»¶ã§ãããïŒïŒ\r\n$$α+β=0, \\quad α^{2}+αβ+β^{2}=0 ,\\quad α^{2}-αβ+β^{2}=0$$\r\nã$α+β=0$ ã®ãšãïŒ$m=15$ ããäžæ¹çšåŒã¯\r\n$$x^{3}-x^{2}+nx-171=0$$ \r\nããã« $x=1$ ã解ã§ãããã $n=171$ïŒããã¯æ¡ä»¶ãã¿ããïŒ\\\r\nã$α^{2}+αβ+β^{2}=0$ ã®ãšãïŒä»¥äžã®ããã«ãªããïŒãã®ãšã $m$ ã¯æŽæ°ã§ãªãïŒ\r\n$$\\begin{aligned}\r\n0=α^{2}+αβ+β^{2}\r\n&=(α+β)^{2}-αβ\\\\\\\\\r\n&=(15-m)^{2}-(16m-69)\\\\\\\\\r\n&=m^{2}-46m+294\r\n\\end{aligned}$$\r\nã $α^{2}-αβ+β^{2}=0$ ã®ãšãïŒåæ§ã«ã㊠$m=6, 72$ ãåŸãïŒ\r\n$$\\begin{aligned}\r\n0=α^{2}-αβ+β^{2}\r\n&=(α+β)^{2}-3αβ\\\\\\\\\r\n&=(15-m)^{2}-3(16m-69)\\\\\\\\\r\n&=m^{2}-78m+432\r\n\\end{aligned}$$\r\nã$m=6$ ã®ãšãäžæ¹çšåŒã¯\r\n$$x^{3}-10x^{2}+nx-27=0$$\r\n$x=1$ ã解ã§ãããã $n=36$ïŒãŸãïŒ$m=72$ ã®ãšãäžæ¹çšåŒã¯\r\n$$x^{3}+56x^{2}+nx-1083=0$$\r\n$x=1$ ã解ã§ãããã $n=1026$ïŒãããã¯ãšãã«æ¡ä»¶ãæºããïŒ\\\r\nã以äžããïŒè§£çãã¹ãå€ã¯\r\n$$(15+171)+(6+36)+(72+1026)=\\mathbf{1326}.$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/5471"
},
{
"content": "ãè€çŽ æ°ïŒæ°åŠâ
¢ïŒã®ç¥èãçšããæ¹æ³ã§ãïŒ\\\r\n\\\r\n ã$\\alpha$ ãš $\\beta$ ã¯å
±åœ¹ã®é¢ä¿ã«ããïŒæ¥µåœ¢åŒãçšããã°ïŒ$\\alpha=c(\\cos \\theta+i \\sin \\theta)$ïŒ$\\beta=c(\\cos \\theta-i \\sin \\theta)$ ãšãããïŒããã§ïŒ$\\alpha^6$ïŒ$\\beta^6$ ãå®æ°ã§ããããšããïŒ$\\theta=\\dfrac{k}{6}\\pi$ ã§ããïŒãã ã $k \\neq 6l$ïŒïŒ\\\r\n ã解ãšä¿æ°ã®é¢ä¿ãã $1+\\alpha+\\beta=-(m-16)$ïŒ$\\alpha+\\beta+\\alpha\\beta=n$ïŒ$\\alpha\\beta=-(69-16m)$ ã§ããïŒé©åœãªèšç®ãããããšã§ïŒæ¬¡ã®åŒãåŸãïŒ\\\r\n ãã$m^2-30m+225=4\\cos^2 \\theta(16m-69)$\\\r\n ããã㧠$\\theta$ ã®æ¡ä»¶ãæãåºããšïŒ$\\cos^2 \\theta$ ã®åãåŸãå€ã¯ $0$ïŒ$\\dfrac{1}{4}$ïŒ$\\dfrac{3}{4}$ ã®ããããã§ããïŒ\\\r\n ãããããã®å Žåã«äºæ¬¡æ¹çšåŒãèšç®ããããšã§ïŒ$\\cos\\theta=0$ ã®ãšã $(m,n)=(15,171)$ ãïŒ$\\cos\\theta=\\dfrac{3}{4}$ ã®ãšã $(m,n)=(6,36),(72,1026)$ ãåŸãïŒ\r\n ã",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc163/editorial/5471/240"
}
] | ã$x$ ã®æŽæ°ä¿æ° $3$ 次æ¹çšåŒ
$$x^{3}+(m-16)x^{2}+nx+69-16m=0$$
ã¯å®æ°è§£ $x=1$ ãšçžç°ãªã $2$ ã€ã®èæ°è§£ $x=α, β$ ããã¡ïŒããã« $α^{6}, β^{6}$ ã¯ãšãã«å®æ°ã§ããïŒãã®ãšãïŒ$m+n$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/5111 | A | OMC162(A) | 100 | 297 | 299 | [
{
"content": "ãå
æ売ããã¿ã³é£¯åŒåœ, ã€ã«é£¯åŒåœã®åæ°ããããã $x, y$ ãšãããš, 以äžã®åŒãæãç«ã€.\r\n$$\r\n\\begin{cases}\r\n1357x + 2468y &= 456500\\\\\\\\\r\n1357x - 2468y &= 86300 \r\n\\end{cases}\r\n$$\r\nããã解ããš, $x=200, y=75$ ã ãã, å
æ売ããåŒåœã®ç·æ°ã¯ $\\textbf{275}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5111"
}
] | ãojamesiåã®çµå¶ããåŒåœå±ã§ã¯ïŒ$1357$ åã®ã¿ã³é£¯åŒåœãš $2468$ åã®ã€ã«é£¯åŒåœã® $2$ çš®é¡ã販売ããŠããŸãïŒå
æã®ã¿ã³é£¯åŒåœãšã€ã«é£¯åŒåœã®å£²äžã®åèšã¯ $456500$ åã§ããïŒãŸãïŒå
æã®ã¿ã³é£¯åŒåœã®ã¿ã®å£²äžã¯ïŒå
æã®ã€ã«é£¯åŒåœã®ã¿ã®å£²äžãã $86300$ åé«ãã£ãã§ãïŒå
æ売ããã¿ã³é£¯åŒåœãšã€ã«é£¯åŒåœã®åæ°ã®åèšãæ±ããŠãã ããïŒ |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/5112 | B | OMC162(B) | 200 | 285 | 298 | [
{
"content": "$$\r\nxyzw=384=2^7 \\times 3,ã1\\leq x \\leq y \\leq z \\leq w \\leq 9\r\n$$\r\nãªãæŽæ°ã®çµ $(x, y, z, w)$ ãæ±ã, ãã®äžŠã¹æ¿ããèããã°ãã. $2^7 \\times 3 \\gt 4^4$ ãã $w=6, 8$ ã®å Žåã®ã¿ã調ã¹ãã°ãã.\r\n\r\n - $w=8$ ã®ãšã\r\n$xyz=2^4 \\times 3 \\gt 3^3$ ã§ãããã, $z=8,6,4$ ãèããŠãããš \r\n$$\r\n(x, y, z, w)=(1, 6, 8, 8), (2, 3, 8, 8), (2, 4, 6, 8), (3, 4, 4, 8)\r\n$$ \r\n - $w=6$ ã®ãšã, åæ§ã«èãããš \r\n$$\r\n(x, y, z, w)=(4, 4, 4, 6)\r\n$$\r\n\r\nã以äžãã, æ±ããå Žåã®æ°ã¯ $4! + \\dfrac{4!}{2!} \\times 3 + \\dfrac{4!}{3!} = \\textbf{64}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5112"
}
] | ã$4$ æ¡ã®æ£æŽæ°ã§ãã£ãŠïŒåæ¡ã®æ°åã®ç·ç©ã $384$ ã§ãããã®ã¯ããã€ãããŸããïŒ |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/5845 | C | OMC162(C) | 300 | 145 | 217 | [
{
"content": "ã$x+y+z+w=1$ ãšçžå çžä¹å¹³åã®äžçåŒãã\r\n$$\r\n\\begin{aligned}\r\n\\frac{3}{x+y}+\\frac{7}{y+z}+\\frac{15}{z+w}+\\frac{35}{w+x} &=3+\\frac{3(z+w)}{x+y}+7+\\frac{7(x+w)}{y+z}+15+\\frac{15(x+y)}{z+w}+35+\\frac{35(y+z)}{w+x}\\\\\\\\\r\n&\\geq 60+2\\sqrt{\\frac{3(z+w)}{x+y}\\cdot \\frac{15(x+y)}{z+w}}+2\\sqrt{\\frac{7(x+w)}{y+z}\\cdot\\frac{35(y+z)}{w+x}}\\\\\\\\\r\n&=60+20\\sqrt{5}\r\n\\end{aligned}\r\n$$\r\nãæãç«ã€. çå·ãæºããæ£ã®å®æ° $x,y,z,w$ ã¯å®éã«ååšããã®ã§, 解çãã¹ãå€ã¯ $\\textbf{2060}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5845"
},
{
"content": "ãäžè¬ã«ïŒä»»æã®æ£ã®å®æ° $x_1,x_2,\\ldots,x_n,y_1,y_2,\\ldots,y_n$ ã«å¯ŸãïŒ$\\dfrac{{x_1}^2}{y_1}+\\dfrac{{x_2}^2}{y_2}+\\cdots+\\dfrac{{x_n}^2}{y_n}\\geq\\dfrac{{(x_1+x_2+\\cdots+x_n)}^2}{y_1+y_2+\\cdots+y_n}\\cdots(1)$ ãæãç«ã€ïŒ (çå·æç«æ¡ä»¶ã¯ $x_1:x_2:\\cdots:x_n=y_1:y_2:\\cdots:y_n$ ) \r\n\r\nãã£ãŠïŒ$\\dfrac{3}{x+y}+\\dfrac{15}{z+w}+\\dfrac{7}{y+z}+\\dfrac{35}{w+x}\\geq\\dfrac{{(\\sqrt{3}+\\sqrt{15})}^2}{x+y+z+w}+\\dfrac{{(\\sqrt{7}+\\sqrt{35})}^2}{y+z+w+x}=60+20\\sqrt{5}$ ã§ããïŒçå·ã¯ $(x+y):(z+w)=(y+z):(w+x)=1:\\sqrt{5}$ ã®ãšã (ã€ãŸãïŒäŸãã° $x:y:z:w=1:1:1:2\\sqrt{5}-1$ ã®ãšã) æãç«ã€ïŒ \r\nããã«ãæ±ããæå°å€ã¯ $60+20\\sqrt{5}$ ã§ããïŒè§£çãã¹ãæ°å€ã¯ $\\textbf{2060}$ïŒ \r\n\r\n[è£è¶³] \r\näžèšã® $(1)$ ã®äžçåŒã¯ ãRadonã®äžçåŒããTituã®è£é¡ããSedrakyanã®äžçåŒããªã©ãšåŒã°ããäžçåŒã§ããïŒåæ¯ã $y_1+y_2+\\cdots+y_n$ åããåŒãã³ãŒã·ãŒã»ã·ã¥ã¯ã«ãã®äžçåŒã§ç€ºããããšããåŸãïŒãã®äžçåŒã¯ä»åã®ãããªãåæ¯ã®åãäžå®ãã®ç¶æ³äžãªã©ã§æçšã§ããïŒ",
"text": "radonã®äžçåŒ",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5845/237"
},
{
"content": "$$a=x+y,\\quad b=y+z$$\r\nãªãå€æ°å€æãæœãïŒãããšïŒ$a,b$ 㯠$0\\lt a,b\\lt 1$ ãæºããç¬ç« $2$ å€æ°ãšãªãïŒãããšäžåŒã¯ä»¥äžã®ããã«èšãæããããïŒ\r\n$$3\\Big(\\dfrac{1}{a}+\\dfrac{1}{1-a}\\Big)+7\\Big(\\dfrac{1}{b}+\\dfrac{1}{1-b}\\Big)\\cdots(â
)$$\r\nãããŠïŒ$f(t)=\\dfrac{1}{t}+\\dfrac{1}{1-t},(0\\lt t\\lt 1)$ ãšãïŒ$f(t)$ ã®åãããæå°å€ãæ±ãããïŒ$f^\\prime(x)=-\\dfrac{1}{t^2}+\\dfrac{5}{(1-t)^2}$ ã§ããïŒ$f^\\prime(t)=0$ ã®ãšã $t=\\dfrac{\\sqrt5-1}{4}$ ã§ããããšããïŒ$f$ ã®å¢æžãèãããšïŒ$t=\\dfrac{\\sqrt5-1}{4}$ ã®ãšãæå°å€ $6+2\\sqrt5$ ãåãããšãåããïŒãã£ãŠïŒ$(â
)$ ããïŒæ±ããæå°å€ã¯ $3(6+2\\sqrt5)+7(6+\\sqrt5)=60+20\\sqrt5$ ã§ãããšåãã£ãïŒçå·ãå®çŸãããã㪠$x,y,z,w$ ã¯ç¢ºãã«ååšããïŒ",
"text": "埮åæ³ãçšãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5845/710"
}
] | ãæ£ã®å®æ° $x, y, z, w$ ã $x+y+z+w=1$ ãã¿ãããšãïŒ
$$
\frac{3}{x+y}+\frac{7}{y+z}+\frac{15}{z+w}+\frac{35}{w+x}
$$
ã®ãšãããæå°å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯æ£æŽæ° $a,b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/7295 | D | OMC162(D) | 400 | 95 | 146 | [
{
"content": "ãæ¡ä»¶ãæºããããã«æ£æŽæ° $a,b,c,d$ ãä»»æã«ãšãïŒãŸãïŒ\r\n$$\r\ng(n) = (n+a)(n+b)(n+c)(n+d),\\quad x = \\frac{bc+ad}{2}, \\quad y = \\frac{bc-ad}{2}\r\n$$\r\nãšããïŒ$a+d=b+c$ ãå¥æ°ã§ãããã $ad$ ããã³ $bc$ ã¯ããããå¶æ°ã§ããïŒ$x,y$ ã¯ããããæ£æŽæ°ã§ããããšãã $g(n)$ ã¯ä»¥äžã®ããã«å€åœ¢ã§ããïŒ\r\n$$\r\n\\begin{aligned}\r\ng(n)\r\n&= (n^2+1357n+ad)(n^2+1357n+bc)\\\\\\\\\r\n&= \\\\{ (n^2+1357n+x) - y \\\\} \\\\{ (n^2+1357n+x) + y \\\\}\\\\\\\\\r\n&= N^2-y^2.\r\n\\end{aligned}\r\n$$\r\nãã ãïŒæçµè¡ã§ $N=n^2+1357n+x$ ãšãããïŒ\\\r\nãã㟠$N^2 - (N - 1)^2 = 2(N - 1) +1$ ããïŒ$N\\ge y^2+1$ ãªãã°\r\n$$\r\nN^2 - g(n) \\lt g(n) - (N-1)^2\r\n$$\r\nãæãç«ã€ïŒãŸãïŒæ£æŽæ° $k$ ã«å¯Ÿã\r\n$$\r\n\\begin{cases}\r\nN^2 - g(n) \\lt k^2 - g(n) & \\quad (N+1 \\leq k)\\\\\\\\\r\ng(n) - (N-1)^2 \\lt g(n) - k^2 & \\quad (1 \\leq k \\leq N - 2)\r\n\\end{cases}\r\n$$\r\nãæç«ããããïŒ$f(g(n)) = N^2 - g(n) = y^2$ ã§ããïŒ$N$ ã®å調å¢å æ§ãã $N\\geq y^2+1$ ãæºããæ£æŽæ° $n$ ã¯ç¡éã«ååšããããïŒ$m = y^2$ ã¯åé¡ã®æ¡ä»¶ã«åèŽããïŒ\\\r\nãéã«ïŒã©ã®ããã«æ¡ä»¶ãæºããæ£æŽæ° $a,b,c,d$ ããšã£ãŠã $m = y^2$ ã®åœ¢ã§è¡šããªããšãïŒä»®ã«ããŸãæ£æŽæ° $a,b,c,d$ ããšãããšã«ãã£ãŠ $f(g(n)) = m$ ãšãªãæ£æŽæ° $n$ ãååšãããšããŠãïŒããã¯äžçåŒ $N-1 \\leq y^2$ ãæºããïŒãã®äžçåŒãæºããæ£æŽæ° $n$ ãæéåã§ããããšïŒããã³æ¡ä»¶ãæºããæ£æŽæ° $a,b,c,d$ ã®åãæ¹ãæéã§ããããšããïŒãã®ãããªæ£æŽæ° $m$ ã¯é¡æãæºãããªãïŒ\\\r\nã以äžããïŒæ£æŽæ° $m$ ãæ¡ä»¶ãæºããããã«ã¯ïŒã$a \\lt b \\lt c \\lt d$ ã〠$a + d = b + c = 1357$ ãæºããæŽæ° $a,b,c,d$ ãããŸããšãããšã§ $m = y^2$ ãšè¡šãããããšãå¿
èŠååã§ããïŒãã®ãããªæ£æŽæ° $m$ ã®ãã¡æ倧ã®ãã®ã¯ä»¥äžã®å€ã§ããïŒ\r\n$$\r\n\\Biggl( \\frac{678 \\times 679 - 1 \\times 1356}{2} \\Biggl) ^2 = \\mathbf{52671627009}\r\n$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/7295"
}
] | ãæ£ã®æŽæ° $x$ ã«å¯ŸãïŒ$x$ ãšå¹³æ¹æ°ã®å·®ã®çµ¶å¯Ÿå€ãšããŠããããæå°ã®å€ã $f(x)$ ãšããŸãïŒä»¥äžã®æ¡ä»¶ãã¿ããæ£æŽæ° $m$ ã®ãã¡ïŒæ倧ã®ãã®ãæ±ããŠãã ããïŒ
- $a \lt b \lt c \lt d$ ã〠$a + d = b + c = 1357$ ãã¿ããæ£æŽæ° $a,b,c,d$ ãããŸããšãããšã§ïŒä»¥äžãã¿ããæ£æŽæ° $n$ ãç¡æ°ã«ååšããããã«ã§ããïŒ
$$
f\Bigl( (n+a)(n+b)(n+c)(n+d) \Bigl) = m.
$$
<details>
ã<summary>$f(x)$ ã®èšç®äŸ<\/summary>
$x=13$ ã®ãšãïŒ$13$ ãšå¹³æ¹æ° $0^2,1^2, 2^2, 3^2, 4^2, 5^2,\ldots $ ã®å·®ãããããèãããš
$$ 13,12, 9, 4, 3, 12, \ldots $$
ãšãªããŸãïŒ$n\geq 6$ ã§ã¯ $n^2-13 \gt 12$ ãªã®ã§ïŒ$f(13)=3$ ãšãªããŸãïŒ
<\/details> |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/5840 | E | OMC162(E) | 400 | 48 | 78 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\\Gamma$ ãšããïŒ\r\n$$\\angle BC_1A = \\angle B_1C_1A = \\angle BCA$$\r\nããïŒ$C_1$ 㯠$\\Gamma$ äžã«ããïŒãŸãïŒ$\\angle ABC_1 = 90^\\circ$ ã§ããã®ã§ïŒç·å $AC_1$ 㯠$\\Gamma$ ã®çŽåŸãæãïŒåæ§ã«ïŒç·å $AB_2$ ã $\\Gamma$ ã®çŽåŸãæãã®ã§ïŒ$B_2 = C_1$ ã§ããïŒãŸãïŒ$M$ 㯠$\\Gamma$ ã®äžå¿ã§ããïŒåŸã£ãŠïŒçŽç· $AD$ ãš $\\Gamma$ ã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ã $P$ ãšãããšïŒ$AD = DP$ ãšãªãïŒãŸãïŒäžè§åœ¢ $ABP$ ãš $BDP$ ã¯çžäŒŒãªã®ã§ïŒ\r\n$$BP^2 = AP\\times DP = 2DP^2$$\r\nã§ããããïŒ$BP = \\sqrt2DP$ ãåŸãïŒåŸã£ãŠïŒ\r\n$$AC : CD = BP : DP = \\sqrt2 : 1$$\r\nã§ããïŒåæ§ã« $AB : BD = \\sqrt{2} : 1$ ãªã®ã§ïŒ$BC = (AB + AC)\\/\\sqrt2 = 9\\sqrt2$ ã§ããïŒãã£ãŠïŒäœåŒŠå®çã«ãã\r\n$$\\cos \\angle ABC = \\frac{AB^2 + BC^2 - CA^2}{2\\times AB \\times BC} = \\frac{5}{7\\sqrt2},\\quad\r\n\\cos \\angle ACB = \\frac{13}{11\\sqrt2}$$\r\nã§ããïŒäžè§åœ¢ $ABC$ ã®é¢ç©ã¯ $\\dfrac{9\\sqrt{73}}{2}$ ãšèšç®ã§ããïŒããã§ïŒ\r\n$$|\\triangle ABC| : |\\triangle AB_1C_1| = AC^2 : AC_1^2 = \\sin^2\\angle ABC : 1$$\r\nã§ããïŒåæ§ã« $|\\triangle ABC| : |\\triangle AB_2C_2| = \\sin^2\\angle ACB : 1$ ã§ããããïŒæ±ããçãã¯\r\n$$\\begin{aligned}\r\n|\\triangle AB_1C_1| + |\\triangle AB_2C_2|\r\n&= \\bigg(\\frac{1}{\\sin^2 \\angle ABC} + \\frac{1}{\\sin^2 \\angle ACB}\\bigg)|\\triangle ABC|\\\\\\\\\r\n&= \\bigg(\\frac{1}{1 - \\cos^2 \\angle ABC} + \\frac{1}{1 - \\cos^2 \\angle ACB}\\bigg)|\\triangle ABC|\\\\\\\\\r\n&= \\frac{1530}{\\sqrt{73}}\r\n\\end{aligned}$$\r\nã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $\\bf{1603}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/5840"
}
] | ã$3$ ã€ã®éè§äžè§åœ¢ $ABC, AB_1C_1, AB_2C_2$ ãããïŒä»¥äžã®æ¡ä»¶ãã¿ãããŠããŸãïŒ
- äžè§åœ¢ $ABC, AB_1C_1, AB_2C_2$ ã¯**åãããããŠ**çžäŒŒã§ããïŒããã§ïŒçžäŒŒã§å¯Ÿå¿ããé ç¹ãåãé ã«äžŠãã§ãããšããïŒïŒ
- $A$ ãã蟺 $B_1C_1$ ã«äžãããåç·ã®è¶³ã¯ $B$ ã«äžèŽããïŒ
- $A$ ãã蟺 $B_2C_2$ ã«äžãããåç·ã®è¶³ã¯ $C$ ã«äžèŽããïŒ
ããã«ïŒ$\angle{BAC}$ ã®äºçåç·ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãïŒèŸº $AB_2$ ã®äžç¹ã $M$ ãšãããšããïŒä»¥äžãæãç«ã¡ãŸããïŒ
$$
AB=7,\quad AC=11,\quad \angle{ADM}=90^\circ.
$$
ãã®ãšãïŒäžè§åœ¢ $AB_1C_1$ ã®é¢ç©ãšäžè§åœ¢ $AB_2C_2$ ã®é¢ç©ã®åãæ±ããŠãã ããïŒ\
ããã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ãçšã㊠$\dfrac{p}{\sqrt{q}}$ ãšè¡šãããã®ã§ïŒ$p+q$ ã®å€ã解çããŠãã ããïŒ
<details><summary>åãããããçžäŒŒ<\/summary>
ã$2$ ã€ã®å³åœ¢ã**åãããããŠ**ïŒãããã¯**åãåãã«**ïŒçžäŒŒã§ãããšã¯ïŒäžç¹ãäžå¿ãšããæ¡å€§ã»çž®å°ïŒå¹³è¡ç§»åïŒäžç¹ãäžå¿ãšããå転移åã®çµã¿åããïŒçŽç·ã«é¢ãã察称移åãå«ãŸãªãïŒã§ãã€ãããããšãæããŸãïŒ
<\/details> |
OMC162 | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc162/tasks/3919 | F | OMC162(F) | 500 | 32 | 76 | [
{
"content": "ãäžè¬ã«, çã®çªå·ã $1, 2, \\cdots n $ , ç®±ã $X_1, X_2, \\cdots X_m$ ã® $m$ åãã, ç®±ã®ã¹ã³ã¢ã®åæ¯ã $m$ ã®çŽ¯ä¹ã§ãããšãã. ãŸã, $1$ ãã $n$ ãŸã§ã®æ°åã®äžãã $k$ åã®æ°åãéžã³åãæ¹æ³ãã¹ãŠã«ãããŠ, éžã³åã£ãæ°åã®ç©ã®ç·åã $a_k$ ãšãã.\r\n\r\nãã¯ããã«, ãã¹ãŠã®åé
ã«ãããç®± $X_1$ ã®ã¿ã®ã¹ã³ã¢ã®ç·åãæ±ãã.\r\n - ç®± $X_1$ ã«çãå
¥ããªãå Žå\\\r\n$S(X_1)=1$ ã§ãã, $n$ åã®çãç®± $X_1$ 以å€ã® $m-1$ åã®ç®±ã®ããããã«åé
ããå Žåã®æ°ã¯ $(m-1)^n$ ã§ãã. ãããã£ãŠ, ãã®å Žåã«ã€ããŠç®± $X_1$ ã®ã¹ã³ã¢ã®ç·å㯠$(m-1)^n$ ã§ãã. \r\n - ç®± $X_1$ ã«çã $k$ åå
¥ãå ŽåïŒ$k=1, 2, \\cdots ,n$ïŒ\\\r\nç®± $X_1$ ã«å
¥ã£ãçã®çªå·ã $b_1, b_2, \\cdots ,b_n (1 \\leq b_1 \\lt b_2 \\lt \\cdots \\lt b_n \\leq n)$ ãšãããš, $S(X_1)=\\dfrac{b_1 b_2 \\cdots b_n}{m^k}$ ã§ãã, æ®ã $n-k$ åã®çãç®± $X_1$ 以å€ã® $m-1$ åã®ç®±ã®ããããã«åé
ããå Žåã®æ°ã¯ $(m-1)^{n-k}$ ã§ãã. èãããã $(b_1, b_2, \\cdots ,b_n)$ ã®çµãã¹ãŠã«ã€ã㊠$(m-1)^{n-k} S(X_1)$ ãæ±ããã®ç·åãåããš, ãã㯠$\\dfrac{(m-1)^{n-k} a_k}{m^k}$ ã§ãã.\r\n\r\nãç®± $X_2, X_3, \\cdots X_m$ ã«ã€ããŠãåæ§ã«, ãã¹ãŠã®åé
ã«ãããç¹å®ã®ç®±ã®ã¿ã®ã¹ã³ã¢ã®ç·åãæ±ããããããšã«æ³šæãã. ãããã®åèš\r\n$$\r\nm \\Bigl( (m-1)^n + \\sum_\\{k=1\\}^\\{n\\} \\frac{(m-1)^{n-k} a_k}{m^k} \\Bigl)\r\n$$\r\nããã, æ±ããåé
ã®ã¹ã³ã¢ã®ç·åã«ã»ããªããªã. ããã§, æ¬åŒ§ã®äžèº«ã«ã€ããŠã¯, 以äžã®æçåŒ\r\n$$\r\nx^n + a_1 x^{n-1}+ a_2 x^{n-2}+ \\cdots +a_{n-1} x +a_n =(x+1)(x+2)\\cdots (x+n)\r\n$$\r\nã« $x=m(m-1)=m^2-m$ ã代å
¥ããã®ã¡ã«äž¡èŸºã $m^n$ ã§é€ããããšã«ãã\r\n$$\r\n(m-1)^n + \\sum_\\{k=1\\}^\\{n\\} \\frac{(m-1)^{n-k} a_k}{m^k} =\\frac{(m^2-m+n)! }{m^n \\cdot (m^2-m)!}\r\n$$\r\nãšèšç®ã§ãã. ãããã, åé
ã®ã¹ã³ã¢ã®ç·å㯠$\\dfrac{(m^2-m+n)! }{m^{n-1} \\cdot (m^2-m)!}$ ã§ãã.\r\n\r\nä»åã®å Žå, $n=1357, m=35$ ã§ãããã, åé
ã®ã¹ã³ã¢ã®ç·åã¯\r\n$$\r\n\\frac{2547!}{1190!\\times 35^{1356}}=\\frac{2547\\times 2546 \\times \\cdots \\times 1191}{5^{1356}\\times 7^{1356}}\r\n$$\r\nã§ãã. åæ¯ã®çŽ å æ°ã¯ $5, 7$ ã®ã¿ã§ãããã, ãã®ææ°éšã«ã€ããŠèããã°ãã. $2547!$ ã $5, 7$ ã§ããããæ倧 $634, 422$ å, $1190!$ ã $5, 7$ ã§ããããæ倧 $295, 197$ åå²ãåããããšãã, åé
ã®ã¹ã³ã¢ã®ç·åãæ¢çŽåæ°ã§è¡šãããšãã®åæ¯ã¯ $5^{1356+295-634}\\times 7^{1356+197-422}=5^{1017}\\times 7^{1131}$ ã§ãã, æ±ããå€ã¯ $(1017+1)(1131+1)=\\mathbf{1152376}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/3919"
},
{
"content": "ãã¹ã³ã¢ãšïŒãã®ã¹ã³ã¢ã«ãªãçµã¿åããæ°ãåæã«æ±ããŸãïŒ\r\n\r\nãçãé çªã«å
¥ããŠããïŒç $i$ ãç®± $1$ ã«å
¥ãããç®± $1$ ã®ã¹ã³ã¢ã $\\frac{i}{35}$ åïŒå
¥ããªããã° $1$ åãããšèããŸãïŒ \r\nãããšïŒåç $i$ ã«ã€ããŠ, ç®± $1$ ã«ç $i$ ãå
¥ããªã $34$ éããšïŒç®± $1$ ã«å
¥ãã $1$ éããããã®ã§ïŒã¹ã³ã¢ã®ç·å (ã®ç®± $1$ ã®å¯äž) ã¯\r\n$$\\prod\\_{i=1}\\^{1357}\\left(1\\times 34+\\frac{i}{35}\\times 1\\right)$$\r\nãšãªããŸãïŒ \r\n\r\nåŸã¯å
¬åŒè§£èª¬ãšåæ§ã®èšç®ã§ãïŒ",
"text": "ã¹ã³ã¢ãšæ°åŒã®å¯Ÿå¿ä»ãã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc162/editorial/3919/236"
}
] | ã$1$ ãã $1357$ ãŸã§ã®æŽæ°ã®ãã¡ã¡ããã© $1$ ã€ãæžãããçã $1$ ã€ãã€ãããŸãïŒããã $1357$ åã®çãïŒåºå¥ã§ãã $35$ åã®ç®± $X_1, X_2, \cdots , X_{35}$ ã«åé
ããŸãïŒããã§ïŒçã $1$ ã€ãå
¥ããªãç®±ãååšããŠãæ§ããŸããïŒåé
åŸã«ãããŠïŒç®± $X_i$ ã®**ã¹ã³ã¢** $S(X_i)$ ã次ã®ããã«å®ããŸãïŒãã ãïŒ$P(X_i)$ ã¯ç®± $X_i$ ã«å
¥ã£ãŠããçã«æžãããçªå·ã®ç©ïŒ$|X_i|$ ã¯ç®± $X_i$ ã«å
¥ã£ãŠããçã®æ°ãè¡šããã®ãšããŸãïŒ
- ç®± $X_i$ ã«çãå
¥ã£ãŠããªããšãïŒ$S(X_i) =1$
- ç®± $X_i$ ã«çãå
¥ã£ãŠãããšãïŒ$S(X_i)=\dfrac{P(X_i)}{35^{|X_i|}}$
ããã«ïŒååé
ã«ã€ããŠãã®**ã¹ã³ã¢**ã $35$ åã®ç®±ã®ã¹ã³ã¢ã®åèš $\sum\limits_\{i=1\}^{35} S(X_i)$ ãšããŠå®ããŸãïŒãããã $35^{1357}$ éããã¹ãŠã®åé
ã«å¯ŸããŠïŒåé
ã®ã¹ã³ã¢ãæ±ããŠãããã®ç·åããšããšïŒããã¯æ¢çŽåæ°ãšããŠè¡šããŸãïŒãã®æ¢çŽåæ°ã®åæ¯ããã€æ£ã®çŽæ°ã®åæ°ã解çããŠãã ããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/2921 | A | OMC161(A) | 100 | 333 | 333 | [
{
"content": "ãå¥æ°ã§ããïŒã〠$3$ ã®åæ°ã§ãããããšã¯ïŒ$6$ ã§å²ã£ãŠ $3$ äœãããšãšåå€ã§ããïŒ$30$ 㯠$6$ ã®åæ°ã§ããããïŒæ±ããçã㯠$30 \\div 6 = \\textbf 5$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2921"
}
] | ã$1$ ä»¥äž $30$ 以äžã®å¥æ°ã§ãã£ãŠïŒ$3$ ã®åæ°ã§ããããã®ã¯ããã€ãããŸããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/4885 | B | OMC161(B) | 100 | 293 | 309 | [
{
"content": "ã$x=y$ ã§ãããšããèãããšïŒ$3f(x)=f(x)^2+2$ ãã $f(x)=1$ ãŸã㯠$f(x)=2$ ã§ããïŒäžæ¹ã§ïŒæççã« $1$ ããšãé¢æ°ïŒããã³æççã« $2$ ããšãé¢æ°ã¯ãšãã«æ¡ä»¶ãã¿ããããïŒä»åã¯å¿
èŠãªããïŒå®éã«ã¯ãããã§å°œããããŠããããšããããïŒïŒæ±ããç·å㯠$\\textbf{3}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/4885"
}
] | ãå®æ°ã«å¯ŸããŠå®çŸ©ããå®æ°å€ããšãé¢æ° $f$ ãïŒä»»æã®å®æ° $x,y$ ã«å¯ŸããŠ
$$f(x) + 2f(y) = f(x)f(y) +2$$
ãã¿ãããšãïŒ$f(4885)$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/1473 | C | OMC161(C) | 200 | 286 | 296 | [
{
"content": "ã$AP : PM = 2 : 1$ ãã $P$ 㯠$ABC$ ã®éå¿ã§ããããïŒçŽç· $CP$ ãš $AB$ ã®äº€ç¹ã $N$ ãšãããšïŒ$N$ ã¯èŸº $AB$ ã®äžç¹ã§ããïŒãŸãïŒ$P$ ã¯éå¿ã§ãããã\r\n$$PN=\\frac{1}{2}CP=10, \\quad AP = \\frac{2}{3}AM = 26$$\r\nã§ããã®ã§ïŒ$AN=\\sqrt{AP^2-PN^2}=24$ ã§ããïŒãã£ãŠïŒæ±ããé¢ç©ã¯\r\n$$\\frac{1}{2}AB\\times CN = AN\\times (PN + CP) = \\textbf{720}$$\r\nã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/1473"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠïŒèŸº $BC$ ã®äžç¹ã $M$ãšãïŒ$C$ ããçŽç· $AB$ ã«ããããåç·ãšç·å $AM$ ã亀ãã£ãã®ã§ãã®äº€ç¹ã $P$ ãšãããšïŒä»¥äžã®æ¡ä»¶ãæãç«ã¡ãŸããïŒ
$$ AP:PM=2:1,\quad AM=39,\quad CP=20.$$
ãã®ãšãïŒäžè§åœ¢ $ABC$ ã®é¢ç©ãæ±ããŠãã ããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/1936 | D | OMC161(D) | 300 | 148 | 267 | [
{
"content": "ããŸãïŒéã®çœç³ãäžè¬ã« $n\\ge1$ åã§ïŒã〠$2$ ã€ç®ã®èŠåã®ã¿ã«åºã¥ããŠçœç³ã眮ãæãããšãïŒãã®é åºãšããŠèãããããã®ã $a_n$ éãã§ãããšããïŒãã®ãšãïŒ$1$ åç®ãã $n-1$ åç®ã®æäœã§ã¯äž¡ç«¯ã®çœç³ $2$ åããéžæãïŒ$n$ åç®ã®æäœã§ã¯æ®ã£ã $1$ åãéžã¶ããïŒ$a_n=2^{n-1}$ ã§ããïŒãŸãïŒ$a_0 = 1$ ãšããŠããïŒ\\\r\nãå
ã®åé¡ã«æ»ãïŒæåã«çœ®ãæããçœç³ãçœç³ã®äžã§å·Šãã $k$ çªç®ã§ãã£ããšããïŒãã®ãšãïŒãã®çœç³ã®å·Šå³ãããããäžã® $n=k-1,10-k$ ã®ç¶æ³ã«äžèŽãïŒãŸãå·Šå³ã®æäœã®çµã¿åããã ${}\\_{9}\\mathrm{C}\\_{k-1}$ éãããããïŒãããã ${}\\_{9}\\mathrm{C}\\_{k-1} \\times a_{k-1} a_{10-k}$ éãã§ããïŒ\\\r\nã以äžããïŒå
šäœã§æ±ããã¹ãå€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\sum_{k=1}^{10} \\left({}\\_{9}\\mathrm{C}\\_{k-1} \\times a_{k-1} a_{10-k}\\right) = (2^9 + 2)\\times 2^7 = \\mathbf{65792}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/1936"
}
] | ãçœç³ãšé»ç³ããã㊠$12$ åãå·Šå³äžåã«äžŠãã§ããïŒã¯ããã¯äž¡ç«¯ã® $2$ åãé»ç³ïŒæ®ã $10$ åãçœç³ã§ãïŒãããã次ã®èŠåã«åŸã£ãŠïŒãã¹ãŠãé»ç³ãšãªããŸã§çœç³ãäžã€ãã€é»ç³ã«çœ®ãæããŸãïŒ
- ã¯ããã«ïŒçœç³ãä»»æã« $1$ ã€éžã³ïŒé»ç³ã«çœ®ãæããïŒ
- ãã以éã¯ïŒé»ç³ã«é£æ¥ããŠããçœç³ãä»»æã« $1$ åéžã³ïŒé»ç³ã«çœ®ãæããããšãç¹°ãè¿ãïŒ
ãã®ãšãïŒçœç³ã眮ãæããé åºãšããŠãããããã®ã¯äœéããããŸããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/2982 | E | OMC161(E) | 400 | 46 | 106 | [
{
"content": "**解æ³1.**ãåå
¬åã«é
眮ãããçåŸã®æ°ã $p_1,p_2,\\ldots,p_{1000}$ ãšãããšïŒèããã¹ã $2$ ä¹å $S$ ã«ã€ããŠæ¬¡ãæãç«ã€ïŒ\r\n$$S=\\sum_{n=1}^{1000} \\lbrace p_n(p_n-1)+p_n\\rbrace=2\\sum_{n=1}^{1000}{}\\_{p_n}\\mathrm{C}\\_2+2982$$\r\nããã§æå³èŸºã®ç·åã¯ïŒåãå
¬åã«ãã $2$ 人çµã®æ°ãè¡šãïŒä»»æã® $2$ 人çµã«ã€ããŠïŒåãå
¬åã«ãã確ç㯠$1\\/1000$ ã§ããããïŒãããå $2$ 人çµã«ã€ããŠè¶³ãåãããããšãèããŠïŒæ±ããæåŸ
å€ã¯\r\n$$\\displaystyle 2\\times\\biggl(\\frac{1}{1000}\\times {}\\_{2982}\\mathrm{C}\\_2\\biggr)+2982=\\frac{5935671}{500}$$\r\nç¹ã«è§£çãã¹ãæ°å€ã¯ $\\textbf{5936171}$ ã§ããïŒ\r\n\r\n**解æ³2.**ãäžè¬ã« $n=2982$ ãšããïŒããå
¬åã«æ³šç®ãããšãïŒãã¹ãŠã®é
眮æ¹æ³ã«ã€ããŠäººæ°ã® $2$ ä¹ã®åã¯\r\n$$\\displaystyle\\sum_{k=1}^{n}k^2\\binom{n}{k}999^{n-k}=\\sum_{k=1}^{n}999^{n-k}\\biggl\\lbrace n(n-1)\\binom{n-2}{k-2}+n\\binom{n-1}{k-1}\\biggr\\rbrace $$\r\nããã§ïŒäºé
å®çãã\r\n$$\\begin{aligned}\r\n\\sum_{k=1}^n999^{n-k}\\binom{n-2}{k-2}&=\\sum_{k=0}^{n-2}999^{n-2-k}\\binom{n-2}{k}=(1+999)^{n-2} \\\\\\\\\r\n\\sum_{k=1}^n999^{n-k}\\binom{n-1}{k-1}&=\\sum_{k=0}^{n-1}999^{n-1-k}\\binom{n-1}{k}=(1+999)^{n-1}\r\n\\end{aligned}$$\r\nã® $2$ åŒãæãç«ã€ããšããããã®ã§ïŒçµå±\r\n$$\\displaystyle\\sum_{k=1}^{n}k^2\\binom{n}{k}999^{n-k}=n(n+999)1000^{n-2}$$\r\nãšãããïŒæ±ããã¹ãæåŸ
å€ã¯æ¬¡ã®ããã«èšç®ã§ããïŒ\r\n$$\\dfrac{n(n+999)1000^{n-2}\\times 1000}{1000^{n}}=\\dfrac{n(n+999)}{1000}$$\r\n$n=2982$ ã代å
¥ãããšïŒè§£æ³1ãšåãçµè«ãåŸãããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982"
},
{
"content": "ãåé¡ã«çŽ çŽã«åŸã£ãŠè§£ããŸããïŒ\r\n\r\n ãäžè¬ã«ïŒ$m$ 人ã®çåŸãš $n$ ç®æã®å
¬åãšãïŒåå
¬åã«é
眮ãããçåŸã®æ°ã $p_1$ïŒ$\\cdots$ïŒ$p_n$ ãšããïŒ\\\r\n$$\\begin{aligned}\r\nE \\left( p_1^2+ \\cdots +p_n^2 \\right) & = E\\left( (p_1+ \\cdots +p_n)^2-2 \\sum\\limits_{i \\neq j}p_i p_j \\right) \\\\\\\\\r\n&=m^2-2\\sum\\limits_{i \\neq j}E(p_i p_j) \\\\\\\\\r\n&=m^2-n(n-1)E(p_i p_j)\r\n\\end{aligned}$$\r\n\r\n ãããã§ïŒ$p_i=x$ïŒ$p_j=y$ ã§ãã確çã¯ïŒ$\\dfrac{m!}{x! y! (m-x-y)!} \\left( \\dfrac{1}{n} \\right)^x \\left( \\dfrac{1}{n} \\right)^y \\left( \\dfrac{n-2}{n} \\right)^{m-x-y}$ ã§ããïŒããããïŒ\\\r\n$$\\begin{aligned}\r\nE(p_i p_j) & = \\sum\\limits_{0âŠx+yâŠm}xy\\dfrac{m!}{x! y! (m-x-y)!} \\left( \\dfrac{1}{n} \\right)^{x+y} \\left( \\dfrac{n-2}{n} \\right)^{m-x-y}\\\\\\\\\r\n& = \\dfrac{m(m-1)}{n^2} \\sum\\limits_{2âŠx+yâŠm}\\dfrac{(m-2)!}{(x-1)! (y-1)! (m-x-y)!} \\left( \\dfrac{1}{n} \\right)^{x+y-2} \\left( \\dfrac{n-2}{n} \\right)^{m-x-y}\\\\\\\\\r\n& = \\dfrac{m(m-1)}{n^2} \\sum\\limits_{0âŠx+yâŠm-2}\\dfrac{(m-2)!}{x! y! (m-2-x-y)!} \\left( \\dfrac{1}{n} \\right)^{x+y} \\left( \\dfrac{n-2}{n} \\right)^{m-2-(x+y)}\\\\\\\\\r\n& = \\dfrac{m(m-1)}{n^2}\r\n\\end{aligned}$$\r\n ãåŸã£ãŠïŒ $E \\left( p_1^2+ \\cdots +p_n^2 \\right) = m^2- \\dfrac{m(m-1)(n-1)}{n}$\r\n\r\n<details>\r\n <summary>ã»ã³ã¿ãªã³ã°ãããåŒã®æåŸã®çå·<\\/summary>\r\n$$\\sum\\limits_{0âŠx+yâŠm-2}\\dfrac{(m-2)!}{x! y! (m-2-x-y)!} \\left( \\dfrac{1}{n} \\right)^{x+y} \\left( \\dfrac{n-2}{n} \\right)^{m-2-(x+y)}=1$$\r\nãã«ã€ããŠã¯ïŒæ¬¡ã®ããã«èª¬æã§ããïŒ\\\r\nãåŒ $\\dfrac{(m-2)!}{x! y! (m-2-x-y)!} \\left( \\dfrac{1}{n} \\right)^{x+y} \\left( \\dfrac{n-2}{n} \\right)^{m-2-(x+y)}$ ã¯ïŒ$m-2$ 人ã®çåŸã $n$ ç®æã®å
¬åã«é
眮ããéïŒããïŒåºå®ãããïŒäºç®æã®å
¬åã®äººæ°ã $x+y$ 人ãšãªãããã«é
眮ãã確çã§ããïŒãã®ç¢ºçã $x+y$ ã $0$ ãã $m-2$ ã«ãªããŸã§è¶³ãåãããã®ã§ïŒå
šãŠã®å Žåã足ãåãããŠãããšããããšãã§ãïŒãã®ãããªç¢ºç㯠$1$ ã§ããïŒ\r\n\r\n<\\/details>",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982/229"
},
{
"content": "ã[Tempurabc æ°ã®è§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc161\\/editorial\\/2982\\/229)ã«ããã $E(p_i p_j)$ ãæ±ããéšåã®å¥è§£ã§ãïŒ\r\n\r\n--- \r\n\r\nããã¹ãŠã®çåŸã®é
眮ã«ã€ããŠã® $p_1p_2$ ã®ç·åãèãããïŒããã $n^m$ ã§å²ãã°æ±ããæåŸ
å€ãåŸãããïŒ\\\r\nã$p_1, \\cdots, p_n$ ãåºå®ãããšãã®çåŸã®é
眮ã®ç·æ°ã¯ $\\dfrac{m!}{p_1 ! p_2 ! \\cdots p_n !}$ éãã§ããããïŒèããã¹ãç·åã¯\r\n$$\\sum_{p_1+\\cdots+p_n=m} \\frac{m!}{p_1 ! p_2 ! \\cdots p_n !} p_1p_2$$\r\nã§è¡šããïŒ$p_1$ ãŸã㯠$p_2$ ã $0$ ã®å Žå㯠$\\sum$ ã®äžèº«ã $0$ ã«ãªãããšããïŒããã¯\r\n$$\\sum_{\\substack{p_1, p_2 \\gt 0 \\\\\\\\ p_1+\\cdots+p_n=m}} \\frac{m!}{(p_1-1) ! (p_2-1) ! p_3! \\cdots p_n !}$$\r\nãšæžãæããããïŒããã«ïŒ$p_1 - 1, p_2 - 1$ ããããã $q_1, q_2$ ãšçœ®ãçŽãã°ïŒ$(q_1, q_2, q_3, \\cdots, p_n)$ 㯠$q_1+q_2+p_3 + \\cdots+p_n=m-2$ ãšãªãçµå
šäœãæž¡ãã®ã§ïŒ\r\n$$m(m-1) \\sum_{\\substack{q_1 + q_2 + p_3 + \\cdots+p_n=m-2}} \\frac{(m-2)!}{q_1 ! q_2 ! p_3! \\cdots p_n !}$$\r\nãšæžãæããããïŒããŸäžåŒã®ç·åéšå㯠$n^{m-2}$ ã§ãã(â»)ããïŒæ±ããæåŸ
å€ã¯\r\n$$\\frac{m(m-1)n^{m-2}}{n^m} = \\frac{m(m-1)}{n^2}$$\r\nã§ããïŒ\r\n\r\n---\r\n\r\nâ»ã$\\displaystyle \\sum_{p_1 + \\cdots + p_n = m}\\dfrac{m!}{p_1 ! p_2 ! \\cdots p_n !}$ ã¯äœãè¡šããŠããåŒã ãããïŒãã®åŒã® $p_1, p_2, m$ ã $q_1, q_2, m-2$ ã«å€ãã£ãã ãã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982/232"
},
{
"content": "ãæ±ããã¹ãã¯åçåŸãç確çã«ããããã®å
¬åã«å²ãæ¯ããšãããšã, é åºã¥ããçåŸå士ã®ã㢠$(s_n, s_m) \\ (n = m \\ ã®å Žåãèš±ã)$\r\nã§ãã£ãŠ, çåŸå士ãåãå
¬åã«ãããã¢ã®æ°ã®æåŸ
å€ã§ãã. ããã§, çåŸå士ãåãå
¬åã«ãããã¢ã«å¯Ÿã㊠$1$ ã®ã¹ã³ã¢ã, ããã§ãªããã¢ã«å¯Ÿã㊠$0$ ã®ã¹ã³ã¢ãäžãããšãããšã, ããã¯ã¹ã³ã¢ã®åã®æåŸ
å€ãšãªã, ããã¯ã¹ã³ã¢ã®æåŸ
å€ã®åã«çãã. ãŸã, $n \\neq m$ ã®ãšãã¯ã¹ã³ã¢ã $1$ ã«ãªã確çã¯, ç°ãªã $2$ 人ã®çåŸãåãå
¬åã«ãã確çãªã®ã§, $\\cfrac{1}{1000}$ ã§ãã, ã¹ã³ã¢ã®æåŸ
å€ã $\\cfrac{1}{1000}$. ãŸã, $n = m$ ã®å Žåã¯å¿
ãã¹ã³ã¢ã $1$ ã«ãªãã®ã§, ã¹ã³ã¢ã®æåŸ
å€ã $1$. ãã£ãŠ, æ±ããã¹ã㯠$2982 à 2981 à \\cfrac{1}{1000} + 2982 à 1$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982/233"
},
{
"content": "äžè¬ã«$m$人ã®çåŸããããšããïŒ \r\nããã§$m-1$人ã®çåŸã®å²ãåœãŠãæžãã§ãããšãïŒãã®æç¹ã§åå
¬åã«é
眮ãããçåŸã®æ°ã$p_1,\\cdots ,p_{1000}$ãšããïŒ \r\nãã®ãšãïŒãã$1$人ãå²ãåœãŠããšãã®$p_i$ã®$2$ä¹ã®ç·åã®å¢å éã®æåŸ
å€ã«ã€ããŠèããïŒ \r\nãã$1$人ãå
¬å$i$ã«å²ãåœãŠãå Žåã®å¢å éã¯$(p_i+1)^2-p_i^2=2p_i+1$ã ããå¢å éã®æåŸ
å€ã¯ïŒ$$\\frac{\\sum_{i=1}^{1000}(2p_i+1)}{1000}=\\frac{m-1}{500}+1$$ \r\nãã£ãŠå¢å éã®æåŸ
å€ã¯$p_1,\\cdots ,p_{1000}$ã®å€ã«äŸããªãããïŒæåŸ
å€ã®ç·åœ¢æ§ããæ±ããå€ã¯ïŒ \r\n$$\\sum_{i=0}^{2981}\\left(\\frac{i}{500}+1\\right) =\\frac{2981\\cdot 2982}{1000}+2982=\\frac{5935671}{500}$$\r\nç¹ã«è§£çãã¹ãæ°å€ã¯$5935671+500=\\mathbf{5936171}$ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982/234"
},
{
"content": "ãå€é
åŒã«ãã解æ³ã§ãïŒæ¬è³ªçã«ã¯å
¬åŒè§£èª¬2ãšåãã«ãªããŸãïŒ \r\n解説ã§ã¯äžè¬ã«çåŸã®äººæ°ã $N$ 人ïŒå
¬åã®æ°ã $M$ ç®æãšããŸãïŒ \r\n\r\n$x$ ã«é¢ããäžå€æ°å€é
åŒ $f$ ã«å¯ŸããŠïŒ$x\\^{i}$ ã®ä¿æ°ã $\\lbrack x\\^{i}\\rbrack f$ ãšè¡šããŸãïŒ \r\nãŸãïŒ$f$ ã®åŸ®åã $f\\^{\\prime}$ ã§è¡šããŸãïŒ \r\n\r\næ±ããã¹ãã¯ïŒ\r\n$$\\frac{M}{M\\^{N}}\\sum\\_{i=0}\\^{N}\\left(i\\^{2}\\lbrack x\\^{i}\\rbrack (M-1+x)\\^{N}\\right)$$\r\nã§ãïŒ \r\n<details>\r\n<summary>è¥å¹²ã®è£è¶³<\\/summary>\r\nåå
¬åïŒå人æ¯ã®å¯äžãã·ã°ãå
ã®åé
ãè¡šãïŒããããå
šäœã«ããã£ãŠè¶³ãåãããåŸïŒçåŸã®é
眮ã®ç·æ°ã§å²ã£ãŠããŸãïŒ \r\n\r\n$\\lbrack x\\^{i}\\rbrack (M-1+x)\\^{N}$ ãïŒæ³šç®ããŠããç¹å®ã®å
¬åã« $i$ 人éãŸããããªé
眮æ¹æ³ã®éãæ°ãè¡šããŸãïŒ \r\nåçåŸã¯ïŒæ³šç®ããŠããå
¬åãéžã¶ ( $1$ éã) ãïŒéžã°ãªã ($M-1$ éã) ãã®éžæãã§ããŸãïŒ \r\nãã£ãŠïŒå人ã®éžæãäžæ¬¡ã®å€é
åŒã§è¡šãïŒããã人æ°å $N$ åä¹ããã°ïŒåŒãåŸãããŸãïŒ \r\n\r\nãããã¯ïŒä»¥äžã®éãã«å
·äœçãªèšç®ãè¡ããªããèããæ¹ãåãå
¥ããããæ¹ããããããããŸããïŒ \r\nç°¡åã®ããïŒ$N=3$ ã®å Žåã§èããŸãïŒ \r\nçåŸãåºå¥ãïŒ$x\\_{k}$ $(k=1,2,3)$ ãïŒ$k$ çªç®ã®çåŸã泚ç®ããŠããå
¬åã«ããããè¡šãå€æ°ãšããŸãïŒ \r\nããªãã¡ïŒå€é
åŒã®åé
ã«å€æ° $x\\_{k}$ ãå«ãŸããŠããã°çåŸ $k$ ãããããšãïŒå«ãŸããŠããªããã°ããªãããšãè¡šããŸãïŒ \r\n\r\n$(M-1+x\\_{1})(M-1+x\\_{2})(M-1+x\\_{3})$ ãå±éãããšïŒ \r\n \r\n$$\\begin{aligned}\r\n&(M-1+x\\_{1})(M-1+x\\_{2})(M-1+x\\_{3})\\\\\\\\\r\n=&(M-1)(M-1)(M-1)+x\\_{1}(M-1)(M-1)+(M-1)x\\_{2}(M-1)+(M-1)(M-1)x\\_{3}\\\\\\\\\r\n&+x\\_{1}x\\_{2}(M-1)+(M-1)x\\_{2}x\\_{3}+x\\_{1}(M-1)x\\_{3}+x\\_{1}x\\_{2}x\\_{3}\r\n\\end{aligned}$$\r\nãšãªããŸãïŒ \r\näŸãã°ïŒ$(M-1)x\\_{2}(M-1)$ ã®é
(çåŸ $2$ ãããŠçåŸ $1,3$ ãããªã) ãã¿ããšïŒçåŸ $1$ ã®è¡ãå
$M-1$ éãïŒçåŸ $2$ ã®è¡ãå
$1$ éãïŒçåŸ $3$ ã®è¡ãå
$M-1$ ããããããŠããããšãåãããšæããŸãïŒ \r\nä»ã®é
ã«é¢ããŠãåæ§ã«ç¢ºèªããããšãã§ããŸãïŒ \r\n\r\nããã§ïŒåºå¥ããŠããçåŸãåºå¥ããªãããã«ããïŒããªãã¡åºå¥ããŠããå€æ° $x\\_{1},x\\_{2},x\\_{3}$ ãå
šãŠåºå¥ããªãå€æ° $x$ ã«çœ®ãæãããšæ±ããŠããåŒãåŸãããŸãïŒ \r\n\r\n\r\n\r\n<\\/details>\r\n\r\n\r\nããã§ïŒä»¥äžãå©çšããŸãïŒ (蚌æã«ã€ããŠã¯å®éã«åŸ®åãããã°ç¢ºãããããããå²æããŸãïŒ )\r\n\r\n---\r\n\r\nãå€é
åŒ $f$ åã³ éè² æŽæ° $i$ ã«å¯ŸããŠïŒ$i\\lbrack x\\^{i}\\rbrack f=\\lbrack x\\^{i}\\rbrack (xf\\^{\\prime})$ \r\n\r\n---\r\nãããäºåç¹°ãè¿ãããšã§ïŒ$i\\^{2}\\lbrack x\\^{i}\\rbrack f=i\\lbrack x\\^{i}\\rbrack (xf\\^{\\prime})=\\lbrack x\\^{i}\\rbrack (xf\\^{\\prime}+x\\^{2}f\\^{\\prime\\prime})$ ãšããçåŒãåŸãŸãïŒ \r\n\r\nãã®çåŒãå
ã®åŒã«åœãŠã¯ããã°ïŒ \r\n\r\n$$\\begin{aligned}\r\n&\\frac{M}{M\\^{N}}\\sum\\_{i=0}\\^{N}\\lbrack x\\^{i}\\rbrack (Nx(M-1+x)\\^{N-1}+N(N-1)x\\^{2}(M-1+x)\\^{N-2})\\\\\\\\\r\n=&\\frac{M}{M\\^{N}} (NM\\^{N-1}+N(N-1)M\\^{N-2})\\\\\\\\\r\n=&\\frac{N(N+M-1)}{M}\r\n\\end{aligned}$$\r\nããçããåŸãããšãã§ããŸãïŒ \r\n\r\n<details>\r\n<summary>äžè¡ç®ããäºè¡ç®ã®åŒå€åœ¢<\\/summary>\r\nåŒã«åºãŠãã $x$ ã«é¢ããå€é
åŒã¯ $N$ 次ã§ãïŒ \r\nãã£ãŠïŒã·ã°ãã®æå³ãããšããã¯ïŒå€é
åŒã®ä¿æ°ãå
šãŠè¶³ãåãããå€ãšãªããŸãïŒ \r\nããã¯ïŒå€é
åŒã® $x$ ã« $1$ ã代å
¥ããå€ã«ä»ãªããŸããïŒ \r\n<\\/details> \r\n\r\nå€é
åŒãåªçŽæ°ã«ããæ°ãäžãã¯æ
£ãããŸã§äœãããŠãããåããã«ãããšããé¢ããããŸããïŒãã®åé¢æ©æ¢°çã«èå¯ãé²ããããå Žåãå€ã
ããïŒäŸ¿å©ã§ãïŒ",
"text": "å€é
åŒã«ãã解æ³",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/2982/235"
}
] | ã$2982$ 人ã®çåŸãš $1000$ ãæã®å
¬åããããŸãïŒåçåŸã $1000$ ãæã®å
¬åããããã«é
眮ããæ¹æ³ $1000^{2982}$ éããã¹ãŠãç確çã«çºçãããšãïŒåå
¬åã«é
眮ãããçåŸã®æ°ã® $2$ ä¹ã®ç·åã®æåŸ
å€ãæ±ããŠãã ããïŒãã ãïŒæ±ããå€ã¯äºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§ïŒ$a+b$ ã解çããŠãã ããïŒ |
OMC161 (for beginners) | https://onlinemathcontest.com/contests/all?page=1 | https://onlinemathcontest.com/contests/omc161/tasks/4638 | F | OMC161(F) | 400 | 18 | 47 | [
{
"content": "ã$1$ ä»¥äž $100$ 以äžã®æŽæ° $n$ ã«å¯ŸããŠ\r\n$$b_n = \\sum_{m=1}^{n}2^{m - n - 1}a_m$$\r\nãšããïŒ\r\n\r\n----\r\n**è£é¡.**ã$\\displaystyle\\sum_{n=1}^{100}b_n+b_{100} = 1$ïŒ\\\r\n**蚌æ.**\r\n$$\\begin{aligned}\r\n\\sum_{n=1}^{100}b_n+b_{100}\r\n&= \\sum_{n = 1}^{100}\\sum_{m = 1}^{n}2^{m-n-1}a_m + \\sum_{n = 1}^{100}2^{n - 101}a_n\\\\\\\\\r\n&= \\sum_{n = 1}^{100}a_n\\Bigg(2^{n - 101} + \\sum_{m = n}^{100}2^{n - m - 1}\\Bigg)\\\\\\\\\r\n&= \\sum_{n = 1}^{100}a_n\\\\\\\\\r\n&= 1\r\n\\end{aligned}$$\r\n\r\n----\r\n\r\nCauchy-Schwarzã®äžçåŒãã\r\n$$\\begin{aligned}\r\n\\sum_{n=1}^{100}\\frac{1}{b_n}\r\n&=\\left(\\sum_{n=1}^{100}b_n+b_{100} \\right)\r\n\\left(\\sum_{n=1}^{100}\\frac{1}{b_n} \\right)\\\\\\\\\r\n&=\\left(\\sum_{n=1}^{99}b_n+b_{100}+b_{100} \\right)\r\n\\left(\\sum_{n=1}^{99}\\frac{1}{b_n}+\\cfrac{1}{2b_{100}}+\\frac{1}{2b_{100}} \\right)\\\\\\\\\r\n&\\ge \\left(99+\\frac{1}{\\sqrt2}+\\frac{1}{\\sqrt2} \\right)^2 \\\\\\\\\r\n&=9803+\\sqrt{78408} \\\\\\\\\r\n\\end{aligned}$$ \r\nãæãç«ã€ïŒçå·ã¯\r\n$$a_1=\\frac{2}{(99+\\sqrt{2})},\\quad\r\na_2=a_3=\\cdots=a_{99}=\\frac{1}{(99+\\sqrt{2})},\\quad\r\na_{100}=\\frac{\\sqrt{2}-1}{(99+\\sqrt{2})}$$ \r\nã§ç¢ºãã«æç«ããã®ã§ïŒæ±ããå€ã¯ $\\mathbf{88211}$ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc161/editorial/4638"
}
] | ãæ£ã®å®æ° $a_1, a_2, âŠ, a_{100}$ ã $a_1 + a_2 + \cdots + a_{100} = 1$ ãæºãããªããåããšãïŒ
$$\sum_{n=1}^{100}\frac{1}{\sum\limits_{m=1}^{n}2^{m - n - 1}a_m}$$
ã®æå°å€ãæ±ããŠãã ããïŒãã ãïŒçãã¯æ£æŽæ° $a, b$ ã«ãã£ãŠ $a+\sqrt{b}$ ãšè¡šããã®ã§ïŒ$a+b$ ã解çããŠãã ãã. |
Subsets and Splits