|
|
|
|
|
use std::env::VarError; |
|
|
|
use dora_node_api::{ |
|
arrow::array::{Float32Array, StringArray, UInt8Array}, |
|
DoraNode, Event, |
|
}; |
|
use eyre::{eyre, Context, Result}; |
|
use rerun::{ |
|
external::re_types::ArrowBuffer, SpawnOptions, TensorBuffer, TensorData, TensorDimension, |
|
}; |
|
|
|
fn main() -> Result<()> { |
|
|
|
let rt = tokio::runtime::Runtime::new().expect("Failed to create tokio runtime"); |
|
let _guard = rt.enter(); |
|
|
|
let (_node, mut events) = |
|
DoraNode::init_from_env().context("Could not initialize dora node")?; |
|
|
|
|
|
let mut options = SpawnOptions::default(); |
|
|
|
let memory_limit = match std::env::var("RERUN_MEMORY_LIMIT") { |
|
Ok(memory_limit) => memory_limit |
|
.parse::<String>() |
|
.context("Could not parse RERUN_MEMORY_LIMIT value")?, |
|
Err(VarError::NotUnicode(_)) => { |
|
return Err(eyre!("RERUN_MEMORY_LIMIT env variable is not unicode")); |
|
} |
|
Err(VarError::NotPresent) => "25%".to_string(), |
|
}; |
|
|
|
options.memory_limit = memory_limit; |
|
|
|
let rec = rerun::RecordingStreamBuilder::new("dora-rerun") |
|
.spawn_opts(&options, None) |
|
.context("Could not spawn rerun visualization")?; |
|
|
|
while let Some(event) = events.recv() { |
|
if let Event::Input { |
|
id, |
|
data, |
|
metadata: _, |
|
} = event |
|
{ |
|
if id.as_str().contains("image") { |
|
let shape = vec![ |
|
TensorDimension { |
|
name: Some("height".into()), |
|
size: std::env::var(format!("{}_HEIGHT", id.as_str().to_uppercase())) |
|
.context(format!( |
|
"Could not read {}_HEIGHT env variable for parsing the image", |
|
id.as_str().to_uppercase() |
|
))? |
|
.parse() |
|
.context(format!( |
|
"Could not parse env {}_HEIGHT", |
|
id.as_str().to_uppercase() |
|
))?, |
|
}, |
|
TensorDimension { |
|
name: Some("width".into()), |
|
size: std::env::var(format!("{}_WIDTH", id.as_str().to_uppercase())) |
|
.context(format!( |
|
"Could not read {}_WIDTH env variable for parsing the image", |
|
id.as_str().to_uppercase() |
|
))? |
|
.parse() |
|
.context(format!( |
|
"Could not parse env {}_WIDTH", |
|
id.as_str().to_uppercase() |
|
))?, |
|
}, |
|
TensorDimension { |
|
name: Some("depth".into()), |
|
size: std::env::var(format!("{}_DEPTH", id.as_str().to_uppercase())) |
|
.context(format!( |
|
"Could not read {}_DEPTH env variable for parsing the image", |
|
id.as_str().to_uppercase() |
|
))? |
|
.parse() |
|
.context(format!( |
|
"Could not parse env {}_DEPTH", |
|
id.as_str().to_uppercase() |
|
))?, |
|
}, |
|
]; |
|
|
|
let buffer: UInt8Array = data.to_data().into(); |
|
let buffer: &[u8] = buffer.values(); |
|
let buffer = TensorBuffer::U8(ArrowBuffer::from(buffer)); |
|
let tensordata = TensorData::new(shape.clone(), buffer); |
|
let image = rerun::Image::new(tensordata); |
|
|
|
rec.log(id.as_str(), &image) |
|
.context("could not log image")?; |
|
} else if id.as_str().contains("textlog") { |
|
let buffer: StringArray = data.to_data().into(); |
|
buffer.iter().try_for_each(|string| -> Result<()> { |
|
if let Some(str) = string { |
|
rec.log(id.as_str(), &rerun::TextLog::new(str)) |
|
.wrap_err("Could not log text") |
|
} else { |
|
Ok(()) |
|
} |
|
})?; |
|
} else if id.as_str().contains("boxes2d") { |
|
let buffer: Float32Array = data.to_data().into(); |
|
let buffer: &[f32] = buffer.values(); |
|
let mut centers = vec![]; |
|
let mut sizes = vec![]; |
|
let mut classes = vec![]; |
|
buffer.chunks(6).for_each(|block| { |
|
if let [x, y, w, h, _conf, cls] = block { |
|
centers.push((*x, *y)); |
|
sizes.push((*w, *h)); |
|
classes.push(*cls as u16); |
|
} |
|
}); |
|
rec.log( |
|
id.as_str(), |
|
&rerun::Boxes2D::from_centers_and_sizes(centers, sizes).with_class_ids(classes), |
|
) |
|
.wrap_err("Could not log Boxes2D")?; |
|
} |
|
} |
|
} |
|
|
|
Ok(()) |
|
} |
|
|