File size: 5,415 Bytes
b98ffbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
//! Demonstrates the most barebone usage of the Rerun SDK.
use std::env::VarError;
use dora_node_api::{
arrow::array::{Float32Array, StringArray, UInt8Array},
DoraNode, Event,
};
use eyre::{eyre, Context, Result};
use rerun::{
external::re_types::ArrowBuffer, SpawnOptions, TensorBuffer, TensorData, TensorDimension,
};
fn main() -> Result<()> {
// rerun `serve()` requires to have a running Tokio runtime in the current context.
let rt = tokio::runtime::Runtime::new().expect("Failed to create tokio runtime");
let _guard = rt.enter();
let (_node, mut events) =
DoraNode::init_from_env().context("Could not initialize dora node")?;
// Limit memory usage
let mut options = SpawnOptions::default();
let memory_limit = match std::env::var("RERUN_MEMORY_LIMIT") {
Ok(memory_limit) => memory_limit
.parse::<String>()
.context("Could not parse RERUN_MEMORY_LIMIT value")?,
Err(VarError::NotUnicode(_)) => {
return Err(eyre!("RERUN_MEMORY_LIMIT env variable is not unicode"));
}
Err(VarError::NotPresent) => "25%".to_string(),
};
options.memory_limit = memory_limit;
let rec = rerun::RecordingStreamBuilder::new("dora-rerun")
.spawn_opts(&options, None)
.context("Could not spawn rerun visualization")?;
while let Some(event) = events.recv() {
if let Event::Input {
id,
data,
metadata: _,
} = event
{
if id.as_str().contains("image") {
let shape = vec![
TensorDimension {
name: Some("height".into()),
size: std::env::var(format!("{}_HEIGHT", id.as_str().to_uppercase()))
.context(format!(
"Could not read {}_HEIGHT env variable for parsing the image",
id.as_str().to_uppercase()
))?
.parse()
.context(format!(
"Could not parse env {}_HEIGHT",
id.as_str().to_uppercase()
))?,
},
TensorDimension {
name: Some("width".into()),
size: std::env::var(format!("{}_WIDTH", id.as_str().to_uppercase()))
.context(format!(
"Could not read {}_WIDTH env variable for parsing the image",
id.as_str().to_uppercase()
))?
.parse()
.context(format!(
"Could not parse env {}_WIDTH",
id.as_str().to_uppercase()
))?,
},
TensorDimension {
name: Some("depth".into()),
size: std::env::var(format!("{}_DEPTH", id.as_str().to_uppercase()))
.context(format!(
"Could not read {}_DEPTH env variable for parsing the image",
id.as_str().to_uppercase()
))?
.parse()
.context(format!(
"Could not parse env {}_DEPTH",
id.as_str().to_uppercase()
))?,
},
];
let buffer: UInt8Array = data.to_data().into();
let buffer: &[u8] = buffer.values();
let buffer = TensorBuffer::U8(ArrowBuffer::from(buffer));
let tensordata = TensorData::new(shape.clone(), buffer);
let image = rerun::Image::new(tensordata);
rec.log(id.as_str(), &image)
.context("could not log image")?;
} else if id.as_str().contains("textlog") {
let buffer: StringArray = data.to_data().into();
buffer.iter().try_for_each(|string| -> Result<()> {
if let Some(str) = string {
rec.log(id.as_str(), &rerun::TextLog::new(str))
.wrap_err("Could not log text")
} else {
Ok(())
}
})?;
} else if id.as_str().contains("boxes2d") {
let buffer: Float32Array = data.to_data().into();
let buffer: &[f32] = buffer.values();
let mut centers = vec![];
let mut sizes = vec![];
let mut classes = vec![];
buffer.chunks(6).for_each(|block| {
if let [x, y, w, h, _conf, cls] = block {
centers.push((*x, *y));
sizes.push((*w, *h));
classes.push(*cls as u16);
}
});
rec.log(
id.as_str(),
&rerun::Boxes2D::from_centers_and_sizes(centers, sizes).with_class_ids(classes),
)
.wrap_err("Could not log Boxes2D")?;
}
}
}
Ok(())
}
|