//! Demonstrates the most barebone usage of the Rerun SDK. use std::env::VarError; use dora_node_api::{ arrow::array::{Float32Array, StringArray, UInt8Array}, DoraNode, Event, }; use eyre::{eyre, Context, Result}; use rerun::{ external::re_types::ArrowBuffer, SpawnOptions, TensorBuffer, TensorData, TensorDimension, }; fn main() -> Result<()> { // rerun `serve()` requires to have a running Tokio runtime in the current context. let rt = tokio::runtime::Runtime::new().expect("Failed to create tokio runtime"); let _guard = rt.enter(); let (_node, mut events) = DoraNode::init_from_env().context("Could not initialize dora node")?; // Limit memory usage let mut options = SpawnOptions::default(); let memory_limit = match std::env::var("RERUN_MEMORY_LIMIT") { Ok(memory_limit) => memory_limit .parse::() .context("Could not parse RERUN_MEMORY_LIMIT value")?, Err(VarError::NotUnicode(_)) => { return Err(eyre!("RERUN_MEMORY_LIMIT env variable is not unicode")); } Err(VarError::NotPresent) => "25%".to_string(), }; options.memory_limit = memory_limit; let rec = rerun::RecordingStreamBuilder::new("dora-rerun") .spawn_opts(&options, None) .context("Could not spawn rerun visualization")?; while let Some(event) = events.recv() { if let Event::Input { id, data, metadata: _, } = event { if id.as_str().contains("image") { let shape = vec![ TensorDimension { name: Some("height".into()), size: std::env::var(format!("{}_HEIGHT", id.as_str().to_uppercase())) .context(format!( "Could not read {}_HEIGHT env variable for parsing the image", id.as_str().to_uppercase() ))? .parse() .context(format!( "Could not parse env {}_HEIGHT", id.as_str().to_uppercase() ))?, }, TensorDimension { name: Some("width".into()), size: std::env::var(format!("{}_WIDTH", id.as_str().to_uppercase())) .context(format!( "Could not read {}_WIDTH env variable for parsing the image", id.as_str().to_uppercase() ))? .parse() .context(format!( "Could not parse env {}_WIDTH", id.as_str().to_uppercase() ))?, }, TensorDimension { name: Some("depth".into()), size: std::env::var(format!("{}_DEPTH", id.as_str().to_uppercase())) .context(format!( "Could not read {}_DEPTH env variable for parsing the image", id.as_str().to_uppercase() ))? .parse() .context(format!( "Could not parse env {}_DEPTH", id.as_str().to_uppercase() ))?, }, ]; let buffer: UInt8Array = data.to_data().into(); let buffer: &[u8] = buffer.values(); let buffer = TensorBuffer::U8(ArrowBuffer::from(buffer)); let tensordata = TensorData::new(shape.clone(), buffer); let image = rerun::Image::new(tensordata); rec.log(id.as_str(), &image) .context("could not log image")?; } else if id.as_str().contains("textlog") { let buffer: StringArray = data.to_data().into(); buffer.iter().try_for_each(|string| -> Result<()> { if let Some(str) = string { rec.log(id.as_str(), &rerun::TextLog::new(str)) .wrap_err("Could not log text") } else { Ok(()) } })?; } else if id.as_str().contains("boxes2d") { let buffer: Float32Array = data.to_data().into(); let buffer: &[f32] = buffer.values(); let mut centers = vec![]; let mut sizes = vec![]; let mut classes = vec![]; buffer.chunks(6).for_each(|block| { if let [x, y, w, h, _conf, cls] = block { centers.push((*x, *y)); sizes.push((*w, *h)); classes.push(*cls as u16); } }); rec.log( id.as_str(), &rerun::Boxes2D::from_centers_and_sizes(centers, sizes).with_class_ids(classes), ) .wrap_err("Could not log Boxes2D")?; } } } Ok(()) }