label
int64
0
1
func1
stringlengths
23
97k
id
int64
0
27.3k
0
static int compare_litqobj_to_qobj(LiteralQObject *lhs, QObject *rhs) { if (lhs->type != qobject_type(rhs)) { return 0; } switch (lhs->type) { case QTYPE_QINT: return lhs->value.qint == qint_get_int(qobject_to_qint(rhs)); case QTYPE_QSTRING: return (strcmp(lhs->value.qstr, qstring_get_str(qobject_to_qstring(rhs))) == 0); case QTYPE_QDICT: { int i; for (i = 0; lhs->value.qdict[i].key; i++) { QObject *obj = qdict_get(qobject_to_qdict(rhs), lhs->value.qdict[i].key); if (!compare_litqobj_to_qobj(&lhs->value.qdict[i].value, obj)) { return 0; } } return 1; } case QTYPE_QLIST: { QListCompareHelper helper; helper.index = 0; helper.objs = lhs->value.qlist; helper.result = 1; qlist_iter(qobject_to_qlist(rhs), compare_helper, &helper); return helper.result; } default: break; } return 0; }
15,068
0
static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr, uint64_t asc, int rw, bool exc) { uint64_t tec; tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46; DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec); if (!exc) { return; } trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, tec); }
15,070
0
static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res) { BDRVQcowState *s = bs->opaque; uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size); int ret; int refcount; int i, j; for (i = 0; i < s->l1_size; i++) { uint64_t l1_entry = s->l1_table[i]; uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK; if (!l2_offset) { continue; } refcount = get_refcount(bs, l2_offset >> s->cluster_bits); if (refcount < 0) { /* don't print message nor increment check_errors */ continue; } if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) { fprintf(stderr, "ERROR OFLAG_COPIED L2 cluster: l1_index=%d " "l1_entry=%" PRIx64 " refcount=%d\n", i, l1_entry, refcount); res->corruptions++; } ret = bdrv_pread(bs->file, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)); if (ret < 0) { fprintf(stderr, "ERROR: Could not read L2 table: %s\n", strerror(-ret)); res->check_errors++; goto fail; } for (j = 0; j < s->l2_size; j++) { uint64_t l2_entry = be64_to_cpu(l2_table[j]); uint64_t data_offset = l2_entry & L2E_OFFSET_MASK; int cluster_type = qcow2_get_cluster_type(l2_entry); if ((cluster_type == QCOW2_CLUSTER_NORMAL) || ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) { refcount = get_refcount(bs, data_offset >> s->cluster_bits); if (refcount < 0) { /* don't print message nor increment check_errors */ continue; } if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) { fprintf(stderr, "ERROR OFLAG_COPIED data cluster: " "l2_entry=%" PRIx64 " refcount=%d\n", l2_entry, refcount); res->corruptions++; } } } } ret = 0; fail: qemu_vfree(l2_table); return ret; }
15,071
0
static int map_f(BlockBackend *blk, int argc, char **argv) { int64_t offset; int64_t nb_sectors, total_sectors; char s1[64]; int64_t num; int ret; const char *retstr; offset = 0; total_sectors = blk_nb_sectors(blk); if (total_sectors < 0) { error_report("Failed to query image length: %s", strerror(-total_sectors)); return 0; } nb_sectors = total_sectors; do { ret = map_is_allocated(blk_bs(blk), offset, nb_sectors, &num); if (ret < 0) { error_report("Failed to get allocation status: %s", strerror(-ret)); return 0; } else if (!num) { error_report("Unexpected end of image"); return 0; } retstr = ret ? " allocated" : "not allocated"; cvtstr(offset << 9ULL, s1, sizeof(s1)); printf("[% 24" PRId64 "] % 8" PRId64 "/% 8" PRId64 " sectors %s " "at offset %s (%d)\n", offset << 9ULL, num, nb_sectors, retstr, s1, ret); offset += num; nb_sectors -= num; } while (offset < total_sectors); return 0; }
15,072
0
fdctrl_t *fdctrl_init (qemu_irq irq, int dma_chann, int mem_mapped, target_phys_addr_t io_base, BlockDriverState **fds) { fdctrl_t *fdctrl; int io_mem; int i; FLOPPY_DPRINTF("init controller\n"); fdctrl = qemu_mallocz(sizeof(fdctrl_t)); if (!fdctrl) return NULL; fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); if (fdctrl->fifo == NULL) { qemu_free(fdctrl); return NULL; } fdctrl->result_timer = qemu_new_timer(vm_clock, fdctrl_result_timer, fdctrl); fdctrl->version = 0x90; /* Intel 82078 controller */ fdctrl->irq = irq; fdctrl->dma_chann = dma_chann; fdctrl->io_base = io_base; fdctrl->config = 0x60; /* Implicit seek, polling & FIFO enabled */ fdctrl->sun4m = 0; if (fdctrl->dma_chann != -1) { fdctrl->dma_en = 1; DMA_register_channel(dma_chann, &fdctrl_transfer_handler, fdctrl); } else { fdctrl->dma_en = 0; } for (i = 0; i < 2; i++) { fd_init(&fdctrl->drives[i], fds[i]); } fdctrl_reset(fdctrl, 0); fdctrl->state = FD_CTRL_ACTIVE; if (mem_mapped) { io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write, fdctrl); cpu_register_physical_memory(io_base, 0x08, io_mem); } else { register_ioport_read((uint32_t)io_base + 0x01, 5, 1, &fdctrl_read, fdctrl); register_ioport_read((uint32_t)io_base + 0x07, 1, 1, &fdctrl_read, fdctrl); register_ioport_write((uint32_t)io_base + 0x01, 5, 1, &fdctrl_write, fdctrl); register_ioport_write((uint32_t)io_base + 0x07, 1, 1, &fdctrl_write, fdctrl); } register_savevm("fdc", io_base, 1, fdc_save, fdc_load, fdctrl); qemu_register_reset(fdctrl_external_reset, fdctrl); for (i = 0; i < 2; i++) { fd_revalidate(&fdctrl->drives[i]); } return fdctrl; }
15,073
0
static void end_frame(AVFilterLink *inlink) { TransContext *trans = inlink->dst->priv; AVFilterBufferRef *inpic = inlink->cur_buf; AVFilterBufferRef *outpic = inlink->dst->outputs[0]->out_buf; AVFilterLink *outlink = inlink->dst->outputs[0]; int plane; for (plane = 0; outpic->data[plane]; plane++) { int hsub = plane == 1 || plane == 2 ? trans->hsub : 0; int vsub = plane == 1 || plane == 2 ? trans->vsub : 0; int pixstep = trans->pixsteps[plane]; int inh = inpic->video->h>>vsub; int outw = outpic->video->w>>hsub; int outh = outpic->video->h>>vsub; uint8_t *out, *in; int outlinesize, inlinesize; int x, y; out = outpic->data[plane]; outlinesize = outpic->linesize[plane]; in = inpic ->data[plane]; inlinesize = inpic ->linesize[plane]; if (trans->dir&1) { in += inpic->linesize[plane] * (inh-1); inlinesize *= -1; } if (trans->dir&2) { out += outpic->linesize[plane] * (outh-1); outlinesize *= -1; } for (y = 0; y < outh; y++) { switch (pixstep) { case 1: for (x = 0; x < outw; x++) out[x] = in[x*inlinesize + y]; break; case 2: for (x = 0; x < outw; x++) *((uint16_t *)(out + 2*x)) = *((uint16_t *)(in + x*inlinesize + y*2)); break; case 3: for (x = 0; x < outw; x++) { int32_t v = AV_RB24(in + x*inlinesize + y*3); AV_WB24(out + 3*x, v); } break; case 4: for (x = 0; x < outw; x++) *((uint32_t *)(out + 4*x)) = *((uint32_t *)(in + x*inlinesize + y*4)); break; } out += outlinesize; } } avfilter_unref_buffer(inpic); ff_draw_slice(outlink, 0, outpic->video->h, 1); ff_end_frame(outlink); avfilter_unref_buffer(outpic); }
15,074
0
void *block_job_create(const BlockJobDriver *driver, BlockDriverState *bs, int64_t speed, BlockDriverCompletionFunc *cb, void *opaque, Error **errp) { BlockJob *job; if (bs->job || bdrv_in_use(bs)) { error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs)); return NULL; } bdrv_ref(bs); bdrv_set_in_use(bs, 1); job = g_malloc0(driver->instance_size); job->driver = driver; job->bs = bs; job->cb = cb; job->opaque = opaque; job->busy = true; bs->job = job; /* Only set speed when necessary to avoid NotSupported error */ if (speed != 0) { Error *local_err = NULL; block_job_set_speed(job, speed, &local_err); if (local_err) { bs->job = NULL; g_free(job); bdrv_set_in_use(bs, 0); error_propagate(errp, local_err); return NULL; } } return job; }
15,075
0
static int apb_pci_bridge_initfn(PCIDevice *dev) { int rc; rc = pci_bridge_initfn(dev); if (rc < 0) { return rc; } pci_config_set_vendor_id(dev->config, PCI_VENDOR_ID_SUN); pci_config_set_device_id(dev->config, PCI_DEVICE_ID_SUN_SIMBA); /* * command register: * According to PCI bridge spec, after reset * bus master bit is off * memory space enable bit is off * According to manual (805-1251.pdf). * the reset value should be zero unless the boot pin is tied high * (which is true) and thus it should be PCI_COMMAND_MEMORY. */ pci_set_word(dev->config + PCI_COMMAND, PCI_COMMAND_MEMORY); pci_set_word(dev->config + PCI_STATUS, PCI_STATUS_FAST_BACK | PCI_STATUS_66MHZ | PCI_STATUS_DEVSEL_MEDIUM); pci_set_byte(dev->config + PCI_REVISION_ID, 0x11); return 0; }
15,076
0
static int proxy_rename(FsContext *ctx, const char *oldpath, const char *newpath) { int retval; V9fsString oldname, newname; v9fs_string_init(&oldname); v9fs_string_init(&newname); v9fs_string_sprintf(&oldname, "%s", oldpath); v9fs_string_sprintf(&newname, "%s", newpath); retval = v9fs_request(ctx->private, T_RENAME, NULL, "ss", &oldname, &newname); v9fs_string_free(&oldname); v9fs_string_free(&newname); if (retval < 0) { errno = -retval; } return retval; }
15,078
0
void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask) { if (addr & mask) { qemu_log("unaligned access addr=%x mask=%x, wr=%d\n", addr, mask, wr); if (!(env->sregs[SR_MSR] & MSR_EE)) { return; } env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \ | (dr & 31) << 5; if (mask == 3) { env->sregs[SR_ESR] |= 1 << 11; } helper_raise_exception(EXCP_HW_EXCP); } }
15,079
0
static void gdb_breakpoint_remove_all(CPUState *env) { cpu_breakpoint_remove_all(env, BP_GDB); #ifndef CONFIG_USER_ONLY cpu_watchpoint_remove_all(env, BP_GDB); #endif }
15,080
0
static void handle_pending_signal(CPUArchState *cpu_env, int sig) { CPUState *cpu = ENV_GET_CPU(cpu_env); abi_ulong handler; sigset_t set; target_sigset_t target_old_set; struct target_sigaction *sa; TaskState *ts = cpu->opaque; struct emulated_sigtable *k = &ts->sigtab[sig - 1]; trace_user_handle_signal(cpu_env, sig); /* dequeue signal */ k->pending = 0; sig = gdb_handlesig(cpu, sig); if (!sig) { sa = NULL; handler = TARGET_SIG_IGN; } else { sa = &sigact_table[sig - 1]; handler = sa->_sa_handler; } if (sig == TARGET_SIGSEGV && sigismember(&ts->signal_mask, SIGSEGV)) { /* Guest has blocked SIGSEGV but we got one anyway. Assume this * is a forced SIGSEGV (ie one the kernel handles via force_sig_info * because it got a real MMU fault), and treat as if default handler. */ handler = TARGET_SIG_DFL; } if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are job control or fatal */ if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { kill(getpid(),SIGSTOP); } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH && sig != TARGET_SIGCONT) { force_sig(sig); } } else if (handler == TARGET_SIG_IGN) { /* ignore sig */ } else if (handler == TARGET_SIG_ERR) { force_sig(sig); } else { /* compute the blocked signals during the handler execution */ sigset_t *blocked_set; target_to_host_sigset(&set, &sa->sa_mask); /* SA_NODEFER indicates that the current signal should not be blocked during the handler */ if (!(sa->sa_flags & TARGET_SA_NODEFER)) sigaddset(&set, target_to_host_signal(sig)); /* save the previous blocked signal state to restore it at the end of the signal execution (see do_sigreturn) */ host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); /* block signals in the handler */ blocked_set = ts->in_sigsuspend ? &ts->sigsuspend_mask : &ts->signal_mask; sigorset(&ts->signal_mask, blocked_set, &set); ts->in_sigsuspend = 0; /* if the CPU is in VM86 mode, we restore the 32 bit values */ #if defined(TARGET_I386) && !defined(TARGET_X86_64) { CPUX86State *env = cpu_env; if (env->eflags & VM_MASK) save_v86_state(env); } #endif /* prepare the stack frame of the virtual CPU */ #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) \ || defined(TARGET_OPENRISC) || defined(TARGET_TILEGX) /* These targets do not have traditional signals. */ setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); #else if (sa->sa_flags & TARGET_SA_SIGINFO) setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); else setup_frame(sig, sa, &target_old_set, cpu_env); #endif if (sa->sa_flags & TARGET_SA_RESETHAND) { sa->_sa_handler = TARGET_SIG_DFL; } } }
15,081
0
static void pxa2xx_gpio_handler_update(PXA2xxGPIOInfo *s) { uint32_t level, diff; int i, bit, line; for (i = 0; i < PXA2XX_GPIO_BANKS; i ++) { level = s->olevel[i] & s->dir[i]; for (diff = s->prev_level[i] ^ level; diff; diff ^= 1 << bit) { bit = ffs(diff) - 1; line = bit + 32 * i; qemu_set_irq(s->handler[line], (level >> bit) & 1); } s->prev_level[i] = level; } }
15,083
0
int kvm_init(int smp_cpus) { static const char upgrade_note[] = "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" "(see http://sourceforge.net/projects/kvm).\n"; KVMState *s; int ret; int i; if (smp_cpus > 1) { fprintf(stderr, "No SMP KVM support, use '-smp 1'\n"); return -EINVAL; } s = qemu_mallocz(sizeof(KVMState)); #ifdef KVM_CAP_SET_GUEST_DEBUG TAILQ_INIT(&s->kvm_sw_breakpoints); #endif for (i = 0; i < ARRAY_SIZE(s->slots); i++) s->slots[i].slot = i; s->vmfd = -1; s->fd = open("/dev/kvm", O_RDWR); if (s->fd == -1) { fprintf(stderr, "Could not access KVM kernel module: %m\n"); ret = -errno; goto err; } ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); if (ret < KVM_API_VERSION) { if (ret > 0) ret = -EINVAL; fprintf(stderr, "kvm version too old\n"); goto err; } if (ret > KVM_API_VERSION) { ret = -EINVAL; fprintf(stderr, "kvm version not supported\n"); goto err; } s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); if (s->vmfd < 0) goto err; /* initially, KVM allocated its own memory and we had to jump through * hooks to make phys_ram_base point to this. Modern versions of KVM * just use a user allocated buffer so we can use regular pages * unmodified. Make sure we have a sufficiently modern version of KVM. */ if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { ret = -EINVAL; fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", upgrade_note); goto err; } /* There was a nasty bug in < kvm-80 that prevents memory slots from being * destroyed properly. Since we rely on this capability, refuse to work * with any kernel without this capability. */ if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { ret = -EINVAL; fprintf(stderr, "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", upgrade_note); goto err; } #ifdef KVM_CAP_COALESCED_MMIO s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); #else s->coalesced_mmio = 0; #endif s->broken_set_mem_region = 1; #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); if (ret > 0) { s->broken_set_mem_region = 0; } #endif ret = kvm_arch_init(s, smp_cpus); if (ret < 0) goto err; kvm_state = s; return 0; err: if (s) { if (s->vmfd != -1) close(s->vmfd); if (s->fd != -1) close(s->fd); } qemu_free(s); return ret; }
15,084
0
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits) { const int mask = (1 << num_bits) - 1; int i, idx, val, alpha_val; idx = 0; alpha_val = mask; do { do { if (get_bits1(gb)) val = get_bits(gb, num_bits); else { int sign; val = get_bits(gb, num_bits == 16 ? 7 : 4); sign = val & 1; val = (val + 2) >> 1; if (sign) val = -val; } alpha_val = (alpha_val + val) & mask; if (num_bits == 16) dst[idx++] = alpha_val >> 6; else dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); if (idx == num_coeffs - 1) break; } while (get_bits1(gb)); val = get_bits(gb, 4); if (!val) val = get_bits(gb, 11); if (idx + val > num_coeffs) val = num_coeffs - idx; if (num_bits == 16) for (i = 0; i < val; i++) dst[idx++] = alpha_val >> 6; else for (i = 0; i < val; i++) dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); } while (idx < num_coeffs); }
15,085
0
static int virtconsole_initfn(VirtIOSerialPort *port) { VirtConsole *vcon = DO_UPCAST(VirtConsole, port, port); VirtIOSerialPortInfo *info = DO_UPCAST(VirtIOSerialPortInfo, qdev, vcon->port.dev.info); if (port->id == 0 && !info->is_console) { error_report("Port number 0 on virtio-serial devices reserved for virtconsole devices for backward compatibility."); return -1; } if (vcon->chr) { qemu_chr_add_handlers(vcon->chr, chr_can_read, chr_read, chr_event, vcon); info->have_data = flush_buf; info->guest_open = guest_open; info->guest_close = guest_close; } return 0; }
15,087
0
static int ppc_hash32_get_physical_address(CPUPPCState *env, struct mmu_ctx_hash32 *ctx, target_ulong eaddr, int rw, int access_type) { bool real_mode = (access_type == ACCESS_CODE && msr_ir == 0) || (access_type != ACCESS_CODE && msr_dr == 0); if (real_mode) { ctx->raddr = eaddr; ctx->prot = PAGE_READ | PAGE_EXEC | PAGE_WRITE; return 0; } else { int ret = -1; /* Try to find a BAT */ if (env->nb_BATs != 0) { ret = ppc_hash32_get_bat(env, ctx, eaddr, rw, access_type); } if (ret < 0) { /* We didn't match any BAT entry or don't have BATs */ ret = get_segment32(env, ctx, eaddr, rw, access_type); } return ret; } }
15,088
0
static int vmdk_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { BDRVVmdkState *s = bs->opaque; int ret; uint64_t n, index_in_cluster; VmdkExtent *extent = NULL; uint64_t cluster_offset; while (nb_sectors > 0) { extent = find_extent(s, sector_num, extent); if (!extent) { return -EIO; } ret = get_cluster_offset( bs, extent, NULL, sector_num << 9, 0, &cluster_offset); index_in_cluster = sector_num % extent->cluster_sectors; n = extent->cluster_sectors - index_in_cluster; if (n > nb_sectors) n = nb_sectors; if (ret) { /* if not allocated, try to read from parent image, if exist */ if (bs->backing_hd) { if (!vmdk_is_cid_valid(bs)) return -EINVAL; ret = bdrv_read(bs->backing_hd, sector_num, buf, n); if (ret < 0) return ret; } else { memset(buf, 0, 512 * n); } } else { ret = bdrv_pread(extent->file, cluster_offset + index_in_cluster * 512, buf, n * 512); if (ret < 0) { return ret; } } nb_sectors -= n; sector_num += n; buf += n * 512; } return 0; }
15,089
0
static bool migrate_params_check(MigrationParameters *params, Error **errp) { if (params->has_compress_level && (params->compress_level < 0 || params->compress_level > 9)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "compress_level", "is invalid, it should be in the range of 0 to 9"); return false; } if (params->has_compress_threads && (params->compress_threads < 1 || params->compress_threads > 255)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "compress_threads", "is invalid, it should be in the range of 1 to 255"); return false; } if (params->has_decompress_threads && (params->decompress_threads < 1 || params->decompress_threads > 255)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "decompress_threads", "is invalid, it should be in the range of 1 to 255"); return false; } if (params->has_cpu_throttle_initial && (params->cpu_throttle_initial < 1 || params->cpu_throttle_initial > 99)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu_throttle_initial", "an integer in the range of 1 to 99"); return false; } if (params->has_cpu_throttle_increment && (params->cpu_throttle_increment < 1 || params->cpu_throttle_increment > 99)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu_throttle_increment", "an integer in the range of 1 to 99"); return false; } if (params->has_max_bandwidth && (params->max_bandwidth < 0 || params->max_bandwidth > SIZE_MAX)) { error_setg(errp, "Parameter 'max_bandwidth' expects an integer in the" " range of 0 to %zu bytes/second", SIZE_MAX); return false; } if (params->has_downtime_limit && (params->downtime_limit < 0 || params->downtime_limit > MAX_MIGRATE_DOWNTIME)) { error_setg(errp, "Parameter 'downtime_limit' expects an integer in " "the range of 0 to %d milliseconds", MAX_MIGRATE_DOWNTIME); return false; } if (params->has_x_checkpoint_delay && (params->x_checkpoint_delay < 0)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "x_checkpoint_delay", "is invalid, it should be positive"); return false; } if (params->has_x_multifd_channels && (params->x_multifd_channels < 1 || params->x_multifd_channels > 255)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "multifd_channels", "is invalid, it should be in the range of 1 to 255"); return false; } if (params->has_x_multifd_page_count && (params->x_multifd_page_count < 1 || params->x_multifd_page_count > 10000)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "multifd_page_count", "is invalid, it should be in the range of 1 to 10000"); return false; } if (params->has_xbzrle_cache_size && (params->xbzrle_cache_size < qemu_target_page_size() || !is_power_of_2(params->xbzrle_cache_size))) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "xbzrle_cache_size", "is invalid, it should be bigger than target page size" " and a power of two"); return false; } return true; }
15,090
1
int add_exec(struct ex_list **ex_ptr, int do_pty, char *exec, struct in_addr addr, int port) { struct ex_list *tmp_ptr; /* First, check if the port is "bound" */ for (tmp_ptr = *ex_ptr; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) { if (port == tmp_ptr->ex_fport && addr.s_addr == tmp_ptr->ex_addr.s_addr) return -1; } tmp_ptr = *ex_ptr; *ex_ptr = (struct ex_list *)malloc(sizeof(struct ex_list)); (*ex_ptr)->ex_fport = port; (*ex_ptr)->ex_addr = addr; (*ex_ptr)->ex_pty = do_pty; (*ex_ptr)->ex_exec = (do_pty == 3) ? exec : strdup(exec); (*ex_ptr)->ex_next = tmp_ptr; return 0; }
15,091
1
static void dec_sextb(DisasContext *dc) { LOG_DIS("sextb r%d, r%d\n", dc->r2, dc->r0); if (!(dc->env->features & LM32_FEATURE_SIGN_EXTEND)) { cpu_abort(dc->env, "hardware sign extender is not available\n"); } tcg_gen_ext8s_tl(cpu_R[dc->r2], cpu_R[dc->r0]); }
15,092
1
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) { int i, re, im, n, n2, n4; int16_t *rot = mdct->rot_tmp; IComplex *x = mdct->cplx_tmp; n = 1 << mdct->nbits; n2 = n >> 1; n4 = n >> 2; /* shift to simplify computations */ for (i = 0; i <n4; i++) rot[i] = -in[i + 3*n4]; memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); /* pre rotation */ for (i = 0; i < n4; i++) { re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); } fft(mdct, x, mdct->nbits - 2); /* post rotation */ for (i = 0; i < n4; i++) { re = x[i].re; im = x[i].im; CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); } }
15,093
1
static uint32_t pm_ioport_readw(void *opaque, uint32_t addr) { VT686PMState *s = opaque; uint32_t val; addr &= 0x0f; switch (addr) { case 0x00: val = acpi_pm1_evt_get_sts(&s->ar, s->ar.tmr.overflow_time); break; case 0x02: val = s->ar.pm1.evt.en; break; case 0x04: val = s->ar.pm1.cnt.cnt; break; default: val = 0; break; } DPRINTF("PM readw port=0x%04x val=0x%02x\n", addr, val); return val; }
15,095
1
static int get_cod(Jpeg2000DecoderContext *s, Jpeg2000CodingStyle *c, uint8_t *properties) { Jpeg2000CodingStyle tmp; int compno, ret; if (bytestream2_get_bytes_left(&s->g) < 5) tmp.csty = bytestream2_get_byteu(&s->g); // get progression order tmp.prog_order = bytestream2_get_byteu(&s->g); tmp.nlayers = bytestream2_get_be16u(&s->g); tmp.mct = bytestream2_get_byteu(&s->g); // multiple component transformation if ((ret = get_cox(s, &tmp)) < 0) return ret; for (compno = 0; compno < s->ncomponents; compno++) if (!(properties[compno] & HAD_COC)) memcpy(c + compno, &tmp, sizeof(tmp)); return 0;
15,096
1
static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype) { int block_size; const ModeTab *mtab = tctx->mtab; int size = tctx->avctx->channels*mtab->fmode[ftype].sub; int16_t *tmp_perm = (int16_t *) tctx->tmp_buf; if (ftype == FT_PPC) { size = tctx->avctx->channels; block_size = mtab->ppc_shape_len; } else block_size = mtab->size / mtab->fmode[ftype].sub; permutate_in_line(tmp_perm, tctx->n_div[ftype], size, block_size, tctx->length[ftype], tctx->length_change[ftype], ftype); transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], tctx->length[ftype], tctx->length_change[ftype]); linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, size*block_size); }
15,097
1
yuv2rgb_1_c_template(SwsContext *c, const int16_t *buf0, const int16_t *ubuf[2], const int16_t *vbuf[2], const int16_t *abuf0, uint8_t *dest, int dstW, int uvalpha, int y, enum PixelFormat target, int hasAlpha) { const int16_t *ubuf0 = ubuf[0], *vbuf0 = vbuf[0]; int i; if (uvalpha < 2048) { for (i = 0; i < (dstW >> 1); i++) { int Y1 = (buf0[i * 2 ] + 64) >> 7; int Y2 = (buf0[i * 2 + 1] + 64) >> 7; int U = (ubuf0[i] + 64) >> 7; int V = (vbuf0[i] + 64) >> 7; int A1, A2; const void *r = c->table_rV[V + YUVRGB_TABLE_HEADROOM], *g = (c->table_gU[U + YUVRGB_TABLE_HEADROOM] + c->table_gV[V + YUVRGB_TABLE_HEADROOM]), *b = c->table_bU[U + YUVRGB_TABLE_HEADROOM]; if (hasAlpha) { A1 = (abuf0[i * 2 ] + 64) >> 7; A2 = (abuf0[i * 2 + 1] + 64) >> 7; } yuv2rgb_write(dest, i, Y1, Y2, hasAlpha ? A1 : 0, hasAlpha ? A2 : 0, r, g, b, y, target, hasAlpha); } } else { const int16_t *ubuf1 = ubuf[1], *vbuf1 = vbuf[1]; for (i = 0; i < (dstW >> 1); i++) { int Y1 = (buf0[i * 2 ] + 64) >> 7; int Y2 = (buf0[i * 2 + 1] + 64) >> 7; int U = (ubuf0[i] + ubuf1[i] + 128) >> 8; int V = (vbuf0[i] + vbuf1[i] + 128) >> 8; int A1, A2; const void *r = c->table_rV[V + YUVRGB_TABLE_HEADROOM], *g = (c->table_gU[U + YUVRGB_TABLE_HEADROOM] + c->table_gV[V + YUVRGB_TABLE_HEADROOM]), *b = c->table_bU[U + YUVRGB_TABLE_HEADROOM]; if (hasAlpha) { A1 = (abuf0[i * 2 ] + 64) >> 7; A2 = (abuf0[i * 2 + 1] + 64) >> 7; } yuv2rgb_write(dest, i, Y1, Y2, hasAlpha ? A1 : 0, hasAlpha ? A2 : 0, r, g, b, y, target, hasAlpha); } } }
15,098
1
void *qemu_vmalloc(size_t size) { /* FIXME: this is not exactly optimal solution since VirtualAlloc has 64Kb granularity, but at least it guarantees us that the memory is page aligned. */ if (!size) { abort(); } return oom_check(VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE)); }
15,099
0
static int real_seek(AVFormatContext *avf, int stream, int64_t min_ts, int64_t ts, int64_t max_ts, int flags) { ConcatContext *cat = avf->priv_data; int ret, left, right; if (stream >= 0) { if (stream >= avf->nb_streams) return AVERROR(EINVAL); rescale_interval(avf->streams[stream]->time_base, AV_TIME_BASE_Q, &min_ts, &ts, &max_ts); } left = 0; right = cat->nb_files; while (right - left > 1) { int mid = (left + right) / 2; if (ts < cat->files[mid].start_time) right = mid; else left = mid; } if ((ret = open_file(avf, left)) < 0) return ret; ret = try_seek(avf, stream, min_ts, ts, max_ts, flags); if (ret < 0 && !(flags & AVSEEK_FLAG_BACKWARD) && left < cat->nb_files - 1 && cat->files[left + 1].start_time < max_ts) { if ((ret = open_file(avf, left + 1)) < 0) return ret; ret = try_seek(avf, stream, min_ts, ts, max_ts, flags); } return ret; }
15,100
1
static void FUNC(dequant)(int16_t *coeffs, int16_t log2_size) { int shift = 15 - BIT_DEPTH - log2_size; int x, y; int size = 1 << log2_size; if (shift > 0) { int offset = 1 << (shift - 1); for (y = 0; y < size; y++) { for (x = 0; x < size; x++) { *coeffs = (*coeffs + offset) >> shift; coeffs++; } } } else { for (y = 0; y < size; y++) { for (x = 0; x < size; x++) { *coeffs = *coeffs << -shift; coeffs++; } } } }
15,101
1
vpc_co_preadv(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { BDRVVPCState *s = bs->opaque; int ret; int64_t image_offset; int64_t n_bytes; int64_t bytes_done = 0; VHDFooter *footer = (VHDFooter *) s->footer_buf; QEMUIOVector local_qiov; if (be32_to_cpu(footer->type) == VHD_FIXED) { return bdrv_co_preadv(bs->file, offset, bytes, qiov, 0); } qemu_co_mutex_lock(&s->lock); qemu_iovec_init(&local_qiov, qiov->niov); while (bytes > 0) { image_offset = get_image_offset(bs, offset, false); n_bytes = MIN(bytes, s->block_size - (offset % s->block_size)); if (image_offset == -1) { qemu_iovec_memset(qiov, bytes_done, 0, n_bytes); } else { qemu_iovec_reset(&local_qiov); qemu_iovec_concat(&local_qiov, qiov, bytes_done, n_bytes); ret = bdrv_co_preadv(bs->file, image_offset, n_bytes, &local_qiov, 0); if (ret < 0) { goto fail; } } bytes -= n_bytes; offset += n_bytes; bytes_done += n_bytes; } ret = 0; fail: qemu_iovec_destroy(&local_qiov); qemu_co_mutex_unlock(&s->lock); return ret; }
15,102
1
long do_rt_sigreturn(CPUMIPSState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; frame_addr = env->active_tc.gpr[29]; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&blocked, &frame->rs_uc.tuc_sigmask); set_sigmask(&blocked); restore_sigcontext(env, &frame->rs_uc.tuc_mcontext); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, rs_uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; env->active_tc.PC = env->CP0_EPC; mips_set_hflags_isa_mode_from_pc(env); /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ env->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV/*, current*/); return 0; }
15,103
1
static CharDriverState *qemu_chr_open_socket(QemuOpts *opts) { CharDriverState *chr = NULL; TCPCharDriver *s = NULL; int fd = -1; int is_listen; int is_waitconnect; int do_nodelay; int is_unix; int is_telnet; is_listen = qemu_opt_get_bool(opts, "server", 0); is_waitconnect = qemu_opt_get_bool(opts, "wait", 1); is_telnet = qemu_opt_get_bool(opts, "telnet", 0); do_nodelay = !qemu_opt_get_bool(opts, "delay", 1); is_unix = qemu_opt_get(opts, "path") != NULL; if (!is_listen) is_waitconnect = 0; chr = g_malloc0(sizeof(CharDriverState)); s = g_malloc0(sizeof(TCPCharDriver)); if (is_unix) { if (is_listen) { fd = unix_listen_opts(opts); } else { fd = unix_connect_opts(opts); } } else { if (is_listen) { fd = inet_listen_opts(opts, 0, NULL); } else { fd = inet_connect_opts(opts, true, NULL, NULL); } } if (fd < 0) { goto fail; } if (!is_waitconnect) socket_set_nonblock(fd); s->connected = 0; s->fd = -1; s->listen_fd = -1; s->msgfd = -1; s->is_unix = is_unix; s->do_nodelay = do_nodelay && !is_unix; chr->opaque = s; chr->chr_write = tcp_chr_write; chr->chr_close = tcp_chr_close; chr->get_msgfd = tcp_get_msgfd; chr->chr_add_client = tcp_chr_add_client; if (is_listen) { s->listen_fd = fd; qemu_set_fd_handler2(s->listen_fd, NULL, tcp_chr_accept, NULL, chr); if (is_telnet) s->do_telnetopt = 1; } else { s->connected = 1; s->fd = fd; socket_set_nodelay(fd); tcp_chr_connect(chr); } /* for "info chardev" monitor command */ chr->filename = g_malloc(256); if (is_unix) { snprintf(chr->filename, 256, "unix:%s%s", qemu_opt_get(opts, "path"), qemu_opt_get_bool(opts, "server", 0) ? ",server" : ""); } else if (is_telnet) { snprintf(chr->filename, 256, "telnet:%s:%s%s", qemu_opt_get(opts, "host"), qemu_opt_get(opts, "port"), qemu_opt_get_bool(opts, "server", 0) ? ",server" : ""); } else { snprintf(chr->filename, 256, "tcp:%s:%s%s", qemu_opt_get(opts, "host"), qemu_opt_get(opts, "port"), qemu_opt_get_bool(opts, "server", 0) ? ",server" : ""); } if (is_listen && is_waitconnect) { printf("QEMU waiting for connection on: %s\n", chr->filename); tcp_chr_accept(chr); socket_set_nonblock(s->listen_fd); } return chr; fail: if (fd >= 0) closesocket(fd); g_free(s); g_free(chr); return NULL; }
15,104
1
void qtest_qmpv_discard_response(QTestState *s, const char *fmt, va_list ap) { bool has_reply = false; int nesting = 0; /* Send QMP request */ socket_sendf(s->qmp_fd, fmt, ap); /* Receive reply */ while (!has_reply || nesting > 0) { ssize_t len; char c; len = read(s->qmp_fd, &c, 1); if (len == -1 && errno == EINTR) { continue; } if (len == -1 || len == 0) { fprintf(stderr, "Broken pipe\n"); exit(1); } switch (c) { case '{': nesting++; has_reply = true; break; case '}': nesting--; break; } } }
15,105
0
static av_noinline void FUNC(hl_decode_mb_444)(H264Context *h) { const int mb_x = h->mb_x; const int mb_y = h->mb_y; const int mb_xy = h->mb_xy; const int mb_type = h->cur_pic.f.mb_type[mb_xy]; uint8_t *dest[3]; int linesize; int i, j, p; int *block_offset = &h->block_offset[0]; const int transform_bypass = !SIMPLE && (h->qscale == 0 && h->sps.transform_bypass); const int plane_count = (SIMPLE || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) ? 3 : 1; for (p = 0; p < plane_count; p++) { dest[p] = h->cur_pic.f.data[p] + ((mb_x << PIXEL_SHIFT) + mb_y * h->linesize) * 16; h->vdsp.prefetch(dest[p] + (h->mb_x & 3) * 4 * h->linesize + (64 << PIXEL_SHIFT), h->linesize, 4); } h->list_counts[mb_xy] = h->list_count; if (!SIMPLE && MB_FIELD) { linesize = h->mb_linesize = h->mb_uvlinesize = h->linesize * 2; block_offset = &h->block_offset[48]; if (mb_y & 1) // FIXME move out of this function? for (p = 0; p < 3; p++) dest[p] -= h->linesize * 15; if (FRAME_MBAFF) { int list; for (list = 0; list < h->list_count; list++) { if (!USES_LIST(mb_type, list)) continue; if (IS_16X16(mb_type)) { int8_t *ref = &h->ref_cache[list][scan8[0]]; fill_rectangle(ref, 4, 4, 8, (16 + *ref) ^ (h->mb_y & 1), 1); } else { for (i = 0; i < 16; i += 4) { int ref = h->ref_cache[list][scan8[i]]; if (ref >= 0) fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16 + ref) ^ (h->mb_y & 1), 1); } } } } } else { linesize = h->mb_linesize = h->mb_uvlinesize = h->linesize; } if (!SIMPLE && IS_INTRA_PCM(mb_type)) { if (PIXEL_SHIFT) { const int bit_depth = h->sps.bit_depth_luma; GetBitContext gb; init_get_bits(&gb, (uint8_t *)h->intra_pcm_ptr, 768 * bit_depth); for (p = 0; p < plane_count; p++) for (i = 0; i < 16; i++) { uint16_t *tmp = (uint16_t *)(dest[p] + i * linesize); for (j = 0; j < 16; j++) tmp[j] = get_bits(&gb, bit_depth); } } else { for (p = 0; p < plane_count; p++) for (i = 0; i < 16; i++) memcpy(dest[p] + i * linesize, (uint8_t *)h->intra_pcm_ptr + p * 256 + i * 16, 16); } } else { if (IS_INTRA(mb_type)) { if (h->deblocking_filter) xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 1, 1, SIMPLE, PIXEL_SHIFT); for (p = 0; p < plane_count; p++) hl_decode_mb_predict_luma(h, mb_type, 1, SIMPLE, transform_bypass, PIXEL_SHIFT, block_offset, linesize, dest[p], p); if (h->deblocking_filter) xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 0, 1, SIMPLE, PIXEL_SHIFT); } else { FUNC(hl_motion_444)(h, dest[0], dest[1], dest[2], h->me.qpel_put, h->h264chroma.put_h264_chroma_pixels_tab, h->me.qpel_avg, h->h264chroma.avg_h264_chroma_pixels_tab, h->h264dsp.weight_h264_pixels_tab, h->h264dsp.biweight_h264_pixels_tab); } for (p = 0; p < plane_count; p++) hl_decode_mb_idct_luma(h, mb_type, 1, SIMPLE, transform_bypass, PIXEL_SHIFT, block_offset, linesize, dest[p], p); if (h->cbp || IS_INTRA(mb_type)) { h->dsp.clear_blocks(h->mb); h->dsp.clear_blocks(h->mb + (24 * 16 << PIXEL_SHIFT)); } } }
15,107
0
static void msvideo1_decode_8bit(Msvideo1Context *s) { int block_ptr, pixel_ptr; int total_blocks; int pixel_x, pixel_y; /* pixel width and height iterators */ int block_x, block_y; /* block width and height iterators */ int blocks_wide, blocks_high; /* width and height in 4x4 blocks */ int block_inc; int row_dec; /* decoding parameters */ int stream_ptr; unsigned char byte_a, byte_b; unsigned short flags; int skip_blocks; unsigned char colors[8]; unsigned char *pixels = s->frame.data[0]; unsigned char *prev_pixels = s->prev_frame.data[0]; int stride = s->frame.linesize[0]; stream_ptr = 0; skip_blocks = 0; blocks_wide = s->avctx->width / 4; blocks_high = s->avctx->height / 4; total_blocks = blocks_wide * blocks_high; block_inc = 4; row_dec = stride + 4; for (block_y = blocks_high; block_y > 0; block_y--) { block_ptr = ((block_y * 4) - 1) * stride; for (block_x = blocks_wide; block_x > 0; block_x--) { /* check if this block should be skipped */ if (skip_blocks) { COPY_PREV_BLOCK(); block_ptr += block_inc; skip_blocks--; total_blocks--; continue; } pixel_ptr = block_ptr; /* get the next two bytes in the encoded data stream */ CHECK_STREAM_PTR(2); byte_a = s->buf[stream_ptr++]; byte_b = s->buf[stream_ptr++]; /* check if the decode is finished */ if ((byte_a == 0) && (byte_b == 0) && (total_blocks == 0)) return; else if ((byte_b & 0xFC) == 0x84) { /* skip code, but don't count the current block */ skip_blocks = ((byte_b - 0x84) << 8) + byte_a - 1; COPY_PREV_BLOCK(); } else if (byte_b < 0x80) { /* 2-color encoding */ flags = (byte_b << 8) | byte_a; CHECK_STREAM_PTR(2); colors[0] = s->buf[stream_ptr++]; colors[1] = s->buf[stream_ptr++]; for (pixel_y = 0; pixel_y < 4; pixel_y++) { for (pixel_x = 0; pixel_x < 4; pixel_x++, flags >>= 1) pixels[pixel_ptr++] = colors[(flags & 0x1) ^ 1]; pixel_ptr -= row_dec; } } else if (byte_b >= 0x90) { /* 8-color encoding */ flags = (byte_b << 8) | byte_a; CHECK_STREAM_PTR(8); memcpy(colors, &s->buf[stream_ptr], 8); stream_ptr += 8; for (pixel_y = 0; pixel_y < 4; pixel_y++) { for (pixel_x = 0; pixel_x < 4; pixel_x++, flags >>= 1) pixels[pixel_ptr++] = colors[((pixel_y & 0x2) << 1) + (pixel_x & 0x2) + ((flags & 0x1) ^ 1)]; pixel_ptr -= row_dec; } } else { /* 1-color encoding */ colors[0] = byte_a; for (pixel_y = 0; pixel_y < 4; pixel_y++) { for (pixel_x = 0; pixel_x < 4; pixel_x++) pixels[pixel_ptr++] = colors[0]; pixel_ptr -= row_dec; } } block_ptr += block_inc; total_blocks--; } } /* make the palette available on the way out */ if (s->avctx->pix_fmt == PIX_FMT_PAL8) memcpy(s->frame.data[1], s->palette, PALETTE_COUNT * 4); }
15,109
1
static int lrc_read_header(AVFormatContext *s) { LRCContext *lrc = s->priv_data; AVBPrint line; AVStream *st; st = avformat_new_stream(s, NULL); if(!st) { return AVERROR(ENOMEM); } avpriv_set_pts_info(st, 64, 1, 1000); lrc->ts_offset = 0; st->codecpar->codec_type = AVMEDIA_TYPE_SUBTITLE; st->codecpar->codec_id = AV_CODEC_ID_TEXT; av_bprint_init(&line, 0, AV_BPRINT_SIZE_UNLIMITED); while(!avio_feof(s->pb)) { int64_t pos = read_line(&line, s->pb); int64_t header_offset = find_header(line.str); if(header_offset >= 0) { char *comma_offset = strchr(line.str, ':'); if(comma_offset) { char *right_bracket_offset = strchr(line.str, ']'); if(!right_bracket_offset) { continue; } *right_bracket_offset = *comma_offset = '\0'; if(strcmp(line.str + 1, "offset") || sscanf(comma_offset + 1, "%"SCNd64, &lrc->ts_offset) != 1) { av_dict_set(&s->metadata, line.str + 1, comma_offset + 1, 0); } *comma_offset = ':'; *right_bracket_offset = ']'; } } else { AVPacket *sub; int64_t ts_start = AV_NOPTS_VALUE; int64_t ts_stroffset = 0; int64_t ts_stroffset_incr = 0; int64_t ts_strlength = count_ts(line.str); while((ts_stroffset_incr = read_ts(line.str + ts_stroffset, &ts_start)) != 0) { ts_stroffset += ts_stroffset_incr; sub = ff_subtitles_queue_insert(&lrc->q, line.str + ts_strlength, line.len - ts_strlength, 0); if(!sub) { return AVERROR(ENOMEM); } sub->pos = pos; sub->pts = ts_start - lrc->ts_offset; sub->duration = -1; } } } ff_subtitles_queue_finalize(s, &lrc->q); ff_metadata_conv_ctx(s, NULL, ff_lrc_metadata_conv); return 0; }
15,110
1
static int asf_write_header1(AVFormatContext *s, int64_t file_size, int64_t data_chunk_size) { ASFContext *asf = s->priv_data; AVIOContext *pb = s->pb; AVDictionaryEntry *tags[5]; int header_size, n, extra_size, extra_size2, wav_extra_size, file_time; int has_title; int metadata_count; AVCodecParameters *par; int64_t header_offset, cur_pos, hpos; int bit_rate; int64_t duration; ff_metadata_conv(&s->metadata, ff_asf_metadata_conv, NULL); tags[0] = av_dict_get(s->metadata, "title", NULL, 0); tags[1] = av_dict_get(s->metadata, "author", NULL, 0); tags[2] = av_dict_get(s->metadata, "copyright", NULL, 0); tags[3] = av_dict_get(s->metadata, "comment", NULL, 0); tags[4] = av_dict_get(s->metadata, "rating", NULL, 0); duration = asf->duration + PREROLL_TIME * 10000; has_title = tags[0] || tags[1] || tags[2] || tags[3] || tags[4]; metadata_count = av_dict_count(s->metadata); bit_rate = 0; for (n = 0; n < s->nb_streams; n++) { par = s->streams[n]->codecpar; avpriv_set_pts_info(s->streams[n], 32, 1, 1000); /* 32 bit pts in ms */ bit_rate += par->bit_rate; } if (asf->is_streamed) { put_chunk(s, 0x4824, 0, 0xc00); /* start of stream (length will be patched later) */ } put_guid(pb, &ff_asf_header); avio_wl64(pb, -1); /* header length, will be patched after */ avio_wl32(pb, 3 + has_title + !!metadata_count + s->nb_streams); /* number of chunks in header */ avio_w8(pb, 1); /* ??? */ avio_w8(pb, 2); /* ??? */ /* file header */ header_offset = avio_tell(pb); hpos = put_header(pb, &ff_asf_file_header); put_guid(pb, &ff_asf_my_guid); avio_wl64(pb, file_size); file_time = 0; avio_wl64(pb, unix_to_file_time(file_time)); avio_wl64(pb, asf->nb_packets); /* number of packets */ avio_wl64(pb, duration); /* end time stamp (in 100ns units) */ avio_wl64(pb, asf->duration); /* duration (in 100ns units) */ avio_wl64(pb, PREROLL_TIME); /* start time stamp */ avio_wl32(pb, (asf->is_streamed || !pb->seekable) ? 3 : 2); /* ??? */ avio_wl32(pb, s->packet_size); /* packet size */ avio_wl32(pb, s->packet_size); /* packet size */ avio_wl32(pb, bit_rate); /* Nominal data rate in bps */ end_header(pb, hpos); /* unknown headers */ hpos = put_header(pb, &ff_asf_head1_guid); put_guid(pb, &ff_asf_head2_guid); avio_wl32(pb, 6); avio_wl16(pb, 0); end_header(pb, hpos); /* title and other infos */ if (has_title) { int len; uint8_t *buf; AVIOContext *dyn_buf; if (avio_open_dyn_buf(&dyn_buf) < 0) return AVERROR(ENOMEM); hpos = put_header(pb, &ff_asf_comment_header); for (n = 0; n < FF_ARRAY_ELEMS(tags); n++) { len = tags[n] ? avio_put_str16le(dyn_buf, tags[n]->value) : 0; avio_wl16(pb, len); } len = avio_close_dyn_buf(dyn_buf, &buf); avio_write(pb, buf, len); av_freep(&buf); end_header(pb, hpos); } if (metadata_count) { AVDictionaryEntry *tag = NULL; hpos = put_header(pb, &ff_asf_extended_content_header); avio_wl16(pb, metadata_count); while ((tag = av_dict_get(s->metadata, "", tag, AV_DICT_IGNORE_SUFFIX))) { put_str16(pb, tag->key); avio_wl16(pb, 0); put_str16(pb, tag->value); } end_header(pb, hpos); } /* chapters using ASF markers */ if (!asf->is_streamed && s->nb_chapters) { int ret; if (ret = asf_write_markers(s)) return ret; } /* stream headers */ for (n = 0; n < s->nb_streams; n++) { int64_t es_pos; // ASFStream *stream = &asf->streams[n]; par = s->streams[n]->codecpar; asf->streams[n].num = n + 1; asf->streams[n].seq = 0; switch (par->codec_type) { case AVMEDIA_TYPE_AUDIO: wav_extra_size = 0; extra_size = 18 + wav_extra_size; extra_size2 = 8; break; default: case AVMEDIA_TYPE_VIDEO: wav_extra_size = par->extradata_size; extra_size = 0x33 + wav_extra_size; extra_size2 = 0; break; } hpos = put_header(pb, &ff_asf_stream_header); if (par->codec_type == AVMEDIA_TYPE_AUDIO) { put_guid(pb, &ff_asf_audio_stream); put_guid(pb, &ff_asf_audio_conceal_spread); } else { put_guid(pb, &ff_asf_video_stream); put_guid(pb, &ff_asf_video_conceal_none); } avio_wl64(pb, 0); /* ??? */ es_pos = avio_tell(pb); avio_wl32(pb, extra_size); /* wav header len */ avio_wl32(pb, extra_size2); /* additional data len */ avio_wl16(pb, n + 1); /* stream number */ avio_wl32(pb, 0); /* ??? */ if (par->codec_type == AVMEDIA_TYPE_AUDIO) { /* WAVEFORMATEX header */ int wavsize = ff_put_wav_header(s, pb, par); if (wavsize < 0) return -1; if (wavsize != extra_size) { cur_pos = avio_tell(pb); avio_seek(pb, es_pos, SEEK_SET); avio_wl32(pb, wavsize); /* wav header len */ avio_seek(pb, cur_pos, SEEK_SET); } /* ERROR Correction */ avio_w8(pb, 0x01); if (par->codec_id == AV_CODEC_ID_ADPCM_G726 || !par->block_align) { avio_wl16(pb, 0x0190); avio_wl16(pb, 0x0190); } else { avio_wl16(pb, par->block_align); avio_wl16(pb, par->block_align); } avio_wl16(pb, 0x01); avio_w8(pb, 0x00); } else { avio_wl32(pb, par->width); avio_wl32(pb, par->height); avio_w8(pb, 2); /* ??? */ avio_wl16(pb, 40 + par->extradata_size); /* size */ /* BITMAPINFOHEADER header */ ff_put_bmp_header(pb, par, ff_codec_bmp_tags, 1); } end_header(pb, hpos); } /* media comments */ hpos = put_header(pb, &ff_asf_codec_comment_header); put_guid(pb, &ff_asf_codec_comment1_header); avio_wl32(pb, s->nb_streams); for (n = 0; n < s->nb_streams; n++) { const AVCodecDescriptor *codec_desc; const char *desc; par = s->streams[n]->codecpar; codec_desc = avcodec_descriptor_get(par->codec_id); if (par->codec_type == AVMEDIA_TYPE_AUDIO) avio_wl16(pb, 2); else if (par->codec_type == AVMEDIA_TYPE_VIDEO) avio_wl16(pb, 1); else avio_wl16(pb, -1); if (par->codec_id == AV_CODEC_ID_WMAV2) desc = "Windows Media Audio V8"; else desc = codec_desc ? codec_desc->name : NULL; if (desc) { AVIOContext *dyn_buf; uint8_t *buf; int len; if (avio_open_dyn_buf(&dyn_buf) < 0) return AVERROR(ENOMEM); avio_put_str16le(dyn_buf, desc); len = avio_close_dyn_buf(dyn_buf, &buf); avio_wl16(pb, len / 2); // "number of characters" = length in bytes / 2 avio_write(pb, buf, len); av_freep(&buf); } else avio_wl16(pb, 0); avio_wl16(pb, 0); /* no parameters */ /* id */ if (par->codec_type == AVMEDIA_TYPE_AUDIO) { avio_wl16(pb, 2); avio_wl16(pb, par->codec_tag); } else { avio_wl16(pb, 4); avio_wl32(pb, par->codec_tag); } if (!par->codec_tag) return -1; } end_header(pb, hpos); /* patch the header size fields */ cur_pos = avio_tell(pb); header_size = cur_pos - header_offset; if (asf->is_streamed) { header_size += 8 + 30 + DATA_HEADER_SIZE; avio_seek(pb, header_offset - 10 - 30, SEEK_SET); avio_wl16(pb, header_size); avio_seek(pb, header_offset - 2 - 30, SEEK_SET); avio_wl16(pb, header_size); header_size -= 8 + 30 + DATA_HEADER_SIZE; } header_size += 24 + 6; avio_seek(pb, header_offset - 14, SEEK_SET); avio_wl64(pb, header_size); avio_seek(pb, cur_pos, SEEK_SET); /* movie chunk, followed by packets of packet_size */ asf->data_offset = cur_pos; put_guid(pb, &ff_asf_data_header); avio_wl64(pb, data_chunk_size); put_guid(pb, &ff_asf_my_guid); avio_wl64(pb, asf->nb_packets); /* nb packets */ avio_w8(pb, 1); /* ??? */ avio_w8(pb, 1); /* ??? */ return 0; }
15,111
1
void qemu_aio_wait(void) { sigset_t set; int nb_sigs; #if !defined(QEMU_IMG) && !defined(QEMU_NBD) if (qemu_bh_poll()) return; #endif sigemptyset(&set); sigaddset(&set, aio_sig_num); sigwait(&set, &nb_sigs); qemu_aio_poll(); }
15,112
1
static void config_error(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (mon) { monitor_vprintf(mon, fmt, ap); } else { fprintf(stderr, "qemu: "); vfprintf(stderr, fmt, ap); exit(1); } va_end(ap); }
15,113
1
static int coroutine_fn raw_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO); return bdrv_co_writev(bs->file, sector_num, nb_sectors, qiov); }
15,114
1
void g_free(void *ptr) { /* FIXME: We should unmark the reserved pages here. However this gets complicated when one target page spans multiple host pages, so we don't bother. */ size_t *p; p = (size_t *)((char *)ptr - 16); munmap(p, *p); }
15,117
1
static SCSIGenericReq *scsi_new_request(SCSIDevice *d, uint32_t tag, uint32_t lun) { SCSIRequest *req; req = scsi_req_alloc(sizeof(SCSIGenericReq), d, tag, lun); return DO_UPCAST(SCSIGenericReq, req, req); }
15,118
1
static void test_reconnect(void) { gchar *path = g_strdup_printf("/%s/vhost-user/reconnect/subprocess", qtest_get_arch()); g_test_trap_subprocess(path, 0, 0); g_test_trap_assert_passed(); }
15,119
1
int64_t qdict_get_try_int(const QDict *qdict, const char *key, int64_t def_value) { QObject *obj; obj = qdict_get(qdict, key); if (!obj || qobject_type(obj) != QTYPE_QINT) return def_value; return qint_get_int(qobject_to_qint(obj)); }
15,120
1
static inline void RENAME(bgr24ToY)(uint8_t *dst, uint8_t *src, int width) { #ifdef HAVE_MMX asm volatile( "mov %2, %%"REG_a" \n\t" "movq "MANGLE(bgr2YCoeff)", %%mm6 \n\t" "movq "MANGLE(w1111)", %%mm5 \n\t" "pxor %%mm7, %%mm7 \n\t" "lea (%%"REG_a", %%"REG_a", 2), %%"REG_b"\n\t" ".balign 16 \n\t" "1: \n\t" PREFETCH" 64(%0, %%"REG_b") \n\t" "movd (%0, %%"REG_b"), %%mm0 \n\t" "movd 3(%0, %%"REG_b"), %%mm1 \n\t" "punpcklbw %%mm7, %%mm0 \n\t" "punpcklbw %%mm7, %%mm1 \n\t" "movd 6(%0, %%"REG_b"), %%mm2 \n\t" "movd 9(%0, %%"REG_b"), %%mm3 \n\t" "punpcklbw %%mm7, %%mm2 \n\t" "punpcklbw %%mm7, %%mm3 \n\t" "pmaddwd %%mm6, %%mm0 \n\t" "pmaddwd %%mm6, %%mm1 \n\t" "pmaddwd %%mm6, %%mm2 \n\t" "pmaddwd %%mm6, %%mm3 \n\t" #ifndef FAST_BGR2YV12 "psrad $8, %%mm0 \n\t" "psrad $8, %%mm1 \n\t" "psrad $8, %%mm2 \n\t" "psrad $8, %%mm3 \n\t" #endif "packssdw %%mm1, %%mm0 \n\t" "packssdw %%mm3, %%mm2 \n\t" "pmaddwd %%mm5, %%mm0 \n\t" "pmaddwd %%mm5, %%mm2 \n\t" "packssdw %%mm2, %%mm0 \n\t" "psraw $7, %%mm0 \n\t" "movd 12(%0, %%"REG_b"), %%mm4 \n\t" "movd 15(%0, %%"REG_b"), %%mm1 \n\t" "punpcklbw %%mm7, %%mm4 \n\t" "punpcklbw %%mm7, %%mm1 \n\t" "movd 18(%0, %%"REG_b"), %%mm2 \n\t" "movd 21(%0, %%"REG_b"), %%mm3 \n\t" "punpcklbw %%mm7, %%mm2 \n\t" "punpcklbw %%mm7, %%mm3 \n\t" "pmaddwd %%mm6, %%mm4 \n\t" "pmaddwd %%mm6, %%mm1 \n\t" "pmaddwd %%mm6, %%mm2 \n\t" "pmaddwd %%mm6, %%mm3 \n\t" #ifndef FAST_BGR2YV12 "psrad $8, %%mm4 \n\t" "psrad $8, %%mm1 \n\t" "psrad $8, %%mm2 \n\t" "psrad $8, %%mm3 \n\t" #endif "packssdw %%mm1, %%mm4 \n\t" "packssdw %%mm3, %%mm2 \n\t" "pmaddwd %%mm5, %%mm4 \n\t" "pmaddwd %%mm5, %%mm2 \n\t" "add $24, %%"REG_b" \n\t" "packssdw %%mm2, %%mm4 \n\t" "psraw $7, %%mm4 \n\t" "packuswb %%mm4, %%mm0 \n\t" "paddusb "MANGLE(bgr2YOffset)", %%mm0 \n\t" "movq %%mm0, (%1, %%"REG_a") \n\t" "add $8, %%"REG_a" \n\t" " js 1b \n\t" : : "r" (src+width*3), "r" (dst+width), "g" ((long)-width) : "%"REG_a, "%"REG_b ); #else int i; for(i=0; i<width; i++) { int b= src[i*3+0]; int g= src[i*3+1]; int r= src[i*3+2]; dst[i]= ((RY*r + GY*g + BY*b + (33<<(RGB2YUV_SHIFT-1)) )>>RGB2YUV_SHIFT); } #endif }
15,121
0
void dsputil_init_armv4l(void) { // ff_idct = j_rev_dct_ARM; }
15,122
0
static void RENAME(resample_one)(DELEM *dst, const DELEM *src, int dst_size, int64_t index2, int64_t incr) { int dst_index; for (dst_index = 0; dst_index < dst_size; dst_index++) { dst[dst_index] = src[index2 >> 32]; index2 += incr; } }
15,123
1
static int qemu_gluster_create(const char *filename, QEMUOptionParameter *options, Error **errp) { struct glfs *glfs; struct glfs_fd *fd; int ret = 0; int prealloc = 0; int64_t total_size = 0; GlusterConf *gconf = g_malloc0(sizeof(GlusterConf)); glfs = qemu_gluster_init(gconf, filename, errp); if (!glfs) { ret = -EINVAL; goto out; } while (options && options->name) { if (!strcmp(options->name, BLOCK_OPT_SIZE)) { total_size = options->value.n / BDRV_SECTOR_SIZE; } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) { if (!options->value.s || !strcmp(options->value.s, "off")) { prealloc = 0; } else if (!strcmp(options->value.s, "full") && gluster_supports_zerofill()) { prealloc = 1; } else { error_setg(errp, "Invalid preallocation mode: '%s'" " or GlusterFS doesn't support zerofill API", options->value.s); ret = -EINVAL; goto out; } } options++; } fd = glfs_creat(glfs, gconf->image, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR | S_IWUSR); if (!fd) { ret = -errno; } else { if (!glfs_ftruncate(fd, total_size * BDRV_SECTOR_SIZE)) { if (prealloc && qemu_gluster_zerofill(fd, 0, total_size * BDRV_SECTOR_SIZE)) { ret = -errno; } } else { ret = -errno; } if (glfs_close(fd) != 0) { ret = -errno; } } out: qemu_gluster_gconf_free(gconf); if (glfs) { glfs_fini(glfs); } return ret; }
15,126
1
void OPPROTO op_subfme (void) { T0 = ~T0 + xer_ca - 1; if (likely((uint32_t)T0 != (uint32_t)-1)) xer_ca = 1; RETURN(); }
15,127
1
int nbd_client_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int count, BdrvRequestFlags flags) { ssize_t ret; NBDClientSession *client = nbd_get_client_session(bs); NBDRequest request = { .type = NBD_CMD_WRITE_ZEROES, .from = offset, .len = count, }; NBDReply reply; if (!(client->nbdflags & NBD_FLAG_SEND_WRITE_ZEROES)) { return -ENOTSUP; } if (flags & BDRV_REQ_FUA) { assert(client->nbdflags & NBD_FLAG_SEND_FUA); request.flags |= NBD_CMD_FLAG_FUA; } if (!(flags & BDRV_REQ_MAY_UNMAP)) { request.flags |= NBD_CMD_FLAG_NO_HOLE; } nbd_coroutine_start(client, &request); ret = nbd_co_send_request(bs, &request, NULL); if (ret < 0) { reply.error = -ret; } else { nbd_co_receive_reply(client, &request, &reply, NULL); } nbd_coroutine_end(bs, &request); return -reply.error; }
15,128
1
static void usbredir_control_packet(void *priv, uint32_t id, struct usb_redir_control_packet_header *control_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; int len = control_packet->length; AsyncURB *aurb; DPRINTF("ctrl-in status %d len %d id %u\n", control_packet->status, len, id); aurb = async_find(dev, id); if (!aurb) { free(data); return; } aurb->control_packet.status = control_packet->status; aurb->control_packet.length = control_packet->length; if (memcmp(&aurb->control_packet, control_packet, sizeof(*control_packet))) { ERROR("return control packet mismatch, please report this!\n"); len = USB_RET_NAK; } if (aurb->packet) { len = usbredir_handle_status(dev, control_packet->status, len); if (len > 0) { usbredir_log_data(dev, "ctrl data in:", data, data_len); if (data_len <= sizeof(dev->dev.data_buf)) { memcpy(dev->dev.data_buf, data, data_len); } else { ERROR("ctrl buffer too small (%d > %zu)\n", data_len, sizeof(dev->dev.data_buf)); len = USB_RET_STALL; } } aurb->packet->len = len; usb_generic_async_ctrl_complete(&dev->dev, aurb->packet); } async_free(dev, aurb); free(data); }
15,129
0
int ff_init_buffer_info(AVCodecContext *avctx, AVFrame *frame) { if (avctx->internal->pkt) { frame->pkt_pts = avctx->internal->pkt->pts; av_frame_set_pkt_pos (frame, avctx->internal->pkt->pos); av_frame_set_pkt_duration(frame, avctx->internal->pkt->duration); av_frame_set_pkt_size (frame, avctx->internal->pkt->size); } else { frame->pkt_pts = AV_NOPTS_VALUE; av_frame_set_pkt_pos (frame, -1); av_frame_set_pkt_duration(frame, 0); av_frame_set_pkt_size (frame, -1); } frame->reordered_opaque = avctx->reordered_opaque; switch (avctx->codec->type) { case AVMEDIA_TYPE_VIDEO: if (frame->format < 0) frame->format = avctx->pix_fmt; if (!frame->sample_aspect_ratio.num) frame->sample_aspect_ratio = avctx->sample_aspect_ratio; if (av_frame_get_colorspace(frame) == AVCOL_SPC_UNSPECIFIED) av_frame_set_colorspace(frame, avctx->colorspace); if (av_frame_get_color_range(frame) == AVCOL_RANGE_UNSPECIFIED) av_frame_set_color_range(frame, avctx->color_range); break; case AVMEDIA_TYPE_AUDIO: if (!frame->sample_rate) frame->sample_rate = avctx->sample_rate; if (frame->format < 0) frame->format = avctx->sample_fmt; if (!frame->channel_layout) { if (avctx->channel_layout) { if (av_get_channel_layout_nb_channels(avctx->channel_layout) != avctx->channels) { av_log(avctx, AV_LOG_ERROR, "Inconsistent channel " "configuration.\n"); return AVERROR(EINVAL); } frame->channel_layout = avctx->channel_layout; } else { if (avctx->channels > FF_SANE_NB_CHANNELS) { av_log(avctx, AV_LOG_ERROR, "Too many channels: %d.\n", avctx->channels); return AVERROR(ENOSYS); } } } av_frame_set_channels(frame, avctx->channels); break; } return 0; }
15,131
1
AVFilterContext *avfilter_open(AVFilter *filter, char *inst_name) { AVFilterContext *ret = av_malloc(sizeof(AVFilterContext)); ret->av_class = av_mallocz(sizeof(AVClass)); ret->av_class->item_name = filter_name; ret->filter = filter; ret->name = inst_name ? av_strdup(inst_name) : NULL; ret->priv = av_mallocz(filter->priv_size); ret->input_count = pad_count(filter->inputs); ret->input_pads = av_malloc(sizeof(AVFilterPad) * ret->input_count); memcpy(ret->input_pads, filter->inputs, sizeof(AVFilterPad)*ret->input_count); ret->inputs = av_mallocz(sizeof(AVFilterLink*) * ret->input_count); ret->output_count = pad_count(filter->outputs); ret->output_pads = av_malloc(sizeof(AVFilterPad) * ret->output_count); memcpy(ret->output_pads, filter->outputs, sizeof(AVFilterPad)*ret->output_count); ret->outputs = av_mallocz(sizeof(AVFilterLink*) * ret->output_count); return ret; }
15,135
1
static int vnc_zlib_stop(VncState *vs) { z_streamp zstream = &vs->zlib.stream; int previous_out; // switch back to normal output/zlib buffers vs->zlib.zlib = vs->output; vs->output = vs->zlib.tmp; // compress the zlib buffer // initialize the stream // XXX need one stream per session if (zstream->opaque != vs) { int err; VNC_DEBUG("VNC: initializing zlib stream\n"); VNC_DEBUG("VNC: opaque = %p | vs = %p\n", zstream->opaque, vs); zstream->zalloc = vnc_zlib_zalloc; zstream->zfree = vnc_zlib_zfree; err = deflateInit2(zstream, vs->tight.compression, Z_DEFLATED, MAX_WBITS, MAX_MEM_LEVEL, Z_DEFAULT_STRATEGY); if (err != Z_OK) { fprintf(stderr, "VNC: error initializing zlib\n"); return -1; } vs->zlib.level = vs->tight.compression; zstream->opaque = vs; } if (vs->tight.compression != vs->zlib.level) { if (deflateParams(zstream, vs->tight.compression, Z_DEFAULT_STRATEGY) != Z_OK) { return -1; } vs->zlib.level = vs->tight.compression; } // reserve memory in output buffer buffer_reserve(&vs->output, vs->zlib.zlib.offset + 64); // set pointers zstream->next_in = vs->zlib.zlib.buffer; zstream->avail_in = vs->zlib.zlib.offset; zstream->next_out = vs->output.buffer + vs->output.offset; zstream->avail_out = vs->output.capacity - vs->output.offset; zstream->data_type = Z_BINARY; previous_out = zstream->total_out; // start encoding if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) { fprintf(stderr, "VNC: error during zlib compression\n"); return -1; } vs->output.offset = vs->output.capacity - zstream->avail_out; return zstream->total_out - previous_out; }
15,137
1
void OPPROTO op_divw_AX_T0(void) { unsigned int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (T0 & 0xffff); if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den) & 0xffff; r = (num % den) & 0xffff; EAX = (EAX & ~0xffff) | q; EDX = (EDX & ~0xffff) | r; }
15,138
1
static void fic_draw_cursor(AVCodecContext *avctx, int cur_x, int cur_y) { FICContext *ctx = avctx->priv_data; uint8_t *ptr = ctx->cursor_buf; uint8_t *dstptr[3]; uint8_t planes[4][1024]; uint8_t chroma[3][256]; int i, j, p; /* Convert to YUVA444. */ for (i = 0; i < 1024; i++) { planes[0][i] = av_clip_uint8((( 25 * ptr[0] + 129 * ptr[1] + 66 * ptr[2]) / 255) + 16); planes[1][i] = av_clip_uint8(((-38 * ptr[0] + 112 * ptr[1] + -74 * ptr[2]) / 255) + 128); planes[2][i] = av_clip_uint8(((-18 * ptr[0] + 112 * ptr[1] + -94 * ptr[2]) / 255) + 128); planes[3][i] = ptr[3]; ptr += 4; } /* Subsample chroma. */ for (i = 0; i < 32; i += 2) for (j = 0; j < 32; j += 2) for (p = 0; p < 3; p++) chroma[p][16 * (i / 2) + j / 2] = (planes[p + 1][32 * i + j ] + planes[p + 1][32 * i + j + 1] + planes[p + 1][32 * (i + 1) + j ] + planes[p + 1][32 * (i + 1) + j + 1]) / 4; /* Seek to x/y pos of cursor. */ for (i = 0; i < 3; i++) dstptr[i] = ctx->final_frame->data[i] + (ctx->final_frame->linesize[i] * (cur_y >> !!i)) + (cur_x >> !!i) + !!i; /* Copy. */ for (i = 0; i < FFMIN(32, avctx->height - cur_y) - 1; i += 2) { int lsize = FFMIN(32, avctx->width - cur_x); int csize = lsize / 2; fic_alpha_blend(dstptr[0], planes[0] + i * 32, lsize, planes[3] + i * 32); fic_alpha_blend(dstptr[0] + ctx->final_frame->linesize[0], planes[0] + (i + 1) * 32, lsize, planes[3] + (i + 1) * 32); fic_alpha_blend(dstptr[1], chroma[0] + (i / 2) * 16, csize, chroma[2] + (i / 2) * 16); fic_alpha_blend(dstptr[2], chroma[1] + (i / 2) * 16, csize, chroma[2] + (i / 2) * 16); dstptr[0] += ctx->final_frame->linesize[0] * 2; dstptr[1] += ctx->final_frame->linesize[1]; dstptr[2] += ctx->final_frame->linesize[2]; } }
15,139
1
static int decode_ref_pic_list_reordering(H264Context *h){ MpegEncContext * const s = &h->s; int list, index; print_short_term(h); print_long_term(h); if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func for(list=0; list<2; list++){ memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]); if(get_bits1(&s->gb)){ int pred= h->curr_pic_num; for(index=0; ; index++){ int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb); int pic_id; int i; Picture *ref = NULL; if(reordering_of_pic_nums_idc==3) break; if(index >= h->ref_count[list]){ av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n"); return -1; } if(reordering_of_pic_nums_idc<3){ if(reordering_of_pic_nums_idc<2){ const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1; if(abs_diff_pic_num >= h->max_pic_num){ av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n"); return -1; } if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num; else pred+= abs_diff_pic_num; pred &= h->max_pic_num - 1; for(i= h->short_ref_count-1; i>=0; i--){ ref = h->short_ref[i]; assert(ref->reference == 3); assert(!ref->long_ref); if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer break; } if(i>=0) ref->pic_id= ref->frame_num; }else{ pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx ref = h->long_ref[pic_id]; if(ref){ ref->pic_id= pic_id; assert(ref->reference == 3); assert(ref->long_ref); i=0; }else{ i=-1; } } if (i < 0) { av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n"); memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME } else { for(i=index; i+1<h->ref_count[list]; i++){ if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id) break; } for(; i > index; i--){ h->ref_list[list][i]= h->ref_list[list][i-1]; } h->ref_list[list][index]= *ref; } }else{ av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n"); return -1; } } } if(h->slice_type!=B_TYPE) break; } for(list=0; list<2; list++){ for(index= 0; index < h->ref_count[list]; index++){ if(!h->ref_list[list][index].data[0]) h->ref_list[list][index]= s->current_picture; } if(h->slice_type!=B_TYPE) break; } if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred) direct_dist_scale_factor(h); direct_ref_list_init(h); return 0; }
15,140
1
TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc, int nargs) { int oi = s->gen_next_op_idx; int prev = old_op->prev; int next = old_op - s->gen_op_buf; TCGOp *new_op; tcg_debug_assert(oi < OPC_BUF_SIZE); s->gen_next_op_idx = oi + 1; new_op = &s->gen_op_buf[oi]; *new_op = (TCGOp){ .opc = opc, .prev = prev, .next = next }; s->gen_op_buf[prev].next = oi; old_op->prev = oi; return new_op; }
15,141
1
void FUNCC(ff_h264_idct8_dc_add)(uint8_t *_dst, DCTELEM *block, int stride){ int i, j; int dc = (((dctcoef*)block)[0] + 32) >> 6; INIT_CLIP pixel *dst = (pixel*)_dst; stride /= sizeof(pixel); for( j = 0; j < 8; j++ ) { for( i = 0; i < 8; i++ ) dst[i] = CLIP( dst[i] + dc ); dst += stride; } }
15,142
1
static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; SVQ3Context *svq3 = avctx->priv_data; H264Context *h = &svq3->h; MpegEncContext *s = &h->s; int buf_size = avpkt->size; int m, mb_type; /* special case for last picture */ if (buf_size == 0) { if (s->next_picture_ptr && !s->low_delay) { *(AVFrame *) data = s->next_picture.f; s->next_picture_ptr = NULL; *got_frame = 1; } return 0; } init_get_bits(&s->gb, buf, 8 * buf_size); s->mb_x = s->mb_y = h->mb_xy = 0; if (svq3_decode_slice_header(avctx)) return -1; s->pict_type = h->slice_type; s->picture_number = h->slice_num; if (avctx->debug & FF_DEBUG_PICT_INFO) av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n", av_get_picture_type_char(s->pict_type), svq3->halfpel_flag, svq3->thirdpel_flag, s->adaptive_quant, s->qscale, h->slice_num); /* for skipping the frame */ s->current_picture.f.pict_type = s->pict_type; s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I); /* Skip B-frames if we do not have reference frames. */ if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B) return 0; if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B || avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I || avctx->skip_frame >= AVDISCARD_ALL) return 0; if (s->next_p_frame_damaged) { if (s->pict_type == AV_PICTURE_TYPE_B) return 0; else s->next_p_frame_damaged = 0; } if (ff_h264_frame_start(h) < 0) return -1; if (s->pict_type == AV_PICTURE_TYPE_B) { h->frame_num_offset = h->slice_num - h->prev_frame_num; if (h->frame_num_offset < 0) h->frame_num_offset += 256; if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) { av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n"); return -1; } } else { h->prev_frame_num = h->frame_num; h->frame_num = h->slice_num; h->prev_frame_num_offset = h->frame_num - h->prev_frame_num; if (h->prev_frame_num_offset < 0) h->prev_frame_num_offset += 256; } for (m = 0; m < 2; m++) { int i; for (i = 0; i < 4; i++) { int j; for (j = -1; j < 4; j++) h->ref_cache[m][scan8[0] + 8 * i + j] = 1; if (i < 3) h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE; } } for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { h->mb_xy = s->mb_x + s->mb_y * s->mb_stride; if ((get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits && ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, -get_bits_count(&s->gb) & 7) == 0)) { skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb)); s->gb.size_in_bits = 8 * buf_size; if (svq3_decode_slice_header(avctx)) return -1; /* TODO: support s->mb_skip_run */ } mb_type = svq3_get_ue_golomb(&s->gb); if (s->pict_type == AV_PICTURE_TYPE_I) mb_type += 8; else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) mb_type += 4; if ((unsigned)mb_type > 33 || svq3_decode_mb(svq3, mb_type)) { av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); return -1; } if (mb_type != 0) ff_h264_hl_decode_mb(h); if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] = (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1; } ff_draw_horiz_band(s, 16 * s->mb_y, 16); } ff_MPV_frame_end(s); if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) *(AVFrame *)data = s->current_picture.f; else *(AVFrame *)data = s->last_picture.f; /* Do not output the last pic after seeking. */ if (s->last_picture_ptr || s->low_delay) *got_frame = 1; return buf_size; }
15,143
1
static void mpeg4_decode_sprite_trajectory(MpegEncContext * s, GetBitContext *gb) { int i; int a= 2<<s->sprite_warping_accuracy; int rho= 3-s->sprite_warping_accuracy; int r=16/a; const int vop_ref[4][2]= {{0,0}, {s->width,0}, {0, s->height}, {s->width, s->height}}; // only true for rectangle shapes int d[4][2]={{0,0}, {0,0}, {0,0}, {0,0}}; int sprite_ref[4][2]; int virtual_ref[2][2]; int w2, h2, w3, h3; int alpha=0, beta=0; int w= s->width; int h= s->height; int min_ab; for(i=0; i<s->num_sprite_warping_points; i++){ int length; int x=0, y=0; length= get_vlc2(gb, sprite_trajectory.table, SPRITE_TRAJ_VLC_BITS, 3); if(length){ x= get_xbits(gb, length); } if(!(s->divx_version==500 && s->divx_build==413)) skip_bits1(gb); /* marker bit */ length= get_vlc2(gb, sprite_trajectory.table, SPRITE_TRAJ_VLC_BITS, 3); if(length){ y=get_xbits(gb, length); } skip_bits1(gb); /* marker bit */ s->sprite_traj[i][0]= d[i][0]= x; s->sprite_traj[i][1]= d[i][1]= y; } for(; i<4; i++) s->sprite_traj[i][0]= s->sprite_traj[i][1]= 0; while((1<<alpha)<w) alpha++; while((1<<beta )<h) beta++; // there seems to be a typo in the mpeg4 std for the definition of w' and h' w2= 1<<alpha; h2= 1<<beta; // Note, the 4th point isn't used for GMC if(s->divx_version==500 && s->divx_build==413){ sprite_ref[0][0]= a*vop_ref[0][0] + d[0][0]; sprite_ref[0][1]= a*vop_ref[0][1] + d[0][1]; sprite_ref[1][0]= a*vop_ref[1][0] + d[0][0] + d[1][0]; sprite_ref[1][1]= a*vop_ref[1][1] + d[0][1] + d[1][1]; sprite_ref[2][0]= a*vop_ref[2][0] + d[0][0] + d[2][0]; sprite_ref[2][1]= a*vop_ref[2][1] + d[0][1] + d[2][1]; } else { sprite_ref[0][0]= (a>>1)*(2*vop_ref[0][0] + d[0][0]); sprite_ref[0][1]= (a>>1)*(2*vop_ref[0][1] + d[0][1]); sprite_ref[1][0]= (a>>1)*(2*vop_ref[1][0] + d[0][0] + d[1][0]); sprite_ref[1][1]= (a>>1)*(2*vop_ref[1][1] + d[0][1] + d[1][1]); sprite_ref[2][0]= (a>>1)*(2*vop_ref[2][0] + d[0][0] + d[2][0]); sprite_ref[2][1]= (a>>1)*(2*vop_ref[2][1] + d[0][1] + d[2][1]); } /* sprite_ref[3][0]= (a>>1)*(2*vop_ref[3][0] + d[0][0] + d[1][0] + d[2][0] + d[3][0]); sprite_ref[3][1]= (a>>1)*(2*vop_ref[3][1] + d[0][1] + d[1][1] + d[2][1] + d[3][1]); */ // this is mostly identical to the mpeg4 std (and is totally unreadable because of that ...) // perhaps it should be reordered to be more readable ... // the idea behind this virtual_ref mess is to be able to use shifts later per pixel instead of divides // so the distance between points is converted from w&h based to w2&h2 based which are of the 2^x form virtual_ref[0][0]= 16*(vop_ref[0][0] + w2) + ROUNDED_DIV(((w - w2)*(r*sprite_ref[0][0] - 16*vop_ref[0][0]) + w2*(r*sprite_ref[1][0] - 16*vop_ref[1][0])),w); virtual_ref[0][1]= 16*vop_ref[0][1] + ROUNDED_DIV(((w - w2)*(r*sprite_ref[0][1] - 16*vop_ref[0][1]) + w2*(r*sprite_ref[1][1] - 16*vop_ref[1][1])),w); virtual_ref[1][0]= 16*vop_ref[0][0] + ROUNDED_DIV(((h - h2)*(r*sprite_ref[0][0] - 16*vop_ref[0][0]) + h2*(r*sprite_ref[2][0] - 16*vop_ref[2][0])),h); virtual_ref[1][1]= 16*(vop_ref[0][1] + h2) + ROUNDED_DIV(((h - h2)*(r*sprite_ref[0][1] - 16*vop_ref[0][1]) + h2*(r*sprite_ref[2][1] - 16*vop_ref[2][1])),h); switch(s->num_sprite_warping_points) { case 0: s->sprite_offset[0][0]= 0; s->sprite_offset[0][1]= 0; s->sprite_offset[1][0]= 0; s->sprite_offset[1][1]= 0; s->sprite_delta[0][0]= a; s->sprite_delta[0][1]= 0; s->sprite_delta[1][0]= 0; s->sprite_delta[1][1]= a; s->sprite_shift[0]= 0; s->sprite_shift[1]= 0; break; case 1: //GMC only s->sprite_offset[0][0]= sprite_ref[0][0] - a*vop_ref[0][0]; s->sprite_offset[0][1]= sprite_ref[0][1] - a*vop_ref[0][1]; s->sprite_offset[1][0]= ((sprite_ref[0][0]>>1)|(sprite_ref[0][0]&1)) - a*(vop_ref[0][0]/2); s->sprite_offset[1][1]= ((sprite_ref[0][1]>>1)|(sprite_ref[0][1]&1)) - a*(vop_ref[0][1]/2); s->sprite_delta[0][0]= a; s->sprite_delta[0][1]= 0; s->sprite_delta[1][0]= 0; s->sprite_delta[1][1]= a; s->sprite_shift[0]= 0; s->sprite_shift[1]= 0; break; case 2: s->sprite_offset[0][0]= (sprite_ref[0][0]<<(alpha+rho)) + (-r*sprite_ref[0][0] + virtual_ref[0][0])*(-vop_ref[0][0]) + ( r*sprite_ref[0][1] - virtual_ref[0][1])*(-vop_ref[0][1]) + (1<<(alpha+rho-1)); s->sprite_offset[0][1]= (sprite_ref[0][1]<<(alpha+rho)) + (-r*sprite_ref[0][1] + virtual_ref[0][1])*(-vop_ref[0][0]) + (-r*sprite_ref[0][0] + virtual_ref[0][0])*(-vop_ref[0][1]) + (1<<(alpha+rho-1)); s->sprite_offset[1][0]= ( (-r*sprite_ref[0][0] + virtual_ref[0][0])*(-2*vop_ref[0][0] + 1) +( r*sprite_ref[0][1] - virtual_ref[0][1])*(-2*vop_ref[0][1] + 1) +2*w2*r*sprite_ref[0][0] - 16*w2 + (1<<(alpha+rho+1))); s->sprite_offset[1][1]= ( (-r*sprite_ref[0][1] + virtual_ref[0][1])*(-2*vop_ref[0][0] + 1) +(-r*sprite_ref[0][0] + virtual_ref[0][0])*(-2*vop_ref[0][1] + 1) +2*w2*r*sprite_ref[0][1] - 16*w2 + (1<<(alpha+rho+1))); s->sprite_delta[0][0]= (-r*sprite_ref[0][0] + virtual_ref[0][0]); s->sprite_delta[0][1]= (+r*sprite_ref[0][1] - virtual_ref[0][1]); s->sprite_delta[1][0]= (-r*sprite_ref[0][1] + virtual_ref[0][1]); s->sprite_delta[1][1]= (-r*sprite_ref[0][0] + virtual_ref[0][0]); s->sprite_shift[0]= alpha+rho; s->sprite_shift[1]= alpha+rho+2; break; case 3: min_ab= FFMIN(alpha, beta); w3= w2>>min_ab; h3= h2>>min_ab; s->sprite_offset[0][0]= (sprite_ref[0][0]<<(alpha+beta+rho-min_ab)) + (-r*sprite_ref[0][0] + virtual_ref[0][0])*h3*(-vop_ref[0][0]) + (-r*sprite_ref[0][0] + virtual_ref[1][0])*w3*(-vop_ref[0][1]) + (1<<(alpha+beta+rho-min_ab-1)); s->sprite_offset[0][1]= (sprite_ref[0][1]<<(alpha+beta+rho-min_ab)) + (-r*sprite_ref[0][1] + virtual_ref[0][1])*h3*(-vop_ref[0][0]) + (-r*sprite_ref[0][1] + virtual_ref[1][1])*w3*(-vop_ref[0][1]) + (1<<(alpha+beta+rho-min_ab-1)); s->sprite_offset[1][0]= (-r*sprite_ref[0][0] + virtual_ref[0][0])*h3*(-2*vop_ref[0][0] + 1) + (-r*sprite_ref[0][0] + virtual_ref[1][0])*w3*(-2*vop_ref[0][1] + 1) + 2*w2*h3*r*sprite_ref[0][0] - 16*w2*h3 + (1<<(alpha+beta+rho-min_ab+1)); s->sprite_offset[1][1]= (-r*sprite_ref[0][1] + virtual_ref[0][1])*h3*(-2*vop_ref[0][0] + 1) + (-r*sprite_ref[0][1] + virtual_ref[1][1])*w3*(-2*vop_ref[0][1] + 1) + 2*w2*h3*r*sprite_ref[0][1] - 16*w2*h3 + (1<<(alpha+beta+rho-min_ab+1)); s->sprite_delta[0][0]= (-r*sprite_ref[0][0] + virtual_ref[0][0])*h3; s->sprite_delta[0][1]= (-r*sprite_ref[0][0] + virtual_ref[1][0])*w3; s->sprite_delta[1][0]= (-r*sprite_ref[0][1] + virtual_ref[0][1])*h3; s->sprite_delta[1][1]= (-r*sprite_ref[0][1] + virtual_ref[1][1])*w3; s->sprite_shift[0]= alpha + beta + rho - min_ab; s->sprite_shift[1]= alpha + beta + rho - min_ab + 2; break; } /* try to simplify the situation */ if( s->sprite_delta[0][0] == a<<s->sprite_shift[0] && s->sprite_delta[0][1] == 0 && s->sprite_delta[1][0] == 0 && s->sprite_delta[1][1] == a<<s->sprite_shift[0]) { s->sprite_offset[0][0]>>=s->sprite_shift[0]; s->sprite_offset[0][1]>>=s->sprite_shift[0]; s->sprite_offset[1][0]>>=s->sprite_shift[1]; s->sprite_offset[1][1]>>=s->sprite_shift[1]; s->sprite_delta[0][0]= a; s->sprite_delta[0][1]= 0; s->sprite_delta[1][0]= 0; s->sprite_delta[1][1]= a; s->sprite_shift[0]= 0; s->sprite_shift[1]= 0; s->real_sprite_warping_points=1; } else{ int shift_y= 16 - s->sprite_shift[0]; int shift_c= 16 - s->sprite_shift[1]; for(i=0; i<2; i++){ s->sprite_offset[0][i]<<= shift_y; s->sprite_offset[1][i]<<= shift_c; s->sprite_delta[0][i]<<= shift_y; s->sprite_delta[1][i]<<= shift_y; s->sprite_shift[i]= 16; } s->real_sprite_warping_points= s->num_sprite_warping_points; } }
15,144
1
static int parse(AVCodecParserContext *ctx, AVCodecContext *avctx, const uint8_t **out_data, int *out_size, const uint8_t *data, int size) { VP9ParseContext *s = ctx->priv_data; int full_size = size; int marker; if (size <= 0) { *out_size = 0; *out_data = data; return 0; } if (s->n_frames > 0) { *out_data = data; *out_size = s->size[--s->n_frames]; parse_frame(ctx, *out_data, *out_size); return s->n_frames > 0 ? *out_size : size /* i.e. include idx tail */; } marker = data[size - 1]; if ((marker & 0xe0) == 0xc0) { int nbytes = 1 + ((marker >> 3) & 0x3); int n_frames = 1 + (marker & 0x7), idx_sz = 2 + n_frames * nbytes; if (size >= idx_sz && data[size - idx_sz] == marker) { const uint8_t *idx = data + size + 1 - idx_sz; int first = 1; switch (nbytes) { #define case_n(a, rd) \ case a: \ while (n_frames--) { \ unsigned sz = rd; \ idx += a; \ if (sz > size) { \ s->n_frames = 0; \ *out_size = size; \ *out_data = data; \ av_log(avctx, AV_LOG_ERROR, \ "Superframe packet size too big: %u > %d\n", \ sz, size); \ return full_size; \ } \ if (first) { \ first = 0; \ *out_data = data; \ *out_size = sz; \ s->n_frames = n_frames; \ } else { \ s->size[n_frames] = sz; \ } \ data += sz; \ size -= sz; \ } \ parse_frame(ctx, *out_data, *out_size); \ return *out_size case_n(1, *idx); case_n(2, AV_RL16(idx)); case_n(3, AV_RL24(idx)); case_n(4, AV_RL32(idx)); } } } *out_data = data; *out_size = size; parse_frame(ctx, data, size); return size; }
15,145
1
void axisdev88_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; CRISCPU *cpu; CPUCRISState *env; DeviceState *dev; SysBusDevice *s; DriveInfo *nand; qemu_irq irq[30], nmi[2]; void *etraxfs_dmac; struct etraxfs_dma_client *dma_eth; int i; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *phys_ram = g_new(MemoryRegion, 1); MemoryRegion *phys_intmem = g_new(MemoryRegion, 1); /* init CPUs */ if (cpu_model == NULL) { cpu_model = "crisv32"; } cpu = cpu_cris_init(cpu_model); env = &cpu->env; /* allocate RAM */ memory_region_allocate_system_memory(phys_ram, NULL, "axisdev88.ram", ram_size); memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram); /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the internal memory. */ memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", INTMEM_SIZE, &error_abort); vmstate_register_ram_global(phys_intmem); memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem); /* Attach a NAND flash to CS1. */ nand = drive_get(IF_MTD, 0, 0); nand_state.nand = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL, NAND_MFR_STMICRO, 0x39); memory_region_init_io(&nand_state.iomem, NULL, &nand_ops, &nand_state, "nand", 0x05000000); memory_region_add_subregion(address_space_mem, 0x10000000, &nand_state.iomem); gpio_state.nand = &nand_state; memory_region_init_io(&gpio_state.iomem, NULL, &gpio_ops, &gpio_state, "gpio", 0x5c); memory_region_add_subregion(address_space_mem, 0x3001a000, &gpio_state.iomem); dev = qdev_create(NULL, "etraxfs,pic"); /* FIXME: Is there a proper way to signal vectors to the CPU core? */ qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); sysbus_mmio_map(s, 0, 0x3001c000); sysbus_connect_irq(s, 0, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_IRQ)); sysbus_connect_irq(s, 1, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_NMI)); for (i = 0; i < 30; i++) { irq[i] = qdev_get_gpio_in(dev, i); } nmi[0] = qdev_get_gpio_in(dev, 30); nmi[1] = qdev_get_gpio_in(dev, 31); etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); for (i = 0; i < 10; i++) { /* On ETRAX, odd numbered channels are inputs. */ etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); } /* Add the two ethernet blocks. */ dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */ etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]); if (nb_nics > 1) { etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]); } /* The DMA Connector block is missing, hardwire things for now. */ etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]); etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]); if (nb_nics > 1) { etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]); etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]); } /* 2 timers. */ sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL); sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL); for (i = 0; i < 4; i++) { sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000, irq[0x14 + i]); } if (kernel_filename) { li.image_filename = kernel_filename; li.cmdline = kernel_cmdline; cris_load_image(cpu, &li); } else if (!qtest_enabled()) { fprintf(stderr, "Kernel image must be specified\n"); exit(1); } }
15,146
1
static int mjpeg_decode_app(MJpegDecodeContext *s) { int len, id, i; len = get_bits(&s->gb, 16); if (len < 6) return AVERROR_INVALIDDATA; if (8 * len > get_bits_left(&s->gb)) return AVERROR_INVALIDDATA; id = get_bits_long(&s->gb, 32); len -= 6; if (s->avctx->debug & FF_DEBUG_STARTCODE) { char id_str[32]; av_get_codec_tag_string(id_str, sizeof(id_str), av_bswap32(id)); av_log(s->avctx, AV_LOG_DEBUG, "APPx (%s / %8X) len=%d\n", id_str, id, len); } /* Buggy AVID, it puts EOI only at every 10th frame. */ /* Also, this fourcc is used by non-avid files too, it holds some information, but it's always present in AVID-created files. */ if (id == AV_RB32("AVI1")) { /* structure: 4bytes AVI1 1bytes polarity 1bytes always zero 4bytes field_size 4bytes field_size_less_padding */ s->buggy_avid = 1; i = get_bits(&s->gb, 8); len--; av_log(s->avctx, AV_LOG_DEBUG, "polarity %d\n", i); #if 0 skip_bits(&s->gb, 8); skip_bits(&s->gb, 32); skip_bits(&s->gb, 32); len -= 10; #endif } // len -= 2; if (id == AV_RB32("JFIF")) { int t_w, t_h, v1, v2; skip_bits(&s->gb, 8); /* the trailing zero-byte */ v1 = get_bits(&s->gb, 8); v2 = get_bits(&s->gb, 8); skip_bits(&s->gb, 8); s->avctx->sample_aspect_ratio.num = get_bits(&s->gb, 16); s->avctx->sample_aspect_ratio.den = get_bits(&s->gb, 16); if ( s->avctx->sample_aspect_ratio.num <= 0 || s->avctx->sample_aspect_ratio.den <= 0) { s->avctx->sample_aspect_ratio.num = 0; s->avctx->sample_aspect_ratio.den = 1; } if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n", v1, v2, s->avctx->sample_aspect_ratio.num, s->avctx->sample_aspect_ratio.den); len -= 8; if (len >= 2) { t_w = get_bits(&s->gb, 8); t_h = get_bits(&s->gb, 8); if (t_w && t_h) { /* skip thumbnail */ if (len -10 - (t_w * t_h * 3) > 0) len -= t_w * t_h * 3; } len -= 2; } } if ( id == AV_RB32("Adob") && len >= 7 && show_bits(&s->gb, 8) == 'e' && show_bits_long(&s->gb, 32) != AV_RB32("e_CM")) { skip_bits(&s->gb, 8); /* 'e' */ skip_bits(&s->gb, 16); /* version */ skip_bits(&s->gb, 16); /* flags0 */ skip_bits(&s->gb, 16); /* flags1 */ s->adobe_transform = get_bits(&s->gb, 8); if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "mjpeg: Adobe header found, transform=%d\n", s->adobe_transform); len -= 7; } if (id == AV_RB32("LJIF")) { int rgb = s->rgb; int pegasus_rct = s->pegasus_rct; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "Pegasus lossless jpeg header found\n"); skip_bits(&s->gb, 16); /* version ? */ skip_bits(&s->gb, 16); /* unknown always 0? */ skip_bits(&s->gb, 16); /* unknown always 0? */ skip_bits(&s->gb, 16); /* unknown always 0? */ switch (i=get_bits(&s->gb, 8)) { case 1: rgb = 1; pegasus_rct = 0; break; case 2: rgb = 1; pegasus_rct = 1; break; default: av_log(s->avctx, AV_LOG_ERROR, "unknown colorspace %d\n", i); } len -= 9; if (s->got_picture) if (rgb != s->rgb || pegasus_rct != s->pegasus_rct) { av_log(s->avctx, AV_LOG_WARNING, "Mismatching LJIF tag\n"); } s->rgb = rgb; s->pegasus_rct = pegasus_rct; } if (id == AV_RL32("colr") && len > 0) { s->colr = get_bits(&s->gb, 8); if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "COLR %d\n", s->colr); len --; } if (id == AV_RL32("xfrm") && len > 0) { s->xfrm = get_bits(&s->gb, 8); if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "XFRM %d\n", s->xfrm); len --; } /* JPS extension by VRex */ if (s->start_code == APP3 && id == AV_RB32("_JPS") && len >= 10) { int flags, layout, type; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "_JPSJPS_\n"); skip_bits(&s->gb, 32); len -= 4; /* JPS_ */ skip_bits(&s->gb, 16); len -= 2; /* block length */ skip_bits(&s->gb, 8); /* reserved */ flags = get_bits(&s->gb, 8); layout = get_bits(&s->gb, 8); type = get_bits(&s->gb, 8); len -= 4; s->stereo3d = av_stereo3d_alloc(); if (!s->stereo3d) { } if (type == 0) { s->stereo3d->type = AV_STEREO3D_2D; } else if (type == 1) { switch (layout) { case 0x01: s->stereo3d->type = AV_STEREO3D_LINES; break; case 0x02: s->stereo3d->type = AV_STEREO3D_SIDEBYSIDE; break; case 0x03: s->stereo3d->type = AV_STEREO3D_TOPBOTTOM; break; } if (!(flags & 0x04)) { s->stereo3d->flags = AV_STEREO3D_FLAG_INVERT; } } } /* EXIF metadata */ if (s->start_code == APP1 && id == AV_RB32("Exif") && len >= 2) { GetByteContext gbytes; int ret, le, ifd_offset, bytes_read; const uint8_t *aligned; skip_bits(&s->gb, 16); // skip padding len -= 2; // init byte wise reading aligned = align_get_bits(&s->gb); bytestream2_init(&gbytes, aligned, len); // read TIFF header ret = ff_tdecode_header(&gbytes, &le, &ifd_offset); if (ret) { av_log(s->avctx, AV_LOG_ERROR, "mjpeg: invalid TIFF header in EXIF data\n"); } else { bytestream2_seek(&gbytes, ifd_offset, SEEK_SET); // read 0th IFD and store the metadata // (return values > 0 indicate the presence of subimage metadata) ret = avpriv_exif_decode_ifd(s->avctx, &gbytes, le, 0, &s->exif_metadata); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "mjpeg: error decoding EXIF data\n"); } } bytes_read = bytestream2_tell(&gbytes); skip_bits(&s->gb, bytes_read << 3); len -= bytes_read; } /* Apple MJPEG-A */ if ((s->start_code == APP1) && (len > (0x28 - 8))) { id = get_bits_long(&s->gb, 32); len -= 4; /* Apple MJPEG-A */ if (id == AV_RB32("mjpg")) { #if 0 skip_bits(&s->gb, 32); /* field size */ skip_bits(&s->gb, 32); /* pad field size */ skip_bits(&s->gb, 32); /* next off */ skip_bits(&s->gb, 32); /* quant off */ skip_bits(&s->gb, 32); /* huff off */ skip_bits(&s->gb, 32); /* image off */ skip_bits(&s->gb, 32); /* scan off */ skip_bits(&s->gb, 32); /* data off */ #endif if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "mjpeg: Apple MJPEG-A header found\n"); } } out: /* slow but needed for extreme adobe jpegs */ if (len < 0) av_log(s->avctx, AV_LOG_ERROR, "mjpeg: error, decode_app parser read over the end\n"); while (--len > 0) skip_bits(&s->gb, 8); return 0; }
15,148
1
static int do_decode(AVCodecContext *avctx, AVPacket *pkt) { int got_frame; int ret; av_assert0(!avctx->internal->buffer_frame->buf[0]); if (!pkt) pkt = avctx->internal->buffer_pkt; // This is the lesser evil. The field is for compatibility with legacy users // of the legacy API, and users using the new API should not be forced to // even know about this field. avctx->refcounted_frames = 1; // Some codecs (at least wma lossless) will crash when feeding drain packets // after EOF was signaled. if (avctx->internal->draining_done) return AVERROR_EOF; if (avctx->codec_type == AVMEDIA_TYPE_VIDEO) { ret = avcodec_decode_video2(avctx, avctx->internal->buffer_frame, &got_frame, pkt); if (ret >= 0 && !(avctx->flags & AV_CODEC_FLAG_TRUNCATED)) ret = pkt->size; } else if (avctx->codec_type == AVMEDIA_TYPE_AUDIO) { ret = avcodec_decode_audio4(avctx, avctx->internal->buffer_frame, &got_frame, pkt); } else { ret = AVERROR(EINVAL); } if (ret == AVERROR(EAGAIN)) ret = pkt->size; if (avctx->internal->draining && !got_frame) avctx->internal->draining_done = 1; if (ret < 0) return ret; if (ret >= pkt->size) { av_packet_unref(avctx->internal->buffer_pkt); } else { int consumed = ret; if (pkt != avctx->internal->buffer_pkt) { av_packet_unref(avctx->internal->buffer_pkt); if ((ret = av_packet_ref(avctx->internal->buffer_pkt, pkt)) < 0) return ret; } avctx->internal->buffer_pkt->data += consumed; avctx->internal->buffer_pkt->size -= consumed; avctx->internal->buffer_pkt->pts = AV_NOPTS_VALUE; avctx->internal->buffer_pkt->dts = AV_NOPTS_VALUE; } if (got_frame) av_assert0(avctx->internal->buffer_frame->buf[0]); return 0; }
15,149
1
void ff_h264_free_tables(H264Context *h, int free_rbsp) { int i; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table = NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); av_buffer_pool_uninit(&h->qscale_table_pool); av_buffer_pool_uninit(&h->mb_type_pool); av_buffer_pool_uninit(&h->motion_val_pool); av_buffer_pool_uninit(&h->ref_index_pool); if (free_rbsp && h->DPB) { for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) ff_h264_unref_picture(h, &h->DPB[i]); av_freep(&h->DPB); } h->cur_pic_ptr = NULL; for (i = 0; i < h->nb_slice_ctx; i++) { H264SliceContext *sl = &h->slice_ctx[i]; av_freep(&sl->dc_val_base); av_freep(&sl->er.mb_index2xy); av_freep(&sl->er.error_status_table); av_freep(&sl->er.er_temp_buffer); av_freep(&sl->bipred_scratchpad); av_freep(&sl->edge_emu_buffer); av_freep(&sl->top_borders[0]); av_freep(&sl->top_borders[1]); sl->bipred_scratchpad_allocated = 0; sl->edge_emu_buffer_allocated = 0; sl->top_borders_allocated[0] = 0; sl->top_borders_allocated[1] = 0; if (free_rbsp) { av_freep(&sl->rbsp_buffer); sl->rbsp_buffer_size = 0; } } }
15,150
1
static bool s390_gen_initial_iplb(S390IPLState *ipl) { DeviceState *dev_st; dev_st = get_boot_device(0); if (dev_st) { VirtioCcwDevice *virtio_ccw_dev = (VirtioCcwDevice *) object_dynamic_cast(OBJECT(qdev_get_parent_bus(dev_st)->parent), TYPE_VIRTIO_CCW_DEVICE); SCSIDevice *sd = (SCSIDevice *) object_dynamic_cast(OBJECT(dev_st), TYPE_SCSI_DEVICE); if (virtio_ccw_dev) { CcwDevice *ccw_dev = CCW_DEVICE(virtio_ccw_dev); ipl->iplb.len = cpu_to_be32(S390_IPLB_MIN_CCW_LEN); ipl->iplb.blk0_len = cpu_to_be32(S390_IPLB_MIN_CCW_LEN - S390_IPLB_HEADER_LEN); ipl->iplb.pbt = S390_IPL_TYPE_CCW; ipl->iplb.ccw.devno = cpu_to_be16(ccw_dev->sch->devno); ipl->iplb.ccw.ssid = ccw_dev->sch->ssid & 3; return true; } else if (sd) { SCSIBus *bus = scsi_bus_from_device(sd); VirtIOSCSI *vdev = container_of(bus, VirtIOSCSI, bus); VirtIOSCSICcw *scsi_ccw = container_of(vdev, VirtIOSCSICcw, vdev); CcwDevice *ccw_dev = CCW_DEVICE(scsi_ccw); ipl->iplb.len = cpu_to_be32(S390_IPLB_MIN_QEMU_SCSI_LEN); ipl->iplb.blk0_len = cpu_to_be32(S390_IPLB_MIN_QEMU_SCSI_LEN - S390_IPLB_HEADER_LEN); ipl->iplb.pbt = S390_IPL_TYPE_QEMU_SCSI; ipl->iplb.scsi.lun = cpu_to_be32(sd->lun); ipl->iplb.scsi.target = cpu_to_be16(sd->id); ipl->iplb.scsi.channel = cpu_to_be16(sd->channel); ipl->iplb.scsi.devno = cpu_to_be16(ccw_dev->sch->devno); ipl->iplb.scsi.ssid = ccw_dev->sch->ssid & 3; return true; return false;
15,151
1
static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch) { int bin, blk, gs; int end_bap, gaq_mode; GetBitContext *gbc = &s->gbc; int gaq_gain[AC3_MAX_COEFS]; gaq_mode = get_bits(gbc, 2); end_bap = (gaq_mode < 2) ? 12 : 17; /* if GAQ gain is used, decode gain codes for bins with hebap between 8 and end_bap */ gs = 0; if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) { /* read 1-bit GAQ gain codes */ for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) { if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap) gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1); } } else if (gaq_mode == EAC3_GAQ_124) { /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */ int gc = 2; for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) { if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) { if (gc++ == 2) { int group_code = get_bits(gbc, 5); if (group_code > 26) { av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n"); group_code = 26; } gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0]; gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1]; gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2]; gc = 0; } } } } gs=0; for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) { int hebap = s->bap[ch][bin]; int bits = ff_eac3_bits_vs_hebap[hebap]; if (!hebap) { /* zero-mantissa dithering */ for (blk = 0; blk < 6; blk++) { s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000; } } else if (hebap < 8) { /* Vector Quantization */ int v = get_bits(gbc, bits); for (blk = 0; blk < 6; blk++) { s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8; } } else { /* Gain Adaptive Quantization */ int gbits, log_gain; if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) { log_gain = gaq_gain[gs++]; } else { log_gain = 0; } gbits = bits - log_gain; for (blk = 0; blk < 6; blk++) { int mant = get_sbits(gbc, gbits); if (log_gain && mant == -(1 << (gbits-1))) { /* large mantissa */ int b; int mbits = bits - (2 - log_gain); mant = get_sbits(gbc, mbits); mant <<= (23 - (mbits - 1)); /* remap mantissa value to correct for asymmetric quantization */ if (mant >= 0) b = 1 << (23 - log_gain); else b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] << 8; mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b; } else { /* small mantissa, no GAQ, or Gk=1 */ mant <<= 24 - bits; if (!log_gain) { /* remap mantissa value for no GAQ or Gk=1 */ mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15; } } s->pre_mantissa[ch][bin][blk] = mant; } } idct6(s->pre_mantissa[ch][bin]); } }
15,152
1
int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count) { Coroutine *co; DiscardCo rwco = { .bs = bs, .offset = offset, .count = count, .ret = NOT_DONE, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_pdiscard_co_entry(&rwco); } else { co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); qemu_coroutine_enter(co); BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); } return rwco.ret; }
15,153
1
static void alpha_cpu_initfn(Object *obj) { CPUState *cs = CPU(obj); AlphaCPU *cpu = ALPHA_CPU(obj); CPUAlphaState *env = &cpu->env; cs->env_ptr = env; cpu_exec_init(cs, &error_abort); tlb_flush(cs, 1); alpha_translate_init(); #if defined(CONFIG_USER_ONLY) env->ps = PS_USER_MODE; cpu_alpha_store_fpcr(env, (FPCR_INVD | FPCR_DZED | FPCR_OVFD | FPCR_UNFD | FPCR_INED | FPCR_DNOD | FPCR_DYN_NORMAL)); #endif env->lock_addr = -1; env->fen = 1; }
15,154
1
static void render_line(int x0, int y0, int x1, int y1, float *buf) { int dy = y1 - y0; int adx = x1 - x0; int ady = FFABS(dy); int sy = dy < 0 ? -1 : 1; buf[x0] = ff_vorbis_floor1_inverse_db_table[y0]; if (ady*2 <= adx) { // optimized common case render_line_unrolled(x0, y0, x1, sy, ady, adx, buf); } else { int base = dy / adx; int x = x0; int y = y0; int err = -adx; ady -= FFABS(base) * adx; while (++x < x1) { y += base; err += ady; if (err >= 0) { err -= adx; y += sy; } buf[x] = ff_vorbis_floor1_inverse_db_table[y]; } } }
15,155
1
void ram_control_after_iterate(QEMUFile *f, uint64_t flags) { int ret = 0; if (f->ops->after_ram_iterate) { ret = f->ops->after_ram_iterate(f, f->opaque, flags); if (ret < 0) { qemu_file_set_error(f, ret); } } }
15,156
1
void ff_rtsp_close_streams(AVFormatContext *s) { RTSPState *rt = s->priv_data; int i; RTSPStream *rtsp_st; ff_rtsp_undo_setup(s); for (i = 0; i < rt->nb_rtsp_streams; i++) { rtsp_st = rt->rtsp_streams[i]; if (rtsp_st) { if (rtsp_st->dynamic_handler && rtsp_st->dynamic_protocol_context) rtsp_st->dynamic_handler->close( rtsp_st->dynamic_protocol_context); } } av_free(rt->rtsp_streams); if (rt->asf_ctx) { av_close_input_stream (rt->asf_ctx); rt->asf_ctx = NULL; } av_free(rt->p); av_free(rt->recvbuf); }
15,157
1
static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); dc->insn_start_idx = tcg_op_buf_count(); tcg_gen_insn_start(dc->pc, 0, 0); }
15,158
1
int ff_xvid_rate_control_init(MpegEncContext *s){ char *tmp_name; int fd, i; xvid_plg_create_t xvid_plg_create = { 0 }; xvid_plugin_2pass2_t xvid_2pass2 = { 0 }; fd=av_tempfile("xvidrc.", &tmp_name, 0, s->avctx); if (fd == -1) { av_log(NULL, AV_LOG_ERROR, "Can't create temporary pass2 file.\n"); return -1; } for(i=0; i<s->rc_context.num_entries; i++){ static const char frame_types[] = " ipbs"; char tmp[256]; RateControlEntry *rce; rce= &s->rc_context.entry[i]; snprintf(tmp, sizeof(tmp), "%c %d %d %d %d %d %d\n", frame_types[rce->pict_type], (int)lrintf(rce->qscale / FF_QP2LAMBDA), rce->i_count, s->mb_num - rce->i_count - rce->skip_count, rce->skip_count, (rce->i_tex_bits + rce->p_tex_bits + rce->misc_bits+7)/8, (rce->header_bits+rce->mv_bits+7)/8); if (write(fd, tmp, strlen(tmp)) < 0) { av_log(NULL, AV_LOG_ERROR, "Error %s writing 2pass logfile\n", strerror(errno)); return AVERROR(errno); } } xvid_2pass2.version= XVID_MAKE_VERSION(1,1,0); xvid_2pass2.filename= tmp_name; xvid_2pass2.bitrate= s->avctx->bit_rate; xvid_2pass2.vbv_size= s->avctx->rc_buffer_size; xvid_2pass2.vbv_maxrate= s->avctx->rc_max_rate; xvid_2pass2.vbv_initial= s->avctx->rc_initial_buffer_occupancy; xvid_plg_create.version= XVID_MAKE_VERSION(1,1,0); xvid_plg_create.fbase= s->avctx->time_base.den; xvid_plg_create.fincr= s->avctx->time_base.num; xvid_plg_create.param= &xvid_2pass2; if(xvid_plugin_2pass2(NULL, XVID_PLG_CREATE, &xvid_plg_create, &s->rc_context.non_lavc_opaque)<0){ av_log(NULL, AV_LOG_ERROR, "xvid_plugin_2pass2 failed\n"); return -1; } return 0; }
15,160
1
void *fw_cfg_modify_file(FWCfgState *s, const char *filename, void *data, size_t len) { int i, index; void *ptr = NULL; assert(s->files); index = be32_to_cpu(s->files->count); assert(index < fw_cfg_file_slots(s)); for (i = 0; i < index; i++) { if (strcmp(filename, s->files->f[i].name) == 0) { ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, data, len); s->files->f[i].size = cpu_to_be32(len); return ptr; } } /* add new one */ fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); return NULL; }
15,161
0
int do_drive_del(Monitor *mon, const QDict *qdict, QObject **ret_data) { const char *id = qdict_get_str(qdict, "id"); BlockDriverState *bs; bs = bdrv_find(id); if (!bs) { qerror_report(QERR_DEVICE_NOT_FOUND, id); return -1; } if (bdrv_in_use(bs)) { qerror_report(QERR_DEVICE_IN_USE, id); return -1; } /* quiesce block driver; prevent further io */ qemu_aio_flush(); bdrv_flush(bs); bdrv_close(bs); /* if we have a device attached to this BlockDriverState * then we need to make the drive anonymous until the device * can be removed. If this is a drive with no device backing * then we can just get rid of the block driver state right here. */ if (bdrv_get_attached_dev(bs)) { bdrv_make_anon(bs); } else { drive_uninit(drive_get_by_blockdev(bs)); } return 0; }
15,162
0
static void init_proc_970FX (CPUPPCState *env) { gen_spr_ne_601(env); gen_spr_7xx(env); /* Time base */ gen_tbl(env); /* Hardware implementation registers */ /* XXX : not implemented */ spr_register(env, SPR_HID0, "HID0", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_clear, 0x60000000); /* XXX : not implemented */ spr_register(env, SPR_HID1, "HID1", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_970_HID5, "HID5", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, POWERPC970_HID5_INIT); /* Memory management */ /* XXX: not correct */ gen_low_BATs(env); spr_register(env, SPR_HIOR, "SPR_HIOR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_hior, &spr_write_hior, 0x00000000); spr_register(env, SPR_CTRL, "SPR_CTRL", SPR_NOACCESS, SPR_NOACCESS, SPR_NOACCESS, &spr_write_generic, 0x00000000); spr_register(env, SPR_UCTRL, "SPR_UCTRL", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, SPR_NOACCESS, 0x00000000); spr_register(env, SPR_VRSAVE, "SPR_VRSAVE", &spr_read_generic, &spr_write_generic, &spr_read_generic, &spr_write_generic, 0x00000000); #if !defined(CONFIG_USER_ONLY) env->slb_nr = 64; #endif init_excp_970(env); env->dcache_line_size = 128; env->icache_line_size = 128; /* Allocate hardware IRQ controller */ ppc970_irq_init(env); /* Can't find information on what this should be on reset. This * value is the one used by 74xx processors. */ vscr_init(env, 0x00010000); }
15,164
0
static QPCIBus *pci_test_start(int socket) { char *cmdline; cmdline = g_strdup_printf("-netdev socket,fd=%d,id=hs0 -device " "virtio-net-pci,netdev=hs0", socket); qtest_start(cmdline); g_free(cmdline); return qpci_init_pc(NULL); }
15,165
0
static void ppc_prep_init(QEMUMachineInitArgs *args) { ram_addr_t ram_size = args->ram_size; const char *cpu_model = args->cpu_model; const char *kernel_filename = args->kernel_filename; const char *kernel_cmdline = args->kernel_cmdline; const char *initrd_filename = args->initrd_filename; const char *boot_device = args->boot_device; MemoryRegion *sysmem = get_system_memory(); PowerPCCPU *cpu = NULL; CPUPPCState *env = NULL; char *filename; nvram_t nvram; M48t59State *m48t59; MemoryRegion *PPC_io_memory = g_new(MemoryRegion, 1); PortioList *port_list = g_new(PortioList, 1); #if 0 MemoryRegion *xcsr = g_new(MemoryRegion, 1); #endif int linux_boot, i, nb_nics1, bios_size; MemoryRegion *ram = g_new(MemoryRegion, 1); MemoryRegion *bios = g_new(MemoryRegion, 1); uint32_t kernel_base, initrd_base; long kernel_size, initrd_size; DeviceState *dev; PCIHostState *pcihost; PCIBus *pci_bus; PCIDevice *pci; ISABus *isa_bus; ISADevice *isa; qemu_irq *cpu_exit_irq; int ppc_boot_device; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; sysctrl = g_malloc0(sizeof(sysctrl_t)); linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) cpu_model = "602"; for (i = 0; i < smp_cpus; i++) { cpu = cpu_ppc_init(cpu_model); if (cpu == NULL) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } env = &cpu->env; if (env->flags & POWERPC_FLAG_RTC_CLK) { /* POWER / PowerPC 601 RTC clock frequency is 7.8125 MHz */ cpu_ppc_tb_init(env, 7812500UL); } else { /* Set time-base frequency to 100 Mhz */ cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL); } qemu_register_reset(ppc_prep_reset, cpu); } /* allocate RAM */ memory_region_init_ram(ram, NULL, "ppc_prep.ram", ram_size); vmstate_register_ram_global(ram); memory_region_add_subregion(sysmem, 0, ram); /* allocate and load BIOS */ memory_region_init_ram(bios, NULL, "ppc_prep.bios", BIOS_SIZE); memory_region_set_readonly(bios, true); memory_region_add_subregion(sysmem, (uint32_t)(-BIOS_SIZE), bios); vmstate_register_ram_global(bios); if (bios_name == NULL) bios_name = BIOS_FILENAME; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = load_elf(filename, NULL, NULL, NULL, NULL, NULL, 1, ELF_MACHINE, 0); if (bios_size < 0) { bios_size = get_image_size(filename); if (bios_size > 0 && bios_size <= BIOS_SIZE) { hwaddr bios_addr; bios_size = (bios_size + 0xfff) & ~0xfff; bios_addr = (uint32_t)(-bios_size); bios_size = load_image_targphys(filename, bios_addr, bios_size); } if (bios_size > BIOS_SIZE) { fprintf(stderr, "qemu: PReP bios '%s' is too large (0x%x)\n", bios_name, bios_size); exit(1); } } } else { bios_size = -1; } if (bios_size < 0 && !qtest_enabled()) { fprintf(stderr, "qemu: could not load PPC PReP bios '%s'\n", bios_name); exit(1); } if (filename) { g_free(filename); } if (linux_boot) { kernel_base = KERNEL_LOAD_ADDR; /* now we can load the kernel */ kernel_size = load_image_targphys(kernel_filename, kernel_base, ram_size - kernel_base); if (kernel_size < 0) { hw_error("qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = INITRD_LOAD_ADDR; initrd_size = load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { hw_error("qemu: could not load initial ram disk '%s'\n", initrd_filename); } } else { initrd_base = 0; initrd_size = 0; } ppc_boot_device = 'm'; } else { kernel_base = 0; kernel_size = 0; initrd_base = 0; initrd_size = 0; ppc_boot_device = '\0'; /* For now, OHW cannot boot from the network. */ for (i = 0; boot_device[i] != '\0'; i++) { if (boot_device[i] >= 'a' && boot_device[i] <= 'f') { ppc_boot_device = boot_device[i]; break; } } if (ppc_boot_device == '\0') { fprintf(stderr, "No valid boot device for Mac99 machine\n"); exit(1); } } if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) { hw_error("Only 6xx bus is supported on PREP machine\n"); } dev = qdev_create(NULL, "raven-pcihost"); pcihost = PCI_HOST_BRIDGE(dev); object_property_add_child(qdev_get_machine(), "raven", OBJECT(dev), NULL); qdev_init_nofail(dev); pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0"); if (pci_bus == NULL) { fprintf(stderr, "Couldn't create PCI host controller.\n"); exit(1); } /* PCI -> ISA bridge */ pci = pci_create_simple(pci_bus, PCI_DEVFN(1, 0), "i82378"); cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); cpu = POWERPC_CPU(first_cpu); qdev_connect_gpio_out(&pci->qdev, 0, cpu->env.irq_inputs[PPC6xx_INPUT_INT]); qdev_connect_gpio_out(&pci->qdev, 1, *cpu_exit_irq); sysbus_connect_irq(&pcihost->busdev, 0, qdev_get_gpio_in(&pci->qdev, 9)); sysbus_connect_irq(&pcihost->busdev, 1, qdev_get_gpio_in(&pci->qdev, 11)); sysbus_connect_irq(&pcihost->busdev, 2, qdev_get_gpio_in(&pci->qdev, 9)); sysbus_connect_irq(&pcihost->busdev, 3, qdev_get_gpio_in(&pci->qdev, 11)); isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci), "isa.0")); /* Super I/O (parallel + serial ports) */ isa = isa_create(isa_bus, TYPE_PC87312); dev = DEVICE(isa); qdev_prop_set_uint8(dev, "config", 13); /* fdc, ser0, ser1, par0 */ qdev_init_nofail(dev); /* Register 8 MB of ISA IO space (needed for non-contiguous map) */ memory_region_init_io(PPC_io_memory, NULL, &PPC_prep_io_ops, sysctrl, "ppc-io", 0x00800000); memory_region_add_subregion(sysmem, 0x80000000, PPC_io_memory); /* init basic PC hardware */ pci_vga_init(pci_bus); nb_nics1 = nb_nics; if (nb_nics1 > NE2000_NB_MAX) nb_nics1 = NE2000_NB_MAX; for(i = 0; i < nb_nics1; i++) { if (nd_table[i].model == NULL) { nd_table[i].model = g_strdup("ne2k_isa"); } if (strcmp(nd_table[i].model, "ne2k_isa") == 0) { isa_ne2000_init(isa_bus, ne2000_io[i], ne2000_irq[i], &nd_table[i]); } else { pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); } } ide_drive_get(hd, MAX_IDE_BUS); for(i = 0; i < MAX_IDE_BUS; i++) { isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[2 * i], hd[2 * i + 1]); } isa_create_simple(isa_bus, "i8042"); cpu = POWERPC_CPU(first_cpu); sysctrl->reset_irq = cpu->env.irq_inputs[PPC6xx_INPUT_HRESET]; portio_list_init(port_list, NULL, prep_portio_list, sysctrl, "prep"); portio_list_add(port_list, get_system_io(), 0x0); /* PowerPC control and status register group */ #if 0 memory_region_init_io(xcsr, NULL, &PPC_XCSR_ops, NULL, "ppc-xcsr", 0x1000); memory_region_add_subregion(sysmem, 0xFEFF0000, xcsr); #endif if (usb_enabled(false)) { pci_create_simple(pci_bus, -1, "pci-ohci"); } m48t59 = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59); if (m48t59 == NULL) return; sysctrl->nvram = m48t59; /* Initialise NVRAM */ nvram.opaque = m48t59; nvram.read_fn = &m48t59_read; nvram.write_fn = &m48t59_write; PPC_NVRAM_set_params(&nvram, NVRAM_SIZE, "PREP", ram_size, ppc_boot_device, kernel_base, kernel_size, kernel_cmdline, initrd_base, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth); }
15,166
0
static void smc91c111_cleanup(NetClientState *nc) { smc91c111_state *s = qemu_get_nic_opaque(nc); s->nic = NULL; }
15,167
0
e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) { if (tx->props.tse && tx->props.cptse) { net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss); net_tx_pkt_update_ip_checksums(tx->tx_pkt); e1000x_inc_reg_if_not_full(core->mac, TSCTC); return; } if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) { net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0); } if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) { net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); } }
15,168
0
static ssize_t proxy_pwritev(FsContext *ctx, V9fsFidOpenState *fs, const struct iovec *iov, int iovcnt, off_t offset) { ssize_t ret; #ifdef CONFIG_PREADV ret = pwritev(fs->fd, iov, iovcnt, offset); #else ret = lseek(fs->fd, offset, SEEK_SET); if (ret >= 0) { ret = writev(fs->fd, iov, iovcnt); } #endif #ifdef CONFIG_SYNC_FILE_RANGE if (ret > 0 && ctx->export_flags & V9FS_IMMEDIATE_WRITEOUT) { /* * Initiate a writeback. This is not a data integrity sync. * We want to ensure that we don't leave dirty pages in the cache * after write when writeout=immediate is sepcified. */ sync_file_range(fs->fd, offset, ret, SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE); } #endif return ret; }
15,169
0
static int ppc6xx_tlb_check (CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw, int access_type) { ppc6xx_tlb_t *tlb; int nr, best, way; int ret; best = -1; ret = -1; /* No TLB found */ for (way = 0; way < env->nb_ways; way++) { nr = ppc6xx_tlb_getnum(env, eaddr, way, access_type == ACCESS_CODE ? 1 : 0); tlb = &env->tlb[nr].tlb6; /* This test "emulates" the PTE index match for hardware TLBs */ if ((eaddr & TARGET_PAGE_MASK) != tlb->EPN) { #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "TLB %d/%d %s [" ADDRX " " ADDRX "] <> " ADDRX "\n", nr, env->nb_tlb, pte_is_valid(tlb->pte0) ? "valid" : "inval", tlb->EPN, tlb->EPN + TARGET_PAGE_SIZE, eaddr); } #endif continue; } #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "TLB %d/%d %s " ADDRX " <> " ADDRX " " ADDRX " %c %c\n", nr, env->nb_tlb, pte_is_valid(tlb->pte0) ? "valid" : "inval", tlb->EPN, eaddr, tlb->pte1, rw ? 'S' : 'L', access_type == ACCESS_CODE ? 'I' : 'D'); } #endif switch (pte32_check(ctx, tlb->pte0, tlb->pte1, 0, rw)) { case -3: /* TLB inconsistency */ return -1; case -2: /* Access violation */ ret = -2; best = nr; break; case -1: default: /* No match */ break; case 0: /* access granted */ /* XXX: we should go on looping to check all TLBs consistency * but we can speed-up the whole thing as the * result would be undefined if TLBs are not consistent. */ ret = 0; best = nr; goto done; } } if (best != -1) { done: #if defined (DEBUG_SOFTWARE_TLB) if (loglevel != 0) { fprintf(logfile, "found TLB at addr 0x%08lx prot=0x%01x ret=%d\n", ctx->raddr & TARGET_PAGE_MASK, ctx->prot, ret); } #endif /* Update page flags */ pte_update_flags(ctx, &env->tlb[best].tlb6.pte1, ret, rw); } return ret; }
15,170
0
static inline bool media_is_dvd(SCSIDiskState *s) { uint64_t nb_sectors; if (s->qdev.type != TYPE_ROM) { return false; } if (!bdrv_is_inserted(s->qdev.conf.bs)) { return false; } bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors); return nb_sectors > CD_MAX_SECTORS; }
15,171
0
int avpriv_exif_decode_ifd(AVCodecContext *avctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata) { int i, ret; int entries; entries = ff_tget_short(gbytes, le); if (bytestream2_get_bytes_left(gbytes) < entries * 12) { return AVERROR_INVALIDDATA; } for (i = 0; i < entries; i++) { if ((ret = exif_decode_tag(avctx, gbytes, le, depth, metadata)) < 0) { return ret; } } // return next IDF offset or 0x000000000 or a value < 0 for failure return ff_tget_long(gbytes, le); }
15,174
0
DeviceState *qdev_create(BusState *bus, const char *name) { DeviceType *t; DeviceState *dev; for (t = device_type_list; t; t = t->next) { if (strcmp(t->info->name, name) == 0) { break; } } if (!t) { hw_error("Unknown device '%s'\n", name); } dev = qemu_mallocz(t->info->size); dev->type = t; if (!bus) { /* ???: This assumes system busses have no additional state. */ if (!main_system_bus) { main_system_bus = qbus_create(BUS_TYPE_SYSTEM, sizeof(BusState), NULL, "main-system-bus"); } bus = main_system_bus; } if (t->info->bus_type != bus->type) { /* TODO: Print bus type names. */ hw_error("Device '%s' on wrong bus type (%d/%d)", name, t->info->bus_type, bus->type); } dev->parent_bus = bus; LIST_INSERT_HEAD(&bus->children, dev, sibling); return dev; }
15,175
0
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) { if (ri->opc2 & 4) { /* Other states are only available with TrustZone; in * a non-TZ implementation these registers don't exist * at all, which is an Uncategorized trap. This underdecoding * is safe because the reginfo is NO_MIGRATE. */ return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; }
15,177
0
on_host_init(VSCMsgHeader *mhHeader, VSCMsgInit *incoming) { uint32_t *capabilities = (incoming->capabilities); int num_capabilities = 1 + ((mhHeader->length - sizeof(VSCMsgInit)) / sizeof(uint32_t)); int i; QemuThread thread_id; incoming->version = ntohl(incoming->version); if (incoming->version != VSCARD_VERSION) { if (verbose > 0) { printf("warning: host has version %d, we have %d\n", verbose, VSCARD_VERSION); } } if (incoming->magic != VSCARD_MAGIC) { printf("unexpected magic: got %d, expected %d\n", incoming->magic, VSCARD_MAGIC); return -1; } for (i = 0 ; i < num_capabilities; ++i) { capabilities[i] = ntohl(capabilities[i]); } /* Future: check capabilities */ /* remove whatever reader might be left in qemu, * in case of an unclean previous exit. */ send_msg(VSC_ReaderRemove, VSCARD_MINIMAL_READER_ID, NULL, 0); /* launch the event_thread. This will trigger reader adds for all the * existing readers */ qemu_thread_create(&thread_id, "vsc/event", event_thread, NULL, 0); return 0; }
15,178
0
static GenericList *qmp_input_next_list(Visitor *v, GenericList *tail, size_t size) { QmpInputVisitor *qiv = to_qiv(v); StackObject *so = &qiv->stack[qiv->nb_stack - 1]; if (!so->entry) { return NULL; } tail->next = g_malloc0(size); return tail->next; }
15,180
0
static size_t handle_aiocb_ioctl(struct qemu_paiocb *aiocb) { int ret; ret = ioctl(aiocb->aio_fildes, aiocb->aio_ioctl_cmd, aiocb->aio_ioctl_buf); if (ret == -1) return -errno; /* * This looks weird, but the aio code only consideres a request * successfull if it has written the number full number of bytes. * * Now we overload aio_nbytes as aio_ioctl_cmd for the ioctl command, * so in fact we return the ioctl command here to make posix_aio_read() * happy.. */ return aiocb->aio_nbytes; }
15,181
0
static always_inline void gen_load_mem (DisasContext *ctx, void (*tcg_gen_qemu_load)(TCGv t0, TCGv t1, int flags), int ra, int rb, int32_t disp16, int fp, int clear) { TCGv addr; if (unlikely(ra == 31)) return; addr = tcg_temp_new(TCG_TYPE_I64); if (rb != 31) { tcg_gen_addi_i64(addr, cpu_ir[rb], disp16); if (clear) tcg_gen_andi_i64(addr, addr, ~0x7); } else { if (clear) disp16 &= ~0x7; tcg_gen_movi_i64(addr, disp16); } if (fp) tcg_gen_qemu_load(cpu_fir[ra], addr, ctx->mem_idx); else tcg_gen_qemu_load(cpu_ir[ra], addr, ctx->mem_idx); tcg_temp_free(addr); }
15,182
0
int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, int flags) { target_ulong len_mask = ~(len - 1); CPUWatchpoint *wp; TAILQ_FOREACH(wp, &env->watchpoints, entry) { if (addr == wp->vaddr && len_mask == wp->len_mask && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { cpu_watchpoint_remove_by_ref(env, wp); return 0; } } return -ENOENT; }
15,184
0
static int segment_start(AVFormatContext *s, int write_header) { SegmentContext *c = s->priv_data; AVFormatContext *oc = c->avf; int err = 0; if (write_header) { avformat_free_context(oc); c->avf = NULL; if ((err = segment_mux_init(s)) < 0) return err; oc = c->avf; } if (c->wrap) c->number %= c->wrap; if (av_get_frame_filename(oc->filename, sizeof(oc->filename), s->filename, c->number++) < 0) return AVERROR(EINVAL); if ((err = avio_open2(&oc->pb, oc->filename, AVIO_FLAG_WRITE, &s->interrupt_callback, NULL)) < 0) return err; if (oc->oformat->priv_class && oc->priv_data) av_opt_set(oc->priv_data, "resend_headers", "1", 0); /* mpegts specific */ if (write_header) { if ((err = avformat_write_header(oc, NULL)) < 0) return err; } return 0; }
15,185
0
static void s390x_cpu_set_id(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { S390CPU *cpu = S390_CPU(obj); DeviceState *dev = DEVICE(obj); const int64_t min = 0; const int64_t max = UINT32_MAX; Error *err = NULL; int64_t value; if (dev->realized) { error_setg(errp, "Attempt to set property '%s' on '%s' after " "it was realized", name, object_get_typename(obj)); return; } visit_type_int(v, name, &value, &err); if (err) { error_propagate(errp, err); return; } if (value < min || value > max) { error_setg(errp, "Property %s.%s doesn't take value %" PRId64 " (minimum: %" PRId64 ", maximum: %" PRId64 ")" , object_get_typename(obj), name, value, min, max); return; } cpu->id = value; }
15,186
0
static void sunmouse_event(void *opaque, int dx, int dy, int dz, int buttons_state) { ChannelState *s = opaque; int ch; MS_DPRINTF("dx=%d dy=%d buttons=%01x\n", dx, dy, buttons_state); ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */ if (buttons_state & MOUSE_EVENT_LBUTTON) ch ^= 0x4; if (buttons_state & MOUSE_EVENT_MBUTTON) ch ^= 0x2; if (buttons_state & MOUSE_EVENT_RBUTTON) ch ^= 0x1; put_queue(s, ch); ch = dx; if (ch > 127) ch=127; else if (ch < -127) ch=-127; put_queue(s, ch & 0xff); ch = -dy; if (ch > 127) ch=127; else if (ch < -127) ch=-127; put_queue(s, ch & 0xff); // MSC protocol specify two extra motion bytes put_queue(s, 0); put_queue(s, 0); }
15,188
0
void bdrv_dirty_bitmap_serialize_part(const BdrvDirtyBitmap *bitmap, uint8_t *buf, uint64_t start, uint64_t count) { hbitmap_serialize_part(bitmap->bitmap, buf, start, count); }
15,189
0
int nbd_init(int fd, QIOChannelSocket *sioc, NBDExportInfo *info, Error **errp) { unsigned long sectors = info->size / BDRV_SECTOR_SIZE; if (info->size / BDRV_SECTOR_SIZE != sectors) { error_setg(errp, "Export size %" PRIu64 " too large for 32-bit kernel", info->size); return -E2BIG; } trace_nbd_init_set_socket(); if (ioctl(fd, NBD_SET_SOCK, (unsigned long) sioc->fd) < 0) { int serrno = errno; error_setg(errp, "Failed to set NBD socket"); return -serrno; } trace_nbd_init_set_block_size(BDRV_SECTOR_SIZE); if (ioctl(fd, NBD_SET_BLKSIZE, (unsigned long)BDRV_SECTOR_SIZE) < 0) { int serrno = errno; error_setg(errp, "Failed setting NBD block size"); return -serrno; } trace_nbd_init_set_size(sectors); if (info->size % BDRV_SECTOR_SIZE) { trace_nbd_init_trailing_bytes(info->size % BDRV_SECTOR_SIZE); } if (ioctl(fd, NBD_SET_SIZE_BLOCKS, sectors) < 0) { int serrno = errno; error_setg(errp, "Failed setting size (in blocks)"); return -serrno; } if (ioctl(fd, NBD_SET_FLAGS, (unsigned long) info->flags) < 0) { if (errno == ENOTTY) { int read_only = (info->flags & NBD_FLAG_READ_ONLY) != 0; trace_nbd_init_set_readonly(); if (ioctl(fd, BLKROSET, (unsigned long) &read_only) < 0) { int serrno = errno; error_setg(errp, "Failed setting read-only attribute"); return -serrno; } } else { int serrno = errno; error_setg(errp, "Failed setting flags"); return -serrno; } } trace_nbd_init_finish(); return 0; }
15,190
0
void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl) { int dcbz_size = env->dcache_line_size; #if !defined(CONFIG_USER_ONLY) && defined(TARGET_PPC64) if (!is_dcbzl && (env->excp_model == POWERPC_EXCP_970) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { dcbz_size = 32; } #endif /* XXX add e500mc support */ do_dcbz(env, addr, dcbz_size); }
15,192
0
static void nvme_rw_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeSQueue *sq = req->sq; NvmeCtrl *n = sq->ctrl; NvmeCQueue *cq = n->cq[sq->cqid]; block_acct_done(bdrv_get_stats(n->conf.bs), &req->acct); if (!ret) { req->status = NVME_SUCCESS; } else { req->status = NVME_INTERNAL_DEV_ERROR; } qemu_sglist_destroy(&req->qsg); nvme_enqueue_req_completion(cq, req); }
15,193