content
stringlengths
5
1.05M
# -*- test-case-name: mimic.test.test_dns -*- """ Defines get for reverse dns """ import json from uuid import uuid4 from six import text_type from zope.interface import implementer from twisted.plugin import IPlugin from mimic.rest.mimicapp import MimicApp from mimic.catalog import Entry from mimic.catalog import Endpoint from mimic.imimic import IAPIMock @implementer(IAPIMock, IPlugin) class DNSApi(object): """ Rest endpoints for mocked DNS Api. """ def __init__(self, regions=[""]): """ Create a DNSApi. """ self._regions = regions def catalog_entries(self, tenant_id): """ List catalog entries for the DNS API. """ return [ Entry( tenant_id, "rax:dns", "cloudDNS", [ Endpoint(tenant_id, region, text_type(uuid4()), prefix="v1.0") for region in self._regions ] ) ] def resource_for_region(self, region, uri_prefix, session_store): """ Get an :obj:`twisted.web.iweb.IResource` for the given URI prefix; implement :obj:`IAPIMock`. """ return DNSMock(self, uri_prefix, session_store, region).app.resource() class DNSMock(object): """ DNS Mock """ def __init__(self, api_mock, uri_prefix, session_store, name): """ Create a DNS region with a given URI prefix """ self.uri_prefix = uri_prefix self._api_mock = api_mock self._session_store = session_store self._name = name app = MimicApp() @app.route('/v1.0/<string:tenant_id>/rdns/cloudServersOpenStack', methods=['GET']) def get_PTR_records(self, request, tenant_id): """ Lists all PTR records configured for a specified Cloud device """ request.setResponseCode(404) return json.dumps({'message': 'Not Found', 'code': 404, 'details': 'No PTR records found'})
from .. import arr import numpy as np import math cfg = { 'name': 'PVI - Plethysmographic Variability Index', 'group': 'Medical algorithms', 'desc': 'Calculate pulse pressure variation', 'reference': 'Aboy et al, An Enhanced Automatic Algorithm for Estimation of Respiratory Variations in Arterial Pulse Pressure During Regions of Abrupt Hemodynamic Changes. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 10, OCTOBER 2009', 'overlap': 3, 'interval': 40, 'inputs': [{'name': 'pleth', 'type': 'wav'}], 'outputs': [{'name': 'rr', 'type': 'num', 'min': 0, 'max': 30, 'unit': '/min'}, {'name': 'pvi', 'type': 'num', 'min': 0, 'max': 30, 'unit': '%'}], 'pp': 0 } def b(u): if -5 <= u <= 5: return math.exp(-u * u / 2) else: return 0 def run(inp, opt, cfg): """ calculate ppv from arterial waveform :param art: arterial waveform :return: max, min, upper envelope, lower envelope, respiratory rate, ppv """ data = arr.interp_undefined(inp['pleth']['vals']) srate = inp['pleth']['srate'] data = arr.resample_hz(data, srate, 100) srate = 100 if len(data) < 30 * srate: return [{}, {}, {}, {}, {}, [], []] minlist, maxlist = arr.detect_peaks(data, srate) maxlist = maxlist[1:] # estimates the upper ue(n) and lower le(n) envelopes xa = np.array([data[idx] for idx in minlist]) le = np.array([0] * len(data)) for i in range(len(data)): be = np.array([b((i - idx) / (0.2 * srate)) for idx in minlist]) s = sum(be) if s != 0: le[i] = np.dot(xa, be) / s xb = np.array([data[idx] for idx in maxlist]) ue = np.array([0] * len(data)) for i in range(len(data)): be = np.array([b((i - idx) / (0.2 * srate)) for idx in maxlist]) s = sum(be) if s != 0: ue[i] = np.dot(xb, be) / s re = ue - le re[re < 0] = 0 # estimates resp rate rr = arr.estimate_resp_rate(re, srate) # split by respiration nsamp_in_breath = int(srate * 60 / rr) m = int(len(data) / nsamp_in_breath) # m segments exist pps = [] for i in range(m - 1): imax = arr.max_idx(re, i * nsamp_in_breath, (i+2) * nsamp_in_breath) # 50% overlapping imin = arr.min_idx(re, i * nsamp_in_breath, (i+2) * nsamp_in_breath) ppmax = re[imax] ppmin = re[imin] ppe = 2 * (ppmax - ppmin) / (ppmax + ppmin) * 100 # estimate if ppe > 50 or ppe < 0: continue pp = cfg['pp'] if pp == 0: pp = ppe err = abs(ppe - pp) if err < 1: pp = ppe elif err < 25: pp = (pp + ppe) / 2 else: pass # dont update cfg['pp'] = pp pps.append({'dt': (i * nsamp_in_breath) / srate, 'val': pp}) return [ [{'dt': cfg['interval'], 'val': rr}], pps ]
#!/usr/bin/env python3 import argparse import logging from shared import common_utils from operations import operations if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(levelname)s : %(message)s") parser = argparse.ArgumentParser(prog='ALU UCE Auto Builder') sub_parsers = parser.add_subparsers(dest='subcommand', title='Subcommands') sub_parsers.metavar = 'subcommand-name' for operation, spec in operations.items(): subcommand_parser = sub_parsers.add_parser(operation.replace('_', '-'), help=spec['help']) common_utils.add_arguments_to_parser(subcommand_parser, operations[operation]['options']) args = vars(parser.parse_args()) if args['subcommand']: subcommand = args['subcommand'].replace('-', '_') operations[args['subcommand'].replace('-', '_')]['runner'](args)
from typing import Optional, Union, Tuple, List, Dict from torch import nn def init_weights(module: nn.Module): """ Initialize one module. It uses xavier_norm to initialize nn.Embedding and xavier_uniform to initialize nn.Linear's weight. Parameters ---------- module A Pytorch nn.Module. """ if isinstance(module, nn.Embedding): nn.init.xavier_normal_(module.weight) elif isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def assign_encoder_layer_ids( encoder_names: List[List[str]], ): """ Assign ids to encoder layers. The encoder may contain several blocks e.g., block1 and block2. This function iterates through all the layers of each block from the input end towards the output end. It increases 1 on the layer id when the detected digit in a layer name changes. Parameters ---------- encoder_names Encoder layer names. Returns ------- name_to_id The encoder layer-to-id mapping. encoder_layer_num The encoder layer number. """ name_to_id = {} cur_id = 0 for i, group_names in enumerate(encoder_names): last_inferred_id = -1 for n in group_names: detect_id = False n_splits = n.split('.') for split in n_splits: # the first digit encountered is used to infer layer id if split.isdigit(): inferred_id = int(split) # increase at most 1 one time if inferred_id != last_inferred_id: cur_id += 1 # layer.0 -> layer_id 1 last_inferred_id = inferred_id name_to_id[n] = cur_id detect_id = True break if detect_id is False: raise ValueError(f"parameter name: {n} not has no id inside") if len(name_to_id) > 0: encoder_layer_num = max(name_to_id.values()) else: encoder_layer_num = 0 return name_to_id, encoder_layer_num def assign_non_encoder_layer_ids( non_encoder_names: List[str], layer_id: int, ): """ Assign the provided id to non-encoder layers. Parameters ---------- non_encoder_names Names layers not belonging to an encoder. layer_id provided id. Returns ------- A dictionary mapping the layer names (keys) to their ids (values). """ name_to_id = {} for n in non_encoder_names: name_to_id[n] = layer_id return name_to_id def split_encoder_non_encoder(names: List[str]): """ Group layer names into two types: encoder and non-encoder. A layer belongs to encoder if its name contains at least one digit. It uses this rule since a model's encoder in Pytorch's implementation is generally wrapped by nn.Sequential() or nn.ModuleList(), which produce digits in layer names. Parameters ---------- names Model layer names. Returns ------- encoder_names A list of encoder layer names. non_encoder_names A list of non-encoder layer names. """ encoder_names = [] non_encoder_names = [] for n in names: is_encoder = False for i in n.split("."): if i.isdigit(): encoder_names.append(n) is_encoder = True break if not is_encoder: non_encoder_names.append(n) return encoder_names, non_encoder_names def group_param_names( names: List[str], pre_encoder_patterns: Tuple[str, ...], post_encoder_patterns: Tuple[str, ...], model_prefix: Optional[str] = None, ): """ Group layer names into three types: pre-encoder, encoder, and post-encoder. If "model_prefix" is provided, the selected layer names must start with it. In this case, the left names will be returned for the next-time processing. This function first extracts the first-level children modules' names and classify them into encoder and non-encoder layers. Note that an encoder may consist of several manually named children modules, e.g., block1 and block2. The non-encoder layers are further subdivided into pre-encoder and post-encoder. Parameters ---------- names Model layer names pre_encoder_patterns Patterns to identify a layer as a pre-encoder layer. If a layer name contains one pattern, the layer will be grouped into pre-encoder layers. post_encoder_patterns Patterns to identify a layer as a post-encoder layer. If a layer name contains one pattern, the layer will be grouped into post-encoder layers. model_prefix A prefix to filter layer names. Only layer names starting with it will be selected. Returns ------- left_names The layer names left for the next-time processing. encoder_names_grouped Encoder layer names. pre_encoder_names Names of layers before the encoder. post_encoder_names Names of layers after the encoder. """ # two set of patterns can't have intersections assert all(pre_p not in post_encoder_patterns for pre_p in pre_encoder_patterns) left_names = [] # in case model_prefix is provided, e.g., the clip model with image and text branches selected_names = [] for n in names: if model_prefix is not None and not n.startswith(model_prefix): left_names.append(n) else: selected_names.append(n) # split blocks at the first level children_prefix = [] for n in selected_names: child_name = n[len(model_prefix)+1:].split(".")[0] child_prefix = f"{model_prefix}.{child_name}" if child_prefix not in children_prefix: children_prefix.append(child_prefix) encoder_names_grouped = [] non_encoder_names = [] for child_prefix in children_prefix: per_names_group = [n for n in selected_names if n.startswith(child_prefix)] per_encoder_names, per_non_encoder_names = split_encoder_non_encoder(per_names_group) encoder_names_grouped.append(per_encoder_names) non_encoder_names.extend(per_non_encoder_names) pre_encoder_names = [] post_encoder_names = [] for n in non_encoder_names: if any(p in n for p in pre_encoder_patterns): pre_encoder_names.append(n) elif any(p in n for p in post_encoder_patterns): post_encoder_names.append(n) else: raise ValueError(f"parameter name: {n} belong to neither pre or post encoder names") # only process left names in next iteration return left_names, encoder_names_grouped, pre_encoder_names, post_encoder_names def reverse_layer_ids( encoder_name_to_id: dict, pre_enocder_name_to_id: dict, post_enocder_name_to_id: dict, ): """ The layer ids need to increase when going from the output end to the input end. We need to reverse the ids which were originally assigned in a decreasing order. Parameters ---------- encoder_name_to_id The layer-to-id mapping of encoder layers. pre_enocder_name_to_id The layer-to-id mapping of pre-encoder layers. post_enocder_name_to_id The layer-to-id mapping of post-encoder layers. Returns ------- The layer-to-id mapping of all layers with layer ids reversed. """ name_to_id = {**pre_enocder_name_to_id, **encoder_name_to_id, **post_enocder_name_to_id} if len(name_to_id) > 0: layer_num = max(name_to_id.values()) # if no post encoder layers, the minimum layer id should be 1 if len(post_enocder_name_to_id) == 0: layer_num += 1 for n, layer_id in name_to_id.items(): name_to_id[n] = layer_num - layer_id return name_to_id def assign_layer_ids( names: List[str], pre_encoder_patterns: Tuple[str, ...], post_encoder_patterns: Tuple[str, ...], model_pre: Optional[str] = None, ): """ Assign ids to all layers. It splits a model into three parts: pre-encoder, encoder, and post-encoder. Encoder is generally a stack of multiple similar layers, such as transformer layers. Since encoder is generally wrapped by nn.Sequential() or nn.ModuleList(), its inside layer names contain digits. It sets 0 as the ids of all post-encoder layers and a maximum id (layer_num) for the all the pre-encoder layers. The encoder layers have decreasing ids from the input to the output ends. Parameters ---------- names model layer names. pre_encoder_patterns Patterns to identify a layer as a pre-encoder layer. If a layer name contains one pattern, the layer will be grouped into pre-encoder layers. post_encoder_patterns Patterns to identify a layer as a post-encoder layer. If a layer name contains one pattern, the layer will be grouped into post-encoder layers. model_pre The layer names' prefix. Only the layer names with this prefix will be assigned ids. The left layer names will be returned. Returns ------- name_to_id A dictionary mapping the layer names (keys) to their ids (values). left_names The layer names not starting with the "model_pre". """ left_names, encoder_names, pre_encoder_names, post_encoder_names = \ group_param_names( names=names, pre_encoder_patterns=pre_encoder_patterns, post_encoder_patterns=post_encoder_patterns, model_prefix=model_pre, ) # add a constraint if len(encoder_names) == 0 and len(pre_encoder_names) != 0: raise ValueError( f"encoder_names is empty, but pre_encoder_names has values: {pre_encoder_names}" ) encoder_name_to_id, encoder_layer_num = \ assign_encoder_layer_ids( encoder_names=encoder_names, ) pre_encoder_name_to_id = \ assign_non_encoder_layer_ids( non_encoder_names=pre_encoder_names, layer_id=0 ) post_encoder_name_to_id = \ assign_non_encoder_layer_ids( non_encoder_names=post_encoder_names, layer_id=encoder_layer_num + 1 ) name_to_id = reverse_layer_ids( encoder_name_to_id=encoder_name_to_id, pre_enocder_name_to_id=pre_encoder_name_to_id, post_enocder_name_to_id=post_encoder_name_to_id ) return name_to_id, left_names
import sys import time import ipdb import numpy as np import os path = os.path.realpath('../') if not path in sys.path: sys.path.insert(0, path) from pyDecorators import InOut, ChangeState, Catch class <YourLaserName>(object): def __init__(self, **kwargs): super(<YourLaserName>, self).__init__() self._open = False self._lbd = 0 self._cc = 0 self._scan_lim = [] self._scan_speed = 0 self._scan = 0 self._beep = 0 self._output = 0 self._is_scaning = False # self._is_changing_lbd = False self._no_error = <> self._haserr = False # Miscs self._err_msg = '' # -- Methods -- # --------------------------------------------------------- def Query(self, word): #querry method for your laser pass # -- Properties -- # --------------------------------------------------------- @property @InOut.output(bool) def connected(self): return self._open @connected.setter @Catch.error def connected(self,value): pass @property @InOut.output(bool) def output(self): word = <> self._output = self.Query(word) return self._output @output.setter @Catch.error @InOut.accepts(bool) def output(self,value): word = <> self.Query(word) self._output = value @property @InOut.output(float) def lbd(self): word = <> self._lbd = self.Query(word) return self._lbd @lbd.setter @InOut.accepts(float) @Catch.error def lbd(self, value): self._targetlbd = value self.Query('OUTP:TRACK 1') word = <> self.Query(word) self._lbd = value @property @InOut.output(float) def current(self): word = <> self._cc = self.Query(word) return self._cc @current.setter @Catch.error @InOut.accepts(float) def current(self, value): word = <> self.Query(word) self._cc = value @property @InOut.output(float,float) def scan_limit(self): word1 = 'SOUR:WAVE:START?' word2 = 'SOUR:WAVE:STOP?' self._scan_lim = [self.Query(word1), self.Query(word2)] return self._scan_lim @scan_limit.setter @Catch.error @InOut.accepts(list) def scan_limit(self, value): start = value[0] stop = value[1] word1 = 'SOUR:WAVE:START {}'.format(start) self.Query(word1) word2 = 'SOUR:WAVE:STOP {}'.format(stop) self.Query(word2) self._scan_lim = value @property @Catch.error @InOut.output(float) def scan_speed(self): word1 = 'SOUR:WAVE:SLEW:FORW?' self._scan_speed = self.Query(word1) return self._scan_speed @scan_speed.setter @Catch.error @InOut.accepts(float) def scan_speed(self, value): word = <> self.Query(word) word = <> self.Query(word) self._scan_speed = value @property @InOut.output(float) def scan(self): word = <> self._scan = self.Query(word) return self._scan @scan.setter @Catch.error @ChangeState.scan("OUTPut:SCAN:START",'OUTPut:SCAN:STOP') @InOut.accepts(bool) def scan(self, value): self.Query('SOUR:WAVE:DESSCANS 1') self._scan = value if self._scan: self.Query("OUTPut:SCAN:START") else: self.Query("OUTPut:SCAN:STOP") @property @InOut.output(float) def pzt(self): word = <> self._pzt = self.Query(word) return self._pzt @pzt.setter @Catch.error @InOut.accepts(float) def pzt(self, value): word = <> self.Query(word) self._pzt = value @property @InOut.output(bool) def beep(self): word = <> self._beep = self.Query(word) return self.beep @beep.setter @Catch.error @InOut.accepts(bool) def beep(self, value): word = <> self.Query(word) self._beep = value @property def identity(self): word = <> self._id = self.Query(word) return self._id @property def error(self): word = <> self._error = '' err = self.Query(word) return err @property def has_error(self): word = <> dum = self.Query(word) if dum =='128': self._haserr = True if dum == '0': self._haserr = False return self._haserr @property @InOut.output(bool) def _is_changing_lbd(self): return self.Query('OUTP:TRACK?') @property def clear(self): pass @clear.setter @InOut.accepts(bool) def clear(self,val): if val: self.Query('*CLS') if __name__ == '__main__': pass
class Planet(): """ This object represents a planet _________________________________________________ Attributes: name, mass, aphelion, perihelion, semi_major_axis, eccentricity, orbital_period, synodic_peroid _________________________________________________ """ def __init__(self, name=None, mass=None, aphelion = None, perihelion = None, semi_major_axis = None, eccentricity = None, orbital_period = None, synodic_peroid = None ): self.name = name self.mass = mass self.aphelion = aphelion self.perihelion = perihelion self.semi_major_axis = semi_major_axis self.eccentricity = eccentricity self.orbital_period = orbital_period self.synodic_peroid = synodic_peroid
"""Test migration Revision ID: 5df4b399aae2 Revises: 486c860564a2 Create Date: 2022-03-17 11:41:30.500797 """ from alembic import op # revision identifiers, used by Alembic. revision = '5df4b399aae2' down_revision = '486c860564a2' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### # add filters from sncosmo 2.7.0 in the right place with op.get_context().autocommit_block(): op.execute( "ALTER TYPE bandpasses ADD VALUE IF NOT EXISTS 'atlasc' AFTER 'ps1::w'" ) op.execute( "ALTER TYPE bandpasses ADD VALUE IF NOT EXISTS 'atlaso' AFTER 'atlasc'" ) op.execute( "ALTER TYPE bandpasses ADD VALUE IF NOT EXISTS '2massj' AFTER 'atlaso'" ) op.execute( "ALTER TYPE bandpasses ADD VALUE IF NOT EXISTS '2massh' AFTER '2massj'" ) op.execute( "ALTER TYPE bandpasses ADD VALUE IF NOT EXISTS '2massks' AFTER '2massh'" ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
from consolemenu import * from consolemenu.items import * import modules class Modules: def __init__(self): self.modules = {} self.menu = ConsoleMenu("Modules", "Run code on the db data.") def register_module(self, module_name, module_func): self.modules[module_name] = module_func def run_module(self, module_name): self.modules[module_name]() def print_menu(self): self.menu = SelectionMenu(self.modules.keys(), "Run Module:") self.menu.show() self.menu.join() selection = list(self.modules.keys())[self.menu.selected_option] self.run_module(selection) if __name__ == "__main__": modulesHandler = Modules() modulesHandler.register_module("Convert Watt to Kelvin", modules.convert_W2K_module) modulesHandler.register_module("Convert Kelvin to Watt", modules.convert_K2W_module) modulesHandler.register_module( "Check for faulty values in the dataset", modules.check_for_faulty_values_in_dataset, ) modulesHandler.print_menu()
""" Generate disconnected testrespiratory network """ import graph_tool.all as gt import pickle f = open('param_files/param_dashevskiy.pkl') p = pickle.load(f) f.close() # setup "enum" types CS = 0 CI = 1 TS = 2 Sil = 3 gCaN_array = (p['gCaNS'], p['gCaNI'], p['gCaNTS'], p['gCaNSil']); gP_array = (p['gPS'], p['gPI'], p['gPTS'], p['gPSil']); EL_array = (p['ELS'], p['ELI'], p['ELTS'], p['ELSil']); g = gt.Graph() g.add_vertex(4) edge_gsyn = g.new_edge_property("double") vertex_type = g.new_vertex_property("int") # vertex_gCaN = g.new_vertex_property("double") # vertex_gP = g.new_vertex_property("double") # vertex_EL = g.new_vertex_property("double") # CS neuron v = g.vertex(0) vertex_type[v] = CS # vertex_gCaN[v] = gCaN_array[CS] # vertex_gP[v] = gP_array[CS] # vertex_EL[v] = EL_array[CS] # CI neuron v = g.vertex(1) vertex_type[v] = CI # TS neuron v = g.vertex(2) vertex_type[v] = TS # SIL neuron v = g.vertex(3) vertex_type[v] = Sil g.edge_properties["gsyn"] = edge_gsyn g.vertex_properties["type"] = vertex_type g.save("../graphs/test.gml", fmt="gml")
supported_vector_sizes = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096] result = "" for i in range(len(supported_vector_sizes)): vsize = supported_vector_sizes[i] if i == 0: result += "#if" else: result += "#elif" result += " STANDARD_VECTOR_SIZE == " + str(vsize) + "\n" result += "const sel_t FlatVector::incremental_vector[] = {" for idx in range(vsize): if idx != 0: result += ", " result += str(idx) result += "};\n" result += """#else #error Unsupported VECTOR_SIZE! #endif""" print(result)
def read_source_json(source): from sheetsite.json_spreadsheet import JsonSpreadsheet wb = JsonSpreadsheet(source['filename']) return wb
"""Functions for making test data JSON-serializable. """ from collections import Counter import json def serializable(obj): """Return whether `obj` is JSON-serializable.""" try: json.dumps(obj) except (TypeError, OverflowError): return False return True def make_collector(report, result): """Return JSON-serializable collector node.""" collector = { 'nodeid': report.nodeid, # This is the outcome of the collection, not the test outcome 'outcome': report.outcome, 'result': result, } if report.longrepr: # The collection report doesn't provide crash details, so we can only # add the message, but no traceback etc. collector['longrepr'] = str(report.longrepr) return collector def make_collectitem(item): """Return JSON-serializable collection item.""" json_item = { 'nodeid': item.nodeid, 'type': item.__class__.__name__, } try: location = item.location except AttributeError: pass else: json_item['lineno'] = location[1] return json_item def make_testitem(nodeid, keywords, location): """Return JSON-serializable test item.""" item = { 'nodeid': nodeid, 'lineno': location[1], # The outcome will be overridden in case of failure 'outcome': 'passed', } if keywords: item['keywords'] = keywords return item def make_teststage(report, stdout, stderr, log, omit_traceback): """Return JSON-serializable test stage (setup/call/teardown).""" stage = { 'duration': report.duration, 'outcome': report.outcome, } crash = getattr(report.longrepr, 'reprcrash', None) if crash is not None: stage['crash'] = make_fileloc(crash) if not omit_traceback: try: stage['traceback'] = [make_fileloc(x.reprfileloc) for x in report.longrepr.reprtraceback.reprentries] except AttributeError: # Happens if no detailed tb entries are available (e.g. due to # `--tb=native`, see `_pytest._code.code.ReprTracebackNative`). # Then we can't provide any tb info beyond the raw error text # in `longrepr`, so just pass quietly. pass if stdout: stage['stdout'] = stdout if stderr: stage['stderr'] = stderr if log: stage['log'] = log # Error representation string (attr is computed property, so get only once) longrepr = report.longreprtext if longrepr: stage['longrepr'] = longrepr return stage def make_fileloc(loc): """Return JSON-serializable file location representation. See `_pytest._code.code.ReprFileLocation`. """ return { 'path': loc.path, 'lineno': loc.lineno, 'message': loc.message, } def make_summary(tests, **kwargs): """Return JSON-serializable test result summary.""" summary = Counter([t['outcome'] for t in tests.values()]) summary['total'] = sum(summary.values()) summary.update(kwargs) return summary def make_warning(warning_message, when): # `warning_message` is a stdlib warnings.WarningMessage object return { 'message': str(warning_message.message), 'category': warning_message.category.__name__, 'when': when, 'filename': warning_message.filename, 'lineno': warning_message.lineno } def make_report(**kwargs): return dict(kwargs)
#!/usr/bin/env python3 from __future__ import division from builtins import str import os, sys, time, json, requests, logging import re, traceback, argparse, copy, bisect from xml.etree import ElementTree from UrlUtils import UrlUtils import util import gtUtil from util import ACQ, InvalidOrbitException import datetime from datetime import datetime, timedelta import groundTrack from osgeo import ogr import lightweight_water_mask import csv from dateutil import parser # set logger log_format = "[%(asctime)s: %(levelname)s/%(name)s/%(funcName)s] %(message)s" logging.basicConfig(format=log_format, level=logging.INFO) class LogFilter(logging.Filter): def filter(self, record): if not hasattr(record, 'id'): record.id = '--' return True logger = logging.getLogger(os.path.splitext(os.path.basename(__file__))[0]) logger.setLevel(logging.INFO) logger.addFilter(LogFilter()) SLC_RE = re.compile(r'(?P<mission>S1\w)_IW_SLC__.*?' + r'_(?P<start_year>\d{4})(?P<start_month>\d{2})(?P<start_day>\d{2})' + r'T(?P<start_hour>\d{2})(?P<start_min>\d{2})(?P<start_sec>\d{2})' + r'_(?P<end_year>\d{4})(?P<end_month>\d{2})(?P<end_day>\d{2})' + r'T(?P<end_hour>\d{2})(?P<end_min>\d{2})(?P<end_sec>\d{2})_.*$') BASE_PATH = os.path.dirname(__file__) MISSION = 'S1A' def query_es(query, es_index=None): logger.info("query: %s" %query) """Query ES.""" uu = UrlUtils() es_url = uu.rest_url rest_url = es_url[:-1] if es_url.endswith('/') else es_url url = "{}/_search?search_type=scan&scroll=60&size=100".format(rest_url) if es_index: url = "{}/{}/_search?search_type=scan&scroll=60&size=100".format(rest_url, es_index) logger.info("url: {}".format(url)) r = requests.post(url, data=json.dumps(query)) if r.status_code != 200: print("Failed to query %s:\n%s" % (es_url, r.text)) print("query: %s" % json.dumps(query, indent=2)) print("returned: %s" % r.text) r.raise_for_status() scan_result = r.json() #logger.info("scan_result: {}".format(json.dumps(scan_result, indent=2))) count = scan_result['hits']['total'] if count == 0: return [] if '_scroll_id' not in scan_result: logger.info("_scroll_id not found in scan_result. Returning empty array for the query :\n%s" %query) return [] scroll_id = scan_result['_scroll_id'] hits = [] while True: r = requests.post('%s/_search/scroll?scroll=60m' % rest_url, data=scroll_id) res = r.json() scroll_id = res['_scroll_id'] if len(res['hits']['hits']) == 0: break hits.extend(res['hits']['hits']) return hits def query_aois(starttime, endtime): """Query ES for active AOIs that intersect starttime and endtime.""" es_index = "grq_*_area_of_interest" query = { "query": { "bool": { "should": [ { "bool": { "must": [ { "range": { "starttime": { "lte": endtime } } }, { "range": { "endtime": { "gte": starttime } } }, { "match": { "dataset_type": "area_of_interest" } } ] } }, { "filtered": { "query": { "bool": { "must": [ { "match": { "dataset_type": "area_of_interest" } }, { "range": { "starttime": { "lte": endtime } } } ] } }, "filter": { "missing": { "field": "endtime" } } } }, { "filtered": { "query": { "bool": { "must": [ { "match": { "dataset_type": "area_of_interest" } }, { "range": { "endtime": { "gte": starttime } } } ] } }, "filter": { "missing": { "field": "starttime" } } } } ] } }, "partial_fields" : { "partial" : { "include" : [ "id", "starttime", "endtime", "location", "metadata.user_tags", "metadata.priority" ] } } } # filter inactive hits = [i['fields']['partial'][0] for i in query_es(query) if 'inactive' not in i['fields']['partial'][0].get('metadata', {}).get('user_tags', [])] #logger.info("hits: {}".format(json.dumps(hits, indent=2))) #logger.info("aois: {}".format(json.dumps([i['id'] for i in hits]))) return hits def get_orbit_file(orbit_dt, platform): logger.info("get_orbit_file : %s : %s" %(orbit_dt, platform)) hits = util.query_orbit_file(orbit_dt, orbit_dt, platform) #logger.info("get_orbit_file : hits : \n%s\n" %hits) logger.info("get_orbit_file returns %s result " %len(hits)) #return hits for hit in hits: metadata = hit["metadata"] id = hit['id'] orbit_platform = metadata["platform"] logger.info(orbit_platform) if orbit_platform == platform: url = metadata["context"]["localize_urls"][0]["url"] return True, id, url return False, None, None def query_aois_new(starttime, endtime): """Query ES for active AOIs that intersect starttime and endtime.""" es_index = "grq_*_area_of_interest" query = { "query": { "bool": { "should": [ { "bool": { "must": [ { "range": { "starttime": { "lte": endtime } } }, { "range": { "endtime": { "gte": starttime } } }, { "match": { "dataset_type": "area_of_interest" } }, { "match": { "metadata.tags": "standard_product" } } ], "must_not": { "term": { "metadata.user_tags": "inactive" } } } }, { "filtered": { "query": { "bool": { "must": [ { "match": { "dataset_type": "area_of_interest" } }, { "range": { "starttime": { "lte": endtime } } }, { "match": { "metadata.user_tags": "standard_product" } } ], "must_not": { "term": { "metadata.user_tags": "inactive" } } } }, "filter": { "missing": { "field": "endtime" } } } }, { "filtered": { "query": { "bool": { "must": [ { "match": { "dataset_type": "area_of_interest" } }, { "range": { "endtime": { "gte": starttime } } }, { "match": { "metadata.user_tags": "standard_product" } } ], "must_not": { "term": { "metadata.user_tags": "inactive" } } } }, "filter": { "missing": { "field": "starttime" } } } } ] } }, "partial_fields" : { "partial" : { "include" : [ "id", "starttime", "endtime", "location", "metadata.user_tags", "metadata.priority" ] } } } # filter inactive hits = [i['fields']['partial'][0] for i in query_es(query) if 'inactive' not in i['fields']['partial'][0].get('metadata', {}).get('user_tags', [])] #logger.info("hits: {}".format(json.dumps(hits, indent=2))) #logger.info("aois: {}".format(json.dumps([i['id'] for i in hits]))) return hits def get_aois_by_id(aoi_list): aois = [] for aoi in aoi_list: aoi_data = get_aoi_data_by_id(aoi) logger.info("aoi_data : %s" %aoi_data) if aoi_data and len(aoi_data)>0: logger.info("Adding data for aoi: %s" %aoi) aois.extend(aoi_data) else: logger.info("No data found for aoi: %s" %aoi) return aois def get_aoi_data_by_id(aoi_id): es_index = "grq_*_area_of_interest" # query query = { "query":{ "bool":{ "must":[ { "term":{ "_id": aoi_id } }, ] } }, "partial_fields" : { "partial" : { "include" : [ "id", "starttime", "endtime", "location" ] } } } # filter inactive hits = [i['fields']['partial'][0] for i in query_es(query)] logger.info("hits: {}".format(json.dumps(hits, indent=2))) #logger.info("aois: {}".format(json.dumps([i['id'] for i in hits]))) return hits def get_dem_type(acq): dem_type = "SRTM+v3" if acq['city'] is not None and len(acq['city'])>0: if acq['city'][0]['country_name'] is not None and acq['city'][0]['country_name'].lower() == "united states": dem_type="Ned1" return dem_type def getUpdatedTime(s, m): #date = dateutil.parser.parse(s, ignoretz=True) #new_date = s + timedelta(minutes = m) new_date = s + timedelta(minutes = m) return new_date def get_time(t): logger.info("get_time(t) : %s" %t) t = parser.parse(t).strftime('%Y-%m-%dT%H:%M:%S') t1 = datetime.strptime(t, '%Y-%m-%dT%H:%M:%S') logger.info("returning : %s" %t1) return t1 def isTrackSelected(land, water, land_area, water_area): selected = False total_acq_land = 0 for acq_land in land: total_acq_land+= acq_land if ((total_acq_land*100)/land)> 98: selected = True return selected def update_dateformat(d): logger.info("update_dateformat in: %s" %d) try: if isinstance(d, datetime): d = d.strftime('%Y-%m-%dT%H:%M:%SZ') elif isinstance(d, str): d = parser.parse(d).strftime('%Y-%m-%dT%H:%M:%SZ') else: logger.info("unknown type : %s" %type(d)) except Exception as err: logger.info(str(err)) logger.info("update_dateformat out: %s" %d) return d def update_dateformat2(d): logger.info("update_dateformat in: %s" %d) try: if isinstance(d, datetime): d = d.strftime('%Y%m%dT%H%M%S') elif isinstance(d, str): d = parser.parse(d).strftime('%Y%m%dT%H%M%S') else: logger.info("unknown type : %s" %type(d)) except Exception as err: logger.info(str(err)) logger.info("update_dateformat out: %s" %d) return d def write_result_file(result_file, result): try: with open(result_file, 'a') as fo: cw = csv.writer(fo, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) cw.writerow(["Date", "Orbit", "Type", "Track","Track_Land","Total_Acquisition_Land", "area_delta_in_resolution", "area_threshold_passed", "Orbit_Quality_Test_Passed", "Reference_Unique_IPF_Count", "Secondary_Unique_IPF_Count", "BlackList_Test_Passed", "Enumeration_Passed", "Candidate_Pairs", "Failure_Reason", "comment","Track_AOI_Intersection", "ACQ_POEORB_AOI_Intersection"]) cw.writerow([result.get('dt', ''), result.get('orbit_name', ''), "Primary", result.get('track', ''),result.get('Track_POEORB_Land', '') , result.get('ACQ_Union_POEORB_Land', ''), result.get('res', ''), result.get('area_threshold_passed', ''), result.get('WATER_MASK_PASSED', ''), result.get('primary_ipf_count', ''), result.get('secondary_ipf_count', ''), result.get('BL_PASSED', ''), result.get('matched', ''), result.get('candidate_pairs', ''), result.get('fail_reason', ''), result.get('comment', ''), result.get('Track_AOI_Intersection', ''), result.get('ACQ_POEORB_AOI_Intersection', '')]) except Exception as err: logger.info("Error writing to csv file : %s : " %str(err)) traceback.print_exc() def publish_result(reference_result, id_hash): version = "v2.0.0" logger.info("\nPUBLISH RESULT") #write_result_file(result_file, reference_result) orbit_type = 'poeorb' aoi_id = reference_result['aoi'].strip().replace(' ', '_') logger.info("aoi_id : %s" %aoi_id) reference_result['list_slave_dt']="00000000T000000" ACQ_RESULT_ID_TMPL = "S1-GUNW-acqlist-audit_trail-R{}-M{:d}S{:d}-TN{:03d}-{}-{}-{}-{}" id = ACQ_RESULT_ID_TMPL.format('M', reference_result.get('master_count', 0), reference_result.get('slave_count', 0), reference_result.get('track', 0), update_dateformat2(reference_result.get('list_master_dt', '')), update_dateformat2(reference_result.get('list_slave_dt', '')), orbit_type, id_hash[0:4]) logger.info("publish_result : id : %s " %id) #id = "acq-list-%s" %id_hash[0:4] prod_dir = id os.makedirs(prod_dir, 0o755) met_file = os.path.join(prod_dir, "{}.met.json".format(id)) ds_file = os.path.join(prod_dir, "{}.dataset.json".format(id)) aoi = [] track = [] full_id_hash = reference_result.get('full_id_hash', None) this_aoi = reference_result.get('aoi', None) if this_aoi: aoi.append(this_aoi) this_track = reference_result.get('track', None) if this_track: track.append(this_track) if full_id_hash: track, aoi = util.get_complete_track_aoi_by_hash(full_id_hash, track, aoi) logger.info("publish_result : Final AOI : {}, Final Track : {}".format(aoi, track)) logger.info("\n\npublish_result: PUBLISHING %s : " %id) #with open(met_file) as f: md = json.load(f) md = {} md['id'] = id md['aoi'] = aoi md['reference_orbit'] = reference_result.get('orbit_name', '') md['reference_orbit_quality_passed'] = reference_result.get('orbit_quality_check_passed', '') md['reference_tract_land'] = reference_result.get('Track_POEORB_Land', '') md['reference_total_acqusition_land'] = reference_result.get('ACQ_Union_POEORB_Land', '') md['pair_created'] = reference_result.get('result', '') md['track_number'] = track md['failure_reason'] = reference_result.get('fail_reason', '') md['comment'] = reference_result.get('comment', '') md['starttime'] = update_dateformat(reference_result.get('starttime', '')) md['endtime'] = update_dateformat(reference_result.get('endtime', '')) md['reference_area_threshold_passed'] = reference_result.get('area_threshold_passed', '') md['reference_date'] = update_dateformat(reference_result.get('dt', '')) md['reference_delta_area_sqkm'] = reference_result.get('delta_area', '') md['reference_delta_area_pixel'] = reference_result.get('res', '') md['union_geojson'] = reference_result.get('union_geojson', '') md['reference_dropped_ids']=reference_result.get('master_dropped_ids', []) md['full_id_hash']=reference_result.get('full_id_hash', '') md['reference_acquisitions'] = reference_result.get('master_acquisitions', []) md['secondary_acquisitions'] = reference_result.get('slave_acquisitions', []) md['reference_scenes'] = reference_result.get('master_scenes', []) md['secondary_scenes'] = reference_result.get('slave_scenes', []) md['secondary_date'] = update_dateformat(reference_result.get('dt', '')) md['failed_orbit'] = reference_result.get('failed_orbit', '') with open(met_file, 'w') as f: json.dump(md, f, indent=2) logger.info("publish_result : creating dataset file : %s" %ds_file) util.create_dataset_json(id, version, met_file, ds_file) def print_groups(grouped_matched): for track in grouped_matched["grouped"]: logger.info("\nTrack : %s" %track) for day_dt in sorted(grouped_matched["grouped"][track], reverse=True): logger.info("\tDate : %s" %day_dt) for acq in grouped_matched["grouped"][track][day_dt]: logger.info("\t\t %s" %acq[0]) def group_acqs_by_track_date_from_metadata(frames): logger.info("group_acqs_by_track_date_from_metadata") return util.group_acqs_by_track_multi_date(create_acqs_from_metadata(frames)) def create_acqs_from_metadata(frames): acqs = [] logger.info("frame length : %s" %len(frames)) for acq in frames: logger.info("create_acqs_from_metadata : %s" %acq['id']) acq_obj = util.create_acq_obj_from_metadata(acq) if acq_obj: acqs.append(acq_obj) return acqs def get_covered_acquisitions_by_track_date(aoi, acqs, threshold_pixel, orbit_file, orbit_dir, platform, result_file, selected_track_list): #util.print_acquisitions(aoi['id'], util.create_acqs_from_metadata(acqs)) logger.info("\nget_covered_acquisitions_by_track_date") #logger.info(acqs) logger.info("PROCESSING AOI : %s : \nlocation %s" %(aoi['id'], aoi['location'])) grouped_matched = util.group_acqs_by_track_date_from_metadata(acqs) #group_acqs_by_track(acqs) logger.info("grouped_matched Done") print_groups(grouped_matched) matched_ids = list(grouped_matched["acq_info"].keys()) #logger.info("grouped_matched : %s" %grouped_matched) logger.info("matched_ids : %s" %matched_ids) logger.info("PLATFORM : %s" %platform) orbit_type = "P" orbit_file = os.path.basename(orbit_file) mission = "S1A" if platform == "Sentinel-1B": mission = "S1B" selected_track_acqs = {} result_track_acqs = {} logger.info("Tracks to process : %s" %grouped_matched["grouped"]) for track in grouped_matched["grouped"]: logger.info("get_covered_acquisitions_by_track_date : Processing track : %s" %track) if len(selected_track_list)>0: if int(track) not in selected_track_list: logger.info("%s not in selected_track_list %s. So skipping this track" %(track, selected_track_list)) continue selected_track_dt_acqs = {} result_track_dt_acqs = {} for track_dt in grouped_matched["grouped"][track]: filtered_acd_ids, dropped_ids = util.filter_acq_ids(grouped_matched["acq_info"], grouped_matched["grouped"][track][track_dt]) logger.info("filtered_acd_ids : %s" %filtered_acd_ids) valid_orbit = False valid_orbit_err = '' try: selected, result, removed_ids = gtUtil.water_mask_check(track, track_dt, grouped_matched["acq_info"], filtered_acd_ids, aoi['location'], aoi['id'], threshold_pixel, mission, orbit_type, orbit_file, orbit_dir) valid_orbit = True orbit_name = orbit_file.split('.EOF')[0].strip() if len(removed_ids)>0: logger.info("Removed Acquisitions by WaterMaskTest : %s" %removed_ids) for acq_id in removed_ids: logger.info("removing %s from filtered_acd_ids" %acq_id) filtered_acd_ids.remove(acq_id) logger.info("filtered_acd_ids : %s:" %filtered_acd_ids) except InvalidOrbitException as err: selected = False valid_orbit = False valid_orbit_err = err result['orbit_name']= orbit_name result['track'] = track result['master_dropped_ids'] = dropped_ids result_track_dt_acqs[track_dt] = result starttime, endtime = util.get_start_end_time2(grouped_matched["acq_info"], filtered_acd_ids) result['starttime'] = starttime result['endtime'] = endtime result['union_geojson']=aoi['location'] #master_dt_str = util.get_time_str_with_format(track_dt, "%Y%m%dT%H%M%S") logger.info("master_dt_str : %s" %track_dt) result['list_master_dt'] = track_dt result['list_slave_dt'] = track_dt result['master_count'] = 1 result['slave_count'] = 0 if selected: logger.info("SELECTED : aoi : %s track : %s track_dt : %s" %(aoi['id'], track, track_dt)) selected_acqs = [] for acq_id in filtered_acd_ids: acq = grouped_matched["acq_info"][acq_id] #acq.pv = pv #util.get_processing_version(acq.identifier) #util.update_grq(acq_id, acq.pv) logger.info("APPENDING : %s" %acq_id) selected_acqs.append(acq) selected_track_dt_acqs[track_dt] = selected_acqs result['orbit_quality_check_passed']=True else: result['result'] = False id_hash = '0000' result['orbit_quality_check_passed']=False result['failed_orbit'] = 'reference' publish_result(result, id_hash) if not valid_orbit: raise InvalidOrbitException(valid_orbit_err) try: with open(result_file, 'a') as fo: cw = csv.writer(fo, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) cw.writerow([result.get('dt', ''), result.get('orbit_name', ''), "Primary", result.get('track', ''),result.get('Track_POEORB_Land', '') , result.get('ACQ_Union_POEORB_Land', ''), result.get('delta_area', ''), result.get('res', ''), result.get('area_threshold_passed', ''), result.get('WATER_MASK_PASSED', ''), result.get('primary_ipf_count', ''), result.get('secondary_ipf_count', ''), result.get('BL_PASSED', ''), result.get('matched', ''), result.get('candidate_pairs', ''), result.get('fail_reason', ''), result.get('comment', ''), result.get('Track_AOI_Intersection', ''), result.get('ACQ_POEORB_AOI_Intersection', '')]) except Exception as err: logger.info("\n\nERROR Writing to csv file : %s" %str(err)) traceback.print_exc() selected_track_acqs[track] = selected_track_dt_acqs logger.info("CHECK: selected_track_acqs[track] : %s" %selected_track_acqs[track]) result_track_acqs[track] = result_track_dt_acqs #exit (0) logger.info("get_covered_acquisitions_by_track_date returns : %s" %selected_track_acqs) return selected_track_acqs, result_track_acqs def get_covered_acquisitions(aoi, acqs, orbit_file): #util.print_acquisitions(aoi['id'], util.create_acqs_from_metadata(acqs)) logger.info("AOI : %s" %aoi['location']) grouped_matched = util.group_acqs_by_orbit_number_from_metadata(acqs) #group_acqs_by_track(acqs) matched_ids = list(grouped_matched["acq_info"].keys()) #logger.info("grouped_matched : %s" %grouped_matched) logger.info("matched_ids : %s" %matched_ids) selected_track_acqs = {} for track in grouped_matched["grouped"]: selected_orbitnumber_acqs = {} for orbitnumber in grouped_matched["grouped"][track]: selected = gtUtil.water_mask_check(track, orbitnumber, grouped_matched["acq_info"], grouped_matched["grouped"][track][orbitnumber], aoi['location'], aoi['id'], threshold_pixel, orbit_file) if selected: logger.info("SELECTED") selected_acqs = [] for pv in grouped_matched["grouped"][track][orbitnumber]: for acq_id in grouped_matched["grouped"][track][orbitnumber][pv]: acq = grouped_matched["acq_info"][acq_id] if not acq.pv: acq.pv = pv #util.get_processing_version(acq.identifier) #util.update_grq(acq_id, acq.pv) logger.info("APPENDING : %s" %acq_id) selected_acqs.append(acq) selected_orbitnumber_acqs[orbitnumber] = selected_acqs selected_track_acqs[track] = selected_orbitnumber_acqs #exit (0) return selected_track_acqs def query_aoi_acquisitions(starttime, endtime, platform, orbit_file, orbit_dir, threshold_pixel, acquisition_version, selected_track_list, selected_aoi_list): """Query ES for active AOIs that intersect starttime and endtime and find acquisitions that intersect the AOI polygon for the platform.""" #aoi_acq = {} orbit_aoi_data = {} es_index = "grq_*_*acquisition*" es_index = "grq_%s_acquisition-s1-iw_slc/acquisition-S1-IW_SLC/" %(acquisition_version) logger.info("query_aoi_acquisitions : es_index : %s" %es_index) aois = None if len(selected_aoi_list)>0: aois = get_aois_by_id(selected_aoi_list) else: aois = query_aois_new(starttime, endtime) logger.info("No of AOIs : %s " %len(aois)) logger.info("aois : %s" %aois) if not aois or len(aois) <=0: logger.info("Existing as NO AOI Found") sys.exit(0) for aoi in aois: logger.info("aoi: {}".format(aoi['id'])) query = { "query": { "filtered": { "query": { "bool": { "must": [ { "term": { "dataset_type.raw": "acquisition" } }, { "term": { "version.raw": acquisition_version } }, { "term": { "metadata.platform.raw": platform } }, { "range": { "starttime": { "lte": endtime } } }, { "range": { "endtime": { "gte": starttime } } } ], "must_not": { "term": { "metadata.tags": "deprecated" } } } }, "filter": { "geo_shape": { "location": { "shape": aoi['location'] } } } } }, "partial_fields" : { "partial" : { "include" : [ "id", "dataset_type", "dataset", "metadata", "city", "continent", "starttime", "endtime"] } } } logger.info(query) acqs = [i['fields']['partial'][0] for i in query_es(query, es_index)] logger.info("Found {} acqs for {}: {}".format(len(acqs), aoi['id'], json.dumps([i['id'] for i in acqs], indent=2))) #logger.info("ALL ACQ of AOI : \n%s" %acqs) if len(acqs) <=0: logger.info("Excluding AOI %s as no acquisitions there" %aoi['id']) selected_track_acqs = {} result_file = "RESULT_SUMMARY_%s.csv" %aoi['id'] with open(result_file, 'w') as fo: cw = csv.writer(fo, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) cw.writerow(["Date", "Orbit", "Type", "Track","Track_Land","Total_Acquisition_Land", "delta_area_sqkm", "delta_area_pixel", "area_threshold_passed", "Orbit_Quality_Test_Passed", "Reference_Unique_IPF_Count", "Secondary_Unique_IPF_Count", "BlackList_Test_Passed", "Enumeration_Passed", "Candidate_Pairs", "Failure_Reason", "comment","Track_AOI_Intersection", "ACQ_POEORB_AOI_Intersection"]) selected_track_acqs, result_track_acqs = get_covered_acquisitions_by_track_date(aoi, acqs, threshold_pixel, orbit_file, orbit_dir, platform, result_file, selected_track_list) if len(list(selected_track_acqs.keys()))==0: logger.info("Nothing selected from AOI %s " %aoi['id']) continue #for acq in acqs: aoi_data = {} aoi_priority = aoi.get('metadata', {}).get('priority', 0) # ensure highest priority is assigned if multiple AOIs resolve the acquisition #if acq['id'] in acq_info and acq_info[acq['id']].get('priority', 0) > aoi_priority: #continue aoi_data['aoi_id'] = aoi['id'] aoi_data['aoi_location'] = aoi['location'] aoi_data['priority'] = aoi_priority aoi_data['selected_track_acqs'] = selected_track_acqs aoi_data['result_track_acqs'] = result_track_acqs orbit_aoi_data[aoi['id']] = aoi_data #acq_info[aoi_data['id']] = acq #aoi_acq[aoi] = acq_info #logger.info("Acquistions to localize: {}".format(json.dumps(acq_info, indent=2))) if len(list(orbit_aoi_data.keys()))<=0: logger.info("Existing as NOTHING selected for any aois") sys.exit(0) return orbit_aoi_data def resolve_s1_slc(identifier, download_url, project): """Resolve S1 SLC using ASF datapool (ASF or NGAP). Fallback to ESA.""" # determine best url and corresponding queue vertex_url = "https://datapool.asf.alaska.edu/SLC/SA/{}.zip".format(identifier) r = requests.head(vertex_url, allow_redirects=True) if r.status_code == 403: url = r.url queue = "{}-job_worker-small".format(project) elif r.status_code == 404: url = download_url queue = "factotum-job_worker-scihub_throttled" else: raise RuntimeError("Got status code {} from {}: {}".format(r.status_code, vertex_url, r.url)) return url, queue class DatasetExists(Exception): """Exception class for existing dataset.""" pass def get_temporal_baseline(ctx): temporalBaseline = 24 if 'temporalBaseline' in ctx: temporalBaseline = int(ctx['temporalBaseline']) return temporalBaseline def resolve_s1_slc(identifier, download_url, project): """Resolve S1 SLC using ASF datapool (ASF or NGAP). Fallback to ESA.""" # determine best url and corresponding queue vertex_url = "https://datapool.asf.alaska.edu/SLC/SA/{}.zip".format(identifier) r = requests.head(vertex_url, allow_redirects=True) if r.status_code == 403: url = r.url queue = "{}-job_worker-small".format(project) elif r.status_code == 404: url = download_url queue = "factotum-job_worker-scihub_throttled" else: raise RuntimeError("Got status code {} from {}: {}".format(r.status_code, vertex_url, r.url)) return url, queue class DatasetExists(Exception): """Exception class for existing dataset.""" pass def get_temporal_baseline(ctx): temporalBaseline = 24 if 'temporalBaseline' in ctx: temporalBaseline = int(ctx['temporalBaseline']) return temporalBaseline def resolve_aoi_acqs(ctx_file): """Resolve best URL from acquisitions from AOIs.""" # read in context with open(ctx_file) as f: ctx = json.load(f) project = 'grfn' logger.info("PROJECT : %s" %project) priority = int(ctx["job_priority"]) minMatch = int(ctx["minMatch"]) dataset_version = ctx["dataset_version"] acquisition_version = ctx["acquisition_version"] threshold_pixel = int(ctx["threshold_pixel"]) job_type, job_version = ctx['job_specification']['id'].split(':') skip_days = int(ctx.get("skipDays", 0)) selected_track_list = [] try: if "track_numbers" in ctx and ctx["track_numbers"] is not None: track_numbers = ctx["track_numbers"].strip() if track_numbers: track_numbers_list = track_numbers.split(',') for tn in track_numbers_list: selected_track_list.append(int(tn)) except: pass selected_aoi_list = [] try: if "aoi_name" in ctx and ctx["aoi_name"] is not None: aois = ctx["aoi_name"].strip() logger.info("passed aoi: %s" %aois) if aois: aoi_list = aois.split(',') logger.info(aoi_list) for aoi in aoi_list: selected_aoi_list.append(aoi.strip()) except: pass selected_aoi_list = list(set(selected_aoi_list)) logger.info("selected_aoi_list : %s" %selected_aoi_list) logger.info("selected_track_list : %s" %selected_track_list) logger.info("skip_days : %s" %skip_days) #Find Orbit File Info orbit_file = None orbit_file_dir =os.path.basename(ctx["localize_urls"][0]["url"]) for file in os.listdir(orbit_file_dir): if file.endswith(".EOF"): orbit_file = os.path.join(orbit_file_dir, file) if not orbit_file: raise RuntimeError("Orbit File NOT Found") else: logger.info("Orbit File : %s " %orbit_file) orbit_aoi_data = query_aoi_acquisitions(ctx['starttime'], ctx['endtime'], ctx['platform'], orbit_file, orbit_file_dir, threshold_pixel, acquisition_version, selected_track_list, selected_aoi_list) #osaka.main.get("http://aux.sentinel1.eo.esa.int/POEORB/2018/09/15/S1A_OPER_AUX_POEORB_OPOD_20180915T120754_V20180825T225942_20180827T005942.EOF") #logger.info(orbit_aoi_data) #exit(0) # build args #queue = ctx["recommended-queues"][0] queue = "system-jobs-queue" singlesceneOnly = True precise_orbit_only = True job_data = {} job_data["project"] = project ''' job_data["spyddder_extract_version"] = spyddder_extract_version job_data["standard_product_ifg_version"] = standard_product_ifg_version job_data["acquisition_localizer_version"] = acquisition_localizer_version job_data["standard_product_localizer_version"] = standard_product_localizer_version ''' job_data["job_type"] = job_type job_data["job_version"] = job_version job_data["job_priority"] = ctx['job_priority'] job_data['orbit_file'] = orbit_file job_data['minMatch'] = minMatch job_data['threshold_pixel'] = threshold_pixel job_data["acquisition_version"] = acquisition_version job_data["selected_track_list"] = selected_track_list job_data["skip_days"] = skip_days orbit_data = {} orbit_data['starttime'] = ctx['starttime'] orbit_data['endtime'] = ctx['endtime'] orbit_data['platform'] = ctx['platform'] orbit_data['orbit_file'] = orbit_file orbit_acq_selections = {} orbit_acq_selections["job_data"] = job_data orbit_acq_selections["orbit_aoi_data"] = orbit_aoi_data orbit_acq_selections["orbit_data"] = orbit_data return orbit_acq_selections def main(): # read in _context.json context_file = os.path.abspath("_context.json") if not os.path.exists(context_file): raise RuntimeError("Context file doesn't exist.") resolve_aoi_acqs(context_file) if __name__ == "__main__": sys.exit(main())
# -*- coding: utf-8 -*- from scrapy.selector import Selector from scrapy import Request import re import execjs from gorden_crawler.spiders.shiji_base import BaseSpider from gorden_crawler.items import BaseItem, ImageItem, SkuItem, Color import copy import json import logging import difflib import requests import datetime class AsosSpider(BaseSpider): #class AsosSpider(RedisSpider): name = "asos" base_url = "http://us.asos.com" allowed_domains = ["us.asos.com", "asos-media.com"] start_urls = [ 'http://us.asos.com/?hrd=1', 'http://us.asos.com/women/outlet/', 'http://us.asos.com/men/outlet/', ] custom_settings = { 'COOKIES_ENABLED': True, 'DOWNLOAD_DELAY': 0.2, 'DOWNLOAD_TIMEOUT': 30, 'RETRY_TIMES': 20, # 'DOWNLOADER_MIDDLEWARES': { # # 'gorden_crawler.middlewares.MyCustomDownloaderMiddleware': 543, # 'scrapy.downloadermiddleware.useragent.UserAgentMiddleware': None, # 'gorden_crawler.contrib.downloadmiddleware.rotate_useragent.RotateUserAgentMiddleware':1, # 'gorden_crawler.middlewares.proxy_ats.ProxyMiddleware': 100, # 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 110, # } } def start_requests(self): for url in self.start_urls: yield Request(url, dont_filter=True, cookies={'asos': 'currencyid=1'}) def make_requests_from_url(self, url): return Request(url, dont_filter=True, cookies={'asos': 'currencyid=1'}) #yield list items of some brand def parse(self, response): sel = Selector(response) response_url = response.url if response_url == "http://us.asos.com/?hrd=1": # women url_a_s_women = sel.xpath('//li[contains(@class, "floor_1")]//div[@class="sub-floor-menu"]/dl[1]//ul[@class="items"]//li/a') li_urls = {} #key为ProductType, value为ProductType对应的url flag=False for a in url_a_s_women: if len(a.xpath('text()').extract()) == 0: continue li_text=a.xpath('text()').extract()[0] li_href=a.xpath('@href').extract()[0] if li_text == 'Accessories': flag=True if li_text == 'Packs SAVE' or li_text == 'Packs Save': flag=False if flag: li_urls[li_text]=li_href if len(li_urls) > 0: for li_item in li_urls.items(): item=BaseItem() item['type']='base' item['product_type'] = li_item[0] item['gender'] = 'women' li_url=li_item[1] if item['product_type'] == "Beauty": yield Request(li_url, callback=self.parse_beauty, cookies={'asos': 'currencyid=1'}, meta={'item': item}) else: yield Request(li_url, callback=self.parse_categories, cookies={'asos': 'currencyid=1'}, meta={'item': item}) #men url_a_s_men=sel.xpath('//li[contains(@class, "floor_2")]//div[@class="sub-floor-menu"]/dl[1]//ul[@class="items"]//li/a') li_urls={} #key为ProductType, value为ProductType对应的url flag=False for a in url_a_s_men: if len(a.xpath('text()').extract()) == 0: continue li_text=a.xpath('text()').extract()[0] li_href=a.xpath('@href').extract()[0] if li_text == 'Accessories': flag=True if li_text == 'Packs SAVE' or li_text == 'Packs Save': flag=False if flag: li_urls[li_text]=li_href if len(li_urls)>0: for li_item in li_urls.items(): item=BaseItem() item['type']='base' item['product_type']=li_item[0] item['gender'] = 'men' li_url=li_item[1] yield Request(li_url, callback=self.parse_categories, cookies={'asos': 'currencyid=1'}, meta={'item': item}) if 'sale' in response.url or 'outlet' in response.url: # response_url=="http://us.asos.com/men/outlet/" or response_url=="http://us.asos.com/women/outlet/": # outlet women and men # if 'women' in response_url: #response_url=="http://us.asos.com/men/outlet/": product_type_str = sel.xpath('//div[@class="lside"]/div/h4/text()').extract() if 'Shop by category' in product_type_str: position = product_type_str.index('Shop by category') elif 'Shop by Category' in product_type_str: position = product_type_str.index('Shop by Category') product_type_lis = sel.xpath('//div[@class="lside"]/div/h4')[position].xpath('./parent::*/ul/li') # product_type_lis = sel.xpath('//div[@class="lside"]/div')[2].xpath('./ul/li') # else: # product_type_lis = sel.xpath('//div[@class="lside"]/div')[1].xpath('./ul/li') for product_type_li in product_type_lis: item = BaseItem() item['type']='base' if 'women' in response_url: #response_url == "http://us.asos.com/men/outlet/": item['gender'] = 'women' else: item['gender'] = 'men' url = product_type_li.xpath('./a/@href').extract()[0] product_type = product_type_li.xpath('./a/text()').extract()[0] item['product_type']=product_type yield Request(url, callback=self.parse_categories, cookies={'asos': 'currencyid=1'}, meta={'item': item}) def parse_beauty(self, response): sel=Selector(response) item = response.meta['item'] cat_divs = sel.xpath('//div[@class="boxes"]/div') for cat_div in cat_divs: url = cat_div.xpath('./a/@href').extract()[0] yield Request(url, callback=self.parse_categories, cookies={'asos': 'currencyid=1'}, meta={'item': item}) def parse_categories(self, response): sel=Selector(response) item=response.meta['item'] # if 'on_sale' in response.meta.keys(): category_link_list_a = sel.xpath('//div[@data-id="attribute_989"]//ul/li/a') # else: # category_link_list_a = sel.xpath('//ul[@class="link-list"]/li/a') for category_link_a in category_link_list_a: item_category = category_link_a.xpath('./span[@class="facetvalue-name"]/text()').extract() if len(item_category) > 0: item['category']= item_category[0] # if 'New In' in item['category']: # continue url=category_link_a.xpath('./@href').extract()[0] if not re.match(r'^http:\/\/', url): url = re.findall(r'[^\?]+', response.url)[0] + url yield Request(url, callback=self.parse_category, cookies={'asos': 'currencyid=1'}, meta={'item': item}) def parse_category(self, response): sel=Selector(response) item=response.meta['item'] li_url=response.url li_uri=re.findall(r'[^\?]+', li_url)[0] #tail_str='&pgeSize=36&sort=-1' #m=re.match(r"http://us.asos.com/[^\&]+", li_url) #li_pages=sel.xpath('//ol[@class="page-nos"]/li') #if li_pages: # total_items=sel.xpath('//div[@id="pagingHeader"]//span[@class="total-items"]/text()').extract()[0] # page_count=int(total_items)/36 # if int(total_items)%36 !=0: # page_count=page_count+1 # max_page_num=li_pages[-2:-1].xpath('./a/text()').extract()[0] # for pge in range(page_count): # item_list_url=m.group(0)+'&pge='+str(pge)+tail_str # next_page_uris = sel.xpath('//li[@class="next"]/a') # for next_page_uri in next_page_uris: # if re.search(r'Next',next_page_uri.xpath('text()').extract()[0]): # # next_uri = str(next_page_uri.xpath('@href').extract()[0]) # if not re.search(r'^http:\/\/', next_uri): # url=li_uri+ next_uri # else: # url = next_uri # copy_item = copy.deepcopy(item) # yield Request(url, callback=self.parse_category, cookies={'asos': 'currencyid=1'}, meta={'item': copy_item}) item_lis = sel.xpath('//div[@class="results three-grid"]/ul/li') # print item_lis for item_li in item_lis: item_url = item_li.xpath('./a/@href').extract()[0] if not re.match(r'^http:\/\/', item_url): item_url = self.base_url + item_url item['url'] = item_url item['cover'] = item_li.xpath('.//img[@class="product-img"]/@src').extract()[0] # rrp_price_sel=item_li.xpath('.//span[@class="recRP rrp"]/text()').extract() # if len(rrp_price_sel) > 0 and rrp_price_sel[0]: # item['list_price'] = rrp_price_sel[0] # item['current_price'] = item_li.xpath('.//div[@class="productprice"]/span[@class="price outlet-current-price"]/text()').extract()[0] # else: # item['list_price']=item_li.xpath('.//div[@class="productprice"]/span[@class="price"]/text()').extract()[0] # # current_price_sel=item_li.xpath('.//span[contains(@class, "prevPrice")]/text()').extract() # # if len(current_price_sel) > 0 and current_price_sel[0]: # item['current_price']= current_price_sel[0] # else: # item['current_price']= item['list_price'] current_price_sel = item_li.xpath('.//div[@class="price-wrap price-current"]/span[@class="price"]/text()').extract() if len(current_price_sel) > 0 and current_price_sel[0]: item['current_price'] = current_price_sel[0] list_price_sel = item_li.xpath('.//div[@class="price-wrap price-previous"]/span[@class="price"]/text()').extract() if len(list_price_sel) > 0 and list_price_sel[0]: item['list_price'] = list_price_sel[0] else: item['list_price'] = item['current_price'] product_id = item_li.xpath('./@data-productid').extract()[0] if 'prod/pgeproduct.aspx' in item_url: item_url = item_url.replace('prod/pgeproduct.aspx', 'prd/'+str(product_id)) yield Request(item_url, callback=self.parse_item, meta={'item': item}, cookies={'asos': 'currencyid=1'}) total_counts = sel.xpath('//span[@class="total-results"]/text()').extract()[0] if ',' in total_counts: total_counts = total_counts.replace(',', '') current_url = response.url if 'pge=' in response.url: current_page = int(re.search('pge=(\d+)', response.url).group(1)) + 1 else: current_page = 1 if int(total_counts) % 36>0: last_page = int(total_counts)/36 + 1 else: last_page = 1 if current_page < last_page: next_page = current_page + 1 if 'pge=' in response.url: next_url = re.sub('pge=\d+', 'pge=' + str(next_page-1), current_url) else: next_url = current_url + '&pge=1' yield Request(next_url, callback=self.parse_category, cookies={'asos': 'currencyid=1'}, meta={'item': copy_item}) def parse_item(self, response): item=response.meta['item'] return self.handle_parse_item(response, item) def parse_stock(self, response): if not response.body: return item=response.meta['item'] related_products_url = response.meta['related_products_url'] goods_details = json.loads(response.body) if 'variants' not in goods_details[0]: return sku_infos = goods_details[0]['variants'] handle_sku_infos = {} for sku in sku_infos: handle_sku_infos[sku['variantId']] = sku final_skus = [] for sku in item['skus']: if handle_sku_infos[sku['id']]['isInStock'] == True: sku['current_price'] = handle_sku_infos[sku['id']]['price']['current']['value'] sku['list_price'] = handle_sku_infos[sku['id']]['price']['previous']['value'] final_skus.append(sku) item['skus'] = final_skus parse_media_url = 'http://video.asos-media.com/products/test-desc/' + str(item['show_product_id']) + '-catwalk-AVS.m3u8' try: req = requests.head(parse_media_url) if req.ok: req = requests.get(parse_media_url) media_uri = re.search('(ASOS/_media.+?)\.m3u8', req.text).group(1) media_url = 'http://video.asos-media.com/products/' + media_uri item['media_url'] = media_url except Exception as e: logging.error('error media url: '+ parse_media_url + ' error msg: ' + str(e)) yield Request(related_products_url, callback=self.parse_related_products, meta={"item": item}) def parse_related_products(self, response): item = response.meta['item'] related_items = json.loads(response.body) related_items_id = [] if 'products' in related_items.keys(): for related_item_detail in related_items['products']: if related_item_detail['product']['isInStock'] == True: related_items_id.append(related_item_detail['product']['id']) if related_items_id: item['related_items_id'] = related_items_id yield item def handle_parse_item(self, response, item): if re.match(r'^http:\/\/us\.asos\.com\/mp_sp\/',response.url): sel = Selector(response) url = sel.xpath('//li[@id="mp_li_cnti"]/a/@href').extract()[0] yield Request(url, callback=self.parse_item, cookies={'asos': 'currencyid=1'}, meta={'item': item}) else: skus=[] sel=Selector(response) json_info = re.search("view\(\'(.+\})\'\,", response.body) if not json_info: return else: json_info = json_info.group(1) json_info = "".join(json_info) json_info = json_info.decode("string-escape") goods_detail = json.loads(json_info) descs = sel.xpath('//div[@class="overflow-container"]/div/div') item['desc'] = '' for desc in descs: item['desc'] = item['desc'] + desc.extract() item['title'] = goods_detail['name'] if 'brandName' not in goods_detail.keys(): item['brand'] = 'asos' else: item['brand'] = goods_detail['brandName'] item['from_site'] = self.name if 'price' not in goods_detail.keys(): return item['current_price'] = goods_detail['price']['current'] if float(goods_detail['price']['previous']) != 0: item['list_price'] = goods_detail['price']['previous'] elif float(goods_detail['price']['rrp']) != 0: item['list_price'] = goods_detail['price']['rrp'] else: item['list_price'] = goods_detail['price']['current'] item['show_product_id'] = goods_detail['id'] sizes = [] colors = [] for sku in goods_detail['variants']: skuItem = SkuItem() skuItem['type'] = "sku" skuItem['from_site'] = self.name skuItem['is_outof_stock'] = False skuItem['id'] = sku['variantId'] skuItem['show_product_id'] = goods_detail['id'] skuItem['current_price'] = item['current_price'] skuItem['list_price'] = item['list_price'] skuItem['size'] = sku['size'] if sku['size'] not in sizes: sizes.append(sku['size']) skuItem['color'] = sku['colour'] if sku['colour'] not in colors: colors.append(sku['colour']) skus.append(skuItem) for color_name in colors: images = [] for image in goods_detail['images']: if image['colour'] == '' or (image['colour'] and color_name and len(image['colour']) == len(color_name) and (len(color_name) - difflib.SequenceMatcher(None,color_name,image['colour']).ratio()*len(color_name)) <=1): imageItem = ImageItem() imageItem['image'] = image['url'] + '?$XXL$' imageItem['thumbnail'] = image['url'] images.append(imageItem) color = Color() color['type'] = 'color' color['from_site'] = self.name color['show_product_id'] = goods_detail['id'] color['images'] = images color['name'] = color_name color['cover'] = images[0]['image'] yield color item['skus'] = skus item['sizes'] = list(set(sizes)) item['dimensions'] = ['size'] item['colors'] = colors related_products_url = 'http://us.asos.com/api/product/catalogue/v2/productgroups/ctl/' + str(item['show_product_id']) + '?store=US&store=US&currency=USD' yield Request('http://us.asos.com/api/product/catalogue/v2/stockprice?productIds=' + str(goods_detail['id']) + '&store=US&currency=USD', callback=self.parse_stock, meta={'item': item, 'related_products_url': related_products_url}) # color_size_str="".join(re.findall(r"var\s+arrSzeCol_ctl00_ContentMainPage_ctlSeparateProduct[^<]+", response.body)) # sep_image_str="".join(re.findall(r"var\s+arrSepImage_ctl00_ContentMainPage_ctlSeparateProduct[^<]+", response.body)) # thumb_image_str="".join(re.findall(r"var\s+arrThumbImage_ctl00_ContentMainPage_ctlSeparateProduct[^<]+", response.body)) # if len(color_size_str)>0: # context = execjs.compile(''' # %s # %s # %s # function get_color_size(){ # return arrSzeCol_ctl00_ContentMainPage_ctlSeparateProduct; # } # function get_sep_image(){ # return arrSepImage_ctl00_ContentMainPage_ctlSeparateProduct; # } # function get_thumb_image(){ # return arrThumbImage_ctl00_ContentMainPage_ctlSeparateProduct; # } # ''' % (color_size_str, sep_image_str, thumb_image_str)) # color_sizes = context.call('get_color_size') # sep_image= context.call('get_sep_image') # thumb_images = context.call('get_thumb_image') # #import pdb;pdb.set_trace() # if len(sel.xpath('//div[@id="ctl00_ContentMainPage_ctlSeparateProduct_pnlOutofStock"]').extract()) > 0: # return # # if len(sel.xpath('//span[@id="ctl00_ContentMainPage_ctlSeparateProduct_lblProductTitle"]/text()').extract()) > 0: # item['title']=sel.xpath('//span[@id="ctl00_ContentMainPage_ctlSeparateProduct_lblProductTitle"]/text()').extract()[0] # # data_dic_str = sel.xpath('//script[@id="dataDictionary"]/text()') # # product_data_str=data_dic_str.re(r'^var Product\s*=\s*({.*?});')[0] # product_data=eval(product_data_str) # item['show_product_id']=product_data['ProductIID'] # desc=sel.xpath('//div[@id="ctl00_ContentMainPage_productInfoPanel"]//ul') # if len(desc)>0: # item['desc']=desc.extract()[0] # item['brand']=product_data['ProductBrand'] # item['from_site']=self.name # # '''有严重问题,注释掉了''' # # gender_category_str=product_data['ProductCategory'] # # m=re.search(r'(.+)\|(.+)', gender_category_str) # # if m: # # item['gender']=m.group(1).strip() # # m=re.search(r'(.+)\|(.+)', gender_category_str) # # if m: # # item['category']=m.group(2).strip() # # sku_data_str = data_dic_str.re(r'var ProductChildSkuInfo\s*=\s*({.*?});')[0] # sku_data=eval(sku_data_str) # sku_data_list=sku_data['ChildSkuInfo'][item['show_product_id']] # #color_list=sel.xpath('//select[@id="ctl00_ContentMainPage_ctlSeparateProduct_drpdwnColour"]').extract() # if color_sizes: # '''handle color and image''' # # # thumbnail_lis=sel.xpath('//ul[@class="productThumbnails"]//li//img/@src') # # image_lis=sel.xpath('//div[@id="productImages"]//img/@src') # # if len(thumbnail_lis)>0: # # for i in range(len(thumbnail_lis)): # # imageItem=ImageItem() # # imageItem['image']=image_lis[i].extract() # # imageItem['thumbnail']=thumbnail_lis[i].extract() # # images.append(imageItem) # #left three imageItem # images=[] # for thumb_image in thumb_images: # imageItem=ImageItem() # imageItem['image']=thumb_image[2] # imageItem['thumbnail']=thumb_image[0] # images.append(imageItem) # # item_color_names=[] # #all color names of item # # sep_image_dict = {} # for sep_image_arr in sep_image: # key = sep_image_arr[3] # sep_image_dict[key] = {'image': sep_image_arr[2], 'thumbnail': sep_image_arr[0]} # # color_names = sel.xpath('//div[@id="ctl00_ContentMainPage_ctlSeparateProduct_pnlColour"]//option/@value')[1:].extract() # for color_name in color_names: # # lower_color_name = color_name.lower() # if '/' in lower_color_name: # lower_color_name_2 = lower_color_name.replace('/', '') # else: # lower_color_name_2 = lower_color_name # if lower_color_name not in sep_image_dict.keys() and lower_color_name_2 not in sep_image_dict.keys(): # return # imageItem=ImageItem() # imageItem['thumbnail']= sep_image_dict[lower_color_name_2]['thumbnail'] # imageItem['image']= sep_image_dict[lower_color_name_2]['image'] # images.insert(0, imageItem) # # import pdb;pdb.set_trace() # color=Color() # color['type'] ='color' # color['from_site'] = self.name # color['show_product_id'] = product_data['ProductIID'] # color['images'] = images # color['name'] = color_name # color['cover'] = sep_image_dict[lower_color_name_2]['thumbnail'] # # yield color # # item_color_names.append(color_name) # '''handle price''' # #list_price_sel=sel.xpath('//span[@id="ctl00_ContentMainPage_ctlSeparateProduct_lblRRP"]') # sizes=[] # for color_size in color_sizes: # size_id = color_size[0] # size = color_size[1] # if not size.strip(): # size = 'onesize' # # if color_size[3] == "False": # continue # # original_color_name = color_size[2] # for color_name in item_color_names: # tmp_color_name = re.sub(r'[^\w]', '', color_name) # # if tmp_color_name == original_color_name: # original_color_name = color_name # # skuItem=SkuItem() # skuItem['type']="sku" # skuItem['from_site']=self.name # skuItem['is_outof_stock']=False # skuItem['id']=sku_data_list[str(size_id)+original_color_name]['Sku'] # #skuItem['id']=color_size[0] # skuItem['show_product_id']=product_data['ProductIID'] # skuItem['current_price']= color_size[5] # # if color_size[6] == color_size[5] and color_size[8] != '0' and color_size[8] != '0.00': # skuItem['list_price']= color_size[8] # else: # skuItem['list_price']= color_size[6] # # sizes.append(size) # skuItem['color'] = original_color_name # skuItem['size'] = size # skus.append(skuItem) # # item['skus']=skus # item['sizes']=list(set(sizes)) # item['dimensions']=['size'] # item['colors'] = item_color_names # size_info = sel.xpath('//a[@id="ctl00_ContentMainPage_SizeGuideButton_SizeGuideLink"]/@href') # if size_info: # item['size_info'] = size_info.extract()[0] # if not re.match(r'^http', size_info.extract()[0]): # item['size_info'] = self.base_url + size_info.extract()[0] # yield item
import json import logging import msgpack log = logging.getLogger(__name__) class QuacGeneralProcessor: def __init__(self, args): self.train_file = args.train_file self.dev_file = args.dev_file self.save_train_file = args.save_train_file self.save_dev_file = args.save_dev_file self.args = args def run(self): train_raw_data = self.load_raw_data(self.train_file) if train_raw_data: log.info('loaded quac train data') quac_train_data = self.dialogues_unpack(train_raw_data) if self.msgpack_dump(quac_train_data, self.save_train_file): del train_raw_data del quac_train_data log.info('saved quac preprocessed train data') else: log.info('failed saving quac preprocessed train data') else: log.info('failed loading quac train data') dev_raw_data = self.load_raw_data(self.dev_file) if dev_raw_data: log.info('loaded quac dev data') quac_dev_data = self.dialogues_unpack(dev_raw_data) if self.msgpack_dump(quac_dev_data, self.save_dev_file): del dev_raw_data del quac_dev_data log.info('saved quac preprocessed dev data') else: log.info('failed loading quac dev data') def load_raw_data(self, file): with open(file, encoding="utf8") as f: data = json.load(f)['data'] return data return None def msgpack_dump(self, json, file): with open(file, 'wb') as f: msgpack.dump(json, f) return True return False def dialogues_unpack(self, data): quac_data = [] for conv in data: dialogue = [] dialogue_json = { "title": conv['title'], "background": conv['background'], "section_title": conv['section_title'], "context": conv["paragraphs"][0]['context'], "id": conv["paragraphs"][0]['id'] } for qa in conv["paragraphs"][0]['qas']: question = qa['question'] answers = qa['orig_answer'] answer = answers['text'] answer_start = answers['answer_start'] answer_end = answers['answer_start'] + len(answers['text']) answer_choice = 0 if answer == 'CANNOTANSWER' else \ 1 if qa['yesno'] == 'y' else \ 2 if qa['yesno'] == 'n' else \ 3 # Not a yes/no question """ 0: Do not ask a follow up question! 1: Definitely ask a follow up question! 2: Not too important, but you can ask a follow up. """ answer_followup = 0 if qa['followup'] == "n": answer_followup = 0 elif qa['followup'] == "y": answer_followup = 1 else: answer_followup = 2 if answer_choice == 0: answer_start, answer_end = -1, -1 ans_ls = [] for ans in qa['answers']: ans_ls.append(ans['text']) qa_pair = { "question": question, "answer": answer, "answer_start": answer_start, "answer_end": answer_end, "answer_choice": answer_choice, "answer_followup": answer_followup, "ans_ls": ans_ls } dialogue.append(qa_pair) dialogue_json['dialogue'] = dialogue quac_data.append(dialogue_json) return quac_data
from collections import defaultdict import gzip import re # Code snipped from: # https://gist.github.com/slowkow/8101481 GTF_HEADER = ['seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame'] R_SEMICOLON = re.compile(r'\s*;\s*') R_COMMA = re.compile(r'\s*,\s*') R_KEYVALUE = re.compile(r'(\s+|\s*=\s*)') def gff_lines(filename): """Open an optionally gzipped GTF file and generate a dict for each line. """ fn_open = gzip.open if filename.endswith('.gz') else open with fn_open(filename) as fh: for line in fh: if line.startswith('#'): continue else: yield gff_parse(line) def gff_parse(line): """Parse a single GTF line and return a dict. """ result = {} fields = line.rstrip().split('\t') for i, col in enumerate(GTF_HEADER): result[col] = _get_value(fields[i]) # INFO field consists of "key1=value;key2=value;...". infos = [x for x in re.split(R_SEMICOLON, fields[8]) if x.strip()] for i, info in enumerate(infos, 1): # It should be key="value". try: key, _, value = re.split(R_KEYVALUE, info, 1) # But sometimes it is just "value". except ValueError: key = 'INFO{}'.format(i) value = info # Ignore the field if there is no value. if value: result[key] = _get_value(value) return result def _get_value(value): if not value: return None # Strip double and single quotes. value = value.strip('"\'') # Return a list if the value has a comma. if ',' in value: value = re.split(R_COMMA, value) # These values are equivalent to None. elif value in ['', '.', 'NA']: return None return value
import numpy as np from typing import List, Tuple def hard_disk(x, y, r=1.0, center=(0, 0), scale=100): """ A circular barrier """ xc, yc = center v_grid = np.zeros((len(y), len(x))) barrier_cond = np.add.outer((y - yc) ** 2, (x - xc) ** 2) <= r ** 2 v_grid[barrier_cond] = scale return v_grid def multiple_hard_disks(x, y, rs: List[float], centers: List[Tuple[float, float]], scales: List[float] = None): """ Multiple circular barriers """ if scales is None: scales = [100]*len(rs) v = sum(hard_disk(x, y, r, c, s) for r, c, s in zip(rs, centers, scales)) return v def gravity_and_floor(x, y, floor, g=1, scale=100): """ A hard wall at the bottom of the view and a linear downward potential. Note: y increases in the downward direction. """ v = np.zeros((len(y), len(x))) v += g*np.abs(y[:,None]-floor) v[y>floor] = scale return v def ring_with_gaps(x, y, radius, width=0.1, height=1e6, gap_angle=30 * np.pi / 180, num_gaps=5, x_center=0.5, y_center=0.5): """ A ring with gaps """ V = np.zeros_like(np.outer(y, x)) # radius dsq = np.add.outer((y - y_center) ** 2, (x - x_center) ** 2) cond_circle = (dsq < (radius + width / 2) ** 2) & (dsq > (radius - width / 2) ** 2) # angle phis = np.arctan(np.divide.outer((y - y_center) + 1e-6, (x - x_center) + 1e-6)) phis[:, x < x_center] = phis[:, x < x_center] + np.pi phis = phis + np.pi / 2 cond_angle = np.zeros_like(phis, dtype=np.bool8) for i in range(num_gaps): start_angle = i * 2 * np.pi / num_gaps cond_gap = ((phis > start_angle) & (phis <= (start_angle + gap_angle))) cond_angle = cond_angle | cond_gap V[cond_circle & ~cond_angle] = height return V
from javax.swing import * from java.awt import * from java.awt.event import * from variables import * from javax.swing.table import DefaultTableModel import sys from importFiles import * from JMRIlistAll import * class ListAllJmriLocations(JDialog): def __init__(self): JDialog.__init__(self, None, 'All JMRI Locations', True) #self.setDefaultCloseOperation(DO_NOTHING_ON_CLOSE) self.setSize(900,250) self.setLayout(BorderLayout()) self.setLocation(100,100) self.preferredSize = 900,250 self.setBackground(Color.LIGHT_GRAY) self.add(self.add_jmri_table(),BorderLayout.CENTER) self.setVisible(True) def add_jmri_table(self): southPanel = JPanel() #northPanel.setLayout(BorderLayout()) titleText = JLabel(' This is a read-only list of all JMRI Operations locations. ') titleText.setForeground(Color.decode("#000dff")) titleText.setBackground(Color.decode("#000000")) titleText.setFont(Font("Serif", Font.PLAIN, 20)) southPanel.add(titleText) self.add(southPanel,BorderLayout.SOUTH) northPanel = JPanel() #northPanel.setLayout(BorderLayout()) noteText = JLabel(' JMRI Operations Locations ') noteText.setForeground(Color.decode("#000dff")) noteText.setBackground(Color.decode("#000000")) noteText.setFont(Font("Serif", Font.PLAIN, 24)) northPanel.add(noteText) self.add(northPanel,BorderLayout.NORTH) eastPanel = JPanel() eastPanel.setLayout(BoxLayout(eastPanel, BoxLayout.Y_AXIS)) eastPanel.preferredSize = (Dimension(150,1)) cancel = JButton('Cancel', actionPerformed = self.cancel_data) eastPanel.add(Box.createRigidArea(Dimension(25, 25))) eastPanel.add(Box.createRigidArea(Dimension(25, 25))) eastPanel.add(cancel) self.add(eastPanel,BorderLayout.EAST) westPanel = JPanel() westPanel.setLayout(BoxLayout(westPanel, BoxLayout.Y_AXIS)) westPanel.preferredSize = (Dimension(150,1)) westPanel.add(Box.createRigidArea(Dimension(25, 25))) westPanel.add(Box.createRigidArea(Dimension(25, 25))) self.add(westPanel,BorderLayout.WEST) panel = JPanel() panel.setLayout(BoxLayout(panel, BoxLayout.Y_AXIS)) panel.preferredSize = (Dimension(125,1)) colNames = ('Location','Tracks') dataModel = DefaultTableModel(self.sort_jmri_data(), colNames) self.table = JTable(dataModel) self.table.getTableHeader().setReorderingAllowed(0) scrollPane = JScrollPane() scrollPane.setPreferredSize(Dimension(300,100)) scrollPane.getViewport().setView((self.table)) panel.add(scrollPane) return panel def cancel_data(self, event): #print "got to cancel data" global changes changes = [] #print changes self.dispose() def sort_jmri_data(self): '''Sort list of locations from Operations XML file for table display''' try: #JMRI = Locations() #locationXML wholeList = get_jmri_loc_track_tags() self.temp = [] self.tableData = [] for loc in wholeList: for item in loc: location = isinstance(item, dict) if location : self.temp.append(item.get('name')) self.temp.append(" ") self.tableData.append(self.temp) self.temp = [] track = isinstance(item, list) if track : for tracks in item: self.temp.append(" ") self.temp.append(tracks.get('name')) self.tableData.append(self.temp) self.temp = [] return self.tableData except: print "something wrong with sort_data" print "Unexpected error: ", sys.exc_info()[0], sys.exc_info()[1] if __name__ == "__main__": print "Running locationJmriGUI.py" me = LocationJmriGUI()
import visa rm = visa.ResourceManager() print(rm.list_resources()) inst = rm.open_resource('GPIB0::23::INSTR') print(inst.query("*IDN?"))
import requests from bs4 import BeautifulSoup import random import os import click l=[] #For storing random numbers choice=input("How many random images you want to download?? \n") def download_img(data,filename): #Function to download images if (os.path.isdir('XKCD')): #Asserts for existence pass else: os.mkdir('XKCD') #If false create a folder op_file=open('XKCD/'+filename,'wb') op_file.write(data) #Download off print "Downloaded",filename @click.command() @click.option('--image',is_flag=True,help="Allows you to download XKCD images") def cli(image): if(image): for i in range(choice): l.append(str(random.randint(1,1933))) #Last comic till date is 1933 for i in l: url="https://xkcd.com/"+str(i)+"/" r=requests.get(url) soup=BeautifulSoup(r.content,'html.parser') filename=str(soup.select('#ctitle')).split('">') filename=filename[1].split('<') filename=filename[0] #Getting filename using string manip img_url=soup.select('#comic') img_url=str(img_url).split('src=')[1] img_url='https:'+img_url.split('"')[1] download_img(requests.get(img_url).content,filename+'.png') #Caling the func i times
import pyspark.sql.types as t from datalakebundle.table.schema.TableSchemaGenerator import TableSchemaGenerator schema = t.StructType( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "STRUCT1", t.StructType( [ t.StructField("NESTED_FIELD1", t.StringType()), t.StructField( "STRUCT2", t.StructType( [ t.StructField("NESTED_FIELD2", t.StringType()), ], ), ), ], ), ), ], ) expected_result = """def get_schema(): return TableSchema( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "STRUCT1", t.StructType( [ t.StructField("NESTED_FIELD1", t.StringType()), t.StructField( "STRUCT2", t.StructType( [ t.StructField("NESTED_FIELD2", t.StringType()), ], ), ), ], ), ), ], # primary_key="", # INSERT PRIMARY KEY(s) HERE (OPTIONAL) # partition_by="" # INSERT PARTITION KEY(s) HERE (OPTIONAL) # tbl_properties={} # INSERT TBLPROPERTIES HERE (OPTIONAL) ) """ assert TableSchemaGenerator().generate(schema) == expected_result schema = t.StructType( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.StructType( [ t.StructField("NESTED_ARRAY_FIELD1", t.StringType()), t.StructField("NESTED_ARRAY_FIELD2", t.StringType()), t.StructField("NESTED_ARRAY_FIELD3", t.ArrayType(t.StringType())), ], ), ), ), ], ) expected_result = """def get_schema(): return TableSchema( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.StructType( [ t.StructField("NESTED_ARRAY_FIELD1", t.StringType()), t.StructField("NESTED_ARRAY_FIELD2", t.StringType()), t.StructField("NESTED_ARRAY_FIELD3", t.ArrayType(t.StringType())), ], ), ), ), ], # primary_key="", # INSERT PRIMARY KEY(s) HERE (OPTIONAL) # partition_by="" # INSERT PARTITION KEY(s) HERE (OPTIONAL) # tbl_properties={} # INSERT TBLPROPERTIES HERE (OPTIONAL) ) """ assert TableSchemaGenerator().generate(schema) == expected_result schema = t.StructType( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.ArrayType(t.StringType()), ), ), ], ) expected_result = """def get_schema(): return TableSchema( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.ArrayType(t.StringType()), ), ), ], # primary_key="", # INSERT PRIMARY KEY(s) HERE (OPTIONAL) # partition_by="" # INSERT PARTITION KEY(s) HERE (OPTIONAL) # tbl_properties={} # INSERT TBLPROPERTIES HERE (OPTIONAL) ) """ assert TableSchemaGenerator().generate(schema) == expected_result schema = t.StructType( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.ArrayType( t.StructType( [ t.StructField( "VERY_BADLY_NESTED_ARRAY_OF_ARRAY_OF_ARRAY_OF_DOUBLES", t.ArrayType( t.ArrayType( t.ArrayType(t.DoubleType()), ), ), ), ], ), ), ), ), ], ) expected_result = """def get_schema(): return TableSchema( [ t.StructField("FIELD1", t.IntegerType()), t.StructField("FIELD2", t.DoubleType()), t.StructField("FIELD3", t.DoubleType()), t.StructField( "ARRAY1", t.ArrayType( t.ArrayType( t.StructType( [ t.StructField( "VERY_BADLY_NESTED_ARRAY_OF_ARRAY_OF_ARRAY_OF_DOUBLES", t.ArrayType( t.ArrayType( t.ArrayType(t.DoubleType()), ), ), ), ], ), ), ), ), ], # primary_key="", # INSERT PRIMARY KEY(s) HERE (OPTIONAL) # partition_by="" # INSERT PARTITION KEY(s) HERE (OPTIONAL) # tbl_properties={} # INSERT TBLPROPERTIES HERE (OPTIONAL) ) """ assert TableSchemaGenerator().generate(schema) == expected_result
from abc import ABC, abstractmethod from typing import Union import numpy as np class ForwardCurve(ABC): """ Abstract base class for deterministic forward curves. Examples: Equity: F(T) = S_0 * Div(T) / Disc(T) (more generally includes dividends, borrow cost, etc.) FX: F(T) = FX_0 * Div_f(T) / Div_d(T) Rates: F(T) = IBOR(T), the forward rate for some IBOR curve, e.g. LIBOR 3M Commodity: F(T) = Futures(T), ie. some interpolation of the futures curve """ @abstractmethod def spot(self) -> float: """ Spot price. In some cases this is the actual spot (e.g. Equity/FX), otherwise it is F(0) """ raise NotImplementedError @abstractmethod def fwd_T(self, T: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """ Forward at time T in the future :param T: float or np.ndarray, time(s) in the future :return: float or np.ndarray, forward(s) at time(s) in the future """ raise NotImplementedError def __call__(self, T: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """ Forward at time T in the future. Ability to call term structure using () :param T: float or np.ndarray, time(s) in the future :return: float or np.ndarray, forward(s) at time(s) in the future """ return self.fwd_T(T) def drift(self, t: float, T: float) -> float: """ Drift implied by the forward curve, implied over a time interval [t,T] :param t: float, start time :param T: float, end time :return: float, drift implied over [t,T] """ return np.log(self.fwd_T(T)/self.fwd_T(t)) / (T - t)
from collections import OrderedDict import blueice.exceptions import pytest import numpy as np from blueice import pdf_morphers def test_morpher_api(): conf = dict(hypercube_shuffle_steps=2, r_sample_points=2) for name, morph_class in pdf_morphers.MORPHERS.items(): print("Testing %s" % name) with pytest.raises(blueice.exceptions.NoShapeParameters): morph_class(config=conf, shape_parameters=OrderedDict()) shape_pars = OrderedDict([('bla', ({-1: -1, 0: 0, 1: 1}, None, None))]) mr = morph_class(config=conf, shape_parameters=shape_pars) aps = mr.get_anchor_points(bounds=[(-1, 1)], n_models=3) assert isinstance(aps, list) assert isinstance(aps[0], tuple) def scalar_f(_): return 0 scalar_itp = mr.make_interpolator(scalar_f, extra_dims=[], anchor_models={z: None for z in aps}) assert scalar_itp([0]) == 0 def matrix_f(_): return np.zeros(2, 2) matrix_itp = mr.make_interpolator(scalar_f, extra_dims=[2, 2], anchor_models={z: None for z in aps}) np.testing.assert_array_equal(matrix_itp([0]), np.zeros((2, 2))) if __name__ == '__main__': pytest.main()
# coding: utf-8 from __future__ import unicode_literals import pytest # fmt: off TEXTS = ("作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。",) JIEBA_TOKENIZER_TESTS = [ (TEXTS[0], ['作为', '语言', '而言', ',', '为', '世界', '使用', '人', '数最多', '的', '语言', ',', '目前', '世界', '有', '五分之一', '人口', '做', '为', '母语', '。']), ] PKUSEG_TOKENIZER_TESTS = [ (TEXTS[0], ['作为', '语言', '而言', ',', '为', '世界', '使用', '人数', '最多', '的', '语言', ',', '目前', '世界', '有', '五分之一', '人口', '做为', '母语', '。']), ] # fmt: on @pytest.mark.parametrize("text", TEXTS) def test_zh_tokenizer_char(zh_tokenizer_char, text): tokens = [token.text for token in zh_tokenizer_char(text)] assert tokens == list(text) @pytest.mark.parametrize("text,expected_tokens", JIEBA_TOKENIZER_TESTS) def test_zh_tokenizer_jieba(zh_tokenizer_jieba, text, expected_tokens): tokens = [token.text for token in zh_tokenizer_jieba(text)] assert tokens == expected_tokens @pytest.mark.parametrize("text,expected_tokens", PKUSEG_TOKENIZER_TESTS) def test_zh_tokenizer_pkuseg(zh_tokenizer_pkuseg, text, expected_tokens): tokens = [token.text for token in zh_tokenizer_pkuseg(text)] assert tokens == expected_tokens def test_extra_spaces(zh_tokenizer_char): # note: three spaces after "I" tokens = zh_tokenizer_char("I like cheese.") assert tokens[1].orth_ == " "
# Copyright 2016 Eotvos Lorand University, Budapest, Hungary # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Miscellaneous utility functions (not using HLIR) from __future__ import print_function import sys import os import pkgutil global filename global filepath global genfile global outfile filename = "?" filepath = "?" genfile = "?" outfile = "?" errors = [] warnings = [] def addError(where, msg): rootcwd = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) import traceback import itertools sb = traceback.extract_stack() res = list(itertools.dropwhile(lambda (mod, line, fun, code): mod == 'src/compiler.py', sb)) lineno = res[0][1] res = [(genfile, lineno, res[0][2], res[0][3])] + res[1:-1] try: with open(genfile) as f: lines = f.readlines() origlineno = int(lines[lineno+1].split(" ")[-1]) with open(filepath) as f: origlines = f.readlines() res = [(filepath, origlineno, "...", origlines[origlineno].strip())] + res except: pass res = [("." + path[len(rootcwd):] if path.startswith(rootcwd) else path, line, module, errmsg) for (path, line, module, errmsg) in res] global errors msg = "Error while {}: {}".format(where, msg) if pkgutil.find_loader('backtrace'): # uses the backtrace module to prettify output import backtrace btrace = backtrace._Hook(res, align=True) errors += [msg] + [" " + msg for msg in btrace.generate_backtrace(backtrace.STYLES)] else: errors += [msg] + traceback.format_list(res) def addWarning(where, msg): global warnings warnings += ["WARNING: " + msg + " (While " + where + ").\n"] def showErrors(): global errors for e in errors: print(e, file=sys.stderr) def showWarnings(): global warnings for w in warnings: print(w, file=sys.stderr) disable_hlir_messages = False def build_hlir(hlir): """Builds the P4 internal representation, optionally disabling its output messages. Returns True if the compilation was successful.""" if disable_hlir_messages: old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') success = hlir.build() if disable_hlir_messages: sys.stdout = old_stdout sys.stderr = old_stderr return success
import zen import numpy import unicodedata import sys sys.path.append('../zend3js/') import d3js import csv import progressbar import numpy.linalg as la import matplotlib.pyplot as plt plt.ioff() from scipy.linalg import solve from numpy import * from time import sleep import random G_1=zen.io.gml.read('Billion_1.gml') def print_top(G,v, num=5): idx_list = [(i,v[i]) for i in range(len(v))] idx_list = sorted(idx_list, key = lambda x: x[1], reverse=True) for i in range(min(num,len(idx_list))): nidx, score = idx_list[i] print ' %i. %s (%1.4f)' % (i+1,G.node_object(nidx),score) #####Eigenvector centrality print '\nEigenvector Centrality (by Zen):' V1= zen.algorithms.centrality.eigenvector_centrality_(G_1,weighted=True) print_top(G_1,V1, num=5) #Degree Centrality print 'Degree Centrality' N = G_1.num_nodes A = G_1.matrix() A_sum=[] for i in range(G_1.num_nodes): A_sumi=sum (A[i,:]) A_sum.append(A_sumi) K=A_sum print_top(G_1,K) ##### Betweenness Centrality print '\nBetweenness Centrality' V3=zen.algorithms.centrality.betweenness_centrality_(G_1,weighted=True) print_top(G_1,V3, num=5) ###Degree Distribution print 'The one who knows the maximum number of people but not' print 'necessarily he has indepth connections with a particular person is' dist=[] for i in range(G_1.num_nodes): deg=G_1.degree_(i) dist.append(deg) plt.plot(numpy.arange(0,548),dist) plt.show() array=numpy.array(dist) index=numpy.argmax(array) print G_1.node_object(index) #Diameter print 'Diameter of the graph is:' print zen.diameter(G_1) #Modularity for industry print 'Modularity of the graph is:' c = { 'Real Estate': ['James Packer','Leonard Stern','Mitchell Goldhar','Anas Sefrioui','Samuel Tak Lee','Carlo Fidani','Angela Leong','Asok Kumar Hiranandani','Daniel Pritzker','Anthony Pritzker','Ina Chan','Bahaa Hariri','Dean White', 'Alexandra Schorghuber','Edward DeBartolo, Jr.','Kushal Pal Singh','Kwee brothers','Samih Sawiris','Thomas Pritzker','Alfred Taubman','Donald Bren','Kirk Kerkorian','Walter Kwok','Yang Huiyan','Jennifer Pritzker', 'Lin Rong San','Richard Marriott','Pansy Ho','John Gandel','John Pritzker','Marilyn Carlson Nelson','Penny Pritzker','Jean (Gigi) Pritzker','Nicholas Pritzker, II.','Raj Kumar & Kishin RK','Alexander Skorobogatko', 'Chen Lip Keong','Igor Olenicoff','Lawrence Ho','Linda Pritzker','Alexander Ponomarenko','Barbara Carlson Gage','Bill Marriott, Jr.','Eyal Ofer','Fredrik Lundberg','Eduardo Eurnekian','Georg von Opel','Edward Roski, Jr.', 'Karen Pritzker','Hui Wing Mau','Jay Robert (J.B.) Pritzker'], 'Diversed Financial': ['Isabel dos Santos','Jose Ermirio de Moraes Neto','Michael Milken','Robert Ziff','Yasseen Mansour','Sun Guangxin','Suna Kirac','Robert Kuok','Sebastian Pinera','Vincent Tan','Albert von Thurn und Taxis', 'Bassam Alghanim','Daniel Ziff','Alberto Cortina','Alexander Mamut','Chairul Tanjung','Charles Koch','Dirk Ziff','Stephan Schmidheiny','Andrew Tan','Clemmie Spangler, Jr.','Juan Abello','Mohamed Mansour', 'Stefan Olsson','Sukanto Tanoto','Zhang Hongwei','Robert Rowling','Bidzina Ivanishvili','Wilma Tisch','Kerr Neilson','Kutayba Alghanim','Neide Helena de Moraes','Youssef Mansour','Murdaya Poo','Joan Tisch', 'Li Ka-shing','Peter Kellogg','Prince Alwaleed Bin Talal Alsaud','Richard Scaife','Alberto Alcocer','Henry Hillman','Madeleine Olsson Ericksson','Antonia Johnson','Chen Jinxia','Anil Ambani', 'August von Finck','Dan Olsson','Alexander Vik','Antonio Ermirio de Moraes','David Koch','Eli Broad','Cheng Yu-tung','H. Wayne Huizenga','Jose Roberto Ermirio de Moraes','Maria Helena Moraes Scripilliti', 'Suleiman Kerimov','Vincent Bollore','Ermirio Pereira de Moraes','Ira Rennert','James Irving','Mustafa Rahmi Koc'], 'Consumer': ['Jorge Paulo Lemann','Liu Yongxing','Mary Alice Dorrance Malone','Patricia Matte','Anthony Pratt','Jeremy Jacobs, Sr.','Rishad Naoroji','Suh Kyung-Bae','Susanne Klatten','Tsai Eng-Meng','Jean Pierre Cayard', 'Robert Ingham','S. Curtis Johnson','Stefan Reimann-Andersen','Jean-Michel Besnier','John Fisher','Vikram Lal','Theo Mueller','Thomas Straumann','William Ford, Sr.','Alberto Bombassei','August Oetker', 'Charoen Sirivadhanabhakdi','Christopher Goldsbury','Robert Fisher','Robert Rich, Jr.','Sylvia Stroher','Winnie Johnson-Marquart','Aerin Lauder Zinterhofer','Ahsen Ozokur','Axel Oberwelland','Carl Ferdinand Oetker', 'Chung Mong-Koo','Alfred Oetker','Chey Tae-Won','Christian Oetker','Hans Peter Wild','Guilherme Peirao Leal','Hans Rausing','Ioan Niculae','Stefan Quandt','Charlotte Colket Weber','Cho Yang-Rai','Eliodoro Matte', 'Forrest Mars, Jr.','Imogene Powers Johnson','William Fisher','Wolfgang Reimann','Julia Oetker','Michael Hartono','Nicola Bulgari','Renate Reimann-Haas','Lei Jun','Stefan Persson','Wolfgang Herz','Ronald Lauder', 'Timothy Boyle','William Wrigley, Jr.','Anton Kathrein, Jr.','Ashwin Dani','Benedicta Chamberlain','Bennett Dorrance','Charlene de Carvalho-Heineken','Chung Mong-Joon','Helen Johnson-Leipold','Hubert d Ornano', 'Julio Ponce','Laurent Burelle','Leonard Lauder','Vladimir Scherbakov','Murat Ulker','Renzo Rosso','Liselott Persson','Paolo Bulgari','Marie Besnier Beauvalot','Matthias Reimann-Andersen','Kirsten Rausing', 'Nicolas Puech','Petro Poroshenko','Pier Luigi Loro Piana','Richard Oetker','Charles Bronfman','Heloise Waislitz','Jane Lauder','Alain Wertheimer','Bergit Douglas','Bernardo Matte','Carlos Ardila Lulle', 'Chung Eui-Sun','Daniela Herz','Andrea Della Valle','James Jannard','Richard Yuengling, Jr.','Andrei Guriev','David Murdock','Erika Pohl-Stroher','Fiona Geminder','Francisco Ivens de Sa Dias Branco','Gerard Wertheimer', 'Guenter Herz & Family','Jacqueline Mars','James Leprino','Prince Sultan bin Mohammed bin Saud Al Kabeer','Emanuele (Lino) Saputo','Horst Brandstaetter','H. Fisk Johnson','Herbert Louis','Ingeburg Herz', 'John Dorrance, III.','Rosely Schweizer','Vadim Moshkovich','Emmanuel Besnier','John Mars','Jose and Francisco Jose Calderon Rojas','Kjeld Kirk Kristiansen','Hanni Toosbuy Kasprzak','Johanna Quandt','Jean Burelle', 'Michael Herz','Michael Pieper','Patrizio Bertelli','Rahul Bajaj','Ravi Jaipuria','Miuccia Prada','Nobutada Saji'], 'Retail and Restaurant': ['Juan Roig','Robert Piccinini','S. Robson Walton','Albert Blokker','Alice Walton','Stefano Pessina','Walter Frey','Shin Dong-Bin','Dieter Schwarz','Shari Arison','Shin Dong-Joo','Anders Holch Povlsen', 'Dan Friedkin','Donald Hall','Els Blokker','Sergei Katsiev','David Sainsbury','Stelios Haji-Ioannou','Thomas Bruch','Anne Gittinger','Diego Della Valle','Igor Kesaev','Lee Myung-Hee','Micky Arison', 'Mark Shoen','Jim Walton','Carol Jenkins Barnett','Fernando Roig','Karl Albrecht','M.A. Yusuff Ali','Bruce Nordstrom','Belmiro de Azevedo','Abilio dos Santos Diniz','Ann Walton Kroenke','Chung Yong-Jin', 'Edward Stack','Drayton McLane, Jr.','Heidi Horten','Johan Johannson','Giuseppe De Longhi','Isidoro Alvarez','Joyce Raley Teel','Nancy Walton Laurie','Michael Klein'], 'Energy': ['Mokhzani Mahathir','Gordon Getty','Sid Bass','Robert Bass','Daisy Igel','George Kaiser','Vagit Alekperov','William Moncrief, Jr.','Ahmet Calik','Americo Amorim','Arthur Irving','Gian Marco Moratti','Daniel Harrison, III.', 'Rubens Ometto Silveira Mello','W. Herbert Hunt','William Koch','Evgeny (Eugene) Shvidler','Lee Bass','Lynn Schusterman','Mikhail Gutseriev','Ray Lee Hunt','Massimo Moratti','Mukesh Ambani','Farkhad Akhmedov', 'David Rockefeller, Sr.','Edward Bass','Folorunsho Alakija','Gennady Timchenko','Idan Ofer','Igor Makarov','Gregorio Perez Companc'], 'Mining and metals': ['Patrice Motsepe','Patricia Angelini Rossi','Ana Maria Brescia Cafferata','Bulat Utemuratov','Dan Gertler','Alex Beard','Angela Bennett','Roberto Angelini Rossi','Claude Dauphin','Gina Rinehart','Tor Peterson', 'Margarita Louis-Dreyfus','Monique Louis-Dreyfus','Rosa Brescia Cafferata','Kumar Birla','Oleg Deripaska','Marie-Jeanne Meyer','Aristotelis Mistakidis','Beny Steinmetz','Daniel Mate','Eduardo Hochschild', 'Edwin Soeryadjaya','Ivan Glasenberg','Desmond Sacco','Vladimir Potanin','Jim Justice, II.','Pavel Tykac'], 'Construction': ['Juan-Miguel Villar Mir','Arkady Rotenberg','Fahd Hariri','Riley Bechtel','Simonpietro Salini','Rossana Camargo de Arruda Botelho','D. Leopoldo Del Pino y Calvo-Sotelo','Francesco Saverio Salini','Zhu Xingliang', 'Alicia Koplowitz','Benu Gopal Bangur','Saad Hariri','Ali Ibrahim Agaoglu','Thomas Schmidheiny','Stephen Bechtel, Jr.','Walter Scott, Jr.','Yoshiko Mori','Maria Del Pino y Calvo-Sotelo','Pallonji Mistry', 'Renata de Camargo Nascimento','Mehmet Sinan Tara','Regina de Camargo Pires Oliveira Dias','Ayman Hariri','Elena Baturina','Ziyad Manasir','Rafael Del Pino y Calvo-Sotelo','Nassef Sawiris'], 'Non-consumer industrial': ['Magdalena Martullo-Blocher','Anita Zucker','Georg Schaeffler','Scott Duncan','Vladimir Lisin','Alexander Abramov','Roman Abramovich','Antti Herlin','Francisco Jose Riberas Mera','Friedhelm Loh','Hans Melchers', 'Catherine Lozick','Martin Viessmann','Max Turnauer','Milane Frantz','Randa Williams','Victor Pinchuk','Mitchell Jacobson','Lilian Werninghaus','Niklas Herlin','Miriam Blocher','Richard Kinder','Jose Maria Aristrain', 'Maria-Elisabeth Schaeffler','Rahel Blocher','Reinhold Wuerth','Bachtiar Karim','Dannine Avara','Ilkka Herlin','Ilona Herlin','Lakshmi Mittal','Dieter Schnabel'], 'Technology': ['Martin Haefner','Koo Bon-Neung','Sean Parker','Bent Jensen','David Cheriton','Eva Maria Bucher-Haefner','Evan Williams','Zhou Hongyi','Mark Vadon','Lee Boo-Jin','Lee Seo-Hyun','Venugopal Dhoot','Koo Bon-Moo', 'Jay Y. Lee','Lee Kun-Hee','Hong Ra-Hee','Azim Premji','H. Ross Perot, Jr.','Pat Stryker','Ronda Stryker','Stewart Rahr','Yusuf Hamied','Bernard (Barry) Sherman','Curt Engelhorn','Bulent Eczacibasi', 'Alberto Roemmers','Maja Oeri','Ludwig Merckle','Niels Peter Louis-Hansen','Pankaj Patel','Paul Ramsay','Phillip Frost','Randal Kirk','Henri Beaufour','Faruk Eczacibasi','Anne Beaufour','Shoji Uehara', 'Jacques Servier','Jon Stryker','Gary Michelson','Jeanine Dick','Frederik Paulsen'], 'Money Management': ['Aloysio de Andrade Faria','Joao Moreira Salles','Dinara Kulibaeva','Rupert Johnson, Jr.','Walther Moreira Salles Junior','Timur Kulibaev','Warren Stephens','Rolf Gerling','Yuri Kovalchuk','Austen Cargill, II.', 'Carlos Rodriguez-Pastor','Deniz Sahenk','Fayez Sarofim','Gwendolyn Sontheim Meyer','James Cargill, II.','Benjamin de Rothschild','Filiz Sahenk','Tsai Hong-tu','Lily Safra','Marianne Liebmann', 'Pedro Moreira Salles','Susan Hirt Hagen','Whitney MacMillan','Ana Lucia de Mattos Barretto Villela','Fernando Roberto Moreira Salles','Wee Cho Yaw','Lina Maria Aguiar','Pauline MacMillan Keinath', 'Lia Maria Aguiar','Nikolai Tsvetkov','Luis Enrique Yarur Rey','Othman Benjelloun','Jaime Gilinski Bacal','Alfredo Egydio Arruda Villela Filho','Abigail Johnson','Charles Johnson','Bernard Saul, II.', 'Jaime Botin','Helena Revoredo','Edward Johnson, III.','Husnu Ozyegin'], 'Media': ['Joao Roberto Marinho','Gary Magness','Indu Jain','Samuel Newhouse, Jr.','Stefan von Holtzbrinck','Emilio Azcarraga Jean','Sumner Redstone','Vladimir Yevtushenkov','Alan Rydge','Craig McCaw','Taha Mikati', 'Denis O Brien','Hary Tanoesoedibjo','Naguib Sawiris','Jim Kennedy','Lee Jay-Hyun','Yasumitsu Shigeta','Jose Roberto Marinho','Monika Schoeller','Najib Mikati','Andrei Kuzyaev','Blair Parry-Okeden','Krit Ratanarak', 'Donald Trump','Anne Cox Chambers','Brian Roberts','A. Jerrold Perenchio','Mark Cuban','Donald Newhouse','Friede Springer','Hubert Burda','Jonathan Harmsworth','Lee Hwa-Kyung','Richard Li','Mike Adenuga', 'Patrick McGovern'], 'Other': ['Stanley Kroenke','Helmut Sohmen','Steven Udvar-Hazy','Sunny Varkey','Ana Maria Marcondes Penido Sant Anna','Baba Kalyani','Finn Rausing','Jorn Rausing','Peter Sperling','James France','Victor Fung', 'Sergio Mantegazza','Soichiro Fukutake','James Irsay','Philip Niarchos','John Fredriksen','Otto Happel','Kjell Inge Rokke','William Fung','Klaus-Michael Kuehne','Ranjan Pai','Denise York','Vincent McMahon','John Doerr', 'Daniel Och','Julian Robertson, Jr.','John Arnold','Danil Khachaturov','Leon G. Cooperman','Shin Chang-Jae','George Soros'], } Q=zen.modularity(G_1,c) print Q #Power law print 'Power law' def calc_powerlaw(G,kmin): ddist = zen.degree.ddist(G,normalize=False) cdist = zen.degree.cddist(G,inverse=True) k = numpy.arange(len(ddist)) plt.figure(figsize=(8,12)) plt.subplot(211) plt.bar(k,ddist, width=0.8, bottom=0, color='b') plt.subplot(212) plt.loglog(k,cdist) alpha = 0 print '%1.2f' % alpha plt.show() calc_powerlaw(G_1,1)
#print("Hello"+ " " + "World") #print('Enter Your name') #val=input('Enter your name : ') #print("The length of your name is - " +str(len(val))) a=input("Enter value of a ") b=input("Enter value of b ") print("Swapping varibales ==" ) c=b b=a a=c print(a) print(b)
import os import time import boto3 from sklearn.model_selection import train_test_split import pickle import cv2 import pytesseract import spacy #Comment out the next line if you are using a CPU to train your model spacy.prefer_gpu() from utils import evaluate_model() from utils import save_model() import random from spacy.util import minibatch, compounding from pathlib import Path from spacy.gold import GoldParse from spacy.scorer import Scorer import pandas as pd # Train new NER model def train_new_NER(model=None, output_dir='models/', n_iter=100): #Load the model, set up the pipeline and train the entity recognizer. if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner, last=True) # otherwise, get it so we can add labels else: ner = nlp.get_pipe("ner") # add labels for _, annotations in training_data: for ent in annotations.get("entities"): ner.add_label(ent[2]) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER # reset and initialize the weights randomly – but only if we're training a new model if model is None: nlp.begin_training() print("Training Started...") history_blank = [] for itn in range(n_iter): random.shuffle(training_data) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(training_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update( texts, # batch of texts annotations, # batch of annotations drop=0.2, # dropout - make it harder to memorize data losses=losses, ) print("Losses", losses) epoch_path = output_dir + 'model_blank/epoch_' + str(itn) nlp.to_disk(epoch_path) if val is not None: score_prf = evaluate_model(nlp,val) history_blank.append({"epoch": itn, "losses": losses, "Precision": score_prf['ents_p'], "Recall": score_prf['ents_r'], "F1-score": score_prf['ents_f']}) data = pd.DataFrame(history_blank) data.to_csv('history_blank_model.csv',index=False) return nlp ## Update existing spacy model and store into a folder def update_model(model='en_core_web_sm', output_dir='models/', n_iter=100): #Load the model, set up the pipeline and train the entity recognizer. if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner") nlp.add_pipe(ner, last=True) # otherwise, get it so we can add labels else: ner = nlp.get_pipe("ner") # add labels for _, annotations in training_data: for ent in annotations.get("entities"): ner.add_label(ent[2]) # get names of other pipes to disable them during training other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] with nlp.disable_pipes(*other_pipes): # only train NER # reset and initialize the weights randomly – but only if we're # training a new model print("Training model...") final_loss = [] if model is None: nlp.begin_training() else: optimizer = nlp.resume_training() history_pretrained = [] for itn in range(n_iter): random.shuffle(training_data) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(training_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: texts, annotations = zip(*batch) nlp.update( texts, # batch of texts annotations, # batch of annotations drop=0.2, # dropout - make it harder to memorise data sgd = optimizer, losses=losses, ) print("Losses", losses) epoch_path = output_dir + 'model_pretrained/epoch_' + str(itn) nlp.to_disk(epoch_path) # Make sure you don't use the SpaCy's large model because each model occupies 786 MB of data. if val is not None: score_prf = evaluate_model(nlp,val) history_pretrained.append({"Epoch": itn, "losses": losses, "Precision": score_prf['ents_p'], "Recall": score_prf['ents_r'], "F1-score": score_prf['ents_f']}) data = pd.DataFrame(history_pretrained) data.to_csv('history_pretrained_model.csv',index=False) save_model(nlp, output_dir) return nlp
from django.test import TestCase, client class SmokeTest(TestCase): """I.e., does it run?""" def SetUp(self): self.client = client.Client() def fetch(self, path, status): """See if the specified page produces the expected HTTP status""" response = self.client.get(path) self.failUnlessEqual(response.status_code, status) def test_pages(self): self.fetch("/", 404) self.fetch("/equipment/", 302) ## TODO: to use this test, create a fixture with the account credentials # def test_access(self): # response = self.client.login(path="/equipment/", username="instructor", password="instructor") # self.failUnlessEqual(response.status_code, 200)
from core.terraform.resources import TerraformResource from core.config import Settings from core.providers.aws.boto3 import batch class BatchComputeEnvironmentResource(TerraformResource): """ Base resource class for Terraform AWS Batch compute environment resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_batch_compute_environment" available_args = { 'compute_environment_name': {'required': True, 'prefix': True, 'sep': '-'}, 'compute_resources': { 'required': True, 'inline_args': { 'instance_role': {'required': True}, 'instance_type': {'required': True}, 'max_vcpus': {'required': True}, 'min_vcpus': {'required': True}, 'desired_vcpus': {'required': False}, 'ec2_key_pair': {'required': False, 'prefix': True, 'sep': '_'}, 'security_group_ids': {'required': True}, 'subnets': {'required': True}, 'resource_type': {'required': True, 'tf_arg_key': "type"}, 'compute_resources_tags': {'required': False, 'tf_arg_key': "tags"} } }, 'service_role': {'required': True}, 'env_type': {'required': True, 'tf_arg_key': "type"}, 'ecs_cluster_arn': {'required': False, 'prefix': True, 'sep': '-'}, } def check_exists_before(self, input, tf_outputs): """ Check if the resource is already exists in AWS Args: input (instance): input object tf_outputs (dict): Terraform output dictionary Returns: exists (boolean): True if already exists in AWS else False checked_details (dict): Status of the existence check """ checked_details = {'attr': "name", 'value': self.get_input_attr('compute_environment_name')} exists = False if not self.resource_in_tf_output(tf_outputs): exists = batch.check_compute_env_exists( checked_details['value'], input.aws_access_key, input.aws_secret_key, input.aws_region) return exists, checked_details class BatchJobDefinitionResource(TerraformResource): """ Base resource class for Terraform AWS Batch job definition resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_batch_job_definition" available_args = { 'name': {'required': True, 'prefix': True, 'sep': '-'}, 'jd_type': {'required': True, 'tf_arg_key': "type"}, 'retry_strategy': { 'required': True, 'inline_args': { 'attempts': {'required': True}, } }, 'container_properties': {'required': True}, 'parameters': {'required': False} } def check_exists_before(self, input, tf_outputs): """ Check if the resource is already exists in AWS Args: input (instance): input object tf_outputs (dict): Terraform output dictionary Returns: exists (boolean): True if already exists in AWS else False checked_details (dict): Status of the existence check """ checked_details = {'attr': "name", 'value': self.get_input_attr('name')} exists = False if not self.resource_in_tf_output(tf_outputs): exists = batch.check_job_definition_exists( checked_details['value'], input.aws_access_key, input.aws_secret_key, input.aws_region) return exists, checked_details class BatchJobQueueResource(TerraformResource): """ Base resource class for Terraform AWS Batch job queue resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_batch_job_queue" available_args = { 'name': {'required': True, 'prefix': True, 'sep': '-'}, 'state': {'required': True}, 'priority': {'required': True}, 'compute_environments': {'required': True} } def check_exists_before(self, input, tf_outputs): """ Check if the resource is already exists in AWS Args: input (instance): input object tf_outputs (dict): Terraform output dictionary Returns: exists (boolean): True if already exists in AWS else False checked_details (dict): Status of the existence check """ checked_details = {'attr': "name", 'value': self.get_input_attr('name')} exists = False if not self.resource_in_tf_output(tf_outputs): exists = batch.check_job_queue_exists( checked_details['value'], input.aws_access_key, input.aws_secret_key, input.aws_region) return exists, checked_details
import pathlib from ftplib import FTP ftp = FTP( "10.10.10.5", "anonymous", passwd="" ) fnames = open("filename.list","r") fn = fnames.readlines() plist = open("password.list","r") pwd = plist.readlines() for i in range(12): pf = pathlib.Path(fn[i].rstrip('\n') +".txt") pf.touch() wf = open(fn[i].rstrip('\n')+".txt","w") wf.write(pwd[i]) wf.close() uf = open(fn[i].rstrip('\n')+".txt", "rb") ftp.storlines("STOR "+fn[i].rstrip('\n')+".txt", uf) ff = open("../flag1-1/flag.zip", "rb") ftp.storbinary("STOR flag.zip", ff) for i in range(12,35): pf = pathlib.Path(fn[i].rstrip('\n') +".txt") pf.touch() wf = open(fn[i].rstrip('\n')+".txt","w") wf.write(pwd[i]) wf.close() uf = open(fn[i].rstrip('\n')+".txt", "rb") ftp.storlines("STOR "+fn[i].rstrip('\n')+".txt", uf) ff = open("../flag2-1/flag.zip", "rb") ftp.storbinary("STOR flag.zip", ff) for i in range(35,50): pf = pathlib.Path(fn[i].rstrip('\n') +".txt") pf.touch() wf = open(fn[i].rstrip('\n')+".txt","w") wf.write(pwd[i]) wf.close() uf = open(fn[i].rstrip('\n')+".txt", "rb") ftp.storlines("STOR "+fn[i].rstrip('\n')+".txt", uf) ff = open("../flag3-1/flag.zip", "rb") ftp.storbinary("STOR flag.zip", ff)
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging LOG = logging.getLogger("transformers4rec") def download(output_path): """Download YooChoose dataset. Parameters ---------- output_path: str Path to download the data to Returns output_path: str ------- """ from kaggle import api as kaggle_api kaggle_api.authenticate() LOG.info("Downloading data from Kaggle...") kaggle_api.dataset_download_files( "chadgostopp/recsys-challenge-2015", path=output_path, unzip=True ) return output_path def process_clicks(data_path: str, device="gpu"): """Process YooChoose dataset. Parameters ---------- data_path: str Path to use to read the data from. device: str, default: "gpu" Device to use for processing clicks. Returns ------- Union[cudf.DataFrame, pandas.DataFrame] """ from .preprocessing import ( # type: ignore add_item_first_seen_col_to_df, remove_consecutive_interactions, ) if device == "gpu": import cudf df = cudf.read_csv( data_path, sep=",", names=["session_id", "timestamp", "item_id", "category"], parse_dates=["timestamp"], ) else: import pandas as pd df = pd.read_csv( data_path, sep=",", names=["session_id", "timestamp", "item_id", "category"], parse_dates=["timestamp"], ) df = remove_consecutive_interactions(df) df = add_item_first_seen_col_to_df(df) return df
# Quick tests for the markup templatetags (django_markwhat) import re import unittest from django.template import Template, Context from django.utils.html import escape try: import textile except ImportError: textile = None try: import markdown markdown_version = getattr(markdown, "version_info", 0) except ImportError: markdown = None try: import commonmark except ImportError: commonmark = None try: import docutils except ImportError: docutils = None class Templates(unittest.TestCase): textile_content = """Paragraph 1 Paragraph 2 with "quotes" and @code@""" markdown_content = """Paragraph 1 ## An h2""" markdown_content_with_html_code = """Paragraph 1 ## An h2 ``` <video width="320" height="240" controls> <source src="movie.mp4" type="video/mp4"> <source src="movie.ogg" type="video/ogg"> </video> ``` """ markdown_content_with_iframe_code = """Paragraph 1 ## An h2 ``` <iframe src="http://example.com"></iframe> ``` """ rest_content = """Paragraph 1 Paragraph 2 with a link_ .. _link: http://www.example.com/""" @unittest.skipUnless(textile, 'texttile not installed') def test_textile(self): t = Template("{% load markup %}{{ textile_content|textile }}") rendered = t.render(Context( {'textile_content': self.textile_content})).strip() self.assertEqual(rendered.replace('\t', ''), """<p>Paragraph 1</p> <p>Paragraph 2 with &#8220;quotes&#8221; and <code>code</code></p>""") @unittest.skipIf(textile, 'texttile is installed') def test_no_textile(self): t = Template("{% load markup %}{{ textile_content|textile }}") rendered = t.render(Context( {'textile_content': self.textile_content})).strip() self.assertEqual(rendered, escape(self.textile_content)) @unittest.skipUnless(markdown, 'markdown not installed') def test_markdown(self): t = Template("{% load markup %}{{ markdown_content|markdown }}") rendered = t.render(Context({ 'markdown_content': self.markdown_content })).strip() pattern = re.compile(r"<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>") self.assertTrue(pattern.match(rendered)) @unittest.skipUnless(markdown, 'markdown not installed') def test_markdown_html_code(self): t = Template("{% load markup %}{{ markdown_content|markdown }}") rendered = t.render(Context({ 'markdown_content': self.markdown_content_with_html_code })).strip() pattern = re.compile( r'<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>' + r'\s*<p><code>\s*&lt;video width="320"' ) self.assertTrue(pattern.match(rendered)) @unittest.skipUnless(markdown, 'markdown not installed') def test_markdown_html_iframe_code(self): t = Template("{% load markup %}{{ markdown_content|markdown }}") rendered = t.render(Context({ 'markdown_content': self.markdown_content_with_iframe_code })).strip() pattern = re.compile( r'<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>' + r'\s*<p><code>\s*&lt;iframe src="http://example.com"&gt;' + r'&lt;/iframe&gt;' ) self.assertTrue(pattern.match(rendered)) @unittest.skipUnless( markdown and markdown_version >= (2, 1), 'markdown >= 2.1 not installed' ) def test_markdown_attribute_disable(self): t = Template("{% load markup %}{{ markdown_content|markdown:'safe' }}") markdown_content = "{@onclick=alert('hi')}some paragraph" rendered = t.render(Context( {'markdown_content': markdown_content})).strip() self.assertTrue('@' in rendered) @unittest.skipUnless( markdown and markdown_version >= (2, 1), 'markdown >= 2.1 not installed' ) def test_markdown_attribute_enable(self): t = Template("{% load markup %}{{ markdown_content|markdown }}") markdown_content = "{@onclick=alert('hi')}some paragraph" rendered = t.render(Context( {'markdown_content': markdown_content})).strip() self.assertFalse('@' in rendered) @unittest.skipIf(markdown, 'markdown is installed') def test_no_markdown(self): t = Template("{% load markup %}{{ markdown_content|markdown }}") rendered = t.render(Context( {'markdown_content': self.markdown_content})).strip() self.assertEqual(rendered, self.markdown_content) @unittest.skipUnless(commonmark, 'commonmark not installed') def test_commonmark(self): t = Template("{% load markup %}{{ markdown_content|commonmark }}") rendered = t.render( Context({'markdown_content': self.markdown_content})).strip() pattern = re.compile(r"<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>") self.assertTrue(pattern.match(rendered)) @unittest.skipUnless(commonmark, 'commonmark not installed') def test_commonmark_html_code(self): t = Template("{% load markup %}{{ markdown_content|commonmark }}") rendered = t.render(Context({ 'markdown_content': self.markdown_content_with_html_code })).strip() pattern = re.compile( r'<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>' + r'\s*<pre><code>\s*&lt;video width=&quot;320&quot' ) self.assertTrue(pattern.match(rendered)) @unittest.skipUnless(commonmark, 'commonmark not installed') def test_commonmark_html_iframe_code(self): t = Template("{% load markup %}{{ markdown_content|commonmark }}") rendered = t.render(Context({ 'markdown_content': self.markdown_content_with_iframe_code })).strip() pattern = re.compile( r'<p>Paragraph 1\s*</p>\s*<h2>\s*An h2</h2>' + r'\s*<pre><code>\s*&lt;iframe ' + r'src=&quot;http://example.com&quot;&gt;' + r'&lt;/iframe&gt;' ) self.assertTrue(pattern.match(rendered)) @unittest.skipUnless(commonmark, 'commonmark not installed') def test_commonmark_empty_str(self): t = Template("{% load markup %}{{ markdown_content|commonmark }}") rendered = t.render(Context({'markdown_content': ''})).strip() self.assertEqual(rendered, '') @unittest.skipUnless(commonmark, 'commonmark not installed') def test_commonmark_none(self): t = Template("{% load markup %}{{ markdown_content|commonmark }}") rendered = t.render(Context({'markdown_content': None})).strip() self.assertEqual(rendered, '<p>None</p>') @unittest.skipUnless(docutils, 'docutils not installed') def test_docutils(self): t = Template("{% load markup %}{{ rest_content|restructuredtext }}") rendered = t.render(Context({ 'rest_content': self.rest_content })).strip() # Different versions of docutils return slightly different HTML try: # Docutils v0.4 and earlier self.assertEqual( rendered, '<p>Paragraph 1</p>\n' + '<p>Paragraph 2 with a <a class="reference" ' + 'href="http://www.example.com/">link</a></p>') except AssertionError: # Docutils from SVN (which will become 0.5) self.assertEqual( rendered, '<p>Paragraph 1</p>\n' + '<p>Paragraph 2 with a ' + '<a class="reference external" ' + 'href="http://www.example.com/">link</a></p>') @unittest.skipIf(docutils, 'docutils is installed') def test_no_docutils(self): t = Template("{% load markup %}{{ rest_content|restructuredtext }}") rendered = t.render( Context({'rest_content': self.rest_content})).strip() self.assertEqual(rendered, self.rest_content)
# -*- coding: utf-8 -*- import os import json from flask import current_app, request, Response from flask.ext.restful import abort, fields, marshal_with, marshal from sqlalchemy.orm.exc import NoResultFound from export_report import ExportOgranisationsResource from domain.models import Address, Organisation, Person, \ BrregActivityCode, FlodActivityType, UmbrellaOrganisation, \ PersonOrgAssociationRole, OrganisationPersonAssociation, \ UmbrellaOrgMemberOrgAssociation, OrganisationInternalNote, District from flodapi import FlodApi from flod_common.session.utils import (unsign_auth_token, verify_auth_token, verify_superuser_auth_token) from util.brregclient import BrRegClient, OrgNrNotFoundException from api import PersonsResource, PersonResource, PersonOrganisationsResource, OrganisationResource, \ OrganisationPersonsResource, UmbrellaOrganisationResource, UmbrellaOrganisationPersonsResource, \ UmbrellaOrgMemberOrgAssociationsResource, BrregActivityCodeResource, FlodActivityTypeResource, DistrictResource, \ OrganisationInternalNotesResource, address_fields BRREG_URL = os.environ.get("FLOD_BRREG_URL") BRREG_USER_ID = os.environ.get("FLOD_BRREG_USER") BRREG_PASSWORD = os.environ.get("FLOD_BRREG_PASS") USERS_URL = os.environ.get('USERS_URL', 'http://localhost:4000') booking_service_base_url = os.environ.get('BOOKING_URL', "http://localhost:1337") booking_service_version = os.environ.get('BOOKING_VERSION', 'v1') organisation_booking_uri = '%s/api/%s/organisations' % (booking_service_base_url, booking_service_version) try: brreg_client = BrRegClient(BRREG_URL, BRREG_USER_ID, BRREG_PASSWORD) except Exception: brreg_client = None brreg_name_search_fields = { 'name': fields.String(attribute='OrgNavn', default=None), 'org_number': fields.String(attribute='Orgnr', default=None), 'org_form': fields.String(attribute='OrgForm', default=None), 'postal_place': fields.String(attribute='Sted', default=None), 'is_registered': fields.Boolean, 'relevance_score': fields.String(attribute='Score', default=None), 'id': fields.Integer(default=None) } brreg_org_fields = { 'id': fields.Integer(default=None), 'name': fields.String(default=None), 'org_number': fields.String(default=None), 'org_form': fields.String(default=None), 'account_number': fields.String(default=None), 'email_address': fields.String(default=None), 'phone_number': fields.String(default=None), 'telefax_number': fields.String(default=None), 'url': fields.String(default=None), 'uri': fields.String(default=None), 'business_address': fields.Nested(address_fields, allow_null=True), 'postal_address': fields.Nested(address_fields, allow_null=True), 'is_public': fields.Boolean, # activity codes 'brreg_activity_code': fields.List(fields.String), # Trondheim kommune specific fields 'flod_activity_type': fields.List(fields.Integer, default=[]), 'num_members_b20': fields.Integer(default=None), 'num_members': fields.Integer(default=None), 'description': fields.String(default=None), 'area': fields.Integer(default=None), 'registered_tkn': fields.Boolean, 'is_registered': fields.Boolean } def create_api(app, api_version): api = FlodApi(app) ## ## Actually setup the Api resource routing here ## api.add_resource(PersonsResource, '/api/%s/persons/' % api_version) api.add_resource( PersonResource, '/api/%s/persons/' % api_version, '/api/%s/persons/<int:person_id>' % api_version ) api.add_resource( PersonOrganisationsResource, '/api/%s/persons/<int:person_id>/organisations/' % api_version ) api.add_resource( OrganisationResource, '/api/%s/organisations/<int:org_id>' % api_version, '/api/%s/organisations/' % api_version ) api.add_resource( ExportOgranisationsResource, '/api/%s/export/organisations/' % api_version ) api.add_resource( OrganisationPersonsResource, '/api/%s/organisations/<int:org_id>/persons/' % api_version, '/api/%s/organisations/<int:org_id>/persons/<int:person_id>' % api_version ) api.add_resource( UmbrellaOrganisationResource, '/api/%s/umbrella_organisations/<int:umb_org_id>' % api_version, '/api/%s/umbrella_organisations/<string:umb_org_name>' % api_version, '/api/%s/umbrella_organisations/' % api_version ) api.add_resource( UmbrellaOrganisationPersonsResource, '/api/%s/umbrella_organisations/<int:umb_org_id>/persons/' % api_version, '/api/%s/umbrella_organisations/<int:umb_org_id>/persons/<int:person_id>' % api_version ) api.add_resource( UmbrellaOrgMemberOrgAssociationsResource, '/api/%s/umbrella_organisations/<int:umbrella_organisation_id>/organisations/' % api_version, '/api/%s/umbrella_organisations/<int:umbrella_organisation_id>/organisations/<int:association_id>' % api_version ) api.add_resource( BrregActivityCodeResource, '/api/%s/brreg_activity_codes/' % api_version ) api.add_resource( FlodActivityTypeResource, '/api/%s/flod_activity_types/' % api_version ) api.add_resource( DistrictResource, '/api/%s/districts/' % api_version ) api.add_resource( OrganisationInternalNotesResource, '/api/%s/organisations/<int:organisation_id>/notes/' % api_version, '/api/%s/organisations/<int:organisation_id>/notes/<int:note_id>' % api_version ) @app.route('/api/%s/brreg/enhet' % api_version) def lookup_basic_brreg_data(): """ Lookup unit information in Brreg. :param orgnr: Organisation number :statuscode 401: Unauthorized """ if not verify_auth_token(request.cookies.get('auth_token')): abort(401) if not brreg_client: abort(404) org_number = request.args['orgnr'] try: response = brreg_client.get_brreg_enhet_basis_data_full(org_number) except OrgNrNotFoundException, e: return Response( json.dumps({"__error__": [e.message]}), mimetype='application/json', status=404 ) try: flod_org = current_app.db_session.query(Organisation).filter( Organisation.org_number == org_number ).one() response['id'] = flod_org.id is_registered = not flod_org.is_deleted except NoResultFound: is_registered = False response['is_registered'] = is_registered marshalled = marshal(response, brreg_org_fields) return Response( json.dumps(marshalled), mimetype='application/json' ) @app.route('/api/%s/brreg/enhet/roller' % api_version) def lookup_brreg_roles(): """ Lookup roles in Brreg. :param orgnr: Organisation number :statuscode 401: Unauthorized """ if not verify_auth_token(request.cookies.get('auth_token')): abort(401) if not brreg_client: abort(404) org_number = request.args['orgnr'] response = brreg_client.get_brreg_enhet_role_data(org_number) return Response(json.dumps(response), mimetype='application/json') @app.route('/api/%s/brreg/enhet/kontakt' % api_version) def lookup_brreg_contact(): """ Lookup contact information in Brreg. :param orgnr: Organisation number :statuscode 401: Unauthorized """ if not verify_auth_token(request.cookies.get('auth_token')): abort(401) if not brreg_client: abort(404) org_number = request.args['orgnr'] response = brreg_client.get_brreg_enhet_contact_data(org_number) return Response(json.dumps(response), mimetype='application/json') @app.route('/api/%s/brreg/search' % api_version) def lookup_org_name(): """ Lookup organisation in Brreg by name. :param name: Organisation name :statuscode 401: Unauthorized """ if not verify_auth_token(request.cookies.get('auth_token')): abort(401) if not brreg_client: abort(404) name = request.args['name'] response = brreg_client.get_brreg_enhet_name_search(name) search_result = response.get('result', []) for org in search_result: org_number = org.get('Orgnr', None) try: flod_org = current_app.db_session.query(Organisation).filter( Organisation.org_number == org_number ).one() org['id'] = flod_org.id org['is_registered'] = not flod_org.is_deleted except NoResultFound: org['is_registered'] = False marshalled = marshal(search_result, brreg_name_search_fields) return Response(json.dumps(marshalled), mimetype='application/json') return api
""" A Pillow loader for .ftc and .ftu files (FTEX) Jerome Leclanche <[email protected]> The contents of this file are hereby released in the public domain (CC0) Full text of the CC0 license: https://creativecommons.org/publicdomain/zero/1.0/ Independence War 2: Edge Of Chaos - Texture File Format - 16 October 2001 The textures used for 3D objects in Independence War 2: Edge Of Chaos are in a packed custom format called FTEX. This file format uses file extensions FTC and FTU. * FTC files are compressed textures (using standard texture compression). * FTU files are not compressed. Texture File Format The FTC and FTU texture files both use the same format. This has the following structure: {header} {format_directory} {data} Where: {header} = { u32:magic, u32:version, u32:width, u32:height, u32:mipmap_count, u32:format_count } * The "magic" number is "FTEX". * "width" and "height" are the dimensions of the texture. * "mipmap_count" is the number of mipmaps in the texture. * "format_count" is the number of texture formats (different versions of the same texture) in this file. {format_directory} = format_count * { u32:format, u32:where } The format value is 0 for DXT1 compressed textures and 1 for 24-bit RGB uncompressed textures. The texture data for a format starts at the position "where" in the file. Each set of texture data in the file has the following structure: {data} = format_count * { u32:mipmap_size, mipmap_size * { u8 } } * "mipmap_size" is the number of bytes in that mip level. For compressed textures this is the size of the texture data compressed with DXT1. For 24 bit uncompressed textures, this is 3 * width * height. Following this are the image bytes for that mipmap level. Note: All data is stored in little-Endian (Intel) byte order. """ import struct from io import BytesIO from . import Image, ImageFile MAGIC = b"FTEX" FORMAT_DXT1 = 0 FORMAT_UNCOMPRESSED = 1 class FtexImageFile(ImageFile.ImageFile): format = "FTEX" format_description = "Texture File Format (IW2:EOC)" def _open(self): magic = struct.unpack("<I", self.fp.read(4)) version = struct.unpack("<i", self.fp.read(4)) self.size = struct.unpack("<2i", self.fp.read(8)) mipmap_count, format_count = struct.unpack("<2i", self.fp.read(8)) self.mode = "RGB" # Only support single-format files. I don't know of any multi-format file. assert format_count == 1 format, where = struct.unpack("<2i", self.fp.read(8)) self.fp.seek(where) mipmap_size, = struct.unpack("<i", self.fp.read(4)) data = self.fp.read(mipmap_size) if format == FORMAT_DXT1: self.mode = "RGBA" self.tile = [("bcn", (0, 0) + self.size, 0, (1))] elif format == FORMAT_UNCOMPRESSED: self.tile = [("raw", (0, 0) + self.size, 0, ('RGB', 0, 1))] else: raise ValueError("Invalid texture compression format: %r" % (format)) self.fp.close() self.fp = BytesIO(data) def load_seek(self, pos): pass def _validate(prefix): return prefix[:4] == MAGIC Image.register_open(FtexImageFile.format, FtexImageFile, _validate) Image.register_extension(FtexImageFile.format, ".ftc") Image.register_extension(FtexImageFile.format, ".ftu")
import contextlib import os @contextlib.contextmanager def modified_environ(*remove, **update): """Temporarily updates the os.environ dictionary in-place.""" env = os.environ update = update or {} remove = remove or [] # List of environment variables being updated or removed. stomped = (set(update.keys()) | set(remove)) & set(env.keys()) # Environment variables and values to restore on exit. update_after = {k: env[k] for k in stomped} # Environment variables and values to remove on exit. remove_after = frozenset(k for k in update if k not in env) try: env.update(update) [env.pop(k, None) for k in remove] yield finally: env.update(update_after) [env.pop(k) for k in remove_after]
""" PUBLIC CONSTANTS """ DOMAIN = "script_engine" CLASS_NAME_PATTERN = '_Script_*' FILE_NAME_PATTERN = 'script_*.py' FUNCTION_NAME_PATTERN = '_script_*' SCRIPT_FOLDER = "/config/script_engine/"
from glob import glob import os import os.path import shutil import subprocess import sys from argparse import ArgumentParser def pad_number(num): length = len(str(num)) return ((3 - length) * '0') + str(num) ddpost_par = """ '{e_file}' = name of file with E stored '{outfile}' = prefix for name of VTR output files {e_e2} = IVTR (set to 1 to create VTR output) 0 = ILINE (set to 1 to evaluate E along a line) """ def main(): argparser = ArgumentParser() argparser.add_argument('subdir') args = argparser.parse_args() os.chdir(args.subdir) subprocess.call('mkdir vtr', shell=True) subprocess.call('cp ~/scratch/exec/ddpostprocess .', shell=True) vtrdir = os.path.join(args.subdir, 'vtr') efiles = glob('w*r000k000.E1') efiles.sort() i = 0 for i, efile in enumerate(efiles): with open('ddpostprocess.par', 'w') as fp: fp.write(ddpost_par.format( e_file=efile, outfile='vtr/wav_{}'.format(i), e_e2='1' )) subprocess.call('./ddpostprocess', shell=True) subprocess.call('rm ddpostprocess.par', shell=True) unchanged = glob('vtr/*') for file in unchanged: newfile = file.replace('_1.vtr', '.vtr') shutil.move(file, newfile) os.chdir('..') shutil.move(vtrdir, '{}_vtr'.format(args.subdir)) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- import turtle def main(): window = turtle.Screen() tortuga = turtle.Turtle() make_square(tortuga) turtle.mainloop() def make_square(turtle): lenght = int(raw_input('Digite el largo del lado: ')) for i in range(4): make_line_and_turn(turtle, lenght) def make_line_and_turn(turtle, lenght): turtle.forward(lenght) turtle.left(90) # Le indicamos a python que ejecute el método de entrada if __name__ == '__main__': main()
import json import os import re import psutil import time import redis from flask import Flask from flask import render_template from flask import jsonify app = Flask(__name__) r = redis.StrictRedis(host='localhost', port=6379, db=0) log_path = '/opt/doorbell/logs' @app.route("/", methods=['GET']) def hello(): return render_template('hello.html') @app.route("/config", methods=['GET']) def config(): doorbell_config = { 'uptime': int(round(time.time() - psutil.boot_time())), 'time': int(round(time.time())), 'total_rings': int(r.get('total_rings')), 'rings_since_boot': int(r.get('rings_since_boot')), 'volume': int(r.get('volume')), 'language': int(r.get('language')), 'switch_voice_randomly': int(r.get('switch_voice_randomly')), 'voice': int(r.get('voice')), 'last_ring': int(round(float(r.get('last_ring')))) } return jsonify(doorbell_config) def is_ringing(): return time.time() - float(r.get('last_ring')) < 3 @app.route("/poll", methods=['GET']) def poll(): request_time = time.time() while not is_ringing(): if time.time() - request_time > 60: break time.sleep(1) return jsonify({ 'currently_ringing': is_ringing(), 'last_ring': float(r.get('last_ring')), 'time': time.time() }) @app.route("/log/<int:year>/<int:month>", methods=['GET']) def log(year, month): path = '%s/%s-%s.json' % (log_path,year, month) if not os.path.exists(path): return jsonify({'error': 'Log file not found'}), 404 with open(path) as data_file: logs = json.load(data_file) return jsonify(logs) @app.route("/logs", methods=['GET']) def logs(): files = os.listdir(log_path) log_routes = [] for file in files: if not file.endswith('.json'): continue m = re.match(r'^(?P<year>[0-9]{4})-(?P<month>[0-9]{2})\.json$', file) log_routes.append('/log/%s/%s' % (m.group('year'), m.group('month'))) return jsonify(log_routes)
from __future__ import division import collections from typing import Any, Dict, List, Optional, Union import astropy.units as u import numba as nb import numpy import scipy.integrate from past.utils import old_div from astromodels.core.memoization import use_astromodels_memoization from astromodels.core.parameter import Parameter from astromodels.core.sky_direction import SkyDirection from astromodels.core.spectral_component import SpectralComponent from astromodels.core.tree import Node from astromodels.core.units import get_units from astromodels.functions.function import Function1D from astromodels.sources.source import Source, SourceType from astromodels.utils.logging import setup_logger from astromodels.utils.pretty_list import dict_to_list __author__ = 'giacomov' __all__ = ["PointSource"] log = setup_logger(__name__) class PointSource(Source, Node): """ A point source. You can instance this class in many ways. - with Equatorial position and a function as spectrum (the component will be automatically called 'main'):: >>> from astromodels import * >>> point_source = PointSource('my_source', 125.6, -75.3, Powerlaw()) - with Galactic position and a function as spectrum (the component will be automatically called 'main'):: >>> point_source = PointSource('my_source', l=15.67, b=80.75, spectral_shape=Powerlaw()) - with Equatorial position or Galactic position and a list of spectral components:: >>> c1 = SpectralComponent("component1", Powerlaw()) >>> c2 = SpectralComponent("component2", Powerlaw()) >>> point_source = PointSource("test_source",125.6, -75.3,components=[c1,c2]) Or with Galactic position: >>> point_source = PointSource("test_source",l=15.67, b=80.75,components=[c1,c2]) NOTE: by default the position of the source is fixed (i.e., its positional parameters are fixed) :param source_name: name for the source :param ra: Equatorial J2000 Right Ascension (ICRS) :param dec: Equatorial J2000 Declination (ICRS) :param spectral_shape: a 1d function representing the spectral shape of the source :param l: Galactic latitude :param b: Galactic longitude :param components: list of spectral components (instances of SpectralComponent) :param sky_position: an instance of SkyDirection :return: """ def __init__(self, source_name: str, ra: Optional[float] = None, dec: Optional[float] = None, spectral_shape: Optional[Function1D] = None, l: Optional[float] = None, b: Optional[float] = None, components=None, sky_position: Optional[SkyDirection]=None): # Check that we have all the required information # (the '^' operator acts as XOR on booleans) # Check that we have one and only one specification of the position if not ((ra is not None and dec is not None) ^ (l is not None and b is not None) ^ (sky_position is not None)): log.error( "You have to provide one and only one specification for the position" ) raise AssertionError() # Gather the position if not isinstance(sky_position, SkyDirection): if (ra is not None) and (dec is not None): # Check that ra and dec are actually numbers try: ra = float(ra) dec = float(dec) except (TypeError, ValueError): log.error("RA and Dec must be numbers. If you are confused by this message, you " "are likely using the constructor in the wrong way. Check the documentation.") raise AssertionError() sky_position = SkyDirection(ra=ra, dec=dec) else: sky_position = SkyDirection(l=l, b=b) self._sky_position: SkyDirection = sky_position # Now gather the component(s) # We need either a single component, or a list of components, but not both # (that's the ^ symbol) if not (spectral_shape is not None) ^ (components is not None): log.error("You have to provide either a single component, or a list of components (but not both).") raise AssertionError() # If the user specified only one component, make a list of one element with a default name ("main") if spectral_shape is not None: components = [SpectralComponent("main", spectral_shape)] Source.__init__(self, components, src_type=SourceType.POINT_SOURCE) # A source is also a Node in the tree Node.__init__(self, source_name) # Add the position as a child node, with an explicit name self._add_child(self._sky_position) # Add a node called 'spectrum' spectrum_node = Node('spectrum') spectrum_node._add_children(list(self._components.values())) self._add_child(spectrum_node) # Now set the units # Now sets the units of the parameters for the energy domain current_units = get_units() # Components in this case have energy as x and differential flux as y x_unit = current_units.energy y_unit = (current_units.energy * current_units.area * current_units.time) ** (-1) # Now set the units of the components for component in list(self._components.values()): component.shape.set_units(x_unit, y_unit) def __call__(self, x, tag=None): if tag is None: # No integration nor time-varying or whatever-varying if isinstance(x, u.Quantity): # Slow version with units results = [component.shape(x) for component in list(self.components.values())] # We need to sum like this (slower) because using np.sum will not preserve the units # (thanks astropy.units) return sum(results) else: # Fast version without units, where x is supposed to be in the same units as currently defined in # units.get_units() results = numpy.array([component.shape(x) for component in list(self.components.values())]) return _sum(results) else: # Time-varying or energy-varying or whatever-varying integration_variable, a, b = tag if b is None: # Evaluate in a, do not integrate # Suspend memoization because the memoization gets confused when integrating with use_astromodels_memoization(False): integration_variable.value = a res = self.__call__(x, tag=None) return res else: # Integrate between a and b integrals = numpy.zeros(len(x)) # TODO: implement an integration scheme avoiding the for loop # Suspend memoization because the memoization gets confused when integrating with use_astromodels_memoization(False): reentrant_call = self.__call__ for i, e in enumerate(x): def integral(y): integration_variable.value = y return reentrant_call(e, tag=None) # Now integrate integrals[i] = scipy.integrate.quad(integral, a, b, epsrel=1e-5)[0] return old_div(integrals, (b - a)) def has_free_parameters(self) -> bool: """ Returns True or False whether there is any parameter in this source :return: """ for component in list(self._components.values()): for par in list(component.shape.parameters.values()): if par.free: return True for par in list(self.position.parameters.values()): if par.free: return True return False @property def free_parameters(self) -> Dict[str, Parameter]: """ Returns a dictionary of free parameters for this source. We use the parameter path as the key because it's guaranteed to be unique, unlike the parameter name. :return: """ free_parameters = collections.OrderedDict() for component in list(self._components.values()): for par in list(component.shape.parameters.values()): if par.free: free_parameters[par.path] = par for par in list(self.position.parameters.values()): if par.free: free_parameters[par.path] = par return free_parameters @property def parameters(self) -> Dict[str, Parameter]: """ Returns a dictionary of all parameters for this source. We use the parameter path as the key because it's guaranteed to be unique, unlike the parameter name. :return: """ all_parameters = collections.OrderedDict() for component in self._components.values(): for par in component.shape.parameters.values(): all_parameters[par.path] = par for par in self.position.parameters.values(): all_parameters[par.path] = par return all_parameters def _repr__base(self, rich_output=False): """ Representation of the object :param rich_output: if True, generates HTML, otherwise text :return: the representation """ # Make a dictionary which will then be transformed in a list repr_dict = collections.OrderedDict() key = '%s (point source)' % self.name repr_dict[key] = collections.OrderedDict() repr_dict[key]['position'] = self._sky_position.to_dict(minimal=True) repr_dict[key]['spectrum'] = collections.OrderedDict() for component_name, component in list(self.components.items()): repr_dict[key]['spectrum'][component_name] = component.to_dict(minimal=True) return dict_to_list(repr_dict, rich_output) @nb.njit(fastmath=True) def _sum(x): return numpy.sum(x, axis=0)
import pygame from engine import * from eventManager import * class Label(Engine.GUI.Widget): def __init__(self, text, textColor = None, backgroundColor = None, fontSize = None, padding = None, width = None, height = None, transparentBackground = True): super().__init__() self.textColor = textColor if textColor != None else self.options.labelWidgetTextColor self.backgroundColor = backgroundColor if backgroundColor != None else self.options.labelWidgetBackgroundColor self.hasTransparentBackground = transparentBackground self.fontSize = fontSize if fontSize != None else self.options.widgetFontSize self.font = pygame.font.Font(self.options.widgetFont, self.fontSize) self.text = text self.renderedText = self.font.render(self.text, True, self.textColor, self.backgroundColor) #need this here to get initial size self.textRect = self.renderedText.get_rect() self.rect = self.textRect #self.rect is actually Rect for widget, used here to provide initial size values self.padding = padding if padding != None else self.options.widgetPadding self.width = width if self.width == None: self.width = self.rect.width + self.padding self.rect.width = self.width self.height = height if self.height == None: self.height = self.rect.height + self.padding self.rect.height = self.height def redrawWidget(self): self.dirty = True self.image = pygame.Surface((self.width, self.height)) self.image.fill(self.backgroundColor) if self.hasTransparentBackground: self.image.set_colorkey(self.backgroundColor) self.renderedText = self.font.render(self.text, True, self.textColor, self.backgroundColor) self.textRect = self.renderedText.get_rect() self.textRect.x = (self.width / 2) - (self.textRect.width / 2) self.textRect.y = (self.height / 2) - (self.textRect.height / 2) self.image.blit(self.renderedText, self.textRect) def update(self): if self.dirty: self.redrawWidget() self.dirty = False class StatTracker(Label): def __init__(self, stat, value, textColor = None, backgroundColor = None, fontSize = None, padding = None, width = None, height = None, transparentBackground = True): super().__init__(stat, textColor, backgroundColor, fontSize, padding, width, height, transparentBackground) self.stat = stat self.statValue = value self.text = stat self.valueFontSize = fontSize if fontSize != None else self.options.widgetFontSize self.valueFont = pygame.font.Font(self.options.widgetFont, self.valueFontSize) self.textFontSize = self.options.statTrackerTextFontSize self.textFont = pygame.font.Font(self.options.widgetFont, self.textFontSize) # get initial sizes self.renderedValue = self.valueFont.render(str(self.statValue), True, self.textColor, self.backgroundColor) self.valueRect = self.renderedValue.get_rect() self.renderedText = self.textFont.render(self.text, True, self.textColor, self.backgroundColor) self.textRect = self.renderedText.get_rect() self.padding = padding if padding != None else self.options.statTrackerTextPadding self.width = width if width != None else max(self.valueRect.width, self.textRect.width) + self.padding self.height = height if height != None else self.valueRect.height + self.textRect.height + self.padding + self.options.statTrackerValueTextSpacing self.rect = self.textRect #self.rect is actually Rect for widget, used here to provide initial size values self.rect.width = self.width self.rect.height = self.height def addListeners(self): event = Events.StatUpdateEvent() self.eventManager.addListener(event, self) def notify(self, event): if isinstance(event, Events.StatUpdateEvent): if event.stat == self.stat: self.value(event.value) def value(self, value = None): if value != None: self.statValue += value self.redrawWidget() return self.statValue def redrawWidget(self): self.dirty = True self.image = pygame.Surface((self.width, self.height)) self.image.fill(self.backgroundColor) if self.hasTransparentBackground: self.image.set_colorkey(self.backgroundColor) self.renderedValue = self.valueFont.render(str(self.statValue), True, self.textColor, self.backgroundColor) self.valueRect = self.renderedValue.get_rect() self.valueRect.x = (self.width / 2) - (self.valueRect.width / 2) self.valueRect.y = (self.padding / 2) #self.topEdge() + self.renderedText = self.textFont.render(self.text, True, self.textColor, self.backgroundColor) self.textRect = self.renderedText.get_rect() self.textRect.x = (self.width / 2) - (self.textRect.width / 2) self.textRect.y = self.rect.height - (self.padding / 2) - self.textRect.height self.width = max(self.valueRect.width, self.textRect.width) + self.padding self.rect.width = self.width self.image.blit(self.renderedValue, self.valueRect) self.image.blit(self.renderedText, self.textRect) class HoverableWidget(Label): def __init__(self, text, textColor = None, backgroundColor = None, fontSize = None, padding = None, onHoverAction = None, width = None, height = None, transparentBackground = False): super().__init__(text, textColor, backgroundColor, fontSize, padding, width, height, transparentBackground) self.unfocusedBackgroundColor = self.backgroundColor self.focusedBackgroundColor = self.getFocusedColor(self.backgroundColor) if onHoverAction: self.onHoverAction = onHoverAction else: self.onHoverAction = self.changeBackground def addListeners(self): event = Events.HoverWidgetEvent() self.eventManager.addListener(event, self) def getContrastingShade(self, color): constrastingShadeOffset = .2 * 255 if 255 - color > constrastingShadeOffset: color += constrastingShadeOffset else: color -= constrastingShadeOffset return color def getFocusedColor(self, color): r = self.getContrastingShade(color[0]) g = self.getContrastingShade(color[1]) b = self.getContrastingShade(color[2]) a = None rgb = None if len(color) > 3: a = self.getContrastingShade(color[3]) if a: rgb = (r, g, b, a) else: rgb = (r, g, b) return rgb def changeBackground(self): self.dirty = True if self.focused: self.backgroundColor = self.focusedBackgroundColor else: self.backgroundColor = self.unfocusedBackgroundColor self.update() def hover(self, focused): if self.onHoverAction: self.dirty = True self.focused = focused self.onHoverAction() self.update() def notify(self, event): if isinstance(event, Events.HoverWidgetEvent): focused = self.rect.collidepoint(event.pos) self.hover(focused) class Button(HoverableWidget): def __init__(self, text, textColor = None, buttonColor = None, fontSize = None, padding = None, onClickAction = None, onHoverAction = None, width = None, height = None): super().__init__(text, textColor, buttonColor, fontSize, padding, onHoverAction, width, height, transparentBackground = False) self.onClickAction = onClickAction def addListeners(self): super().addListeners() event = Events.LeftClickWidgetEvent() self.eventManager.addListener(event, self) #print("Adding listeners for", self.text) def click(self): if self.onClickAction: self.dirty = True self.onClickAction() def notify(self, event): super().notify(event) if isinstance(event, Events.LeftClickWidgetEvent) and self.rect.collidepoint(event.pos): #print("Firing", event.name, "for Listener", self.text) self.click() elif isinstance(event, Events.KeyboardActivateWidgetEvent) and self.focused: self.click() class SliderWidget(Engine.GUI.Widget): def __init__(self, valueKey, values, defaultValue, textColor = None, fillColor = None, backgroundColor = None, onDragAction = None, transparentBackground = True): super().__init__() self.eventManager = EventManager() self.textColor = textColor if textColor != None else self.options.sliderWidgetTextColor self.fillColor = fillColor if fillColor != None else self.options.sliderWidgetFillColor self.backgroundColor = backgroundColor if backgroundColor != None else self.options.sliderWidgetBackgroundColor self.hasTransparentBackground = transparentBackground self.width = self.options.sliderWidth self.height = self.options.sliderHeight self.valueKey = valueKey self.defaultValue = defaultValue self.text = str(self.defaultValue) self.value = self.defaultValue self.stepValues = {} self.font = pygame.font.Font(self.options.widgetFont, self.options.sliderFontSize) self.onDragAction = onDragAction if onDragAction != None else self.slideToValue self.image = pygame.Surface((self.width, self.height)) #contains bar, slide and text; all are defined here for initial positioning self.rect = self.image.get_rect() self.bar = pygame.Surface((self.options.sliderWidth, self.options.sliderBarHeight)) self.bar.fill(self.fillColor) self.barRect = self.bar.get_rect() self.barRect.x = self.options.sliderBarOffsetX self.barRect.y = self.options.sliderBarOffsetY self.slide = pygame.Surface((self.options.sliderSlideWidth, self.options.sliderSlideHeight)) self.slide.fill(self.fillColor) self.slideRect = self.slide.get_rect() self.renderedText = self.font.render(self.text, True, self.textColor, self.backgroundColor) self.textRect = self.renderedText.get_rect() self.textRect.x = (self.image.get_rect().width / 2) - (self.textRect.width / 2) self.textRect.y = self.image.get_rect().height - self.options.sliderTextOffsetY - self.textRect.height #make a lookup table for slide position and value vals = len(values) - 1 isRawList = not (type(values[0]) == type([]) or type(values[0]) == type(())) maxStep = self.barRect.width - self.slideRect.width minStep = 0 stepCounter = 0 self.step = ((maxStep - minStep) / vals) for val in values: key = self.step * stepCounter if isRawList: self.stepValues[key] = (str(val), val) #mimic (label, value) else: self.stepValues[key] = val #should already be (label, value) or [label, value] stepCounter += 1 self.setValue(self.defaultValue) def addListeners(self): event = Events.DragWidgetEvent() self.eventManager.addListener(event, self) event = Events.LeftClickWidgetEvent() self.eventManager.addListener(event, self) def redrawWidget(self): self.dirty = True self.image = pygame.Surface((self.width, self.height)) self.image.fill(self.backgroundColor) if self.hasTransparentBackground: self.image.set_colorkey(self.backgroundColor) self.bar = pygame.Surface((self.options.sliderWidth, self.options.sliderBarHeight)) self.bar.fill(self.fillColor) self.slide = pygame.Surface((self.options.sliderSlideWidth, self.options.sliderSlideHeight)) self.slide.fill(self.fillColor) self.renderedText = self.font.render(self.text, True, self.textColor, self.backgroundColor) self.textRect = self.renderedText.get_rect() self.textRect.x = (self.image.get_rect().width / 2) - (self.textRect.width / 2) self.textRect.y = self.image.get_rect().height - self.options.sliderTextOffsetY - self.textRect.height self.image.blit(self.bar, self.barRect) self.image.blit(self.slide, self.slideRect) self.image.blit(self.renderedText, self.textRect) def update(self): if self.dirty: self.redrawWidget() self.dirty = False def drag(self, pos): if self.onDragAction: self.dirty = True self.onDragAction(pos) self.update() def setValue(self, val): for key in self.stepValues.keys(): item = self.stepValues[key] if val == item[0] or val == item[1]: self.slideToValue(key) def slideToValue(self, dx): self.dirty = True closestStep = int(dx / self.step) #ensure integer key = closestStep * self.step if key in self.stepValues.keys(): item = self.stepValues[key] self.text = item[0] self.value = item[1] self.slideRect.x = key self.update() def handleIfOnSelf(self, event): relx = event.pos[0] - self.rect.x minx = self.barRect.x - self.options.sliderDragPaddingX maxx = minx + self.barRect.width + self.options.sliderDragPaddingX rely = event.pos[1] - self.rect.y miny = self.slideRect.y maxy = miny + self.slideRect.height if (minx <= relx <= maxx and miny <= rely <= maxy): self.drag(relx) def notify(self, event): if isinstance(event, Events.DragWidgetEvent): self.handleIfOnSelf(event) if isinstance(event, Events.LeftClickWidgetEvent): self.handleIfOnSelf(event)
""" 백준 10162번 : 전자레인지 """ a = 300 b = 60 c = 10 n = int(input()) i = n // a n -= a * i j = n // b n -= b * j k = n // c n -= c * k if n != 0: print(-1) else: print(i, j, k)
# coding=UTF-8 from .attributes import Mutation as M from .attributes import VerbTense as VT from .attributes import VerbDependency as VD from .attributes import VerbPerson as VPN class VerbTenseRule: def __init__(self, particle: str = "", mutation: M = M.NoMut, tense: VT = VT.Pres, dependency: VD = VD.Indep, person: VPN = VPN.Base, pronoun: str = "") -> None: self.particle = particle self.mutation = mutation self.tense = tense self.dependency = dependency self.person = person self.pronoun = pronoun
/home/runner/.cache/pip/pool/fe/ca/59/86e292e614eb58e873ac46f32bb19e13a24808e2adf28dec6abb5ce99f
import os import re import struct import sys import textwrap sys.path.insert(0, os.path.dirname(__file__)) import ufunc_docstrings as docstrings sys.path.pop(0) Zero = "PyInt_FromLong(0)" One = "PyInt_FromLong(1)" True_ = "(Py_INCREF(Py_True), Py_True)" False_ = "(Py_INCREF(Py_False), Py_False)" None_ = object() AllOnes = "PyInt_FromLong(-1)" MinusInfinity = 'PyFloat_FromDouble(-NPY_INFINITY)' ReorderableNone = "(Py_INCREF(Py_None), Py_None)" # Sentinel value to specify using the full type description in the # function name class FullTypeDescr: pass class FuncNameSuffix: """Stores the suffix to append when generating functions names. """ def __init__(self, suffix): self.suffix = suffix class TypeDescription: """Type signature for a ufunc. Attributes ---------- type : str Character representing the nominal type. func_data : str or None or FullTypeDescr or FuncNameSuffix, optional The string representing the expression to insert into the data array, if any. in_ : str or None, optional The typecode(s) of the inputs. out : str or None, optional The typecode(s) of the outputs. astype : dict or None, optional If astype['x'] is 'y', uses PyUFunc_x_x_As_y_y/PyUFunc_xx_x_As_yy_y instead of PyUFunc_x_x/PyUFunc_xx_x. simd: list Available SIMD ufunc loops, dispatched at runtime in specified order Currently only supported for simples types (see make_arrays) dispatch: list Available SIMD ufunc loops, dispatched at runtime in specified order Currently only supported for simples types (see make_arrays) """ def __init__(self, type, f=None, in_=None, out=None, astype=None, simd=None, dispatch=None): self.type = type self.func_data = f if astype is None: astype = {} self.astype_dict = astype if in_ is not None: in_ = in_.replace('P', type) self.in_ = in_ if out is not None: out = out.replace('P', type) self.out = out self.simd = simd self.dispatch = dispatch def finish_signature(self, nin, nout): if self.in_ is None: self.in_ = self.type * nin assert len(self.in_) == nin if self.out is None: self.out = self.type * nout assert len(self.out) == nout self.astype = self.astype_dict.get(self.type, None) _fdata_map = dict( e='npy_%sf', f='npy_%sf', d='npy_%s', g='npy_%sl', F='nc_%sf', D='nc_%s', G='nc_%sl' ) def build_func_data(types, f): func_data = [_fdata_map.get(t, '%s') % (f,) for t in types] return func_data def TD(types, f=None, astype=None, in_=None, out=None, simd=None, dispatch=None): if f is not None: if isinstance(f, str): func_data = build_func_data(types, f) elif len(f) != len(types): raise ValueError("Number of types and f do not match") else: func_data = f else: func_data = (None,) * len(types) if isinstance(in_, str): in_ = (in_,) * len(types) elif in_ is None: in_ = (None,) * len(types) elif len(in_) != len(types): raise ValueError("Number of types and inputs do not match") if isinstance(out, str): out = (out,) * len(types) elif out is None: out = (None,) * len(types) elif len(out) != len(types): raise ValueError("Number of types and outputs do not match") tds = [] for t, fd, i, o in zip(types, func_data, in_, out): # [(simd-name, list of types)] if simd is not None: simdt = [k for k, v in simd if t in v] else: simdt = [] # [(dispatch file name without extension '.dispatch.c*', list of types)] if dispatch: dispt = [k for k, v in dispatch if t in v] else: dispt = [] tds.append(TypeDescription( t, f=fd, in_=i, out=o, astype=astype, simd=simdt, dispatch=dispt )) return tds class Ufunc: """Description of a ufunc. Attributes ---------- nin : number of input arguments nout : number of output arguments identity : identity element for a two-argument function docstring : docstring for the ufunc type_descriptions : list of TypeDescription objects """ def __init__(self, nin, nout, identity, docstring, typereso, *type_descriptions, signature=None): self.nin = nin self.nout = nout if identity is None: identity = None_ self.identity = identity self.docstring = docstring self.typereso = typereso self.type_descriptions = [] self.signature = signature for td in type_descriptions: self.type_descriptions.extend(td) for td in self.type_descriptions: td.finish_signature(self.nin, self.nout) # String-handling utilities to avoid locale-dependence. import string UPPER_TABLE = bytes.maketrans(bytes(string.ascii_lowercase, "ascii"), bytes(string.ascii_uppercase, "ascii")) def english_upper(s): """ Apply English case rules to convert ASCII strings to all upper case. This is an internal utility function to replace calls to str.upper() such that we can avoid changing behavior with changing locales. In particular, Turkish has distinct dotted and dotless variants of the Latin letter "I" in both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale. Parameters ---------- s : str Returns ------- uppered : str Examples -------- >>> from numpy.lib.utils import english_upper >>> s = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_' >>> english_upper(s) 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_' >>> english_upper('') '' """ uppered = s.translate(UPPER_TABLE) return uppered #each entry in defdict is a Ufunc object. #name: [string of chars for which it is defined, # string of characters using func interface, # tuple of strings giving funcs for data, # (in, out), or (instr, outstr) giving the signature as character codes, # identity, # docstring, # output specification (optional) # ] chartoname = { '?': 'bool', 'b': 'byte', 'B': 'ubyte', 'h': 'short', 'H': 'ushort', 'i': 'int', 'I': 'uint', 'l': 'long', 'L': 'ulong', 'q': 'longlong', 'Q': 'ulonglong', 'e': 'half', 'f': 'float', 'd': 'double', 'g': 'longdouble', 'F': 'cfloat', 'D': 'cdouble', 'G': 'clongdouble', 'M': 'datetime', 'm': 'timedelta', 'O': 'OBJECT', # '.' is like 'O', but calls a method of the object instead # of a function 'P': 'OBJECT', } noobj = '?bBhHiIlLqQefdgFDGmM' all = '?bBhHiIlLqQefdgFDGOmM' O = 'O' P = 'P' ints = 'bBhHiIlLqQ' times = 'Mm' timedeltaonly = 'm' intsO = ints + O bints = '?' + ints bintsO = bints + O flts = 'efdg' fltsO = flts + O fltsP = flts + P cmplx = 'FDG' cmplxvec = 'FD' cmplxO = cmplx + O cmplxP = cmplx + P inexact = flts + cmplx inexactvec = 'fd' noint = inexact+O nointP = inexact+P allP = bints+times+flts+cmplxP nobool_or_obj = noobj[1:] nobool_or_datetime = noobj[1:-1] + O # includes m - timedelta64 intflt = ints+flts intfltcmplx = ints+flts+cmplx nocmplx = bints+times+flts nocmplxO = nocmplx+O nocmplxP = nocmplx+P notimes_or_obj = bints + inexact nodatetime_or_obj = bints + inexact # Find which code corresponds to int64. int64 = '' uint64 = '' for code in 'bhilq': if struct.calcsize(code) == 8: int64 = code uint64 = english_upper(code) break # This dictionary describes all the ufunc implementations, generating # all the function names and their corresponding ufunc signatures. TD is # an object which expands a list of character codes into an array of # TypeDescriptions. defdict = { 'add': Ufunc(2, 1, Zero, docstrings.get('numpy.core.umath.add'), 'PyUFunc_AdditionTypeResolver', TD(notimes_or_obj, simd=[('avx512f', cmplxvec),('avx2', ints)]), [TypeDescription('M', FullTypeDescr, 'Mm', 'M'), TypeDescription('m', FullTypeDescr, 'mm', 'm'), TypeDescription('M', FullTypeDescr, 'mM', 'M'), ], TD(O, f='PyNumber_Add'), ), 'subtract': Ufunc(2, 1, None, # Zero is only a unit to the right, not the left docstrings.get('numpy.core.umath.subtract'), 'PyUFunc_SubtractionTypeResolver', TD(ints + inexact, simd=[('avx512f', cmplxvec),('avx2', ints)]), [TypeDescription('M', FullTypeDescr, 'Mm', 'M'), TypeDescription('m', FullTypeDescr, 'mm', 'm'), TypeDescription('M', FullTypeDescr, 'MM', 'm'), ], TD(O, f='PyNumber_Subtract'), ), 'multiply': Ufunc(2, 1, One, docstrings.get('numpy.core.umath.multiply'), 'PyUFunc_MultiplicationTypeResolver', TD(notimes_or_obj, simd=[('avx512f', cmplxvec),('avx2', ints)]), [TypeDescription('m', FullTypeDescr, 'mq', 'm'), TypeDescription('m', FullTypeDescr, 'qm', 'm'), TypeDescription('m', FullTypeDescr, 'md', 'm'), TypeDescription('m', FullTypeDescr, 'dm', 'm'), ], TD(O, f='PyNumber_Multiply'), ), #'divide' : aliased to true_divide in umathmodule.c:initumath 'floor_divide': Ufunc(2, 1, None, # One is only a unit to the right, not the left docstrings.get('numpy.core.umath.floor_divide'), 'PyUFunc_DivisionTypeResolver', TD(intfltcmplx), [TypeDescription('m', FullTypeDescr, 'mq', 'm'), TypeDescription('m', FullTypeDescr, 'md', 'm'), TypeDescription('m', FullTypeDescr, 'mm', 'q'), ], TD(O, f='PyNumber_FloorDivide'), ), 'true_divide': Ufunc(2, 1, None, # One is only a unit to the right, not the left docstrings.get('numpy.core.umath.true_divide'), 'PyUFunc_TrueDivisionTypeResolver', TD(flts+cmplx), [TypeDescription('m', FullTypeDescr, 'mq', 'm'), TypeDescription('m', FullTypeDescr, 'md', 'm'), TypeDescription('m', FullTypeDescr, 'mm', 'd'), ], TD(O, f='PyNumber_TrueDivide'), ), 'conjugate': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.conjugate'), None, TD(ints+flts+cmplx, simd=[('avx2', ints), ('avx512f', cmplxvec)]), TD(P, f='conjugate'), ), 'fmod': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.fmod'), None, TD(ints), TD(flts, f='fmod', astype={'e':'f'}), TD(P, f='fmod'), ), 'square': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.square'), None, TD(ints+inexact, simd=[('avx2', ints), ('fma', 'fd'), ('avx512f', 'FDfd')]), TD(O, f='Py_square'), ), 'reciprocal': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.reciprocal'), None, TD(ints+inexact, simd=[('avx2', ints), ('fma', 'fd'), ('avx512f','fd')]), TD(O, f='Py_reciprocal'), ), # This is no longer used as numpy.ones_like, however it is # still used by some internal calls. '_ones_like': Ufunc(1, 1, None, docstrings.get('numpy.core.umath._ones_like'), 'PyUFunc_OnesLikeTypeResolver', TD(noobj), TD(O, f='Py_get_one'), ), 'power': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.power'), None, TD(ints), TD(inexact, f='pow', astype={'e':'f'}), TD(O, f='npy_ObjectPower'), ), 'float_power': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.float_power'), None, TD('dgDG', f='pow'), ), 'absolute': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.absolute'), 'PyUFunc_AbsoluteTypeResolver', TD(bints+flts+timedeltaonly, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD(cmplx, simd=[('avx512f', cmplxvec)], out=('f', 'd', 'g')), TD(O, f='PyNumber_Absolute'), ), '_arg': Ufunc(1, 1, None, docstrings.get('numpy.core.umath._arg'), None, TD(cmplx, out=('f', 'd', 'g')), ), 'negative': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.negative'), 'PyUFunc_NegativeTypeResolver', TD(ints+flts+timedeltaonly, simd=[('avx2', ints)]), TD(cmplx, f='neg'), TD(O, f='PyNumber_Negative'), ), 'positive': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.positive'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(ints+flts+timedeltaonly), TD(cmplx, f='pos'), TD(O, f='PyNumber_Positive'), ), 'sign': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.sign'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(nobool_or_datetime), ), 'greater': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.greater'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'greater_equal': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.greater_equal'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'less': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.less'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'less_equal': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.less_equal'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'equal': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.equal'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'not_equal': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.not_equal'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(all, out='?', simd=[('avx2', ints)]), [TypeDescription('O', FullTypeDescr, 'OO', 'O')], TD('O', out='?'), ), 'logical_and': Ufunc(2, 1, True_, docstrings.get('numpy.core.umath.logical_and'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(nodatetime_or_obj, out='?', simd=[('avx2', ints)]), TD(O, f='npy_ObjectLogicalAnd'), TD(O, f='npy_ObjectLogicalAnd', out='?'), ), 'logical_not': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.logical_not'), None, TD(nodatetime_or_obj, out='?', simd=[('avx2', ints)]), TD(O, f='npy_ObjectLogicalNot'), TD(O, f='npy_ObjectLogicalNot', out='?'), ), 'logical_or': Ufunc(2, 1, False_, docstrings.get('numpy.core.umath.logical_or'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(nodatetime_or_obj, out='?', simd=[('avx2', ints)]), TD(O, f='npy_ObjectLogicalOr'), TD(O, f='npy_ObjectLogicalOr', out='?'), ), 'logical_xor': Ufunc(2, 1, False_, docstrings.get('numpy.core.umath.logical_xor'), 'PyUFunc_SimpleBinaryComparisonTypeResolver', TD(nodatetime_or_obj, out='?'), TD(P, f='logical_xor'), ), 'maximum': Ufunc(2, 1, ReorderableNone, docstrings.get('numpy.core.umath.maximum'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(noobj, simd=[('avx512f', 'fd')]), TD(O, f='npy_ObjectMax') ), 'minimum': Ufunc(2, 1, ReorderableNone, docstrings.get('numpy.core.umath.minimum'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(noobj, simd=[('avx512f', 'fd')]), TD(O, f='npy_ObjectMin') ), 'clip': Ufunc(3, 1, ReorderableNone, docstrings.get('numpy.core.umath.clip'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(noobj), [TypeDescription('O', 'npy_ObjectClip', 'OOO', 'O')] ), 'fmax': Ufunc(2, 1, ReorderableNone, docstrings.get('numpy.core.umath.fmax'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(noobj), TD(O, f='npy_ObjectMax') ), 'fmin': Ufunc(2, 1, ReorderableNone, docstrings.get('numpy.core.umath.fmin'), 'PyUFunc_SimpleUniformOperationTypeResolver', TD(noobj), TD(O, f='npy_ObjectMin') ), 'logaddexp': Ufunc(2, 1, MinusInfinity, docstrings.get('numpy.core.umath.logaddexp'), None, TD(flts, f="logaddexp", astype={'e':'f'}) ), 'logaddexp2': Ufunc(2, 1, MinusInfinity, docstrings.get('numpy.core.umath.logaddexp2'), None, TD(flts, f="logaddexp2", astype={'e':'f'}) ), 'bitwise_and': Ufunc(2, 1, AllOnes, docstrings.get('numpy.core.umath.bitwise_and'), None, TD(bints, simd=[('avx2', ints)]), TD(O, f='PyNumber_And'), ), 'bitwise_or': Ufunc(2, 1, Zero, docstrings.get('numpy.core.umath.bitwise_or'), None, TD(bints, simd=[('avx2', ints)]), TD(O, f='PyNumber_Or'), ), 'bitwise_xor': Ufunc(2, 1, Zero, docstrings.get('numpy.core.umath.bitwise_xor'), None, TD(bints, simd=[('avx2', ints)]), TD(O, f='PyNumber_Xor'), ), 'invert': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.invert'), None, TD(bints, simd=[('avx2', ints)]), TD(O, f='PyNumber_Invert'), ), 'left_shift': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.left_shift'), None, TD(ints, simd=[('avx2', ints)]), TD(O, f='PyNumber_Lshift'), ), 'right_shift': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.right_shift'), None, TD(ints, simd=[('avx2', ints)]), TD(O, f='PyNumber_Rshift'), ), 'heaviside': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.heaviside'), None, TD(flts, f='heaviside', astype={'e':'f'}), ), 'degrees': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.degrees'), None, TD(fltsP, f='degrees', astype={'e':'f'}), ), 'rad2deg': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.rad2deg'), None, TD(fltsP, f='rad2deg', astype={'e':'f'}), ), 'radians': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.radians'), None, TD(fltsP, f='radians', astype={'e':'f'}), ), 'deg2rad': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.deg2rad'), None, TD(fltsP, f='deg2rad', astype={'e':'f'}), ), 'arccos': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arccos'), None, TD(inexact, f='acos', astype={'e':'f'}), TD(P, f='arccos'), ), 'arccosh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arccosh'), None, TD(inexact, f='acosh', astype={'e':'f'}), TD(P, f='arccosh'), ), 'arcsin': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arcsin'), None, TD(inexact, f='asin', astype={'e':'f'}), TD(P, f='arcsin'), ), 'arcsinh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arcsinh'), None, TD(inexact, f='asinh', astype={'e':'f'}), TD(P, f='arcsinh'), ), 'arctan': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arctan'), None, TD(inexact, f='atan', astype={'e':'f'}), TD(P, f='arctan'), ), 'arctanh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.arctanh'), None, TD(inexact, f='atanh', astype={'e':'f'}), TD(P, f='arctanh'), ), 'cos': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.cos'), None, TD('e', f='cos', astype={'e':'f'}), TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]), TD('fdg' + cmplx, f='cos'), TD(P, f='cos'), ), 'sin': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.sin'), None, TD('e', f='sin', astype={'e':'f'}), TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]), TD('fdg' + cmplx, f='sin'), TD(P, f='sin'), ), 'tan': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.tan'), None, TD(inexact, f='tan', astype={'e':'f'}), TD(P, f='tan'), ), 'cosh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.cosh'), None, TD(inexact, f='cosh', astype={'e':'f'}), TD(P, f='cosh'), ), 'sinh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.sinh'), None, TD(inexact, f='sinh', astype={'e':'f'}), TD(P, f='sinh'), ), 'tanh': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.tanh'), None, TD(inexact, f='tanh', astype={'e':'f'}), TD(P, f='tanh'), ), 'exp': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.exp'), None, TD('e', f='exp', astype={'e':'f'}), TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]), TD('d', simd=[('avx512f', 'd')]), TD('fdg' + cmplx, f='exp'), TD(P, f='exp'), ), 'exp2': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.exp2'), None, TD(inexact, f='exp2', astype={'e':'f'}), TD(P, f='exp2'), ), 'expm1': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.expm1'), None, TD(inexact, f='expm1', astype={'e':'f'}), TD(P, f='expm1'), ), 'log': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.log'), None, TD('e', f='log', astype={'e':'f'}), TD('f', simd=[('fma', 'f'), ('avx512f', 'f')]), TD('d', simd=[('avx512f', 'd')]), TD('fdg' + cmplx, f='log'), TD(P, f='log'), ), 'log2': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.log2'), None, TD(inexact, f='log2', astype={'e':'f'}), TD(P, f='log2'), ), 'log10': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.log10'), None, TD(inexact, f='log10', astype={'e':'f'}), TD(P, f='log10'), ), 'log1p': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.log1p'), None, TD(inexact, f='log1p', astype={'e':'f'}), TD(P, f='log1p'), ), 'sqrt': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.sqrt'), None, TD('e', f='sqrt', astype={'e':'f'}), TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD('fdg' + cmplx, f='sqrt'), TD(P, f='sqrt'), ), 'cbrt': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.cbrt'), None, TD(flts, f='cbrt', astype={'e':'f'}), TD(P, f='cbrt'), ), 'ceil': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.ceil'), None, TD('e', f='ceil', astype={'e':'f'}), TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD('fdg', f='ceil'), TD(O, f='npy_ObjectCeil'), ), 'trunc': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.trunc'), None, TD('e', f='trunc', astype={'e':'f'}), TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD('fdg', f='trunc'), TD(O, f='npy_ObjectTrunc'), ), 'fabs': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.fabs'), None, TD(flts, f='fabs', astype={'e':'f'}), TD(P, f='fabs'), ), 'floor': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.floor'), None, TD('e', f='floor', astype={'e':'f'}), TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD('fdg', f='floor'), TD(O, f='npy_ObjectFloor'), ), 'rint': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.rint'), None, TD('e', f='rint', astype={'e':'f'}), TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), TD('fdg' + cmplx, f='rint'), TD(P, f='rint'), ), 'arctan2': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.arctan2'), None, TD(flts, f='atan2', astype={'e':'f'}), TD(P, f='arctan2'), ), 'remainder': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.remainder'), 'PyUFunc_RemainderTypeResolver', TD(intflt), [TypeDescription('m', FullTypeDescr, 'mm', 'm')], TD(O, f='PyNumber_Remainder'), ), 'divmod': Ufunc(2, 2, None, docstrings.get('numpy.core.umath.divmod'), 'PyUFunc_DivmodTypeResolver', TD(intflt), [TypeDescription('m', FullTypeDescr, 'mm', 'qm')], # TD(O, f='PyNumber_Divmod'), # gh-9730 ), 'hypot': Ufunc(2, 1, Zero, docstrings.get('numpy.core.umath.hypot'), None, TD(flts, f='hypot', astype={'e':'f'}), TD(P, f='hypot'), ), 'isnan': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.isnan'), 'PyUFunc_IsFiniteTypeResolver', TD(noobj, simd=[('avx512_skx', 'fd')], out='?'), ), 'isnat': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.isnat'), 'PyUFunc_IsNaTTypeResolver', TD(times, out='?'), ), 'isinf': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.isinf'), 'PyUFunc_IsFiniteTypeResolver', TD(noobj, simd=[('avx512_skx', 'fd')], out='?'), ), 'isfinite': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.isfinite'), 'PyUFunc_IsFiniteTypeResolver', TD(noobj, simd=[('avx512_skx', 'fd')], out='?'), ), 'signbit': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.signbit'), None, TD(flts, simd=[('avx512_skx', 'fd')], out='?'), ), 'copysign': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.copysign'), None, TD(flts), ), 'nextafter': Ufunc(2, 1, None, docstrings.get('numpy.core.umath.nextafter'), None, TD(flts), ), 'spacing': Ufunc(1, 1, None, docstrings.get('numpy.core.umath.spacing'), None, TD(flts), ), 'modf': Ufunc(1, 2, None, docstrings.get('numpy.core.umath.modf'), None, TD(flts), ), 'ldexp' : Ufunc(2, 1, None, docstrings.get('numpy.core.umath.ldexp'), None, [TypeDescription('e', None, 'ei', 'e'), TypeDescription('f', None, 'fi', 'f', simd=['avx512_skx']), TypeDescription('e', FuncNameSuffix('long'), 'el', 'e'), TypeDescription('f', FuncNameSuffix('long'), 'fl', 'f'), TypeDescription('d', None, 'di', 'd', simd=['avx512_skx']), TypeDescription('d', FuncNameSuffix('long'), 'dl', 'd'), TypeDescription('g', None, 'gi', 'g'), TypeDescription('g', FuncNameSuffix('long'), 'gl', 'g'), ], ), 'frexp' : Ufunc(1, 2, None, docstrings.get('numpy.core.umath.frexp'), None, [TypeDescription('e', None, 'e', 'ei'), TypeDescription('f', None, 'f', 'fi', simd=['avx512_skx']), TypeDescription('d', None, 'd', 'di', simd=['avx512_skx']), TypeDescription('g', None, 'g', 'gi'), ], ), 'gcd' : Ufunc(2, 1, Zero, docstrings.get('numpy.core.umath.gcd'), "PyUFunc_SimpleUniformOperationTypeResolver", TD(ints), TD('O', f='npy_ObjectGCD'), ), 'lcm' : Ufunc(2, 1, None, docstrings.get('numpy.core.umath.lcm'), "PyUFunc_SimpleUniformOperationTypeResolver", TD(ints), TD('O', f='npy_ObjectLCM'), ), 'matmul' : Ufunc(2, 1, None, docstrings.get('numpy.core.umath.matmul'), "PyUFunc_SimpleUniformOperationTypeResolver", TD(notimes_or_obj), TD(O), signature='(n?,k),(k,m?)->(n?,m?)', ), } def indent(st, spaces): indentation = ' '*spaces indented = indentation + st.replace('\n', '\n'+indentation) # trim off any trailing spaces indented = re.sub(r' +$', r'', indented) return indented # maps [nin, nout][type] to a suffix arity_lookup = { (1, 1): { 'e': 'e_e', 'f': 'f_f', 'd': 'd_d', 'g': 'g_g', 'F': 'F_F', 'D': 'D_D', 'G': 'G_G', 'O': 'O_O', 'P': 'O_O_method', }, (2, 1): { 'e': 'ee_e', 'f': 'ff_f', 'd': 'dd_d', 'g': 'gg_g', 'F': 'FF_F', 'D': 'DD_D', 'G': 'GG_G', 'O': 'OO_O', 'P': 'OO_O_method', }, (3, 1): { 'O': 'OOO_O', } } #for each name # 1) create functions, data, and signature # 2) fill in functions and data in InitOperators # 3) add function. def make_arrays(funcdict): # functions array contains an entry for every type implemented NULL # should be placed where PyUfunc_ style function will be filled in # later code1list = [] code2list = [] names = sorted(funcdict.keys()) for name in names: uf = funcdict[name] funclist = [] datalist = [] siglist = [] k = 0 sub = 0 for t in uf.type_descriptions: if t.func_data is FullTypeDescr: tname = english_upper(chartoname[t.type]) datalist.append('(void *)NULL') funclist.append( '%s_%s_%s_%s' % (tname, t.in_, t.out, name)) elif isinstance(t.func_data, FuncNameSuffix): datalist.append('(void *)NULL') tname = english_upper(chartoname[t.type]) funclist.append( '%s_%s_%s' % (tname, name, t.func_data.suffix)) elif t.func_data is None: datalist.append('(void *)NULL') tname = english_upper(chartoname[t.type]) funclist.append('%s_%s' % (tname, name)) if t.simd is not None: for vt in t.simd: code2list.append(textwrap.dedent("""\ #ifdef HAVE_ATTRIBUTE_TARGET_{ISA} if (NPY_CPU_HAVE({ISA})) {{ {fname}_functions[{idx}] = {type}_{fname}_{isa}; }} #endif """).format( ISA=vt.upper(), isa=vt, fname=name, type=tname, idx=k )) if t.dispatch is not None: for dname in t.dispatch: code2list.append(textwrap.dedent("""\ #ifndef NPY_DISABLE_OPTIMIZATION #include "{dname}.dispatch.h" #endif NPY_CPU_DISPATCH_CALL_XB({name}_functions[{k}] = {tname}_{name}) """).format( dname=dname, name=name, tname=tname, k=k )) else: funclist.append('NULL') try: thedict = arity_lookup[uf.nin, uf.nout] except KeyError as e: raise ValueError( f"Could not handle {name}[{t.type}] " f"with nin={uf.nin}, nout={uf.nout}" ) from None astype = '' if not t.astype is None: astype = '_As_%s' % thedict[t.astype] astr = ('%s_functions[%d] = PyUFunc_%s%s;' % (name, k, thedict[t.type], astype)) code2list.append(astr) if t.type == 'O': astr = ('%s_data[%d] = (void *) %s;' % (name, k, t.func_data)) code2list.append(astr) datalist.append('(void *)NULL') elif t.type == 'P': datalist.append('(void *)"%s"' % t.func_data) else: astr = ('%s_data[%d] = (void *) %s;' % (name, k, t.func_data)) code2list.append(astr) datalist.append('(void *)NULL') #datalist.append('(void *)%s' % t.func_data) sub += 1 for x in t.in_ + t.out: siglist.append('NPY_%s' % (english_upper(chartoname[x]),)) k += 1 funcnames = ', '.join(funclist) signames = ', '.join(siglist) datanames = ', '.join(datalist) code1list.append("static PyUFuncGenericFunction %s_functions[] = {%s};" % (name, funcnames)) code1list.append("static void * %s_data[] = {%s};" % (name, datanames)) code1list.append("static char %s_signatures[] = {%s};" % (name, signames)) return "\n".join(code1list), "\n".join(code2list) def make_ufuncs(funcdict): code3list = [] names = sorted(funcdict.keys()) for name in names: uf = funcdict[name] mlist = [] docstring = textwrap.dedent(uf.docstring).strip() docstring = docstring.encode('unicode-escape').decode('ascii') docstring = docstring.replace(r'"', r'\"') docstring = docstring.replace(r"'", r"\'") # Split the docstring because some compilers (like MS) do not like big # string literal in C code. We split at endlines because textwrap.wrap # do not play well with \n docstring = '\\n\"\"'.join(docstring.split(r"\n")) if uf.signature is None: sig = "NULL" else: sig = '"{}"'.format(uf.signature) fmt = textwrap.dedent("""\ identity = {identity_expr}; if ({has_identity} && identity == NULL) {{ return -1; }} f = PyUFunc_FromFuncAndDataAndSignatureAndIdentity( {name}_functions, {name}_data, {name}_signatures, {nloops}, {nin}, {nout}, {identity}, "{name}", "{doc}", 0, {sig}, identity ); if ({has_identity}) {{ Py_DECREF(identity); }} if (f == NULL) {{ return -1; }} """) args = dict( name=name, nloops=len(uf.type_descriptions), nin=uf.nin, nout=uf.nout, has_identity='0' if uf.identity is None_ else '1', identity='PyUFunc_IdentityValue', identity_expr=uf.identity, doc=docstring, sig=sig, ) # Only PyUFunc_None means don't reorder - we pass this using the old # argument if uf.identity is None_: args['identity'] = 'PyUFunc_None' args['identity_expr'] = 'NULL' mlist.append(fmt.format(**args)) if uf.typereso is not None: mlist.append( r"((PyUFuncObject *)f)->type_resolver = &%s;" % uf.typereso) mlist.append(r"""PyDict_SetItemString(dictionary, "%s", f);""" % name) mlist.append(r"""Py_DECREF(f);""") code3list.append('\n'.join(mlist)) return '\n'.join(code3list) def make_code(funcdict, filename): code1, code2 = make_arrays(funcdict) code3 = make_ufuncs(funcdict) code2 = indent(code2, 4) code3 = indent(code3, 4) code = textwrap.dedent(r""" /** Warning this file is autogenerated!!! Please make changes to the code generator program (%s) **/ #include "ufunc_object.h" #include "ufunc_type_resolution.h" #include "loops.h" #include "matmul.h" #include "clip.h" %s static int InitOperators(PyObject *dictionary) { PyObject *f, *identity; %s %s return 0; } """) % (filename, code1, code2, code3) return code if __name__ == "__main__": filename = __file__ code = make_code(defdict, filename) with open('__umath_generated.c', 'w') as fid: fid.write(code)
# reference ==> import taichi as ti import handy_shader_functions as hsf import argparse ti.init(arch = ti.cuda) res_x = 512 res_y = 512 pixels = ti.Vector.field(3, ti.f32, shape=(res_x, res_y)) @ti.kernel def render(t:ti.f32): # draw something on your canvas for i,j in pixels: # Set const x = (2.0 * i - res_x) / res_y # [0.0, 1.0] in width y = (2.0 * j - res_x) / res_y # [0.0, 1.0] in height tau = 3.1415926535*2.0 # 2 pi a = ti.atan2(x, y) # theta of the angle u = a / tau # theta converted to [0.0, 1.0] v = (ti.Vector([x, y]).norm()) * 0.75 # r = 0.75 uv = ti.Vector([u, v]) # (theta, r) # Set the color color = ti.Vector([0.25, 0.25, 0.25]) xCol = hsf.mod((uv[0] - (t / 3.0)) * 3.0, 3.0) if xCol < 1.0: color[0] += 1.0 - xCol color[1] += xCol elif xCol < 2.0: xCol -= 1.0 color[1] += 1.0 - xCol color[2] += xCol else: xCol -= 2.0 color[2] += 1.0 - xCol color[0] += xCol uv = (2.0 * uv) - 1.0 # tbh I don't know what the hell it is beamWidth = (0.7+0.5*ti.cos(uv[0]*10.0*tau*0.15*hsf.clamp(hsf.floor(5.0 + 10.0*ti.cos(t)), 0.0, 10.0))) * ti.abs(1.0 / (30.0 * uv[1])) horBeam = ti.Vector([beamWidth, beamWidth, beamWidth]) color = color * horBeam pixels[i,j] = color if __name__ == "__main__": parser = argparse.ArgumentParser(description='Naive Ray Tracing') parser.add_argument('--record', action='store_true') args = parser.parse_args() if (not args.record): gui = ti.GUI("Total Noob", res=(res_x, res_y)) for i in range(100000): t = i * 0.01 render(t) gui.set_image(pixels) gui.show() else: gui = ti.GUI("Total Noob", res=(res_x, res_y), show_gui = False) video_manager = ti.VideoManager(output_dir = "./data", framerate = 24, automatic_build=False) for i in range(0, 100 * 12, 12): t = i * 0.01 render(t) video_manager.write_frame(pixels) print('Exporting .gif') video_manager.make_video(gif=True, mp4=False) # print(f'MP4 video is saved to {video_manager.get_output_filename(".mp4")}') print(f'GIF video is saved to {video_manager.get_output_filename(".gif")}')
# -*- coding: utf-8 -*- from cms.admin.dialog.forms import PermissionAndModeratorForm, PermissionForm, ModeratorForm from cms.models import Page from django.conf import settings from django.contrib.admin.views.decorators import staff_member_required from django.http import Http404, HttpResponse from django.shortcuts import render_to_response, get_object_or_404 def _form_class_selector(): ''' This replaces the magic that used to happen in forms, where a dynamic class was generated at runtime. Now it's a bit cleaner... ''' form_class = None if settings.CMS_PERMISSION and settings.CMS_MODERATOR: form_class = PermissionAndModeratorForm elif settings.CMS_PERMISSION: form_class = PermissionForm elif settings.CMS_MODERATOR: form_class = ModeratorForm return form_class @staff_member_required def get_copy_dialog(request, page_id): if not (settings.CMS_PERMISSION or settings.CMS_MODERATOR): return HttpResponse('') page = get_object_or_404(Page, pk=page_id) target = get_object_or_404(Page, pk=request.REQUEST['target']) if not page.has_change_permission(request) or \ not target.has_add_permission(request): # pragma: no cover raise Http404 context = { 'dialog_id': 'dialog-copy', 'form': _form_class_selector()(), # class needs to be instanciated 'callback': request.REQUEST['callback'], } return render_to_response("admin/cms/page/dialog/copy.html", context)
''' You are given the root of a binary search tree (BST) and an integer val. Find the node in the BST that the node's value equals val and return the subtree rooted with that node. If such a node does not exist, return null. ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object): def searchBST(self, root, val): """ :type root: TreeNode :type val: int :rtype: TreeNode """ stack = [root] while stack: node = stack.pop() if node.val == val: return node if node.val < val and node.right: stack.append(node.right) continue if node.val > val and node.left: stack.append(node.left) continue if not node.left and not node.right: return None
from django.db import models from django.core.validators import MinValueValidator, MaxValueValidator from api.models.ec.organization import Organization from api.models.ec.store import Store from django.core.cache import caches from django.contrib.sites.models import Site class SubDomain(models.Model): class Meta: app_label = 'api' ordering = ('name',) db_table = 'ec_subdomains' sub_domain_id = models.AutoField(primary_key=True) name = models.CharField(max_length=127, db_index=True, unique=True, null=True, blank=True,) organization = models.ForeignKey(Organization, null=True, blank=True, db_index=True) store = models.ForeignKey(Store, null=True, blank=True, db_index=True) def __str__(self): if self.name is None: return str(self.sub_domain_id) else: return str(self.name) def save(self, *args, **kwargs): """ Override the save function to reset the cache when a save was made. """ cache = caches['default'] if cache is not None: cache.clear() super(SubDomain, self).save(*args, **kwargs) def get_absolute_url(self): """ When the sitemaps.xml gets generated for the all the URLS, all returned "Subdomain" objects will have this URL called. """ return "/storefront/"+str(self.name)+"/"
import unittest # O(1). Bit manipulation. class Solution: def hasAlternatingBits(self, n): """ :type n: int :rtype: bool """ prev = n & 1 n >>= 1 while n: if n & 1 ^ prev: prev ^= 1 n >>= 1 else: return False return True class Test(unittest.TestCase): def test(self): self._test(5, True) self._test(6, False) self._test(7, False) self._test(10, True) self._test(11, False) def _test(self, n, expected): actual = Solution().hasAlternatingBits(n) self.assertEqual(expected, actual) if __name__ == '__main__': unittest.main()
# # MIT License # # (C) Copyright 2020-2022 Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # ''' A set of routines for creating or reading from an existing timestamp file. Created on April 27, 2020 @author: jsl ''' import logging from datetime import timedelta from hwsyncagent.cfs.options import hardware_sync_interval from liveness.timestamp import Timestamp as TimestampBase LOGGER = logging.getLogger(__name__) class Timestamp(TimestampBase): @property def max_age(self): """ The maximum amount of time that can elapse before we consider the timestamp as invalid. This max_age is defined by the period of time between required checks to HSM, which is defined by the set of options contained in the API. This value is returned as a timedelta object. """ interval = 20 + hardware_sync_interval() computation_time = timedelta(seconds=interval) return computation_time
#!/usr/bin/env python oracle_home = '/usr/local/ohs' domain_name = 'base_domain' domain_home = oracle_home + '/user_projects/domains/' + domain_name node_manager_name = 'localmachine' node_manager_listen_address = 'localhost' node_manager_listen_port = '5556' node_manager_username = 'ohs' node_manager_password = 'welcome1' ###################################################################### readTemplate(oracle_home + '/ohs/common/templates/wls/ohs_standalone_template.jar') cd('/') create(domain_name, 'SecurityConfiguration') cd('/SecurityConfiguration/base_domain') set('NodeManagerUsername', node_manager_username) set('NodeManagerPasswordEncrypted', node_manager_password) setOption('NodeManagerType', 'PerDomainNodeManager') cd('/') create(node_manager_name, 'Machine') cd('/Machines/' + node_manager_name) create(node_manager_name, 'NodeManager') cd('/Machines/' + node_manager_name + '/NodeManager/' + node_manager_name) cmo.setListenAddress(node_manager_listen_address) cmo.setListenPort(int(node_manager_listen_port)) cd('/') writeDomain(domain_home) closeTemplate() exit()
(lambda N:(lambda N,A:print(("Average: %.2f\n"%A)+str([n for n in N if len(n)>A])))(N,sum([len(n)for n in N])/len(N)))([n.strip()for n in __import__("sys").stdin])
#!/usr/bin/env python import random import numpy as np from cs224d.data_utils import * import matplotlib.pyplot as plt from c5_word2vec import * from c6_sgd import * random.seed(314) dataSet = StanfordSentiment() tokens = dataSet.tokens() nWords = len(tokens) # We are going to train 10-dimensional vectors for this assignment dimVectors = 10 # Context size # C = 5 contextSize = 5 # Reset the random seed to make sure that everyone gets the same results random.seed(31415) np.random.seed(9265) wordVectors = np.concatenate(((np.random.rand(nWords, dimVectors) - .5) / dimVectors, np.zeros((nWords, dimVectors))), axis=0) wordVectors0 = sgd( lambda vec: word2vec_sgd_wrapper(skipgram, tokens, vec, dataSet, contextSize, negSamplingCostAndGradient), wordVectors, 0.3, 4000, None, True, PRINT_EVERY=10) print "sanity check: cost at convergence should be around or below 10" wordVectors = (wordVectors0[:nWords, :] + wordVectors0[nWords:, :]) _, wordVectors0, _ = load_saved_params() wordVectors = (wordVectors0[:nWords, :] + wordVectors0[nWords:, :]) visualizeWords = ["the", "a", "an", ",", ".", "?", "!", "``", "''", "--", "good", "great", "cool", "brilliant", "wonderful", "well", "amazing", "worth", "sweet", "enjoyable", "boring", "bad", "waste", "dumb", "annoying"] visualizeIdx = [tokens[word] for word in visualizeWords] visualizeVecs = wordVectors[visualizeIdx, :] temp = (visualizeVecs - np.mean(visualizeVecs, axis=0)) covariance = 1.0 / len(visualizeIdx) * temp.T.dot(temp) U, S, V = np.linalg.svd(covariance) coord = temp.dot(U[:, 0:2]) for i in xrange(len(visualizeWords)): plt.text(coord[i, 0], coord[i, 1], visualizeWords[i], bbox=dict(facecolor='green', alpha=0.1)) plt.xlim((np.min(coord[:, 0]), np.max(coord[:, 0]))) plt.ylim((np.min(coord[:, 1]), np.max(coord[:, 1]))) plt.savefig('q3_word_vectors.png') plt.show()
"""Implementation of treadmill admin aws role. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import io import json import logging import click from treadmill import cli from treadmill import exc from treadmill_aws import awscontext from treadmill_aws import cli as aws_cli from treadmill_aws import iamclient _LOGGER = logging.getLogger(__name__) _LOGGER.setLevel(logging.INFO) def _user_arn(account, user): return 'arn:aws:iam::{}:user/{}'.format(account, user) def _saml_provider_arn(account, provider): return 'arn:aws:iam::{}:saml-provider/{}'.format(account, provider) def _generate_trust_document(trusted_entities): """Default role policy.""" account = awscontext.GLOBAL.sts.get_caller_identity().get('Account') statements = [] principals = [] saml_providers = [] services = [] for entity in trusted_entities: if entity == 'root': principals.append('arn:aws:iam::{}:root'.format(account)) continue if entity.startswith('user:'): parts = entity.split(':') principals.append(_user_arn(account, parts[1])) continue if entity.startswith('saml-provider:'): parts = entity.split(':') saml_providers.append(_saml_provider_arn(account, parts[1])) continue if entity.startswith('service:'): parts = entity.split(':') services.append(parts[1]) continue raise click.UsageError('Invalid syntax for trusted entity [%s]' % entity) statements = [] if principals or services: statement = { 'Action': 'sts:AssumeRole', 'Effect': 'Allow', 'Principal': {} } if principals: statement['Principal']['AWS'] = principals if services: statement['Principal']['Service'] = services statements.append(statement) if saml_providers: statement = { 'Action': 'sts:AssumeRoleWithSAML', 'Condition': { 'StringEquals': { 'SAML:aud': 'https://signin.aws.amazon.com/saml' } }, 'Effect': 'Allow', 'Principal': { 'Federated': saml_providers } } statements.append(statement) if statements: policy = {} policy['Version'] = '2012-10-17' policy['Statement'] = statements return json.dumps(policy) return None def _set_role_policies(iam_conn, role_name, role_policies): new_pols = [] if role_policies == [':']: role_policies = [] for pol in role_policies: policy_name, policy_file = pol.split(':', 2) new_pols.append(policy_name) with io.open(policy_file) as f: policy_document = f.read() _LOGGER.info('set/updated inline policy: %s', policy_name) iamclient.put_role_policy(iam_conn, role_name, policy_name, policy_document) all_pols = iamclient.list_role_policies(iam_conn, role_name) for policy_name in all_pols: if policy_name not in new_pols: _LOGGER.info('removing inline policy: %s', policy_name) iamclient.delete_role_policy(iam_conn, role_name, policy_name) def _set_attached_policies(iam_conn, role_name, attached_policies): sts = awscontext.GLOBAL.sts accountid = sts.get_caller_identity().get('Account') if attached_policies == [':']: attached_policies = [] del_pols = {} for policy in iamclient.list_attached_role_policies(iam_conn, role_name): del_pols[policy['PolicyArn']] = 1 new_pols = {} for policy in attached_policies: scope, policy_name = policy.split(':', 2) if scope == 'global': new_pols['arn:aws:iam::aws:policy/%s' % policy_name] = 1 elif scope == 'local': pol = 'arn:aws:iam::%s:policy/%s' % (accountid, policy_name) new_pols[pol] = 1 else: raise click.UsageError('Invalid policy scope [%s]' % scope) for policy_arn in del_pols: if policy_arn not in new_pols: _LOGGER.info('detaching policy: %s', policy_arn) iamclient.detach_role_policy(iam_conn, role_name, policy_arn) else: del new_pols[policy_arn] for policy_arn in new_pols: _LOGGER.info('attaching policy: %s', policy_arn) iamclient.attach_role_policy(iam_conn, role_name, policy_arn) def _create_role(iam_conn, role_name, path, trust_document, max_session_duration): if not max_session_duration: max_session_duration = 43200 iamclient.create_role(iam_conn, role_name, path, trust_document, max_session_duration) # pylint: disable=R0915 def init(): """Manage IAM roles.""" formatter = cli.make_formatter('aws_role') @click.group() def role(): """Manage IAM roles.""" pass @role.command() @click.option('--create', is_flag=True, default=False, help='Create if it does not exist') @click.option('--path', default='/', help='Path for user name.') @click.option('--max-session-duration', type=click.IntRange(3600, 43200), required=False, help='maximum session duration.') @click.option('--trust-policy', required=False, help='Trust policy (aka assume role policy).') @click.option('--trusted-entities', type=cli.LIST, help='See above for syntax of --trusted-entities.') @click.option('--inline-policies', type=cli.LIST, required=False, help='Inline role policies, list of ' '<RolePolicyName>:<file>') @click.option('--attached-policies', type=cli.LIST, required=False, help='Attached policies, list of ' 'global:<PolicyName> or local:<PolicyName>') @click.argument('role_name', required=True, callback=aws_cli.sanitize_user_name) @cli.admin.ON_EXCEPTIONS def configure(create, path, max_session_duration, trust_policy, trusted_entities, inline_policies, attached_policies, role_name): """Create/configure/get IAM role. Arguments for --trusted-entities are of the form: Entities are form:\n * root: : trusted AWS account * user:<user-name> : trusted IAM user * saml-provider:<provider-name>: : trusted SAML Provider * service:<service-name>: : trusted AWS Service """ iam_conn = awscontext.GLOBAL.iam try: role = iamclient.get_role(iam_conn, role_name) except exc.NotFoundError: if not create: raise role = None if trust_policy: with io.open(trust_policy) as f: trust_document = f.read() elif trusted_entities: trust_document = _generate_trust_document(trusted_entities) elif create: raise click.UsageError('Must specify one:\n' ' --trust-policy\n' ' --trusted-entties') else: trust_document = None if not role: _create_role(iam_conn, role_name, path, trust_document, max_session_duration) else: if max_session_duration: iamclient.update_role(iam_conn, role_name, max_session_duration) if trust_document: iamclient.update_assume_role_policy(iam_conn, role_name, trust_document) if inline_policies: _set_role_policies(iam_conn, role_name, inline_policies) if attached_policies: _set_attached_policies(iam_conn, role_name, attached_policies) role = iamclient.get_role(iam_conn, role_name) role['RolePolicies'] = iamclient.list_role_policies(iam_conn, role_name) role['AttachedPolicies'] = iamclient.list_attached_role_policies( iam_conn, role_name) cli.out(formatter(role)) @role.command(name='list') @click.option('--path', default='/', help='Path for user name.') @cli.admin.ON_EXCEPTIONS def list_roles(path): """List IAM roles. """ iam_conn = awscontext.GLOBAL.iam roles = iamclient.list_roles(iam_conn, path) cli.out(formatter(roles)) @role.command() @click.option('--force', is_flag=True, default=False, help='Delete role, even is role has policies attached.') @click.argument('role-name') @cli.admin.ON_EXCEPTIONS def delete(force, role_name): """Delete IAM role.""" iam_conn = awscontext.GLOBAL.iam if force: role_policies = iamclient.list_role_policies(iam_conn, role_name) for policy in role_policies: _LOGGER.info('deleting inline policy: %s', policy) iamclient.delete_role_policy(iam_conn, role_name, policy) attached_pols = iamclient.list_attached_role_policies(iam_conn, role_name) for policy in attached_pols: _LOGGER.info('detaching policy: %s', policy['PolicyArn']) iamclient.detach_role_policy(iam_conn, role_name, policy['PolicyArn']) try: iamclient.delete_role(iam_conn, role_name) except iam_conn.exceptions.DeleteConflictException: raise click.UsageError('Role [%s] has inline or attached policies,' 'use --force to force delete.' % role_name) del configure del delete return role
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from collections import defaultdict from edb.common.ordered import OrderedSet class UnresolvedReferenceError(Exception): pass class CycleError(Exception): def __init__(self, msg, path=None): super().__init__(msg) self.path = path def sort(graph, *, return_record=False, allow_unresolved=False): adj = defaultdict(OrderedSet) loop_control = defaultdict(OrderedSet) for item_name, item in graph.items(): if "merge" in item: for merge in item["merge"]: if merge in graph: adj[item_name].add(merge) elif not allow_unresolved: raise UnresolvedReferenceError( 'reference to an undefined item {} in {}'.format( merge, item_name)) if "deps" in item: for dep in item["deps"]: if dep in graph: adj[item_name].add(dep) elif not allow_unresolved: raise UnresolvedReferenceError( 'reference to an undefined item {} in {}'.format( dep, item_name)) if "loop-control" in item: for ctrl in item["loop-control"]: if ctrl in graph: loop_control[item_name].add(ctrl) elif not allow_unresolved: raise UnresolvedReferenceError( 'reference to an undefined item {} in {}'.format( ctrl, item_name)) visiting = OrderedSet() visited = set() sorted = [] def visit(item, for_control=False): if item in visiting: raise CycleError( f"dependency cycle between {list(visiting)[1]!r} " f"and {item!r}", path=list(visiting)[1:], ) if item not in visited: visiting.add(item) for n in adj[item]: visit(n) for n in loop_control[item]: visit(n, for_control=True) if not for_control: sorted.append(item) visited.add(item) visiting.remove(item) for item in graph: visit(item) if return_record: return ((item, graph[item]) for item in sorted) else: return (graph[item]["item"] for item in sorted) def normalize(graph, merger, **merger_kwargs): merged = {} for name, item in sort(graph, return_record=True): merge = item.get("merge") if merge: for m in merge: merger(item["item"], merged[m], **merger_kwargs) merged.setdefault(name, item["item"]) return merged.values()
# Django from django.shortcuts import get_object_or_404, render from django.http import HttpResponse # tools from comic_app.tools.extract_comic_titles import extract_image_comics from comic_app.tools.extract_comic_titles import extract_marvel_comics from comic_app.tools.extract_comic_titles import extract_dc_comics from comic_app.tools.generate_template import generate #first party import os # Create your views here. def index(request): image_comic_titles, image_comic_images = extract_image_comics() marvel_comic_titles, marvel_comic_images = extract_marvel_comics() extract_dc_comics() comic_titles = image_comic_titles + marvel_comic_titles comic_images = image_comic_images + marvel_comic_images generate(comic_titles, comic_images) return render(request, "comic_app/dashboard.html", None)
## @ingroup Components-Energy-Networks # Battery_Ducted_Fan.py # # Created: Sep 2014, M. Vegh # Modified: Jan 2016, T. MacDonald # Apr 2019, C. McMillan # Apr 2021, M. Clarke # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- # package imports import numpy as np from .Network import Network # ---------------------------------------------------------------------- # Network # ---------------------------------------------------------------------- ## @ingroup Components-Energy-Networks class Battery_Ducted_Fan(Network): """ Simply connects a battery to a ducted fan, with an assumed motor efficiency Assumptions: None Source: None """ def __defaults__(self): """ This sets the default values for the network to function. This network operates slightly different than most as it attaches a propulsor to the net. Assumptions: Source: N/A Inputs: None Outputs: None Properties Used: N/A """ self.propulsor = None self.battery = None self.motor_efficiency = 0.0 self.tag = 'Battery_Ducted_Fan' self.number_of_engines = 0. self.esc = None self.avionics = None self.payload = None self.voltage = None self.tag = 'Network' self.generative_design_minimum = 0 # manage process with a driver function def evaluate_thrust(self,state): """ Calculate thrust given the current state of the vehicle Assumptions: Constant mass batteries ESC input voltage is constant at max battery voltage Source: N/A Inputs: state [state()] Outputs: results.thrust_force_vector [newtons] results.vehicle_mass_rate [kg/s] Properties Used: Defaulted values """ # unpack conditions = state.conditions numerics = state.numerics esc = self.esc avionics = self.avionics payload = self.payload battery = self.battery propulsor = self.propulsor battery = self.battery # Set battery energy battery.current_energy = conditions.propulsion.battery_energy battery.pack_temperature = conditions.propulsion.battery_pack_temperature battery.cell_charge_throughput = conditions.propulsion.battery_cell_charge_throughput battery.age = conditions.propulsion.battery_cycle_day battery.R_growth_factor = conditions.propulsion.battery_resistance_growth_factor battery.E_growth_factor = conditions.propulsion.battery_capacity_fade_factor # Calculate ducted fan power results = propulsor.evaluate_thrust(state) propulsive_power = np.reshape(results.power, (-1,1)) motor_power = propulsive_power/self.motor_efficiency # Run the ESC esc.inputs.voltagein = self.voltage esc.voltageout(conditions) esc.inputs.currentout = motor_power/esc.outputs.voltageout esc.currentin(conditions) esc_power = esc.inputs.voltagein*esc.outputs.currentin # Run the avionics avionics.power() # Run the payload payload.power() # Calculate avionics and payload power avionics_payload_power = avionics.outputs.power + payload.outputs.power # Calculate avionics and payload current avionics_payload_current = avionics_payload_power/self.voltage # link to the battery battery.inputs.current = esc.outputs.currentin + avionics_payload_current battery.inputs.power_in = -(esc_power + avionics_payload_power) battery.energy_calc(numerics) # No mass gaining batteries mdot = np.zeros(np.shape(conditions.freestream.velocity)) # Pack the conditions for outputs current = esc.outputs.currentin battery_power_draw = battery.inputs.power_in battery_energy = battery.current_energy voltage_open_circuit = battery.voltage_open_circuit conditions.propulsion.current = current conditions.propulsion.battery_power_draw = battery_power_draw conditions.propulsion.battery_energy = battery_energy conditions.propulsion.battery_voltage_open_circuit = voltage_open_circuit results.vehicle_mass_rate = mdot return results __call__ = evaluate_thrust
class WindowError(Exception): """ Base exception for errors thrown by the window framework. Idealy, this could be used to catch every error raised by this library. This does not include errors raised by the underlying graphics backend. """ pass
import numpy as np from matplotlib import pyplot as plt def plot_diagrams( diagrams, plot_only=None, title=None, xy_range=None, labels=None, colormap="default", size=20, ax_color=np.array([0.0, 0.0, 0.0]), diagonal=True, lifetime=False, legend=True, show=False, ax=None, torus_colors=[], lw=2.5, cs=["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728"], ): ax = ax or plt.gca() plt.style.use(colormap) xlabel, ylabel = "Birth", "Death" if labels is None: # Provide default labels for diagrams if using self.dgm_ labels = [ "$H_0$", "$H_1$", "$H_2$", "$H_3$", "$H_4$", "$H_5$", "$H_6$", "$H_7$", "$H_8$", ] if not isinstance(diagrams, list): # Must have diagrams as a list for processing downstream diagrams = [diagrams] if len(plot_only) > 0: diagrams = [diagrams[i] for i in plot_only] labels = [labels[i] for i in plot_only] if not isinstance(labels, list): labels = [labels] * len(diagrams) # Construct copy with proper type of each diagram # so we can freely edit them. diagrams = [dgm.astype(np.float32, copy=True) for dgm in diagrams] aspect = "equal" # find min and max of all visible diagrams concat_dgms = np.concatenate(diagrams).flatten() has_inf = np.any(np.isinf(concat_dgms)) finite_dgms = concat_dgms[np.isfinite(concat_dgms)] if not xy_range: # define bounds of diagram ax_min, ax_max = np.min(finite_dgms), np.max(finite_dgms) x_r = ax_max - ax_min # Give plot a nice buffer on all sides. # ax_range=0 when only one point, buffer = 1 if xy_range == 0 else x_r / 5 x_down = ax_min - buffer / 2 x_up = ax_max + buffer y_down, y_up = x_down, x_up else: x_down, x_up, y_down, y_up = xy_range yr = y_up - y_down if lifetime: # Don't plot landscape and diagonal at the same time. diagonal = False # reset y axis so it doesn't go much below zero y_down = -yr * 0.05 y_up = y_down + yr # set custom ylabel ylabel = "Lifetime" # set diagrams to be (x, y-x) for dgm in diagrams: dgm[:, 1] -= dgm[:, 0] # plot horizon line # ax.plot([x_down, x_up], [0, 0], c=ax_color) # Plot diagonal if diagonal: ax.plot([x_down, x_up], [x_down, x_up], "--", c=ax_color) # Plot inf line if has_inf: # put inf line slightly below top b_inf = y_down + yr * 0.95 # convert each inf in each diagram with b_inf for dgm in diagrams: dgm[np.isinf(dgm)] = b_inf # Plot each diagram i = 0 for dgm, label in zip(diagrams, labels): c = cs[plot_only[i]] # plot persistence pairs ax.scatter(dgm[:, 0], dgm[:, 1], size, label=label, edgecolor="none", c=c) i += 1 ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if len(torus_colors) > 0: # births1 = diagrams[1][:, 0] # the time of birth for the 1-dim classes deaths1 = diagrams[1][:, 1] # the time of death for the 1-dim classes deaths1[np.isinf(deaths1)] = 0 # lives1 = deaths1-births1 # inds1 = np.argsort(lives1) inds1 = np.argsort(deaths1) ax.scatter( diagrams[1][inds1[-1], 0], diagrams[1][inds1[-1], 1], 10 * size, linewidth=lw, edgecolor=torus_colors[0], facecolor="none", ) ax.scatter( diagrams[1][inds1[-2], 0], diagrams[1][inds1[-2], 1], 10 * size, linewidth=lw, edgecolor=torus_colors[1], facecolor="none", ) # births2 = diagrams[2][ # :, # ] # the time of birth for the 1-dim classes deaths2 = diagrams[2][:, 1] # the time of death for the 1-dim classes deaths2[np.isinf(deaths2)] = 0 # lives2 = deaths2-births2 # inds2 = np.argsort(lives2) inds2 = np.argsort(deaths2) # print(lives2, births2[inds2[-1]],deaths2[inds2[-1]], diagrams[2][inds2[-1], 0], diagrams[2][inds2[-1], 1]) ax.scatter( diagrams[2][inds2[-1], 0], diagrams[2][inds2[-1], 1], 10 * size, linewidth=lw, edgecolor=torus_colors[2], facecolor="none", ) ax.set_xlim([x_down, x_up]) ax.set_ylim([y_down, y_up]) ax.set_aspect(aspect, "box") if title is not None: ax.set_title(title) if legend is True: ax.legend(loc="upper right") if show is True: plt.show() return ax
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for the `aea scaffold protocol` sub-command.""" import filecmp import json import os import shutil import tempfile import unittest.mock from pathlib import Path import jsonschema from jsonschema import Draft4Validator, ValidationError import yaml import aea.cli.common import aea.configurations.base from aea import AEA_DIR from aea.cli import cli from aea.configurations.base import DEFAULT_PROTOCOL_CONFIG_FILE from ...common.click_testing import CliRunner from ...conftest import ( CLI_LOG_OPTION, CONFIGURATION_SCHEMA_DIR, PROTOCOL_CONFIGURATION_SCHEMA, ) class TestScaffoldProtocol: """Test that the command 'aea scaffold protocol' works correctly in correct preconditions.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "myresource" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() cls.patch = unittest.mock.patch.object(aea.cli.common.logger, "error") cls.mocked_logger_error = cls.patch.__enter__() cls.schema = json.load(open(PROTOCOL_CONFIGURATION_SCHEMA)) cls.resolver = jsonschema.RefResolver( "file://{}/".format(Path(CONFIGURATION_SCHEMA_DIR).absolute()), cls.schema ) cls.validator = Draft4Validator(cls.schema, resolver=cls.resolver) os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", cls.agent_name], standalone_mode=False ) assert result.exit_code == 0 os.chdir(cls.agent_name) # scaffold protocol cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) def test_exit_code_equal_to_0(self): """Test that the exit code is equal to 0.""" assert self.result.exit_code == 0 def test_resource_folder_contains_module_message(self): """Test that the resource folder contains scaffold message.py module.""" p = Path(self.t, self.agent_name, "protocols", self.resource_name, "message.py") original = Path(AEA_DIR, "protocols", "scaffold", "message.py") assert filecmp.cmp(p, original) def test_resource_folder_contains_module_protocol(self): """Test that the resource folder contains scaffold protocol.py module.""" p = Path( self.t, self.agent_name, "protocols", self.resource_name, "serialization.py" ) original = Path(AEA_DIR, "protocols", "scaffold", "serialization.py") assert filecmp.cmp(p, original) def test_resource_folder_contains_configuration_file(self): """Test that the resource folder contains a good configuration file.""" p = Path( self.t, self.agent_name, "protocols", self.resource_name, DEFAULT_PROTOCOL_CONFIG_FILE, ) config_file = yaml.safe_load(open(p)) self.validator.validate(instance=config_file) @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestScaffoldProtocolFailsWhenDirectoryAlreadyExists: """Test that the command 'aea scaffold protocol' fails when a folder with 'scaffold' name already.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "myresource" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() cls.patch = unittest.mock.patch.object(aea.cli.common.logger, "error") cls.mocked_logger_error = cls.patch.__enter__() os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", cls.agent_name], standalone_mode=False ) assert result.exit_code == 0 os.chdir(cls.agent_name) # create a dummy 'myresource' folder Path(cls.t, cls.agent_name, "protocols", cls.resource_name).mkdir( exist_ok=False, parents=True ) cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 def test_error_message_protocol_already_existing(self): """Test that the log error message is fixed. The expected message is: 'A protocol with name '{protocol_name}' already exists. Aborting...' """ s = "A protocol with this name already exists. Please choose a different name and try again." self.mocked_logger_error.assert_called_once_with(s) def test_resource_directory_exists(self): """Test that the resource directory still exists. This means that after every failure, we make sure we restore the previous state. """ assert Path(self.t, self.agent_name, "protocols", self.resource_name).exists() @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestScaffoldProtocolFailsWhenProtocolAlreadyExists: """Test that the command 'aea add protocol' fails when the protocol already exists.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "myresource" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() cls.patch = unittest.mock.patch.object(aea.cli.common.logger, "error") cls.mocked_logger_error = cls.patch.__enter__() os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", cls.agent_name], standalone_mode=False ) assert result.exit_code == 0 os.chdir(cls.agent_name) # add protocol first time result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) assert result.exit_code == 0 # scaffold protocol with the same protocol name cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 def test_error_message_protocol_already_existing(self): """Test that the log error message is fixed. The expected message is: 'A protocol with name '{protocol_name}' already exists. Aborting...' """ s = "A protocol with name '{}' already exists. Aborting...".format( self.resource_name ) self.mocked_logger_error.assert_called_once_with(s) def test_resource_directory_exists(self): """Test that the resource directory still exists. This means that after every failure, we make sure we restore the previous state. """ assert Path(self.t, self.agent_name, "protocols", self.resource_name).exists() @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestScaffoldProtocolFailsWhenConfigFileIsNotCompliant: """Test that the command 'aea scaffold protocol' fails when the configuration file is not compliant with the schema.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "myresource" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() cls.patch = unittest.mock.patch.object(aea.cli.common.logger, "error") cls.mocked_logger_error = cls.patch.__enter__() os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", cls.agent_name], standalone_mode=False ) assert result.exit_code == 0 # change the dumping of yaml module to raise an exception. cls.patch = unittest.mock.patch( "yaml.safe_dump", side_effect=ValidationError("test error message") ) cls.patch.__enter__() os.chdir(cls.agent_name) cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 def test_configuration_file_not_valid(self): """Test that the log error message is fixed. The expected message is: 'Cannot find protocol: '{protocol_name}' """ self.mocked_logger_error.assert_called_once_with( "Error when validating the protocol configuration file." ) def test_resource_directory_does_not_exists(self): """Test that the resource directory does not exist. This means that after every failure, we make sure we restore the previous state. """ assert not Path( self.t, self.agent_name, "protocols", self.resource_name ).exists() @classmethod def teardown_class(cls): """Tear the test down.""" cls.patch.__exit__() os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestScaffoldProtocolFailsWhenExceptionOccurs: """Test that the command 'aea scaffold protocol' fails when the configuration file is not compliant with the schema.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.resource_name = "myresource" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", cls.agent_name], standalone_mode=False ) assert result.exit_code == 0 cls.patch = unittest.mock.patch( "shutil.copytree", side_effect=Exception("unknwon exception") ) cls.patch.__enter__() os.chdir(cls.agent_name) cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "scaffold", "protocol", cls.resource_name], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 def test_resource_directory_does_not_exists(self): """Test that the resource directory does not exist. This means that after every failure, we make sure we restore the previous state. """ assert not Path( self.t, self.agent_name, "protocols", self.resource_name ).exists() @classmethod def teardown_class(cls): """Tear the test down.""" cls.patch.__exit__() os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass
# Generated by Django 3.2.3 on 2021-06-10 01:48 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('rosters', '0040_roster_settings'), ] operations = [ migrations.AlterModelOptions( name='rostersettings', options={'permissions': (('change_roster', 'Can change rosters'),)}, ), ]
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: dic = {} l, res = 0, 0 for r in range(len(s)): if s[r] in dic: l = max(dic[s[r]], l) dic[s[r]] = r + 1 res = max(res, r - l + 1) return res s = Solution() print(s.lengthOfLongestSubstring("tmmzuxt"))
import argparse import json import os import pickle import sys import time from typing import Iterable, List, Dict from rlo import config_utils from rlo.cost_normalizers import available_cost_normalizers from rlo.dataset_refiner import get_available_dataset_refiners from rlo import factory from rlo.extra_plots import extra_plots from rlo.hybrid_search import MergeHandling from rlo import utils from rlo import git_utils from rlo.utils import FunctionArgs as Args from rlo.layers import available_aggregations from rlo.expression_util import NamedExprWithEnv from rlo.factory import ConfigType def loss_str(loss: str) -> str: # Validator for command-line 'loss' argument if loss in ["huber", "mse"]: return loss if loss.startswith("pinball="): _pinball, tau = loss.split("=") if not 0.0 <= float(tau) <= 1.0: raise ValueError("Tau must be between 0 and 1") return loss raise ValueError # Note there is no way to specify train_exprs, test_exprs or rules here # - they must come from the scenario or replay_config general_arguments = [ Args( "--exprs_per_generation", type=int, default=0, help="Frequency with which to perform evaluation, once per this many training exprs", ), Args( "--no_subtree_match_edges", action="store_false", dest="use_subtree_match_edges", help="Do not use connect identical sub expressions with a special edge type", ), Args( "--num_propagations", type=int, default=10, help="number of the steps of the dynamics of GNN", ), Args( "--nonlinear_messages", action="store_true", help="If True, apply nonlinearity before edge-to-vertex message aggregation.", ), Args( "--aggregation_over_edge_types", # TODO concatenate and concatenate_by_agg_type not available in torch (yet) type=str, default="sum", choices=available_aggregations, help="aggregation of all edge_type messages before passing into gru", ), Args( "--decoder_readout", type=str, choices=["mean", "max", "min", "sum"], default="mean", help="How do we aggregate node features before feeding them to the value function.", ), Args( "--message_from_sender_receiver", # TODO: Not yet implemented in torch action="store_true", help="If true, the message is computed both using the sender and the receiver features.", ), Args( "--one_hot_embedding", # TODO: Not yet configurable in torch implementation action="store_true", help="use one-hot initial node embedding rather than learned lookup", ), Args("--hidden_dim", type=int, default=200, help="GNN hidden dimension"), Args( "--output_hidden_dim", type=int, default=200, help="output MLP hidden dimension" ), Args("--gamma", type=float, default=0.1, help="discount factor (not used)"), Args( "--max_num_episodes_train", type=int, default=4 ** 6, help="max number of simulation episodes during train search", ), Args( "--max_num_episodes_eval", type=int, default=100, help="max number of simulation episodes during eval search", ), Args( "--num_positive_examples", type=int, default=10, help="min number of positive episodes", ), Args( "--simulation_depth_train", type=int, default=None, help="max depth to simulate during training", ), Args( "--simulation_depth_eval", type=int, default=None, help="max depth to simulate during evaluation", ), Args( "--maxing", type=str, help="algorithm to extract best empirical optimizations from the search tree", default="accumulator", choices=factory.maxing_algs.keys(), ), Args( "--min_epochs", type=int, default=10, help="Min number of training epochs per generation (looking for epoch with lowest validation loss)", ), Args( "--max_epochs", type=int, default=None, help="max number of training epochs per generation (default = limited by patience only)", ), Args( "--num_repetitions", type=int, default=8, help="number of training repetitions" ), Args( "--graph_state_keep_prob", type=float, default=0.5, help="dropout keep probability for graph state", ), Args( "--output_keep_prob", type=float, default=0.5, help="dropout keep probability for output MLP", ), Args("--cost_normalization", type=str, choices=available_cost_normalizers()), Args( "--patience_epochs", type=int, default=4, help="stop training if validation has not improved in this number of epochs", ), Args( "--num_generations", type=int, default=None, help="number of generations over expressions", ), Args( "--total_train_time", type=int, default=None, help="stop at end of first generation when training time exceeds this (seconds)", ), Args( "--num_episode_clusters", type=int, default=5, help="number of clusters of episodes used to build dataset", ), Args( "--template_path", type=str, help="Path to template .kso file (from rlo directory), e.g. ksc/blas/blas_template.kso", ), Args( "--test_on_defs", type=str, default=None, nargs="+", help="allows to choose which functions from the test set to use", ), Args( "--train_on_defs", type=str, default=None, nargs="+", help="allows to choose which functions from the train set to use", ), Args( "--seed_all_reps", type=int, help="Seed all repetitions with same seed (usually each rep seeded with its number)", ), Args( "--loss", type=loss_str, default="huber", help="types of the losses available. Options are 'huber', 'mse', or " "strings of the form 'pinball=0.9' where 0.9 is the tau parameter for pinball loss.", ), Args("--lr", type=float, default=0.0001, help="learning rate"), Args( "--grad_clip_value", type=float, default=0, help="Coefficient used for gradient clipping by value. " "If <=0 (default), the gradients will not be clipped. ", ), Args("--split", type=float, default=0.9, help="train-validation split parameter"), Args( "--value_bin_splits", type=float, nargs="+", default=None, help="bin splits to use for value distribution plot", ), Args( "--time_bin_splits", type=int, nargs="+", default=None, help="bin splits to use for time distribution plot", ), Args( "--episode_bin_splits", type=int, nargs="+", default=None, help="bin splits to use for episode distribution plot", ), Args( "--extra_plots", type=str, nargs="*", default=[], choices=extra_plots.keys(), help="Extra plots", ), Args("--v2", action="store_true", help="use distillator_v2"), Args("--verbose", action="store_true", help="use distillator_v2 verbose"), ] dataset_processing_arguments = [ Args( "--dataset_refiners", nargs="*", type=str, default=["best_across_generations_refiner"], choices=get_available_dataset_refiners(), help="Sequence of dataset refiners to use", ), ] search_algorithm_arguments = [ # The first two will need to be specified somewhere, probably in scenario Args( "--train_search", type=str, choices=factory.search_algs.keys(), help="Search algorithm for training.", ), Args( "--eval_search", type=str, choices=factory.search_algs.keys(), help="Search algorithm for evaluation.", ), Args( "--cost_per_step", type=float, default=None, help="Use cost_per_step in search (0 = just take max over t'<t), for A*/Hybrid/Beam only", ), Args( "--max_gnn_train", type=int, default=None, help="Max GNN evaluations in training; for A*/Hybrid/Beam only", ), Args( "--max_gnn_eval", type=int, default=None, help="Max GNN evaluations in test; for A*/Hybrid/Beam only", ), Args( "--search_batch_size", type=int, default=16, help="Batch size to use for GNN evaluation during search", ), Args( "--hybrid_merge_handling", type=str.upper, default=MergeHandling.STOP.name, choices=[m.name for m in MergeHandling], ), # Help string shows uppercase, but parsed insensitively Args( "--hybrid_prob_rollout", type=float, default=1.0, help="Probability of rolling out one more step in hybrid search", ), Args( "--hybrid_alpha", type=float, default=float("inf"), help="Alpha value for hybrid search", ), ] # alpha_tuning_arguments are only applicable for the rollout search algorithm alpha_tuning_arguments = [ Args( "--alpha_test", type=float, default=5.0, help="Temperature for test runs. This does NOT affect the alpha for training runs.", ), Args( "--init_alpha", type=float, default=1.0, help="Temperature for train runs at the first generation. Used in softmax action selection.", ), Args( "--alpha_scaling_factor", type=float, default=1.1, help="Alpha for training is multiplied by it on success.", ), Args( "--alpha_scaling_factor_fail", type=float, default=1.0, help="Alpha for training is multiplied by it on failure.", ), ] sparse_gnn_arguments = [ Args( "--sparse_gnn", action="store_true", help="For tensorflow, this flag enables sparse GNN. For Pytorch, sparse GNN is the only option, and this flag is ignored.", ), Args( "--tensorflow", action="store_true", dest="tensorflow", help="Use tensorflow implementation. If not specified, default to pytorch.", ), Args( "--num_gnn_blocks", type=int, default=1, help="How many GNN blocks to use. Should be a divider of the number of propagations. E.g. if we have --num_propagations=10 and 2 blocks, each block will do 5 propagations. " "Will use StackedGNNEncoder if set --num_gnn_blocks. Will use old (default) SparseGNNEncoder if set to 1.", ), Args( "--stacked_gnn_double_hidden", action="store_true", help="If set, each next GNN block of a stack will have its hidden dim doubled. " "Otherwise apply dimensionality reduction before the GNN output.", ), Args( "--max_nodes_per_batch", type=int, default=10000, help="Maximum number of nodes in a sparse GNN batch", ), ] value_function_arguments = [ # The nargs means that if no --cumsum is specified, returns the default; if cumsum is specified without argument, returns the 'const'. Args( "--cumsum", type=float, nargs="?", default=None, const="inf", help="Use cumulative sum, with optional alpha value for softplus (else INF => relu)", ), Args( "--two_value_func", type=str, default=None, choices=["train"], help="Whether to use two value functions for training phase", ), Args( "--two_value_func_var_frac_train", type=float, help="Fraction of variance to add to mean when merging two value functions during training phase.", ), ] # Fields from legacy configs, and legacy arguments. These will be *rejected* if present. # Note the "merge-datasets" value in config.json was controlled by command-line argument --no_merge_datasets. config_argument_deprecations = { "num_timesteps": "num_propagations", "merge_datasets": None, "num_epochs": "num_generations", "max_depth": "simulation_depth_train", "total_num_iterations": "min_epochs/max_epochs", "patience": "patience_epochs", "nested": None, "max_num_episodes": "max_num_episodes_train", "simulation_depth": "simulation_depth_train and --simulation_depth_eval", } config_arguments = ( general_arguments + dataset_processing_arguments + search_algorithm_arguments + alpha_tuning_arguments + sparse_gnn_arguments + value_function_arguments + [ Args("--" + k, action="help", help="Do not use; use --{} instead".format(v)) for k, v in config_argument_deprecations.items() ] ) run_arguments = [ Args( "scenario", type=str, help="Path to scenario or name of .json (potentially old config)", ), Args("--run_id", type=str, default=None, help="Run ID (best to keep default)"), Args("--gitlog", type=str, default=git_utils.get_git_revision_short_hash()), Args("--output_dir", type=str, default="outputs", help="Where models and plots go"), Args( "--repetition", type=int, default=None, help="run just a single repetition, without plotting (use with run_id)", ), Args( "--force_gpu", action="store_true", help="Raise exception if we cannot create model on GPU", ), Args( "--force_cpu", action="store_true", help="Run on CPU even if GPU is available (useful if CUDA nondeterminism is a problem). Only supported for PyTorch.", ), Args( "--gpu_memory_fraction", type=float, default=None, help="Use this fraction of GPU (e.g. 0.5) to allow sharing", ), Args( "--save_all_models", action="store_true", help="whether to store weights after every generation, or just to store them at the end of training", ), Args( "--num_parallel", type=int, default=1, help="number of parallel threads on which to run repetitions", ), Args( "--upload_models", action="store_true", help="Upload models into the Azure ML workspace", ), ] run_arguments_no_parallel = [a for a in run_arguments if a.args[0] != "--num_parallel"] assert len(run_arguments_no_parallel) + 1 == len(run_arguments) # Check we removed it ray_run_arguments = run_arguments_no_parallel + [ Args( "--address", default=None, type=str, help="ip_address:port to connect to redis (default is to run internally)", ), Args("--redis_token", default=None, type=str, help="password to connect to redis"), Args( "--log_to_driver", action="store_true", help="Log all worker stdout/err to driver", ), Args( "--num_gpus", default=None, type=int, help="Override Ray autodetecting number of GPUs (for this node only)", ), Args( "--num_cpus", default=None, type=int, help="Override Ray autodetecting number of CPUs (for this node only)", ), Args( "--workers_per_gpu", default=1, type=int, help="Tell Ray to put this number of workers (cpu threads+models) on each GPU", ), Args( "--test_kill_worker_after_tasks", default=-1, type=int, help="Kill each remote worker after this many tasks (negative => never)", ), Args( "--ray_timeout", default=3600, type=int, help="Starting timeout for ray tasks; doubles after each failure to complete", ), Args( "--profile_local", nargs="?", type=int, default=0, help="Run headnode under cprofile, with optional limit/s on local task duration", ), Args( "--timeline", action="store_true", help="Produce ray_timeline.json and ray_object_transfers.json", ), ] def make_parser(arguments: List[Args]) -> argparse.ArgumentParser: parser = argparse.ArgumentParser() for args in arguments: utils.apply_args(parser.add_argument, args) return parser def parse_with_defaults(argument_fields, defaults, cmdline=None, known=False) -> Dict: parser = make_parser(argument_fields) parser.set_defaults(**defaults) if known: args, _ = parser.parse_known_args(cmdline) else: args = parser.parse_args(cmdline) return vars(args) def get_scenario_name_and_defaults(scenario_or_config): """ Given the name or path to a scenario .json, or the path to a previous experiment config, return the name of the underlying scenario, and the default values for all config_arguments and scenario-only fields """ if not os.path.isfile(scenario_or_config): exec_dir = os.path.dirname(sys.argv[0]) scenario_or_config = os.path.join( exec_dir, "scenarios", f"{scenario_or_config}.json" ) with open(scenario_or_config) as f: scenario_dict = json.load(f) config_argument_fields = set( arg.args[0][2:] for arg in config_arguments if arg.args[0][:2] == "--" ) scenario_required_fields = {"train_exprs", "test_exprs", "rules"} # When replaying a previous experiment, keep the overrides from that (as well as any new) scenario_optional_fields = {"oracle", "extra_scenario_params"}.union( config_argument_fields ) scenario_overrides = config_utils.kwargs_from_config( scenario_dict, required_keys=scenario_required_fields, optional_keys=scenario_optional_fields, ) if not scenario_overrides.keys().isdisjoint(config_argument_deprecations.keys()): raise ValueError( "\n".join( [ "Key {} has been {}".format( k, "removed" if v is None else "replaced by {}".format(v) ) for k, v in config_argument_deprecations.items() if k in scenario_overrides ] ) ) # For running from a previous experiment, keep the old (base) scenario value scenario_name = scenario_dict.get( "scenario", os.path.splitext(os.path.basename(scenario_or_config))[0] ) return ( scenario_name, parse_with_defaults(config_arguments, scenario_overrides, cmdline=[]), ) def check_overrides(config: ConfigType, defaults: ConfigType): default_parser = make_parser(config_arguments) default_parser.set_defaults(**defaults) default_config = vars(default_parser.parse_args([])) # ignore command line for k, v in default_config.items(): if config[k] != v: print( "Overriding {} with value {} (original value={})".format( k, config[k], v ) ) yield (k, config[k], v) def make_config_for_scenario( scenario: str, run_args: List[Args] = run_arguments, cmdline: Iterable[str] = None, allow_unknown=False, ) -> ConfigType: """Create config for scenario""" # Now load scenario (/replayed config) scenario, scenario_defaults = get_scenario_name_and_defaults(scenario) return make_config( run_args + config_arguments, scenario, scenario_defaults, cmdline, allow_unknown ) def make_config( all_arguments, scenario, scenario_defaults, cmdline=None, allow_unknown=False ) -> ConfigType: # This time we'll parse all the arguments, but using scenario defaults; these are the values to actually use. config = parse_with_defaults( all_arguments, scenario_defaults, cmdline=cmdline, known=allow_unknown ) config["scenario"] = scenario # Record those explicitly overridden on the commandline, in the description config["extra_scenario_params"] = "".join( [config.get("extra_scenario_params", "")] + [ "+{}:{}".format(k, conf_v) for k, conf_v, _def_v in check_overrides(config, scenario_defaults) ] ) # We've now computed global defaults, overridden by scenario, overridden by explicit cmdline. if config["run_id"] is None: config["run_id"] = "{}_{}_{}".format( config["scenario"], time.strftime("%Y_%m_%d_%H_%M_%S"), os.getpid() ) assert config["run_id"] is not None config["result_save_path"] = os.path.join( config["output_dir"], "Run_" + config["run_id"] ) if config["repetition"] is not None: # Apply the changes to directories etc. of the root config that we expect for the given repetition config = config_utils.config_for_repetition( # Base config = with repetition field removed {k: v for k, v in config.items() if k != "repetition"}, config["repetition"], ) return config def _ensure_oracle_reachable(config, expressions: Iterable[NamedExprWithEnv]): """Check that all the expressions will have graphable known minimum costs. Although not essential (we can just not graph the minimum), usually it's helpful to know we *will* get a minumum on the graph before we spend hours running a test. Also updates the config's simulation_depth_train, simulation_depth_eval to ensure the run can reach the minimum.""" from rlo import best_results for name, _ in expressions: # Use str to double-check it'll be reachable from logs assert best_results.best_cost_for_exp(name, config["rules"]).cost is not None # Also ensure we will be able to reach the optimal value. longest_sequence = max( [ best_results.oracle_sequence(name, config["rules"]) for name, _ in expressions ], key=len, ) simulation_depth_required = len(longest_sequence) - 1 for simulation_depth_type in ["simulation_depth_train", "simulation_depth_eval"]: if config[simulation_depth_type] is None: config[simulation_depth_type] = simulation_depth_required elif simulation_depth_required > config[simulation_depth_type]: raise ValueError( "Specified {} of {} is not sufficient to reach oracle minumum for {}, must be at least {}".format( simulation_depth_type, config[simulation_depth_type], longest_sequence[0], simulation_depth_required, ) ) def check_save_config(config, train_exprs, eval_exprs): """Ensures that simulation_depth_train, simulation_depth_eval are sufficient to reach oracle min if known, and save to disk the config and train.pck.""" if train_exprs and eval_exprs and config["oracle"]: assert all(e in eval_exprs for e in train_exprs) _ensure_oracle_reachable(config, eval_exprs) with utils.open_file_mkdir( os.path.join(config["result_save_path"], "config.json"), "w" ) as f: json.dump(config, f, sort_keys=True, indent=2) if train_exprs: with open(os.path.join(config["result_save_path"], "train.pck"), "wb") as f: pickle.dump(train_exprs, f)
from django import forms from django.core.exceptions import ValidationError from pyparsing import ParseException from .grammar import parse class SearchField(forms.CharField): def clean(self, *args, **kwargs): value = super().clean(*args, **kwargs) if not value: return "" try: return parse(value) except ParseException as e: raise ValidationError(str(e))
# -*- coding: utf-8 -*- """ @author : Wang Meng @github : https://github.com/tianpangji @software : PyCharm @file : permissions.py @create : 2021/2/14 17:11 """ import json from system.models import Permissions def redis_storage_permissions(redis_conn): permissions = Permissions.objects.filter(menu=False).values('id', 'path', 'method', 'sign') # 如果还没有任何权限控制,直接跳过后续逻辑,以免报错 if not permissions.exists(): return None permissions_dict = dict() for permission in permissions: # 去除不可见字符 method = str(permission.get('method')).replace('\u200b', '') path = str(permission.get('path')).replace('\u200b', '') sign = str(permission.get('sign')).replace('\u200b', '') _id = permission.get('id') if permissions_dict.get(path): permissions_dict[path].append({ 'method': method, 'sign': sign, 'id': _id, }) else: permissions_dict[path] = [{ 'method': method, 'sign': sign, 'id': _id, }] for key in permissions_dict: permissions_dict[key] = json.dumps(permissions_dict[key]) redis_conn.hmset('user_permissions_manage', permissions_dict)
import os import matplotlib.pyplot as plt import imageio def visualize_ground_truth(mat, size=4.0): """ `mat`: (d, d) """ plt.rcParams['figure.figsize'] = [size, size] fig, ax = plt.subplots(1, 1) ax.matshow(mat, vmin=0, vmax=1) plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) ax.tick_params(axis='both', which='both', length=0) ax.set_title(r'Ground truth $G^*$', pad=10) plt.show() return def visualize(mats, t, save_path=None, n_cols=7, size=2.5, show=False): """ Based on visualization by https://github.com/JannerM/gamma-models/blob/main/gamma/visualization/pendulum.py `mats` should have shape (N, d, d) and take values in [0,1] """ N = mats.shape[0] n_rows = N // n_cols if N % n_cols: n_rows += 1 plt.rcParams['figure.figsize'] = [size * n_cols, size * n_rows] fig, axes = plt.subplots(n_rows, n_cols) axes = axes.flatten() # for j, (ax, mat) in enumerate(zip(axes[:len(mats)], mats)): for j, ax in enumerate(axes): if j < len(mats): # plot matrix of edge probabilities ax.matshow(mats[j], vmin=0, vmax=1) ax.tick_params(axis='both', which='both', length=0) ax.set_title(r'$Z^{('f'{j}'r')}$', pad=3) plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) ax.axis('off') # save if save_path is not None: if not os.path.exists(save_path): os.makedirs(save_path) plt.savefig(save_path + f'/img{t}.png') img = imageio.imread(save_path + f'/img{t}.png') else: img = None if show: plt.show() plt.close() return img
#!/usr/bin/env python3 import sys import unittest sys.path.append('.') from logger.transforms.prefix_transform import PrefixTransform class TestPrefixTransform(unittest.TestCase): def test_default(self): transform = PrefixTransform('prefix') self.assertIsNone(transform.transform(None)) self.assertEqual(transform.transform('foo'), 'prefix foo') transform = PrefixTransform('prefix', sep='\t') self.assertEqual(transform.transform('foo'), 'prefix\tfoo') if __name__ == '__main__': unittest.main()
import json import re from datetime import time, date, datetime from enum import Enum from typing import Any, Type, Union, List, Dict, Set, Optional, TypeVar, Sized, overload, Callable, cast from .base import Field, Cleaned from .errors import ValidationError, ErrorCode T1 = TypeVar('T1') T2 = TypeVar('T2') VT = TypeVar('VT') Num = Union[int, float] HashableT = TypeVar('HashableT') CleanedT = TypeVar('CleanedT', bound=Cleaned) EnumT = TypeVar('EnumT', bound=Enum) class StrField(Field[str]): blank_pattern = re.compile(r'^\s*$') linebreak_pattern = re.compile(r'(\r\n|\r|\n)') linebreak_replacement = ' ' default_multiline = False default_strip = True def __init__(self, *, blank: bool, multiline: Optional[bool] = None, strip: Optional[bool] = None, pattern: Optional[str] = None, length: Optional[int] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, one_of: Optional[Set[str]] = None): super().__init__() self.is_blankable = blank self.strip = strip self.pattern = re.compile(pattern) if pattern else None self.raw_pattern = pattern or '' self.multiline = multiline self.length = length self.min_length = min_length self.max_length = max_length self.one_of = one_of def value_to_str(self, value: Any) -> str: if isinstance(value, str): return value raise TypeError() def convert(self, value: Any) -> str: value = self.value_to_str(value) if (self.default_strip if self.strip is None else self.strip): value = value.strip() if not (self.default_multiline if self.multiline is None else self.multiline): value = self.linebreak_pattern.sub( self.linebreak_replacement, value) return value def validate(self, value: str): if self.blank_pattern.match(value): if self.is_blankable: # skip other validations for blank value return else: self.raise_validation_error( value=value, default_message='This field can not be blank.', code=ErrorCode.blank) if self.pattern and not self.pattern.match(value): self.raise_validation_error( value=value, default_message=f'The value must match: {self.raw_pattern}', code=ErrorCode.pattern) _validate(value, self, _LENGTH, _ONE_OF) class BoolField(Field[bool]): def __init__(self): super().__init__() def convert(self, value: Any) -> bool: return bool(value) def validate(self, value: bool): pass class IntField(Field[int]): def __init__(self, *, lt: Optional[Num] = None, lte: Optional[Num] = None, gt: Optional[Num] = None, gte: Optional[Num] = None, one_of: Optional[Set[int]] = None): super().__init__() self.lt = lt self.lte = lte self.gt = gt self.gte = gte self.one_of = one_of def convert(self, value: Any) -> int: return int(value) def validate(self, value: int): _validate(value, self, _COMPARABLE, _ONE_OF) class FloatField(Field[float]): def __init__(self, *, lt: Optional[Num] = None, lte: Optional[Num] = None, gt: Optional[Num] = None, gte: Optional[Num] = None, one_of: Optional[Set[float]] = None): super().__init__() self.lt = lt self.lte = lte self.gt = gt self.gte = gte self.one_of = one_of def convert(self, value: Any) -> float: return float(value) def validate(self, value: float): _validate(value, self, _COMPARABLE, _ONE_OF) class TimeField(Field[time]): def __init__(self, *, lt: Optional[time] = None, lte: Optional[time] = None, gt: Optional[time] = None, gte: Optional[time] = None, one_of: Optional[Set[time]] = None): super().__init__() self.lt = lt self.lte = lte self.gt = gt self.gte = gte self.one_of = one_of def convert(self, value: Any) -> time: if isinstance(value, time): return value elif isinstance(value, datetime): return value.time() elif isinstance(value, date): return time.min return time.fromisoformat(value) def validate(self, value: time): _validate(value, self, _COMPARABLE, _ONE_OF) class DateField(Field[date]): def __init__(self, *, lt: Optional[date] = None, lte: Optional[date] = None, gt: Optional[date] = None, gte: Optional[date] = None, one_of: Optional[Set[date]] = None): super().__init__() self.lt = lt self.lte = lte self.gt = gt self.gte = gte self.one_of = one_of def convert(self, value: Any) -> date: if isinstance(value, date): return value elif isinstance(value, datetime): return value.date() elif isinstance(value, (int, float)): return datetime.fromtimestamp(value).date() return datetime.fromisoformat(value).date() def validate(self, value: date): _validate(value, self, _COMPARABLE, _ONE_OF) class DatetimeField(Field[datetime]): def __init__(self, *, lt: Optional[datetime] = None, lte: Optional[datetime] = None, gt: Optional[datetime] = None, gte: Optional[datetime] = None, one_of: Optional[Set[datetime]] = None): super().__init__() self.lt = lt self.lte = lte self.gt = gt self.gte = gte self.one_of = one_of def convert(self, value: Any) -> datetime: if isinstance(value, datetime): return value elif isinstance(value, date): return datetime.combine(value, time.min) elif isinstance(value, (int, float)): return datetime.fromtimestamp(value) return datetime.fromisoformat(value) def validate(self, value: datetime): _validate(value, self, _COMPARABLE, _ONE_OF) class EitherField(Field[Union[T1, T2]]): def __init__(self, t1: Field[T1], t2: Field[T2]): super().__init__() self.t1 = t1 self.t2 = t2 def convert(self, value: Any) -> Union[T1, T2]: try: return self.t1.clean(value) except Exception: pass try: return self.t2.clean(value) except Exception: pass raise ValueError(f'Either {self.t1.__class__.__name__} ' f'and {self.t2.__class__.__name__} ' f'can not handle `{value}`.') def validate(self, value: Union[T1, T2]): pass class ListField(Field[List[VT]]): def __init__(self, value: Field[VT], *, length: Optional[int] = None, min_length: Optional[int] = None, max_length: Optional[int] = None): super().__init__() self.value = value self.length = length self.min_length = min_length self.max_length = max_length def convert(self, value: Any) -> List[VT]: if isinstance(value, str): value = json.loads(value) value = list(value) result: List[VT] = [] errors: Dict[str, ValidationError] = {} for index, item in enumerate(value): try: result.append(self.value.clean(item)) except ValidationError as e: errors[str(index)] = e if errors: raise ValidationError(errors) return result def validate(self, value: List[VT]): _validate(value, self, _LENGTH) class SetField(Field[Set[HashableT]]): def __init__(self, value: Field[HashableT], *, length: Optional[int] = None, min_length: Optional[int] = None, max_length: Optional[int] = None): super().__init__() self.value = value self.length = length self.min_length = min_length self.max_length = max_length def convert(self, value: Any) -> Set[HashableT]: if isinstance(value, str): value = json.loads(value) value = iter(value) result: Set[HashableT] = set() error_items: List[ValidationError.Item] = [] for item in value: try: result.add(self.value.clean(item)) except ValidationError as e: error_items.extend(e.items) if error_items: raise ValidationError(list(error_items)) return result def validate(self, value: Set[HashableT]): _validate(value, self, _LENGTH) class DictField(Field[Dict[HashableT, VT]]): key: Field[HashableT] value: Field[VT] @overload def __init__(self: 'DictField[str, VT]', value: Field[VT], *, length: Optional[int] = ..., min_length: Optional[int] = ..., max_length: Optional[int] = ...): pass @overload def __init__(self, value: Field[VT], key: Field[HashableT], *, length: Optional[int] = ..., min_length: Optional[int] = ..., max_length: Optional[int] = ...): pass def __init__(self, value, key=None, *, length: Optional[int] = None, min_length: Optional[int] = None, max_length: Optional[int] = None): super().__init__() self.value = value self.key = key or StrField(blank=False, multiline=False) self.length = length self.min_length = min_length self.max_length = max_length def convert(self, value: Any) -> Dict[HashableT, VT]: if isinstance(value, str): value = json.loads(value) value = dict(value) result: Dict[HashableT, VT] = {} errors: Dict[str, ValidationError] = {} for k, v in value.items(): try: _key = self.key.clean(k) try: _value = self.value.clean(v) result[_key] = _value except ValidationError as e: errors[f'{_key}'] = e except ValidationError as e: errors[f'{k}:key'] = e try: self.value.clean(k) except ValidationError as e: errors[f'{k}'] = e if errors: raise ValidationError(errors) return result def validate(self, value: Dict[HashableT, VT]): _validate(value, self, _LENGTH) class NestedField(Field[CleanedT]): def __init__(self, cleaned: Union[Type[CleanedT], Callable[[], Type[CleanedT]]]): super().__init__() if isinstance(cleaned, type) and issubclass(cleaned, Cleaned): self._server = cast(Callable[[], Type[CleanedT]], lambda: cleaned) else: self._server = cast(Callable[[], Type[CleanedT]], cleaned) def convert(self, value: Any) -> CleanedT: if isinstance(value, str): value = json.loads(value) _type = self._server() if isinstance(value, Cleaned): return _type(**value._data) return _type(**dict(value)) def validate(self, value: CleanedT): pass class EnumField(Field[EnumT]): def __init__(self, enum: Union[Type[EnumT], Callable[[], Type[EnumT]]]): super().__init__() if isinstance(enum, type) and issubclass(enum, Enum): self._server = cast(Callable[[], Type[EnumT]], lambda: enum) else: self._server = cast(Callable[[], Type[EnumT]], enum) def convert(self, value: Any) -> EnumT: _type = self._server() if isinstance(value, _type): return value if isinstance(value, str): try: return _type[value] except KeyError: pass return _type(value) def validate(self, value: EnumT): pass def _validate_comparable( value: Any, field: Field[Any], lt: Optional[Any], lte: Optional[Any], gt: Optional[Any], gte: Optional[Any]): if lt is not None and value >= lt: field.raise_validation_error( value=value, default_message=f'The value must be less than {lt}.', code=ErrorCode.lt) if lte is not None and value > lte: field.raise_validation_error( value=value, default_message=f'The value must be less than or equal to {lte}.', code=ErrorCode.lte) if gt is not None and value <= gt: field.raise_validation_error( value=value, default_message=f'The value must be greater than {gt}.', code=ErrorCode.gt) if gte is not None and value < gte: field.raise_validation_error( value=value, default_message='The value ' f'must be greater than or equal to {gte}.', code=ErrorCode.gte) def _validate_length( value: Sized, field: Field[Sized], length: Optional[int], min_length: Optional[int], max_length: Optional[int]): if length is not None and len(value) != length: field.raise_validation_error( value=value, default_message='The length of the value ' f'must be equal to {length}.', code=ErrorCode.length) if min_length is not None and len(value) < min_length: field.raise_validation_error( value=value, default_message='The length of the value ' f'must be longer than or equal to {min_length}.', code=ErrorCode.min_length) if max_length is not None and len(value) > max_length: field.raise_validation_error( value=value, default_message='The length of the value ' f'must be shorter than or equal to {max_length}.', code=ErrorCode.max_length) def _validate_one_of( value: HashableT, field: Field[HashableT], one_of: Optional[Set[HashableT]]): if one_of is not None and value not in one_of: field.raise_validation_error( value=value, default_message='The value must be one of {one_of}', code=ErrorCode.one_of) _COMPARABLE = 'comparable' _LENGTH = 'length' _ONE_OF = 'one_of' def _validate( value: Any, field: Any, *methods: str): for m in methods: if m == _COMPARABLE: _validate_comparable( value=value, field=field, lt=field.lt, lte=field.lte, gt=field.gt, gte=field.gte) elif m == _LENGTH: _validate_length( value=value, field=field, length=field.length, min_length=field.min_length, max_length=field.max_length) elif m == _ONE_OF: _validate_one_of( value=value, field=field, one_of=field.one_of)
from django.contrib import admin from products.models import * # Register your models here. admin.site.register(Product) admin.site.register(MainProductsCategorie) admin.site.register(ProductsSubCategorie)
# Copyright 2019 Julie Jung <[email protected]> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import csv import argparse import os import datetime import dateutil.parser import time import apache_beam as beam import apache_beam.transforms.window as window from apache_beam.transforms.combiners import Mean from apache_beam.options.pipeline_options import GoogleCloudOptions from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions # data gets collected 4 times per hour (every 15 minutes) DATA_COLLECTION_FREQUENCY = 4 ROWS_PER_DAY = 10 # this is an arbitrary value set for testing # ROWS_PER_DAY = DATA_COLLECTION_FREQUENCY * 24 SCHEMA_PATH = 'data/processed_data/bq_schemas.txt' class BQTranslateTransformation: '''A helper class which contains the logic to translate the file into a format BigQuery will accept.''' def __init__(self): # load_schema taken from json file extracted from processCSV.py # in a realistic scenario, you won't be able to automate it like this. # and probably have to manually insert schema dir_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) schema_file = os.path.join(dir_path, SCHEMA_PATH) with open(schema_file) as bq_schema_file: self.schemas = json.load(bq_schema_file) self.stream_schema = {'fields': [ {'name': 'window_start', 'type': 'TIMESTAMP', 'mode': 'REQUIRED'}, {'name': 'building_id', 'type': 'INTEGER', 'mode': 'REQUIRED'}, {'name': 'Gen_Avg', 'type': 'INTEGER', 'mode': 'REQUIRED'}]} def parse_method_load(self, string_input): '''This method translates a single line of comma separated values to a dictionary which can be loaded into BigQuery. Args: string_input: A comma separated list of values in the form of timestamp,building id,general meter reading, and variable size of sub meter readings ex1)2017-03-31T20:00:00-04:00,1,6443.0,1941.0,40.0 ex2)2017-03-31T20:00:00-04:00,2,5397.0,2590.0 Returns: A dict mapping BigQuery column names as keys to the corresponding value parsed from string_input. Deciding which schema to use by building_id. The schemas of 8 buildings can be retrieved from bq_schema.txt, produced by processCSV.py and saved onto self.schemas ex1) {'timestamp': '2017-03-31T20:00:00-04:00', 'building_id': 1, '1_Gen': 6443, '1_Sub_1': 1941, '1_Sub_14': 40 } ex2) {'timestamp': '2017-03-31T20:00:00-04:00', 'building_id': 2, '2_Gen': 5397, '2_Sub_1': 2590 } ''' row = {} schema = None i = 0 values = string_input.split(',') for value in values: # if at first column, add the timestamp, # which is the same format no matter the building if i == 0: fieldName = 'timestamp' # first check building_id, which is always the 2nd column elif i == 1: schema = self.schemas[int(value)-1]['fields'] fieldName = 'building_id' # then retrieve the corresponding schema and then # match the values with field numbers to add to the dictionary else: fieldName = schema[i]['name'] row[fieldName] = value i += 1 logging.info('passed Row: {}'.format(row)) return row def parse_method_stream(self, s): ''' Same as parse_method_load(), but for hourly averages of each sensor, combined to one table Args: s of building Id, main meter reading avg, and start timestamp of the window the value belongs to ex) '1,6443,2017-03-31T20:00:00-04:00' Returns: A dict mapping BigQuery column names as keys to the corresponding value parsed from (k, v). {'window_start': [time at the start of current window], 'building_id': 1, 'Gen_Avg': 6443} ''' logging.info('row of average vals in a window: {}'.format(s)) [window_start, building_id, gen_avg] = s.split(',') row = {'window_start': window_start, 'building_id': int(building_id), 'Gen_Avg': int(round(float(gen_avg)))} logging.info('passed Row for Streams: {}'.format(row)) return row class WindowStartTimestampFn(beam.DoFn): def process(self, element, window=beam.DoFn.WindowParam): window_start = window.start.to_utc_datetime() building_id, gen_avg = element logging.info('startWindow timestamped: {}'.format(window_start)) yield ','.join([str(window_start), building_id, str(gen_avg)]) class KVSplitDoFn(beam.DoFn): def process(self, s, timestamp=beam.DoFn.WindowParam): values = s.split(',') building_id = values[1] gen_energy = int(float(values[2])) logging.info('kvSplit: ({},{})'.format(building_id, gen_energy)) yield (building_id, gen_energy) def run(argv=None, save_main_session=True): # main function for running the pipeline arg_parser = argparse.ArgumentParser() arg_parser.add_argument( '--input_topic', dest='input_topic', required=True, help=('Input PubSub topic of the form ' '"projects/<PROJECT>/topics/<TOPIC>".')) arg_parser.add_argument( '--output_load_table_suffix', dest='output_l', required=True, help=('Output BQ table to write results to (suffix). ' + '"[datasetID].[tableID]" ' + 'Since we have 8 buildings, each building ' + 'will be loaded on the corresponding table.' + 'ex) given argument, "energy.building", ' + 'building 1\'s data will be loaded in energy.building1')) arg_parser.add_argument( '--output_stream_table', dest='output_s', required=True, help='Output BQ table to write results to. "[datasetID].[tableID]"') arg_parser.add_argument( '--output_topic', dest='output_topic', required=True, help=('Output PubSub topic of the form ' + '"projects/<PROJECT>/topics/<TOPIC>".' + 'ex) "projects/building-energy-consumption/' + 'topics/energy_stream"')) arg_parser.add_argument( '--speedFactor', dest='speedFactor', required=False, default=300, type=int, help=('How wide do you want your window (in seconds) ' + '(Ex) 3600 => 1 hr window')) # Initiate the pipeline using the pipeline arguments passed in from the # command line. This includes information like where Dataflow should # store temp files, and what the project id is. known_args, pipeline_args = arg_parser.parse_known_args(argv) options = PipelineOptions(pipeline_args) p = beam.Pipeline(options=options) # Require the --project option to access --dataset if options.view_as(GoogleCloudOptions).project is None: arg_parser.print_usage() print(sys.argv[0] + ': error: argument --project is required') sys.exit(1) # Use the save_main_session option because one or more DoFn's in this # workflow rely on global context (e.g., module imported at module level). options.view_as(SetupOptions).save_main_session = save_main_session rowToBQ = BQTranslateTransformation() # ingest pubsub messages, extract data, and save to lines # so it can be used by both batch ingest and stream aggregations lines = (p | 'ReadFromPubSub' >> beam.io.ReadFromPubSub( topic=known_args.input_topic).with_output_types(bytes) | 'ConvertFromBytesToStr' >> beam.Map( lambda b: b.decode('utf-8'))) # Convert row of str to BQ rows, and load batch data to table # on a daily basis by setting batch_size to rows per day. # batch_size is a number of rows to be written to BQ # per streaming API insert. rows = (lines | 'StringToBigQueryRowLoad' >> beam.Map( lambda s: rowToBQ.parse_method_load(s))) # load_schema taken from json file extracted from processCSV.py # In a realistic scenario, you won't be able to automate it like this, # but probably have to manually insert schema load_schema = rowToBQ.schemas # filter and load to 8 tables based off of the given table suffix argument load1 = (rows | 'FilterBuilding1' >> beam.Filter( lambda row: int(row['building_id']) == 1) | 'B1BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '1', schema=load_schema[0], batch_size=ROWS_PER_DAY)) load2 = (rows | 'FilterBuilding2' >> beam.Filter( lambda row: int(row['building_id']) == 2) | 'B2BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '2', schema=load_schema[1], batch_size=ROWS_PER_DAY)) load3 = (rows | 'FilterBuilding3' >> beam.Filter( lambda row: int(row['building_id']) == 3) | 'B3BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '3', schema=load_schema[2], batch_size=ROWS_PER_DAY)) load4 = (rows | 'FilterBuilding4' >> beam.Filter( lambda row: int(row['building_id']) == 4) | 'B4BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '4', schema=load_schema[3], batch_size=ROWS_PER_DAY)) load5 = (rows | 'FilterBuilding5' >> beam.Filter( lambda row: int(row['building_id']) == 5) | 'B5BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '5', schema=load_schema[4], batch_size=ROWS_PER_DAY)) load6 = (rows | 'FilterBuilding6' >> beam.Filter( lambda row: int(row['building_id']) == 6) | 'B6BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '6', schema=load_schema[5], batch_size=ROWS_PER_DAY)) load7 = (rows | 'FilterBuilding7' >> beam.Filter( lambda row: int(row['building_id']) == 7) | 'B7BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '7', schema=load_schema[6], batch_size=ROWS_PER_DAY)) load8 = (rows | 'FilterBuilding8' >> beam.Filter( lambda row: int(row['building_id']) == 8) | 'B8BQLoad' >> beam.io.WriteToBigQuery( table=known_args.output_l + '8', schema=load_schema[7], batch_size=ROWS_PER_DAY)) # stream aggregation pipeline; saved to avgs # to be used for writing to BigQuery and publishing to Pubsub # fixed window of 1 hour, adjusted according to speedFactor window_size = known_args.speedFactor avgs = (lines | 'SetTimeWindow' >> beam.WindowInto( window.SlidingWindows( window_size, float(window_size)/2)) | 'ByBuilding' >> beam.ParDo(KVSplitDoFn()) | 'GetAvgByBuilding' >> Mean.PerKey() | 'AddWindowStartTimestamp' >> beam.ParDo( WindowStartTimestampFn())) # Convert row of str to BigQuery rows, and append to the BQ table. (avgs | 'StrToBigQueryRowStream' >> beam.Map( lambda s: rowToBQ.parse_method_stream(s)) | 'WriteToBigQueryStream' >> beam.io.WriteToBigQuery( table=known_args.output_s, schema=rowToBQ.stream_schema, project=options.view_as(GoogleCloudOptions).project)) # write message to pubsub with a different output_topic # for users to subscribe to and retrieve real time analysis data (avgs | 'Encode' >> beam.Map( lambda x: x.encode('utf-8')).with_output_types(bytes) | 'PublishToPubSub' >> beam.io.WriteToPubSub( 'projects/{}/topics/{}'.format( options.view_as(GoogleCloudOptions).project, known_args.output_topic))) # nothing will run until this command p.run() if __name__ == '__main__': logging.basicConfig( format='%(levelname)s: %(message)s', level=logging.INFO) run()
from tqdm import tqdm from rdkit import Chem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') from pathlib import Path def normalize_inchi(inchi): try: mol = Chem.MolFromInchi(inchi) return inchi if (mol is None) else Chem.MolToInchi(mol) except: return inchi # Segfault in rdkit taken care of, run it with: # while [ 1 ]; do python normalize_inchis.py && break; done if __name__=='__main__': # Input & Output orig_path = Path('submission_LB_322.csv') norm_path = orig_path.with_name(orig_path.stem+'_norm.csv') # Do the job N = norm_path.read_text().count('\n') if norm_path.exists() else 0 print(N, 'number of predictions already normalized') r = open(str(orig_path), 'r') w = open(str(norm_path), 'a', buffering=1) for _ in range(N): r.readline() line = r.readline() # this line is the header or is where it segfaulted last time w.write(line) for line in tqdm(r): splits = line[:-1].split(',') image_id = splits[0] inchi = ','.join(splits[1:]).replace('"','') inchi_norm = normalize_inchi(inchi) w.write(f'{image_id},"{inchi_norm}"\n') r.close() w.close()
class Pessoa: olhos =2 def __init__(self,*filhos,nome= None,idade=35): self.idade = idade self.nome=nome self.filhos =list(filhos) def cumprimentar(self): return f'Olá, meu nome é {self.nome}' @staticmethod def metodo_estatico(): return 42 @classmethod def nome_e_atributos_de_classes(cls): return f' {cls} - olhos {cls.olhos}' class Homem(Pessoa): def cumprimentar(self): cumprimentar_da_classe=super().cumprimentar() return f' {cumprimentar_da_classe} Aperto de mão' class Mutante(Pessoa): olhos = 3 if __name__ == '__main__': renzo = Mutante(nome ='Renzo') luciano= Homem(renzo, nome='Luciano') print(Pessoa.cumprimentar(luciano)) print(id(luciano)) print(luciano.nome) print(luciano.idade) for filho in luciano.filhos: print(filho.nome) luciano.sobrenome='Ramanlho' del luciano.filhos luciano.olhos = 1 del luciano.olhos print(renzo.__dict__) print(luciano.__dict__) Pessoa.olhos=3 print(Pessoa.olhos) print(luciano.olhos) print(renzo.olhos) print (id (Pessoa.olhos), id(luciano.olhos),id(renzo.olhos)) print(Pessoa.metodo_estatico(), luciano.metodo_estatico()) print(Pessoa.nome_e_atributos_de_classes(),luciano.nome_e_atributos_de_classes()) pessoa = Pessoa('Anonimo') print(isinstance(pessoa,Pessoa)) print(isinstance(pessoa,Homem)) print(isinstance(renzo,Pessoa)) print(isinstance(renzo,Homem)) print(renzo.cumprimentar()) print(luciano.cumprimentar())
# NLP written by GAMS Convert at 04/21/18 13:54:05 # # Equation counts # Total E G L N X C B # 253 253 0 0 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 308 308 0 0 0 0 0 0 # FX 4 4 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 1307 404 903 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x2 = Var(within=Reals,bounds=(0,None),initialize=0.02) m.x3 = Var(within=Reals,bounds=(0,0),initialize=0) m.x4 = Var(within=Reals,bounds=(0,None),initialize=0.0384) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0.0564) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0.0736) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0.09) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0.1056) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0.1204) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0.1344) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0.1476) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0.16) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0.1716) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0.1824) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0.1924) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0.2016) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0.21) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0.2176) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0.2244) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0.2304) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0.2356) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0.24) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0.2436) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0.2464) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0.2484) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0.2496) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0.25) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0.2496) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0.2484) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0.2464) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0.2436) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0.24) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0.2356) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0.2304) m.x35 = Var(within=Reals,bounds=(0,None),initialize=0.2244) m.x36 = Var(within=Reals,bounds=(0,None),initialize=0.2176) m.x37 = Var(within=Reals,bounds=(0,None),initialize=0.21) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0.2016) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0.1924) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0.1824) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0.1716) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0.16) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0.1476) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0.1344) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0.1204) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0.1056) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0.09) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0.0736) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0.0564) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0.0384) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0.0196) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(1,1),initialize=1) m.x55 = Var(within=Reals,bounds=(1,None),initialize=1) m.x56 = Var(within=Reals,bounds=(1,None),initialize=1) m.x57 = Var(within=Reals,bounds=(1,None),initialize=1) m.x58 = Var(within=Reals,bounds=(1,None),initialize=1) m.x59 = Var(within=Reals,bounds=(1,None),initialize=1) m.x60 = Var(within=Reals,bounds=(1,None),initialize=1) m.x61 = Var(within=Reals,bounds=(1,None),initialize=1) m.x62 = Var(within=Reals,bounds=(1,None),initialize=1) m.x63 = Var(within=Reals,bounds=(1,None),initialize=1) m.x64 = Var(within=Reals,bounds=(1,None),initialize=1) m.x65 = Var(within=Reals,bounds=(1,None),initialize=1) m.x66 = Var(within=Reals,bounds=(1,None),initialize=1) m.x67 = Var(within=Reals,bounds=(1,None),initialize=1) m.x68 = Var(within=Reals,bounds=(1,None),initialize=1) m.x69 = Var(within=Reals,bounds=(1,None),initialize=1) m.x70 = Var(within=Reals,bounds=(1,None),initialize=1) m.x71 = Var(within=Reals,bounds=(1,None),initialize=1) m.x72 = Var(within=Reals,bounds=(1,None),initialize=1) m.x73 = Var(within=Reals,bounds=(1,None),initialize=1) m.x74 = Var(within=Reals,bounds=(1,None),initialize=1) m.x75 = Var(within=Reals,bounds=(1,None),initialize=1) m.x76 = Var(within=Reals,bounds=(1,None),initialize=1) m.x77 = Var(within=Reals,bounds=(1,None),initialize=1) m.x78 = Var(within=Reals,bounds=(1,None),initialize=1) m.x79 = Var(within=Reals,bounds=(1,None),initialize=1) m.x80 = Var(within=Reals,bounds=(1,None),initialize=1) m.x81 = Var(within=Reals,bounds=(1,None),initialize=1) m.x82 = Var(within=Reals,bounds=(1,None),initialize=1) m.x83 = Var(within=Reals,bounds=(1,None),initialize=1) m.x84 = Var(within=Reals,bounds=(1,None),initialize=1) m.x85 = Var(within=Reals,bounds=(1,None),initialize=1) m.x86 = Var(within=Reals,bounds=(1,None),initialize=1) m.x87 = Var(within=Reals,bounds=(1,None),initialize=1) m.x88 = Var(within=Reals,bounds=(1,None),initialize=1) m.x89 = Var(within=Reals,bounds=(1,None),initialize=1) m.x90 = Var(within=Reals,bounds=(1,None),initialize=1) m.x91 = Var(within=Reals,bounds=(1,None),initialize=1) m.x92 = Var(within=Reals,bounds=(1,None),initialize=1) m.x93 = Var(within=Reals,bounds=(1,None),initialize=1) m.x94 = Var(within=Reals,bounds=(1,None),initialize=1) m.x95 = Var(within=Reals,bounds=(1,None),initialize=1) m.x96 = Var(within=Reals,bounds=(1,None),initialize=1) m.x97 = Var(within=Reals,bounds=(1,None),initialize=1) m.x98 = Var(within=Reals,bounds=(1,None),initialize=1) m.x99 = Var(within=Reals,bounds=(1,None),initialize=1) m.x100 = Var(within=Reals,bounds=(1,None),initialize=1) m.x101 = Var(within=Reals,bounds=(1,None),initialize=1) m.x102 = Var(within=Reals,bounds=(1,None),initialize=1) m.x103 = Var(within=Reals,bounds=(1,None),initialize=1) m.x104 = Var(within=Reals,bounds=(1,None),initialize=1) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(1,1),initialize=1) m.x157 = Var(within=Reals,bounds=(0.6,1),initialize=0.984) m.x158 = Var(within=Reals,bounds=(0.6,1),initialize=0.976) m.x159 = Var(within=Reals,bounds=(0.6,1),initialize=0.968) m.x160 = Var(within=Reals,bounds=(0.6,1),initialize=0.96) m.x161 = Var(within=Reals,bounds=(0.6,1),initialize=0.952) m.x162 = Var(within=Reals,bounds=(0.6,1),initialize=0.944) m.x163 = Var(within=Reals,bounds=(0.6,1),initialize=0.936) m.x164 = Var(within=Reals,bounds=(0.6,1),initialize=0.928) m.x165 = Var(within=Reals,bounds=(0.6,1),initialize=0.92) m.x166 = Var(within=Reals,bounds=(0.6,1),initialize=0.912) m.x167 = Var(within=Reals,bounds=(0.6,1),initialize=0.904) m.x168 = Var(within=Reals,bounds=(0.6,1),initialize=0.896) m.x169 = Var(within=Reals,bounds=(0.6,1),initialize=0.888) m.x170 = Var(within=Reals,bounds=(0.6,1),initialize=0.88) m.x171 = Var(within=Reals,bounds=(0.6,1),initialize=0.872) m.x172 = Var(within=Reals,bounds=(0.6,1),initialize=0.864) m.x173 = Var(within=Reals,bounds=(0.6,1),initialize=0.856) m.x174 = Var(within=Reals,bounds=(0.6,1),initialize=0.848) m.x175 = Var(within=Reals,bounds=(0.6,1),initialize=0.84) m.x176 = Var(within=Reals,bounds=(0.6,1),initialize=0.832) m.x177 = Var(within=Reals,bounds=(0.6,1),initialize=0.824) m.x178 = Var(within=Reals,bounds=(0.6,1),initialize=0.816) m.x179 = Var(within=Reals,bounds=(0.6,1),initialize=0.808) m.x180 = Var(within=Reals,bounds=(0.6,1),initialize=0.8) m.x181 = Var(within=Reals,bounds=(0.6,1),initialize=0.792) m.x182 = Var(within=Reals,bounds=(0.6,1),initialize=0.784) m.x183 = Var(within=Reals,bounds=(0.6,1),initialize=0.776) m.x184 = Var(within=Reals,bounds=(0.6,1),initialize=0.768) m.x185 = Var(within=Reals,bounds=(0.6,1),initialize=0.76) m.x186 = Var(within=Reals,bounds=(0.6,1),initialize=0.752) m.x187 = Var(within=Reals,bounds=(0.6,1),initialize=0.744) m.x188 = Var(within=Reals,bounds=(0.6,1),initialize=0.736) m.x189 = Var(within=Reals,bounds=(0.6,1),initialize=0.728) m.x190 = Var(within=Reals,bounds=(0.6,1),initialize=0.72) m.x191 = Var(within=Reals,bounds=(0.6,1),initialize=0.712) m.x192 = Var(within=Reals,bounds=(0.6,1),initialize=0.704) m.x193 = Var(within=Reals,bounds=(0.6,1),initialize=0.696) m.x194 = Var(within=Reals,bounds=(0.6,1),initialize=0.688) m.x195 = Var(within=Reals,bounds=(0.6,1),initialize=0.68) m.x196 = Var(within=Reals,bounds=(0.6,1),initialize=0.672) m.x197 = Var(within=Reals,bounds=(0.6,1),initialize=0.664) m.x198 = Var(within=Reals,bounds=(0.6,1),initialize=0.656) m.x199 = Var(within=Reals,bounds=(0.6,1),initialize=0.648) m.x200 = Var(within=Reals,bounds=(0.6,1),initialize=0.64) m.x201 = Var(within=Reals,bounds=(0.6,1),initialize=0.632) m.x202 = Var(within=Reals,bounds=(0.6,1),initialize=0.624) m.x203 = Var(within=Reals,bounds=(0.6,1),initialize=0.616) m.x204 = Var(within=Reals,bounds=(0.6,1),initialize=0.608) m.x205 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x206 = Var(within=Reals,bounds=(0.6,0.6),initialize=0.6) m.x207 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x208 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x209 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x210 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x211 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x212 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x213 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x214 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x215 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x216 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x217 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x218 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x219 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x220 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x221 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x222 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x223 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x224 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x225 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x226 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x227 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x228 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x229 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x230 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x231 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x232 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x233 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x234 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x235 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x236 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x237 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x238 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x239 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x240 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x241 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x242 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x243 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x244 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x245 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x246 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x247 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x248 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x249 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x250 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x251 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x252 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x253 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x254 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x255 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x256 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x257 = Var(within=Reals,bounds=(0,3.5),initialize=1.75) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.obj = Objective(expr= - m.x104, sense=minimize) m.c1 = Constraint(expr=-310*m.x3**2*exp(500 - 500*m.x54) + m.x258 == 0) m.c2 = Constraint(expr=-310*m.x4**2*exp(500 - 500*m.x55) + m.x259 == 0) m.c3 = Constraint(expr=-310*m.x5**2*exp(500 - 500*m.x56) + m.x260 == 0) m.c4 = Constraint(expr=-310*m.x6**2*exp(500 - 500*m.x57) + m.x261 == 0) m.c5 = Constraint(expr=-310*m.x7**2*exp(500 - 500*m.x58) + m.x262 == 0) m.c6 = Constraint(expr=-310*m.x8**2*exp(500 - 500*m.x59) + m.x263 == 0) m.c7 = Constraint(expr=-310*m.x9**2*exp(500 - 500*m.x60) + m.x264 == 0) m.c8 = Constraint(expr=-310*m.x10**2*exp(500 - 500*m.x61) + m.x265 == 0) m.c9 = Constraint(expr=-310*m.x11**2*exp(500 - 500*m.x62) + m.x266 == 0) m.c10 = Constraint(expr=-310*m.x12**2*exp(500 - 500*m.x63) + m.x267 == 0) m.c11 = Constraint(expr=-310*m.x13**2*exp(500 - 500*m.x64) + m.x268 == 0) m.c12 = Constraint(expr=-310*m.x14**2*exp(500 - 500*m.x65) + m.x269 == 0) m.c13 = Constraint(expr=-310*m.x15**2*exp(500 - 500*m.x66) + m.x270 == 0) m.c14 = Constraint(expr=-310*m.x16**2*exp(500 - 500*m.x67) + m.x271 == 0) m.c15 = Constraint(expr=-310*m.x17**2*exp(500 - 500*m.x68) + m.x272 == 0) m.c16 = Constraint(expr=-310*m.x18**2*exp(500 - 500*m.x69) + m.x273 == 0) m.c17 = Constraint(expr=-310*m.x19**2*exp(500 - 500*m.x70) + m.x274 == 0) m.c18 = Constraint(expr=-310*m.x20**2*exp(500 - 500*m.x71) + m.x275 == 0) m.c19 = Constraint(expr=-310*m.x21**2*exp(500 - 500*m.x72) + m.x276 == 0) m.c20 = Constraint(expr=-310*m.x22**2*exp(500 - 500*m.x73) + m.x277 == 0) m.c21 = Constraint(expr=-310*m.x23**2*exp(500 - 500*m.x74) + m.x278 == 0) m.c22 = Constraint(expr=-310*m.x24**2*exp(500 - 500*m.x75) + m.x279 == 0) m.c23 = Constraint(expr=-310*m.x25**2*exp(500 - 500*m.x76) + m.x280 == 0) m.c24 = Constraint(expr=-310*m.x26**2*exp(500 - 500*m.x77) + m.x281 == 0) m.c25 = Constraint(expr=-310*m.x27**2*exp(500 - 500*m.x78) + m.x282 == 0) m.c26 = Constraint(expr=-310*m.x28**2*exp(500 - 500*m.x79) + m.x283 == 0) m.c27 = Constraint(expr=-310*m.x29**2*exp(500 - 500*m.x80) + m.x284 == 0) m.c28 = Constraint(expr=-310*m.x30**2*exp(500 - 500*m.x81) + m.x285 == 0) m.c29 = Constraint(expr=-310*m.x31**2*exp(500 - 500*m.x82) + m.x286 == 0) m.c30 = Constraint(expr=-310*m.x32**2*exp(500 - 500*m.x83) + m.x287 == 0) m.c31 = Constraint(expr=-310*m.x33**2*exp(500 - 500*m.x84) + m.x288 == 0) m.c32 = Constraint(expr=-310*m.x34**2*exp(500 - 500*m.x85) + m.x289 == 0) m.c33 = Constraint(expr=-310*m.x35**2*exp(500 - 500*m.x86) + m.x290 == 0) m.c34 = Constraint(expr=-310*m.x36**2*exp(500 - 500*m.x87) + m.x291 == 0) m.c35 = Constraint(expr=-310*m.x37**2*exp(500 - 500*m.x88) + m.x292 == 0) m.c36 = Constraint(expr=-310*m.x38**2*exp(500 - 500*m.x89) + m.x293 == 0) m.c37 = Constraint(expr=-310*m.x39**2*exp(500 - 500*m.x90) + m.x294 == 0) m.c38 = Constraint(expr=-310*m.x40**2*exp(500 - 500*m.x91) + m.x295 == 0) m.c39 = Constraint(expr=-310*m.x41**2*exp(500 - 500*m.x92) + m.x296 == 0) m.c40 = Constraint(expr=-310*m.x42**2*exp(500 - 500*m.x93) + m.x297 == 0) m.c41 = Constraint(expr=-310*m.x43**2*exp(500 - 500*m.x94) + m.x298 == 0) m.c42 = Constraint(expr=-310*m.x44**2*exp(500 - 500*m.x95) + m.x299 == 0) m.c43 = Constraint(expr=-310*m.x45**2*exp(500 - 500*m.x96) + m.x300 == 0) m.c44 = Constraint(expr=-310*m.x46**2*exp(500 - 500*m.x97) + m.x301 == 0) m.c45 = Constraint(expr=-310*m.x47**2*exp(500 - 500*m.x98) + m.x302 == 0) m.c46 = Constraint(expr=-310*m.x48**2*exp(500 - 500*m.x99) + m.x303 == 0) m.c47 = Constraint(expr=-310*m.x49**2*exp(500 - 500*m.x100) + m.x304 == 0) m.c48 = Constraint(expr=-310*m.x50**2*exp(500 - 500*m.x101) + m.x305 == 0) m.c49 = Constraint(expr=-310*m.x51**2*exp(500 - 500*m.x102) + m.x306 == 0) m.c50 = Constraint(expr=-310*m.x52**2*exp(500 - 500*m.x103) + m.x307 == 0) m.c51 = Constraint(expr=-310*m.x53**2*exp(500 - 500*m.x104) + m.x308 == 0) m.c52 = Constraint(expr=-(1/m.x54)**2 + m.x105 == 0) m.c53 = Constraint(expr=-(1/m.x55)**2 + m.x106 == 0) m.c54 = Constraint(expr=-(1/m.x56)**2 + m.x107 == 0) m.c55 = Constraint(expr=-(1/m.x57)**2 + m.x108 == 0) m.c56 = Constraint(expr=-(1/m.x58)**2 + m.x109 == 0) m.c57 = Constraint(expr=-(1/m.x59)**2 + m.x110 == 0) m.c58 = Constraint(expr=-(1/m.x60)**2 + m.x111 == 0) m.c59 = Constraint(expr=-(1/m.x61)**2 + m.x112 == 0) m.c60 = Constraint(expr=-(1/m.x62)**2 + m.x113 == 0) m.c61 = Constraint(expr=-(1/m.x63)**2 + m.x114 == 0) m.c62 = Constraint(expr=-(1/m.x64)**2 + m.x115 == 0) m.c63 = Constraint(expr=-(1/m.x65)**2 + m.x116 == 0) m.c64 = Constraint(expr=-(1/m.x66)**2 + m.x117 == 0) m.c65 = Constraint(expr=-(1/m.x67)**2 + m.x118 == 0) m.c66 = Constraint(expr=-(1/m.x68)**2 + m.x119 == 0) m.c67 = Constraint(expr=-(1/m.x69)**2 + m.x120 == 0) m.c68 = Constraint(expr=-(1/m.x70)**2 + m.x121 == 0) m.c69 = Constraint(expr=-(1/m.x71)**2 + m.x122 == 0) m.c70 = Constraint(expr=-(1/m.x72)**2 + m.x123 == 0) m.c71 = Constraint(expr=-(1/m.x73)**2 + m.x124 == 0) m.c72 = Constraint(expr=-(1/m.x74)**2 + m.x125 == 0) m.c73 = Constraint(expr=-(1/m.x75)**2 + m.x126 == 0) m.c74 = Constraint(expr=-(1/m.x76)**2 + m.x127 == 0) m.c75 = Constraint(expr=-(1/m.x77)**2 + m.x128 == 0) m.c76 = Constraint(expr=-(1/m.x78)**2 + m.x129 == 0) m.c77 = Constraint(expr=-(1/m.x79)**2 + m.x130 == 0) m.c78 = Constraint(expr=-(1/m.x80)**2 + m.x131 == 0) m.c79 = Constraint(expr=-(1/m.x81)**2 + m.x132 == 0) m.c80 = Constraint(expr=-(1/m.x82)**2 + m.x133 == 0) m.c81 = Constraint(expr=-(1/m.x83)**2 + m.x134 == 0) m.c82 = Constraint(expr=-(1/m.x84)**2 + m.x135 == 0) m.c83 = Constraint(expr=-(1/m.x85)**2 + m.x136 == 0) m.c84 = Constraint(expr=-(1/m.x86)**2 + m.x137 == 0) m.c85 = Constraint(expr=-(1/m.x87)**2 + m.x138 == 0) m.c86 = Constraint(expr=-(1/m.x88)**2 + m.x139 == 0) m.c87 = Constraint(expr=-(1/m.x89)**2 + m.x140 == 0) m.c88 = Constraint(expr=-(1/m.x90)**2 + m.x141 == 0) m.c89 = Constraint(expr=-(1/m.x91)**2 + m.x142 == 0) m.c90 = Constraint(expr=-(1/m.x92)**2 + m.x143 == 0) m.c91 = Constraint(expr=-(1/m.x93)**2 + m.x144 == 0) m.c92 = Constraint(expr=-(1/m.x94)**2 + m.x145 == 0) m.c93 = Constraint(expr=-(1/m.x95)**2 + m.x146 == 0) m.c94 = Constraint(expr=-(1/m.x96)**2 + m.x147 == 0) m.c95 = Constraint(expr=-(1/m.x97)**2 + m.x148 == 0) m.c96 = Constraint(expr=-(1/m.x98)**2 + m.x149 == 0) m.c97 = Constraint(expr=-(1/m.x99)**2 + m.x150 == 0) m.c98 = Constraint(expr=-(1/m.x100)**2 + m.x151 == 0) m.c99 = Constraint(expr=-(1/m.x101)**2 + m.x152 == 0) m.c100 = Constraint(expr=-(1/m.x102)**2 + m.x153 == 0) m.c101 = Constraint(expr=-(1/m.x103)**2 + m.x154 == 0) m.c102 = Constraint(expr=-(1/m.x104)**2 + m.x155 == 0) m.c104 = Constraint(expr=-0.5*m.x2*(m.x3 + m.x4) - m.x54 + m.x55 == 0) m.c105 = Constraint(expr=-0.5*m.x2*(m.x4 + m.x5) - m.x55 + m.x56 == 0) m.c106 = Constraint(expr=-0.5*m.x2*(m.x5 + m.x6) - m.x56 + m.x57 == 0) m.c107 = Constraint(expr=-0.5*m.x2*(m.x6 + m.x7) - m.x57 + m.x58 == 0) m.c108 = Constraint(expr=-0.5*m.x2*(m.x7 + m.x8) - m.x58 + m.x59 == 0) m.c109 = Constraint(expr=-0.5*m.x2*(m.x8 + m.x9) - m.x59 + m.x60 == 0) m.c110 = Constraint(expr=-0.5*m.x2*(m.x9 + m.x10) - m.x60 + m.x61 == 0) m.c111 = Constraint(expr=-0.5*m.x2*(m.x10 + m.x11) - m.x61 + m.x62 == 0) m.c112 = Constraint(expr=-0.5*m.x2*(m.x11 + m.x12) - m.x62 + m.x63 == 0) m.c113 = Constraint(expr=-0.5*m.x2*(m.x12 + m.x13) - m.x63 + m.x64 == 0) m.c114 = Constraint(expr=-0.5*m.x2*(m.x13 + m.x14) - m.x64 + m.x65 == 0) m.c115 = Constraint(expr=-0.5*m.x2*(m.x14 + m.x15) - m.x65 + m.x66 == 0) m.c116 = Constraint(expr=-0.5*m.x2*(m.x15 + m.x16) - m.x66 + m.x67 == 0) m.c117 = Constraint(expr=-0.5*m.x2*(m.x16 + m.x17) - m.x67 + m.x68 == 0) m.c118 = Constraint(expr=-0.5*m.x2*(m.x17 + m.x18) - m.x68 + m.x69 == 0) m.c119 = Constraint(expr=-0.5*m.x2*(m.x18 + m.x19) - m.x69 + m.x70 == 0) m.c120 = Constraint(expr=-0.5*m.x2*(m.x19 + m.x20) - m.x70 + m.x71 == 0) m.c121 = Constraint(expr=-0.5*m.x2*(m.x20 + m.x21) - m.x71 + m.x72 == 0) m.c122 = Constraint(expr=-0.5*m.x2*(m.x21 + m.x22) - m.x72 + m.x73 == 0) m.c123 = Constraint(expr=-0.5*m.x2*(m.x22 + m.x23) - m.x73 + m.x74 == 0) m.c124 = Constraint(expr=-0.5*m.x2*(m.x23 + m.x24) - m.x74 + m.x75 == 0) m.c125 = Constraint(expr=-0.5*m.x2*(m.x24 + m.x25) - m.x75 + m.x76 == 0) m.c126 = Constraint(expr=-0.5*m.x2*(m.x25 + m.x26) - m.x76 + m.x77 == 0) m.c127 = Constraint(expr=-0.5*m.x2*(m.x26 + m.x27) - m.x77 + m.x78 == 0) m.c128 = Constraint(expr=-0.5*m.x2*(m.x27 + m.x28) - m.x78 + m.x79 == 0) m.c129 = Constraint(expr=-0.5*m.x2*(m.x28 + m.x29) - m.x79 + m.x80 == 0) m.c130 = Constraint(expr=-0.5*m.x2*(m.x29 + m.x30) - m.x80 + m.x81 == 0) m.c131 = Constraint(expr=-0.5*m.x2*(m.x30 + m.x31) - m.x81 + m.x82 == 0) m.c132 = Constraint(expr=-0.5*m.x2*(m.x31 + m.x32) - m.x82 + m.x83 == 0) m.c133 = Constraint(expr=-0.5*m.x2*(m.x32 + m.x33) - m.x83 + m.x84 == 0) m.c134 = Constraint(expr=-0.5*m.x2*(m.x33 + m.x34) - m.x84 + m.x85 == 0) m.c135 = Constraint(expr=-0.5*m.x2*(m.x34 + m.x35) - m.x85 + m.x86 == 0) m.c136 = Constraint(expr=-0.5*m.x2*(m.x35 + m.x36) - m.x86 + m.x87 == 0) m.c137 = Constraint(expr=-0.5*m.x2*(m.x36 + m.x37) - m.x87 + m.x88 == 0) m.c138 = Constraint(expr=-0.5*m.x2*(m.x37 + m.x38) - m.x88 + m.x89 == 0) m.c139 = Constraint(expr=-0.5*m.x2*(m.x38 + m.x39) - m.x89 + m.x90 == 0) m.c140 = Constraint(expr=-0.5*m.x2*(m.x39 + m.x40) - m.x90 + m.x91 == 0) m.c141 = Constraint(expr=-0.5*m.x2*(m.x40 + m.x41) - m.x91 + m.x92 == 0) m.c142 = Constraint(expr=-0.5*m.x2*(m.x41 + m.x42) - m.x92 + m.x93 == 0) m.c143 = Constraint(expr=-0.5*m.x2*(m.x42 + m.x43) - m.x93 + m.x94 == 0) m.c144 = Constraint(expr=-0.5*m.x2*(m.x43 + m.x44) - m.x94 + m.x95 == 0) m.c145 = Constraint(expr=-0.5*m.x2*(m.x44 + m.x45) - m.x95 + m.x96 == 0) m.c146 = Constraint(expr=-0.5*m.x2*(m.x45 + m.x46) - m.x96 + m.x97 == 0) m.c147 = Constraint(expr=-0.5*m.x2*(m.x46 + m.x47) - m.x97 + m.x98 == 0) m.c148 = Constraint(expr=-0.5*m.x2*(m.x47 + m.x48) - m.x98 + m.x99 == 0) m.c149 = Constraint(expr=-0.5*m.x2*(m.x48 + m.x49) - m.x99 + m.x100 == 0) m.c150 = Constraint(expr=-0.5*m.x2*(m.x49 + m.x50) - m.x100 + m.x101 == 0) m.c151 = Constraint(expr=-0.5*m.x2*(m.x50 + m.x51) - m.x101 + m.x102 == 0) m.c152 = Constraint(expr=-0.5*m.x2*(m.x51 + m.x52) - m.x102 + m.x103 == 0) m.c153 = Constraint(expr=-0.5*m.x2*(m.x52 + m.x53) - m.x103 + m.x104 == 0) m.c154 = Constraint(expr=-0.5*((m.x208 - m.x157*m.x106 - m.x259)/m.x157 + (m.x207 - m.x156*m.x105 - m.x258)/m.x156)*m.x2 - m.x3 + m.x4 == 0) m.c155 = Constraint(expr=-0.5*((m.x209 - m.x158*m.x107 - m.x260)/m.x158 + (m.x208 - m.x157*m.x106 - m.x259)/m.x157)*m.x2 - m.x4 + m.x5 == 0) m.c156 = Constraint(expr=-0.5*((m.x210 - m.x159*m.x108 - m.x261)/m.x159 + (m.x209 - m.x158*m.x107 - m.x260)/m.x158)*m.x2 - m.x5 + m.x6 == 0) m.c157 = Constraint(expr=-0.5*((m.x211 - m.x160*m.x109 - m.x262)/m.x160 + (m.x210 - m.x159*m.x108 - m.x261)/m.x159)*m.x2 - m.x6 + m.x7 == 0) m.c158 = Constraint(expr=-0.5*((m.x212 - m.x161*m.x110 - m.x263)/m.x161 + (m.x211 - m.x160*m.x109 - m.x262)/m.x160)*m.x2 - m.x7 + m.x8 == 0) m.c159 = Constraint(expr=-0.5*((m.x213 - m.x162*m.x111 - m.x264)/m.x162 + (m.x212 - m.x161*m.x110 - m.x263)/m.x161)*m.x2 - m.x8 + m.x9 == 0) m.c160 = Constraint(expr=-0.5*((m.x214 - m.x163*m.x112 - m.x265)/m.x163 + (m.x213 - m.x162*m.x111 - m.x264)/m.x162)*m.x2 - m.x9 + m.x10 == 0) m.c161 = Constraint(expr=-0.5*((m.x215 - m.x164*m.x113 - m.x266)/m.x164 + (m.x214 - m.x163*m.x112 - m.x265)/m.x163)*m.x2 - m.x10 + m.x11 == 0) m.c162 = Constraint(expr=-0.5*((m.x216 - m.x165*m.x114 - m.x267)/m.x165 + (m.x215 - m.x164*m.x113 - m.x266)/m.x164)*m.x2 - m.x11 + m.x12 == 0) m.c163 = Constraint(expr=-0.5*((m.x217 - m.x166*m.x115 - m.x268)/m.x166 + (m.x216 - m.x165*m.x114 - m.x267)/m.x165)*m.x2 - m.x12 + m.x13 == 0) m.c164 = Constraint(expr=-0.5*((m.x218 - m.x167*m.x116 - m.x269)/m.x167 + (m.x217 - m.x166*m.x115 - m.x268)/m.x166)*m.x2 - m.x13 + m.x14 == 0) m.c165 = Constraint(expr=-0.5*((m.x219 - m.x168*m.x117 - m.x270)/m.x168 + (m.x218 - m.x167*m.x116 - m.x269)/m.x167)*m.x2 - m.x14 + m.x15 == 0) m.c166 = Constraint(expr=-0.5*((m.x220 - m.x169*m.x118 - m.x271)/m.x169 + (m.x219 - m.x168*m.x117 - m.x270)/m.x168)*m.x2 - m.x15 + m.x16 == 0) m.c167 = Constraint(expr=-0.5*((m.x221 - m.x170*m.x119 - m.x272)/m.x170 + (m.x220 - m.x169*m.x118 - m.x271)/m.x169)*m.x2 - m.x16 + m.x17 == 0) m.c168 = Constraint(expr=-0.5*((m.x222 - m.x171*m.x120 - m.x273)/m.x171 + (m.x221 - m.x170*m.x119 - m.x272)/m.x170)*m.x2 - m.x17 + m.x18 == 0) m.c169 = Constraint(expr=-0.5*((m.x223 - m.x172*m.x121 - m.x274)/m.x172 + (m.x222 - m.x171*m.x120 - m.x273)/m.x171)*m.x2 - m.x18 + m.x19 == 0) m.c170 = Constraint(expr=-0.5*((m.x224 - m.x173*m.x122 - m.x275)/m.x173 + (m.x223 - m.x172*m.x121 - m.x274)/m.x172)*m.x2 - m.x19 + m.x20 == 0) m.c171 = Constraint(expr=-0.5*((m.x225 - m.x174*m.x123 - m.x276)/m.x174 + (m.x224 - m.x173*m.x122 - m.x275)/m.x173)*m.x2 - m.x20 + m.x21 == 0) m.c172 = Constraint(expr=-0.5*((m.x226 - m.x175*m.x124 - m.x277)/m.x175 + (m.x225 - m.x174*m.x123 - m.x276)/m.x174)*m.x2 - m.x21 + m.x22 == 0) m.c173 = Constraint(expr=-0.5*((m.x227 - m.x176*m.x125 - m.x278)/m.x176 + (m.x226 - m.x175*m.x124 - m.x277)/m.x175)*m.x2 - m.x22 + m.x23 == 0) m.c174 = Constraint(expr=-0.5*((m.x228 - m.x177*m.x126 - m.x279)/m.x177 + (m.x227 - m.x176*m.x125 - m.x278)/m.x176)*m.x2 - m.x23 + m.x24 == 0) m.c175 = Constraint(expr=-0.5*((m.x229 - m.x178*m.x127 - m.x280)/m.x178 + (m.x228 - m.x177*m.x126 - m.x279)/m.x177)*m.x2 - m.x24 + m.x25 == 0) m.c176 = Constraint(expr=-0.5*((m.x230 - m.x179*m.x128 - m.x281)/m.x179 + (m.x229 - m.x178*m.x127 - m.x280)/m.x178)*m.x2 - m.x25 + m.x26 == 0) m.c177 = Constraint(expr=-0.5*((m.x231 - m.x180*m.x129 - m.x282)/m.x180 + (m.x230 - m.x179*m.x128 - m.x281)/m.x179)*m.x2 - m.x26 + m.x27 == 0) m.c178 = Constraint(expr=-0.5*((m.x232 - m.x181*m.x130 - m.x283)/m.x181 + (m.x231 - m.x180*m.x129 - m.x282)/m.x180)*m.x2 - m.x27 + m.x28 == 0) m.c179 = Constraint(expr=-0.5*((m.x233 - m.x182*m.x131 - m.x284)/m.x182 + (m.x232 - m.x181*m.x130 - m.x283)/m.x181)*m.x2 - m.x28 + m.x29 == 0) m.c180 = Constraint(expr=-0.5*((m.x234 - m.x183*m.x132 - m.x285)/m.x183 + (m.x233 - m.x182*m.x131 - m.x284)/m.x182)*m.x2 - m.x29 + m.x30 == 0) m.c181 = Constraint(expr=-0.5*((m.x235 - m.x184*m.x133 - m.x286)/m.x184 + (m.x234 - m.x183*m.x132 - m.x285)/m.x183)*m.x2 - m.x30 + m.x31 == 0) m.c182 = Constraint(expr=-0.5*((m.x236 - m.x185*m.x134 - m.x287)/m.x185 + (m.x235 - m.x184*m.x133 - m.x286)/m.x184)*m.x2 - m.x31 + m.x32 == 0) m.c183 = Constraint(expr=-0.5*((m.x237 - m.x186*m.x135 - m.x288)/m.x186 + (m.x236 - m.x185*m.x134 - m.x287)/m.x185)*m.x2 - m.x32 + m.x33 == 0) m.c184 = Constraint(expr=-0.5*((m.x238 - m.x187*m.x136 - m.x289)/m.x187 + (m.x237 - m.x186*m.x135 - m.x288)/m.x186)*m.x2 - m.x33 + m.x34 == 0) m.c185 = Constraint(expr=-0.5*((m.x239 - m.x188*m.x137 - m.x290)/m.x188 + (m.x238 - m.x187*m.x136 - m.x289)/m.x187)*m.x2 - m.x34 + m.x35 == 0) m.c186 = Constraint(expr=-0.5*((m.x240 - m.x189*m.x138 - m.x291)/m.x189 + (m.x239 - m.x188*m.x137 - m.x290)/m.x188)*m.x2 - m.x35 + m.x36 == 0) m.c187 = Constraint(expr=-0.5*((m.x241 - m.x190*m.x139 - m.x292)/m.x190 + (m.x240 - m.x189*m.x138 - m.x291)/m.x189)*m.x2 - m.x36 + m.x37 == 0) m.c188 = Constraint(expr=-0.5*((m.x242 - m.x191*m.x140 - m.x293)/m.x191 + (m.x241 - m.x190*m.x139 - m.x292)/m.x190)*m.x2 - m.x37 + m.x38 == 0) m.c189 = Constraint(expr=-0.5*((m.x243 - m.x192*m.x141 - m.x294)/m.x192 + (m.x242 - m.x191*m.x140 - m.x293)/m.x191)*m.x2 - m.x38 + m.x39 == 0) m.c190 = Constraint(expr=-0.5*((m.x244 - m.x193*m.x142 - m.x295)/m.x193 + (m.x243 - m.x192*m.x141 - m.x294)/m.x192)*m.x2 - m.x39 + m.x40 == 0) m.c191 = Constraint(expr=-0.5*((m.x245 - m.x194*m.x143 - m.x296)/m.x194 + (m.x244 - m.x193*m.x142 - m.x295)/m.x193)*m.x2 - m.x40 + m.x41 == 0) m.c192 = Constraint(expr=-0.5*((m.x246 - m.x195*m.x144 - m.x297)/m.x195 + (m.x245 - m.x194*m.x143 - m.x296)/m.x194)*m.x2 - m.x41 + m.x42 == 0) m.c193 = Constraint(expr=-0.5*((m.x247 - m.x196*m.x145 - m.x298)/m.x196 + (m.x246 - m.x195*m.x144 - m.x297)/m.x195)*m.x2 - m.x42 + m.x43 == 0) m.c194 = Constraint(expr=-0.5*((m.x248 - m.x197*m.x146 - m.x299)/m.x197 + (m.x247 - m.x196*m.x145 - m.x298)/m.x196)*m.x2 - m.x43 + m.x44 == 0) m.c195 = Constraint(expr=-0.5*((m.x249 - m.x198*m.x147 - m.x300)/m.x198 + (m.x248 - m.x197*m.x146 - m.x299)/m.x197)*m.x2 - m.x44 + m.x45 == 0) m.c196 = Constraint(expr=-0.5*((m.x250 - m.x199*m.x148 - m.x301)/m.x199 + (m.x249 - m.x198*m.x147 - m.x300)/m.x198)*m.x2 - m.x45 + m.x46 == 0) m.c197 = Constraint(expr=-0.5*((m.x251 - m.x200*m.x149 - m.x302)/m.x200 + (m.x250 - m.x199*m.x148 - m.x301)/m.x199)*m.x2 - m.x46 + m.x47 == 0) m.c198 = Constraint(expr=-0.5*((m.x252 - m.x201*m.x150 - m.x303)/m.x201 + (m.x251 - m.x200*m.x149 - m.x302)/m.x200)*m.x2 - m.x47 + m.x48 == 0) m.c199 = Constraint(expr=-0.5*((m.x253 - m.x202*m.x151 - m.x304)/m.x202 + (m.x252 - m.x201*m.x150 - m.x303)/m.x201)*m.x2 - m.x48 + m.x49 == 0) m.c200 = Constraint(expr=-0.5*((m.x254 - m.x203*m.x152 - m.x305)/m.x203 + (m.x253 - m.x202*m.x151 - m.x304)/m.x202)*m.x2 - m.x49 + m.x50 == 0) m.c201 = Constraint(expr=-0.5*((m.x255 - m.x204*m.x153 - m.x306)/m.x204 + (m.x254 - m.x203*m.x152 - m.x305)/m.x203)*m.x2 - m.x50 + m.x51 == 0) m.c202 = Constraint(expr=-0.5*((m.x256 - m.x205*m.x154 - m.x307)/m.x205 + (m.x255 - m.x204*m.x153 - m.x306)/m.x204)*m.x2 - m.x51 + m.x52 == 0) m.c203 = Constraint(expr=-0.5*((m.x257 - m.x206*m.x155 - m.x308)/m.x206 + (m.x256 - m.x205*m.x154 - m.x307)/m.x205)*m.x2 - m.x52 + m.x53 == 0) m.c204 = Constraint(expr=m.x2*(m.x207 + m.x208) - m.x156 + m.x157 == 0) m.c205 = Constraint(expr=m.x2*(m.x208 + m.x209) - m.x157 + m.x158 == 0) m.c206 = Constraint(expr=m.x2*(m.x209 + m.x210) - m.x158 + m.x159 == 0) m.c207 = Constraint(expr=m.x2*(m.x210 + m.x211) - m.x159 + m.x160 == 0) m.c208 = Constraint(expr=m.x2*(m.x211 + m.x212) - m.x160 + m.x161 == 0) m.c209 = Constraint(expr=m.x2*(m.x212 + m.x213) - m.x161 + m.x162 == 0) m.c210 = Constraint(expr=m.x2*(m.x213 + m.x214) - m.x162 + m.x163 == 0) m.c211 = Constraint(expr=m.x2*(m.x214 + m.x215) - m.x163 + m.x164 == 0) m.c212 = Constraint(expr=m.x2*(m.x215 + m.x216) - m.x164 + m.x165 == 0) m.c213 = Constraint(expr=m.x2*(m.x216 + m.x217) - m.x165 + m.x166 == 0) m.c214 = Constraint(expr=m.x2*(m.x217 + m.x218) - m.x166 + m.x167 == 0) m.c215 = Constraint(expr=m.x2*(m.x218 + m.x219) - m.x167 + m.x168 == 0) m.c216 = Constraint(expr=m.x2*(m.x219 + m.x220) - m.x168 + m.x169 == 0) m.c217 = Constraint(expr=m.x2*(m.x220 + m.x221) - m.x169 + m.x170 == 0) m.c218 = Constraint(expr=m.x2*(m.x221 + m.x222) - m.x170 + m.x171 == 0) m.c219 = Constraint(expr=m.x2*(m.x222 + m.x223) - m.x171 + m.x172 == 0) m.c220 = Constraint(expr=m.x2*(m.x223 + m.x224) - m.x172 + m.x173 == 0) m.c221 = Constraint(expr=m.x2*(m.x224 + m.x225) - m.x173 + m.x174 == 0) m.c222 = Constraint(expr=m.x2*(m.x225 + m.x226) - m.x174 + m.x175 == 0) m.c223 = Constraint(expr=m.x2*(m.x226 + m.x227) - m.x175 + m.x176 == 0) m.c224 = Constraint(expr=m.x2*(m.x227 + m.x228) - m.x176 + m.x177 == 0) m.c225 = Constraint(expr=m.x2*(m.x228 + m.x229) - m.x177 + m.x178 == 0) m.c226 = Constraint(expr=m.x2*(m.x229 + m.x230) - m.x178 + m.x179 == 0) m.c227 = Constraint(expr=m.x2*(m.x230 + m.x231) - m.x179 + m.x180 == 0) m.c228 = Constraint(expr=m.x2*(m.x231 + m.x232) - m.x180 + m.x181 == 0) m.c229 = Constraint(expr=m.x2*(m.x232 + m.x233) - m.x181 + m.x182 == 0) m.c230 = Constraint(expr=m.x2*(m.x233 + m.x234) - m.x182 + m.x183 == 0) m.c231 = Constraint(expr=m.x2*(m.x234 + m.x235) - m.x183 + m.x184 == 0) m.c232 = Constraint(expr=m.x2*(m.x235 + m.x236) - m.x184 + m.x185 == 0) m.c233 = Constraint(expr=m.x2*(m.x236 + m.x237) - m.x185 + m.x186 == 0) m.c234 = Constraint(expr=m.x2*(m.x237 + m.x238) - m.x186 + m.x187 == 0) m.c235 = Constraint(expr=m.x2*(m.x238 + m.x239) - m.x187 + m.x188 == 0) m.c236 = Constraint(expr=m.x2*(m.x239 + m.x240) - m.x188 + m.x189 == 0) m.c237 = Constraint(expr=m.x2*(m.x240 + m.x241) - m.x189 + m.x190 == 0) m.c238 = Constraint(expr=m.x2*(m.x241 + m.x242) - m.x190 + m.x191 == 0) m.c239 = Constraint(expr=m.x2*(m.x242 + m.x243) - m.x191 + m.x192 == 0) m.c240 = Constraint(expr=m.x2*(m.x243 + m.x244) - m.x192 + m.x193 == 0) m.c241 = Constraint(expr=m.x2*(m.x244 + m.x245) - m.x193 + m.x194 == 0) m.c242 = Constraint(expr=m.x2*(m.x245 + m.x246) - m.x194 + m.x195 == 0) m.c243 = Constraint(expr=m.x2*(m.x246 + m.x247) - m.x195 + m.x196 == 0) m.c244 = Constraint(expr=m.x2*(m.x247 + m.x248) - m.x196 + m.x197 == 0) m.c245 = Constraint(expr=m.x2*(m.x248 + m.x249) - m.x197 + m.x198 == 0) m.c246 = Constraint(expr=m.x2*(m.x249 + m.x250) - m.x198 + m.x199 == 0) m.c247 = Constraint(expr=m.x2*(m.x250 + m.x251) - m.x199 + m.x200 == 0) m.c248 = Constraint(expr=m.x2*(m.x251 + m.x252) - m.x200 + m.x201 == 0) m.c249 = Constraint(expr=m.x2*(m.x252 + m.x253) - m.x201 + m.x202 == 0) m.c250 = Constraint(expr=m.x2*(m.x253 + m.x254) - m.x202 + m.x203 == 0) m.c251 = Constraint(expr=m.x2*(m.x254 + m.x255) - m.x203 + m.x204 == 0) m.c252 = Constraint(expr=m.x2*(m.x255 + m.x256) - m.x204 + m.x205 == 0) m.c253 = Constraint(expr=m.x2*(m.x256 + m.x257) - m.x205 + m.x206 == 0)
''' Created on Feb 15, 2016 @author: jason ''' from .sklearntools import MultipleResponseEstimator, BackwardEliminationEstimatorCV, \ QuantileRegressor, ResponseTransformingEstimator from pyearth import Earth from sklearn.pipeline import Pipeline from sklearn.calibration import CalibratedClassifierCV outcomes = ['admission_rate', 'prescription_cost_rate', ''] [('earth', Earth(max_degree=2)), ('elim', BackwardEliminationEstimatorCV())]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import waflib.TaskGen import waflib.Task as Task from waflib import Utils import waflib import os.path as osp import os def uniqify(lst): rlst = [] for v in lst: #print v, rlst if v in rlst: #print "caught" continue rlst.append(v) return rlst def ptrquote(st): res = "" for v in st: if v=='"': res +='\\"' else: res+=v return res @waflib.TaskGen.feature("build_pkgconfig") def build_pkgconfig(self): from waflib.Tools.ccroot import USELIB_VARS if self.flavor=='c': USELIB_VARS['build_pkgconfig'] = set(['INCLUDES', 'DEFINES', 'CPPFLAGS', 'CFLAGS']+['LIB', 'STLIB', 'LIBPATH', 'STLIBPATH', 'LINKFLAGS', 'RPATH', 'LINKDEPS']) cf = ['CPPFLAGS', 'CFLAGS'] addlib = ["clik"] else: USELIB_VARS['build_pkgconfig'] =set(['FCFLAGS','DEFINES','INCLUDES']+['LIB','STLIB','LIBPATH','STLIBPATH','LINKFLAGS','RPATH','LINKDEPS']) cf = ['FCFLAGS'] addlib = ["clik","clik_f90"] #USELIB_VARS['cprogram'] self.process_use() self.propagate_uselib_vars() vrs = dict([(v,list((self.env[v]))) for v in USELIB_VARS['build_pkgconfig']]) includepath = ptrquote(" ".join([self.env.CPPPATH_ST%v for v in uniqify(vrs["INCLUDES"])])) libpath = ptrquote(" ".join([self.env.LIBPATH_ST%v for v in uniqify(vrs["LIBPATH"])])) rlibpath = ptrquote(" ".join([self.env.RPATH_ST%v for v in uniqify(vrs["RPATH"])])) stlibpath = ptrquote(" ".join([self.env.LIBPATH_ST%v for v in uniqify(vrs["STLIBPATH"])])) libs = ptrquote(" ".join([self.env.LIB_ST%v for v in uniqify(vrs["LIB"]+addlib)])) stlibs = ptrquote(" ".join([self.env.STLIB_ST%v for v in uniqify(vrs["STLIB"])])) defines = ptrquote(" ".join([self.env.DEFINES_ST%v for v in uniqify(vrs["DEFINES"])])) cfs = [] #print cf for tt in cf+["LINKFLAGS"]: #print tt,vrs[tt] cfs += vrs[tt] #print cfs cflags = ptrquote(" ".join(uniqify(cfs))) #print "YEAH:" #print includepath #print libpath #print rlibpath #print stlibpath #print libs #print stlibs #print cflags #print defines alibs = "" if libs: alibs += (self.env.SHLIB_MARKER or "") +" ".join([rlibpath,libpath,libs]) if stlibs: alibs += (self.env.STLIB_MARKER or "") +" ".join([srlibpath,stlibs]) f=open(osp.join(self.env.BINDIR,self.target),"w") print(config_tpl%(" ".join((includepath,defines,cflags)),alibs), file=f) f.close() os.chmod(osp.join(self.env.BINDIR,self.target),Utils.O755) config_tpl = """#! /usr/bin/env python # don't do much for now from optparse import OptionParser parser = OptionParser() parser.add_option("--cflags", action="store_true", help="only the cflags") parser.add_option("--libs", action="store_true", help="only libflags") (options, args) = parser.parse_args() res={} cflags = "%s" libs = "%s" if (not options.libs) and (not options.cflags): options.libs=True options.cflags=True if options.cflags: print cflags, if options.libs: print libs, print """ @waflib.TaskGen.feature("*") @waflib.TaskGen.before_method('process_source') def process_execrule(self): if not getattr(self,'execrule',None): return self.meths.remove('process_source') name=str(getattr(self,'name',None)or self.target or self.execrule) cls=Task.task_factory(name,self.execrule,getattr(self,'vars',[]),shell=getattr(self,'shell',True),color=getattr(self,'color','BLUE')) tsk=self.create_task(name) if getattr(self,'target',None): if isinstance(self.target,str): self.target=self.target.split() if not isinstance(self.target,list): self.target=[self.target] for x in self.target: if isinstance(x,str): tsk.outputs.append(self.path.find_or_declare(x)) else: x.parent.mkdir() tsk.outputs.append(x) if getattr(self,'install_path',None): self.bld.install_files(self.install_path,tsk.outputs,chmod=Utils.O755) if getattr(self,'source',None): tsk.inputs=self.to_nodes(self.source) self.source=[] if getattr(self,'scan',None): cls.scan=self.scan if getattr(self,'cwd',None): tsk.cwd=self.cwd if getattr(self,'update_outputs',None)or getattr(self,'on_results',None): Task.update_outputs(cls) if getattr(self,'always',None): Task.always_run(cls) for x in['after','before','ext_in','ext_out']: setattr(cls,x,getattr(self,x,[]))
""" Tests for dit.example_dists.numeric. """ import pytest import numpy as np from dit.shannon import entropy from dit.example_dists import bernoulli, binomial, hypergeometric, uniform def test_bernoulli1(): """ Test bernoulli distribution """ d = bernoulli(1 / 2) assert d.outcomes == (0, 1) assert sum(d.pmf) == pytest.approx(1) @pytest.mark.parametrize('p', [i / 10 for i in range(0, 11)]) def test_bernoulli2(p): """ Test bernoulli distribution """ d = bernoulli(p) assert d[0] == pytest.approx(1 - p) assert d[1] == pytest.approx(p) @pytest.mark.parametrize('p', [-1, 1.5, 'a', int, []]) def test_bernoulli3(p): """ Test bernoulli distribution failures """ with pytest.raises(ValueError): bernoulli(p) @pytest.mark.parametrize('n', range(1, 10)) def test_binomial1(n): """ Test binomial distribution """ d = binomial(n, 1 / 2) assert d.outcomes == tuple(range(n + 1)) assert sum(d.pmf) == pytest.approx(1) @pytest.mark.parametrize('n', [-1, 1.5, 'a', int, []]) def test_binomial2(n): """ Test binomial distribution failures """ with pytest.raises(ValueError): binomial(n, 1 / 2) def test_uniform1(): """ Test uniform distribution """ for n in range(2, 10): d = uniform(n) assert d.outcomes == tuple(range(n)) assert d[0] == pytest.approx(1 / n) assert entropy(d) == pytest.approx(np.log2(n)) @pytest.mark.parametrize('v', [-1, 1.5, 'a', int, []]) def test_uniform2(v): """ Test uniform distribution failures """ with pytest.raises(ValueError): uniform(v) @pytest.mark.parametrize(('a', 'b'), zip([1, 2, 3, 4, 5], [5, 7, 9, 11, 13])) def test_uniform3(a, b): """ Test uniform distribution construction """ d = uniform(a, b) assert len(d.outcomes) == b - a assert d[a] == pytest.approx(1 / (b - a)) @pytest.mark.parametrize(('a', 'b'), [(2, 0), (0, [])]) def test_uniform4(a, b): """ Test uniform distribution failures """ with pytest.raises(ValueError): uniform(a, b) def test_hypergeometric1(): """ Test hypergeometric distribution """ d = hypergeometric(50, 5, 10) assert d[4] == pytest.approx(0.003964583) assert d[5] == pytest.approx(0.0001189375) @pytest.mark.parametrize('vals', [ (50, 5, -1), (50, -1, 10), (-1, 5, 10), (50, 5, 1.5), (50, 1.5, 10), (1.5, 5, 10), (50, 5, 'a'), (50, 'a', 10), ('a', 5, 10), (50, 5, int), (50, int, 10), (int, 5, 10), (50, 5, []), (50, [], 10), ([], 5, 10), ]) def test_hypergeometric2(vals): """ Test hypergeometric distribution failures """ with pytest.raises(ValueError): hypergeometric(*vals)
import os import logging import asyncio import pandas as pd import pyarrow as pa import pyarrow.parquet as pq class OutputWorker(object): def __init__(self, **kwargs): self.type = kwargs.get("type", None) self.logger = logging.getLogger(__name__) output_dir = kwargs.get("output_dir", None) if output_dir: self.root_output_dir = output_dir if not os.path.isdir(output_dir): os.makedirs(output_dir) else: # TBD: The right error to raise here since this is a required # keyword self.logger.error("Need mandatory keyword arg: output_dir") raise ValueError def write_data(self, data): raise NotImplementedError class ParquetOutputWorker(OutputWorker): def write_data(self, data): cdir = "{}/{}/".format(self.root_output_dir, data["topic"]) if not os.path.isdir(cdir): os.makedirs(cdir) # dtypes = {x: data['schema'].field(x).type.__str__() # if 'list' not in data['schema'].field(x).type.__str__() # else data['schema'].field(x).type.to_pandas_dtype() # for x in data['schema'].names} df = pd.DataFrame.from_dict(data["records"]) # df.to_parquet( # path=cdir, # partition_cols=data['partition_cols'], # index=True, # engine='pyarrow') # pq.write_metadata( # self.schema,'{}/_metadata'.format(cdir), # version='2.0', # coerce_timestamps='us') table = pa.Table.from_pandas(df, schema=data["schema"], preserve_index=False) pq.write_to_dataset( table, root_path=cdir, partition_cols=data['partition_cols'], version="2.0", compression='ZSTD', row_group_size=100000, ) class GatherOutputWorker(OutputWorker): """This is used to write output for the run-once data gather mode""" def write_data(self, data): file = f"{self.root_output_dir}/{data['topic']}.output" with open(file, 'a') as f: # Even though we use JSON dump, the output is not valid JSON f.write(data['records']) async def run_output_worker(queue, output_workers, logger): while True: try: data = await queue.get() except asyncio.CancelledError: logger.error(f"Writer thread received task cancel") return if not output_workers: return for worker in output_workers: worker.write_data(data) def init_output_workers(output_types, output_args): """Create the appropriate output worker objects and return them""" workers = [] for otype in output_types: if otype == "parquet": worker = ParquetOutputWorker(output_dir=output_args["output_dir"]) if worker: workers.append(worker) elif otype == "gather": try: worker = GatherOutputWorker( output_dir=output_args["output_dir"]) if worker: workers.append(worker) except Exception as e: logger = logging.getLogger(__name__) logger.error( f"Unable to create {otype} worker, exception {str(e)}") else: raise NotImplementedError("Unknown type: {}".format(otype)) return workers
from triangle import Triangle def saccade_model_mle(gazepoints, src_xy, tgt_xy, init_t_start, init_t_end): ''' Parameter gazepoints src_xy, 2D list, best quess for saccade start location tgt_xy, 2D list, best guess for saccade end location init_t_start, best guess for saccade start time init_t_end, best guess for saccade end time Return t_start optimal saccade start time. gazepoint[t_start] is the first saccade point. t_end optimal saccade end time. gazepoint[t_end - 1] is the last saccade point. mse, mean squared error of the model Here we use two different concepts, times and indices: Time t 0 1 2 3 4 5 | | | | | | Vector [ 2 3 1 2 1 ] | | | | | Index i 0 1 2 3 4 ''' # Alias g = gazepoints # Max t, Max index max_t = len(g) max_i = max_t - 1 # Dynamic programming memories: # 1) For each index i, store the summed square error in t=0..i+1 # so that source_mem[0] gives summed square error in t=0..1 # and that source_mem[max_i] gives summed square error in t=0..max_t. # Because target_mem[k] = target_mem[k-1] + square_error(k) # calculate values dynamically from the start. source_mem = [None for _ in range(max_t)] # 2) For each index i, j, i<=j, store the summed square error in t=i..j+1 # so that saccade_mem[0][0] gives summed square error in t=0..1 # and that saccade_mem[max_i][max_i] gives s.s.e. in t=max_t-1..max_t. # Because i <= j, saccade_mem is upper triangular matrix max_t x max_t saccade_mem_n = max_t * (max_t + 1) / 2 saccade_mem = Triangle(max_t, [None for _ in xrange(saccade_mem_n)]) # 3) For each index i, store the summed square error in t=i..max_t # so that target_mem[0] gives summed square error in t=0..max_t # and that target_mem[max_i] gives s.s.e. in t=max_t-1..max_t. # Because target_mem[k] = square_error(k) + target_mem[k+1] # calculate values dynamically from the end. target_mem = [None for _ in range(max_t)] def square_error(index, mu): p = g[index] dx = p[0] - mu[0] dy = p[1] - mu[1] return dx * dx + dy * dy def source_objective(t_start): ''' Return summed square error between t=0 and t=t_start ''' if t_start == 0: return 0 if source_mem[t_start - 1] is not None: return source_mem[t_start - 1] # else calculate for i in xrange(0, t_start): if source_mem[i] is not None: continue else: serr = square_error(i, src_xy) if i == 0: source_mem[i] = serr else: source_mem[i] = serr + source_mem[i - 1] return source_mem[t_start - 1] def saccade_objective(t_start, t_end): ''' Return summed square error between t=t_start and t=t_end ''' if t_start == t_end: return 0 # Now dt = t_end - t_start > 0 if saccade_mem[t_start, t_end - 1] is not None: # Error from t_start to t_end is already computed return saccade_mem[t_start, t_end - 1] # else calculate sse = 0 for i in xrange(t_start, t_end): ## Alpha in (0, 1] and gives the progression of the saccade. ## Five options (osp = optimal saccade point): ## 1) the first osp is at src_xy and ## the last osp is apart from tgt_xy. # alpha = float(i - t_start) / (t_end - t_start) ## 2) the first osp is apart from src_xy and ## the last osp is at tgt_xy. # alpha = float(i + 1 - t_start) / (t_end - t_start) ## 3) the first osp is at src_xy and ## the last osp is at tgt_xy. # alpha = float(i - t_start) / (t_end - 1 - t_start) ## 4) the first osp is apart from src_xy and ## the last osp is apart from tgt_xy. # alpha = float(i + 1 - t_start) / (t_end + 1 - t_start) ## 5) the first osp is middleway at and apart from src_xy and ## the last osp is middleway at and apart from tgt_xy. alpha = float(i + 0.5 - t_start) / (t_end - t_start) # Take weighted mean of the source and target points. mu = [0, 0] mu[0] = src_xy[0] * (1 - alpha) + tgt_xy[0] * alpha mu[1] = src_xy[1] * (1 - alpha) + tgt_xy[1] * alpha sse += square_error(i, mu) saccade_mem[t_start, t_end - 1] = sse return sse def target_objective(t_end): ''' Return summed square error between t=t_end and t=t_max ''' if max_t <= t_end: # t_end is not suitable for index return 0 if target_mem[t_end] is not None: # Already computed return target_mem[t_end] for i in xrange(max_i, t_end - 1, -1): # i_first = max_i # i_last = t_end if target_mem[i] is not None: # Already computed continue else: serr = square_error(i, tgt_xy) if i == max_i: # No previous sum target_mem[i] = serr else: target_mem[i] = serr + target_mem[i + 1] return target_mem[t_end] def find_optimal_t_start(t_end): ''' Given t_end, find t_start such that the sum of source_objective and saccade_objective is minimized. Return t_start, optimal src_sse, source summed squared error sacc_sse, saccade summed squared error ''' min_sse = float('inf') min_src_sse = float('inf') min_sacc_sse = float('inf') t_min_sse = 0 for t in range(0, t_end + 1): src_sse = source_objective(t) sacc_sse = saccade_objective(t, t_end) sse = src_sse + sacc_sse if sse < min_sse: min_sse = sse min_src_sse = src_sse min_sacc_sse = sacc_sse t_min_sse = t return t_min_sse, min_src_sse, min_sacc_sse def find_optimal_t_end(t_start): ''' Given t_start, find t_end such that the sum of saccade_objective and target_objective is minimized. Return t_end, optimal sacc_sse, saccade summed squared error target_sse, target summed squared error ''' min_sse = float('inf') min_sacc_sse = float('inf') min_tgt_sse = float('inf') t_min_sse = 0 for t in range(t_start, max_t + 1): sacc_sse = saccade_objective(t_start, t) tgt_sse = target_objective(t) sse = sacc_sse + tgt_sse if sse < min_sse: min_sse = sse min_sacc_sse = sacc_sse min_tgt_sse = tgt_sse t_min_sse = t return t_min_sse, min_sacc_sse, min_tgt_sse # Put limits to initial times t_start = min(init_t_start, max_t) t_end = min(init_t_end , max_t) # Ensure order, swap if needed if t_end < t_start: t_temp = t_end t_end = t_start t_start = t_temp sum_sse = float('inf') #import pdb; pdb.set_trace() # Iterate until no change (converged). Place iteration limits for bugs. for i in range(20): t_start_hat, source_sse, saccade_sse = find_optimal_t_start(t_end) t_end_hat, saccade_sse, target_sse = find_optimal_t_end(t_start_hat) sum_sse = source_sse + saccade_sse + target_sse if t_start_hat == t_start and t_end_hat == t_end: # print 'MLE iterations: ' + str(i) # print 't_start: ' + str(t_start) # print 't_end: ' + str(t_end) # print 'sum_sse: ' + str(sum_sse) break else: t_start = t_start_hat t_end = t_end_hat # Mean squared error mse = float(sum_sse) / len(g) return t_start, t_end, mse, source_sse, saccade_sse, target_sse
import linkr # flake8: noqa: F401 import time import mock from models import Link from test.backend.test_case import LinkrTestCase with mock.patch.object(time, 'time', return_value=5): link = Link( alias='alias', outgoing_url='outgoing url', ) link.link_id = 1 class TestLink(LinkrTestCase): _multiprocess_can_split_ = True def test_init(self): self.assertEqual(link.submit_time, 5) self.assertEqual(link.alias, 'alias') self.assertEqual(link.outgoing_url, 'outgoing url') self.assertEqual(link.password_hash, None) self.assertEqual(link.user_id, None) self.assertFalse(link.require_recaptcha) def test_validate_password(self): self.assertTrue(link.validate_password('password')) self.assertTrue(link.validate_password('anything')) self.assertTrue(link.validate_password(None)) def test_update_password(self): self.assertTrue(link.validate_password('password')) link.update_password('new password') self.assertFalse(link.validate_password('password')) self.assertTrue(link.validate_password('new password')) link.update_password(None) def test_as_dict(self): link_dict = link.as_dict() del link_dict['full_alias'] # Value is dependent on config self.assertEqual(link_dict, { 'link_id': 1, 'user_id': None, 'submit_time': 5, 'alias': 'alias', 'outgoing_url': 'outgoing url', 'is_password_protected': False, 'require_recaptcha': False, }) def test_is_password_protected(self): self.assertFalse(link.is_password_protected())
import pandas as pd import sqlite3 path = "C:/Users/Grace Sun/physics_hackathon/" db_path = path+'/Databases/' strings = ["Attacks", "Characters", "Cleric", "Conditions", "Damage Types", "Fighter", "Items", "Monsters", "Rogue", "Save Types", "Spells", "Weapons", "Wizard"] for string in strings: conn = sqlite3.connect(db_path+string+".db") df = pd.read_csv(path+"CSV/Databases - "+string+".csv") df.to_sql(string, conn, if_exists = 'replace') conn.close()
import os import math import json import random import numpy as np import networkx as nx from abc import ABC, abstractmethod from barl_simpleoptions.state import State class Option(ABC) : """ Interface for a reinforcement learning option. """ def __init__(self) : pass @abstractmethod def initiation(self, state : 'State') -> bool : """ Returns whether or not a given state is in this option's initation set. Arguments: state {State} -- The state whose membership to the initiation set is to be tested. Returns: bool -- [description] """ pass @abstractmethod def policy(self, state : 'State') : """ Returns the action specified by this option's policy for a given state. Arguments: state {State} -- The environmental state in which the option chooses an action in. Returns: action [Hashable] -- The action specified by the option's policy in this state. """ pass @abstractmethod def termination(self, state : 'State') -> bool : """ Returns whether or not the option terminates in the given state. Arguments: state {State} -- The state in which to test for termination. Returns: bool -- Whether or not this option terminates in this state. """ pass class PrimitiveOption(Option) : """ Class representing a primitive option. Primitive options terminate with probability one in every state, and have an initiation set consisting of all of the states where their underlying primitive actions are available. """ def __init__(self, action) : """Constructs a new primitive option. Arguments: action {Hashable} -- The underlying primitive action for this option. """ self.action = action def initiation(self, state : State) : return state.is_action_legal(self.action) def policy(self, state : State) : return self.action def termination(self, state : State) : return True def __str__(self) : return "PrimitiveOption({})".format(self.action) def __repr__(self) : return str(self) class SubgoalOption(Option) : """ Class representing a temporally abstract action in reinforcement learning through a policy to be executed between an initiation state and a termination state. """ def __init__(self, subgoal : 'State', graph : nx.DiGraph, policy_file_path : str, initiation_set_size : int) : """Constructs a new subgoal option. Arguments: subgoal {State} -- The state to act as this option's subgoal. graph {nx.Graph} -- The state interaction graph of the reinforcement learning environment. policy_file_path {str} -- The path to the file containing the policy for this option. initiation_set_size {int} -- The size of this option's initiation set. """ self.graph = graph self.subgoal = subgoal self.policy_file_path = policy_file_path self.initiation_set_size = initiation_set_size self._build_initiation_set() # Load the policy file for this option. with open(policy_file_path, mode = "rb") as f: self.policy_dict = json.load(f) def initiation(self, state : 'State') : return str(state) in self.initiation_set def policy(self, state : 'State') : return self.policy_dict[str(state)] def termination(self, state : State) : return (state == self.subgoal) or (not self.initiation(state)) def _build_initiation_set(self) : """ Constructs the intiation set for this subgoal option. The initation set consists of the initiation_set_size closest states to the subgoal state. """ # Get distances of all nodes from subgoal node. node_distances = [] for node in self.graph : # Exclude subgoal node. if (not node == str(self.subgoal)) : # Only consider nodes which can reach the subgoal node. if (nx.has_path(self.graph, source = str(node), target = str(self.subgoal))) : # Append the tuple (node, distance from subgoal) to the list. node_distances.append((node, len(list(nx.shortest_path(self.graph, source = node, target = str(self.subgoal)))))) # Sort the list of nodes by distance from the subgoal. node_distances = sorted(node_distances, key = lambda x: x[1]) # Take the closest set_size nodes to the subgoal as the initiation set. initiation_set, _ = zip(*node_distances) if (len(initiation_set) > self.initiation_set_size) : self.initiation_set = list(initiation_set)[:self.initiation_set_size].copy() else : self.initiation_set = list(initiation_set).copy() def __str__(self) : return "SubgoalOption({}~{})".format(str(self.subgoal), str(self.policy_file_path)) def __repr__(self): return str(self)
from skimage import io import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from tifffile import imsave def threshold(imgarray, darkparticles, sigma, thresholdvalue, usesigma): newarray = imgarray if (imgarray.ndim) > 1: newarray = imgarray.flatten mean = np.average(imgarray) stdev = np.std(imgarray) if usesigma == True: if darkparticles == True: for i in range(len(newarray)): if (newarray[i]) > (mean-sigma*stdev): newarray[i] = 0 else: (newarray[i]) = 1 else: for i in range(len(newarray)): if (newarray[i]) < (mean+sigma*stdev): newarray[i] = 0 else: (newarray[i]) = 1 if (usesigma == False): if darkparticles == True: for i in range(len(newarray)): if (newarray[i]) < thresholdvalue: newarray[i] = 1 else: newarray[i] = 0 else: for i in range(len(newarray)): if (newarray[i]) > thresholdvalue: newarray[i] = 1 else: newarray[i] = 0 if (imgarray.ndim) > 1: np.reshape(newarray, (imgarray.shape)) return newarray def meshplot(dataset_num, dimensions, temps): ax = plt.axes(projection='3d') X = np.linspace(0,dimensions[0]-1,dimensions[0]) Y = X X,Y = np.meshgrid(X,Y) #dataset_num = 294 # change this number to look at a different dataset ax.plot_surface(X, Y, np.reshape(temps[dataset_num],(dimensions[0],dimensions[1])),cmap=cm.coolwarm, linewidth=0) #plots fitted temp values #ax.plot_surface(X,Y, np.reshape(best_fits[dataset_num],(40,40)), linewidth=0, antialiased=False, cmap=cm.Blues) #plots best fit plane #ax.plot_surface(X,Y, np.reshape(means[dataset_num],(40,40)), linewidth=0, antialiased=False, cmap = cm.summer) #plots mean value #ax.plot_surface(X,Y, np.reshape(old_temps[dataset_num],(40,40)), linewidth=0, antialiased=False, cmap = cm.copper) #plots unaltered temp values
import tvm import math import numpy as np from functools import reduce import utils assert_print = utils.assert_print gen_enum = utils.gen_enum any_factor_split = utils.any_factor_split get_factor_lst = utils.get_factor_lst gen_group = utils.gen_group is_power_of_x = utils.is_power_of_x def able_inline(op, down_graph): is_compute = isinstance(op, tvm.tensor.ComputeOp) has_reduce = hasattr(op, "reduce_axis") and op.reduce_axis is_output = False for i in range(op.num_outputs): if op.output(i) not in down_graph: is_output = True break return is_compute and (not has_reduce) and (not is_output) # class SubSpace(object): # def __init__(self, entities): # assert_print(isinstance(entities, (list, tuple)) and len(entities) > 0) # self.entities = entities # self.begin = 0 # self.end = len(self.entities) # def get_entity(self, p): # if len(self.entities) < 1: # raise RuntimeError("Query from empty space") # if 0 <= p < self.end: # return self.entities[p] # else: # raise RuntimeError("Space pointer out of range") # def range(self, p, left, right=None): # if right is None: # right = left # left = p - left if p - left >= 0 else 0 # right = p + right if p + right <= self.end else self.end # return range(left, right), self.entities[left:right] # def __len__(self): # return self.end class Space(object): def __init__(self): self.subspaces = {} self.types = {} self.valid_type_keys = ["fuse", "spatial", "reduce", "reorder", "inline", "unroll", "merge", "special"] for type_key in self.valid_type_keys: self.types[type_key] = [] self.dim = 0 def add_subspace(self, name, subspace, type_key, override=False): if name in self.subspaces and not override: raise RuntimeError("Same subspace name") assert_print(type_key in self.valid_type_keys) self.subspaces[name] = subspace self.types[type_key].append(name) self.dim += subspace.dim def items(self): return self.subspaces.items() def __len__(self): ret = 1 for _, subspace in self.subspaces.items(): ret *= len(subspace) return ret def length(self): ret = {} total = 1 added = 0 for name, subspace in self.subspaces.items(): ret[name] = len(subspace) total *= ret[name] added += ret[name] ret["total"] = total ret["added"] = added return ret DirectedSubSpaceTypeKeys = ["spatial", "reduce"] UndirectedSubSpaceTypeKeys = ["fuse", "reorder", "unroll", "inline", "merge", "special"] class SubSpace(object): def __init__(self): self.dim = 0 self.static_entities = [] self.size = 0 self.num_direction = 0 def random_entity(self): return np.random.choice(self.static_entities) def next_entity(self, *args, **kwargs): raise NotImplementedError() def get_entity(self, p): return self.static_entities[p] def get_direction(self, num): raise NotImplementedError() def __len__(self): return self.size class SplitSpace(SubSpace): def __init__(self, dim, total, allow_non_divisible='off'): super(SplitSpace, self).__init__() self.total = total self.allow_non_divisible = allow_non_divisible self.dim = dim self.static_entities = any_factor_split(total, dim, allow_non_divisible=allow_non_divisible) self.size = len(self.static_entities) self.num_direction = dim * (dim - 1) self.directions = [] for i in range(self.dim): for j in range(self.dim): if i != j: self.directions.append((i, j)) self.type_key = "split" def next_entity(self, pos, d): # d is tuple if len(d) == 1: next_pos = (pos + d[0]) % self.size return next_pos elif len(d) == 2: asc_pos, dec_pos = d[0], d[1] assert_print(0 <= asc_pos < self.dim) assert_print(0 <= dec_pos < self.dim) assert_print(asc_pos != dec_pos) current = self.static_entities[pos] ret = current.copy() left = current[asc_pos] * current[dec_pos] canout = False next_pos = -1 while not canout: tmp = ret[asc_pos] + 1 while tmp <= left: if self.allow_non_divisible == 'continuous': break elif self.allow_non_divisible == 'power2' and is_power_of_x(2, tmp): break elif left % tmp == 0: break tmp += 1 tmp = min(tmp, left) ret[asc_pos] = tmp ret[dec_pos] = math.ceil(left / tmp) try: next_pos = self.static_entities.index(ret) canout = True except ValueError: canout = False return next_pos else: raise RuntimeError( "Not support for direction more than two dims: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] class FuseSpace(SubSpace): def __init__(self, dim, elements): self.dim = dim self.static_entities = gen_group(elements, most_groups=self.dim) self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "fuse" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] class ReorderSpace(SubSpace): def __init__(self, num_spatial_axis): self.dim = 1 self.static_entities = [[i] for i in range(num_spatial_axis)] self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "reorder" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] class UnrollSpace(SubSpace): def __init__(self, steps, explicit=False): super(UnrollSpace, self).__init__() self.dim = 2 self.static_entities = [] self.steps = steps explicits = [1] if explicit else [0, 1] for step in steps: for _explicit in explicits: self.static_entities.append([step, _explicit]) self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "unroll" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] class PosSpace(SubSpace): def __init__(self, parts, num_axis): self.dim = 2 self.static_entities = [] self.parts = parts self.num_axis = num_axis for i in range(parts): for j in range(num_axis): self.static_entities.append([i, j]) self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "local" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] class InlineSpace(SubSpace): def __init__(self, inline_op_pos, op_num, force_inline=False): self.dim = op_num self.static_entities = [] self.able_inline_list = inline_op_pos if force_inline: entity = [0] * op_num for pos in inline_op_pos: entity[pos] = 1 self.static_entities.append(entity) else: num_inline_ops = len(inline_op_pos) enums = gen_enum([1, 0], num_inline_ops) for enum in enums: entity = [0] * op_num for i in range(num_inline_ops): entity[inline_op_pos[i]] = enum[i] self.static_entities.append(entity) self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "inline" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] def able_inline(self, pos): return pos in self.able_inline_list class MergeSpce(SubSpace): def __init__(self, merge_op_pos, op_num, force_merge=False): self.dim = op_num self.static_entities = [] self.able_merge_list = merge_op_pos if force_merge: entity = [0] * op_num for pos in merge_op_pos: entity[pos] = 1 self.static_entities.append(entity) else: num_merge_ops = len(merge_op_pos) enums = gen_enum([1, 0], num_merge_ops) for enum in enums: entity = [0] * op_num for i in range(num_merge_ops): entity[merge_op_pos[i]] = enum[i] self.static_entities.append(entity) self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] self.type_key = "merge" def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] def able_merge(self, pos): return pos in self.able_merge_list class EnumSpace(SubSpace): def __init__(self, knobs): self.dim = 2 self.static_entities = knobs self.size = len(self.static_entities) self.num_direction = 2 self.directions = [(-1,), (1,)] def next_entity(self, pos, d): # d is tuple if len(d) == 1: pos = (pos + d[0]) % self.size return pos else: raise RuntimeError( "Not support for direction more than one dim: {}".format(d)) def get_direction(self, num): return self.directions[num % self.num_direction] def generate_inline_space(op_lst, down_graph, force_inline=False): inline_op_pos = [] for i, op in enumerate(op_lst): if able_inline(op, down_graph): inline_op_pos.append(i) return InlineSpace(inline_op_pos, len(op_lst), force_inline=force_inline) def generate_merge_space(op_lst, down_graph, force_merge=False): merge_ops = list(range(len(op_lst))) return MergeSpce(merge_ops, len(op_lst), force_merge=force_merge) def generate_fuse_space(loops, groups): return FuseSpace(groups, loops) def generate_split_space(extent, nparts, allow_non_divisible='off'): return SplitSpace(nparts, extent, allow_non_divisible=allow_non_divisible) def generate_reorder_space(num_spatial_axis): return ReorderSpace(num_spatial_axis) def generate_unroll_space(explicit=False): return UnrollSpace([0, 1, 512, 1500], explicit=explicit) def generate_space_intra_op(op, down_graph, slevel=4, rlevel=3, groups=3, split_policy="off", unroll_policy="off", fuse_policy="fuse_spatial", reorder_policy="last"): spatial_axis_names = [x.var.name for x in op.axis] spatial_axis_extents = [x.dom.extent.value for x in op.axis] reduced_axis_names = [x.var.name for x in op.reduce_axis] reduced_axis_extents = [x.dom.extent.value for x in op.reduce_axis] ############################################################## # generate space: schedule_space = Space() # - fuse space if fuse_policy == "fuse_spatial": fuse_space = generate_fuse_space(spatial_axis_names, groups) schedule_space.add_subspace("fuse_spatial", fuse_space, "fuse") # - split space for i, (name, extent) in enumerate(zip(spatial_axis_names, spatial_axis_extents)): split_space = generate_split_space(extent, slevel, allow_non_divisible=split_policy) schedule_space.add_subspace("split_{}_{}".format(name, i), split_space, "spatial") for i, (name, extent) in enumerate(zip(reduced_axis_names, reduced_axis_extents)): split_space = generate_split_space(extent, rlevel, allow_non_divisible=split_policy) schedule_space.add_subspace("split_{}_{}".format(name, i), split_space, "reduce") # - reorder space if reorder_policy == "last": reorder_space = generate_reorder_space(groups) schedule_space.add_subspace("reorder", reorder_space, "reorder") # -unroll space unroll_space = generate_unroll_space(explicit=(unroll_policy == "explicit")) schedule_space.add_subspace("unroll", unroll_space, "unroll") # - other special spaces can be added return schedule_space def generate_space_inter_op(op_lst, down_graph, force_inline=False, force_merge=False, special_space=None): ############################################################## # generate space: schedule_space = Space() # - inline space inline_space = generate_inline_space(op_lst, down_graph, force_inline=force_inline) schedule_space.add_subspace("inline", inline_space, "inline") # - merge space # merge_space = generate_merge_space(op_lst, down_graph, force_merge=force_merge) # schedule_space.add_subspace("merge", merge_space, "merge") # - other special spaces can be added special_space = {} if special_space is None else special_space for key, sspace in special_space.items(): schedule_space.add_subspace(key, sspace, "special") return schedule_space
# lambdas are single expressions used in declaring a = lambda x, y, d: x * 6 - d + y*d -x ans = a(3,5,8) print(ans) # --> 47 print((lambda x, y, d: x * 6 - d + y*d - x)(3, 5, 8)) # --> 47 # Lambdas can be used as lexical closures in other functions def adder(n): return lambda x: x + n # uses n from outer scope add4 = adder(4) print(add4(7)) # --> 11
from django.contrib import admin from .models import Post # Register your models here. admin.site.register(Post)
from ..vector3 import Vector3 gravity = Vector3(0, -9.81, 0) """Gravitational constant (9.81 m/s^2)"""
import pytest from pytest_bdd import given, scenario, then, when, parsers import os import subprocess import time from common.mayastor import container_mod, mayastor_mod from common.volume import Volume import grpc import mayastor_pb2 as pb def megabytes(n): return n * 1024 * 1024 def find_child(nexus, uri): for child in nexus.children: if child.uri == uri: return child return None def convert_nexus_state(state): STATES = { "UNKNOWN": pb.NexusState.NEXUS_UNKNOWN, "ONLINE": pb.NexusState.NEXUS_ONLINE, "DEGRADED": pb.NexusState.NEXUS_DEGRADED, "FAULTED": pb.NexusState.NEXUS_FAULTED, } return STATES[state] def convert_child_state(state): STATES = { "UNKNOWN": pb.ChildState.CHILD_UNKNOWN, "ONLINE": pb.ChildState.CHILD_ONLINE, "DEGRADED": pb.ChildState.CHILD_DEGRADED, "FAULTED": pb.ChildState.CHILD_FAULTED, } return STATES[state] def convert_child_action(state): ACTIONS = { "OFFLINE": pb.ChildAction.offline, "ONLINE": pb.ChildAction.online, } return ACTIONS[state] @scenario("features/rebuild.feature", "running rebuild") def test_running_rebuild(): "Running rebuild." @scenario("features/rebuild.feature", "stopping rebuild") def test_stopping_rebuild(): "Stopping rebuild." @scenario("features/rebuild.feature", "pausing rebuild") def test_pausing_rebuild(): "Pausing rebuild." @scenario("features/rebuild.feature", "resuming rebuild") def test_resuming_rebuild(): "Resuming rebuild." @scenario("features/rebuild.feature", "setting a child ONLINE") def test_setting_a_child_online(): "Setting a child ONLINE." @scenario("features/rebuild.feature", "setting a child OFFLINE") def test_setting_a_child_offline(): "Setting a child OFFLINE." @pytest.fixture(scope="module") def local_files(): files = [f"/tmp/disk-rebuild-{base}.img" for base in ["source", "target"]] for path in files: subprocess.run( ["sudo", "sh", "-c", f"rm -f '{path}' && truncate -s 64M '{path}'"], check=True, ) yield for path in files: subprocess.run(["sudo", "rm", "-f", path], check=True) @pytest.fixture(scope="module") def source_uri(local_files): yield "aio:///tmp/disk-rebuild-source.img?blk_size=4096" @pytest.fixture(scope="module") def target_uri(local_files): yield "aio:///tmp/disk-rebuild-target.img?blk_size=4096" @pytest.fixture(scope="module") def nexus_uuid(): yield "2c58c9f0-da89-4cb9-8097-dc67fa132493" @pytest.fixture(scope="module") def mayastor_instance(mayastor_mod): yield mayastor_mod["ms0"] @pytest.fixture(scope="module") def find_nexus(mayastor_instance): def find(uuid): for nexus in mayastor_instance.ms.ListNexus(pb.Null()).nexus_list: if nexus.uuid == uuid: return nexus return None yield find @pytest.fixture def mayastor_nexus(mayastor_instance, nexus_uuid, source_uri): nexus = mayastor_instance.ms.CreateNexus( pb.CreateNexusRequest( uuid=nexus_uuid, size=megabytes(64), children=[source_uri] ) ) yield nexus mayastor_instance.ms.DestroyNexus(pb.DestroyNexusRequest(uuid=nexus_uuid)) @pytest.fixture def nexus_state(mayastor_nexus, find_nexus, nexus_uuid): yield find_nexus(nexus_uuid) @pytest.fixture def rebuild_state(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): try: yield mayastor_instance.ms.GetRebuildState( pb.RebuildStateRequest(uuid=nexus_uuid, uri=target_uri) ).state except: yield None @given("a mayastor instance") @given(parsers.parse('a mayastor instance "{name}"')) def get_instance(mayastor_instance): pass @given("a nexus") @given("a nexus with a source child device") def get_nexus(mayastor_nexus): pass @when("a target child is added to the nexus") def add_child(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): mayastor_instance.ms.AddChildNexus( pb.AddChildNexusRequest(uuid=nexus_uuid, uri=target_uri, norebuild=True) ) @when("the rebuild operation is started") def start_rebuild(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): mayastor_instance.ms.StartRebuild( pb.StartRebuildRequest(uuid=nexus_uuid, uri=target_uri) ) @when("the rebuild operation is then paused") def pause_rebuild(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): mayastor_instance.ms.PauseRebuild( pb.PauseRebuildRequest(uuid=nexus_uuid, uri=target_uri) ) time.sleep(0.5) @when("the rebuild operation is then resumed") def resume_rebuild(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): mayastor_instance.ms.ResumeRebuild( pb.ResumeRebuildRequest(uuid=nexus_uuid, uri=target_uri) ) @when("the rebuild operation is then stopped") def stop_rebuild(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): mayastor_instance.ms.StopRebuild( pb.StopRebuildRequest(uuid=nexus_uuid, uri=target_uri) ) time.sleep(0.5) @when("the rebuild statistics are requested", target_fixture="rebuild_statistics") def rebuild_statistics(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri): return mayastor_instance.ms.GetRebuildStats( pb.RebuildStatsRequest(uuid=nexus_uuid, uri=target_uri) ) @when(parsers.parse("the target child is set {state}"), target_fixture="set_child") @when(parsers.parse("the target child is then set {state}"), target_fixture="set_child") def set_child(mayastor_instance, mayastor_nexus, nexus_uuid, target_uri, state): mayastor_instance.ms.ChildOperation( pb.ChildNexusRequest( uuid=nexus_uuid, uri=target_uri, action=convert_child_action(state) ) ) @then(parsers.parse("the nexus state is {expected}")) def check_nexus_state(nexus_state, expected): assert nexus_state.state == convert_nexus_state(expected) @then(parsers.parse("the source child state is {expected}")) def check_source_child_state(nexus_state, source_uri, expected): child = find_child(nexus_state, source_uri) assert child.state == convert_child_state(expected) @then(parsers.parse("the target child state is {expected}")) def check_target_child_state(nexus_state, target_uri, expected): child = find_child(nexus_state, target_uri) assert child.state == convert_child_state(expected) @then(parsers.parse("the rebuild count is {expected:d}")) def check_rebuild_count(nexus_state, expected): assert nexus_state.rebuilds == expected @then(parsers.parse('the rebuild state is "{expected}"')) def check_rebuild_state(rebuild_state, expected): assert rebuild_state == expected @then("the rebuild state is undefined") def rebuild_state_is_undefined(rebuild_state): assert rebuild_state is None @then(parsers.parse('the rebuild statistics counter "{name}" is {expected}')) def check_rebuild_statistics_counter(rebuild_statistics, name, expected): assert (getattr(rebuild_statistics, name) == 0) == (expected == "zero")
# # from __future__ import print_function import argparse from tqdm import tqdm import tensorflow as tf import logging logging.getLogger().setLevel(logging.INFO) from utils.lr_scheduler import get_lr_scheduler from model.model_builder import get_model from generator.generator_builder import get_generator import sys physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) def parse_args(args): parser = argparse.ArgumentParser(description='Simple training script for using snapmix .') parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--start-val-epoch', default=100, type=int) parser.add_argument('--batch-size', default=16, type=int) parser.add_argument('--dataset', default='custom', type=str, help="choices=['cub','cars','custom']") parser.add_argument('--dataset-dir', default='dataset/cat_dog', type=str, help="choices=['dataset/cub','dataset/cars','custom_dataset_dir']") parser.add_argument('--augment', default='snapmix', type=str, help="choices=['baseline','cutmix','snapmix']") parser.add_argument('--model', default='ResNet50', type=str, help="choices=['ResNet50','ResNet101','EfficientNetB0']") parser.add_argument('--pretrain', default='imagenet', help="choices=[None,'imagenet','resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5']") parser.add_argument('--concat-max-and-average-pool', default=False, type=bool,help="Use concat_max_and_average_pool layer in model") parser.add_argument('--lr-scheduler', default='warmup_cosinedecay', type=str, help="choices=['step','warmup_cosinedecay']") parser.add_argument('--init-lr', default=1e-3, type=float) parser.add_argument('--lr-decay', default=0.1, type=float) parser.add_argument('--lr-decay-epoch', default=[80, 150, 180], type=int) parser.add_argument('--warmup-lr', default=1e-4, type=float) parser.add_argument('--warmup-epochs', default=0, type=int) parser.add_argument('--weight-decay', default=1e-4, type=float) parser.add_argument('--optimizer', default='sgd', help="choices=['adam','sgd']") return parser.parse_args(args) def main(args): train_generator, val_generator = get_generator(args) model = get_model(args, train_generator.num_class) train_generator.set_model(model.keras_model) loss_object = tf.keras.losses.CategoricalCrossentropy() if args.optimizer == 'sgd': optimizer = tf.keras.optimizers.SGD(args.init_lr,momentum=0.9) else: optimizer = tf.keras.optimizers.Adam(args.init_lr) lr_scheduler = get_lr_scheduler(args) best_val_loss = float('inf') best_val_acc = -1 best_val_epoch = -1 for epoch in range(args.epochs): lr = lr_scheduler(epoch) optimizer.learning_rate.assign(lr) # training train_loss = 0. train_generator_tqdm = tqdm(enumerate(train_generator), total=len(train_generator)) for batch_index, (batch_imgs, batch_labels) in train_generator_tqdm: batch_imgs = model.preprocess(batch_imgs) with tf.GradientTape() as tape: logits = model.keras_model(batch_imgs, training=True) data_loss = loss_object(batch_labels, logits) l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in model.keras_model.trainable_variables if 'bn' not in v.name]) total_loss = data_loss + args.weight_decay * l2_loss grads = tape.gradient(total_loss, model.keras_model.trainable_variables) optimizer.apply_gradients(zip(grads, model.keras_model.trainable_variables)) train_loss += total_loss train_generator_tqdm.set_description( "epoch:{}/{},train_loss:{:.4f},lr:{:.6f}".format(epoch, args.epochs, train_loss/((batch_index+1) * train_generator.batch_size), optimizer.learning_rate.numpy())) train_generator.on_epoch_end() # validation if epoch > args.start_val_epoch: val_loss = 0. val_acc = 0. val_generator_tqdm = tqdm(enumerate(val_generator), total=len(val_generator)) for batch_index, (batch_imgs, batch_labels) in val_generator_tqdm: batch_imgs = model.preprocess(batch_imgs) logits = model.keras_model(batch_imgs, training=False) loss_value = loss_object(batch_labels, logits) val_loss += loss_value val_true_num = tf.reduce_sum( tf.cast(tf.equal(tf.argmax(batch_labels, axis=-1), tf.argmax(logits, axis=-1)), tf.dtypes.float32)) val_acc += val_true_num val_generator_tqdm.set_description( "epoch:{},val_loss:{:.4f}".format(epoch, loss_value)) val_loss /= len(val_generator) val_acc /= (len(val_generator) * val_generator.batch_size) if val_loss < best_val_loss: best_val_loss = val_loss best_val_acc = val_acc best_val_epoch = epoch logging.info("best_epoch:{},best_val_loss:{},best_val_acc:{}".format(best_val_epoch, best_val_loss, best_val_acc)) if __name__== "__main__": args = parse_args(sys.argv[1:]) main(args)
"""Module controlling the writing of ParticleSets to NetCDF file""" import os import random import shutil import string from datetime import timedelta as delta from glob import glob import netCDF4 import numpy as np from parcels.tools.error import ErrorCode from parcels.tools.loggers import logger try: from mpi4py import MPI except: MPI = None try: from parcels._version import version as parcels_version except: raise EnvironmentError('Parcels version can not be retrieved. Have you run ''python setup.py install''?') try: from os import getuid except: # Windows does not have getuid(), so define to simply return 'tmp' def getuid(): return 'tmp' __all__ = ['ParticleFile'] def _is_particle_started_yet(particle, time): """We don't want to write a particle that is not started yet. Particle will be written if: * particle.time is equal to time argument of pfile.write() * particle.time is before time (in case particle was deleted between previous export and current one) """ return (particle.dt*particle.time <= particle.dt*time or np.isclose(particle.time, time)) def _set_calendar(origin_calendar): if origin_calendar == 'np_datetime64': return 'standard' else: return origin_calendar class ParticleFile(object): """Initialise trajectory output. :param name: Basename of the output file :param particleset: ParticleSet to output :param outputdt: Interval which dictates the update frequency of file output while ParticleFile is given as an argument of ParticleSet.execute() It is either a timedelta object or a positive double. :param write_ondelete: Boolean to write particle data only when they are deleted. Default is False :param convert_at_end: Boolean to convert npy files to netcdf at end of run. Default is True :param tempwritedir: directories to write temporary files to during executing. Default is out-XXXXXX where Xs are random capitals. Files for individual processors are written to subdirectories 0, 1, 2 etc under tempwritedir :param pset_info: dictionary of info on the ParticleSet, stored in tempwritedir/XX/pset_info.npy, used to create NetCDF file from npy-files. """ def __init__(self, name, particleset, outputdt=np.infty, write_ondelete=False, convert_at_end=True, tempwritedir=None, pset_info=None): self.write_ondelete = write_ondelete self.convert_at_end = convert_at_end self.outputdt = outputdt self.lasttime_written = None # variable to check if time has been written already self.dataset = None self.metadata = {} if pset_info is not None: for v in pset_info.keys(): setattr(self, v, pset_info[v]) else: self.name = name self.particleset = particleset self.parcels_mesh = self.particleset.fieldset.gridset.grids[0].mesh self.time_origin = self.particleset.time_origin self.lonlatdepth_dtype = self.particleset.lonlatdepth_dtype self.var_names = [] self.var_names_once = [] for v in self.particleset.ptype.variables: if v.to_write == 'once': self.var_names_once += [v.name] elif v.to_write is True: self.var_names += [v.name] if len(self.var_names_once) > 0: self.written_once = [] self.file_list_once = [] self.file_list = [] self.time_written = [] self.maxid_written = -1 if tempwritedir is None: tempwritedir = os.path.join(os.path.dirname(str(self.name)), "out-%s" % ''.join(random.choice(string.ascii_uppercase) for _ in range(8))) if MPI: mpi_rank = MPI.COMM_WORLD.Get_rank() self.tempwritedir_base = MPI.COMM_WORLD.bcast(tempwritedir, root=0) else: self.tempwritedir_base = tempwritedir mpi_rank = 0 self.tempwritedir = os.path.join(self.tempwritedir_base, "%d" % mpi_rank) if pset_info is None: # otherwise arrive here from convert_npydir_to_netcdf self.delete_tempwritedir() def open_netcdf_file(self, data_shape): """Initialise NetCDF4.Dataset for trajectory output. The output follows the format outlined in the Discrete Sampling Geometries section of the CF-conventions: http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#discrete-sampling-geometries The current implementation is based on the NCEI template: http://www.nodc.noaa.gov/data/formats/netcdf/v2.0/trajectoryIncomplete.cdl :param data_shape: shape of the variables in the NetCDF4 file """ extension = os.path.splitext(str(self.name))[1] fname = self.name if extension in ['.nc', '.nc4'] else "%s.nc" % self.name if os.path.exists(str(fname)): os.remove(str(fname)) self.dataset = netCDF4.Dataset(fname, "w", format="NETCDF4") self.dataset.createDimension("obs", data_shape[1]) self.dataset.createDimension("traj", data_shape[0]) coords = ("traj", "obs") self.dataset.feature_type = "trajectory" self.dataset.Conventions = "CF-1.6/CF-1.7" self.dataset.ncei_template_version = "NCEI_NetCDF_Trajectory_Template_v2.0" self.dataset.parcels_version = parcels_version self.dataset.parcels_mesh = self.parcels_mesh # Create ID variable according to CF conventions self.id = self.dataset.createVariable("trajectory", "i4", coords, fill_value=-2**(31)) # maxint32 fill_value self.id.long_name = "Unique identifier for each particle" self.id.cf_role = "trajectory_id" # Create time, lat, lon and z variables according to CF conventions: self.time = self.dataset.createVariable("time", "f8", coords, fill_value=np.nan) self.time.long_name = "" self.time.standard_name = "time" if self.time_origin.calendar is None: self.time.units = "seconds" else: self.time.units = "seconds since " + str(self.time_origin) self.time.calendar = 'standard' if self.time_origin.calendar == 'np_datetime64' else self.time_origin.calendar self.time.axis = "T" if self.lonlatdepth_dtype is np.float64: lonlatdepth_precision = "f8" else: lonlatdepth_precision = "f4" self.lat = self.dataset.createVariable("lat", lonlatdepth_precision, coords, fill_value=np.nan) self.lat.long_name = "" self.lat.standard_name = "latitude" self.lat.units = "degrees_north" self.lat.axis = "Y" self.lon = self.dataset.createVariable("lon", lonlatdepth_precision, coords, fill_value=np.nan) self.lon.long_name = "" self.lon.standard_name = "longitude" self.lon.units = "degrees_east" self.lon.axis = "X" self.z = self.dataset.createVariable("z", lonlatdepth_precision, coords, fill_value=np.nan) self.z.long_name = "" self.z.standard_name = "depth" self.z.units = "m" self.z.positive = "down" for vname in self.var_names: if vname not in ['time', 'lat', 'lon', 'depth', 'id']: setattr(self, vname, self.dataset.createVariable(vname, "f4", coords, fill_value=np.nan)) getattr(self, vname).long_name = "" getattr(self, vname).standard_name = vname getattr(self, vname).units = "unknown" for vname in self.var_names_once: setattr(self, vname, self.dataset.createVariable(vname, "f4", "traj", fill_value=np.nan)) getattr(self, vname).long_name = "" getattr(self, vname).standard_name = vname getattr(self, vname).units = "unknown" for name, message in self.metadata.items(): setattr(self.dataset, name, message) def __del__(self): if self.convert_at_end: self.close() def close(self, delete_tempfiles=True): """Close the ParticleFile object by exporting and then deleting the temporary npy files""" self.export() mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 if mpi_rank == 0: if delete_tempfiles: self.delete_tempwritedir(tempwritedir=self.tempwritedir_base) self.convert_at_end = False def add_metadata(self, name, message): """Add metadata to :class:`parcels.particleset.ParticleSet` :param name: Name of the metadata variabale :param message: message to be written """ if self.dataset is None: self.metadata[name] = message else: setattr(self.dataset, name, message) def convert_pset_to_dict(self, pset, time, deleted_only=False): """Convert all Particle data from one time step to a python dictionary. :param pset: ParticleSet object to write :param time: Time at which to write ParticleSet :param deleted_only: Flag to write only the deleted Particles returns two dictionaries: one for all variables to be written each outputdt, and one for all variables to be written once """ data_dict = {} data_dict_once = {} time = time.total_seconds() if isinstance(time, delta) else time if self.lasttime_written != time and \ (self.write_ondelete is False or deleted_only is True): if pset.size == 0: logger.warning("ParticleSet is empty on writing as array at time %g" % time) else: if deleted_only: pset_towrite = pset else: pset_towrite = [p for p in pset if time - np.abs(p.dt/2) <= p.time < time + np.abs(p.dt) and np.isfinite(p.id)] if len(pset_towrite) > 0: for var in self.var_names: data_dict[var] = np.array([getattr(p, var) for p in pset_towrite]) self.maxid_written = np.max([self.maxid_written, np.max(data_dict['id'])]) pset_errs = [p for p in pset_towrite if p.state != ErrorCode.Delete and abs(time-p.time) > 1e-3] for p in pset_errs: logger.warning_once( 'time argument in pfile.write() is %g, but a particle has time % g.' % (time, p.time)) if time not in self.time_written: self.time_written.append(time) if len(self.var_names_once) > 0: first_write = [p for p in pset if (p.id not in self.written_once) and _is_particle_started_yet(p, time)] data_dict_once['id'] = np.array([p.id for p in first_write]) for var in self.var_names_once: data_dict_once[var] = np.array([getattr(p, var) for p in first_write]) self.written_once += [p.id for p in first_write] if not deleted_only: self.lasttime_written = time return data_dict, data_dict_once def dump_dict_to_npy(self, data_dict, data_dict_once): """Buffer data to set of temporary numpy files, using np.save""" if not os.path.exists(self.tempwritedir): os.makedirs(self.tempwritedir) if len(data_dict) > 0: tmpfilename = os.path.join(self.tempwritedir, str(len(self.file_list)) + ".npy") with open(tmpfilename, 'wb') as f: np.save(f, data_dict) self.file_list.append(tmpfilename) if len(data_dict_once) > 0: tmpfilename = os.path.join(self.tempwritedir, str(len(self.file_list)) + '_once.npy') with open(tmpfilename, 'wb') as f: np.save(f, data_dict_once) self.file_list_once.append(tmpfilename) def dump_psetinfo_to_npy(self): pset_info = {} attrs_to_dump = ['name', 'var_names', 'var_names_once', 'time_origin', 'lonlatdepth_dtype', 'file_list', 'file_list_once', 'maxid_written', 'time_written', 'parcels_mesh', 'metadata'] for a in attrs_to_dump: if hasattr(self, a): pset_info[a] = getattr(self, a) with open(os.path.join(self.tempwritedir, 'pset_info.npy'), 'wb') as f: np.save(f, pset_info) def write(self, pset, time, deleted_only=False): """Write all data from one time step to a temporary npy-file using a python dictionary. The data is saved in the folder 'out'. :param pset: ParticleSet object to write :param time: Time at which to write ParticleSet :param deleted_only: Flag to write only the deleted Particles """ data_dict, data_dict_once = self.convert_pset_to_dict(pset, time, deleted_only=deleted_only) self.dump_dict_to_npy(data_dict, data_dict_once) self.dump_psetinfo_to_npy() def read_from_npy(self, file_list, time_steps, var): """Read NPY-files for one variable using a loop over all files. :param file_list: List that contains all file names in the output directory :param time_steps: Number of time steps that were written in out directory :param var: name of the variable to read """ data = np.nan * np.zeros((self.maxid_written+1, time_steps)) time_index = np.zeros(self.maxid_written+1, dtype=int) t_ind_used = np.zeros(time_steps, dtype=int) # loop over all files for npyfile in file_list: try: data_dict = np.load(npyfile, allow_pickle=True).item() except NameError: raise RuntimeError('Cannot combine npy files into netcdf file because your ParticleFile is ' 'still open on interpreter shutdown.\nYou can use ' '"parcels_convert_npydir_to_netcdf %s" to convert these to ' 'a NetCDF file yourself.\nTo avoid this error, make sure you ' 'close() your ParticleFile at the end of your script.' % self.tempwritedir) id_ind = np.array(data_dict["id"], dtype=int) t_ind = time_index[id_ind] if 'once' not in file_list[0] else 0 t_ind_used[t_ind] = 1 data[id_ind, t_ind] = data_dict[var] time_index[id_ind] = time_index[id_ind] + 1 # remove rows and columns that are completely filled with nan values tmp = data[time_index > 0, :] return tmp[:, t_ind_used == 1] def export(self): """Exports outputs in temporary NPY-files to NetCDF file""" if MPI: # The export can only start when all threads are done. MPI.COMM_WORLD.Barrier() if MPI.COMM_WORLD.Get_rank() > 0: return # export only on threat 0 # Retrieve all temporary writing directories and sort them in numerical order temp_names = sorted(glob(os.path.join("%s" % self.tempwritedir_base, "*")), key=lambda x: int(os.path.basename(x))) if len(temp_names) == 0: raise RuntimeError("No npy files found in %s" % self.tempwritedir_base) global_maxid_written = -1 global_time_written = [] global_file_list = [] if len(self.var_names_once) > 0: global_file_list_once = [] for tempwritedir in temp_names: if os.path.exists(tempwritedir): pset_info_local = np.load(os.path.join(tempwritedir, 'pset_info.npy'), allow_pickle=True).item() global_maxid_written = np.max([global_maxid_written, pset_info_local['maxid_written']]) global_time_written += pset_info_local['time_written'] global_file_list += pset_info_local['file_list'] if len(self.var_names_once) > 0: global_file_list_once += pset_info_local['file_list_once'] self.maxid_written = global_maxid_written self.time_written = np.unique(global_time_written) for var in self.var_names: data = self.read_from_npy(global_file_list, len(self.time_written), var) if var == self.var_names[0]: self.open_netcdf_file(data.shape) varout = 'z' if var == 'depth' else var getattr(self, varout)[:, :] = data if len(self.var_names_once) > 0: for var in self.var_names_once: getattr(self, var)[:] = self.read_from_npy(global_file_list_once, 1, var) self.dataset.close() def delete_tempwritedir(self, tempwritedir=None): """Deleted all temporary npy files :param tempwritedir Optional path of the directory to delete """ if tempwritedir is None: tempwritedir = self.tempwritedir if os.path.exists(tempwritedir): shutil.rmtree(tempwritedir)
'''初始化''' from .mole import Mole from .hammer import Hammer
from collections import OrderedDict from coreapi.compat import urlparse from openapi_codec.utils import get_method, get_encoding, get_links_from_document from openapi_codec import encode class AbstractCodec: def _generate_swagger_object(self, document): parsed_url = urlparse.urlparse(document.url) swagger = OrderedDict() swagger['swagger'] = '2.0' swagger['info'] = OrderedDict() swagger['info']['title'] = document.title swagger['info']['version'] = '' # Required by the spec if parsed_url.netloc: swagger['host'] = parsed_url.netloc if parsed_url.scheme: swagger['schemes'] = [parsed_url.scheme] swagger['paths'] = self._get_paths_object(document) return swagger def _get_paths_object(self, document): paths = OrderedDict() links = self._get_links(document) for operation_id, link, tags in links: if link.url not in paths: paths[link.url] = OrderedDict() method = get_method(link) operation = self._get_operation(operation_id, link, tags) paths[link.url].update({method: operation}) return paths def _get_operation(self, operation_id, link, tags): encoding = get_encoding(link) description = link.description.strip() summary = description.splitlines()[0] if description else None operation = { 'operationId': operation_id, 'responses': self._get_responses(link), 'parameters': self._get_parameters(link, encoding) } if description: operation['description'] = description if summary: operation['summary'] = summary if encoding: operation['consumes'] = [encoding] if tags: operation['tags'] = tags return operation def _get_responses(self, link): if hasattr(link, '_responses_docs') and isinstance(link._responses_docs, dict): responses = link._responses_docs.get('{}'.format(link._view_method)) if responses: return responses else: return link._responses_docs.get( '{}'.format(link.action), link._responses_docs ) # if link._responses_docs is not dict execute base _get_responses return encode._get_responses(link) def _get_parameters(self, link, encoding): if hasattr(link, '_parameters_docs') and isinstance(link._parameters_docs, dict): parameters_doc = link._parameters_docs.get('{}'.format(link._view_method)) if not parameters_doc: parameters_doc = link._parameters_docs.get( '{}'.format(link.action), None) else: parameters_doc = None if parameters_doc is not None: params = [] for parameter in parameters_doc: params.append(parameter) return params # if link._responses_docs is not dict execute base _get_parameters return encode._get_parameters(link, encoding) def _get_links(self, document): """ Return a list of (operation_id, link, [tags]) """ # Extract all the links from the first or second level of the document. links = [] for keys, link in get_links_from_document(document): if len(keys) > 1: operation_id = '_'.join(keys[1:]) tags = [keys[0]] else: operation_id = keys[0] tags = [] links.append((operation_id, link, tags)) # Determine if the operation ids each have unique names or not. operation_ids = [item[0] for item in links] unique = len(set(operation_ids)) == len(links) # If the operation ids are not unique, then prefix them with the tag. if not unique: return [self._add_tag_prefix(item) for item in links] return links def _add_tag_prefix(self, item): operation_id, link, tags = item if tags: operation_id = tags[0] + '_' + operation_id return (operation_id, link, tags)
import subprocess import time class LiteClient: def __init__(self, args, config, log): self.log = log self.config = config self.ls_addr = args.ls_addr self.ls_key = args.ls_key self.log.log(self.__class__.__name__, 3, 'liteClient binary : ' + self.config["bin"]) self.log.log(self.__class__.__name__, 3, 'liteServer address: ' + self.ls_addr) self.log.log(self.__class__.__name__, 3, 'liteServer key : ' + self.ls_key) def exec(self, cmd, nothrow = False, wait = None): self.log.log(self.__class__.__name__, 3, 'Executing command : ' + cmd) args = [self.config["bin"], "--addr", self.ls_addr, "--b64", self.ls_key, "--verbosity", "0", "--cmd", cmd] if nothrow: process = subprocess.run(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=self.config["timeout"]) return process.stdout.decode("utf-8") success = False output = None for loop in range(0, self.config["retries"]+1): try: process = subprocess.run(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=self.config["timeout"]) output = process.stdout.decode("utf-8") stderr = process.stderr.decode("utf-8") if wait: time.sleep(wait) if process.returncode == 0: success = True continue except subprocess.TimeoutExpired as e: continue if success: self.log.log(self.__class__.__name__, 3, 'Command succsesful!') return output else: msg = "LiteClient failure after {} retries".format(loop) self.log.log(self.__class__.__name__, 1, msg) raise Exception(msg) # Based on code by https://github.com/igroman787/mytonctrl # def parse_output(self, text, path): result = None if path is None or text is None: return None if not isinstance(path, list): path = [path] for idx, element in enumerate(path): if ':' not in element: element += ':' if element not in text: break start = text.find(element) + len(element) count = 0 bcount = 0 textLen = len(text) end = textLen for i in range(start, textLen): letter = text[i] if letter == '(': count += 1 bcount += 1 elif letter == ')': count -= 1 if letter == ')' and count < 1: end = i + 1 break elif letter == '\n' and count < 1: end = i break text = text[start:end] if count != 0 and bcount == 0: text = text.replace(')', '') if idx+1 == len(path): result = text return result # end define # end class
import requests with open('file.txt', 'rb') as f: data = f.read() response = requests.put('http://localhost:28139/file.txt', data=data)
import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.ticker as mticker import csv import json import math import random import bisect import os import argparse import fnmatch import sys import statistics from enum import Enum from typing import * class graph_scaling(Enum): absolute = 0 relative = 1 class data_label_order(Enum): ascending = 0, descending = 1 class data_label_format(Enum): clock = 1 custom = 256 class scaling_info(): def __init__(self, scaling: graph_scaling, to: str = "") -> None: self.type = scaling self.to = to class category_info(): def __init__(self, name: str, scale: scaling_info, prefix: Optional[str] = None, suffix: Optional[str] = None) -> None: self.name = name self.prefix = prefix if prefix else name + "_" self.suffix = suffix if suffix else "" self.scale = scale class data_label_info(): clock_time_scales = [ ("fs", "femtoseconds", 1e-15, 1e+15), ("ps", "picoseconds", 1e-12, 1e+12), ("ns", "nanoseconds", 1e-9, 1e+9), ("µs", "microseconds", .00001, 1000000), ("us", "microseconds", .00001, 1000000), ("ms", "milliseconds", .001, 1000), ("s", "seconds", 1, 1), ("m", "minutes", 60, 1 / 60), ("h", "hours", 60 * 60, (1 / 60) / 60), ] unknown_time_scales = [("", "", 1, 1)] def __init__(self, name: str = "real_time", order=data_label_order.ascending, format=data_label_format.clock) -> None: self.name = "real_time" self.order = order self.format = format self.format_list = data_label_info.clock_time_scales if self.format == data_label_format.clock else data_label_info.unknown_time_scales class source_info(): def __init__(self, file_name: str, prefix: str = "", required: bool = False) -> None: self.file_name: str = file_name self.prefix: str = prefix self.required: bool = required class analysis_info(): def __init__(self): self.name = "" self.default_scale: scaling_info = scaling_info( graph_scaling.relative, "base") self.categories: List[category_info] = [ category_info("find", self.default_scale), category_info("count", self.default_scale), category_info("fill", self.default_scale), category_info("copy", self.default_scale), category_info("swap_ranges", self.default_scale), category_info("rotate", self.default_scale), category_info("equal", self.default_scale) ] self.data_labels = [ data_label_info("real_time"), data_label_info("cpu_time") ] self.sources: List[source_info] = [ source_info( "libc++_bit_benchmarks.json", "libc++", False, ), source_info( "libstdc++_bit_benchmarks.json", "libstdc++", False, ), source_info( "vc++_bit_benchmarks.json", "vc++", False, ) ] class stats(): def __init__(self, data: List[float]) -> None: if len(data) < 1: self.min = 0.0 self.max = 0.0 self.stddev = 0.0 self.mean = 0.0 self.median = 0.0 self.mode = 0.0 self.index_of_dispersion = 0.0 else: self.min = min(data) self.max = max(data) self.mean = statistics.mean(data) self.stddev = statistics.stdev(data, self.mean) self.median = statistics.median(data) self.mode = statistics.mode(data) self.index_of_dispersion = 0 if (self.mean == 0): self.index_of_dispersion = statistics.variance( data) / self.mean class label_data(): def __init__(self, info: analysis_info, data: List[float]) -> None: self.label = "" self.name = "" self.base_name = "" self.category = "" self.is_noop_category = "" self.data = data self.heuristics = stats(self.data) self.stats = stats(self.data) self.name_index = 0, self.color_index = 0, self.error: Optional[str] = None class benchmark(): def __init__(self, data: object) -> None: self.labels: Dict[str, label_data] = {} self.stats: Dict[str, stats] = {} class benchmark_category(): def __init__(self): self.benchmarks: List[benchmark] = [] self.stats: Dict[str, stats] = {} def len_sorter(x): return len(x) def entry_name_sorter(b): return b["name"] def is_noop_category(n): noop_names = ["noop", "no-op", "no op"] s = n.casefold() return s in noop_names def aggregate_categories(all_benchmarks: List[Dict[str, object]], info: analysis_info): benchmarks: Dict[str, benchmark_category] = {} def mean_sorter(b): if (b.get("error") != None): return sys.float_info.max mean_group = b["statistics"]["mean"] data_point_name = data_point_names[0][0] return mean_group[data_point_name] # find no-op category and use it in all benchmarks noop_benches: Optional[benchmark] = None for b in all_benchmarks: category = b["category"] if is_noop_category(category): noop_benches = benchmark(b) break for b in all_benchmarks: category = b["category"] if is_noop_category(category): continue if category not in benchmarks: target_category: benchmark_category = benchmark_category() if (noop_benches): target_category.benchmarks.append(noop_benches) target_category = benchmarks[category] target_entries = target_category["benchmarks"] target_heuristics = target_category["heuristics"] target_entries.append(b) target_heuristics["min"] = min(b["heuristics"]["min"], target_heuristics["min"]) target_heuristics["max"] = max(b["heuristics"]["max"], target_heuristics["max"]) for category_name in benchmarks: category_benchmarks = benchmarks[category_name] # first, sort by name so we can assign colors to each # benchmark appropriately (and make those # color assignments stable) entries = category_benchmarks["benchmarks"] entries.sort(key=entry_name_sorter) for bi, entry in enumerate(entries): entry["name_index"] = bi ci = entry["color_index"] if (len(data_point_names) < 2): dp = data_point_names[0] ci[dp[0]] = bi else: for dpi, dp in enumerate(data_point_names): ci[dp[0]] = dpi # then, sort by mean entries.sort(key=mean_sorter, reverse=lower_is_better) return benchmarks def parse_json_info(info: analysis_info, input_name: str, j) -> analysis_info: input_relative_path = os.path.dirname(input_name) if info is None: info = analysis_info() info.name = j["name"] jdefault_scale = j.get("scale") if jdefault_scale: jtype = jdefault_scale["type"] if jtype == "relative": jto = jdefault_scale["to"] info.default_scale = scaling_info(graph_scaling.relative, jto) else: info.default_scale = scaling_info(graph_scaling.absolute, "") jcategories = j.get("categories") if jcategories: for jcategory in jcategories: name = jcategory["name"] jprefix = jcategory.get("prefix") jsuffix = jcategory.get("suffix") jscale = jcategory.get("scale") scale: Optional[scaling_info] = None if jscale is not None: jtype = jscale.get("type") if jtype == "relative": jto = jscale["to"] scale = scaling_info(graph_scaling.relative, jto) else: scale = scaling_info(graph_scaling.absolute, "") else: scale = info.default_scale info.categories.append( category_info(name, scale, jprefix, jsuffix)) jdata_labels = j.get("data_labels") if jdata_labels: info.data_labels.clear() for jdata_label in jdata_labels: dli: data_label_info = data_label_info() dli.name = jdata_label["name"] jascending = jdata_label.get("ascending") if jascending is bool and jascending: dli.order = data_label_order.ascending jformat = jdata_label.get("format") if jformat is None or jformat == "clock": dli.format = data_label_format.clock dli.format_list = data_label_info.clock_time_scales else: dli.format = data_label_format.custom dli.format_list = data_label_info.unknown_time_scales info.data_labels.append(dli) jsources = j["sources"] for jsource in jsources: jreq = jsource.get("required") jprefix = jsource.get("prefix") jfile = jsource["file_name"] if not os.path.isabs(jfile): jfile = os.path.normpath( os.path.join(input_relative_path, jfile)) info.sources.append( source_info(jfile, jprefix, jreq if isinstance(jreq, bool) else False)) return info def parse_json(all_benchmarks: List[benchmark], j, info: analysis_info): j_benchmarks_array = j["benchmarks"] for j_benchmark in j_benchmarks_array: name = j_benchmark['name'] base_name = j_benchmark['base_name'] benchmark = None potential_targets = [ b for b in all_benchmarks if b.base_name == base_name ] potential_categories = None if info.categories == None else [ c for c in info.categories if c in base_name ] category = "" benchmark_name = base_name point_scalar = 1 if (len(potential_categories) > 1): potential_categories.sort(key=len_sorter, reverse=True) if len(potential_categories) > 0: category = potential_categories[0] if category in scale_categories: point_scalar = 1 / scale if (len(potential_targets) < 1): benchmark_name = base_name.replace(category, "").strip("_") for chunk in name_removals: benchmark_name = benchmark_name.replace(chunk, "") all_benchmarks.append({ "category": category, "name": benchmark_name, "base_name": base_name, "data": {}, "statistics": {}, "heuristics": { "max": sys.float_info.min, "min": sys.float_info.max, }, "name_index": {}, "color_index": {}, "error": None }) benchmark = all_benchmarks[-1] else: benchmark = potential_targets[-1] data = benchmark["data"] statistics = benchmark["statistics"] heuristics = benchmark["heuristics"] # check for errors benchmark_error = j_benchmark.get('error_occurred') if benchmark_error != None and benchmark_error: benchmark["error"] = j_benchmark['error_message'] continue # populate data for point_name_lower in data_point_names: point_name = point_name_lower[0] if point_name not in data: data[point_name] = [] time_unit = j_benchmark['time_unit'] unit_index = timescale_units.index(time_unit) time_scale = time_scales[unit_index] to_seconds_multiplier = time_scale[2] if name == base_name: # is a data point for point_name_lower in data_point_names: point_name = point_name_lower[0] point_list = data[point_name] point = j_benchmark[point_name] point_adjusted = point * to_seconds_multiplier * point_scalar point_list.append(point_adjusted) heuristics["min"] = min(heuristics["min"], point_adjusted) heuristics["max"] = max(heuristics["max"], point_adjusted) else: # is a statistic statistic_name = name.replace(base_name, "").strip("_") if statistic_name not in statistics: statistics[statistic_name] = {} statistic = statistics[statistic_name] for point_name_lower in data_point_names: point_name = point_name_lower[0] point = j_benchmark[point_name] point_adjusted = point * to_seconds_multiplier * point_scalar statistic[point_name] = point_adjusted return aggregate_categories(all_benchmarks, data_point_names) def draw_graph(name, category, benchmarks_heuristics, data_point_names, time_scales): # initialize figures figures, axes = plt.subplots() # set name we're going to use figure_name = name if name != None and len( name) > 0 else category.replace("_", "") # get the values of the time scale to perform bisecting time_scale_values_from_seconds = [x[2] for x in time_scales] benchmarks = benchmarks_heuristics["benchmarks"] heuristics = benchmarks_heuristics["heuristics"] benchmarks_max = heuristics["max"] benchmarks_min = heuristics["min"] absolute_range = benchmarks_max - benchmarks_min # some pattern constants, to help us be pretty # some color constants, to help us be pretty! # and differentiate graphs # yapf: disable data_point_aesthetics = [ ('#a6cee3', '/'), ('#f255bb', 'O'), ('#00c9ab', '\\'), ('#b15928', 'o'), ('#33a02c', '.'), ('#fb9a99', '*'), ('#e31a1c', '+'), ('#fdbf6f', 'x'), ('#ff7f00', '|'), ('#cab2d6', None), ('#6a3d9a', '-'), ('#ffff99', 'xx'), ('#f5f5f5', '..'), ('#1f78b4', '||'), ('#b2df8a', '**'), ('#cc33cc', '--') ] #yapf: enable # transpose data into forms we need benchmark_names = [b["name"] for b in benchmarks] bars = [] scatters = [] num_data_points = len(data_point_names) bar_padding = 0.15 bar_height = 0.35 bar_all_sizes = bar_height * num_data_points + bar_padding quarter_bar_height = bar_height * 0.25 bar_y_positions = [] # draw mean-based bars with error indicators # and draw scatter-plot points for bi, benchmark in enumerate(benchmarks): statistics = benchmark["statistics"] for di, data_point_name_lower in enumerate(data_point_names): data_point_name = data_point_name_lower[0] bar_y = (bi * bar_all_sizes) + (di * bar_height) + ( bar_padding * 0.5) bar_y_positions.append(bar_y) err = benchmark.get('error') color_index = benchmark["color_index"][data_point_name] aesthetics = data_point_aesthetics[color_index] color = aesthetics[0] colorhsv = matplotlib.colors.rgb_to_hsv( matplotlib.colors.hex2color(color)) colorhsv[2] *= 0.6 edgecolor = matplotlib.colors.hsv_to_rgb(colorhsv) if err != None: bars.append( axes.text( absolute_range * 0.02, bar_y + (quarter_bar_height * 2), err, color=color, style='italic', horizontalalignment='left', verticalalignment='center', fontsize='small')) continue mean = statistics["mean"][data_point_name] stddev = statistics["stddev"][data_point_name] hatch = aesthetics[1] bar = axes.barh( bar_y, mean, height=bar_height, xerr=stddev, linewidth=0.2, edgecolor=edgecolor, color=color, hatch=hatch, align='edge', error_kw={ "capsize": 5.0, "mew": 1.2, "ecolor": 'black', }, alpha=0.82) bars.append(bar) # the scatter plot should be semi-transparent in color... xscatter = benchmark["data"][data_point_name] xscatter_len = len(xscatter) yscatter = [ bar_y + random.uniform(quarter_bar_height, bar_height - quarter_bar_height) for _ in xscatter ] scatter_alpha = 0.20 if xscatter_len < 11 else 0.10 if xscatter_len < 101 else 0.05 if xscatter_len < 1001 else 0.002 scatter = axes.scatter( xscatter, yscatter, color=color, edgecolor='#000000', linewidth=0.5, alpha=scatter_alpha) scatters.append(scatter) xscaleindex = bisect.bisect_left(time_scale_values_from_seconds, benchmarks_max) xscale = time_scales[xscaleindex - 1] def time_axis_formatting(value, pos): if value == 0: return '0' if value.is_integer(): return '{0:.0f}'.format(value * xscale[3]) return '{0:.1f}'.format(value * xscale[3]) axes.set_xlim([0, benchmarks_max + (absolute_range * 0.25)]) axes.xaxis.set_major_formatter( mticker.FuncFormatter(time_axis_formatting)) # have ticks drawn from base of bar graph # to text labels y_ticks = [((y + 0.5) * bar_all_sizes) for y in range(0, int(len(bar_y_positions) / num_data_points))] y_limits = [ bar_y_positions[0] - bar_padding, bar_y_positions[-1] + bar_height + bar_padding ] # set the tick spacing axes.set_yticks(y_ticks) # label each group (each cluster along the y axes) # with the names of the benchmarks we ran axes.set_yticklabels(benchmark_names) # set the visual limits so we have good spacing axes.set_ylim(y_limits) # if we have 2 or more data points, # a legend will help us label it all if (num_data_points > 1): # a proper legend for each name in data_point_names legend_texts = [ (data_point_name[0] + ('- lower=good' if data_point_name[1] else 'higher=good') for data_point_name in data_point_names) ] # retrieve the color/shape of the bar as a reference so we can construct bar_style_references = [bar[0] for bar in bars] # make legend axes.legend(bar_style_references, legend_texts) axes.set_xlabel('measured in ' + xscale[1]) else: # no need to put a legend, it's basically fine as-is data_point_name = data_point_names[0] legend_text = (data_point_name[0], 'lower is better' if data_point_name[1] else 'higher is better') axes.set_xlabel(legend_text[0] + ' measured in ' + xscale[1] + ' - ' + legend_text[1]) # set the benchmark name, typically derived from the file name axes.set_title(figure_name) # get a nice, clean layout figures.tight_layout() # make sure to adjust top and bottoms figures.subplots_adjust(bottom=0.2) return figures, axes def main(): parser = argparse.ArgumentParser( description= 'Generate graphs from a Google-Benchmark compatible json/csv listing of data' ) parser.add_argument( '-i', '--input', nargs='?', default='../results/fresh/bit_benchmarks_sources.json', type=argparse.FileType('r')) parser.add_argument('-o', '--output_dir', nargs='?') args = parser.parse_args() if not args.output_dir: directoryname, filename = os.path.split(args.input) args.output_dir = directoryname random.seed(1782905257495843795) jinfo = json.load(args.input) info: analysis_info = parse_json_info(None, args.input.name, jinfo) for fname in [s.file_name for s in info.sources]: with open(fname, "r") as source_json_file: j = json.load(source_json_file) benchmarks = parse_json(benchmarks, j, info) # we are okay to draw # draw for each category for benchmarks_key in benchmarks: b = benchmarks[benchmarks_key] category = benchmarks_key if category == None or len(category) < 1: category = name benchmark_name = category.replace("_measure", "").replace("_", " ").strip() figures, axes = draw_graph(benchmark_name, category, b, data_point_names, clock_time_scales) # save drawn figures save_name = benchmark_name savetarget = os.path.join(args.output_dir, save_name + '.png') print("Saving graph: {} (to '{}')".format(save_name, savetarget)) plt.savefig(savetarget, format='png') plt.close(figures)
import sys import os sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), '..')) # append the MIALab root directory to Python path import SimpleITK as sitk import pymia.filtering.filter as fltr import pymia.filtering.registration as fltr_reg import mialab.data.structure as structure import mialab.utilities.file_access_utilities as futil import exercise.helper as helper def collect_image_paths(data_dir): image_keys = [structure.BrainImageTypes.T1w, structure.BrainImageTypes.GroundTruth] class MyFilePathGenerator(futil.FilePathGenerator): @staticmethod def get_full_file_path(id_: str, root_dir: str, file_key, file_extension: str) -> str: if file_key == structure.BrainImageTypes.T1w: file_name = 'T1native' elif file_key == structure.BrainImageTypes.GroundTruth: file_name = 'labels_native' else: raise ValueError('Unknown key') return os.path.join(root_dir, file_name + file_extension) dir_filter = futil.DataDirectoryFilter() # todo: create an instance of futil.FileSystemDataCrawler and pass the correpsonding arguments crawler = futil.FileSystemDataCrawler(data_dir, image_keys, MyFilePathGenerator, dir_filter) # todo: modify here return crawler def load_images(image_paths): # todo: read the images (T1 as sitk.sitkFloat32, GroundTruth as sitk.sitkUInt8) image_dict = { structure.BrainImageTypes.T1w: sitk.ReadImage(image_paths.get(structure.BrainImageTypes.T1w), sitk.sitkFloat32), # todo: modify here structure.BrainImageTypes.GroundTruth: sitk.ReadImage(image_paths.get(structure.BrainImageTypes.GroundTruth), sitk.sitkUInt8) # todo: modify here } return image_dict def register_images(image_dict, atlas_img): registration = fltr_reg.MultiModalRegistration() registration_params = fltr_reg.MultiModalRegistrationParams(atlas_img) # todo execute the registration with the T1-weighted image and the registration parameters T1w_img = image_dict[structure.BrainImageTypes.T1w] registered_t1 = registration.execute(T1w_img, registration_params) # todo: modify here gt_img = image_dict[structure.BrainImageTypes.GroundTruth] # todo: apply transform to GroundTruth image (gt_img) (hint: sitk.Resample, referenceImage=atlas_img, transform=tegistration.transform, interpolator=sitk.sitkNearestNeighbor registered_gt = sitk.Resample(gt_img, atlas_img, registration.transform, sitk.sitkNearestNeighbor) # todo: modify here return registered_t1, registered_gt def preprocess_filter_rescale_t1(image_dict, new_min_val, new_max_val): class MinMaxRescaleFilterParams(fltr.FilterParams): def __init__(self, min_, max_) -> None: super().__init__() self.min = min_ self.max = max_ class MinMaxRescaleFilter(fltr.Filter): def execute(self, img: sitk.Image, params: MinMaxRescaleFilterParams = None) -> sitk.Image: resacaled_img = sitk.RescaleIntensity(img, params.min, params.max) return resacaled_img # todo: use the above filter and parameters to get the rescaled T1-weighted image filter = MinMaxRescaleFilter() # todo: modify here filter_params = MinMaxRescaleFilterParams(new_min_val, new_max_val) # todo: modify here T1w_img = image_dict[structure.BrainImageTypes.T1w] minmax_rescaled_img = filter.execute(T1w_img, filter_params) # todo: modify here return minmax_rescaled_img def extract_feature_median_t1(image_dict): class MedianFilter(fltr.Filter): def execute(self, img: sitk.Image, params: fltr.FilterParams = None) -> sitk.Image: med_img = sitk.Median(img) return med_img # todo: use the above filter class to get the median image feature of the T1-weighted image filter = MedianFilter() # todo: modify here T1w_img = image_dict[structure.BrainImageTypes.T1w] median_img = filter.execute(T1w_img) # todo: modify here return median_img # --- DO NOT CHANGE if __name__ == '__main__': callback = helper.TestCallback() callback.start('Pipeline') callback.start_test('collect_image_paths') crawler = collect_image_paths('../data/exercise/') if isinstance(crawler, futil.FileSystemDataCrawler): image_paths = crawler.data subjectx_paths = image_paths.get('subjectX') # only consider subjectX identifier = subjectx_paths.pop('subjectX', '') collect_ok = identifier.endswith('subjectX') and structure.BrainImageTypes.GroundTruth in subjectx_paths \ and structure.BrainImageTypes.T1w in subjectx_paths else: collect_ok = False subjectx_paths = None # for load_images callback.end_test(collect_ok) callback.start_test('load_images') if isinstance(subjectx_paths, dict): subjectx_images = load_images(subjectx_paths) load_ok = isinstance(subjectx_images, dict) and all(isinstance(img, sitk.Image) for img in subjectx_images.values()) else: load_ok = False subjectx_images = None # for preprocess_filter_rescale_t1 callback.end_test(load_ok) callback.start_test('register_images') atlas_img = sitk.ReadImage('../data/exercise/mni_icbm152_t1_tal_nlin_sym_09a.nii.gz') if isinstance(subjectx_paths, dict): registered_img, registered_gt = register_images(subjectx_images, atlas_img) if isinstance(registered_img, sitk.Image) and isinstance(registered_gt, sitk.Image): stats = sitk.LabelStatisticsImageFilter() stats.Execute(registered_img, registered_gt) labels = stats.GetLabels() register_ok = registered_img.GetSize() == registered_gt.GetSize() == (197, 233, 189) and labels == tuple(range(6)) else: register_ok = False else: register_ok = False callback.end_test(register_ok) callback.start_test('preprocess_filter_rescale_t1') if isinstance(subjectx_images, dict): pre_rescale = preprocess_filter_rescale_t1(subjectx_images, -3, 101) if isinstance(pre_rescale, sitk.Image): min_max = sitk.MinimumMaximumImageFilter() min_max.Execute(pre_rescale) pre_ok = min_max.GetMinimum() == -3 and min_max.GetMaximum() == 101 else: pre_ok = False else: pre_ok = False callback.end_test(pre_ok) callback.start_test('extract_feature_median_t1') if isinstance(subjectx_images, dict): median_img = extract_feature_median_t1(subjectx_images) if isinstance(median_img, sitk.Image): median_ref = sitk.ReadImage('../data/exercise/subjectX/T1med.nii.gz') min_max = sitk.MinimumMaximumImageFilter() min_max.Execute(median_img - median_ref) median_ok = min_max.GetMinimum() == 0 and min_max.GetMaximum() == 0 else: median_ok = False else: median_ok = False callback.end_test(median_ok) callback.end()
from osiris.base.environments import env def example(): value = env.get_property("sys.aws.region_name") print(value) if __name__ == '__main__': example()
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-10-27 15:45 from __future__ import unicode_literals from django.conf import settings import django.contrib.auth.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='Contato', fields=[ ('user_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL)), ('nome', models.CharField(max_length=30)), ('telefone', models.CharField(max_length=15)), ('celular', models.CharField(max_length=15)), ('cidade', models.CharField(blank=True, max_length=20)), ], options={ 'abstract': False, }, bases=('users.user',), managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Contrato', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('vagas', models.IntegerField(null=True)), ('valor', models.FloatField(max_length=10)), ('descricao', models.TextField(max_length=1000)), ], ), migrations.CreateModel( name='Empresa', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome', models.CharField(max_length=30)), ('telefone', models.CharField(max_length=30)), ('endereco', models.CharField(max_length=150)), ('cidade', models.CharField(max_length=150)), ], ), migrations.CreateModel( name='EstagioNegociacao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('estagio', models.CharField(max_length=100)), ('descricao', models.CharField(max_length=200)), ], ), migrations.AddField( model_name='contrato', name='empresa', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='comercial.Empresa'), ), migrations.AddField( model_name='contrato', name='estagio', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='comercial.EstagioNegociacao'), ), migrations.AddField( model_name='contato', name='empresa', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='comercial.Empresa'), ), ]
import os import numpy as np from PIL import Image import torch import torchvision import torchvision.datasets from torchvision import transforms from torch.utils.data import Dataset from torch.utils.data import DataLoader, Dataset, Sampler class LT_Dataset(Dataset): num_classes = 365 def __init__(self, root, txt, transform=None): self.img_path = [] self.targets = [] self.transform = transform with open(txt) as f: for line in f: self.img_path.append(os.path.join(root, line.split()[0])) self.targets.append(int(line.split()[1])) cls_num_list_old = [np.sum(np.array(self.targets) == i) for i in range(self.num_classes)] # generate class_map: class index sort by num (descending) sorted_classes = np.argsort(-np.array(cls_num_list_old)) self.class_map = [0 for i in range(self.num_classes)] for i in range(self.num_classes): self.class_map[sorted_classes[i]] = i self.targets = np.array(self.class_map)[self.targets].tolist() self.class_data = [[] for i in range(self.num_classes)] for i in range(len(self.targets)): j = self.targets[i] self.class_data[j].append(i) self.cls_num_list = [np.sum(np.array(self.targets)==i) for i in range(self.num_classes)] def __len__(self): return len(self.targets) def __getitem__(self, index): path = self.img_path[index] target = self.targets[index] with open(path, 'rb') as f: sample = Image.open(f).convert('RGB') if self.transform is not None: sample = self.transform(sample) return sample, target class LT_Dataset_Eval(Dataset): num_classes = 365 def __init__(self, root, txt, class_map, transform=None): self.img_path = [] self.targets = [] self.transform = transform self.class_map = class_map with open(txt) as f: for line in f: self.img_path.append(os.path.join(root, line.split()[0])) self.targets.append(int(line.split()[1])) self.targets = np.array(self.class_map)[self.targets].tolist() def __len__(self): return len(self.targets) def __getitem__(self, index): path = self.img_path[index] target = self.targets[index] with open(path, 'rb') as f: sample = Image.open(f).convert('RGB') if self.transform is not None: sample = self.transform(sample) return sample, target class Places_LT(DataLoader): def __init__(self, data_dir="", batch_size=60, num_workers=40, training=True, train_txt = "./data_txt/Places_LT_v2/Places_LT_train.txt", eval_txt = "./data_txt/Places_LT_v2/Places_LT_val.txt", test_txt = "./data_txt/Places_LT_v2/Places_LT_test.txt"): self.num_workers = num_workers self.batch_size= batch_size normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform_train = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0), transforms.ToTensor(), normalize, ]) transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ]) train_dataset = LT_Dataset(data_dir, train_txt, transform=transform_train) if training: dataset = LT_Dataset(data_dir, train_txt, transform=transform_train) eval_dataset = LT_Dataset_Eval(data_dir, eval_txt, transform=transform_test, class_map=train_dataset.class_map) else: dataset = LT_Dataset_Eval(data_dir, test_txt, transform=transform_test, class_map=train_dataset.class_map) eval_dataset = None self.dataset = dataset self.eval_dataset = eval_dataset self.cls_num_list = train_dataset.cls_num_list """ self.data = torch.utils.data.DataLoader( self.dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) """ self.init_kwargs = { 'batch_size': batch_size, 'shuffle': True, 'num_workers': num_workers } #super().__init__(dataset=self.data) super().__init__(dataset=self.dataset, **self.init_kwargs) def split_validation(self): # If you do not want to validate: # return None # If you want to validate:\ return DataLoader(dataset=self.eval_dataset, **self.init_kwargs)