content
stringlengths
5
1.05M
from django.core.handlers.wsgi import WSGIHandler import pinax.env # setup the environment for Django and Pinax pinax.env.setup_environ(__file__) # set application for WSGI processing application = WSGIHandler()
from interfaces import DataInterface class Data(DataInterface): def __init__(self) -> None: self.weight: float = 0 def setTotalWeight(self, weight: float) -> None: self.weight = weight def getTotalWeight(self) -> float: return self.weight
import os from setuptools import setup, find_packages setup(name='gelato.admin', version='0.0.1', description='Gelato admin', namespace_packages=['gelato'], long_description='', author='', author_email='', license='', url='', include_package_data=True, packages=find_packages(exclude=['tests']), install_requires=['django', 'tower'])
#!/usr/bin/python import unittest from lib.brainwallet import private_key, public_key from lib.secp256k1 import secp256k1 class AddressTest(unittest.TestCase): phrase = "passphrase" private_key = "1e089e3c5323ad80a90767bdd5907297b4138163f027097fd3bdbeab528d2d68" public_key = "13YXiHAXcR7Ho53aExeHMwWEgHcBaAD7Zk" def test_phrase(self): self.assertTrue(self.phrase) def test_private_key(self): self.assertEqual(self.private_key, private_key(self.phrase)) def test_public_key(self): self.assertEqual(self.public_key, public_key(self.phrase)) if __name__ == '__main__': unittest.main()
from flexx import flx #The Widget class is the base class of all other ui classes. On itself it does not do or show much. What you’ll typically do, is subclass it to create a new widget that contains ui elements class WebPage(flx.Widget): def init(self): flx.Button(text='hello') flx.Button(text='world') app = flx.App(WebPage) app.export('renders/hello_world.html', link=0) #The above is usually not the layout that you want. Therefore there are layout widgets which distribute the space among its children in a more sensible manner class HBox(flx.Widget): def init(self): with flx.HBox(): flx.Button(text='hello', flex=1) flx.Button(text='world', flex=2) app = flx.App(HBox) app.export('renders/hbox.html', link=0) #The HBox and Button are all widgets too. The example widgets that we created above are also refered to as “compound widgets”; widgets that contain other widgets. This is the most used way to create new UI elements
# -*- coding: utf-8 -*- # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to export assets to Google Cloud Storage.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.asset import client_util from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.asset import flags from googlecloudsdk.command_lib.asset import utils as asset_utils from googlecloudsdk.core import log class Export(base.Command): """Export the cloud assets to Google Cloud Storage.""" @staticmethod def Args(parser): flags.AddOrganizationArgs(parser) flags.AddSnapshotTimeArgs(parser) flags.AddAssetTypesArgs(parser) flags.AddContentTypeArgs(parser, required=False) flags.AddOutputPathArgs(parser) def Run(self, args): parent = asset_utils.GetParentName(args.organization, args.project) if parent.startswith('projects'): client = client_util.AssetProjectExportClient(parent) else: client = client_util.AssetOrganizationExportClient(parent) operation = client.Export(args) prefix = self.ReleaseTrack().prefix if prefix: operation_describe_command = 'gcloud {} asset operations describe'.format( prefix) else: operation_describe_command = 'gcloud asset operations describe' log.ExportResource(parent, is_async=True, kind='root asset') log.status.Print( 'Use [{} {}] to check the status of the operation(s).'.format( operation_describe_command, operation.name))
#import IndexerMod import ThreadingMod import threading import time ##MyCraweler.Crawel() ##MyIndexer = IndexerMod.Indexer() ##MyIndexer.StartIndexing() #MyThreads=[] #MyCraweler.Crawel("https://moz.com/top500") #MyCraweler.Crawel("https://www.facebook.com/") #MyCraweler.Crawel("https://www.crummy.com/software/BeautifulSoup/bs4/doc/") #MyCraweler.Crawel("http://wordpress.stackexchange.com/questions/158015/unwanted-crawl-delay-10-line-added-to-my-robots-txt") #MyCraweler.Crawel("https://www.youtube.com/") #MyCraweler.Crawel("http://wordpress.stackexchange.com/questions/158015/unwanted-crawl-delay-10-line-added-to-my-robots-txt") #MyCraweler.Crawel("https://docs.python.org/3/library/re.html") threadLock = threading.Lock() threadLockIndexer = threading.Lock() MyThreads = [] CrawlerThreadNumber = input('Enter number of Crawler threads: ') IndexerThreadNumber = input('Enter number of Indexer threads: ') # Create new threads for i in range(int(CrawlerThreadNumber)): try: MyThreads.append(ThreadingMod.myThread(1, "Thread-"+str(i+1), 1,threadLock,'C')) except: print("Error: unable to start new thread") for i in range(int(IndexerThreadNumber)): try: MyThreads.append(ThreadingMod.myThread(1, "Thread-Indexer-"+str(i+1), 1,threadLockIndexer,'I')) except: print("Error: unable to start new thread") MyThreads.append(ThreadingMod.myThread(1, "Thread-Q Saver", 1,threadLock,'Q')) MyThreads.append(ThreadingMod.myThread(1, "Thread-Indexer Saver", 1,threadLockIndexer,'W')) MyThreads[int(CrawlerThreadNumber) + int(IndexerThreadNumber) ].start() #Start CralwerSaver before the others MyThreads[int(CrawlerThreadNumber) + int(IndexerThreadNumber) + 1].start() #Start IndexerSaver before the others time.sleep(2) #for i in range(int(CrawlerThreadNumber) + int(IndexerThreadNumber) -2): # MyThreads[i].start() for i in MyThreads: if not ((i.name == "Thread-Q Saver") | (i.name == "Thread-Indexer Saver")): i.start() # Wait for all threads to complete for i in MyThreads: i.join() print( "Exiting Main Thread")
import discord # Defining the client that the bot will log in client = discord.Client() @client.event async def on_ready(): # Basic definitions to the entrance of the robot to the network print("BOT ON **") print("Name= {}".format(client.user.name)) print("------------") @client.event async def on_message(message): if message.content.lower().startswith('!bot'): await client.send_message(message.channel, 'Me chamou, <@{}>!?'.format(message.author.id)) if message.content.lower() == '!iamdublador': await client.add_roles(message.author, discord.utils.get(message.server.roles, name="Dublador")) await client.send_message(message.channel, "<@{}> Setei seu cargo como \"Dublador\"!".format(message.author.id)) if message.content.lower() == '!iamdubladora': await client.add_roles(message.author, discord.utils.get(message.server.roles, name="Dubladora")) await client.send_message(message.channel, "<@{}> Setei seu cargo como \"Dubladora\"!".format(message.author.id)) if message.content.lower() == '!iamajudante': await client.send_message(message.server.get_member("235128888458477568"), "Um usuário chamado <@{}> pediu para ser ajudante, se quiser pode analisar o perfil dele, para conversar com ele ou quaisquer atitudes que você queira tomar!".format(message.author.id)) await client.send_message(message.server.get_member("284114889235103745"), "Um usuário chamado <@{}> pediu para ser ajudante, se quiser pode analisar o perfil dele, para conversar com ele ou quaisquer atitudes que você queira tomar!".format(message.author.id)) elif message.content.lower() == '!iamguardiao': await client.send_message(message.server.get_member("235128888458477568"), "Um usuário chamado <@{}> pediu para ser guardião, o ideal é que ele se torne ajudante, mas se quiser pode analisar o perfil dele, para conversar com ele ou quaisquer atitudes que você queira tomar!".format(message.author.id)) await client.send_message(message.server.get_member("284114889235103745"), "Um usuário chamado <@{}> pediu para ser guardião, o ideal é que ele se torne ajudante, mas se quiser pode analisar o perfil dele, para conversar com ele ou quaisquer atitudes que você queira tomar!".format(message.author.id)) if message.content.lower().startswith('!diga'): args = message.content.split(" ") await client.send_message(message.channel, "{}".format(" ".join(args[1:]))) if message.content.lower().startswith("!googleit") or message.content.lower().startswith("!daumgoogle"): args = message.content.split(" ") search = "+".join(args[1:]) await client.send_message(message.channel, 'Aqui está sua pesquisa para "{}"'.format(' '.join(args[1:]))) await client.send_message(message.channel, google_it(search)) if message.content.lower().startswith("!arquivo"): args = message.content.split(" ") await client.send_message(message.channel, "Aqui está seu arquivo:") await client.send_message(message.channel, files("".join(args[1:]))) def google_it(search): default_url = "https://www.google.com.br/search?q=" search = str(search) complete_url = default_url + search return complete_url def files(arg): if str(arg).lower() == "hb1": return "http://download1574.mediafire.com/8q3mr66a40tg/iw2ihaaplursgpm/HIST%C3%93RIA+DETALHADA+DE+GHARTIN+ROBEVINE.odt" else: return "ERRO! ARQUIVO ESPECIFICADO NÃO ENCONTRADO"
import pandas as pd import numpy as np from scipy import stats from scipy.stats import norm import matplotlib.pyplot as plt import seaborn as sns from IPython.display import Markdown, display def printmd(string): display(Markdown(string)) def normality_diagnostic (s, var): fig, ax = plt.subplots(figsize=(16,4)) ax1 = plt.subplot(1,2,1) ax1 = sns.distplot(s, hist = True, fit = norm, kde = True) ax1.set_title('Histogram', fontsize=17) ax1.set_xlabel(var, fontsize=14) ax1.set_ylabel('Distribution', fontsize=14) ax2 = plt.subplot(1,2,2) stats.probplot(s, dist="norm", plot=plt) plt.title('Probability Plot', fontsize=17) plt.xlabel('Theoretical Quantiles', fontsize=14) plt.ylabel('RM Quantiles', fontsize=14) plt.show() def missing_rare_category (df, c, add_missing, add_rare, rare_tol=5): length_df = len(df) if add_missing: df[c] = df[c].fillna('Missing') s = 100*pd.Series(df[c].value_counts() / length_df) s.sort_values(ascending = False, inplace = True) if add_rare: non_rare_label = [ix for ix, perc in s.items() if perc>rare_tol] df[c] = np.where(df[c].isin(non_rare_label), df[c], 'Rare') return df def plot_categories ( df, c, add_missing = False, add_rare = False, rare_tol=5): length_df = len(df) df = missing_rare_category (df, c, add_missing, add_rare, rare_tol=5) plot_df = 100*pd.Series(df[c].value_counts() / length_df) plot_df.sort_values(ascending = False, inplace = True) fig = plt.figure(figsize=(12,4)) ax = plot_df.plot.bar(color = 'royalblue') ax.set_xlabel(c) ax.set_ylabel('Percentage') ax.axhline(y=rare_tol, color = 'red') plt.show() def plot_categories_with_target ( df, c, target, rare_tol=5): plot_df = calculate_mean_target_per_category (df, c, target) #plot_df.reset_index(drop = True, inplace=True) fig, ax = plt.subplots(figsize=(12,4)) plt.xticks(plot_df.index, plot_df[c], rotation = 90) ax.bar(plot_df.index, plot_df['perc'], align = 'center', color = 'lightgrey') ax2 = ax.twinx() ax2.plot(plot_df.index, plot_df[target], color = 'green') ax.axhline(y=rare_tol, color = 'red') ax.set_xlabel(c) ax.set_ylabel('Percentage Distribution') ax2.set_ylabel('Mean Target Value') plt.show() def get_plot_df(eda_df, var, target): """ Useful for classification type """ plot_df = pd.crosstab(eda_df[var], eda_df[target]) #print(plot_df.index) plot_df = plot_df.reset_index() plot_df.rename(columns={0:'target_0', 1:'target_1'}, inplace=True) plot_df['total'] = plot_df['target_0'] + plot_df['target_1'] plot_df['total_perc'] = 100*plot_df['total']/sum(plot_df['total']) plot_df['target_1_perc_overall'] = 100*plot_df['target_1']/sum(plot_df['target_1']) plot_df['target_1_perc_within'] = 100*plot_df['target_1']/( plot_df['target_0'] + plot_df['target_1']) plot_df.sort_values(by = 'total_perc', ascending = False, inplace = True, ignore_index = True) return plot_df def plot_categories_overall_eventrate(plot_df, var, target, cat_order, title=None, rare_tol1 = None, rare_tol2 = None): if len(plot_df)>15: text_x = plot_df.index[-4] elif len(plot_df)>8: text_x = plot_df.index[-3] else: text_x = plot_df.index[-2] fig, ax = plt.subplots(figsize=(14,4)) plt.xticks(plot_df.index, cat_order, rotation = 90) #ax.bar(plot_df.index, plot_df['total_perc'], align = 'center', color = 'lightgrey') ax = sns.barplot(data=plot_df, x=var, y='total_perc',order =cat_order, color ='lightgrey') ax2 = ax.twinx() ax2 = sns.pointplot(data = plot_df, x=var, y='target_1_perc_overall', order = cat_order, color='black') if title: ax.set_title(title, fontsize=17) else: ax.set_title(f'Event rate of target ({target}) across all categories of variable ({var}) Bins', fontsize=17) ax2.set_ylabel("Perc of Events within Category", fontsize=14) #ax.set_xlabel(var, fontsize=14) ax.set_ylabel('Perc of Categories', fontsize=14) ax2.set_ylabel("Perc of Events across all Categories", fontsize=14) hline1 = round(plot_df['target_1_perc_overall'].mean(),1) ax2.axhline(y=hline1, color = 'blue', alpha=0.4) # add text for horizontal line ax2.text(text_x, hline1+0.01, "Avg Event Rate (overall): "+str(hline1)+'%', fontdict = {'size': 8, 'color':'blue'}) # add text for bar plot and point plot for pt in range(0, plot_df.shape[0]): ax.text(plot_df.index[pt]-0.04, plot_df.total_perc[pt]+0.04, str(round(plot_df.total_perc[pt],1))+'%', fontdict = {'size': 8, 'color':'grey'}) ax2.text(plot_df.index[pt]+0.05, plot_df.target_1_perc_overall[pt], str(round(plot_df.target_1_perc_overall[pt],1))+'%', fontdict = {'size': 8, 'color':'black'}) if rare_tol1: ax.axhline(y=rare_tol1, color = 'red', alpha=0.5) # add text for rare line ax.text(0, rare_tol1, "Rare Tol: "+str(rare_tol1)+'%', fontdict = {'size': 8, 'color':'red'}) if rare_tol2: ax.axhline(y=rare_tol2, color = 'darkred', alpha=0.5) # add text for rare line ax.text(0, rare_tol2, "Rare Tol: "+str(rare_tol2)+'%', fontdict = {'size': 8, 'color':'darkred'}) plt.show() def plot_categories_within_eventrate(plot_df, var, target, cat_order, title = None, rare_tol1=None, rare_tol2=None): if len(plot_df)>15: text_x = plot_df.index[-4] elif len(plot_df)>8: text_x = plot_df.index[-3] else: text_x = plot_df.index[-2] fig, ax = plt.subplots(figsize=(14,4)) plt.xticks(plot_df.index, cat_order, rotation = 90) #ax.bar(plot_df.index, plot_df['total_perc'], align = 'center', color = 'lightgrey') ax = sns.barplot(data=plot_df, x=var, y='total_perc',order =cat_order, color ='lightgrey') ax2 = ax.twinx() ax2 = sns.pointplot(data = plot_df, x=var, y='target_1_perc_within', order = cat_order, color='green') if title: ax.set_title(title, fontsize=17) else: ax.set_title(f'Event Rate of target ({target}) within each category of variable ({var}) Bins', fontsize=17) ax2.set_ylabel("Perc of Events within Category", fontsize=14) #ax.set_xlabel(var, fontsize=14) ax.set_ylabel('Perc of Categories', fontsize=14) hline2 = round(plot_df['target_1_perc_within'].mean(),1) ax2.axhline(y=hline2, color = 'magenta', alpha=0.4) # add text for horizontal line ax2.text(text_x, hline2+0.01, "Avg Event Rate (within): "+str(hline2)+'%', fontdict = {'size': 8, 'color':'magenta'}) # add text for bar plot and point plot for pt in range(0, plot_df.shape[0]): ax.text(plot_df.index[pt]-0.04, plot_df.total_perc[pt]+0.04, str(round(plot_df.total_perc[pt],1))+'%', fontdict = {'size': 8, 'color':'grey'}) ax2.text(plot_df.index[pt]+0.05, plot_df.target_1_perc_within[pt], str(round(plot_df.target_1_perc_within[pt],1))+'%', fontdict = {'size': 8, 'color':'green'}) if rare_tol1: ax.axhline(y=rare_tol1, color = 'red', alpha=0.5) # add text for rare line ax.text(0, rare_tol1, "Rare Tol: "+str(rare_tol1)+'%', fontdict = {'size': 8, 'color':'red'}) if rare_tol2: ax.axhline(y=rare_tol2, color = 'darkred', alpha=0.5) # add text for rare line ax.text(0, rare_tol2, "Rare Tol: "+str(rare_tol2)+'%', fontdict = {'size': 8, 'color':'darkred'}) plt.show() ''' def calculate_mean_target_per_category (df, c, target): length_df = len(df) temp = pd.DataFrame(df[c].value_counts()/length_df) temp = pd.concat([temp, pd.DataFrame(df.groupby(c)[target].mean())], axis=1) temp.columns = ['perc', target] temp.reset_index(inplace=True) temp.sort_values(by='perc', ascending = False, inplace=True) return temp ''' def calculate_mean_target_per_category (df, c, target): length_df = len(df) data = {'count' : df[c].value_counts(), 'perc' : 100*df[c].value_counts()/length_df} temp = pd.DataFrame(data) temp = pd.concat([temp, pd.DataFrame(df.groupby(c)[target].mean())], axis=1) temp.reset_index(inplace=True) temp.columns = [c, 'count', 'perc', target] temp.sort_values(by='perc', ascending = False, inplace=True) return temp def plot_target_with_categories (df, c, target): fig = plt.figure(figsize=(12,6)) for cat in df[c].unique(): df[df[c]==cat][target].plot(kind = 'kde', label = cat) plt.xlabel(f'Distribution of {target}') plt.legend(loc='best') plt.show() def display_all(df): with pd.option_context('display.max_rows', 1000, 'display.max_columns', 1000): display(df) def rare_encoding(df, variables, rare_tol = 0.05): for var in variables: s = df[var].value_counts()/len(df[var]) non_rare_labels = [cat for cat, perc in s.items() if perc >=rare_tol] df[var] = np.where(df[var].isin(non_rare_labels), df[var], 'Rare') return df def reduce_memory_usage(df, convert_to_category = False): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. WARNING! THIS CAN DAMAGE THE DATA From kernel https://www.kaggle.com/gemartin/load-data-reduce-memory-usage Parameter: ---------- df : dataframe which needs to be optimized convert_to_category : 'True' , 'False'. (default value = False) If true it will convert all 'object' type variables as category type. Returns: -------- df : returns the reduced dataframe """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: if convert_to_category == True: df[col] = df[col].astype('category') else: None end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df
from torch import nn from torchvision.models.resnet import ResNet from torchvision.models.resnet import BasicBlock from torchvision.models.resnet import Bottleneck from pretrainedmodels.models.torchvision_models import pretrained_settings from .attention_modules.cbam import CBAM from .attention_modules.bam import BAM def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) class CBAMBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(CBAMBasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride self.cbam = CBAM( planes, 16 ) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) if not self.cbam is None: out = self.cbam(out) out += residual out = self.relu(out) return out class CBAMBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(CBAMBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.cbam = CBAM( planes * 4, 16 ) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) if not self.cbam is None: out = self.cbam(out) out += residual out = self.relu(out) return out class CBAMResNetEncoder(ResNet): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pretrained = False self.bam1 = BAM(64* (kwargs["block"].expansion)) self.bam2 = BAM(128* (kwargs["block"].expansion)) self.bam3 = BAM(256* (kwargs["block"].expansion)) del self.fc def forward(self, x): x0 = self.conv1(x) x0 = self.bn1(x0) x0 = self.relu(x0) x1 = self.maxpool(x0) x1 = self.layer1(x1) x1 = self.bam1(x1) x2 = self.layer2(x1) x2 = self.bam2(x2) x3 = self.layer3(x2) x3 = self.bam3(x3) x4 = self.layer4(x3) return [x4, x3, x2, x1, x0] def load_state_dict(self, state_dict, **kwargs): state_dict.pop('fc.bias') state_dict.pop('fc.weight') super().load_state_dict(state_dict, **kwargs) cbam_resnet_encoders = { 'cbam_resnet18': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (512, 256, 128, 64, 64), 'params': { 'block': CBAMBasicBlock, 'layers': [2, 2, 2, 2], }, }, 'cbam_resnet34': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (512, 256, 128, 64, 64), 'params': { 'block': CBAMBasicBlock, 'layers': [3, 4, 6, 3], }, }, 'cbam_resnet50': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 6, 3], }, }, 'cbam_resnet101': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 23, 3], }, }, 'cbam_resnet152': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 8, 36, 3], }, }, 'cbam_resnext50_32x4d': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': Bottleneck, 'layers': [3, 4, 6, 3], 'groups': 32, 'width_per_group': 4 }, }, 'cbam_resnext101_32x8d': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 23, 3], 'groups': 32, 'width_per_group': 8 }, }, 'cbam_resnext101_32x16d': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 23, 3], 'groups': 32, 'width_per_group': 16 }, }, 'cbam_resnext101_32x32d': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 23, 3], 'groups': 32, 'width_per_group': 32 }, }, 'cbam_resnext101_32x48d': { 'encoder': CBAMResNetEncoder, 'pretrained_settings': None, 'out_shapes': (2048, 1024, 512, 256, 64), 'params': { 'block': CBAMBottleneck, 'layers': [3, 4, 23, 3], 'groups': 32, 'width_per_group': 48 }, } }
# Master version for Pillow __version__ = '5.2.0'
from thesis_util.thesis_util import eval_experiment from thesis_util.thesis_util import create_eval_recon_imgs,create_eval_random_sample_imgs # load results for spatial VAE with latent space 3x3x9 # Pathes and names pathes_2_experiments = [r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_06_25AM on November 25, 2019', r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_07_24PM on November 25, 2019', r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_12_05AM on November 25, 2019', r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_12_49PM on November 25, 2019'] save_directory = r'C:\Users\ga45tis\GIT\masterthesisgeneral\latex\900 Report\images\experiments\VQVAE\\' model_name = 'VQVAE_adpt' title=r'$\textrm{VQ-VAE}_{adpt}$' #title='titletest' sample_img_path = r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_06_25AM on November 25, 2019\imgs\generated_sample_epoch_300.png' recon_test_img_path = r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_06_25AM on November 25, 2019\imgs\recon_test_epoch_292.png' recon_train_img_path = r'C:\Users\ga45tis\GIT\mastherthesiseval\experiments\VQVAEadapt_06_25AM on November 25, 2019\imgs\recon_train_epoch_256.png' eval_experiment(save_directory=save_directory,model_name=model_name,pathes_2_experiments=pathes_2_experiments, title=title,sample_img_path=sample_img_path,recon_test_img_path=recon_test_img_path,recon_train_img_path=recon_train_img_path) prefix_4include = r"images/experiments/VQVAE/" # create for test data title_test = title+ " - Reconstructions of Test Data" pdf_file_name = 'recon_test_' + model_name create_eval_recon_imgs(recon_img_path=recon_test_img_path,title=title_test,pdf_file_name=pdf_file_name,save_directory=save_directory,prefix_4include=prefix_4include) # create for train data title_train = title + " - Reconstructions of Training Data" pdf_file_name = 'recon_train_' + model_name create_eval_recon_imgs(recon_img_path=recon_train_img_path,title=title_train,pdf_file_name=pdf_file_name,save_directory=save_directory,prefix_4include=prefix_4include) # create random samples image title_random_samples = title + " - Random Generated Samples" pdf_file_name = 'random_generated_' + model_name create_eval_random_sample_imgs(recon_img_path=sample_img_path, title=title_random_samples, pdf_file_name=pdf_file_name, save_directory=save_directory,prefix_4include=prefix_4include)
def f(<caret>x): pass
# Question 2 # Count number 4 in a list list1 = [1, 2, 10, 4, 3, 4, 4, 4, 1, 3, 5] x = 0 for i in range(len(list1)): if list1[i] == 4: x += 1 print("Number of 4 in the list:", x)
# -*- coding: utf-8 -*- import os import numpy as np import numpy.testing as npt import pytest from numpy import genfromtxt import roomacoustics.dsp as dsp test_data_path = os.path.join(os.path.dirname(__file__), 'test_data') def test_start_ir_insufficient_snr(): n_samples = 2**9 ir = np.zeros(n_samples, dtype=np.double) ir[20] = 1 snr = 15 noise = np.random.randn(n_samples) noise = noise / np.sqrt(np.mean(np.abs(noise**2))) * 10**(-snr/20) ir_noise = ir + noise with pytest.raises(ValueError): dsp.find_impulse_response_start(ir_noise) def test_start_ir(): n_samples = 2**10 ir = np.zeros(n_samples) snr = 60 noise = np.random.randn(n_samples) * 10**(-snr/20) start_sample = 24 ir[start_sample] = 1 start_sample_est = dsp.find_impulse_response_start(ir) assert start_sample_est == start_sample - 1 ir_awgn = ir + noise start_sample_est = dsp.find_impulse_response_start(ir_awgn) assert start_sample_est == start_sample - 1 def test_start_ir_thresh(): n_samples = 2**10 ir = np.zeros(n_samples) start_sample = 24 ir[start_sample] = 1 ir[start_sample-4:start_sample] = 10**(-5/10) start_sample_est = dsp.find_impulse_response_start(ir, threshold=20) assert start_sample_est == start_sample - 4 - 1 def test_start_ir_multidim(): n_samples = 2**10 n_channels = 3 ir = np.zeros((n_channels, n_samples)) snr = 60 noise = np.random.randn(n_channels, n_samples) * 10**(-snr/20) start_sample = [24, 5, 43] ir[[0, 1, 2], start_sample] = 1 ir_awgn = ir + noise start_sample_est = dsp.find_impulse_response_start(ir_awgn) npt.assert_allclose(start_sample_est, np.array(start_sample) - 1) ir = np.zeros((2, n_channels, n_samples)) noise = np.random.randn(2, n_channels, n_samples) * 10**(-snr/20) start_sample_1 = [24, 5, 43] ir[0, [0, 1, 2], start_sample_1] = 1 start_sample_2 = [14, 12, 16] ir[1, [0, 1, 2], start_sample_2] = 1 start_samples = np.vstack((start_sample_1, start_sample_2)) ir_awgn = ir + noise start_sample_est = dsp.find_impulse_response_start(ir_awgn) npt.assert_allclose(start_sample_est, start_samples - 1) def test_time_shift_right(): shift_samples = 10 n_samples = 2**9 ir = np.zeros(n_samples, dtype=np.double) ir[20] = 1 ir_truth = np.zeros(n_samples, dtype=np.double) ir_truth[20+shift_samples] = 1 ir_shifted = dsp.time_shift(ir, shift_samples) npt.assert_allclose(ir_shifted, ir_truth) def test_time_shift_left(): shift_samples = 10 n_samples = 2**9 ir = np.zeros(n_samples, dtype=np.double) ir[20] = 1 ir_truth = np.zeros(n_samples, dtype=np.double) ir_truth[20-shift_samples] = 1 ir_shifted = dsp.time_shift(ir, -shift_samples) npt.assert_allclose(ir_shifted, ir_truth) def test_time_shift_non_circular_right(): shift_samples = 10 n_samples = 2**9 ir = np.zeros(n_samples, dtype=np.double) ir[20] = 1 ir_truth = np.zeros(n_samples, dtype=np.double) ir_truth[20+shift_samples] = 1 ir_truth[:shift_samples] = np.nan ir_shifted = dsp.time_shift(ir, shift_samples, circular_shift=False) npt.assert_allclose(ir_shifted, ir_truth, equal_nan=True) def test_time_shift_non_circular_left(): shift_samples = 10 n_samples = 2**9 ir = np.zeros(n_samples, dtype=np.double) ir[20] = 1 ir_truth = np.zeros(n_samples, dtype=np.double) ir_truth[20-shift_samples] = 1 ir_truth[n_samples-shift_samples:] = np.nan ir_shifted = dsp.time_shift(ir, -shift_samples, circular_shift=False) npt.assert_allclose(ir_shifted, ir_truth, equal_nan=True) def test_time_shift_multitim(): shift_samples = 10 n_samples = 2**10 n_channels = 3 ir = np.zeros((n_channels, n_samples)) start_sample = [24, 5, 43] ir[[0, 1, 2], start_sample] = 1 ir_truth = np.zeros((n_channels, n_samples), dtype=np.double) start_sample_truth = [24+shift_samples, 5+shift_samples, 43+shift_samples] ir_truth[[0, 1, 2], start_sample_truth] = 1 ir_shifted = dsp.time_shift(ir, shift_samples) npt.assert_allclose(ir_shifted, ir_truth) ir_truth = np.zeros((n_channels, n_samples), dtype=np.double) start_sample_truth = [24-shift_samples, 5-shift_samples, 43-shift_samples] ir_truth[[0, 1, 2], start_sample_truth] = 1 ir_shifted = dsp.time_shift(ir, -shift_samples) npt.assert_allclose(ir_shifted, ir_truth) def test_time_shift_multitim_multishift(): shift_samples = [10, 2, 4] n_samples = 40 n_channels = 3 ir = np.zeros((n_channels, n_samples), dtype=np.double) start_sample = [24, 5, 13] ir[[0, 1, 2], start_sample] = 1 ir_truth = np.zeros((n_channels, n_samples), dtype=np.double) start_sample_truth = [ 24+shift_samples[0], 5+shift_samples[1], 13+shift_samples[2]] ir_truth[[0, 1, 2], start_sample_truth] = 1 ir_shifted = dsp.time_shift(ir, shift_samples) npt.assert_allclose(ir_shifted, ir_truth) ir_truth = np.zeros((n_channels, n_samples), dtype=np.double) start_sample_truth = [ 24-shift_samples[0], 5-shift_samples[1], 13-shift_samples[2]] ir_truth[[0, 1, 2], start_sample_truth] = 1 ir_shifted = dsp.time_shift(ir, -np.array(shift_samples, dtype=np.int)) npt.assert_allclose(ir_shifted, ir_truth) def test_start_room_impulse_response(): rir = genfromtxt( os.path.join(test_data_path, 'analytic_rir_psnr50_1D.csv'), delimiter=',') actual = dsp.find_impulse_response_start(rir, threshold=20) expected = 0 npt.assert_allclose(actual, expected) def test_start_room_impulse_response_shfted(monkeypatch): rir = genfromtxt( os.path.join(test_data_path, 'analytic_rir_psnr50_1D.csv'), delimiter=',') rir_shifted = np.roll(rir, 128, axis=-1) actual = dsp.find_impulse_response_start(rir_shifted, threshold=20) expected = 128 npt.assert_allclose(actual, expected) def test_start_ir_thresh_invalid(): n_samples = 2**10 ir = np.zeros(n_samples) start_sample = 24 ir[start_sample] = 1 # ir[start_sample-4:start_sample] = 10**(-10/10) ir[0:start_sample] = 10**(-5/10) start_sample_est = dsp.find_impulse_response_start(ir, threshold=20) assert start_sample_est == 0 def test_start_ir_thresh_invalid_osci(): n_samples = 2**10 ir = np.zeros(n_samples) start_sample = 24 ir[start_sample] = 1 ir[start_sample-4:start_sample] = 10**(-30/10) ir[0:start_sample-4] = 10**(-5/10) start_sample_est = dsp.find_impulse_response_start(ir, threshold=20) assert start_sample_est == 0 def test_max_ir(): n_samples = 2**10 ir = np.zeros(n_samples) snr = 60 noise = np.random.randn(n_samples) * 10**(-snr/20) start_sample = 24 ir[start_sample] = 1 start_sample_est = dsp.find_impulse_response_maximum(ir) assert start_sample_est == start_sample ir_awgn = ir + noise start_sample_est = dsp.find_impulse_response_maximum(ir_awgn) assert start_sample_est == start_sample
import datetime from dataclasses import dataclass import sqlalchemy as sa import sqlalchemy.orm as orm from data.models.modelbase import SqlAlchemyBase, UniqueMixin @dataclass class User(UniqueMixin, SqlAlchemyBase): __tablename__ = 'users' id: int = sa.Column(sa.Integer, primary_key=True, autoincrement=True) # Hash of unique user, calculated by 3rd party service hash_id: str = sa.Column( sa.String, nullable=False, unique=True, index=True) sync_id: int = sa.Column( sa.Integer, sa.ForeignKey('syncs.id'), nullable=False, index=True) # 1st amd 2nd user name, from 3rd party service (duplication are possible, # cause supposed 3rd party service generated it based on additional info) name: str = sa.Column(sa.String, nullable=False, index=True) created_date: datetime.datetime = sa.Column( sa.DateTime, default=datetime.datetime.utcnow) updated_date: datetime.datetime = sa.Column(sa.DateTime, nullable=True) sync = orm.relationship('Sync') @classmethod def unique_hash(cls, hash_id): return hash_id @classmethod def unique_filter(cls, query, hash_id): return query.filter(User.hash_id == hash_id)
"""Built-in weight initializers. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from . import backend as K from .utils.generic_utils import serialize_keras_object from .utils.generic_utils import deserialize_keras_object class Initializer(object): """Initializer base class: all initializers inherit from this class. """ def __call__(self, shape, dtype=None): raise NotImplementedError def get_config(self): return {} @classmethod def from_config(cls, config): if 'dtype' in config: # Initializers saved from `tf.keras` # may contain an unused `dtype` argument. config.pop('dtype') return cls(**config) class Zeros(Initializer): """Initializer that generates tensors initialized to 0. """ def __call__(self, shape, dtype=None): return K.constant(0, shape=shape, dtype=dtype) class Ones(Initializer): """Initializer that generates tensors initialized to 1. """ def __call__(self, shape, dtype=None): return K.constant(1, shape=shape, dtype=dtype) class Constant(Initializer): """Initializer that generates tensors initialized to a constant value. # Arguments value: float; the value of the generator tensors. """ def __init__(self, value=0): self.value = value def __call__(self, shape, dtype=None): return K.constant(self.value, shape=shape, dtype=dtype) def get_config(self): return {'value': self.value} class RandomNormal(Initializer): """Initializer that generates tensors with a normal distribution. # Arguments mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random generator. """ def __init__(self, mean=0., stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed def __call__(self, shape, dtype=None): x = K.random_normal(shape, self.mean, self.stddev, dtype=dtype, seed=self.seed) if self.seed is not None: self.seed += 1 return x def get_config(self): return { 'mean': self.mean, 'stddev': self.stddev, 'seed': self.seed } class RandomUniform(Initializer): """Initializer that generates tensors with a uniform distribution. # Arguments minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed: A Python integer. Used to seed the random generator. """ def __init__(self, minval=-0.05, maxval=0.05, seed=None): self.minval = minval self.maxval = maxval self.seed = seed def __call__(self, shape, dtype=None): x = K.random_uniform(shape, self.minval, self.maxval, dtype=dtype, seed=self.seed) if self.seed is not None: self.seed += 1 return x def get_config(self): return { 'minval': self.minval, 'maxval': self.maxval, 'seed': self.seed, } class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. These values are similar to values from a `RandomNormal` except that values more than two standard deviations from the mean are discarded and redrawn. This is the recommended initializer for neural network weights and filters. # Arguments mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to seed the random generator. """ def __init__(self, mean=0., stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed def __call__(self, shape, dtype=None): x = K.truncated_normal(shape, self.mean, self.stddev, dtype=dtype, seed=self.seed) if self.seed is not None: self.seed += 1 return x def get_config(self): return { 'mean': self.mean, 'stddev': self.stddev, 'seed': self.seed } class VarianceScaling(Initializer): """Initializer capable of adapting its scale to the shape of weights. With `distribution="normal"`, samples are drawn from a truncated normal distribution centered on zero, with `stddev = sqrt(scale / n)` where n is: - number of input units in the weight tensor, if mode = "fan_in" - number of output units, if mode = "fan_out" - average of the numbers of input and output units, if mode = "fan_avg" With `distribution="uniform"`, samples are drawn from a uniform distribution within [-limit, limit], with `limit = sqrt(3 * scale / n)`. # Arguments scale: Scaling factor (positive float). mode: One of "fan_in", "fan_out", "fan_avg". distribution: Random distribution to use. One of "normal", "uniform". seed: A Python integer. Used to seed the random generator. # Raises ValueError: In case of an invalid value for the "scale", mode" or "distribution" arguments. """ def __init__(self, scale=1.0, mode='fan_in', distribution='normal', seed=None): if scale <= 0.: raise ValueError('`scale` must be a positive float. Got:', scale) mode = mode.lower() if mode not in {'fan_in', 'fan_out', 'fan_avg'}: raise ValueError('Invalid `mode` argument: ' 'expected on of {"fan_in", "fan_out", "fan_avg"} ' 'but got', mode) distribution = distribution.lower() if distribution not in {'normal', 'uniform'}: raise ValueError('Invalid `distribution` argument: ' 'expected one of {"normal", "uniform"} ' 'but got', distribution) self.scale = scale self.mode = mode self.distribution = distribution self.seed = seed def __call__(self, shape, dtype=None): fan_in, fan_out = _compute_fans(shape) scale = self.scale if self.mode == 'fan_in': scale /= max(1., fan_in) elif self.mode == 'fan_out': scale /= max(1., fan_out) else: scale /= max(1., float(fan_in + fan_out) / 2) if self.distribution == 'normal': # 0.879... = scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.) stddev = np.sqrt(scale) / .87962566103423978 x = K.truncated_normal(shape, 0., stddev, dtype=dtype, seed=self.seed) else: limit = np.sqrt(3. * scale) x = K.random_uniform(shape, -limit, limit, dtype=dtype, seed=self.seed) if self.seed is not None: self.seed += 1 return x def get_config(self): return { 'scale': self.scale, 'mode': self.mode, 'distribution': self.distribution, 'seed': self.seed } class Orthogonal(Initializer): """Initializer that generates a random orthogonal matrix. # Arguments gain: Multiplicative factor to apply to the orthogonal matrix. seed: A Python integer. Used to seed the random generator. # References - [Exact solutions to the nonlinear dynamics of learning in deep linear neural networks](http://arxiv.org/abs/1312.6120) """ def __init__(self, gain=1., seed=None): self.gain = gain self.seed = seed def __call__(self, shape, dtype=None): num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) rng = np.random if self.seed is not None: rng = np.random.RandomState(self.seed) self.seed += 1 a = rng.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) # Pick the one with the correct shape. q = u if u.shape == flat_shape else v q = q.reshape(shape) return self.gain * q[:shape[0], :shape[1]] def get_config(self): return { 'gain': self.gain, 'seed': self.seed } class Identity(Initializer): """Initializer that generates the identity matrix. Only use for 2D matrices. If the desired matrix is not square, it gets padded with zeros for the additional rows/columns. # Arguments gain: Multiplicative factor to apply to the identity matrix. """ def __init__(self, gain=1.): self.gain = gain @K.eager def __call__(self, shape, dtype=None): if len(shape) != 2: raise ValueError( 'Identity matrix initializer ' 'can only be used for 2D matrices.') return self.gain * K.eye((shape[0], shape[1]), dtype=dtype) def get_config(self): return { 'gain': self.gain } def lecun_uniform(seed=None): """LeCun uniform initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(3 / fan_in)` where `fan_in` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Efficient BackProp](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ return VarianceScaling(scale=1., mode='fan_in', distribution='uniform', seed=seed) def glorot_normal(seed=None): """Glorot normal initializer, also called Xavier normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Understanding the difficulty of training deep feedforward neural networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf) """ return VarianceScaling(scale=1., mode='fan_avg', distribution='normal', seed=seed) def glorot_uniform(seed=None): """Glorot uniform initializer, also called Xavier uniform initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Understanding the difficulty of training deep feedforward neural networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf) """ return VarianceScaling(scale=1., mode='fan_avg', distribution='uniform', seed=seed) def he_normal(seed=None): """He normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](http://arxiv.org/abs/1502.01852) """ return VarianceScaling(scale=2., mode='fan_in', distribution='normal', seed=seed) def lecun_normal(seed=None): """LeCun normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) - [Efficient Backprop](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ return VarianceScaling(scale=1., mode='fan_in', distribution='normal', seed=seed) def he_uniform(seed=None): """He uniform variance scaling initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / fan_in)` where `fan_in` is the number of input units in the weight tensor. # Arguments seed: A Python integer. Used to seed the random generator. # Returns An initializer. # References - [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](http://arxiv.org/abs/1502.01852) """ return VarianceScaling(scale=2., mode='fan_in', distribution='uniform', seed=seed) # Compatibility aliases zero = zeros = Zeros one = ones = Ones constant = Constant uniform = random_uniform = RandomUniform normal = random_normal = RandomNormal truncated_normal = TruncatedNormal identity = Identity orthogonal = Orthogonal # Utility functions def _compute_fans(shape, data_format='channels_last'): """Computes the number of input and output units for a weight shape. # Arguments shape: Integer shape tuple. data_format: Image data format to use for convolution kernels. Note that all kernels in Keras are standardized on the `channels_last` ordering (even when inputs are set to `channels_first`). # Returns A tuple of scalars, `(fan_in, fan_out)`. # Raises ValueError: in case of invalid `data_format` argument. """ if len(shape) == 2: fan_in = shape[0] fan_out = shape[1] elif len(shape) in {3, 4, 5}: # Assuming convolution kernels (1D, 2D or 3D). # TH kernel shape: (depth, input_depth, ...) # TF kernel shape: (..., input_depth, depth) if data_format == 'channels_first': receptive_field_size = np.prod(shape[2:]) fan_in = shape[1] * receptive_field_size fan_out = shape[0] * receptive_field_size elif data_format == 'channels_last': receptive_field_size = np.prod(shape[:-2]) fan_in = shape[-2] * receptive_field_size fan_out = shape[-1] * receptive_field_size else: raise ValueError('Invalid data_format: ' + data_format) else: # No specific assumptions. fan_in = np.sqrt(np.prod(shape)) fan_out = np.sqrt(np.prod(shape)) return fan_in, fan_out def serialize(initializer): return serialize_keras_object(initializer) def deserialize(config, custom_objects=None): return deserialize_keras_object(config, module_objects=globals(), custom_objects=custom_objects, printable_module_name='initializer') def get(identifier): if isinstance(identifier, dict): return deserialize(identifier) elif isinstance(identifier, six.string_types): config = {'class_name': str(identifier), 'config': {}} return deserialize(config) elif callable(identifier): return identifier else: raise ValueError('Could not interpret initializer identifier: ' + str(identifier))
from openbiolink.graph_creation.file_processor.fileProcessor import FileProcessor from openbiolink.graph_creation.metadata_infile.mapping.inMetaMapDisGeNet import InMetaMapDisGeNet from openbiolink.graph_creation.types.infileType import InfileType from openbiolink.graph_creation.types.readerType import ReaderType class MapDisGeNetProcessor(FileProcessor): IN_META_CLASS = InMetaMapDisGeNet def __init__(self): self.use_cols = self.IN_META_CLASS.USE_COLS super().__init__( self.use_cols, readerType=ReaderType.READER_MAP_DISGENET, infileType=InfileType.IN_MAP_DISGENET, mapping_sep=self.IN_META_CLASS.MAPPING_SEP, ) def individual_preprocessing(self, data): # making ids unique in DisGeNet mapping file for DO and OMIM (metadata_db_file:id) data.loc[data["voc"] == "DO", "code"] = "DOID:" + data[data["voc"] == "DO"]["code"] data = data[data["voc"] == "DO"] return data
import re from pygmalion._model import Model from typing import List, Iterable, Optional class Tokenizer(Model): """ A text tokenizer is an object with an 'encode' and a 'decode' method """ def encode(self, sentence: str, regularize: bool = False) -> List[int]: """encode a sentence""" raise NotImplementedError() def decode(self, sentence: List[int]) -> str: """decode an encoded sentence""" raise NotImplementedError() def split(self, sentence: str, mask: Optional[Iterable[str]] = None, regularize: bool = False) -> List[str]: """Returns the sentence splited token by token""" vocab = self.vocabulary split = [vocab[i] for i in self.encode(sentence, regularize)] # TODO : handle mask return split @property def vocabulary(self): """Returns all the unique tokens known by the tokenizer""" raise NotImplementedError() @property def n_tokens(self): """number of tokens known by the tokenizer""" raise NotImplementedError() @property def jit(self): """ Returns True if the tokenizer performs subword regularization and requires 'Just In Time' tokenization (tokenization will be different at each epoch) """ return False class SpecialToken: """ Special tokens for the <START>, <END>, <PAD>, <UNKNOWN>... tokens """ def __repr__(self): return f"<{self.name}>" def __str__(self): return self.__repr__() def __hash__(self): return hash(self.name) def __eq__(self, other): is_token = issubclass(type(other), type(self)) return is_token and (self.name == other.name) def __init__(self, name: str): self.name = name def split(sentence: str) -> List[str]: """ Split a string by groups of letters, groups of digits, and groups of punctuation. Spaces are not returned. """ return re.findall(r"[\d]+|[^\W\d_]+|[^\w\s]+", sentence)
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class NcepPost(CMakePackage): """The NCEP Post Processor is a software package designed to generate useful products from raw model output.""" homepage = "https://github.com/NOAA-EMC/EMC_post" url = "https://github.com/NOAA-EMC/EMC_post/archive/refs/tags/upp_v10.0.8.tar.gz" maintainers = ['t-brown'] version('10.0.8', sha256='b3b27d03250450159a8261c499d57168bdd833790c1c80c854d081fe37aaab47') variant('wrf-io', default=True, description='Enable WRF I/O.') depends_on('bacio') depends_on('crtm') depends_on('g2') depends_on('g2tmpl') depends_on('gfsio') depends_on('ip') depends_on('jasper') depends_on('libpng') depends_on('mpi') depends_on('netcdf-c') depends_on('netcdf-fortran') depends_on('nemsio') depends_on('sfcio') depends_on('sigio') depends_on('sp') depends_on('w3emc') depends_on('w3nco') depends_on('w3nco') depends_on('wrf-io', when='+wrf-io') depends_on('zlib') patch('cmake_findnetcdf.patch') def cmake_args(self): args = [] if '+wrf-io' in self.spec: args.append('-DBUILD_WITH_WRFIO:BOOL=ON') return args
# coding: utf-8 """ Part of this code is based on a similar implementation present in FireWorks (https://pypi.python.org/pypi/FireWorks). Work done by D. Waroquiers, A. Jain, and M. Kocher. The main difference wrt the Fireworks implementation is that the QueueAdapter objects provide a programmatic interface for setting important attributes such as the number of MPI nodes, the number of OMP threads and the memory requirements. This programmatic interface is used by the `TaskManager` for optimizing the parameters of the run before submitting the job (Abinit provides the autoparal option that allows one to get a list of parallel configuration and their expected efficiency). """ from __future__ import print_function, division, unicode_literals import sys import os import abc import string import copy import getpass import warnings import six from collections import namedtuple from subprocess import Popen, PIPE from monty.string import is_string, boxed from monty.collections import AttrDict, MongoDict from monty.subprocess import Command from pymatgen.core.units import Time, Memory from .utils import Condition from .launcher import ScriptEditor import logging logger = logging.getLogger(__name__) __all__ = [ "parse_timestr", "MpiRunner", "Partition", "qadapter_class", "AbstractQueueAdapter", "PbsProAdapter", "SlurmAdapter", ] def parse_timestr(s): """ A slurm time parser. Accepts a string in one the following forms: # "days-hours", # "days-hours:minutes", # "days-hours:minutes:seconds". # "minutes", # "minutes:seconds", # "hours:minutes:seconds", Returns: Time in seconds. Raises: ValueError if string is not valid. """ days, hours, minutes, seconds = 0, 0, 0, 0 if '-' in s: # "days-hours", # "days-hours:minutes", # "days-hours:minutes:seconds". days, s = s.split("-") days = int(days) if ':' not in s: hours = int(float(s)) elif s.count(':') == 1: hours, minutes = map(int, s.split(':')) elif s.count(':') == 2: hours, minutes, seconds = map(int, s.split(':')) else: raise ValueError("More that 2 ':' in string!") else: # "minutes", # "minutes:seconds", # "hours:minutes:seconds", if ':' not in s: minutes = int(float(s)) elif s.count(':') == 1: minutes, seconds = map(int, s.split(':')) elif s.count(':') == 2: hours, minutes, seconds = map(int, s.split(':')) else: raise ValueError("More than 2 ':' in string!") #print(days, hours, minutes, seconds) return Time((days*24 + hours)*3600 + minutes*60 + seconds, "s") def time2slurm(timeval, unit="s"): """ Convert a number representing a time value in the given unit (Default: seconds) to a string following the slurm convention: "days-hours:minutes:seconds". >>> assert time2slurm(61) == '0-0:1:1' and time2slurm(60*60+1) == '0-1:0:1' >>> assert time2slurm(0.5, unit="h") == '0-0:30:0' """ d, h, m, s = 24*3600, 3600, 60, 1 timeval = Time(timeval, unit).to("s") days, hours = divmod(timeval, d) hours, minutes = divmod(hours, h) minutes, secs = divmod(minutes, m) return "%d-%d:%d:%d" % (days, hours, minutes, secs) class MpiRunner(object): """ This object provides an abstraction for the mpirunner provided by the different MPI libraries. It's main task is handling the different syntax and options supported by the different mpirunners. """ def __init__(self, name, type=None, options=""): self.name = name self.type = None self.options = options def string_to_run(self, executable, mpi_procs, stdin=None, stdout=None, stderr=None): stdin = "< " + stdin if stdin is not None else "" stdout = "> " + stdout if stdout is not None else "" stderr = "2> " + stderr if stderr is not None else "" if self.has_mpirun: if self.type is None: # TODO: better treatment of mpirun syntax. #se.add_line('$MPIRUN -n $MPI_PROCS $EXECUTABLE < $STDIN > $STDOUT 2> $STDERR') num_opt = "-n " + str(mpi_procs) cmd = " ".join([self.name, num_opt, executable, stdin, stdout, stderr]) else: raise NotImplementedError("type %s is not supported!") else: #assert mpi_procs == 1 cmd = " ".join([executable, stdin, stdout, stderr]) return cmd @property def has_mpirun(self): """True if we are running via mpirun, mpiexec ...""" return self.name is not None class Partition(object): """ This object collects information on a partition (a la slurm) Partitions can be thought of as a set of resources and parameters around their use. Basic definition:: * A node refers to the physical box, i.e. cpu sockets with north/south switches connecting memory systems and extension cards, e.g. disks, nics, and accelerators * A cpu socket is the connector to these systems and the cpu cores * A cpu core is an independent computing with its own computing pipeline, logical units, and memory controller. Each cpu core will be able to service a number of cpu threads, each having an independent instruction stream but sharing the cores memory controller and other logical units. """ # TODO Write namedtuple with defaults class Entry(object): def __init__(self, type, default=None, mandatory=False, parser=None, help="No help available"): self.type, self.default, self.parser, self.mandatory = type, default, parser, mandatory if callable(default): self.default = default() def eval(self, value): if self.type is not object: value = self.type(value) if self.parser is not None: value = self.parser(value) return value ENTRIES = dict( # mandatory name=Entry(type=str, mandatory=True, help="Name of the partition"), num_nodes=Entry(type=int, mandatory=True, help="Number of nodes"), sockets_per_node=Entry(type=int, mandatory=True, help="Number of sockets per node"), cores_per_socket=Entry(type=int, mandatory=True, help="Number of cores per node"), mem_per_node=Entry(type=str, mandatory=True, help="Memory per node", parser=Memory.from_string), # optional timelimit=Entry(type=str, default=None, help="Time limit"), min_nodes=Entry(type=int, default=-1, help="Minimun number of nodes that can be used"), max_nodes=Entry(type=int, default=sys.maxsize, help="Maximum number of nodes that can be used"), priority=Entry(type=int, default=1, help="Priority level, integer number > 0"), condition=Entry(type=object, default=dict, help="Condition object (dictionary)", parser=Condition), ) def __init__(self, **kwargs): """The possible arguments are documented in Partition.ENTRIES.""" #self.timelimit = timelimit #TODO conversion datetime.datetime.strptime("1:00:00", "%H:%M:%S") for key, entry in self.ENTRIES.items(): try: value = entry.eval(kwargs.pop(key)) #; print(key, value) setattr(self, key, value) except KeyError: if entry.mandatory: raise ValueError("key %s must be specified" % key) setattr(self, key, entry.default) if kwargs: raise ValueError("Found invalid keywords in the partition section:\n %s" % str(list(kwargs.keys()))) # Convert memory to megabytes. self.mem_per_node = self.mem_per_node.to("Mb") def __str__(self): """String representation.""" lines = [] app = lines.append app("Partition: %s" % self.name) app(" num_nodes: %d, sockets_per_node: %d, cores_per_socket: %d, mem_per_node %s," % (self.num_nodes, self.sockets_per_node, self.cores_per_socket, self.mem_per_node)) app(" min_nodes: %d, max_nodes: %d, timelimit: %s, priority: %d, condition: %s" % (self.min_nodes, self.max_nodes, self.timelimit, self.priority, self.condition)) return "\n".join(lines) @property def tot_cores(self): """Total number of cores available in the partition.""" return self.cores_per_socket * self.sockets_per_node * self.num_nodes @property def cores_per_node(self): """Number of cores per node.""" return self.cores_per_socket * self.sockets_per_node @property def mem_per_core(self): """Memory available on a single node.""" return self.mem_per_node / self.cores_per_node def can_use_omp_threads(self, omp_threads): """True if omp_threads fit in a node.""" return self.cores_per_node >= omp_threads def divmod_node(self, mpi_procs, omp_threads): """ Return (num_nodes, rest_cores) """ return divmod(mpi_procs * omp_threads, self.cores_per_node) def distribute(self, mpi_procs, omp_threads, mem_per_proc): """ Returns (num_nodes, mpi_per_node) """ is_scattered = True if mem_per_proc < self.mem_per_code: # Can use all then cores in the node. num_nodes, rest_cores = self.divmod_node(mpi_procs, omp_threads) if rest_cores !=0: is_scattered = (num_nodes != 0) if is_scattered: # Try first to pack MPI processors in a node as much as possible mpi_per_node = int(self.mem_per_node / mem_per_proc) num_nodes = (mpi_procs * omp_threads) // mpi_per_node if (mpi_procs * omp_threads) % mpi_per_node != 0: # Have to reduce the number of MPI procs per node for mpi_per_node in reversed(range(1, mpi_per_node)): num_nodes = (mpi_procs * omp_threads) // mpi_per_node if (mpi_procs * omp_threads) % mpi_per_node == 0: break else: raise ValueError("Cannot distribute mpi_procs %d, omp_threads %d, mem_per_proc %s" % (mpi_procs, omp_threads, mem_per_proc)) CoresDistrib = namedtuple("<CoresDistrib>", "num_nodes mpi_per_node is_scattered") # mem_per_node return CoresDistrib(num_nodes, mpi_per_node, is_scattered) def can_run(self, pconf): """ True if this partition in principle is able to run the ``ParalConf`` pconf """ if pconf.tot_cores > self.tot_cores: return False if pconf.omp_threads > self.cores_per_node: return False if pconf.mem_per_core > self.mem_per_core: return False return self.condition(pconf) def get_score(self, pconf): """ Receives a ``ParalConf`` object, pconf, and returns a number that will be used to select the partion on the cluster on which the task will be submitted. Returns -inf if paral_conf cannot be exected on this partition. """ minf = float("-inf") if not self.can_run(pconf): return minf if not self.condition(pconf): return minf return self.priority def qadapter_class(qtype): """Return the concrete `Adapter` class from a string.""" return {"shell": ShellAdapter, "slurm": SlurmAdapter, "pbs": PbsProAdapter, # TODO Remove "pbspro": PbsProAdapter, "torque": TorqueAdapter, "sge": SGEAdapter, "moab": MOABAdapter, }[qtype.lower()] class QueueAdapterError(Exception): """Error class for exceptions raise by QueueAdapter.""" class AbstractQueueAdapter(six.with_metaclass(abc.ABCMeta, object)): """ The QueueAdapter is responsible for all interactions with a specific queue management system. This includes handling all details of queue script format as well as queue submission and management. This is the Abstract base class defining the methods that must be implemented by the concrete classes. A user should extend this class with implementations that work on specific queue systems. """ Error = QueueAdapterError # the limits for certain parameters set on the cluster. # currently hard coded, should be read at init # the increase functions will not increase beyond this limits # TODO: This constraint should be implemented by the partition, not by the QueueAdapter. LIMITS = [] def __init__(self, qparams=None, setup=None, modules=None, shell_env=None, omp_env=None, pre_run=None, post_run=None, mpi_runner=None): """ Args: setup: String or list of commands to execute during the initial setup. modules: String or list of modules to load before running the application. shell_env: Dictionary with the environment variables to export before running the application. omp_env: Dictionary with the OpenMP variables. pre_run: String or list of commands to execute before launching the calculation. post_run: String or list of commands to execute once the calculation is completed. mpi_runner: Path to the MPI runner or `MpiRunner` instance. None if not used """ # Make defensive copies so that we can change the values at runtime. self.qparams = qparams.copy() if qparams is not None else {} self._verbatim = [] if is_string(setup): setup = [setup] self.setup = setup[:] if setup is not None else [] self.omp_env = omp_env.copy() if omp_env is not None else {} if is_string(modules): modules = [modules] self.modules = modules[:] if modules is not None else [] self.shell_env = shell_env.copy() if shell_env is not None else {} self.mpi_runner = mpi_runner if not isinstance(mpi_runner, MpiRunner): self.mpi_runner = MpiRunner(mpi_runner) if is_string(pre_run): pre_run = [pre_run] self.pre_run = pre_run[:] if pre_run is not None else [] if is_string(post_run): post_run = [post_run] self.post_run = post_run[:] if post_run is not None else [] # Parse the template so that we know the list of supported options. cls = self.__class__ if hasattr(cls, "QTEMPLATE"): # Consistency check. err_msg = "" for param in self.qparams: if param not in self.supported_qparams: err_msg += "Unsupported QUEUE parameter name %s\n" % param err_msg += "Supported are: \n" for param_sup in self.supported_qparams: err_msg += " %s \n" % param_sup if err_msg: raise ValueError(err_msg) def __str__(self): lines = [self.__class__.__name__] app = lines.append #lines.extend(["qparams:\n", str(self.qparams)]) if self.has_omp: app(str(self.omp_env)) return "\n".join(lines) #def copy(self): # return copy.copy(self) def deepcopy(self): return copy.deepcopy(self) @property def supported_qparams(self): """ Dictionary with the supported parameters that can be passed to the queue manager (obtained by parsing QTEMPLATE). """ try: return self._supported_qparams except AttributeError: import re self._supported_qparams = re.findall("\$\$\{(\w+)\}", self.QTEMPLATE) return self._supported_qparams @property def has_mpi(self): return self.has_mpirun @property #@deprecated(has_mpi) def has_mpirun(self): """True if we are using a mpirunner""" return bool(self.mpi_runner) @property def has_omp(self): """True if we are using OpenMP threads""" return hasattr(self, "omp_env") and bool(getattr(self, "omp_env")) @property def tot_cores(self): """Total number of cores employed""" return self.mpi_procs * self.omp_threads @property def omp_threads(self): """Number of OpenMP threads.""" if self.has_omp: return self.omp_env["OMP_NUM_THREADS"] else: return 1 @property def use_only_mpi(self): """True if only MPI is used.""" return self.has_mpi and not self.has_omp @property def use_only_omp(self): """True if only Openmp is used.""" return self.has_omp and not self.has_mpi @property def use_mpi_omp(self): """True if we are running in MPI+Openmp mode.""" return self.has_omp and self.has_mpi @property def run_info(self): """String with info on the run.""" return "MPI: %d, OMP: %d" % (self.mpi_procs, self.omp_threads) @abc.abstractmethod def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads.""" @abc.abstractproperty def mpi_procs(self): """Number of CPUs used for MPI.""" @abc.abstractmethod def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" #@abc.abstractproperty #def walltime(self): # """Returns the walltime in seconds.""" #@abc.abstractmethod #def set_walltime(self): # """Set the walltime in seconds.""" #@abc.abstractproperty #def mem_per_cpu(self): # """The memory per CPU in Megabytes.""" @abc.abstractmethod def set_mem_per_cpu(self, mem_mb): """Set the memory per CPU in Megabytes""" #@property #def tot_mem(self): # """Total memory required by the job n Megabytes.""" # return self.mem_per_cpu * self.mpi_procs @abc.abstractmethod def cancel(self, job_id): """ Cancel the job. Args: job_id: (in) Job identifier. Returns: Exit status. """ def add_verbatim(self, lines): """ Add a list of lines or just a string to the header. No programmatic interface to change these options is provided """ if is_string(lines): lines = [lines] self._verbatim.extend(lines) def get_subs_dict(self, partition): """ Return substitution dict for replacements into the template Subclasses may want to customize this method. """ # clean null values return {k: v for k, v in self.qparams.items() if v is not None} def _make_qheader(self, job_name, partition, qout_path, qerr_path): """Return a string with the options that are passed to the resource manager.""" # get substitution dict for replacements into the template subs_dict = self.get_subs_dict(partition) # Set job_name and the names for the stderr and stdout of the # queue manager (note the use of the extensions .qout and .qerr # so that we can easily locate this file. subs_dict['job_name'] = job_name.replace('/', '_') subs_dict['_qout_path'] = qout_path subs_dict['_qerr_path'] = qerr_path qtemplate = QScriptTemplate(self.QTEMPLATE) # might contain unused parameters as leftover $$. unclean_template = qtemplate.safe_substitute(subs_dict) # Remove lines with leftover $$. clean_template = [] for line in unclean_template.split('\n'): if '$$' not in line: clean_template.append(line) # Add verbatim lines if self._verbatim: clean_template.extend(self._verbatim) return '\n'.join(clean_template) def get_script_str(self, job_name, launch_dir, partition, executable, qout_path, qerr_path, stdin=None, stdout=None, stderr=None): """ Returns a (multi-line) String representing the queue script, e.g. PBS script. Uses the template_file along with internal parameters to create the script. Args: job_name: Name of the job. launch_dir: (str) The directory the job will be launched in. partitition: ``Partition` object with information on the queue selected for submission. executable: String with the name of the executable to be executed. qout_path Path of the Queue manager output file. qerr_path: Path of the Queue manager error file. """ # PBS does not accept job_names longer than 15 chars. if len(job_name) > 14 and isinstance(self, PbsProAdapter): job_name = job_name[:14] # Construct the header for the Queue Manager. qheader = self._make_qheader(job_name, partition, qout_path, qerr_path) # Add the bash section. se = ScriptEditor() if self.setup: se.add_comment("Setup section") se.add_lines(self.setup) se.add_emptyline() if self.modules: se.add_comment("Load Modules") se.add_line("module purge") se.load_modules(self.modules) se.add_emptyline() if self.has_omp: se.add_comment("OpenMp Environment") se.declare_vars(self.omp_env) se.add_emptyline() if self.shell_env: se.add_comment("Shell Environment") se.declare_vars(self.shell_env) se.add_emptyline() # Cd to launch_dir se.add_line("cd " + os.path.abspath(launch_dir)) if self.pre_run: se.add_comment("Commands before execution") se.add_lines(self.pre_run) se.add_emptyline() # Construct the string to run the executable with MPI and mpi_procs. line = self.mpi_runner.string_to_run(executable, self.mpi_procs, stdin=stdin, stdout=stdout, stderr=stderr) se.add_line(line) if self.post_run: se.add_emptyline() se.add_comment("Commands after execution") se.add_lines(self.post_run) shell_text = se.get_script_str() return qheader + shell_text + "\n" @abc.abstractmethod def submit_to_queue(self, script_file): """ Submits the job to the queue, probably using subprocess or shutil Args: script_file: (str) name of the script file to use (String) Returns: process, queue_id """ @abc.abstractmethod def get_njobs_in_queue(self, username=None): """ returns the number of jobs in the queue, probably using subprocess or shutil to call a command like 'qstat'. returns None when the number of jobs cannot be determined. Args: username: (str) the username of the jobs to count (default is to autodetect) """ #some method to fix problems @abc.abstractmethod def exclude_nodes(self, nodes): """ Method to exclude nodes in the calculation """ @abc.abstractmethod def increase_mem(self, factor): """ Method to increase the amount of memory asked for, by factor. """ @abc.abstractmethod def increase_time(self, factor): """ Method to increase the available wall time asked for, by factor. """ @abc.abstractmethod def increase_cpus(self, factor): """ Method to increase the number of cpus asked for. """ #################### # Concrete classes # #################### class ShellAdapter(AbstractQueueAdapter): QTYPE = "shell" QTEMPLATE = """\ #!/bin/bash export MPI_PROCS=$${MPI_PROCS} """ @property def mpi_procs(self): """Number of CPUs used for MPI.""" return self.qparams.get("MPI_PROCS", 1) def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" self.qparams["MPI_PROCS"] = mpi_procs def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads.""" self.omp_env["OMP_NUM_THREADS"] = omp_threads def set_mem_per_cpu(self, mem_mb): """mem_per_cpu is not available in ShellAdapter.""" def cancel(self, job_id): return os.system("kill -9 %d" % job_id) def submit_to_queue(self, script_file): if not os.path.exists(script_file): raise self.Error('Cannot find script file located at: {}'.format(script_file)) try: # submit the job process = Popen(("/bin/bash", script_file), stderr=PIPE) queue_id = process.pid return process, queue_id except: # random error raise self.Error("Random Error ...!") def get_njobs_in_queue(self, username=None): return None def exclude_nodes(self, nodes): return False def increase_mem(self, factor): return False def increase_time(self, factor): return False def increase_cpus(self, factor): return False class SlurmAdapter(AbstractQueueAdapter): QTYPE = "slurm" QTEMPLATE = """\ #!/bin/bash #SBATCH --ntasks=$${ntasks} #SBATCH --ntasks-per-node=$${ntasks_per_node} #SBATCH --cpus-per-task=$${cpus_per_task} #SBATCH --time=$${time} #SBATCH --partition=$${partition} #SBATCH --account=$${account} #SBATCH --job-name=$${job_name} #SBATCH --nodes=$${nodes} #SBATCH --exclude=$${exclude_nodes} #SBATCH --mem=$${mem} #SBATCH --mem-per-cpu=$${mem_per_cpu} #SBATCH --mail-user=$${mail_user} #SBATCH --mail-type=$${mail_type} #SBATCH --constraint=$${constraint} #SBATCH --gres=$${gres} #SBATCH --requeue=$${requeue} #SBATCH --nodelist=$${nodelist} #SBATCH --propagate=$${propagate} #SBATCH --output=$${_qout_path} #SBATCH --error=$${_qerr_path} """ LIMITS = {'max_total_tasks': 544, 'max_cpus_per_node': 16, 'mem': 6400000, 'mem_per_cpu': 64000, 'time': 2880} @property def mpi_procs(self): """Number of CPUs used for MPI.""" return self.qparams.get("ntasks", 1) def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" self.qparams["ntasks"] = mpi_procs def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads.""" self.omp_env["OMP_NUM_THREADS"] = omp_threads warnings.warn("set_omp_threads not availabe for %s" % self.__class__.__name__) def set_mem_per_cpu(self, mem_mb): """Set the memory per CPU in Megabytes""" self.qparams["mem_per_cpu"] = int(mem_mb) # Remove mem if it's defined. self.qparams.pop("mem", None) def cancel(self, job_id): return os.system("scancel %d" % job_id) def submit_to_queue(self, script_file, submit_err_file="sbatch.err"): if not os.path.exists(script_file): raise self.Error('Cannot find script file located at: {}'.format(script_file)) submit_err_file = os.path.join(os.path.dirname(script_file), submit_err_file) # submit the job try: cmd = ['sbatch', script_file] process = Popen(cmd, stdout=PIPE, stderr=PIPE) # write the err output to file, a error parser may read it and a fixer may know what to do ... with open(submit_err_file, mode='w') as f: f.write('sbatch submit process stderr:') f.write(str(process.stderr.read())) f.write('qparams:') f.write(str(self.qparams)) process.wait() # grab the returncode. SLURM returns 0 if the job was successful if process.returncode == 0: try: # output should of the form '2561553.sdb' or '352353.jessup' - just grab the first part for job id queue_id = int(process.stdout.read().split()[3]) logger.info('Job submission was successful and queue_id is {}'.format(queue_id)) except: # probably error parsing job code queue_id = None logger.warning('Could not parse job id following slurm...') finally: return process, queue_id else: # some qsub error, e.g. maybe wrong queue specified, don't have permission to submit, etc... err_msg = ("Error in job submission with SLURM file {f} and cmd {c}\n".format(f=script_file, c=cmd) + "The error response reads: {c}".format(c=process.stderr.read())) raise self.Error(err_msg) except Exception as details: msg = 'Error while submitting job:\n' + str(details) logger.critical(msg) with open(submit_err_file, mode='a') as f: f.write(msg) try: print('sometimes we land here, no idea what is happening ... Michiel') print("details:\n", details, "cmd\n", cmd, "\nprocess.returcode:", process.returncode) except: pass # random error, e.g. no qsub on machine! raise self.Error('Running sbatch caused an error...') def exclude_nodes(self, nodes): try: if 'exclude_nodes' not in self.qparams.keys(): self.qparams.update({'exclude_nodes': 'node'+nodes[0]}) print('excluded node %s' % nodes[0]) for node in nodes[1:]: self.qparams['exclude_nodes'] += ',node'+node print('excluded node %s' % node) return True except (KeyError, IndexError): return False def increase_cpus(self, factor=1.5): logger.info('increasing cpus') try: if self.qparams['ntasks'] > 1: # mpi parallel n = int(self.qparams['ntasks'] * factor) if n < self.LIMITS['max_total_tasks']: self.qparams['ntasks'] = n logger.info('increased ntasks to %s' % n) return True else: raise QueueAdapterError elif self.qparams['ntasks'] == 1 and self.qparams['cpus_per_task'] > 1: # open mp parallel n = int(self.qparams['cpus_per_task'] * factor) if n < self.LIMITS['max_cpus_per_node']: self.qparams['cpus_per_task'] = n return True else: raise QueueAdapterError else: raise QueueAdapterError except (KeyError, QueueAdapterError): return False def increase_mem(self, factor=1.5): logger.info('increasing memory') try: if 'mem' in self.qparams.keys(): n = int(self.qparams['mem'] * factor) if n < self.LIMITS['mem']: self.qparams['mem'] = n logger.info('increased mem to %s' % n) return True else: raise QueueAdapterError elif 'mem_per_cpu' in self.qparams.keys(): n = int(self.qparams['mem_per_cpu'] * factor) if n < self.LIMITS['mem_per_cpu']: self.qparams['mem'] = n logger.info('increased mem_per_cpu to %s' % n) return True else: raise QueueAdapterError else: raise QueueAdapterError except (KeyError, IndexError, QueueAdapterError): return False def increase_time(self, factor=1.5): logger.info('increasing time') days, hours, minutes = 0, 0, 0 try: # a slurm time parser ;-) forgetting about seconds # feel free to pull this out and mak time in minutes always if '-' not in self.qparams['time']: # "minutes", # "minutes:seconds", # "hours:minutes:seconds", if ':' not in self.qparams['time']: minutes = int(float(self.qparams['time'])) elif self.qparams['time'].count(':') == 1: minutes = int(float(self.qparams['time'].split(':')[0])) else: minutes = int(float(self.qparams['time'].split(':')[1])) hours = int(float(self.qparams['time'].split(':')[0])) else: # "days-hours", # "days-hours:minutes", # "days-hours:minutes:seconds". days = int(float(self.qparams['time'].split('-')[0])) hours = int(float(self.qparams['time'].split('-')[1].split(':')[0])) try: minutes = int(float(self.qparams['time'].split('-')[1].split(':')[1])) except IndexError: pass time = (days * 24 + hours) * 60 + minutes time *= factor if time < self.LIMITS['time']: self.qparams['time'] = time logger.info('increased time to %s' % time) return True else: raise QueueAdapterError except (KeyError, QueueAdapterError): return False def get_njobs_in_queue(self, username=None): if username is None: username = getpass.getuser() cmd = ['squeue', '-o "%u"', '-u', username] process = Popen(cmd, shell=False, stdout=PIPE) process.wait() # parse the result if process.returncode == 0: # lines should have this form # username # count lines that include the username in it outs = process.stdout.readlines() njobs = len([line.split() for line in outs if username in line]) logger.info('The number of jobs currently in the queue is: {}'.format(njobs)) return njobs # there's a problem talking to squeue server? err_msg = ('Error trying to get the number of jobs in the queue using squeue service' + 'The error response reads: {}'.format(process.stderr.read())) logger.critical(err_msg) return None #PBS -l select=$${select}:ncpus=$${ncpus}:vmem=$${vmem}mb:mpiprocs=$${mpiprocs}:ompthreads=$${ompthreads} class PbsProAdapter(AbstractQueueAdapter): QTYPE = "pbs" QTEMPLATE = """\ #!/bin/bash #PBS -A $${account} #PBS -N $${job_name} #PBS -l walltime=$${walltime} #PBS -q $${queue} #PBS -l model=$${model} #PBS -l place=$${place} #PBS -W group_list=$${group_list} #PBS -l select=$${select}:ncpus=1:vmem=$${vmem}mb:mpiprocs=1:ompthreads=$${ompthreads} ####PBS -l select=$${select}:ncpus=$${ncpus}:vmem=$${vmem}mb:mpiprocs=$${mpiprocs}:ompthreads=$${ompthreads} #PBS -l pvmem=$${pvmem}mb #PBS -r y #PBS -o $${_qout_path} #PBS -e $${_qerr_path} """ """ the limits for certain parameters set on the cluster. currently hard coded, should be read at init the increase functions will not increase beyond thise limits """ LIMITS = {'max_total_tasks': 3888, 'time': 48, 'max_select': 300, 'mem': 16000} @property def mpi_procs(self): """Number of MPI processes.""" return self.qparams.get("select", 1) #return self._mpi_procs def set_mpi_procs(self, mpi_procs): """Set the number of MPI processes.""" self.qparams["select"] = mpi_procs #self._mpi_procs = mpi_procs def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads. Per MPI process.""" self.omp_env["OMP_NUM_THREADS"] = omp_threads self.qparams["ompthreads"] = omp_threads def set_mem_per_cpu(self, mem_mb): """Set the memory per CPU in Megabytes""" self.qparams["pvmem"] = mem_mb self.qparams["vmem"] = mem_mb def cancel(self, job_id): return os.system("qdel %d" % job_id) def params_from_partition(self, p): """ Select is not the most intuitive command. For more info see http://www.cardiff.ac.uk/arcca/services/equipment/User-Guide/pbs.html https://portal.ivec.org/docs/Supercomputers/PBS_Pro """ if p is None: return {} if self.use_only_mpi: # Pure MPI run num_nodes, rest_cores = p.divmod_node(self.mpi_procs, self.omp_threads) if rest_cores == 0: # Can allocate entire nodes because self.mpi_procs is divisible by cores_per_node. print("PURE MPI run commensurate with cores_per_node", self.run_info) select_params = dict( select=num_nodes, ncpus=p.cores_per_node, mpiprocs=p.cores_per_node, ompthreads=1) elif num_nodes == 0: print("IN_CORE PURE MPI:", self.run_info) select_params = dict( select=rest_cores, ncpus=1, mpiprocs=1, ompthreads=1) else: print("OUT-OF-CORE PURE MPI (not commensurate with cores_per_node):", self.run_info) select_params = dict( select=self.mpi_procs, ncpus=1, mpiprocs=1, ompthreads=1) elif self.use_only_omp: # Pure OMP run. print("PURE OPENMP run.", self.run_info) assert p.can_use_omp_threads(self.omp_threads) select_params = dict( select=1, ncpus=self.omp_threads, mpiprocs=1, ompthreads=self.omp_threads) elif self.use_mpi_omp: # Hybrid MPI-OpenMP run. assert p.can_use_omp_threads(self.omp_threads) num_nodes, rest_cores = p.divmod_node(self.mpi_procs, self.omp_threads) #print(num_nodes, rest_cores) # TODO: test this if rest_cores == 0 or num_nodes == 0: print("HYBRID MPI-OPENMP run, perfectly divisible among nodes: ", self.run_info) select = max(num_nodes, 1) mpiprocs = self.mpi_procs // select select_params = dict( select=select, ncpus=mpiprocs * self.omp_threads, mpiprocs=mpiprocs, ompthreads=self.omp_threads) else: print("HYBRID MPI-OPENMP, NOT commensurate with nodes: ", self.run_info) select_params = dict( select=self.mpi_procs, ncpus=self.omp_threads, mpiprocs=1, ompthreads=self.omp_threads) else: raise RuntimeError("You should not be here") return AttrDict(select_params) def get_subs_dict(self, partition): subs_dict = super(PbsProAdapter, self).get_subs_dict(partition) # Optimize parameters from the partition. # Parameters defining the partion. Hard-coded for the time being. # but this info should be passed via taskmananger.yml #p = Partition(name="hardcoded", num_nodes=100, sockets_per_node=2, cores_per_socket=4, mem_per_node="1000 Mb") #subs_dict.update(self.params_from_partition(partition)) #subs_dict["vmem"] = 5 return subs_dict def submit_to_queue(self, script_file): """Submit a job script to the queue.""" if not os.path.exists(script_file): raise self.Error('Cannot find script file located at: {}'.format(script_file)) # submit the job try: cmd = ['qsub', script_file] process = Popen(cmd, stdout=PIPE, stderr=PIPE) process.wait() # grab the return code. PBS returns 0 if the job was successful if process.returncode == 0: try: # output should of the form '2561553.sdb' or '352353.jessup' - just grab the first part for job id queue_id = int(process.stdout.read().split('.')[0]) logger.info('Job submission was successful and queue_id is {}'.format(queue_id)) except: # probably error parsing job code logger.warning("Could not parse job id following qsub...") queue_id = None finally: return process, queue_id else: # some qsub error, e.g. maybe wrong queue specified, don't have permission to submit, etc... msg = ('Error in job submission with PBS file {f} and cmd {c}\n'.format(f=script_file, c=cmd) + 'The error response reads: {}'.format(process.stderr.read())) raise self.Error(msg) except Exception as exc: # random error, e.g. no qsub on machine! raise self.Error("Running qsub caused an error...\n%s" % str(exc)) def get_njobs_in_queue(self, username=None): return None # Initialize username if username is None: username = getpass.getuser() # run qstat try: qstat = Command(['qstat', '-a', '-u', username]).run(timeout=5) # parse the result if qstat.status == 0: # lines should have this form # '1339044.sdb username queuename 2012-02-29-16-43 20460 -- -- -- 00:20 C 00:09' # count lines that include the username in it # TODO: only count running or queued jobs. or rather, *don't* count jobs that are 'C'. outs = qstat.output.split('\n') njobs = len([line.split() for line in outs if username in line]) logger.info('The number of jobs currently in the queue is: {}'.format(njobs)) return njobs except: # there's a problem talking to qstat server? print(qstat.output.split('\n')) err_msg = ('Error trying to get the number of jobs in the queue using qstat service\n' + 'The error response reads: {}'.format(qstat.error)) logger.critical(boxed(err_msg)) return None # no need to raise an error, if False is returned the fixer may try something else, we don't need to kill the # scheduler just yet def exclude_nodes(self, nodes): logger.warning('exluding nodes, not implemented yet pbs') return False def increase_mem(self, factor=1): base_increase = 2001 new_mem = self.qparams["pvmem"] + factor*base_increase if new_mem < self.LIMITS['mem']: self.set_mem_per_cpu(new_mem) print('set mem to ', new_mem) return True else: logger.warning('could not increase mem further') print('new_mem reached max ', new_mem) return False def increase_time(self, factor=1.5): days, hours, minutes = 0, 0, 0 try: # a pbe time parser [HH:MM]:SS # feel free to pull this out and mak time in minutes always n = str(self.qparams['time']).count(':') if n == 0: hours = int(float(self.qparams['time'])) elif n > 1: hours = int(float(self.qparams['time'].split(':')[0])) minutes = int(float(self.qparams['time'].split(':')[1])) time = hours * 60 + minutes time *= factor if time < self.LIMITS['time']: self.qparams['time'] = str(int(time / 60)) + ':' + str(int(time - 60 * int(time / 60))) + ':00' logger.info('increased time to %s minutes' % time) return True else: raise QueueAdapterError except (KeyError, QueueAdapterError): return False def increase_cpus(self, factor): base_increase = 12 new_cpus = self.qparams['select'] + factor * base_increase if new_cpus < self.LIMITS['max_select']: self.qparams['select'] = new_cpus return True else: logger.warning('increasing cpus reached the limit') return False class TorqueAdapter(PbsProAdapter): """Adapter for Torque.""" QTYPE = "torque" QTEMPLATE = """\ #!/bin/bash #PBS -A $${account} #PBS -N $${job_name} #PBS -l walltime=$${walltime} #PBS -q $${queue} #PBS -l model=$${model} #PBS -l place=$${place} #PBS -W group_list=$${group_list} ####PBS -l select=$${select}:ncpus=1:vmem=$${vmem}mb:mpiprocs=1:ompthreads=$${ompthreads} ####PBS -l pvmem=$${pvmem}mb #PBS -l pmem=$${pmem}mb ####PBS -l mppwidth=$${mppwidth} #PBS -l nodes=$${nodes}:ppn=$${ppn} #PBS -M $${mail_user} #PBS -m $${mail_type} # Submission environment #PBS -V #PBS -o $${_qout_path} #PBS -e $${_qerr_path} """ LIMITS = {'max_total_tasks': 3888, 'time': 48, 'max_nodes': 16} def set_mem_per_cpu(self, mem_mb): """Set the memory per core in Megabytes""" self.qparams["pmem"] = mem_mb self.qparams["mem"] = mem_mb @property def mpi_procs(self): """Number of MPI processes.""" return self.qparams.get("nodes", 1)*self.qparams.get("ppn", 1) def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" self.qparams["nodes"] = 1 self.qparams["ppn"] = mpi_procs def increase_nodes(self, factor): base_increase = 1 new_nodes = self.qparams['nodes'] + factor * base_increase if new_nodes < self.LIMITS['max_nodes']: self.qparams['nodes'] = new_nodes return True else: logger.warning('increasing cpus reached the limit') return False class SGEAdapter(AbstractQueueAdapter): """ Adapter for Sun Grid Engine (SGE) task submission software. """ QTYPE = "sge" QTEMPLATE = """\ #!/bin/bash #$ -A $${account} #$ -N $${job_name} #$ -l h rt=$${walltime} #$ -pe $${queue} $${ncpus} #$ -cwd #$ -j y #$ -m n #$ -e $${_qerr_path} #$ -o $${_qout_path} #$ -S /bin/bash """ @property def mpi_procs(self): """Number of CPUs used for MPI.""" return self.qparams.get("ncpus", 1) def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" self.qparams["ncpus"] = mpi_procs def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads.""" self.omp_env["OMP_NUM_THREADS"] = omp_threads warnings.warn("set_omp_threads not availabe for %s" % self.__class__.__name__) def set_mem_per_cpu(self, mem_mb): """Set the memory per CPU in Megabytes""" raise NotImplementedError("") #self.qparams["mem_per_cpu"] = mem_mb ## Remove mem if it's defined. #self.qparams.pop("mem", None) def cancel(self, job_id): return os.system("qdel %d" % job_id) def submit_to_queue(self, script_file): """Submit a job script to the queue.""" if not os.path.exists(script_file): raise self.Error('Cannot find script file located at: {}'.format(script_file)) # submit the job try: cmd = ['qsub', script_file] process = Popen(cmd, stdout=PIPE, stderr=PIPE) process.wait() # grab the returncode. SGE returns 0 if the job was successful if process.returncode == 0: try: # output should of the form # Your job 1659048 ("NAME_OF_JOB") has been submitted queue_id = int(process.stdout.read().split(' ')[2]) logger.info('Job submission was successful and queue_id is {}'.format(queue_id)) except: # probably error parsing job code logger.warning("Could not parse job id following qsub...") queue_id = None finally: return process, queue_id else: # some qsub error, e.g. maybe wrong queue specified, don't have permission to submit, etc... msg = ('Error in job submission with PBS file {f} and cmd {c}\n'.format(f=script_file, c=cmd) + 'The error response reads: {}'.format(process.stderr.read())) raise self.Error(msg) except: # random error, e.g. no qsub on machine! raise self.Error("Running qsub caused an error...") def get_njobs_in_queue(self, username=None): # Initialize username if username is None: username = getpass.getuser() # run qstat qstat = Command(['qstat', '-u', username]).run(timeout=5) # parse the result if qstat.status == 0: # lines should contain username # count lines that include the username in it # TODO: only count running or queued jobs. or rather, *don't* count jobs that are 'C'. outs = qstat.output.split('\n') njobs = len([line.split() for line in outs if username in line]) logger.info('The number of jobs currently in the queue is: {}'.format(njobs)) return njobs # there's a problem talking to qstat server? err_msg = ('Error trying to get the number of jobs in the queue using qstat service\n' + 'The error response reads: {}'.format(qstat.error)) logger.critical(err_msg) return None def exclude_nodes(self, nodes): """ Method to exclude nodes in the calculation """ raise NotImplementedError("exclude_nodes") def increase_mem(self, factor): """ Method to increase the amount of memory asked for, by factor. """ raise NotImplementedError("increase_mem") def increase_time(self, factor): """ Method to increase the available wall time asked for, by factor. """ raise NotImplementedError("increase_time") def increase_cpus(self, factor): raise NotImplementedError("increase_cpus") class MOABAdapter(AbstractQueueAdapter): """https://computing.llnl.gov/tutorials/moab/""" QTYPE = "moab" QTEMPLATE = """\ #!/bin/bash #MSUB -a $${eligible_date} #MSUB -A $${account} #MSUB -c $${checkpoint_interval} #MSUB -l feature=$${feature} #MSUB -l gres=$${gres} #MSUB -l nodes=$${nodes} #MSUB -l partition=$${partition} #MSUB -l procs=$${procs} #MSUB -l ttc=$${ttc} #MSUB -l walltime=$${walltime} #MSUB -l $${resources} #MSUB -p $${priority} #MSUB -q $${queue} #MSUB -S $${shell} #MSUB -N $${job_name} #MSUB -v $${variable_list} #MSUB -o $${_qout_path} #MSUB -e $${_qerr_path} """ @property def mpi_procs(self): """Number of CPUs used for MPI.""" return self.qparams.get("procs", 1) def set_mpi_procs(self, mpi_procs): """Set the number of CPUs used for MPI.""" self.qparams["procs"] = mpi_procs def set_omp_threads(self, omp_threads): """Set the number of OpenMP threads.""" self.omp_env["OMP_NUM_THREADS"] = omp_threads def cancel(self, job_id): return os.system("canceljob %d" % job_id) def submit_to_queue(self, script_file, submit_err_file="sbatch.err"): """Submit a job script to the queue.""" if not os.path.exists(script_file): raise self.Error('Cannot find script file located at: {}'.format(script_file)) submit_err_file = os.path.join(os.path.dirname(script_file), submit_err_file) # submit the job try: cmd = ['msub', script_file] process = Popen(cmd, stdout=PIPE, stderr=PIPE) # write the err output to file, a error parser may read it and a fixer may know what to do ... with open(submit_err_file, mode='w') as f: f.write('msub submit process stderr:') f.write(str(process.stderr.read())) f.write('qparams:') f.write(str(self.qparams)) process.wait() # grab the returncode. MOAB returns 0 if the job was successful if process.returncode == 0: try: # output should be the queue_id queue_id = int(process.stdout.read().split()[0]) logger.info('Job submission was successful and queue_id is {}'.format(queue_id)) except: # probably error parsing job code queue_id = None logger.warning('Could not parse job id following msub...') finally: return process, queue_id else: # some qsub error, e.g. maybe wrong queue specified, don't have permission to submit, etc... err_msg = ("Error in job submission with MOAB file {f} and cmd {c}\n".format(f=script_file, c=cmd) + "The error response reads: {c}".format(c=process.stderr.read())) raise self.Error(err_msg) except Exception as details: msg = 'Error while submitting job:\n' + str(details) logger.critical(msg) with open(submit_err_file, mode='a') as f: f.write(msg) try: print('sometimes we land here, no idea what is happening ... Michiel') print("details:\n", details, "cmd\n", cmd, "\nprocess.returcode:", process.returncode) except: pass # random error, e.g. no qsub on machine! raise self.Error('Running msub caused an error...') def get_njobs_in_queue(self, username=None): if username is None: username = getpass.getuser() cmd = ['showq', '-s -u', username] process = Popen(cmd, shell=False, stdout=PIPE) process.wait() # parse the result if process.returncode == 0: # lines should have this form: ## ## active jobs: N eligible jobs: M blocked jobs: P ## ## Total job: 1 ## # Split the output string and return the last element. outs = process.stdout.readlines() njobs = int(outs.split()[-1]) logger.info('The number of jobs currently in the queue is: {}'.format(njobs)) return njobs # there's a problem talking to squeue server? err_msg = ('Error trying to get the number of jobs in the queue using showq service' + 'The error response reads: {}'.format(process.stderr.read())) logger.critical(err_msg) return None def exclude_nodes(self, nodes): raise NotImplementedError("exclude_nodes") def increase_mem(self, factor): raise NotImplementedError("increase_mem") def increase_time(self, factor): raise NotImplementedError("increase_time") def increase_cpus(self, factor): raise NotImplementedError("increase_cpus") def set_mem_per_cpu(self, factor): raise NotImplementedError("set_mem_per_cpu") class QScriptTemplate(string.Template): delimiter = '$$'
from .agent import Agent from .random_agent import RandomAgent from .human_agent import HumanAgent from .student_agent import StudentAgent
import numpy as np import pandas as pd from feature_importance.feature_importance import FeatureImportance from evaluators.evaluator import Evaluator from models.model import Model class Permutation(FeatureImportance): def __init__(self, model_type): super().__init__(model_type) def calc_feature_importance(self, model, x_train, x_test, y_test, feature_names): test_df = pd.DataFrame(y_test) cols = test_df.columns.values.tolist() if len(cols)==1: target_col = cols[0] else: target_col = cols y_hat = model.predict(x_test) pred_df = Model.gen_pred_df(test_df, y_hat, target_col) base_score = Evaluator.eval_acc(pred_df) base_score num_samples = x_test.shape[0] scores = [] for i in range(len(feature_names)): x_perm = x_test.copy() perm = np.random.permutation(np.array(range(num_samples))) x_perm[:,i] = x_test[perm,i] y_hat_perm = model.predict(x_perm) pred_df = Model.gen_pred_df(test_df, y_hat_perm, target_col) col_score = Evaluator.eval_acc(pred_df) scores.append(base_score-col_score) feature_df = pd.DataFrame({'features':feature_names, 'score':scores}) feature_df = feature_df.sort_values('score',ascending=False) return feature_df
from esper.prelude import * from matplotlib.patches import Patch from matplotlib.lines import Line2D from scipy.stats import linregress import statsmodels.api as sm MALE_COLOR = 'tab:blue' FEMALE_COLOR = 'tab:red' MARKER_SIZE = 50 def align(col, all_dfs): all_cols = reduce(lambda x, y: x & y, [set(list(df[col])) for df in all_dfs]) main_df = all_dfs[0][all_dfs[0][col].isin(all_cols)].sort_values(by=['M%']).reset_index( drop=True).reset_index() def _align(df): return df[df[col].isin(all_cols)].set_index(col).reindex( main_df[col]).reset_index().reset_index() return [main_df] + [_align(df) for df in all_dfs[1:]] def screen_speak_scatter(screen_df, screen_nh_df, speak_df, speak_nh_df, col, title, plots): fig = plt.figure() ax = fig.add_subplot(111) ax.axhline(50, color='black', linestyle='--') if 'screen' in plots: screen_df.plot('index', 'M%', ax=ax, color=MALE_COLOR, kind='scatter', marker='s', s=MARKER_SIZE) screen_df.plot('index', 'F%', ax=ax, color=FEMALE_COLOR, kind='scatter', marker='s', s=MARKER_SIZE) if len(plots) == 1: pairs = list(zip(screen_df['M%'].tolist(), screen_df['F%'].tolist())) c = matplotlib.collections.LineCollection( [((i, a), (i, b)) for (i, (a, b)) in enumerate(pairs)], colors=[MALE_COLOR if a > b else FEMALE_COLOR for (a, b) in pairs], linewidths=[3 for _ in range(len(pairs))]) ax.add_collection(c) if 'screen_nh' in plots: screen_nh_df.plot('index', 'M%', ax=ax, color=MALE_COLOR, kind='scatter', marker='x', s=MARKER_SIZE) screen_nh_df.plot('index', 'F%', ax=ax, color=FEMALE_COLOR, kind='scatter', marker='x', s=MARKER_SIZE) # print(model.summary()) # n = len(screen_nh_df.index) # [intercept, slope] = model.params # X = screen_df['M%'].tolist() # ax.scatter(range(len(X)), [intercept + slope * x for x in X], color='green') # ax.axhline(np.mean(screen_nh_df['M%']), color='black', linestyle='--') # slope, intercept, r, p, _3 = linregress(screen_nh_df.index.tolist(), # screen_nh_df['M%'].tolist()) # ax.plot([0, n], [intercept, intercept + slope * n], color='black') # print(r, p) if 'speak' in plots: speak_df.plot('index', 'M%', ax=ax, color=MALE_COLOR, kind='scatter', marker='^') speak_df.plot('index', 'F%', ax=ax, color=FEMALE_COLOR, kind='scatter', marker='^') if 'speak_nh' in plots: # speak_nh_df.plot('index', 'M%', ax=ax, color='tab:orange', kind='scatter', marker='x') pass ax.set_ylim(0, 100) ax.set_ylabel('Percentage of time') ax.set_xlabel('') ax.set_xticks(range(len(screen_df[col]))) ax.set_xticklabels(screen_df[col], rotation=45, horizontalalignment='right') ax.tick_params(labelsize='large') legends = { 'screen': ['Screen time - male', 'Screen time - female'], 'screen_nh': ['Screen time (no host) - male', 'Screen time (no host) - female'], 'speak': ['Speaking time - male', 'Speaking time - female'], 'speak_nh': ['Speaking time (no host)'] } ax.legend(['50%'] + flatten([legends[p] for p in plots])) plt.title(title) plt.tight_layout()
import torch import torchvision import numpy as np import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F from torchvision.transforms import ToTensor from torchvision.utils import make_grid from torch.utils.data import random_split from torch.utils.data import TensorDataset, DataLoader import scipy.io class MLP_model(nn.Module): """Feedfoward neural network with 6 hidden layer""" def __init__(self, in_size, out_size): super().__init__() # hidden layer self.linear1 = nn.Linear(in_size, 4096) self.linear2 = nn.Linear(4096, 2048) self.linear3 = nn.Linear(2048, 512) self.linear4 = nn.Linear(512, 128) self.linear5 = nn.Linear(128, 64) self.linear6 = nn.Linear(64, 32) # output layer self.linear7 = nn.Linear(32, out_size) def forward(self, xb): # Flatten the image tensors xb = xb.view(xb.size(0), -1) # Get intermediate outputs using hidden layer out = self.linear1(xb) out = F.relu(out) out = self.linear2(out) out = F.relu(out) out = self.linear3(out) out = F.relu(out) out = self.linear4(out) out = F.relu(out) out = self.linear5(out) out = F.relu(out) out = self.linear6(out) out = F.relu(out) # Get predictions using output layer out = self.linear7(out) return out def training_step(self, batch, criterion): images, labels = batch out = self(images) # Generate predictions loss = criterion(out, labels) # Calculate loss return loss def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = self.accuracy(out, labels) # Calculate accuracy return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): print("Epoch [{}], val_loss: {:.4f}, val_acc: {:.4f}".format(epoch, result['val_loss'], result['val_acc'])) def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) class Conv_model(nn.Module): def __init__(self, in_size, out_size): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, out_size) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def training_step(self, batch, criterion): images, labels = batch out = self(images) # Generate predictions loss = criterion(out, labels) # Calculate loss return loss def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = self.accuracy(out, labels) # Calculate accuracy return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def inference_step(self, data_path): # Load the intference data mat = scipy.io.loadmat(data_path) data = mat['X'][:,:,:,2] label = mat['y'][2] data_list = np.array(data) data_list = data_list.reshape(32,32,3,1) data_list = np.transpose(data_list,(3,2,0,1)) data_list = data_list.astype(np.float32)/255. infer_data = torch.from_numpy(data_list) label_list = np.array(label) label_list[label_list==10] = 0 label_list = label_list.astype(np.long) # convert labels to long type for cross-entropy loss label_list = label_list.reshape(label_list.shape[0]) print("Inference data shape: ", infer_data.shape) out = self(infer_data) _, prediction = torch.max(out, dim=1) prediction = prediction.cpu().detach().numpy() return data, prediction, label def epoch_end(self, epoch, result): print("Epoch [{}], val_loss: {:.4f}, val_acc: {:.4f}".format(epoch, result['val_loss'], result['val_acc'])) def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds))
import pandas as pd import numpy as np from difflib import SequenceMatcher from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu from nltk.translate.gleu_score import sentence_gleu from sklearn import metrics def _tag(x, strict): return x or "" if strict else "" def _spanrange(span, str_spans=True): return span.string.split(" ") if str_spans else range(*span.startend) def _labels2tokenset(spans, strict_tag, str_spans): ranges = [[str(t) + "_" + _tag(s.tag, strict_tag) for t in _spanrange(s, str_spans)] for s in spans] return set([y for x in ranges for y in x]) def _labels2rangeset(spans, strict_tag): return set([str(s.startend) + "_" + _tag(s.tag, strict_tag) for s in spans]) def _tokenintersects_per_span(denom_spans, nom_spans, strict_tag, str_spans): denom_sets = [_labels2tokenset([a], strict_tag, str_spans) for a in denom_spans] nom_set = _labels2tokenset(nom_spans, strict_tag, str_spans) scores = [len(denom_set.intersection(nom_set)) / len(denom_set) for denom_set in denom_sets] return np.mean(scores) def _exact_intersects_per_ranges(denom_spans, nom_spans, strict_tag): denom_set = _labels2rangeset(denom_spans, strict_tag) nom_set = _labels2rangeset(nom_spans, strict_tag) return len(nom_set.intersection(denom_set)) / len(nom_set) def _eval_pred_per_gold(pred_spans, gold_spans, strict_range, strict_tag, str_spans): if strict_range: return _exact_intersects_per_ranges(pred_spans, gold_spans, strict_tag) else: return _tokenintersects_per_span(pred_spans, gold_spans, strict_tag, str_spans) def eval_f1(a_spans, b_spans, strict_range, strict_tag, str_spans): # print(a_spans, "::::", b_spans) # print("____") if len(a_spans) * len(b_spans) == 0: return 0 p = _eval_pred_per_gold(a_spans, b_spans, strict_range, strict_tag, str_spans) r = _eval_pred_per_gold(b_spans, a_spans, strict_range, strict_tag, str_spans) denom = (p + r) return 2 * p * r / denom if denom > 0 else 0 def _score_multi(thingsA, thingsB, score_fn): scoresA = [np.max([score_fn(thingA, thingB) for thingB in thingsB] + [0]) for thingA in thingsA] scoresB = [np.max([score_fn(thingA, thingB) for thingA in thingsA] + [0]) for thingB in thingsB] score = np.mean(scoresA + scoresB) return 0 if np.isnan(score) else score def _iou_score(vrA, vrB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(vrA.start_vector[0], vrB.start_vector[0]) yA = max(vrA.start_vector[1], vrB.start_vector[1]) xB = min(vrA.end_vector[0], vrB.end_vector[0]) yB = min(vrA.end_vector[1], vrB.end_vector[1]) # compute the area of intersection rectangle interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) # compute the area of both the prediction and ground-truth # rectangles boxAArea = (vrA.end_vector[0] - vrA.start_vector[0] + 1) * (vrA.end_vector[1] - vrA.start_vector[1] + 1) boxBArea = (vrB.end_vector[0] - vrB.start_vector[0] + 1) * (vrB.end_vector[1] - vrB.start_vector[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value return iou def iou_score_multi(vrAs, vrBs): return _score_multi(vrAs, vrBs, _iou_score) def _oks_score(points1, points2, area_scale=None, per_keypoint_constant=1): if area_scale is None: p1scale = np.sqrt(np.mean(np.std(points1, axis=0)**2)) p2scale = np.sqrt(np.mean(np.std(points2, axis=0)**2)) area_scale = (p1scale + p2scale) / 2 if area_scale == 0: return 1 denom = (area_scale * (per_keypoint_constant * 2)**2) if denom == 0: print("ZERO TIME", area_scale, per_keypoint_constant, points1, points2) e = (points1 - points2)**2 / denom return np.mean(np.exp(-np.mean(e, axis=1))) def oks_score_multi(points1, points2): return _score_multi(points1, points2, _oks_score) def rmse(x, y): return np.sqrt(np.mean(np.square(np.array(x) / 100 - np.array(y) / 100))) smoother = SmoothingFunction() def _bleu(x, y): return sentence_bleu([x.split(" ")], y.split(" "), smoothing_function=smoother.method4) def bleu2way(x, y): return (_bleu(x, y) + _bleu(y, x)) / 2 def bleu_multi(x, y): return sentence_bleu([xx.split(" ") for xx in x], y.split(" "), smoothing_function=smoother.method4) def gleu(x, y): return sentence_gleu([x.split(" ")], y.split(" ")) def gleu2way(x, y): return (gleu(x, y) + gleu(y, x)) / 2 def gleu_multi(x, y): return sentence_gleu([xx.split(" ") for xx in x], y.split(" ")) def strdistance(a, b): return SequenceMatcher(None, a, b).ratio() #eval functions that operate on dictionaries def apply_metric(gold_dict, pred_dict, metric, **kwargs): gold_list = [] preds_list = [] for k, v in gold_dict.items(): gold_list.append(v) preds_list.append(pred_dict[k]) return metric(gold_list, preds_list, **kwargs) accuracy = lambda gold, preds: apply_metric(gold, preds, metrics.accuracy_score) f1_weighted = lambda gold, preds: apply_metric(gold, preds, metrics.f1_score, average='weighted') f1_macro = lambda gold, preds: apply_metric(gold, preds, metrics.f1_score, average='macro') mae = lambda gold, preds: apply_metric(gold, preds, metrics.mean_absolute_error) mse = lambda gold, preds: apply_metric(gold, preds, metrics.mean_squared_error) def score_predictions(gold_dict, pred_dict, eval_fn): return {k: eval_fn(gold_dict[k], pred_dict[k]) for k, v in gold_dict.items()}
#!/usr/bin/python # Populates a local mongo db with currency minute data using the ForexiteConnection class. from nowtrade import data_connection import datetime start = datetime.datetime(2014, 05, 17) end = datetime.datetime(2015, 02, 20) data_connection.populate_currency_minute(start, end, sleep=60)
import pandas as pd import requests import es_cal.gcal.config as cfg import time from datetime import datetime from es_cal.gcal import make_event_in_gcal from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import ( NoSuchElementException, ElementNotInteractableException, ElementNotVisibleException, ) from es_cal.browser import make_webdriver from es_cal.discord import send_message from es_cal.gcal.utils import get_tickers, split_string """ 1. Open the website 2. Wait for the table to load 3. Grab the table 4. Close the browser """ def get_earnings(): driver = make_webdriver() driver.get("https://www.tradingview.com/markets/stocks-canada/earnings/") try: WebDriverWait(driver, 10).until( EC.visibility_of_element_located((By.CLASS_NAME, "item-17wa4fow")) ) except Exception as e: print(e) # will throw error if it is not available # Grab data for next week # Xpath version # link = driver.find_element_by_xpath('//*[@id="js-screener-container"]/div[2]/div[6]/div/div/div[4]') # link.click() # div.tv-screener-toolbar__period-picker > div > div > div:nth-child(5)") # div.tv-screener-toolbar__period-picker > div > div > div:nth-child(4) day_int = datetime.today().weekday() table_selector = ( "div.tv-screener-toolbar__period-picker > div > div > div:nth-child(4)" ) if day_int == 6: table_selector = ( "div.tv-screener-toolbar__period-picker > div > div > div:nth-child(5)" ) link = driver.find_element_by_css_selector(table_selector) link.click() # Sleep since time delays aren't a huge deal for me time.sleep(10) # up to 10 tries for x in range(10): print(x) try: load_more = driver.find_element_by_css_selector( "div.tv-load-more.tv-load-more--screener.js-screener-load-more > span" ) load_more.click() time.sleep(10) except NoSuchElementException as e: # likely does not have a load more button if x == 0: break print(e) continue except ElementNotInteractableException as e: print(e) break except ElementNotVisibleException as e: print(e) break # purge spans that represent long names driver.execute_script( """ var element = document.getElementsByClassName("tv-screener__description"), index; for (index = element.length - 1; index >= 0; index--) { element[index].parentNode.removeChild(element[index]); } """ ) # purge D at end driver.execute_script( """ var element = document.getElementsByClassName("tv-data-mode tv-data-mode--for-screener apply-common-tooltip tv-data-mode--delayed tv-data-mode--delayed--for-screener"), index; for (index = element.length - 1; index >= 0; index--) { element[index].parentNode.removeChild(element[index]); } """ ) # remove ticker total driver.execute_script( """ var element = document.getElementsByClassName("tv-screener-table__field-value--total"), index; for (index = element.length - 1; index >= 0; index--) { element[index].parentNode.removeChild(element[index]); } """ ) # table_content = driver.page_source try: html_table_list = pd.read_html(table_content, attrs={"class": "tv-data-table"}) html_df = html_table_list[0] html_df.drop_duplicates(keep="first", inplace=True) except ValueError as e: print(e) with open("index.html", "w", errors="ignore") as f: f.write(table_content) # send alert send_message(f"Earnings stock calendar - error: {str(e)}") return data = get_tickers() html_df["Ticker"] = html_df["Ticker"].apply(lambda x: split_string(x)) clean_df = html_df[html_df.iloc[:, 0].isin(data)] run_date = datetime.today().strftime('%Y-%m-%d') clean_df.to_csv(f"artifacts/{run_date}_earnings.csv", index=False) for index, row in clean_df.iterrows(): earnings_date = row["Date"] ticker = row["Ticker"] print(row["Ticker"], row["Date"]) extracted_date = datetime.strptime(earnings_date, "%Y-%m-%d") earnings_year = extracted_date.year quarter = map_month_to_quarter(extracted_date.month) event_name = f"{ticker} {quarter} {earnings_year} Earnings" make_event_in_gcal(event_name, earnings_date) # html_df.iloc[:, 0].values.tolist() # for # iterate across df and add to python scheduler # Click the Load More Button # driver.close() def map_month_to_quarter(month): switcher = { 1: "Q1", 2: "Q1", 3: "Q1", 4: "Q2", 5: "Q2", 6: "Q2", 7: "Q3", 8: "Q3", 9: "Q3", 10: "Q4", 11: "Q4", 12: "Q4", } return switcher.get(month, "Q1") def main(): get_earnings() if __name__ == "__main__": main()
from datetime import datetime from hearthstone import enums def test_zodiac_dates(): assert enums.ZodiacYear.as_of_date(datetime(2014, 1, 1)) == enums.ZodiacYear.PRE_STANDARD assert enums.ZodiacYear.as_of_date(datetime(2016, 1, 1)) == enums.ZodiacYear.PRE_STANDARD assert enums.ZodiacYear.as_of_date(datetime(2016, 6, 1)) == enums.ZodiacYear.KRAKEN assert enums.ZodiacYear.as_of_date(datetime(2017, 1, 1)) == enums.ZodiacYear.KRAKEN assert enums.ZodiacYear.as_of_date(datetime(2017, 5, 1)) == enums.ZodiacYear.MAMMOTH
""" Contains: Colors: - Colors Class - Create & Convert colors to RGB, HEX, HSV and CMYK Colors tuples in RGB """ from math import floor from typing import Tuple class Color: """ Color values in RGB """ Red = (255, 0, 0) Green = (0, 255, 0) Blue = (0, 0, 255) White = (255, 255, 255) Black = (0, 0, 0) Yellow = (255, 255, 0) Cyan = (0, 255, 255) Magenta = (255, 0, 255) Orange = (255, 165, 0) Purple = (128, 0, 128) Brown = (165, 42, 42) Grey = (128, 128, 128) DarkGrey = (64, 64, 64) Pink = (255, 192, 203) LightBlue = (173, 216, 230) LightGreen = (144, 238, 144) LightGrey = (211, 211, 211) LightPink = (255, 182, 193) LightSalmon = (255, 160, 122) LightSeaGreen = (32, 178, 170) LightSkyBlue = (135, 206, 250) LightSlateGray = (119, 136, 153) LightSteelBlue = (176, 196, 222) LightYellow = (255, 255, 224) PaleGreen = (152, 251, 152) PaleTurquoise = (175, 238, 238) PaleVioletRed = (219, 112, 147) PapayaWhip = (255, 239, 213) PeachPuff = (255, 218, 185) Peru = (205, 133, 63) SeaGreen = (46, 139, 87) SkyBlue = (135, 206, 235) SlateBlue = (106, 90, 205) SlateGray = (112, 128, 144) Tan = (210, 180, 140) Teal = (0, 128, 128) Tomato = (255, 99, 71) Turquoise = (64, 224, 208) Violet = (238, 130, 238) Wheat = (245, 222, 179) YellowGreen = (154, 205, 50) def __init__(self, color: (tuple, "Color") = None): """ Create a color from rbg or another color object :param color: tuple of rbg values or hex value or Color object Example: >>> clr1 =Color((255, 0, 0)) >>> clr1 >>> Color(255, 0, 0) >>> clr2 = Color("#ff0000") >>> clr2 >>> Color(255, 0, 0) >>> clr2.to_hex() >>> "#ff0000" """ if isinstance(color, tuple): self.r, self.g, self.b = color elif isinstance(color, Color): self.r, self.g, self.b = color.to_rgb() elif isinstance(color, str): self.r, self.g, self.b = Color.hex_to_rgb(color) elif color is None: self.r, self.g, self.b = 255, 255, 255 else: raise TypeError(f"Color must be a tuple or a Color object, not {type(color)}") def __eq__(self, other): return self.r == other.r and self.g == other.g and self.b == other.b def __str__(self): return f"{self.r}, {self.g}, {self.b}" def __repr__(self): return f"Color({self.r}, {self.g}, {self.b})" def __add__(self, other): return Color((self.r + other.r, self.g + other.g, self.b + other.b)) def __getitem__(self, item): if item == 0: return self.r elif item == 1: return self.g elif item == 2: return self.b else: raise IndexError(f"Index must be 0, 1 or 2, not {item}") @staticmethod def hex_to_rgb(hex_str: str) -> Tuple[int, int, int]: """ Convert hexadecimal to rgb :param hex_str: hexadecimal string :return: rgb tuple """ if hex_str[0] == "#": hex_str = hex_str.lstrip("#") return int(hex_str[0:2], 16), int(hex_str[2:4], 16), int(hex_str[4:6], 16) else: raise ValueError(f"{hex_str} is not a valid hexadecimal") def to_hex(self) -> str: """ Convert color to hexadecimal :return: hexadecimal string """ return f"#{self.r:02x}{self.g:02x}{self.b:02x}" def to_rgb(self) -> Tuple[int, int, int]: """ Convert color to rgb :return: rgb tuple """ return self.r, self.g, self.b def to_hsv(self) -> Tuple[int, int, int]: """ Convert color to hsv :return: hsv tuple """ r, g, b = self.r / 255, self.g / 255, self.b / 255 mx = max(r, g, b) mn = min(r, g, b) df = mx - mn h = 0 if mx == mn: h = 0 elif mx == r: h = (60 * ((g - b) / df) + 360) % 360 elif mx == g: h = (60 * ((b - r) / df) + 120) % 360 elif mx == b: h = (60 * ((r - g) / df) + 240) % 360 if mx == 0: s = 0 else: s = df / mx v = mx return floor(h), floor(s * 100), floor(v * 100) def to_cmyk(self) -> Tuple[int, int, int, int]: """ Convert color to cmyk :return: cmyk tuple """ r, g, b = self.r / 255, self.g / 255, self.b / 255 k = 1 - max(r, g, b) if k == 1: c = 0 m = 0 y = 0 else: c = (1 - r - k) / (1 - k) m = (1 - g - k) / (1 - k) y = (1 - b - k) / (1 - k) return round(c * 100), round(m * 100), round(y * 100), round(k * 100) def to_kivy(self, alpha: float = 1.0) -> Tuple[float, float, float, float]: """ Convert color to kivy color (rgba) rbg values are in range 0-1 :return: kivy color tuple """ return self.r / 255, self.g / 255, self.b / 255, alpha
#pythran export _integ(uint8[:,:], int, int, int, int) import numpy as np def _clip(x, low, high): assert 0 <= low <= high if x > high: return high if x < low: return low return x def _integ(img, r, c, rl, cl): r = _clip(r, 0, img.shape[0] - 1) c = _clip(c, 0, img.shape[1] - 1) r2 = _clip(r + rl, 0, img.shape[0] - 1) c2 = _clip(c + cl, 0, img.shape[1] - 1) ans = img[r, c] + img[r2, c2] - img[r, c2] - img[r2, c] return max(0, ans)
# -*- coding: utf-8 -*- import ipaddress import numpy import Crypto.Cipher.AES import array import struct import socket class IPAddrAnonymizer: def __init__(self): self.init() def setRandomSeed(self,seed): numpy.random.seed(seed) self.init() def init(self): self.blockA = numpy.random.permutation(2**8) self.blockB = numpy.random.permutation(2**8) self.blockC = numpy.random.permutation(2**8) self.blockD = numpy.random.permutation(2**8) self.blockE = numpy.random.permutation(2**8) self.blockF = numpy.random.permutation(2**8) self.blockG = numpy.random.permutation(2**8) self.blockH = numpy.random.permutation(2**8) self.blockI = numpy.random.permutation(2**8) self.blockJ = numpy.random.permutation(2**8) self.blockK = numpy.random.permutation(2**8) self.blockL = numpy.random.permutation(2**8) self.blockM = numpy.random.permutation(2**8) self.blockN = numpy.random.permutation(2**8) self.blockO = numpy.random.permutation(2**8) self.blockP = numpy.random.permutation(2**8) def truncation(self,n,k): return n >> k def randomPermutation(self,n,version): if version == 4: ret = self.randomPermutationForIPv4(n) elif version == 6: ret = self.randomPermutationForIPv6(n) return ret def randomPermutationForIPv4(self,n): a = n >> 24 b = n >> 16 & 0x00ff c = n >> 8 & 0x0000ff d = n & 0x000000ff a = self.blockA[a] b = self.blockB[b] c = self.blockC[c] d = self.blockD[d] return (a << 24 | b << 16 | c << 8 | d)&0xffffffff def randomPermutationForIPv6(self,ip): a = ip >> 120 & 0xff b = ip >> 112 & 0x00ff c = ip >> 104 & 0x0000ff d = ip >> 96 & 0x000000ff e = ip >> 88 & 0x00000000ff f = ip >> 80 & 0x0000000000ff g = ip >> 72 & 0x000000000000ff h = ip >> 64 & 0x00000000000000ff i = ip >> 56 & 0x0000000000000000ff j = ip >> 48 & 0x000000000000000000ff k = ip >> 40 & 0x00000000000000000000ff l = ip >> 32 & 0x0000000000000000000000ff m = ip >> 24 & 0x000000000000000000000000ff n = ip >> 16 & 0x00000000000000000000000000ff o = ip >> 8 & 0x0000000000000000000000000000ff p = ip & 0x000000000000000000000000000000ff a = self.blockA[a] b = self.blockB[b] c = self.blockC[c] d = self.blockD[d] e = self.blockE[e] f = self.blockF[f] g = self.blockG[g] h = self.blockH[h] i = self.blockI[i] j = self.blockJ[j] k = self.blockK[k] l = self.blockL[l] m = self.blockM[m] n = self.blockN[n] o = self.blockO[o] p = self.blockP[p] return struct.pack('!16B',a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) class CryptoPAnAnonymizer: def __init__(self,key): self._init(key) def _init(self,key): self._cipher = Crypto.Cipher.AES.new(key[:16],Crypto.Cipher.AES.MODE_ECB) padding = array.array('B') padding.fromstring(self._cipher.encrypt(key[16:])) self._padding_int = self._to_int(padding) def changeKey(slef,key): self._init(key) def getMSB(self,byte_array): n = byte_array[0] >> 7 return n def getLSB(self,byte_array): n = self._to_int(byte_array) return n & 1 def anonymize(self,addr,version,priv): if version == 4: N = 32 ext_addr = addr << 96 elif version == 6: N = 128 ext_addr = addr flip_array = [] for pos in range(N): prefix = ext_addr >> (128-pos) << (128-pos) padded_addr = prefix | (self._padding_int & (2**128-1 >> pos)) self._input = self._to_byte_array(padded_addr,16) output = array.array('B') output.fromstring(self._cipher.encrypt(self._input)) # 論文だとLSBだけど実装はMSB flip_array.append(self.getMSB(output)) result = reduce(lambda x, y: (x << 1) | y, flip_array) anonymizedIP = addr ^ (result & (2**N-1<<(N-priv))) return anonymizedIP def _to_int(self,byte_array): return reduce(lambda x,y: x << 8 | y,byte_array) def _to_byte_array(self,n,byte_cnt): byte_array = array.array('B') for i in range(byte_cnt): byte_array.insert(0, (n >> (i * 8)) & 0xff) return byte_array if __name__ == '__main__' : obj = IPAddrAnonymizer() orig_addr = u'192.168.2.1' ip = ipaddress.ip_address(orig_addr) ret = obj.truncation(int(ip),8) anoip = ipaddress.IPv4Address(ret) print "original:",ip print "truncation(8bit):",anoip orig_addr = u'2001:db8::1' ip = ipaddress.ip_address(orig_addr) ret = obj.truncation(int(ip),8) anoip = ipaddress.IPv6Address(ret) print "original:",ip print "truncation(8bit):",anoip #numpy.random.seed(0) orig_addr = u'192.168.2.1' ip = ipaddress.ip_address(orig_addr) ret = obj.randomPermutation(int(ip),4) anoip = ipaddress.IPv4Address(ret) print "original:",ip print "randomPermutation:",anoip orig_addr = u'2001:db8::1' ip = ipaddress.ip_address(orig_addr) ret = obj.randomPermutation(int(ip),6) anoip = ipaddress.IPv6Address(ret) print "original:",ip print "randomPermutation:",anoip key = array.array('B',range(32)) obj = CryptoPAnAnonymizer(key) orig_addr = u'192.168.2.1' ip = ipaddress.ip_address(orig_addr) ret = obj.anonymize(int(ip),4,32) anoip = ipaddress.IPv4Address(ret) print "original:",ip print "cryptopan:",anoip orig_addr = u'2001:db8::1' ip = ipaddress.ip_address(orig_addr) ret = obj.anonymize(int(ip),6,128) anoip = ipaddress.IPv6Address(ret) print "original:",ip print "cryptopan:",anoip
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys def add_path(paths): if not isinstance(paths, (list, tuple)): paths = [paths] for path in paths: if path not in sys.path: sys.path.insert(0, path) def mkdir(paths): if not isinstance(paths, (list, tuple)): paths = [paths] for path in paths: if not os.path.isdir(path): os.makedirs(path) if __name__ == '__main__': pass
def happyNumber(n): # 1 <= n <= 2^31 - 1 == 2,147,483,647 Mersenne prime. # the maximum positive value for a 32-bit signed binary integer if n <= 0: return False for count in range (0, 6): # Split number suma = 0; while n > 0: # Add square number digit = (n % 10) suma += digit * 2 n /= 10 if suma == 1: return True n = suma return False def main(): print happyNumber(19) print happyNumber(1) print happyNumber(10) print happyNumber(9) print happyNumber(17) print happyNumber(1859631248) print happyNumber(1563712137) print happyNumber(8399) if __name__ == '__main__': main()
"""EOF (End of file) - special token, query and resolver for this specific token Use of this token is optional, but it helps parser to identify the end to trigger productions. EOF is a special object to distinguish from any text / None or other tokens that could be valid. """ from .grammar import TerminalQuery from .table import Resolver __all__ = [ 'EOF_TOKEN', 'EofQuery', 'EofResolver' ] class Eof: def __str__(self): return '{EOF}' def __repr__(self): return 'EOF' EOF_TOKEN = Eof() class EofQuery(TerminalQuery): QUERY_SYMBOL = '{EOF}' def __hash__(self): return hash(self.QUERY_SYMBOL) def __str__(self): return self.QUERY_SYMBOL def __repr__(self): return f'{self.__class__.__name__}()' def __eq__(self, other): return isinstance(other, self.__class__) class EofResolver(Resolver): def __init__(self): self.doc = None def add_query(self, query: TerminalQuery, doc): if isinstance(query, EofQuery): self.doc = doc def resolve(self, token): if token is EOF_TOKEN: return self.doc return None
from lightCore import * class Item: def __init__(self, name, nameish, description, weight, cost, image): self.weight = weight self.cost = cost self.name = name self.nameish = nameish self.description = description self.image = image self.cat = "Item" class Equipped(): def __init__(self, item, itype=None): if item == None: self.image = None self.defence = 0 self.description = "You're not wearing any " + itype self.name = "No extra " + itype self.type = "UnEquiped " + itype else: self.item = item self.image = self.item.image self.defence = self.item.defence self.description = self.item.description self.name = "You Have Equiped: " + self.item.name self.type = "Equiped " + self.item.type class InventoryString(): def __init__(self, name, type, description=""): self.name = name self.type = type self.description = description self.cat = "Empty" class Shirt(Item): def __init__(self, name, nameish, description, defence, weight, cost, image, enchantments=[]): self.defence = defence Item.__init__(self, name, nameish, description, weight, cost, image) self.enchantments = enchantments self.type = "Shirt" class Helmet(Item): def __init__(self, name, nameish, description, defence, weight, cost, image, enchantments=[]): self.defence = defence Item.__init__(self, name, nameish, description, weight, cost, image) self.enchantments = enchantments self.type = "Helmet" class Leggins(Item): def __init__(self, name, nameish, description, defence, weight, cost, image, enchantments=[]): self.defence = defence Item.__init__(self, name, nameish, description, weight, cost, image) self.enchantments = enchantments self.type = "Leggins" class Boots(Item): def __init__(self, name, nameish, description, defence, weight, cost, image, enchantments=[]): self.defence = defence Item.__init__(self, name, nameish, description, weight, cost, image) self.enchantments = enchantments self.type = "Boots" class Weapon(Item): def __init__(self, name, nameish, description, damage, weight, cost, image, enchantments=[]): self.damage = damage Item.__init__(self, name, nameish, description, weight, cost, image) self.enchantments = enchantments self.type = "Weapon" class Money(Item): def __init__(self, name, nameish, description, amount, weight, cost, image): self.amount = amount Item.__init__(self, name, nameish, description, weight, cost, image) self.type = "Money" class Book(Item): def __init__(self, name, nameish, description, knowlege, weight, cost, image, contents): self.knowlege = knowlege self.contents = contents Item.__init__(self, name, nameish, description, weight, cost, image) self.type = "Book" class Map(Item): def __init__(self, name, nameish, description, weight, cost, image, mapcontents): self.map = mapcontents Item.__init__(self, name, nameish, description, weight, cost, image) self.type = "Map" class NPC(): def __init__(self, name, description, attack, defence, health, maxhealth, level, alignment, speed, luck, magic, spells=[], inventory=[]): self.name = name self.attack = attack self.defence = defence self.health = health self.maxhealth = maxhealth self.level = level self.alignment = alignment self.speed = speed self.luck = luck self.magic = magic self.spells = spells self.inventory = inventory self.cat = "NPC" class Person(NPC): def __init__(self, name, description, attack, defence, health, maxhealth, level, alignment, speed, luck, magic, spells=[], inventory=[], conversation=[]): self.conversation = conversation NPC.__init__(self, name, description, attack, defence, health, maxhealth, level, alignment, speed, luck, magic, spells, inventory) self.type = "Person"
import io, os.path, re from setuptools import setup, find_packages def read(*names, **kwargs): with io.open( os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8") ) as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup(name='py-vox-io', version=find_version('pyvox', '__init__.py'), description='A Python parser/write for the MagicaVoxel .vox format', author='Gunnar Aastrand Grimnes', author_email='[email protected]', url='https://github.com/gromgull/py-vox-io/', packages=find_packages(), license='BSD', )
import json class Move(): def __init__(self, move_type, count, value): #valid MOVE_TYPE's # attack # block self.type = move_type self.count = count self.value = value class MoveEncoder(json.JSONEncoder): def default(self, obj): try: return { 'type': obj.type, 'count': obj.count, 'value': obj.value, } except: return json.JSONEncoder.default(self, obj)
# -*- coding: utf-8 -*- import sys import os from loguru import logger from datetime import datetime _author_ = 'luwt' _date_ = '2021/8/27 11:11' # 移除原本的控制台输出样式 logger.remove() log_format = ( '<g>{time:YYYY-MM-DD HH:mm:ss}</g> ' '| <level>{level: <8}</level> ' '| <e>{thread.name: <12}</e> ' '| <cyan>{name}</cyan>: <cyan>{function}</cyan>: <cyan>{line}</cyan> ' '- <level>{message}</level>' ) # 定义新的控制台输出样式 logger.add(sys.stderr, format=log_format, level="INFO") log_dir = f'log/{datetime.now().strftime("%Y-%m-%d")}' if not os.path.isdir(log_dir): os.makedirs(log_dir) log_filename = f"{log_dir}/transmit.log" error_log_filename = f"{log_dir}/transmit-error.log" # 定义日志文件输出样式 logger.add( log_filename, format=log_format, level="DEBUG", rotation="100mb", ) # 定义错误日志文件输出样式 logger.add( error_log_filename, format=log_format, level="ERROR", rotation="10mb" )
from cumulusci.tasks.github.merge import MergeBranch from cumulusci.tasks.github.pull_request import PullRequests from cumulusci.tasks.github.release import CreateRelease from cumulusci.tasks.github.release_report import ReleaseReport from cumulusci.tasks.github.tag import CloneTag __all__ = ("MergeBranch", "PullRequests", "CreateRelease", "ReleaseReport", "CloneTag")
# import libraries import pyttsx3 import PyPDF2 # load PDF to be read content = open('TheRaven.pdf', 'rb') #print(type(content)) Reader = PyPDF2.PdfFileReader(content) # get number of pages in document pages = Reader.numPages print(pages) read_out = pyttsx3.init() # set Japanese voice voices = read_out.getProperty('voices') read_out.setProperty('voice', 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_JA-JP_HARUKA_11.0') # loop through the pages and read out for num in range(1, pages): page = Reader.getPage(num) text = page.extractText() read_out.say(text) # save audio to file read_out.save_to_file(text , 'Theraven.mp3') read_out.runAndWait()
import pytest from typing_extensions import get_args from typing_extensions import get_origin from phantom.negated import SequenceNotStr parametrize_instances = pytest.mark.parametrize( "value", ( ("foo", "bar", "baz"), (1, 2, object()), (b"hello", b"there"), [], ["foo"], [b"bar"], ), ) parametrize_non_instances = pytest.mark.parametrize( "value", ( "", "foo", object(), b"", b"foo", {}, set(), frozenset(), ), ) class TestSequenceNotStr: @parametrize_instances def test_is_instance(self, value: object): assert isinstance(value, SequenceNotStr) @parametrize_non_instances def test_is_not_instance(self, value: object): assert not isinstance(value, SequenceNotStr) @parametrize_instances def test_parse_returns_instance(self, value: object): assert SequenceNotStr.parse(value) is value @parametrize_non_instances def test_parse_raises_for_non_instances(self, value: object): with pytest.raises(TypeError): SequenceNotStr.parse(value) def test_subscription_returns_type_alias(self): alias = SequenceNotStr[str] assert get_origin(alias) is SequenceNotStr (arg,) = get_args(alias) assert arg is str
from django.urls import path from . import views app_name = 'workshop' urlpatterns=[ path('',views.workshop,name='workshop_page'), path('form/',views.workshop_form,name='workshop_form'), path('delete/<int:pk>/',views.deleteWorkshop,name='workshop_delete'), path('update/<int:pk>/',views.updateWorkshop,name='workshop_update'), ]
""" CGNS <https://cgns.github.io/> TODO link to specification? """ import numpy from .._exceptions import ReadError from .._helpers import register from .._mesh import Mesh def read(filename): f = h5py.File(filename, "r") x = f["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"] y = f["Base"]["Zone1"]["GridCoordinates"]["CoordinateY"][" data"] z = f["Base"]["Zone1"]["GridCoordinates"]["CoordinateZ"][" data"] points = numpy.column_stack([x, y, z]) # f["Base"]["Zone1"]["GridElements"]["ElementRange"][" data"]) idx_min, idx_max = f["Base"]["Zone1"]["GridElements"]["ElementRange"][" data"] data = f["Base"]["Zone1"]["GridElements"]["ElementConnectivity"][" data"] cells = numpy.array(data).reshape(idx_max, -1) - 1 # TODO how to distinguish cell types? if cells.shape[1] != 4: raise ReadError("Can only read tetrahedra.") cells = [("tetra", cells)] return Mesh(points, cells) def write(filename, mesh, compression="gzip", compression_opts=4): f = h5py.File(filename, "w") base = f.create_group("Base") # TODO something is missing here zone1 = base.create_group("Zone1") coords = zone1.create_group("GridCoordinates") # write points coord_x = coords.create_group("CoordinateX") coord_x.create_dataset( " data", data=mesh.points[:, 0], compression=compression, compression_opts=compression_opts, ) coord_y = coords.create_group("CoordinateY") coord_y.create_dataset( " data", data=mesh.points[:, 1], compression=compression, compression_opts=compression_opts, ) coord_z = coords.create_group("CoordinateZ") coord_z.create_dataset( " data", data=mesh.points[:, 2], compression=compression, compression_opts=compression_opts, ) # write cells # TODO write cells other than tetra elems = zone1.create_group("GridElements") rnge = elems.create_group("ElementRange") for cell_type, data in mesh.cells: if cell_type == "tetra": rnge.create_dataset( " data", data=[1, data.shape[0]], compression=compression, compression_opts=compression_opts, ) conn = elems.create_group("ElementConnectivity") for cell_type, data in mesh.cells: if cell_type == "tetra": conn.create_dataset( " data", data=data.reshape(-1) + 1, compression=compression, compression_opts=compression_opts, ) try: import h5py # Use ModuleNotFoundError when dropping support for Python 3.5 except ImportError: pass else: register("cgns", [".cgns"], read, {"cgns": write})
# pythonpath modification to make hytra and empryonic available # for import without requiring it to be installed import os import sys sys.path.insert(0, os.path.abspath('..')) import skimage.external.tifffile as tiffile import argparse import numpy as np import h5py import hytra.util.axesconversion if __name__ == "__main__": parser = argparse.ArgumentParser(description='Take two tiff files, one for the sporozite channel and one for the nucleus channel, \ and create two files needed for further processing: a 3-channel hdf5 volume and a 1-channel nucleus HDF5.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--sporo', required=True, type=str, dest='sporoFilename', help='Filename of the sporozyte tiff') parser.add_argument('--nucleus', required=True, type=str, dest='nucleusFilename', help='Filename of the nucleus tiff') parser.add_argument('--input-axes', type=str, dest='inputAxes', default='txy', help='Axes string defining the input volume shape') parser.add_argument('--output-axes', type=str, dest='outputAxes', default='txyc', help='Axes string defining the output volume shape. The last one should be channels (c)') parser.add_argument('--3channel-out', type=str, dest='threeChannelOut', required=True, help='Filename of the resulting 3 channel HDF5') parser.add_argument('--nucleus-channel-out', type=str, dest='nucleusChannelOut', required=True, help='Filename of the resulting nucleus channel HDF5') parser.add_argument('--uint8', action='store_true', dest='use_uint8', help="Add this flag to force conversion to uint 8") parser.add_argument('--normalize', action='store_true', dest='normalize', help="Add this flag to force normalization between 0 and 1 if uint8 is not specified, 0 to 255 otherwise") args = parser.parse_args() # read data sporoChannel = tiffile.imread(args.sporoFilename) nucleusChannel = tiffile.imread(args.nucleusFilename) print("Found input images of dimensions {} and {}".format(sporoChannel.shape, nucleusChannel.shape)) if args.normalize: # normalize to range 0-1 sporoChannel = (sporoChannel-np.min(sporoChannel))/float(np.max(sporoChannel)-np.min(sporoChannel)) nucleusChannel = (nucleusChannel-np.min(sporoChannel))/float(np.max(nucleusChannel)-np.min(sporoChannel)) # adjust axes sporoChannel = hytra.util.axesconversion.adjustOrder(sporoChannel, args.inputAxes, args.outputAxes) nucleusChannel = hytra.util.axesconversion.adjustOrder(nucleusChannel, args.inputAxes, args.outputAxes) desiredType = 'float32' if args.use_uint8: desiredType = 'uint8' if args.normalize: sporoChannel *= 255 nucleusChannel *= 255 resultVolume = np.zeros((nucleusChannel.shape[0], nucleusChannel.shape[1], nucleusChannel.shape[2], 3), dtype=desiredType) resultVolume[...,1] = sporoChannel[...,0] resultVolume[...,2] = nucleusChannel[...,0] print("3channel out now has min {}, max {} and dtype {}".format(resultVolume.min(), resultVolume.max(), resultVolume.dtype)) print("resulting shape: {}".format(resultVolume.shape)) with h5py.File(args.threeChannelOut, 'w') as outH5: outH5.create_dataset(name='exported_data', data=resultVolume, dtype=desiredType) with h5py.File(args.nucleusChannelOut, 'w') as outH5: outH5.create_dataset(name='exported_data', data=nucleusChannel, dtype=desiredType)
# Copyright (c) 2013 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import mock import webob.exc from neutron.api.v2 import attributes from neutron.common.test_lib import test_config from neutron import context from neutron.plugins.nec.common import exceptions as nexc from neutron.plugins.nec.extensions import packetfilter from neutron.tests.unit.nec import test_nec_plugin from neutron.tests.unit import test_db_plugin as test_plugin NEC_PLUGIN_PF_INI = """ [DEFAULT] api_extensions_path = neutron/plugins/nec/extensions [OFC] driver = neutron.tests.unit.nec.stub_ofc_driver.StubOFCDriver enable_packet_filter = True """ class PacketfilterExtensionManager(packetfilter.Packetfilter): @classmethod def get_resources(cls): # Add the resources to the global attribute map # This is done here as the setup process won't # initialize the main API router which extends # the global attribute map attributes.RESOURCE_ATTRIBUTE_MAP.update( {'packet_filters': packetfilter.PACKET_FILTER_ATTR_MAP}) return super(PacketfilterExtensionManager, cls).get_resources() class TestNecPluginPacketFilter(test_nec_plugin.NecPluginV2TestCase): _nec_ini = NEC_PLUGIN_PF_INI def setUp(self): test_config['extension_manager'] = PacketfilterExtensionManager() super(TestNecPluginPacketFilter, self).setUp() def _create_packet_filter(self, fmt, net_id, expected_res_status=None, arg_list=None, **kwargs): data = {'packet_filter': {'network_id': net_id, 'tenant_id': self._tenant_id, 'priority': '1', 'action': 'ALLOW'}} for arg in (('name', 'admin_state_up', 'action', 'priority', 'in_port', 'src_mac', 'dst_mac', 'eth_type', 'src_cidr', 'dst_cidr', 'protocol', 'src_port', 'dst_port') + (arg_list or ())): # Arg must be present if arg in kwargs: data['packet_filter'][arg] = kwargs[arg] pf_req = self.new_create_request('packet_filters', data, fmt) if (kwargs.get('set_context') and 'tenant_id' in kwargs): # create a specific auth context for this request pf_req.environ['neutron.context'] = context.Context( '', kwargs['tenant_id']) pf_res = pf_req.get_response(self.ext_api) if expected_res_status: self.assertEqual(pf_res.status_int, expected_res_status) return pf_res def _make_packet_filter(self, fmt, net_id, expected_res_status=None, **kwargs): res = self._create_packet_filter(fmt, net_id, expected_res_status, **kwargs) # Things can go wrong - raise HTTP exc with res code only # so it can be caught by unit tests if res.status_int >= 400: raise webob.exc.HTTPClientError(code=res.status_int) return self.deserialize(fmt, res) @contextlib.contextmanager def packet_filter_on_network(self, network=None, fmt=None, do_delete=True, **kwargs): with test_plugin.optional_ctx(network, self.network) as network_to_use: net_id = network_to_use['network']['id'] pf = self._make_packet_filter(fmt or self.fmt, net_id, **kwargs) try: yield pf finally: if do_delete: self._delete('packet_filters', pf['packet_filter']['id']) @contextlib.contextmanager def packet_filter_on_port(self, port=None, fmt=None, do_delete=True, set_portinfo=True, **kwargs): with test_plugin.optional_ctx(port, self.port) as port_to_use: net_id = port_to_use['port']['network_id'] port_id = port_to_use['port']['id'] if set_portinfo: portinfo = {'id': port_id, 'port_no': kwargs.get('port_no', 123)} kw = {'added': [portinfo]} if 'datapath_id' in kwargs: kw['datapath_id'] = kwargs['datapath_id'] self.rpcapi_update_ports(**kw) kwargs['in_port'] = port_id pf = self._make_packet_filter(fmt or self.fmt, net_id, **kwargs) self.assertEqual(port_id, pf['packet_filter']['in_port']) try: yield pf finally: if do_delete: self._delete('packet_filters', pf['packet_filter']['id']) def test_list_packet_filters(self): self._list('packet_filters') def test_create_pf_on_network_no_ofc_creation(self): with self.packet_filter_on_network(admin_state_up=False) as pf: self.assertEqual(pf['packet_filter']['status'], 'DOWN') self.assertFalse(self.ofc.create_ofc_packet_filter.called) self.assertFalse(self.ofc.delete_ofc_packet_filter.called) def test_create_pf_on_port_no_ofc_creation(self): with self.packet_filter_on_port(admin_state_up=False, set_portinfo=False) as pf: self.assertEqual(pf['packet_filter']['status'], 'DOWN') self.assertFalse(self.ofc.create_ofc_packet_filter.called) self.assertFalse(self.ofc.delete_ofc_packet_filter.called) def test_create_pf_on_network_with_ofc_creation(self): with self.packet_filter_on_network() as pf: pf_id = pf['packet_filter']['id'] self.assertEqual(pf['packet_filter']['status'], 'ACTIVE') ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.create_ofc_packet_filter.call_count, 1) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 1) def test_create_pf_on_port_with_ofc_creation(self): with self.packet_filter_on_port() as pf: pf_id = pf['packet_filter']['id'] self.assertEqual(pf['packet_filter']['status'], 'ACTIVE') ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.create_ofc_packet_filter.call_count, 1) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 1) def test_create_pf_with_invalid_priority(self): with self.network() as net: net_id = net['network']['id'] kwargs = {'priority': 'high'} self._create_packet_filter(self.fmt, net_id, webob.exc.HTTPBadRequest.code, **kwargs) self.assertFalse(self.ofc.create_ofc_packet_filter.called) def test_create_pf_with_ofc_creation_failure(self): self.ofc.set_raise_exc('create_ofc_packet_filter', nexc.OFCException(reason='hoge')) with self.packet_filter_on_network() as pf: pf_id = pf['packet_filter']['id'] pf_ref = self._show('packet_filters', pf_id) self.assertEqual(pf_ref['packet_filter']['status'], 'ERROR') self.ofc.set_raise_exc('create_ofc_packet_filter', None) # Retry deactivate packet_filter. data = {'packet_filter': {'priority': 1000}} self._update('packet_filters', pf_id, data) pf_ref = self._show('packet_filters', pf_id) self.assertEqual(pf_ref['packet_filter']['status'], 'ACTIVE') ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.create_ofc_packet_filter.call_count, 2) def test_show_pf_on_network(self): kwargs = { 'name': 'test-pf-net', 'admin_state_up': False, 'action': 'DENY', 'priority': '102', 'src_mac': '00:11:22:33:44:55', 'dst_mac': '66:77:88:99:aa:bb', 'eth_type': '2048', 'src_cidr': '192.168.1.0/24', 'dst_cidr': '192.168.2.0/24', 'protocol': 'TCP', 'src_port': '35001', 'dst_port': '22' } with self.packet_filter_on_network(**kwargs) as pf: pf_id = pf['packet_filter']['id'] pf_ref = self._show('packet_filters', pf_id) # convert string to int. kwargs.update({'priority': 102, 'eth_type': 2048, 'src_port': 35001, 'dst_port': 22}) self.assertEqual(pf_id, pf_ref['packet_filter']['id']) for key in kwargs: self.assertEqual(kwargs[key], pf_ref['packet_filter'][key]) def test_show_pf_on_port(self): kwargs = { 'name': 'test-pf-port', 'admin_state_up': False, 'action': 'DENY', 'priority': '0o147', 'src_mac': '00:11:22:33:44:55', 'dst_mac': '66:77:88:99:aa:bb', 'eth_type': 2048, 'src_cidr': '192.168.1.0/24', 'dst_cidr': '192.168.2.0/24', 'protocol': 'TCP', 'dst_port': '0x50' } with self.packet_filter_on_port(**kwargs) as pf: pf_id = pf['packet_filter']['id'] pf_ref = self._show('packet_filters', pf_id) # convert string to int. kwargs.update({'priority': 103, 'eth_type': 2048, 'src_port': u'', 'dst_port': 80}) self.assertEqual(pf_id, pf_ref['packet_filter']['id']) for key in kwargs: self.assertEqual(kwargs[key], pf_ref['packet_filter'][key]) def test_show_pf_not_found(self): pf_id = '00000000-ffff-ffff-ffff-000000000000' self._show('packet_filters', pf_id, expected_code=webob.exc.HTTPNotFound.code) def test_update_pf_on_network(self): ctx = mock.ANY pf_dict = mock.ANY with self.packet_filter_on_network(admin_state_up=False) as pf: pf_id = pf['packet_filter']['id'] self.assertFalse(self.ofc.create_ofc_packet_filter.called) data = {'packet_filter': {'admin_state_up': True}} self._update('packet_filters', pf_id, data) self.ofc.create_ofc_packet_filter.assert_called_once_with( ctx, pf_id, pf_dict) self.assertFalse(self.ofc.delete_ofc_packet_filter.called) data = {'packet_filter': {'admin_state_up': False}} self._update('packet_filters', pf_id, data) self.ofc.delete_ofc_packet_filter.assert_called_once_with( ctx, pf_id) def test_update_pf_on_port(self): ctx = mock.ANY pf_dict = mock.ANY with self.packet_filter_on_port(admin_state_up=False) as pf: pf_id = pf['packet_filter']['id'] self.assertFalse(self.ofc.create_ofc_packet_filter.called) data = {'packet_filter': {'admin_state_up': True}} self._update('packet_filters', pf_id, data) self.ofc.create_ofc_packet_filter.assert_called_once_with( ctx, pf_id, pf_dict) self.assertFalse(self.ofc.delete_ofc_packet_filter.called) data = {'packet_filter': {'admin_state_up': False}} self._update('packet_filters', pf_id, data) self.ofc.delete_ofc_packet_filter.assert_called_once_with( ctx, pf_id) def test_activate_pf_on_port_triggered_by_update_port(self): ctx = mock.ANY pf_dict = mock.ANY with self.packet_filter_on_port(set_portinfo=False) as pf: pf_id = pf['packet_filter']['id'] in_port_id = pf['packet_filter']['in_port'] self.assertFalse(self.ofc.create_ofc_packet_filter.called) portinfo = {'id': in_port_id, 'port_no': 123} kw = {'added': [portinfo]} self.rpcapi_update_ports(**kw) self.ofc.create_ofc_packet_filter.assert_called_once_with( ctx, pf_id, pf_dict) self.assertFalse(self.ofc.delete_ofc_packet_filter.called) kw = {'removed': [in_port_id]} self.rpcapi_update_ports(**kw) self.ofc.delete_ofc_packet_filter.assert_called_once_with( ctx, pf_id) # Ensure pf was created before in_port has activated. ctx = mock.ANY pf_dict = mock.ANY port_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_port(ctx, in_port_id), mock.call.create_ofc_port(ctx, in_port_id, port_dict), mock.call.exists_ofc_port(ctx, in_port_id), mock.call.delete_ofc_port(ctx, in_port_id, port_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.create_ofc_packet_filter.call_count, 1) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 1) def test_activate_pf_while_exists_on_ofc(self): ctx = mock.ANY with self.packet_filter_on_network() as pf: pf_id = pf['packet_filter']['id'] self.ofc.set_raise_exc('delete_ofc_packet_filter', nexc.OFCException(reason='hoge')) # This update request will make plugin reactivate pf. data = {'packet_filter': {'priority': 1000}} self._update('packet_filters', pf_id, data) self.ofc.set_raise_exc('delete_ofc_packet_filter', None) ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 2) def test_deactivate_pf_with_ofc_deletion_failure(self): ctx = mock.ANY with self.packet_filter_on_network() as pf: pf_id = pf['packet_filter']['id'] self.ofc.set_raise_exc('delete_ofc_packet_filter', nexc.OFCException(reason='hoge')) data = {'packet_filter': {'admin_state_up': False}} self._update('packet_filters', pf_id, data) pf_ref = self._show('packet_filters', pf_id) self.assertEqual(pf_ref['packet_filter']['status'], 'ERROR') self.ofc.set_raise_exc('delete_ofc_packet_filter', None) data = {'packet_filter': {'priority': 1000}} self._update('packet_filters', pf_id, data) pf_ref = self._show('packet_filters', pf_id) self.assertEqual(pf_ref['packet_filter']['status'], 'DOWN') ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 2) def test_delete_pf_with_ofc_deletion_failure(self): self.ofc.set_raise_exc('delete_ofc_packet_filter', nexc.OFCException(reason='hoge')) with self.packet_filter_on_network() as pf: pf_id = pf['packet_filter']['id'] self._delete('packet_filters', pf_id, expected_code=webob.exc.HTTPInternalServerError.code) pf_ref = self._show('packet_filters', pf_id) self.assertEqual(pf_ref['packet_filter']['status'], 'ERROR') self.ofc.set_raise_exc('delete_ofc_packet_filter', None) # Then, self._delete('packet_filters', pf_id) will success. ctx = mock.ANY pf_dict = mock.ANY expected = [ mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.create_ofc_packet_filter(ctx, pf_id, pf_dict), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), mock.call.exists_ofc_packet_filter(ctx, pf_id), mock.call.delete_ofc_packet_filter(ctx, pf_id), ] self.ofc.assert_has_calls(expected) self.assertEqual(self.ofc.delete_ofc_packet_filter.call_count, 2) def test_auto_delete_pf_in_network_deletion(self): with self.packet_filter_on_network(admin_state_up=False, do_delete=False) as pf: pf_id = pf['packet_filter']['id'] self._show('packet_filters', pf_id, expected_code=webob.exc.HTTPNotFound.code)
VARIABLE_TYPES = [ '<string', '<boolean', '<map', '<integer', '<float', '<double', '<COMPONENT', '<[]string', '<[]boolean', '<[]map', '<[]integer', '<[]float', '<[]double', '<[]COMPONENT', ] def get_json(obj): if type(obj) == dict: return obj else: return obj.to_json() def get_from_key_list(data, keys): # if the key doesn't exist then return None if not keys[0] in data.keys(): return None if len(keys) > 1: # if we aren't at the last key then go a level deeper return get_from_key_list(data[keys[0]], keys[1:]) else: # return the value we want return data[keys[0]] def set_from_key_list(data, keys, value): # if the key doesn't exist then return None if not keys[0] in data.keys(): if len(keys) == 1: data[keys[0]] = value return data else: return None return None if len(keys) > 1: # if we aren't at the last key then go a level deeper ret = set_from_key_list(data[keys[0]], keys[1:], value) if ret == None: return None else: data[keys[0]] = ret else: # return the value we want data[keys[0]] = value return data def add_in_values(data, values): for k in values: if values[k] != None: keys = k.split('.') data = set_from_key_list(data, keys, values[k]) return data def stringify(obj): name = type(obj).__name__ variables = vars(obj) str_rep = '' for v in variables: str_rep += '{}={}, '.format(v, getattr(obj, v)) return name + '(' + str_rep[:-2] + ')' def clean_null(d): clean = {} if type(d) == dict: for k, v in d.items(): if type(v) == dict: nested = clean_null(v) if len(nested.keys()) > 0: clean[k] = nested elif type(v) == list: for i in range(0, len(v)): v[i] = clean_null(v[i]) v = [i for i in v if i] if len(v) > 0: clean[k] = v elif v or v == 0 or v == "": clean[k] = v for k in clean: if clean[k] == {} or clean[k] == []: del clean[k] else: clean = d return clean def clean_unset(data): if type(data) == dict: for k in data: if type(data[k]) == dict: data[k] = clean_unset(data[k]) elif type(data[k]) == list: data[k] = clean_unset(data[k]) elif type(data[k]) == str: for vt in VARIABLE_TYPES: if data[k].startswith(vt): data[k] = None break # if data[k].startswith('<') and data[k].endswith('>'): # data[k] = None else: for k in range(0, len(data)): if type(data[k]) == dict: data[k] = clean_unset(data[k]) elif type(data[k]) == list: data[k] = clean_unset(data[k]) elif type(data[k]) == str: for vt in VARIABLE_TYPES: if data[k].startswith(vt): data[k] = None break # if data[k].startswith('<') and data[k].endswith('>'): # data[k] = None return data def recurse_expand(data, components_list, indent=0): # print(' ' * indent + str(data)) if type(data) == dict: for k in data: if type(data[k]).__name__ in components_list: data[k] = data[k].to_json() else: if type(data[k]) == dict: data[k] = recurse_expand(data[k], components_list, indent = indent+2) elif type(data[k]) == list: data[k] = recurse_expand(data[k], components_list, indent = indent+2) elif type(data[k]) == str: for vt in VARIABLE_TYPES: if data[k].startswith(vt): data[k] = None break # if data[k].startswith('<') and data[k].endswith('>'): # data[k] = None else: for k in range(0, len(data)): if type(data[k]).__name__ in components_list: data[k] = data[k].to_json() else: if type(data[k]) == dict: data[k] = recurse_expand(data[k], components_list, indent = indent+2) elif type(data[k]) == list: data[k] = recurse_expand(data[k], components_list, indent = indent+2) elif type(data[k]) == str: for vt in VARIABLE_TYPES: if data[k].startswith(vt): data[k] = None break # if data[k].startswith('<') and data[k].endswith('>'): # data[k] = None return data def recurse_build(data, key_list, elements, indent=0): # print(' ' * indent + str(data)) if type(data) == dict: for k in data: key = '.'.join(key_list + [k]) if key in elements.keys(): data[k] = elements[key] else: if type(data[k]) == dict: data[k] = recurse_build(data[k], key_list + [k], elements, indent = indent+2) elif type(data[k]) == list: data[k] = recurse_build(data[k], key_list + [k], elements, indent = indent+2) else: for k in range(0, len(data)): key = '.'.join(key_list) if key in elements.keys(): data[k] = elements[key] else: if type(data[k]) == dict: data[k] = recurse_build(data[k], key_list, elements, indent = indent+2) elif type(data[k]) == list: data[k] = recurse_build(data[k], key_list, elements, indent = indent+2) return data def get_key_string(data): temp = list(get_paths(data)) ret = ['.'.join(a) for i, a in enumerate(temp) if a not in temp[:i]] return ret def get_paths(d, current = []): for a, b in d.items(): yield current+[a] if isinstance(b, dict): yield from get_paths(b, current+[a]) elif isinstance(b, list): for i in b: yield from get_paths(i, current+[a]) def fix_brace_strings(text): text = text.replace('\'{}\'', '{}') text = text.replace('"{}"', '{}') return text
# Clase 19. Curso Píldoras Informáticas. # Control de Flujo. Generadores 1. # Más eficientes que las funciones tradicionales. Ahorra memoria y trabajo. # Útiles para trabajar con listas de valores infinitos como una lista que devuelva IPs random. # Además de yield puede llevar el método return. # Funcióm tradicional par crear una lista de números pares. def genpares(limit): num = 1 Pares = [] while num <= limit: Pares.append(num*2) num += 1 return Pares print(genpares(10)) # Con un generador. def genparesGenerator(limit): num = 1 while num <= limit: yield num*2 num += 1 # Se guarda el generador en un objeto. ParesGenerator = genparesGenerator(10) # Se puede recorrer todo el generador con un bucle for. # Lo pongo como comentario porque si no la siguiente parte del código # no se podría ejecutar al estar sobrepasando el límite de iteraciones. # for i in ParesGenerator: # print(i) # Devuelve el primer valor del generador. print("El primer elemento del generador es: " + str(next(ParesGenerator))) # Ahora entra en suspensión, lo cual es la mayor ventaja en eficiencia frente a la función. # Se llama al segundo elemento. print("El segundo elemento del generador es: " + str(next(ParesGenerator))) print("El tercer elemento del generador es: " + str(next(ParesGenerator)))
# -*- coding: utf-8 -*- from icalendar.tests import unittest import datetime import icalendar import os class TestTime(unittest.TestCase): def setUp(self): icalendar.cal.types_factory.types_map['X-SOMETIME'] = 'time' def tearDown(self): icalendar.cal.types_factory.types_map.pop('X-SOMETIME') def test_create_from_ical(self): directory = os.path.dirname(__file__) ics = open(os.path.join(directory, 'time.ics'), 'rb') cal = icalendar.Calendar.from_ical(ics.read()) ics.close() self.assertEqual(cal['X-SOMETIME'].dt, datetime.time(17, 20, 10)) self.assertEqual(cal['X-SOMETIME'].to_ical(), '172010') def test_create_to_ical(self): cal = icalendar.Calendar() cal.add('X-SOMETIME', datetime.time(17, 20, 10)) self.assertTrue(b'X-SOMETIME;VALUE=TIME:172010' in cal.to_ical().splitlines())
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy import stats import csv def get_rand_data(nrow, file_name): s = np.random.uniform( 0 , 1 , nrow * 10) for i in range(nrow * 10): s[i] = (int(s[i] * 10 + 0.5))/10 rd = np.reshape( s , (nrow , 10)) nd = np.zeros((nrow,13)) for i in range(nrow): for j in range(10): nd[i][j] = rd[i][j] for i in range(nrow): race = rd[i][1] if race <= 0.33: nd[i][10] = 1 nd[i][11] = 0 nd[i][12] = 0 elif race <= 0.66: nd[i][10] = 0 nd[i][11] = 1 nd[i][12] = 0 else: nd[i][10] = 0 nd[i][11] = 0 nd[i][12] = 1 ''' 0 - dosage: 80% max, above start taking 0.05 out of effectiveness 1 - race: 0.33 , 0.66, 1 => 1,0,0 or 0,1,0, or 0,0,1 2 - weight: over 80% -> negative 0.01. if less than 0.5: dosage must be lower else negative 0.05 3 - bp -> over 80% negative 0.01 4 - age -> less than 0.5 -> negative 0.01. dosage if higher *0.1 * difference 5,6 -> average two 7 - 4* 8 - * random gausian abs => * 0.01 of the new random 9- same negative 10,11,12 = race 13 = dosage hit 14 = weight hit ''' ef = np.zeros((nrow,10)) g = np.random.normal(0,0.1,nrow) r = np.zeros((nrow,)) for i in range(nrow): #print('i=',i) # dosage dosage = nd[i][0] hit = 0 if dosage >= 0.8: hit = (1-dosage) * -0.1 else: hit = dosage / 10 ef[i][0] = hit #race hit = nd[i][11]* 0.05 - nd[i][12]* 0.02 ef[i][1] = hit #weight weight = nd[i][2] if weight < 0.2: weight = 0.2 nd[i][2] = 0.2 hit = 0 if weight > 0.8: hit = (1-weight) * -0.05 elif weight < 0.5: if dosage > 0.5: hit = - 0.1 * (dosage - weight) ef[i][2] = hit # bp hit = 0 bp = nd[i][3] if bp < 0.25: bp = 0.25 nd[i][3] = bp if bp > 0.8: hit = ( 1- bp) * -0.05 ef[i][3] = hit # age age = nd[i][4] if age < .21: age = 0.21 nd[i][4] = 0.21 hit = 0 if age < 0.5: if dosage > 0.5: hit = - 0.1 * (dosage - age) ef[i][4] = hit ''' ef[i][5] = (nd[i][5] + nd[i][6]) / 2 ef[i][7] = nd[i][7]*nd[i][7]*nd[i][7]*nd[i][7] ef[i][8] = nd[i][8] *g[i] #ef[i][9] = nd[i][9]* -1 * abs(g[i]) ''' for j in range(10): r[i] += ef[i][j] #print(r) #sns.set(color_codes=True) #sns.distplot(r, kde=False, rug=True) #sns.distplot(r) #plt.show() result = np.zeros((nrow,)) for i in range(nrow): if r[i] > 0.075: result[i] = 2 elif r[i] > -0.05: result[i] = 1 #sns.distplot(result) #plt.show() # write csv # dosage , race1 , race2 , race3 , weight , bp , age with open(file_name , 'w') as w: w.write('dosage (max:100 units),race1,race2,race3,weight (max: 300 lbs),bp (max:300/100),age (max:80),effective,no effect,side effect\n') for i in range(nrow): line = (str(nd[i][0]) + ',' + str(nd[i][10]) + ',' + str(nd[i][11]) + ',' + str(nd[i][12]) + ',' + str(nd[i][2]) + ',' + str(nd[i][3]) + ',' + str(nd[i][4]) + ',' ) if result[i] == 2: line += '1,0,0\n' elif result[i] == 1: line += '0,1,0\n' else: line += '0,0,1\n' w.write(line) if __name__ == '__main__': get_rand_data(nrow=500,file_name='validation.csv') get_rand_data(nrow=10000, file_name='data.csv')
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Ingredient from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') class PublicIngredientsApiTests(TestCase): # Test tje publicly availavle ingredients API def setUp(self): self.client = APIClient() def test_login_required(self): # test that login us required to access the endpoint res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code,status.HTTP_401_UNAUTHORIZED) class PrivateIngredientsApiTests(TestCase): # Test the private ingredients API def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( '[email protected]', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_ingredient_list(self): # test retrieving a list of ingredients Ingredient.objects.create(user=self.user,name='Kale') Ingredient.objects.create(user=self.user,name='Salt') res = self.client.get(INGREDIENTS_URL) ingredients = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredients,many=True) self.assertEqual(res.status_code,status.HTTP_200_OK) self.assertEqual(res.data,serializer.data) def test_ingredients_limited_to_user(self): # test that ingredients for the authenticated user are returned user2 = get_user_model().objects.create_user( '[email protected]', 'testpass' ) Ingredient.objects.create(user=user2,name='Vinegar') ingredient = Ingredient.objects.create(user=self.user ,name='Tumeric') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code,status.HTTP_200_OK) self.assertEqual(len(res.data),1) self.assertEqual(res.data[0]['name'],ingredient.name) def test_create_ingredient_successful(self): # test create a mew ingredient payload = {'name':'Cabbage'} self.client.post(INGREDIENTS_URL,payload) exists = Ingredient.objects.filter( user = self.user, name = payload['name'], ).exists() self.assertTrue(exists) def test_create_ingredient_invalid(self): # test creating invalid ingredent fails payload = {'name':''} res = self.client.post(INGREDIENTS_URL,payload) self.assertEqual(res.status_code,status.HTTP_400_BAD_REQUEST)
from PIL import Image, ImageDraw, ImageOps import turtle import util import os import gcode as gc import argparse # Printer parameters (Change these values to match your 3D printer/CNC machine) painting_size = 150 # Max x/y dimension of paining in mm origin_offset = (75, 75) # x/y origin of painting on printer in mm, float ok canvas_height = 24 # Z height at which brush is actively painting in mm, float ok travel_height = 30 # Z travel height in mm, float ok well_clear_height = 35 # Z height to clear wall of paint wells dip_height = 25 # Z height to lower to when dipping brush brush_stroke_resolution = 100 # Maximum number of brush strokes along x or y axis well_radius = 5 # Get command line arguments parser = argparse.ArgumentParser(description='This application takes an image, and turns it into a sequence of g-code commands to run a 3d printer.') parser.add_argument('IMAGE_FILE', action="store", help='The .png or .jpg to process.') parser.add_argument('-g', action='store_true', dest="GRAYSCALE", default=False, help='Convert image to gray scale') parser.add_argument('-c', action='store', dest='COLOR_COUNT', type=int, default=8, help='Number of colors, defaults to 8') args = parser.parse_args() # Create output directory for resultant g-code descriptor = os.path.basename(args.IMAGE_FILE).split(".")[0] folder = os.path.join('output', descriptor) if not os.path.isdir('output/'): os.mkdir('output/') if not os.path.isdir(folder): os.mkdir(folder) # Constants canvas_size = (800,800) # Open image file original = Image.open(args.IMAGE_FILE).convert('RGB').resize(canvas_size, Image.BICUBIC) # Convert to gray scale is argument is set if args.GRAYSCALE: original = original.convert('LA').convert('RGB') # Perform clustering to reduce colors to COLOR_COUNT, and create pixel access object resized = util.cluster(original, args.COLOR_COUNT, brush_stroke_resolution) resized = resized.convert('RGB') resized = resized.transpose(Image.FLIP_TOP_BOTTOM) resized = ImageOps.autocontrast(resized) color_locations = resized.load() # Create a working canvas for composing the painting, and create a pixel access object canvas = Image.new('RGB', canvas_size, (255,255,255)) draw = ImageDraw.Draw(canvas) # Determine well locations NEEDS PARAMETERIZATION WELLS = [(59.0, 52.0+(float(x)*15.875)) for x in range(args.COLOR_COUNT)] WATERS = [(59.0-15.875, 52.0+(float(x)*15.875)) for x in range(13)] # Brush stroke object class BrushStroke: def __init__(self, color, length, xy): self.color = color self.length = length self.xy = xy # Calculated parameters width, height = resized.size brush_stroke_width = (canvas_size[0]//brush_stroke_resolution) brush_stroke_length_min = brush_stroke_width * 2 brush_stroke_length_max = brush_stroke_width * 5 brush_stroke_length_step = (brush_stroke_length_max - brush_stroke_length_min) // 3 c_width, c_height = canvas_size x_ratio = c_width/float(width) y_ratio = c_height/float(height) to_do = width * height p_width = painting_size p_height = painting_size x_ratio_b = p_width/float(c_width) y_ratio_b = p_height/float(c_height) max_x = 0 # Data storage colors = [] brush_strokes = [] # Iterate over image to calculate brush strokes count = 0 for x in range(width): brush_strokes.append([]) for y in range(height): # Display status if count % 100 == 0: print("Calculating brushstroke %s of %s" % (count, to_do), end="\r", flush=True) count += 1 # Get color and add to colors if not already color = color_locations[x, y] color_string = util.c_to_string(color) if color_string not in colors: colors.append(color_string) # Calculate brushstroke angle angle, length = util.find_angle(original, canvas, color, (x * x_ratio, y * y_ratio), brush_stroke_length_min, brush_stroke_length_max, brush_stroke_length_step, brush_stroke_width, min_angle=0, max_angle=90, step=90//8) # Draw brush stroke on canvas xy = util.brushstroke(draw, (x * x_ratio, y * y_ratio), angle, color, length, brush_stroke_width) # Add data to brush strokes brush_strokes[-1].append(BrushStroke(color, length, xy)) # Continue to next output line print() # Create and save color palette image util.draw_palette(colors).save(os.path.join(folder, "%s-colors.png" % descriptor)) # Save out canvas canvas = canvas.transpose(Image.FLIP_TOP_BOTTOM) canvas.save(os.path.join(folder, "%s-painted.png" % descriptor)) # Set up turtle to draw wn = turtle.Screen() # creates a graphics window wn.tracer(2,0) alex = turtle.Turtle() # create a turtle named alex alex.pensize(brush_stroke_width-1) alex.penup() # Start g-code with header o = "" o += gc.header(WELLS, well_clear_height, canvas_height) # Turn brush strokes into g-code for c_index, color in enumerate(colors): # Iterate over colors in order count = 0 # Reset count for this color alex.color(util.c_to_string(color, reverse=True)) # Change turtle color o += gc.clean_brush(WATERS, well_clear_height, well_radius, dip_height) # Clean brush for new color o += "G0 Z%s; Go to travel height on Z axis\n" % travel_height # Make sure head is at safe height # Iterate over brushstrokes array for x in range(width): for y in range(height): if util.c_to_string(color_locations[x,y]) != color: # If its not the right color, skip it continue alex.penup() # Raise turtle pen # See if we need a dip in water or paint (Paint every 30, water every 300) if count % (300) == 0: o += gc.water_dip(WATERS, well_clear_height, well_radius, dip_height) if count % 30 == 0: o += gc.well_dip(c_index, WELLS, well_clear_height, dip_height, well_radius) # Get this brush stroke a, b = brush_strokes[x][y].xy x1, y1 = a x2, y2 = b # Clip in case any of the strokes try to go outside the painting area if y1 > max_x: max_x = y1 if y2 > max_x: max_x = y2 # Move to location, lower pen, move pen, raise pen o += "G0 X%s Y%s;\n" % (x1 * x_ratio_b + origin_offset[0], y1 * y_ratio_b + origin_offset[1]) o += "G0 Z%s;\n" % (canvas_height) o += "G0 X%s Y%s;\n" % (x2 * x_ratio_b + origin_offset[0], y2 * y_ratio_b + origin_offset[1]) o += "G0 Z%s; Go to travel height on Z axis\n" % travel_height # Same with pen alex.goto(x1 - 400, y1 - 400) alex.pendown() alex.goto(x2 - 400, y2 - 400) alex.penup() # Increment count += 1 # Last brush clean, and move printer head to safe location o += gc.clean_brush(WATERS, well_clear_height, well_radius, dip_height) o += "G0 Z%s;\n" % (well_clear_height + 20) o += "G0 Y%s; Go to Paper/Pallete install location\n" % (200) # Write out the g-code file with open(os.path.join(folder, "%s.gcode" % descriptor), "w+") as f: f.write(o)
from .category import Category # from .code_edition import CodeEdition from .user import User
from django.db import models from django.utils.text import slugify from django.contrib.auth.models import BaseUserManager, AbstractUser from localflavor.br.validators import BRCPFValidator class UserManager(BaseUserManager): def create_user(self, email, password=None): if not email: raise ValueError('Users must have an email address') email = self.normalize_email(email) user = self.model(email=email) user.username = slugify(email) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password=None): user = self.create_user(email, password=password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class User(AbstractUser): email = models.EmailField( verbose_name='email address', max_length=255, unique=True, ) cpf = models.CharField( max_length=14, unique=True, validators=[BRCPFValidator()] ) objects = UserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] def __str__(self): return self.email
from google.appengine.api import urlfetch from BeautifulSoup import BeautifulSoup from google.appengine.api import memcache import re import cPickle as pickle import logging from sys import setrecursionlimit setrecursionlimit(4000) agencyURL = "http://www.nextbus.com/wireless/miniAgency.shtml?re=%s" routeURL = "http://www.nextbus.com/wireless/miniRoute.shtml?a=%s" directionURL = "http://www.nextbus.com/wireless/miniDirection.shtml?a=%s&r=%s" stopsURL="http://www.nextbus.com/wireless/miniStop.shtml?a=%s&r=%s&d=%s" timeURL="http://www.nextbus.com/wireless/miniPrediction.shtml?a=%s&r=%s&d=%s&s=%s" #hardcoded for now, since its very difficul to scrape the nextbus region listing #in its raw form without an iphone ua, and appengine won't let me fake ua regions = [ 'Alberta', 'Arizona', 'California-Northern', 'California-Southern', 'Colorado', 'Delaware', 'Florida', 'Georgia', 'Illinois', 'Maryland', 'Massachusetts', 'New Jersey', 'New York', 'North Carolina', 'Ohio', 'Oklahoma', 'Ontario', 'Oregon', 'Pennsylvania', 'South Carolina', 'Virginia', 'Washington', 'Wyoming' ] defaultRegion='California-Northern' defaultAgency='sf-muni' def getDefaultRegion(): """return the default region for user (norcal for now)""" return defaultRegion def getDefaultAgency(): """return the default agency for the user (sf-muni for now)""" return defaultAgency def scrapeList(url): """the lists are all identical (in theory...)""" result = urlfetch.fetch(url) if (result.status_code == 200): soup = BeautifulSoup(result.content) links = soup.html.body.findAll('a') pairs = [] for x in links: #verify that the link is something we want, in case nextbus adds #stupid links to their pages if (x['href'].find('mini') == -1): pass #the interesting bit is always the last arg lastEq = x['href'].rfind('=')+1 key = x['href'][lastEq:] """nextbus devs are terrible at writing markup and use a different combination of <a>, <font>, and <nobr> tags on every page that displays a list that looks the exact fucking same. To combat this epic display of fail, I iterate over the contents of each <a> tag until I find the innermost child""" child = x.contents[0] lastChild = child try: while (child.contents): lastChild = child child = child.contents[0] except AttributeError: innerHTML = lastChild.string pairs.append([key,innerHTML]) return pairs else: return False def scrapeRegions(): return regions def scrapeAgencies(region): url = agencyURL % (region) return scrapeList(url) def scrapeRoutes(agency): url = routeURL % (agency) return scrapeList(url) def scrapeDirections(agency, route): url = directionURL % (agency, route) return scrapeList(url) def scrapeStops(agency, route, direction): url = stopsURL % (agency, route, direction) return scrapeList(url) def scrapeTime(agency, route, direction, stop): """the prediction page is not a list, so it gets its own scrape code""" url = timeURL % (agency, route, direction, stop) return scrapeTimeURL(url) def scrapeTimeURL(url): """the prediction page is not a list, so it gets its own scrape code""" try: result = urlfetch.fetch(url) except: return False if (result.status_code == 200): soup = BeautifulSoup(result.content) infoTable = soup.body.center.font.findAll('table', recursive=False)[0] route = infoTable.findAll('font', text=re.compile('Route'))[0] \ .findNext('b').string stop = infoTable.findAll('font', text=re.compile('Stop'))[0] \ .findNext('b').string try: spans = soup.body.center.font.findAll('table', recursive=False)[1] \ .find('tr').findAll('span', text=re.compile('&nbsp;(\d+|[A-Z]\w+)')) times = [] for span in spans: times.append(span.lstrip('&nbsp;')) except: times = None response = { 'route': route, 'stop': stop, 'times': times } return (response) else: return False def getRegions(): """Get a listing of the regions For now, just return the scrape. When I actually start using this, will need to add caching""" return scrapeRegions() def getAgencies(region): key = "agencies_%s" % region agencies = memcache.get(key) if (agencies): logging.info("Got agencies from memcache") return pickle.loads(agencies) else: agencies = scrapeAgencies(region) if not (agencies): return False else: try: logging.info("Saving agencies to memcache") value = pickle.dumps(agencies) memcache.set(key, value, 60*60*24) except: logging.error("FAIL: Saving agencies to memcache") return agencies def getRoutes(agency): key = "routes_%s" % (agency) routes = memcache.get(key) if (routes): logging.info("Got routes from memcache") return pickle.loads(routes) else: routes = scrapeRoutes(agency) if not (routes): return False else: try: logging.info("Saving routes to memcache") value = pickle.dumps(routes) memcache.set(key, value, 60*60*24) except: logging.error("FAIL: Saving routes to memcache") return routes def getDirections(agency, route): key = "directions_%s_%s" % (agency, route) directions = memcache.get(key) if (directions): logging.info("Got directions from memcache") return pickle.loads(directions) else: directions = scrapeDirections(agency, route) if not (directions): return False else: try: logging.info("Saving directions to memcache") value = pickle.dumps(directions) memcache.set(key, value, 60*60*24) except: logging.error("FAIL: Saving directions to memcache") return directions def getStops(agency, route, direction): key = "stops_%s_%s_%s" % (agency, route, direction) stops = memcache.get(key) if (stops): logging.info("Got stops from memcache") return pickle.loads(stops) else: stops = scrapeStops(agency, route, direction) if not (stops): return False else: try: logging.info("Saving stops to memcache") value = pickle.dumps(stops) memcache.set(key, value, 60*60*24) except: logging.error("FAIL: Saving stops to memcache") return stops def getTime(agency, route, direction, stop): """this won't need caching since we want the latest info""" return scrapeTime(agency, route, direction, stop) def getTimeURL(url): key = "time_%s" % url times = memcache.get(key) if (times): logging.info("Got time from memcache") return pickle.loads(times) else: times = scrapeTimeURL(url) if not (times): return False else: try: logging.info("Saving time to memcache") value = pickle.dumps(times) memcache.set(key, value, 15) except: logging.error("FAIL:Saving time to memcache") return times
# https://www.facebook.com/rohit.jha.94043/posts/1638189713017643 #subscribe by code house import random import turtle # function to check whether turtle # is in Screen or not def isInScreen(win, turt): # getting the end points of turtle screen leftBound = -win.window_width() / 2 rightBound = win.window_width() / 2 topBound = win.window_height() / 2 bottomBound = -win.window_height() / 2 # getting the cuurent position of the turtle turtleX = turt.xcor() turtleY = turt.ycor() # variable to store whether in screen or not stillIn = True # condition to check whether in screen or not if turtleX > rightBound or turtleX < leftBound: stillIn = False if turtleY > topBound or turtleY < bottomBound: stillIn = False # returning the result return stillIn # function to check whether both turtle have # different position or not def sameposition(Red, Blue): if Red.pos() == Blue.pos(): return False else: return True # main function def main(): # screen initialization for turtle wn = turtle.Screen() # Turtle Red initialization # instantiate a new turtle object # called 'Red' Red = turtle.Turtle() # set pencolor as red Red.pencolor("red") # set pensize as 5 Red.pensize(5) # set turtleshape as turtle Red.shape('turtle') pos = Red.pos() # Turtle Blue initialization # instantiate a new turtle object # called 'Blue' Blue = turtle.Turtle() # set pencolor as blue Blue.pencolor("blue") # set pensize as 5 Blue.pensize(5) # set turtleshape as turtle Blue.shape('turtle') # make the turtle invisible Blue.hideturtle() # don't draw when turtle moves Blue.penup() # move the turtle to a location 50 # units away from Red Blue.goto(pos[0]+50, pos[1]) # make the turtle visible Blue.showturtle() # draw when the turtle moves Blue.pendown() # variable to store whether turtles # are in screen or not mT = True jT = True # loop for the game while mT and jT and sameposition(Red, Blue): # coin flip for Red coinRed = random.randrange(0, 2) # angle for Red # random.randrange(0, 180) angleRed = 90 # condition for left or ight # based on coin if coinRed == 0: Red.left(angleRed) else: Red.right(angleRed) # coin flip for Blue coinBlue = random.randrange(0, 2) # angle for Blue # random.randrange(0, 180) angleBlue = 90 # condition for left or ight based # on coin if coinBlue == 0: Blue.left(angleBlue) else: Blue.right(angleBlue) # draw for Red Red.forward(50) # draw for Blue Blue.forward(50) # cheking whether turtles are in the # screen or not mT = isInScreen(wn, Blue) jT = isInScreen(wn, Red) # set pencolor for Blue and Red as black Red.pencolor("black") Blue.pencolor("black") # condion check for draw or win if jT == True and mT == False: # writting results Red.write("Red Won", True, align="center", font=("arial", 15, "bold")) elif mT == True and jT == False: # writting results Blue.write("Blue Won", True, align="center", font=("arial", 15, "bold")) else: # writting results Red.write("Draw", True, align="center", font=("arial", 15, "bold")) Blue.write("Draw", True, align="center", font=("arial", 15, "bold")) # exit on close wn.exitonclick() # Calling main function main()
""" Functions for pretty-printing tables. author: dangeles at caltech edu """ def table_print(l, space=20): """ A function to pretty-print tables. Params: l - a list of strings, each entry is in a different column space - the space between the separators. Must be > than the longest entry in l Output: a print statement """ # if an entry is longer than the default spacing, change the spacing. for i in l: string = str(i) if len(string) > space: space = len(string) + 5 # assemble the message and print s = '' for i in l: i = str(i) s += i + ' '*(space-len(i)) print(s) def significance(pval, alpha, x, y, test_statistic): """ A function to print out for statistical significance. Params: pval - pvalue alpha - threshold for statistical significance x, y - the names of the two samples tested for equality. test_statistic - the (plural version) of the statistic of interest Output: a print statement """ if pval < alpha: m = '{0} and {1} have statistically significantly different {2}.' print(m.format(x, y, test_statistic)) print('The p-value for this test is {0:.2g}'.format(pval))
import numpy as np from nptyping import NDArray from typing import Union, Tuple from ..objective import Objective from .. import utils def soma_II(f: Objective, r: int, eps: float) -> Tuple[NDArray[int], float]: """ Implement Soma'18 algorithm for maximizing a submodular monotone function over the integer lattice under cardinality constraint. :param f: a DR-submodular monotone function :param r: the cardinality constraint :param eps: the error threshold """ # c is the vector upper bound of the lattice domain c = f.B # the solution starts from the zero vector x = np.zeros((f.n, ), dtype=int) # norm keeps track of the L-1 norm of x norm = 0 d = max((f.value(c[e] * utils.char_vector(f, e)) for e in f.V)) theta = d stop_theta = (eps / r) * d while theta >= stop_theta: for e in f.V: one_e = utils.char_vector(f, e) k_max = np.min([c[e] - x[e], r - norm]) k = binary_search_lattice(f=f, one_e=one_e, theta=theta, k_max=k_max, eps=eps) if k is not None: x = x + k * one_e norm += k theta = theta * (1 - eps) return x, f.value(x) def binary_search_lattice(f: Objective, one_e: NDArray[int], theta: float, k_max: int, eps: float) -> Union[float, None]: # find the minimum k_min with 0 <= k_min <= k_max such that f(k_min * one_e) > 0. lazy_list = ((k_min, f.value(k_min * one_e)) for k_min in range(0, k_max + 1)) lazy_list = filter(lambda x: x[1] > 0, lazy_list) k_min, k_min_e_value = min(lazy_list, key=utils.fst, default=(None, None)) if k_min is None: return None h = f.value(k_max * one_e) stop_h = (1 - eps) * k_min_e_value while h >= stop_h: lazy_list = ((k, f.value(k * one_e)) for k in range(k_min, k_max + 1)) lazy_list = filter(lambda x: x[1] >= h, lazy_list) k, k_e_value = max(lazy_list, default=-1) if k_e_value >= (1 - eps) * k * theta: return k h = (1 - eps) * h return None
# Generated by Django 2.2.12 on 2020-05-04 13:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('permissions', '0002_auto_20200221_2126'), ('environments', '0011_auto_20200220_0044'), ] operations = [ migrations.DeleteModel( name='EnvironmentPermission', ), migrations.CreateModel( name='EnvironmentPermissionModel', fields=[ ], options={ 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('permissions.permissionmodel',), ), migrations.AlterField( model_name='userenvironmentpermission', name='permissions', field=models.ManyToManyField(blank=True, to='permissions.PermissionModel'), ), migrations.AlterField( model_name='userpermissiongroupenvironmentpermission', name='permissions', field=models.ManyToManyField(blank=True, to='permissions.PermissionModel'), ), ]
"""Rattr error/logging functions.""" import ast import sys from enum import Enum from os.path import expanduser from typing import List, Optional, Tuple from rattr import config __ERROR = "{prefix}: {optional_file_info}{optional_line_info}{message}" __FILE_INFO = "\033[1m{}: \033[0m" __LINE_INFO = "\033[1mline {}:{}: \033[0m" # --------------------------------------------------------------------------- # # Rattr errors # --------------------------------------------------------------------------- # class Level(Enum): RATTR = "\033[34;1mrattr\033[0m" # Blue INFO = "\033[33;1minfo\033[0m" # Yellow / Orange WARNING = "\033[33;1mwarning\033[0m" # Yellow / Orange ERROR = "\033[31;1merror\033[0m" # Red FATAL = "\033[31;1mfatal\033[0m" # Red def rattr( message: str, culprit: Optional[ast.AST] = None, badness: int = 0, # noqa ) -> None: """Log a message with the prefix "rattr", not for analyser errors.""" __log(Level.RATTR, message, culprit) def info( message: str, culprit: Optional[ast.AST] = None, badness: int = 0, ) -> None: """Log a low-priority warning and, if given, include culprit info.""" __increment_badness(badness) if not config.show_warnings: return if not config.show_low_priority_warnings: return if not config.show_imports_warnings and config.current_file != config.file: return __log(Level.INFO, message, culprit) def warning( message: str, culprit: Optional[ast.AST] = None, badness: int = 1, ) -> None: """Log a warning and, if given, include culprit line and file info.""" __increment_badness(badness) if not config.show_warnings: return if not config.show_imports_warnings and config.current_file != config.file: return __log(Level.WARNING, message, culprit) def error( message: str, culprit: Optional[ast.AST] = None, badness: int = 5, ) -> None: """Log an error and, if given, include culprit line and file info.""" __increment_badness(badness) if config.strict and badness > 0: fatal(message, culprit) __log(Level.ERROR, message, culprit) def fatal( message: str, culprit: Optional[ast.AST] = None, badness: int = 0, # noqa ) -> None: """Log a fatal error and, if given, include culprit line and file info. NOTE A fatal error has no notion of badness as it will always cause an immediate EXIT_FAILURE, however, badness is provided in the function interface for consistency with the other errors. Regardless of the provided badness value, a badness of 0 will be used. """ __increment_badness(0) __log(Level.FATAL, message, culprit) sys.exit(1) def get_badness() -> int: """Return the badness value.""" return config.file_badness + config.simplify_badness def is_within_badness_threshold() -> bool: """Return `True` if the program is within the current badness threshold.""" badness = get_badness() if config.strict: return badness <= 0 # NOTE A threshold of 0 is equivalent to a threshold of ∞ if config.threshold == 0: return True return badness <= config.threshold # --------------------------------------------------------------------------- # # Raisable errors # --------------------------------------------------------------------------- # class RattrUnsupportedError(Exception): """Language feature is unsupported by Rattr.""" pass class RattrUnaryOpInNameable(TypeError): """Unary operation found when resolving name.""" pass class RattrBinOpInNameable(TypeError): """Binary operation found when resolving name.""" pass class RattrConstantInNameable(TypeError): """Constant found when resolving name.""" pass class RattrLiteralInNameable(TypeError): """Literal found when resolving name.""" pass class RattrComprehensionInNameable(TypeError): """Comprehension found when resolving name.""" pass # --------------------------------------------------------------------------- # # Error utils # --------------------------------------------------------------------------- # def get_file_and_line_info(culprit: Optional[ast.AST]) -> Tuple[str, str]: """Return the formatted line and line and file info as strings.""" if culprit is None: return "", "" if config.current_file is not None and config.show_path: file_info = __FILE_INFO.format(format_path(config.current_file)) else: file_info = "" line_info = __LINE_INFO.format(culprit.lineno, culprit.col_offset) return file_info, line_info def split_path(path: str) -> List[str]: """Return the components of the path. >>> path == "/".join(split_path(path)) True for all path >>> split_path("a/b/c") ["a", "b", "c"] >>> split_path("/a/b/c") ["", "a", "b", "c"] >>> split_path("~/a/b/c") ["~", "a", "b", "c"] """ if path in ("", "/"): return [""] # if path.startswith("/"): # return ["/"] + path[1:].split("/") if not path.startswith((".", "~", "/")): path = f"./{path}" return path.split("/") def format_path(path: Optional[str]) -> Optional[str]: """Return the given path formatted in line with `config`.""" if path is None: return None if not config.use_short_path: return path # Replace $HOME with "~" path = path.replace(expanduser("~"), "~") # Abbreviate long heirachies segments = split_path(path) if len(segments) > 5: path = "/".join([segments[0], "...", *segments[-3:]]) return path def __log( level: Level, message: str, culprit: Optional[ast.AST] = None, ) -> None: file_info, line_info = get_file_and_line_info(culprit) print( __ERROR.format( prefix=level.value, optional_file_info=file_info, optional_line_info=line_info, message=message, ) ) def __increment_badness(badness: int) -> None: if isinstance(badness, int) and badness < 0: raise ValueError("'badness' must be positive integer") if config.current_file == config.file: config.file_badness += badness elif config.current_file is None: config.simplify_badness += badness else: config.import_badness += badness
from unittest import TestCase from bin.retrieve import Retriever class TestRetrieve(TestCase): def test_failure(self): self.fail() def test_fail_to_load_database_config(self): with self.assertRaises(SystemExit): Retriever({})
#!/usr/bin/env python # This files contains functions to construct matrices import numpy as np from utils import calculate_matrix_A, find_neighbors, calc_D_size, calculate_N_from_level # Load normal matrix from file def load_matrix(aFile): with open(aFile, "r") as f: A = np.loadtxt(f, delimiter=",") return A # Load values from file and create a diagonal matrix def load_diagonal_matrix(aFile): with open(aFile, "r") as f: temp = np.loadtxt(f,delimiter=",") T = np.zeros((temp.shape[0], temp.shape[0])) for i in range(0,temp.shape[0]): T[i,i] = temp[i] return T # Load values from file and create a diagonal matrix def load_diagonal_matrix_inverse(aFile): with open(aFile, "r") as f: temp = np.loadtxt(f,delimiter=",") T = np.zeros((temp.shape[0], temp.shape[0])) for i in range(0,temp.shape[0]): T[i,i] = 1/temp[i] return T # this is used in evaluation.py to load t.csv and then this is used to generate the diagonals # of the precision matrix C def load_array(aFile): with open(aFile, "r") as f: return np.loadtxt(f,delimiter=",") # Compute the mat-vec product Bs utilising the Kronecker structure of B def Bs(s, A, N): S = np.reshape(s, (N, A.shape[1]), order='F') BS = np.dot(S, np.transpose(A)) y = np.reshape(BS, (-1,), order='F') return y # Generate matrix matrix B as the Kronecker product of A and the identity matrix size N def generate_matrix_B(A, N): return np.kron(A, np.eye(N)) # Generate matrix C as the Kronecker product of two diagonal matrices (T and diagN) def generate_matrix_C(T, N): diagN = np.eye(N) return np.kron(T, diagN) # Generate matrix D def generate_matrix_D(lvl): size = calculate_N_from_level(lvl) (m,n) = calc_D_size(lvl) res = np.zeros((size,size),dtype=int) for i in range(0, size): neighbors = find_neighbors(i, m, n) for pos in neighbors: res[i][pos] = 1 res[i][i] = -1 * len(neighbors) return res # Generate matrix Q as Kronecker product of diagonal matrix P and D square def generate_matrix_Q(D, n, N): qsize = n * N Q = np.zeros((qsize,qsize), dtype = int) DSqure = D.dot(D) for s in range(0, qsize, N): Q[s : s + N, s : s + N] = DSqure Q = Q return Q # Generate matrix S_hat = A^TTAP^{-1}, assumming that P is a identity matrix def generate_matrix_S_hat(A, T): A_trans = np.transpose(A) return A_trans.dot(T.dot(A)) # Generate matrix Y_hat = YTAP^{-1}, with Y = reshape(y,N,m) def generate_matrix_Y_hat(y, N, m, T, A): Y = np.reshape(y,(N, m), order='F') return Y.dot(T.dot(A))
from configredis.setconf import defaultconfig, devconfig, proconfig, configs, ConfigArgs, ConfigUpdate, lookup_proj_config from configredis.setredis import SetRedis con = ConfigArgs() defaultconfig( disk_name='TenD' ) devconfig( sentry=False, celery_broker="amqp://user:[email protected]:5672//", ) proconfig( sentry=True, celery_broker="amqp://user:[email protected]:5672//", disk_name="TenB" ) config = configs() # if use ConfigUpdate.upsert_field_to_redis, need use configs for new fields if __name__ == '__main__': ConfigUpdate.upsert_field_to_redis(disk_name='TenD') # print(configs()) # upsert_config_to_redis() # update or insert current config to redis. print(lookup_proj_config()) # show current project config # print(SetRedis.getkeys()) # SetRedis.delfiels('config_redis')
import requests # API_URL = "https://rel.cs.ru.nl/api" API_URL = "http://localhost:5555" # text_doc = "If you're going to try, go all the way - Charles Bukowski" # text_doc = "David and Victoria named their children Brooklyn, Romeo, Cruz, and Harper Seven." text_doc = "Victoria and David added spices on their marriage." # Example EL. el_result = requests.post(API_URL, json={ "text": text_doc, "spans": [] }).json() # Example ED. ed_result = requests.post(API_URL, json={ "text": text_doc, "spans": [(41, 16)] }).json() # # Example ED. # ed_result = requests.post(API_URL, json={ # "text": text_doc, # "spans": [(41, 16)] # }).json() print(el_result)
"""Plot intensity profile of sidelobes.""" import matplotlib.pyplot as plt import numpy as np from frbpoppy.survey import Survey from tests.convenience import plot_aa_style, rel_path SIDELOBES = [0, 1, 2, 8] SURVEY = 'wsrt-apertif' MIN_Y = 1e-7 n = 50000 plot_aa_style() for sidelobe in reversed(SIDELOBES): args = {'sidelobes': sidelobe} s = Survey(SURVEY) s.set_beam(model='airy', n_sidelobes=sidelobe) int_pro, offset = s.calc_beam(shape=n) # Sort the values sorted_int = np.argsort(offset) int_pro = int_pro[sorted_int] offset = offset[sorted_int] # Clean up lower limit offset = offset[int_pro > MIN_Y] int_pro = int_pro[int_pro > MIN_Y] label = f'{sidelobe} sidelobes' if sidelobe == 1: label = label[:-1] plt.plot(offset, int_pro, label=label) plt.xlabel(r'Offset ($^{\circ}$)') plt.ylabel('Intensity Profile') plt.yscale('log') plt.legend() plt.tight_layout() plt.savefig(rel_path('./plots/beam_int_sidelobes.pdf'))
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from solar.dblayer.solar_models import LogItem def SL(): rst = LogItem.composite.filter({'log': 'staged'}) return LogItem.multi_get(rst) def CL(): rst = LogItem.composite.filter({'log': 'history'}) return LogItem.multi_get(rst) def compact(logitem): return 'log task={} uid={}'.format(logitem.log_action, logitem.uid) def details(diff): rst = [] for type_, val, change in diff: if type_ == 'add': for key, val in change: rst.append('++ {}: {}'.format(key, val)) elif type_ == 'change': rst.append('-+ {}: {} >> {}'.format( unwrap_change_val(val), change[0], change[1])) elif type_ == 'remove': for key, val in change: rst.append('-- {}: {}'.format(key, val)) return rst def unwrap_add(it): if isinstance(it, dict): if it['emitter']: return '{}::{}'.format(it['emitter'], it['value']) return it['value'] elif isinstance(it, list): return [unwrap_add(i) for i in it] else: return it[1] def unwrap_change_val(val): if isinstance(val, list): return '{}:[{}] '.format(val[0], val[1]) else: return val
import sys import pickle from rdkit import Chem from rdkit.Chem import AllChem # Reaction formats # __rxn1__ = AllChem.ReactionFromSmarts('[C;H1:1]=[C,N;H1:2]>>[CH2:1][*H+:2]') # __rxn2__ = AllChem.ReactionFromSmarts('[C;H1:1]=[C,N;H0:2]>>[CH2:1][*+;H0:2]') __rxn1__ = AllChem.ReactionFromSmarts('[C;R;H1:1]=[C,N;R;H1:2]>>[CH2:1][*H+:2]') __rxn2__ = AllChem.ReactionFromSmarts('[C;R;H1:1]=[C,N;R;H0:2]>>[CH2:1][*+;H0:2]') # Bromine # __rxn1__ = AllChem.ReactionFromSmarts('[C;R;H1:1]=[C,N;R;H1:2]>>[CH:1](Br)[*H+:2]') # __rxn2__ = AllChem.ReactionFromSmarts('[C;R;H1:1]=[C,N;R;H0:2]>>[CH:1](Br)[*+;H0:2]') def generate_charged_smiles(smiles, name): global __rxn1__ global __rxn2__ name_list = [] smiles_list = [] atom_list = [] m = Chem.MolFromSmiles(smiles) aromatic_ch = m.GetSubstructMatches(Chem.MolFromSmarts('[c;H1]')) aromatic_ch = [element for tupl in aromatic_ch for element in tupl] Chem.Kekulize(m,clearAromaticFlags=True) # target = Chem.MolFromSmarts('[C;H1:1]=[C,N;H1:2]') target = Chem.MolFromSmarts('[C;R;H1:1]=[C,N;R;H1:2]') atoms = m.GetSubstructMatches(target) # convert tuple of tuple to one-dimensional list atoms = [element for tupl in atoms for element in tupl] parent = Chem.MolToSmiles(m) i = 0 ps = __rxn1__.RunReactants((m,)) for x in ps: smiles = Chem.MolToSmiles(x[0]) smiles = smiles.replace("NH2+","N+") i += 1 name_list.append(name+"+_"+str(i)) smiles_list.append(smiles) atom_list.append(atoms[i-1]) isav = i # target = Chem.MolFromSmarts('[C;H1:1]=[C,N;H0:2]') target = Chem.MolFromSmarts('[C;R;H1:1]=[C,N;R;H0:2]') atoms = m.GetSubstructMatches(target) atoms = [element for tupl in atoms for element in tupl] ps = __rxn2__.RunReactants((m,)) for x in ps: smiles = Chem.MolToSmiles(x[0]) smiles = smiles.replace("NH2+","N+") i += 1 name_list.append(name+"+_"+str(i)) smiles_list.append(smiles) atom_list.append(atoms[2*(i-isav)-2]) return parent, name_list, smiles_list, atom_list def protonate_smiles(filename): """ read smiles filename in the format <compound name> <smiles> from filename returns: dictionary of compounds, with corresponding protonated states dictionary of neutral charge """ file = open(filename, "r") molecules = {} charges = {} for line in file: words = line.split() name = words[0] smiles = words[1] # Get charge from the neutral state charge = Chem.GetFormalCharge(Chem.MolFromSmiles(smiles)) parent, cnames, csmiles, catoms = generate_charged_smiles(smiles, name) molecules[name] = parent, [cnames, csmiles, catoms] charges[name] = charge return molecules, charges
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import os import copy import scipy def make_gif(images, fname, duration=2, true_image=False): import moviepy.editor as mpy def make_frame(t): try: x = images[int(len(images)/duration*t)] except: x = images[-1] if true_image: return x.astype(np.uint8) else: return ((x+1)/2*255).astype(np.uint8) clip = mpy.VideoClip(make_frame, duration=duration) clip.write_gif(fname, fps = len(images) / duration) def save_images(images, size, image_path): images=np.array(images) images=np.reshape(images,(images.shape[0],images.shape[1],images.shape[2],1)) image = np.squeeze(merge(images, size)) return scipy.misc.imsave(image_path, image) def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3,4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3]==1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0] return img else: raise ValueError('in merge(images,size) images parameter ' 'must have dimensions: HxW or HxWx3 or HxWx4') def load_checkpoints(sess,model,flags): if not os.path.exists("checkpoints"): os.mkdir("checkpoints") saver = tf.train.Saver(max_to_keep=1) checkpoint = tf.train.get_checkpoint_state(flags.checkpoint_dir) if checkpoint and checkpoint.model_checkpoint_path: #saver.restore(sess, checkpoint.model_checkpoint_path) try: saver.restore(sess, checkpoint.model_checkpoint_path) except: print("direct restoration failed, try loading existing parameters only") if flags.mode!=1: print("Not in train mode, better check model structure") optimistic_restore(sess,checkpoint.model_checkpoint_path) print("loaded checkpoint: {0}".format(checkpoint.model_checkpoint_path)) else: print("Could not find old checkpoint") if not os.path.exists(flags.checkpoint_dir): os.mkdir(flags.checkpoint_dir) return saver def optimistic_restore(session, save_file): #Adapt code from https://github.com/tensorflow/tensorflow/issues/312 #only load those variables that exist in the checkpoint file reader = tf.train.NewCheckpointReader(save_file) saved_shapes = reader.get_variable_to_shape_map() var_names = [(var.name, var.name.split(':')[0]) for var in tf.global_variables() if var.name.split(':')[0] in saved_shapes] restore_vars = [] name2var = dict(zip(map(lambda x:x.name.split(':')[0], tf.global_variables()), tf.global_variables())) with tf.variable_scope('', reuse=True): for var_name, saved_var_name in var_names: curr_var = name2var[saved_var_name] var_shape = curr_var.get_shape().as_list() if var_shape == saved_shapes[saved_var_name]: restore_vars.append(curr_var) saver = tf.train.Saver(restore_vars) saver.restore(session, save_file) def compute_mean_loss(sess,model,manager,flags): #for a given dataset, compute average reconstrcution loss and KL divergence n_samples = manager.sample_size indices = list(range(n_samples)) total_batch = n_samples // flags.batch_size print(n_samples,total_batch,flags.batch_size) recon_total=0 latent_total=0 for i in range(total_batch): batch_indices = indices[flags.batch_size*i : flags.batch_size*(i+1)] batch_xs = manager.get_images(batch_indices) recons_loss,latent_loss = model.get_recons_loss(sess, batch_xs) recon_total+=recons_loss*flags.batch_size latent_total+=latent_loss*flags.batch_size recon_total=np.array(recon_total) latent_total=np.array(latent_total) print("recon:",recon_total/float(n_samples),"latent:",latent_total/float(n_samples))
import sys import os import time import tqdm import shelve import argparse import skimage.io from torchvision import transforms from collections import defaultdict from pathlib import Path import torch import matplotlib import numpy as np from PIL import Image import model.model as module_arch from data_loader import data_loaders from test_matching import find_descriptor from utils.visualization import norm_range from utils.util import read_json, pad_and_crop from utils import clean_state_dict, get_instance from imgcat import imgcat # matplotlib.font_manager._rebuild() matplotlib.rc('font', family='serif', serif='cmr10') # I downloaded the bold version of Space Mono to get a bold & monospace at the same time in mathtext matplotlib.rc('font', monospace='Space Mono, Andale Mono') matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.tt'] = 'monospace' matplotlib.rcParams['lines.markersize'] = 4 if sys.platform == 'darwin': matplotlib.use("macosx") else: # matplotlib.use("Qt5Agg") matplotlib.use("Agg") import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("--frame_dir", default="/tmp") parser.add_argument("--fig_dir", default="data/figs/patches") parser.add_argument("--cache_dir", default="/tmp") parser.add_argument("--save_hq_ims", action="store_true") parser.add_argument("--aflw_mtfl_root", default="data", choices=["data", "data/aflw-mtfl"]) args = parser.parse_args() model_files_nodve = ['data/models/celeba-smallnet-64d/2019-08-04_17-56-04/checkpoint-epoch100.pth'] model_files_dve = ['data/models/celeba-smallnet-64d-dve/2019-08-02_06-20-28/checkpoint-epoch100.pth'] if args.save_hq_ims: model_files_all = model_files_dve else: model_files_all = model_files_nodve + model_files_dve def grow_axis(ax, d): l, b, r, t = ax.get_position().extents ax.set_position(matplotlib.transforms.Bbox.from_extents((l - d, b - d, r + d, t + d))) def nudge_axis(ax, d): l, b, r, t = ax.get_position().extents ax.set_position(matplotlib.transforms.Bbox.from_extents((l + d, b, r + d, t))) def load_model_for_eval(checkpoint): config_file = Path(checkpoint).parent / 'config.json' config = read_json(config_file) model = get_instance(module_arch, 'arch', config) model.summary() checkpoint = torch.load(checkpoint, map_location='cpu') state_dict = checkpoint['state_dict'] model.load_state_dict(clean_state_dict(state_dict)) model.eval() return model tic = time.time() avface = skimage.io.imread('https://www.uni-regensburg.de/Fakultaeten/phil_Fak_II/Psychologie/Psy_II/' + 'beautycheck/english/durchschnittsgesichter/w(01-64)_gr.jpg') avface = Image.fromarray(avface) imsize = 70 n_images_to_load = 100 #dataset = data_loaders.MAFLAligned(root='data/celeba', train=False, imwidth=100, crop=15, use_hq_ims=False) dataset = data_loaders.AFLW_MTFL(args.aflw_mtfl_root, train=False, imwidth=imsize, crop=0) models_dict = dict([(c, load_model_for_eval(c)) for c in model_files_all]) sample_ims = defaultdict(list) # Disk backed cache sample_descs = shelve.open(args.cache_dir) sample_descs.clear() for samplei in tqdm.tqdm(range(n_images_to_load)): for m in model_files_all: model = models_dict[m] item = dataset[samplei] sample_im = item['data'] sample_desc = model.forward(sample_im.unsqueeze(0))[0][0] sample_ims[m].append(sample_im) sample_descs[m] = sample_descs.get(m, []) + [sample_desc] normalize = transforms.Normalize(mean=[0.5084, 0.4224, 0.3769], std=[0.2599, 0.2371, 0.2323]) augmentations = [] transforms = transforms.Compose([transforms.Resize((imsize, imsize)), transforms.ToTensor(), normalize]) avface_tensor = transforms(avface) descs = {} for m in tqdm.tqdm(model_files_all): model = models_dict[m] avdescs = model.forward(avface_tensor.unsqueeze(0))[0][0] descs[m] = avdescs imC, imH, imW = avface_tensor.shape _, H, W = avdescs.shape stride = imW / W i_idxs = np.arange(10, 60, 5) j_idxs = np.arange(15, 60, 5) #i_idxs = np.arange(10, 66, 6) -1 #j_idxs = np.arange(10, 66, 6) -1 npts = len(i_idxs) * len(j_idxs) rainbow = plt.cm.Spectral(np.linspace(0, 1, npts)) def ax_reset(): plt.cla() plt.axis('square') plt.xlim(query_ax.get_xlim()) plt.ylim(query_ax.get_ylim()) plt.xticks([], []) plt.yticks([], []) if args.save_hq_ims: model2 = model_files_dve[-1] si = 0 for i in tqdm.tqdm(i_idxs): for j in j_idxs: plt.figure(figsize=(15, 15)) plt.gca().set_prop_cycle('color', rainbow) inline_ax = plt.subplot(1, 1, 1) plt.xticks([], []) plt.yticks([], []) plt.sca(inline_ax) dest2 = sample_descs[model2][si] dest2_im = sample_ims[model2][si] dest2_im_numpy = norm_range(dest2_im).permute(1, 2, 0).numpy() jj2, ii2 = find_descriptor(j, i, descs[model2], dest2, stride) jj2 = int(jj2) ii2 = int(ii2) ctx = 15 sz = 5 * 2.5 imcrop2 = pad_and_crop(dest2_im_numpy, [ii2 - ctx, ii2 + ctx, jj2 - ctx, jj2 + ctx]) plt.imshow(imcrop2, extent=[j - sz, j + sz, i + sz, i - sz]) # lrbt # This is a slightly silly hack to get the colourmap to produce consistent # behaviour. Basically we just keep colouring until we hit the right colour for _ in range(si + 1): plt.scatter(j, i, s=(matplotlib.rcParams['lines.markersize'] * 50) ** 2) dest_path = Path(args.fig_dir) / f"patch-{j}-{i}.png" dest_path.parent.mkdir(exist_ok=True, parents=True) plt.savefig(str(dest_path), bbox_inches='tight', transparent=True, pad_inches=0) si += 1 exit() plt.figure(figsize=(7, 3)) query_ax = plt.subplot(1, 3, 2) nodve_ax = plt.subplot(1, 3, 1, frameon=False) dve_ax = plt.subplot(1, 3, 3, frameon=False) nodve_ax.axis('square') grow_axis(nodve_ax, 0.05) nudge_axis(nodve_ax, 0.03) dve_ax.axis('square') grow_axis(dve_ax, 0.05) nudge_axis(dve_ax, -0.03) plt.sca(query_ax) plt.imshow(norm_range(avface_tensor).permute(1, 2, 0)) plt.gca().set_prop_cycle('color', rainbow) plt.xlabel('Query') grow_axis(query_ax, -0.05) plt.xticks([], []) plt.yticks([], []) fac = plt.gca().get_position().width / dve_ax.get_position().width for i in i_idxs: for j in j_idxs: plt.scatter(j, i, s=(matplotlib.rcParams['lines.markersize'] * fac) ** 2) plt.sca(dve_ax) ax_reset() plt.gca().set_prop_cycle('color', rainbow) plt.xlabel('DVE') plt.sca(nodve_ax) ax_reset() plt.gca().set_prop_cycle('color', rainbow) plt.xlabel('No DVE') model1 = model_files_nodve[-1] model2 = model_files_dve[-1] si = 0 for i in i_idxs: for j in j_idxs: dest1 = sample_descs[model1][si] dest1_im = sample_ims[model1][si] dest1_im_numpy = norm_range(dest1_im).permute(1, 2, 0).numpy() dest2 = sample_descs[model2][si] dest2_im = sample_ims[model2][si] dest2_im_numpy = norm_range(dest2_im).permute(1, 2, 0).numpy() jj, ii = find_descriptor(j, i, descs[model1], dest1, stride) jj = int(jj) ii = int(ii) jj2, ii2 = find_descriptor(j, i, descs[model2], dest2, stride) jj2 = int(jj2) ii2 = int(ii2) ctx = 15 sz = 2.5 plt.sca(nodve_ax) imcrop1 = pad_and_crop(dest1_im_numpy, [ii - ctx, ii + ctx, jj - ctx, jj + ctx]) plt.imshow(imcrop1, extent=[j - sz, j + sz, i + sz, i - sz]) # lrbt if np.sqrt((ii-ii2)**2+(jj-jj2)**2) > 8: plt.gca().add_patch(plt.Rectangle((j-sz,i-sz),sz*2,sz*2,linewidth=2,edgecolor='r',facecolor='none')) fac = plt.gca().get_position().width / nodve_ax.get_position().width plt.scatter(j, i, s=(matplotlib.rcParams['lines.markersize'] * fac) ** 2) plt.sca(dve_ax) imcrop2 = pad_and_crop(dest2_im_numpy, [ii2 - ctx, ii2 + ctx, jj2 - ctx, jj2 + ctx]) plt.imshow(imcrop2, extent=[j - sz, j + sz, i + sz, i - sz]) # lrbt fac = plt.gca().get_position().width / nodve_ax.get_position().width plt.scatter(j, i, s=(matplotlib.rcParams['lines.markersize'] * fac) ** 2) si += 1 plt.show() print('done')
""" The Upload ServiceProvider for Backblaze B2 """ from masonite.provider import ServiceProvider from .driver import UploadBackblazeDriver class UploadBackblazeProvider(ServiceProvider): wsgi = False def register(self): self.app.bind('UploadBackblazeDriver', UploadBackblazeDriver) def boot(self): pass
# Standard settings except we use SQLite, this is useful for speeding # up tests that depend on the test database, try for instance: # # ./manage.py test --settings=settings_sqlitetest doc.ChangeStateTestCase # from settings import * # pyflakes:ignore # Workaround to avoid spending minutes stepping through the migrations in # every test run. The result of this is to use the 'syncdb' way of creating # the test database instead of doing it through the migrations. Taken from # https://gist.github.com/NotSqrt/5f3c76cd15e40ef62d09 class DisableMigrations(object): def __contains__(self, item): return True def __getitem__(self, item): return None MIGRATION_MODULES = DisableMigrations() DATABASES = { 'default': { 'NAME': 'test.db', 'ENGINE': 'django.db.backends.sqlite3', }, } if TEST_CODE_COVERAGE_CHECKER and not TEST_CODE_COVERAGE_CHECKER._started: # pyflakes:ignore TEST_CODE_COVERAGE_CHECKER.start() # pyflakes:ignore
class Credentials: # Class that generates new instances of credentials. def __init__(self,account,password): self.account = account self.password = password credentials_list = [] # Empty credentials list def save_credential(self): # save_user method saves credentials objects into user_list Credentials.credentials_list.append(self) @classmethod def display_credentials(cls): """ method that displays a list of user credentials. """ return cls.credentials_list @classmethod def find_credentials(cls, account): """ This Method that takes in a account name and returns a credential that matches that account name. """ for credential in cls.credentials_list: if credential.account == account: return credential def delete_credentials(self): #function to delete users saved credentials based on its name Credentials.credentials_list.remove(self)
import sys import trimesh import pandas as pd import numpy as np import subprocess, glob, os, json from autolab_core import YamlConfig from pose_rv import GaussianPoseRV masses = { 'bar_clamp': 18.5, 'book': 34.8, 'bowl': 15.7, 'cat': 9.9, 'cube_3cm': 3.0, 'endstop_holder': 16.3, 'engine_part': 28.6, 'fan_extruder': 7.4, 'gearbox': 7.4, 'large_marker': 3.2, 'mount1': 10.4, 'mug': 20.2, 'nozzle': 6.3, 'part1': 6.8, 'part3': 13.6, 'pawn': 18.6, 'pear': 6.5, 'pipe_connector': 23.5, 'sardines': 11.2, 'sulfur_neutron': 7.0, 'vase': 13.1, 'yoda': 20.4 } # Nifty helper; in sim, y defined normal to ground, but in our original data z is normal to ground yz_swap = trimesh.transformations.rotation_matrix(-np.pi/2, (1, 0, 0)) def get_grasp_tfs(obj_name, grasp_ind): basedir = os.path.join(os.path.dirname(__file__), '../../dexgrasp_data') # Get grasp information (gripper pose info, object pose info) with open(os.path.join(basedir, 'phys_grasps_json/%s.json' % obj_name)) as foo: obj_cfg = json.load(foo) w2g = obj_cfg[grasp_ind*5]['grasp'] w2o = obj_cfg[grasp_ind*5]['pose'] # Introduce pose noise to gripper position sigma_trans, sigma_rot = 0.001, 0.003 w2g = np.array(w2g) @ GaussianPoseRV(sigma_trans, sigma_rot).generate().matrix # Create list of transformations to keep track of gripper positions(0, 1) and object position (2) tf_lst = [np.eye(4)] * 3 # From gripper pose, re-generate tooltip pose yumi_cfg = YamlConfig(os.path.join(basedir, 'yumi_meshes/yumi_metal_spline.yaml')) for i in range(2): g2t = np.eye(4) g2t[:3, :3] = np.array(yumi_cfg['params']['tooltip_poses'][i]['params']['rotation']) g2t[:3, 3] = np.array(yumi_cfg['params']['tooltip_poses'][i]['params']['translation']) tf_lst[i] = g2t @ tf_lst[i] # Apply initial world-to-gripper / tooltip transformations tf_lst[0] = yz_swap @ w2g @ tf_lst[0] tf_lst[1] = yz_swap @ w2g @ tf_lst[1] tf_lst[2] = yz_swap @ w2o @ tf_lst[2] # to center and put object above ground (1) obj = trimesh.load(os.path.join(basedir, 'object_meshes/%s.obj' % obj_name)) obj.vertices = trimesh.transform_points(obj.vertices, tf_lst[2]) obj_shift = np.eye(4); obj_shift[:3, 3] = -obj.centroid obj.vertices = trimesh.transform_points(obj.vertices, obj_shift) tf_lst[0] = obj_shift @ tf_lst[0] tf_lst[1] = obj_shift @ tf_lst[1] tf_lst[2] = obj_shift @ tf_lst[2] # to center and put object above ground (2) obj_shift = np.eye(4); obj_shift[1, 3] -= (obj.bounds[0, 1] - 0.001) obj.vertices = trimesh.transform_points(obj.vertices, obj_shift) tf_lst[0] = obj_shift @ tf_lst[0] tf_lst[1] = obj_shift @ tf_lst[1] tf_lst[2] = obj_shift @ tf_lst[2] # check for collisions; if collisions, open up grippers more until no collision. mat = [trimesh.load(os.path.join(basedir, 'yumi_meshes/round_pad.obj')) for _ in range(2)] if args.sharp: bound_box = trimesh.creation.box(mat[0].extents) bound_box.vertices += (mat[0].centroid - bound_box.centroid) mat = [bound_box.copy() for _ in mat] mat[0].vertices = trimesh.transform_points(mat[0].vertices, tf_lst[0]) mat[1].vertices = trimesh.transform_points(mat[1].vertices, tf_lst[1]) obj = trimesh.load(os.path.join(basedir, 'object_meshes/%s.obj' % obj_name)) obj.vertices = trimesh.transform_points(obj.vertices, tf_lst[2]) eps = 0.001 colman = trimesh.collision.CollisionManager() colman.add_object('t_0', mat[0]) colman.add_object('t_1', mat[1]) while colman.min_distance_single(obj) < 0.001: mat[0].vertices -= eps*tf_lst[0][:3, 2] mat[1].vertices -= eps*tf_lst[1][:3, 2] tf_lst[0] = trimesh.transformations.translation_matrix(-eps*tf_lst[0][:3, 2]) @ tf_lst[0] tf_lst[1] = trimesh.transformations.translation_matrix(-eps*tf_lst[1][:3, 2]) @ tf_lst[1] colman = trimesh.collision.CollisionManager() colman.add_object('t_0', mat[0]) colman.add_object('t_1', mat[1]) return tf_lst def get_ipc_input(obj_name, tf_lst, output_basedir, duration, step, E, contact_mu, args): from datetime import datetime if output_basedir is not None: output_dir = os.path.join("output", output_basedir) else: output_dir = "output" output_dir = os.path.join(output_dir, "%s_%d_%s" % ( obj_name, args.grasp_ind, datetime.now().isoformat() )); os.makedirs(output_dir, exist_ok=True) pad_distance = np.linalg.norm(100 * tf_lst[0][:3, 3] - 100 * tf_lst[1][:3, 3]) speed = max(1, (pad_distance)/2/duration) # everything is scaled up by 100. config = os.path.join(output_dir, 'grasp_config.txt') basedir = os.path.join(os.path.dirname(__file__), '../../dexgrasp_data') obj = trimesh.load(os.path.join(basedir, 'object_meshes/%s.obj' % obj_name)) with open(config, 'w') as f: f.write("script grasp\n") f.write("shapes input 5\n") # Insert object into simulation scene f.write("%s/ipc_msh/%s.msh %f %f %f %f %f %f %f %f %f %f %f %f 100 100 100 material %d 1e10 0.3\n" % ( basedir, obj_name, *(100 * tf_lst[2][:3, 3]), *tf_lst[2][:3, :3].flatten(), (masses[obj_name]/1000) / obj.volume )) # Insert gripper pads into simulation scene SCALING_FACTOR=80 scaling = np.ones(3) pad_dir = os.path.join(basedir, 'yumi_meshes') vel_dir = np.zeros((2, 3)) from copy import deepcopy orig_tf_lst = deepcopy(tf_lst) if args.sharp: pad_name = os.path.join(pad_dir, 'mat20x20.msh') # get "rectangular" jaws via filling out the extents round_pad = trimesh.load(os.path.join(basedir, 'yumi_meshes/round_pad.obj')) round_dims = round_pad.extents.copy() round_dims[1], round_dims[2] = round_dims[2], round_dims[1] sharp_mat = trimesh.load(os.path.join(basedir, 'yumi_meshes/mat20x20.obj')) sharp_dims = sharp_mat.extents scaling = np.array(round_dims) / np.array(sharp_dims) shift = np.array([round_pad.bounds[0, 0] - sharp_mat.bounds[0, 0]*scaling[0], 0, 0]) tf_lst[0] = tf_lst[0] @ trimesh.transformations.translation_matrix(shift) @ yz_swap tf_lst[1] = tf_lst[1] @ trimesh.transformations.translation_matrix(shift) @ yz_swap # DBC constraint logic (select back surface to move w/ const vel) DBC_select = "-3 1 -3 3 1 3" # pad move directions vel_dir[0] = -tf_lst[0][:3, 1] vel_dir[1] = -tf_lst[1][:3, 1] else: pad_name = os.path.join(pad_dir, 'round_pad.msh') # pad move directions vel_dir[0] = tf_lst[0][:3, 2] vel_dir[1] = tf_lst[1][:3, 2] # DBC constraint logic (select back surface to move w/ const vel) DBC_select = "-3 -3 0 3 3 0" # Pad density + poisson ratio set w/ limited prior knowledge of silicone rubber for i in range(2): # insert gripper (deformable) f.write('%s %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f material 2300 %f 0.45 DBC %s %f %f %f 0 0 0\n' \ % (pad_name, *(100 * tf_lst[i][:3, 3]), *tf_lst[i][:3, :3].flatten(), *(SCALING_FACTOR*scaling), E, DBC_select, *(speed*vel_dir[i]))) # insert gripper jaw backings f.write('%s %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f linearVelocity %f %f %f\n' % ( os.path.join(pad_dir, 'cube.obj'), *(100 * (orig_tf_lst[i][:3, 3] - 0.0075*orig_tf_lst[i][:3, 1]- 0.005*orig_tf_lst[i][:3, 2] - 0.035*orig_tf_lst[i][:3, 0])), *orig_tf_lst[i][:3, :3].flatten(), 3.75, 1.5, 0.2, *(speed*vel_dir[i]) )) f.write("selfFric %f\n" % contact_mu) f.write("ground 0.1 0\n") f.write("time %f %f\n" % (duration, step)) with open(os.path.join(output_dir, 'stdout.log'), 'w+') as log: proc = ["python3", "batch.py", config, "--output", output_dir] if not args.online: proc.append("--offline") # subprocess.run(proc, stdout=log) subprocess.run(proc) return output_dir if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("obj_name") parser.add_argument("grasp_ind", type=int) parser.add_argument("--output_dir", default=None) parser.add_argument("--sharp", action="store_true") parser.add_argument('--E', type=float, default=1e8) parser.add_argument('--contact_mu', type=float, default=0.3) parser.add_argument('--time', type=float, default=2) parser.add_argument('--step', type=float, default=0.02) parser.add_argument('--online', action="store_true") args = parser.parse_args() tf_lst = get_grasp_tfs(args.obj_name, args.grasp_ind) get_ipc_input(args.obj_name, tf_lst, args.output_dir, args.time, args.step, args.E, args.contact_mu, args)
import string import contractions import io from gutenberg.acquire import load_etext from gutenberg.cleanup import strip_headers #book = strip_headers(load_etext(2701)).strip() #print(book) # load text filename = 'songs-input.txt' file = open(filename, encoding="utf8") text = file.read() file.close() # expand contactions def replace_contractions(text): """Replace contractions in string of text""" return contractions.fix(text) expand = replace_contractions(text) # split into words by white space words = expand.split() # remove punctuation from each word print(string.punctuation) table = str.maketrans('', '', '`~!@#$%^&*()-_=+[]{}\|:;"<>?/‘’“”©⌐™') stripped = [w.translate(table) for w in words] # convert to lower case stripped = [word.lower() for word in stripped] print(stripped[:200]) #write to file thefile = open('lyrics-cleaned.txt','w',encoding="utf8") for item in stripped: thefile.write(" " + item)
#!/usr/bin/env python3 """ check the security and functionability of uploaded code - forbid from importing os - random chessboard check - some special case check """ import imp import traceback import sys import os import numpy as np from timeout_decorator import timeout FORBIDDEN_LIST = ['import os', 'exec'] class CodeCheck(): def __init__(self, script_file_path, chessboard_size): self.time_out = 5 self.script_file_path = script_file_path self.chessboard_size = chessboard_size self.agent = None self.errormsg = 'Error' self.errorcase = 0 # sys.stdout = open(os.devnull, 'w') # sys.stderr = open(os.devnull, 'w') # print(self.chessboard) # Call this function and get True or False, self.errormsg has the massage def check_code(self): # check if contains forbidden library if self.__check_forbidden_import() == False: return False # check initialization try: self.agent = imp.load_source('AI', self.script_file_path).AI(self.chessboard_size, 1, self.time_out) self.agent = imp.load_source('AI', self.script_file_path).AI(self.chessboard_size, -1, self.time_out) except Exception: self.errormsg = "Fail to init" return False # check simple condition if not self.__check_simple_chessboard(): self.errormsg = "Can not pass usability test." return False # check advance condition, online test contain more test case than this demo if not self.__check_advance_chessboard(): self.errormsg = "Your code is too weak, fail to pass base test." return False return True def __check_forbidden_import(self): with open(self.script_file_path, 'r', encoding='UTF-8') as myfile: data = myfile.read() for keyword in FORBIDDEN_LIST: idx = data.find(keyword) if idx != -1: self.errormsg = "import forbidden" return False return True def __check_go(self, chessboard): self.agent = imp.load_source('AI', self.script_file_path).AI(self.chessboard_size, -1, self.time_out) try: # timeout(self.time_out)(self.agent.go)(np.copy(chessboard)) self.agent.go(np.copy(chessboard)) except Exception: self.errormsg = "Error:" + traceback.format_exc() return False return True def __check_result(self, chessboard, result): if not self.__check_go(chessboard): return False if not self.agent.candidate_list or list(self.agent.candidate_list[-1]) not in result: return False return True def __check_simple_chessboard(self): # empty chessboard if not self.__check_go(np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int)): return False # only one empty position remain chessboard = np.ones((self.chessboard_size, self.chessboard_size)) chessboard[:, ::2] = -1 for i in range(0, self.chessboard_size, 4): chessboard[i] = -chessboard[i] x, y = np.random.choice(self.chessboard_size, 2) chessboard[x, y] = 0 if not self.__check_result(chessboard, [[x, y]]): return False return True def __check_advance_chessboard(self): # chessboard = np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int) chessboard[2, 2] = 1 chessboard[3, 3] = 1 chessboard[4, 4] = 1 chessboard[5, 6] = 1 chessboard[5, 8] = 1 chessboard[1:3, 11] = -1 chessboard[3, 9:11] = -1 chessboard[6, 13] = -1 if not self.__check_result(chessboard, [[5, 5]]): self.errorcase = 1 return False # chessboard = np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int) chessboard[2, 2:4] = 1 chessboard[4, 1:3] = 1 chessboard[1, 10:12] = -1 chessboard[2, 10] = -1 chessboard[4, 12] = -1 if not self.__check_result(chessboard, [[1, 9]]): self.errorcase = 2 return False # chessboard = np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int) chessboard[2, 2] = 1 chessboard[2, 4] = 1 chessboard[3, 2:4] = 1 chessboard[5, 2] = 1 chessboard[1, 10:12] = -1 chessboard[2, 10] = -1 chessboard[4, 12:14] = -1 if not self.__check_result(chessboard, [[4, 2]]): self.errorcase = 3 return False # chessboard = np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int) chessboard[2:5, 2] = 1 chessboard[6, 3:5] = 1 chessboard[1, 10:12] = -1 chessboard[2, 10] = -1 chessboard[4, 12:14] = -1 if not self.__check_result(chessboard, [[5, 2]]): self.errorcase = 4 return False # chessboard = np.zeros((self.chessboard_size, self.chessboard_size), dtype=np.int) chessboard[1, 3] = 1 chessboard[2, 2] = 1 chessboard[2, 5] = 1 chessboard[3:5, 3] = 1 chessboard[1, 11:13] = -1 chessboard[2, 11:13] = -1 chessboard[5, 13] = -1 if not self.__check_result(chessboard, [[2, 3]]): self.errorcase = 5 return False return True
# Copyright (c) 2020 KU Leuven import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" import sparsechem as sc import scipy.io import scipy.sparse import numpy as np import pandas as pd import torch import argparse import os import sys import os.path import time import json import functools import csv #from apex import amp from contextlib import redirect_stdout from sparsechem import Nothing from torch.utils.data import DataLoader from torch.optim.lr_scheduler import MultiStepLR from torch.utils.tensorboard import SummaryWriter from pytorch_memlab import MemReporter from pynvml import * if torch.cuda.is_available(): nvmlInit() # import multiprocessing # multiprocessing.set_start_method('fork', force=True) parser = argparse.ArgumentParser(description="Training a multi-task model.") parser.add_argument("--x", help="Descriptor file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_class", "--y", "--y_classification", help="Activity file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_regr", "--y_regression", help="Activity file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_censor", help="Censor mask for regression (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--weights_class", "--task_weights", "--weights_classification", help="CSV file with columns task_id, training_weight, aggregation_weight, task_type (for classification tasks)", type=str, default=None) parser.add_argument("--weights_regr", "--weights_regression", help="CSV file with columns task_id, training_weight, censored_weight, aggregation_weight, aggregation_weight, task_type (for regression tasks)", type=str, default=None) parser.add_argument("--censored_loss", help="Whether censored loss is used for training (default 1)", type=int, default=1) parser.add_argument("--folding", help="Folding file (npy)", type=str, required=True) parser.add_argument("--fold_va", help="Validation fold number", type=int, default=0) parser.add_argument("--fold_te", help="Test fold number (removed from dataset)", type=int, default=None) parser.add_argument("--batch_ratio", help="Batch ratio", type=float, default=0.02) parser.add_argument("--internal_batch_max", help="Maximum size of the internal batch", type=int, default=None) parser.add_argument("--normalize_loss", help="Normalization constant to divide the loss (default uses batch size)", type=float, default=None) parser.add_argument("--normalize_regression", help="Set this to 1 if the regression tasks should be normalized", type=int, default=0) parser.add_argument("--normalize_regr_va", help="Set this to 1 if the regression tasks in validation fold should be normalized together with training folds", type=int, default=0) parser.add_argument("--inverse_normalization", help="Set this to 1 if the regression tasks in validation fold should be inverse normalized at validation time", type=int, default=0) parser.add_argument("--hidden_sizes", nargs="+", help="Hidden sizes of trunk", default=[], type=int, required=True) parser.add_argument("--last_hidden_sizes", nargs="+", help="Hidden sizes in the head (if specified , class and reg heads have this dimension)", default=None, type=int) #parser.add_argument("--middle_dropout", help="Dropout for layers before the last", type=float, default=0.0) #parser.add_argument("--last_dropout", help="Last dropout", type=float, default=0.2) parser.add_argument("--weight_decay", help="Weight decay", type=float, default=0.0) parser.add_argument("--last_non_linearity", help="Last layer non-linearity (depecrated)", type=str, default="relu", choices=["relu", "tanh"]) parser.add_argument("--middle_non_linearity", "--non_linearity", help="Before last layer non-linearity", type=str, default="relu", choices=["relu", "tanh"]) parser.add_argument("--input_transform", help="Transformation to apply to inputs", type=str, default="none", choices=["binarize", "none", "tanh", "log1p"]) parser.add_argument("--lr", help="Learning rate", type=float, default=1e-3) parser.add_argument("--lr_alpha", help="Learning rate decay multiplier", type=float, default=0.3) parser.add_argument("--lr_steps", nargs="+", help="Learning rate decay steps", type=int, default=[10]) parser.add_argument("--input_size_freq", help="Number of high importance features", type=int, default=None) parser.add_argument("--fold_inputs", help="Fold input to a fixed set (default no folding)", type=int, default=None) parser.add_argument("--epochs", help="Number of epochs", type=int, default=20) parser.add_argument("--pi_zero", help="Reference class ratio to be used for calibrated aucpr", type=float, default=0.1) parser.add_argument("--min_samples_class", help="Minimum number samples in each class and in each fold for AUC calculation (only used if aggregation_weight is not provided in --weights_class)", type=int, default=5) parser.add_argument("--min_samples_auc", help="Obsolete: use 'min_samples_class'", type=int, default=None) parser.add_argument("--min_samples_regr", help="Minimum number of uncensored samples in each fold for regression metric calculation (only used if aggregation_weight is not provided in --weights_regr)", type=int, default=10) parser.add_argument("--dev", help="Device to use", type=str, default="cuda:0") parser.add_argument("--run_name", help="Run name for results", type=str, default=None) parser.add_argument("--output_dir", help="Output directory, including boards (default 'models')", type=str, default="models") parser.add_argument("--prefix", help="Prefix for run name (default 'run')", type=str, default='run') parser.add_argument("--verbose", help="Verbosity level: 2 = full; 1 = no progress; 0 = no output", type=int, default=2, choices=[0, 1, 2]) parser.add_argument("--save_model", help="Set this to 0 if the model should not be saved", type=int, default=1) parser.add_argument("--save_board", help="Set this to 0 if the TensorBoard should not be saved", type=int, default=1) parser.add_argument("--profile", help="Set this to 1 to output memory profile information", type=int, default=0) parser.add_argument("--mixed_precision", help="Set this to 1 to run in mixed precision mode (vs single precision)", type=int, default=0) parser.add_argument("--eval_train", help="Set this to 1 to calculate AUCs for train data", type=int, default=0) parser.add_argument("--enable_cat_fusion", help="Set this to 1 to enable catalogue fusion", type=int, default=0) parser.add_argument("--eval_frequency", help="The gap between AUC eval (in epochs), -1 means to do an eval at the end.", type=int, default=1) #hybrid model features parser.add_argument("--regression_weight", help="between 0 and 1 relative weight of regression loss vs classification loss", type=float, default=0.5) parser.add_argument("--scaling_regularizer", help="L2 regularizer of the scaling layer, if inf scaling layer is switched off", type=float, default=np.inf) parser.add_argument("--class_feature_size", help="Number of leftmost features used from the output of the trunk (default: use all)", type=int, default=-1) parser.add_argument("--regression_feature_size", help="Number of rightmost features used from the output of the trunk (default: use all)", type=int, default=-1) parser.add_argument("--last_hidden_sizes_reg", nargs="+", help="Hidden sizes in the regression head (overwritten by last_hidden_sizes)", default=None, type=int) parser.add_argument("--last_hidden_sizes_class", nargs="+", help="Hidden sizes in the classification head (overwritten by last_hidden_sizes)", default=None, type=int) parser.add_argument("--dropouts_reg", nargs="+", help="List of dropout values used in the regression head (needs one per last hidden in reg head, ignored if last_hidden_sizes_reg not specified)", default=[], type=float) parser.add_argument("--dropouts_class", nargs="+", help="List of dropout values used in the classification head (needs one per last hidden in class head, ignored if no last_hidden_sizes_class not specified)", default=[], type=float) parser.add_argument("--dropouts_trunk", nargs="+", help="List of dropout values used in the trunk", default=[], type=float) args = parser.parse_args() if (args.last_hidden_sizes is not None) and ((args.last_hidden_sizes_class is not None) or (args.last_hidden_sizes_reg is not None)): raise ValueError("Head specific and general last_hidden_sizes argument were both specified!") if (args.last_hidden_sizes is not None): args.last_hidden_sizes_class = args.last_hidden_sizes args.last_hidden_sizes_reg = args.last_hidden_sizes if args.last_hidden_sizes_reg is not None: assert len(args.last_hidden_sizes_reg) == len(args.dropouts_reg), "Number of hiddens and number of dropout values specified must be equal in the regression head!" if args.last_hidden_sizes_class is not None: assert len(args.last_hidden_sizes_class) == len(args.dropouts_class), "Number of hiddens and number of dropout values specified must be equal in the classification head!" if args.hidden_sizes is not None: assert len(args.hidden_sizes) == len(args.dropouts_trunk), "Number of hiddens and number of dropout values specified must be equal in the trunk!" def vprint(s=""): if args.verbose: print(s) vprint(args) if args.class_feature_size == -1: args.class_feature_size = args.hidden_sizes[-1] if args.regression_feature_size == -1: args.regression_feature_size = args.hidden_sizes[-1] assert args.regression_feature_size <= args.hidden_sizes[-1], "Regression feature size cannot be larger than the trunk output" assert args.class_feature_size <= args.hidden_sizes[-1], "Classification feature size cannot be larger than the trunk output" assert args.regression_feature_size + args.class_feature_size >= args.hidden_sizes[-1], "Unused features in the trunk! Set regression_feature_size + class_feature_size >= trunk output!" #if args.regression_feature_size != args.hidden_sizes[-1] or args.class_feature_size != args.hidden_sizes[-1]: # raise ValueError("Hidden spliting not implemented yet!") if args.run_name is not None: name = args.run_name else: name = f"sc_{args.prefix}_h{'.'.join([str(h) for h in args.hidden_sizes])}_ldo_r{'.'.join([str(d) for d in args.dropouts_reg])}_wd{args.weight_decay}" name += f"_lr{args.lr}_lrsteps{'.'.join([str(s) for s in args.lr_steps])}_ep{args.epochs}" name += f"_fva{args.fold_va}_fte{args.fold_te}" if args.mixed_precision == 1: name += f"_mixed_precision" vprint(f"Run name is '{name}'.") if args.profile == 1: assert (args.save_board==1), "Tensorboard should be enabled to be able to profile memory usage." if args.save_board: tb_name = os.path.join(args.output_dir, "boards", name) writer = SummaryWriter(tb_name) else: writer = Nothing() assert args.input_size_freq is None, "Using tail compression not yet supported." if (args.y_class is None) and (args.y_regr is None): raise ValueError("No label data specified, please add --y_class and/or --y_regr.") ecfp = sc.load_sparse(args.x) y_class = sc.load_sparse(args.y_class) y_regr = sc.load_sparse(args.y_regr) y_censor = sc.load_sparse(args.y_censor) if (y_regr is None) and (y_censor is not None): raise ValueError("y_censor provided please also provide --y_regr.") if y_class is None: y_class = scipy.sparse.csr_matrix((ecfp.shape[0], 0)) if y_regr is None: y_regr = scipy.sparse.csr_matrix((ecfp.shape[0], 0)) if y_censor is None: y_censor = scipy.sparse.csr_matrix(y_regr.shape) folding = np.load(args.folding) assert ecfp.shape[0] == folding.shape[0], "x and folding must have same number of rows" ## Loading task weights tasks_class = sc.load_task_weights(args.weights_class, y=y_class, label="y_class") tasks_regr = sc.load_task_weights(args.weights_regr, y=y_regr, label="y_regr") ## Input transformation ecfp = sc.fold_transform_inputs(ecfp, folding_size=args.fold_inputs, transform=args.input_transform) print(f"count non zero:{ecfp[0].count_nonzero()}") num_pos = np.array((y_class == +1).sum(0)).flatten() num_neg = np.array((y_class == -1).sum(0)).flatten() num_class = np.array((y_class != 0).sum(0)).flatten() if (num_class != num_pos + num_neg).any(): raise ValueError("For classification all y values (--y_class/--y) must be 1 or -1.") num_regr = np.bincount(y_regr.indices, minlength=y_regr.shape[1]) assert args.min_samples_auc is None, "Parameter 'min_samples_auc' is obsolete. Use '--min_samples_class' that specifies how many samples a task needs per FOLD and per CLASS to be aggregated." if tasks_class.aggregation_weight is None: ## using min_samples rule fold_pos, fold_neg = sc.class_fold_counts(y_class, folding) n = args.min_samples_class tasks_class.aggregation_weight = ((fold_pos >= n).all(0) & (fold_neg >= n)).all(0).astype(np.float64) if tasks_regr.aggregation_weight is None: if y_censor.nnz == 0: y_regr2 = y_regr.copy() y_regr2.data[:] = 1 else: ## only counting uncensored data y_regr2 = y_censor.copy() y_regr2.data = (y_regr2.data == 0).astype(np.int32) fold_regr, _ = sc.class_fold_counts(y_regr2, folding) del y_regr2 tasks_regr.aggregation_weight = (fold_regr >= args.min_samples_regr).all(0).astype(np.float64) vprint(f"Input dimension: {ecfp.shape[1]}") vprint(f"#samples: {ecfp.shape[0]}") vprint(f"#classification tasks: {y_class.shape[1]}") vprint(f"#regression tasks: {y_regr.shape[1]}") vprint(f"Using {(tasks_class.aggregation_weight > 0).sum()} classification tasks for calculating aggregated metrics (AUCROC, F1_max, etc).") vprint(f"Using {(tasks_regr.aggregation_weight > 0).sum()} regression tasks for calculating metrics (RMSE, Rsquared, correlation).") if args.fold_te is not None and args.fold_te >= 0: ## removing test data assert args.fold_te != args.fold_va, "fold_va and fold_te must not be equal." keep = folding != args.fold_te ecfp = ecfp[keep] y_class = y_class[keep] y_regr = y_regr[keep] y_censor = y_censor[keep] folding = folding[keep] normalize_inv = None if args.normalize_regression == 1 and args.normalize_regr_va == 1: y_regr, mean_save, var_save = sc.normalize_regr(y_regr) fold_va = args.fold_va idx_tr = np.where(folding != fold_va)[0] idx_va = np.where(folding == fold_va)[0] y_class_tr = y_class[idx_tr] y_class_va = y_class[idx_va] y_regr_tr = y_regr[idx_tr] y_regr_va = y_regr[idx_va] y_censor_tr = y_censor[idx_tr] y_censor_va = y_censor[idx_va] if args.normalize_regression == 1 and args.normalize_regr_va == 0: y_regr_tr, mean_save, var_save = sc.normalize_regr(y_regr_tr) if args.inverse_normalization == 1: normalize_inv = {} normalize_inv["mean"] = mean_save normalize_inv["var"] = var_save num_pos_va = np.array((y_class_va == +1).sum(0)).flatten() num_neg_va = np.array((y_class_va == -1).sum(0)).flatten() num_regr_va = np.bincount(y_regr_va.indices, minlength=y_regr.shape[1]) pos_rate = num_pos_va/(num_pos_va+num_neg_va) pos_rate_ref = args.pi_zero pos_rate = np.clip(pos_rate, 0, 0.99) cal_fact_aucpr = pos_rate*(1-pos_rate_ref)/(pos_rate_ref*(1-pos_rate)) #import ipdb; ipdb.set_trace() batch_size = int(np.ceil(args.batch_ratio * idx_tr.shape[0])) num_int_batches = 1 if args.internal_batch_max is not None: if args.internal_batch_max < batch_size: num_int_batches = int(np.ceil(batch_size / args.internal_batch_max)) batch_size = int(np.ceil(batch_size / num_int_batches)) vprint(f"#internal batch size: {batch_size}") tasks_cat_id_list = None select_cat_ids = None if tasks_class.cat_id is not None: tasks_cat_id_list = [[x,i] for i,x in enumerate(tasks_class.cat_id) if str(x) != 'nan'] tasks_cat_ids = [i for i,x in enumerate(tasks_class.cat_id) if str(x) != 'nan'] select_cat_ids = np.array(tasks_cat_ids) cat_id_size = len(tasks_cat_id_list) else: cat_id_size = 0 dataset_tr = sc.ClassRegrSparseDataset(x=ecfp[idx_tr], y_class=y_class_tr, y_regr=y_regr_tr, y_censor=y_censor_tr, y_cat_columns=select_cat_ids) dataset_va = sc.ClassRegrSparseDataset(x=ecfp[idx_va], y_class=y_class_va, y_regr=y_regr_va, y_censor=y_censor_va, y_cat_columns=select_cat_ids) loader_tr = DataLoader(dataset_tr, batch_size=batch_size, num_workers = 8, pin_memory=True, collate_fn=dataset_tr.collate, shuffle=True) loader_va = DataLoader(dataset_va, batch_size=batch_size, num_workers = 4, pin_memory=True, collate_fn=dataset_va.collate, shuffle=False) args.input_size = dataset_tr.input_size args.output_size = dataset_tr.output_size args.class_output_size = dataset_tr.class_output_size args.regr_output_size = dataset_tr.regr_output_size args.cat_id_size = cat_id_size dev = torch.device(args.dev) net = sc.SparseFFN(args).to(dev) loss_class = torch.nn.BCEWithLogitsLoss(reduction="none") loss_regr = sc.censored_mse_loss if not args.censored_loss: loss_regr = functools.partial(loss_regr, censored_enabled=False) tasks_class.training_weight = tasks_class.training_weight.to(dev) tasks_regr.training_weight = tasks_regr.training_weight.to(dev) tasks_regr.censored_weight = tasks_regr.censored_weight.to(dev) vprint("Network:") vprint(net) reporter = None h = None if args.profile == 1: torch_gpu_id = torch.cuda.current_device() if "CUDA_VISIBLE_DEVICES" in os.environ: ids = list(map(int, os.environ.get("CUDA_VISIBLE_DEVICES", "").split(","))) nvml_gpu_id = ids[torch_gpu_id] # remap else: nvml_gpu_id = torch_gpu_id h = nvmlDeviceGetHandleByIndex(nvml_gpu_id) if args.profile == 1: ##### output saving ##### if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) reporter = MemReporter(net) with open(f"{args.output_dir}/memprofile.txt", "w+") as profile_file: with redirect_stdout(profile_file): profile_file.write(f"\nInitial model detailed report:\n\n") reporter.report() optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_alpha) num_prints = 0 scaler = torch.cuda.amp.GradScaler() for epoch in range(args.epochs): t0 = time.time() sc.train_class_regr( net, optimizer, loader = loader_tr, loss_class = loss_class, loss_regr = loss_regr, dev = dev, weights_class = tasks_class.training_weight * (1-args.regression_weight) * 2, weights_regr = tasks_regr.training_weight * args.regression_weight * 2, censored_weight = tasks_regr.censored_weight, normalize_loss = args.normalize_loss, num_int_batches = num_int_batches, progress = args.verbose >= 2, reporter = reporter, writer = writer, epoch = epoch, args = args, scaler = scaler, nvml_handle = h) if args.profile == 1: with open(f"{args.output_dir}/memprofile.txt", "a+") as profile_file: profile_file.write(f"\nAfter epoch {epoch} model detailed report:\n\n") with redirect_stdout(profile_file): reporter.report() t1 = time.time() eval_round = (args.eval_frequency > 0) and ((epoch + 1) % args.eval_frequency == 0) last_round = epoch == args.epochs - 1 if eval_round or last_round: results_va = sc.evaluate_class_regr(net, loader_va, loss_class, loss_regr, tasks_class=tasks_class, tasks_regr=tasks_regr, dev=dev, progress = args.verbose >= 2, normalize_inv=normalize_inv, cal_fact_aucpr=cal_fact_aucpr) # import ipdb; ipdb.set_trace() for key, val in results_va["classification_agg"].items(): writer.add_scalar(key+"/va", val, epoch) for key, val in results_va["regression_agg"].items(): writer.add_scalar(key+"/va", val, epoch) if args.eval_train: results_tr = sc.evaluate_class_regr(net, loader_tr, loss_class, loss_regr, tasks_class=tasks_class, tasks_regr=tasks_regr, dev=dev, progress = args.verbose >= 2) for key, val in results_tr["classification_agg"].items(): writer.add_scalar(key+"/tr", val, epoch) for key, val in results_tr["regression_agg"].items(): writer.add_scalar(key+"/tr", val, epoch) else: results_tr = None if args.verbose: ## printing a new header every 20 lines header = num_prints % 20 == 0 num_prints += 1 sc.print_metrics_cr(epoch, t1 - t0, results_tr, results_va, header) scheduler.step() #print("DEBUG data for hidden spliting") #print (f"Classification mask: Sum = {net.classmask.sum()}\t Uniques: {np.unique(net.classmask)}") #print (f"Regression mask: Sum = {net.regmask.sum()}\t Uniques: {np.unique(net.regmask)}") #print (f"overlap: {(net.regmask * net.classmask).sum()}") writer.close() vprint() if args.profile == 1: multiplexer = sc.create_multiplexer(tb_name) # sc.export_scalars(multiplexer, '.', "GPUmem", "testcsv.csv") data = sc.extract_scalars(multiplexer, '.', "GPUmem") vprint(f"Peak GPU memory used: {sc.return_max_val(data)}MB") vprint("Saving performance metrics (AUCs) and model.") ##### model saving ##### if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) model_file = f"{args.output_dir}/{name}.pt" out_file = f"{args.output_dir}/{name}.json" if args.save_model: torch.save(net.state_dict(), model_file) vprint(f"Saved model weights into '{model_file}'.") results_va["classification"]["num_pos"] = num_pos_va results_va["classification"]["num_neg"] = num_neg_va results_va["regression"]["num_samples"] = num_regr_va if results_tr is not None: results_tr["classification"]["num_pos"] = num_pos - num_pos_va results_tr["classification"]["num_neg"] = num_neg - num_neg_va results_tr["regression"]["num_samples"] = num_regr - num_regr_va stats=None if args.normalize_regression == 1 : stats={} stats["mean"] = mean_save stats["var"] = np.array(var_save)[0] sc.save_results(out_file, args, validation=results_va, training=results_tr, stats=stats) vprint(f"Saved config and results into '{out_file}'.\nYou can load the results by:\n import sparsechem as sc\n res = sc.load_results('{out_file}')")
import unittest import mock from cloudshell.devices.snmp_handler import SnmpContextManager from cloudshell.devices.snmp_handler import SnmpHandler class TestSnmpContextManager(unittest.TestCase): def setUp(self): self.enable_flow = mock.MagicMock() self.disable_flow = mock.MagicMock() self.snmp_parameters = mock.MagicMock() self.logger = mock.MagicMock() self.snmp_cm = SnmpContextManager(enable_flow=self.enable_flow, disable_flow=self.disable_flow, snmp_parameters=self.snmp_parameters, logger=self.logger) @mock.patch("cloudshell.devices.snmp_handler.QualiSnmp") def test__enter__(self, quali_snmp_class): """Check that method will return QualiSnmp instance and execute enable flow""" quali_snmp = mock.MagicMock() quali_snmp_class.return_value = quali_snmp # act with self.snmp_cm as snmp: pass # verify self.assertEqual(snmp, quali_snmp) quali_snmp_class.assert_called_once_with(self.snmp_parameters, self.logger) self.enable_flow.execute_flow.assert_called_once_with(self.snmp_parameters) @mock.patch("cloudshell.devices.snmp_handler.QualiSnmp") def test__exit__(self, quali_snmp_class): """Check that method will execute disable flow""" # act with self.snmp_cm: pass # verify self.disable_flow.execute_flow.assert_called_once_with(self.snmp_parameters) class TestSnmpHandler(unittest.TestCase): def setUp(self): self.resource_conf = mock.MagicMock() self.logger = mock.MagicMock() self.api = mock.MagicMock() class TestedClass(SnmpHandler): def _create_enable_flow(self): pass def _create_disable_flow(self): pass self.snmp = TestedClass(resource_config=self.resource_conf, logger=self.logger, api=self.api) def test_enable_flow(self): """Check that method will create enable flow if 'enable_snmp' config is set to True""" self.resource_conf.enable_snmp = "True" enable_flow = mock.MagicMock() self.snmp._create_enable_flow = mock.MagicMock(return_value=enable_flow) # act result = self.snmp.enable_flow # verify self.assertEqual(result, enable_flow) def test_disable_flow(self): """Check that method will create disable flow if 'disable_snmp' config is set to True""" self.resource_conf.disable_snmp = "True" disable_flow = mock.MagicMock() self.snmp._create_disable_flow = mock.MagicMock(return_value=disable_flow) # act result = self.snmp.disable_flow # verify self.assertEqual(result, disable_flow) def test_create_enable_flow(self): """Check that instance can't be instantiated without implementation of the "_create_enable_flow" method""" class TestedClass(SnmpHandler): def _create_disable_flow(self): pass with self.assertRaisesRegexp(TypeError, "Can't instantiate abstract class TestedClass with " "abstract methods _create_enable_flow"): TestedClass(resource_config=self.resource_conf, logger=self.logger, api=self.api) def _create_disable_flow(self): """Check that instance can't be instantiated without implementation of the "_create_disable_flow" method""" class TestedClass(SnmpHandler): def _create_enable_flow(self): pass with self.assertRaisesRegexp(TypeError, "Can't instantiate abstract class TestedClass with " "abstract methods _create_disable_flow"): TestedClass(resource_config=self.resource_conf, logger=self.logger, api=self.api) @mock.patch("cloudshell.devices.snmp_handler.SnmpContextManager") def test_get_snmp_service(self, snmp_context_manager_class): """Check that method will return SnmpContextManager instance""" snmp_context_manager = mock.MagicMock() snmp_context_manager_class.return_value = snmp_context_manager # act result = self.snmp.get_snmp_service() # verify self.assertEqual(result, snmp_context_manager) snmp_context_manager_class.assert_called_once_with(self.snmp.enable_flow, self.snmp.disable_flow, self.snmp._snmp_parameters, self.snmp._logger) def test_create_enable_and_disable_flow_does_nothing(self): class TestedClass(SnmpHandler): def _create_enable_flow(self): return super(TestedClass, self)._create_enable_flow() def _create_disable_flow(self): return super(TestedClass, self)._create_disable_flow() tested_class = TestedClass(self.resource_conf, self.logger, self.api) self.assertIsNone(tested_class._create_enable_flow()) self.assertIsNone(tested_class._create_disable_flow())
''''Write a function called repeatStr which repeats the given string string exactly n times.''' def repeat_str(repeat, string): return string*repeat
import threading from date_time_event.utils import (convert_datetime_secs, complete_datetime) class Untiltime(threading.Thread): def __init__(self, function=None, dateOrtime=None, name=None, join=False, group=None, daemon=False, *args, **kwargs): super().__init__(daemon=daemon, name=name, group=group) self._date = dateOrtime # if dateOrtime is not None else 0 self._join = join self.function = function self.args = kwargs.get('args', []) self.kwargs = kwargs.get('kwargs', {}) self.finished = threading.Event() self._return_value = None def __call__(self, *args, **kwargs): args = list(args) def _start(*ags, **kw): """Internal function.""" self.args = ags or self.args self.kwargs = kw or self.kwargs self.start() return self._return_value fn = args.pop(0) if args and args[0] else None if (fn is not None and not callable(self.function) and callable(fn)): self.function = fn return _start return _start(*args, **kwargs) @property def date(self): """Return date/time.""" if self._date is not None: return complete_datetime(self._date) @date.setter def date(self, val): """Set date/time.""" self._date = complete_datetime(val) def start(self): """Start the thread's activity. It must be called at most once per thread object. It arranges for the object's run() method to be invoked in a separate thread of control. This method will raise a RuntimeError if called more than once on the same thread object. """ val = super().start() if self._join: self.join() return val def cancel(self): """Stop the timer if it hasn't finished yet.""" return self.finished.set() def run(self): """Method representing the thread's activity. You may override this method in a subclass. The standard run() method invokes the callable object passed to the object's constructor as the target argument, if any, with sequential and keyword arguments taken from the args and kwargs arguments, respectively. """ if self.date: self.finished.wait(convert_datetime_secs(self.date)) if not self.finished.is_set(): self._return_value = self.function( *self.args, **self.kwargs) self.finished.set() def get(self): """Returns the value returned by the tareget function. This function will only return value after the target function is called and also if the function itself returns a non-None value. """ if self.finished.is_set() and self._return_value is not None: return self._return_value
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from netests import log from netests.constants import COMPARE_OPTION_KEY, PRINT_OPTION_KEY, NOT_SET ERROR_HEADER = "Error import [ospf.py]" class OSPFSession: peer_rid: str local_interface: str peer_ip: str session_state: str peer_hostname: str def __init__( self, peer_rid=NOT_SET, session_state=NOT_SET, peer_hostname=NOT_SET, local_interface=NOT_SET, peer_ip=NOT_SET, options={} ): self.peer_rid = peer_rid self.session_state = str(session_state).upper() self.peer_hostname = peer_hostname self.local_interface = local_interface self.peer_ip = peer_ip self.options = options def __eq__(self, other): if not isinstance(other, OSPFSession): return NotImplemented if COMPARE_OPTION_KEY in self.options.keys(): log.debug(f"Compare modified function\noptions={self.options}") is_equal = True if self.options.get(COMPARE_OPTION_KEY).get('peer_rid', True): if str(self.peer_rid) != str(other.peer_rid): is_equal = False if self.options.get(COMPARE_OPTION_KEY) \ .get('session_state', False): if str(self.session_state) != str(other.session_state): is_equal = False if self.options.get(COMPARE_OPTION_KEY) \ .get('peer_hostname', False): if str(self.peer_hostname) != str(other.peer_hostname): is_equal = False if self.options.get(COMPARE_OPTION_KEY) \ .get('local_interface', True): if str(self.local_interface) != str(other.local_interface): is_equal = False if self.options.get(COMPARE_OPTION_KEY).get('peer_ip', False): if str(self.peer_ip) != str(other.peer_ip): is_equal = False log.debug( "Result for modified compare function\n" f"is_equal={is_equal}" ) return is_equal else: log.debug(f"Compare standard function\noptions={self.options}") is_equal = ( str(self.local_interface) == str(other.local_interface) and str(self.peer_rid) == str(other.peer_rid) ) log.debug( "Result for standard compare function\n" f"is_equal={is_equal}" ) return is_equal def __repr__(self): if PRINT_OPTION_KEY in self.options.keys(): ret = "\t<BGPSession\n" if self.options.get(PRINT_OPTION_KEY).get('peer_rid', True): ret += f"\t\tpeer_rid={self.peer_rid}\n" if self.options.get(PRINT_OPTION_KEY).get('session_state', True): ret += f"\t\tsession_state={self.session_state}\n" if self.options.get(PRINT_OPTION_KEY).get('peer_hostname', True): ret += f"\t\tpeer_hostname={self.peer_hostname}\n" if self.options.get(PRINT_OPTION_KEY).get('local_interface', True): ret += f"\t\tlocal_interface={self.local_interface}\n" if self.options.get(PRINT_OPTION_KEY).get('peer_ip', True): f"\t\tpeer_ip={self.peer_ip}" return ret + ">\n" else: return f"<OSPFSession\n" \ f"\t\tpeer_rid={self.peer_rid}\n" \ f"\t\tsession_state={self.session_state}\n" \ f"\t\tpeer_hostname={self.peer_hostname}\n" \ f"\t\tlocal_interface={self.local_interface}\n" \ f"\t\tpeer_ip={self.peer_ip}" \ ">\n" def to_json(self): if PRINT_OPTION_KEY in self.options.keys(): r = dict() if self.options.get(PRINT_OPTION_KEY).get('peer_rid', True): r['peer_rid'] = self.peer_rid if self.options.get(PRINT_OPTION_KEY).get('session_state', True): r['session_state'] = self.session_state if self.options.get(PRINT_OPTION_KEY).get('peer_hostname', True): r['peer_hostname'] = self.peer_hostname if self.options.get(PRINT_OPTION_KEY).get('local_interface', True): r['local_interface'] = self.local_interface if self.options.get(PRINT_OPTION_KEY).get('peer_ip', True): r['peer_ip'] = self.peer_ip return r else: return { "peer_rid": self.peer_rid, "session_state": self.session_state, "peer_hostname": self.peer_hostname, "local_interface": self.local_interface, "peer_ip": self.peer_ip, } class ListOSPFSessions: ospf_sessions_lst: list def __init__(self, ospf_sessions_lst: list()): self.ospf_sessions_lst = ospf_sessions_lst def __eq__(self, others): if not isinstance(others, ListOSPFSessions): raise NotImplementedError() for ospf_session in self.ospf_sessions_lst: if ospf_session not in others.ospf_sessions_lst: return False for ospf_session in others.ospf_sessions_lst: if ospf_session not in self.ospf_sessions_lst: return False return True def __repr__(self): result = "<ListOSPFSessions \n" for ospf_session in self.ospf_sessions_lst: result = result + f"{ospf_session}" return result+">" def to_json(self): data = list() for ospf in self.ospf_sessions_lst: data.append(ospf.to_json()) return data class OSPFSessionsArea: area_number: str ospf_sessions: ListOSPFSessions def __init__(self, area_number: str, ospf_sessions=NOT_SET): self.area_number = area_number self.ospf_sessions = ospf_sessions def __eq__(self, other): if not isinstance(other, OSPFSessionsArea): raise NotImplementedError() return ((str(self.area_number) == str(other.area_number)) and (self.ospf_sessions == other.ospf_sessions)) def __repr__(self): return f"<OSPFSessionsArea area_number={self.area_number} " \ f"ospf_sessions={self.ospf_sessions}>\n" def to_json(self): d = dict() d['area_number'] = self.area_number d['neighbors'] = self.ospf_sessions.to_json() return d class ListOSPFSessionsArea: ospf_sessions_area_lst: list def __init__(self, ospf_sessions_area_lst: list()): self.ospf_sessions_area_lst = ospf_sessions_area_lst def __eq__(self, others): if not isinstance(others, ListOSPFSessionsArea): raise NotImplementedError() if ( len(self.ospf_sessions_area_lst) != len(others.ospf_sessions_area_lst) ): return False for ospf_session in self.ospf_sessions_area_lst: if ospf_session not in others.ospf_sessions_area_lst: return False for ospf_session in others.ospf_sessions_area_lst: if ospf_session not in self.ospf_sessions_area_lst: return False return True def __repr__(self): result = "<ListOSPFSessionsArea \n" for ospf_session in self.ospf_sessions_area_lst: result = result + f"{ospf_session}" return result + ">" def to_json(self): data = list() for ospf in self.ospf_sessions_area_lst: data.append(ospf.to_json()) return data class OSPFSessionsVRF: vrf_name: str router_id: str ospf_sessions_area_lst: ListOSPFSessionsArea def __init__( self, vrf_name=NOT_SET, router_id=NOT_SET, ospf_sessions_area_lst=ListOSPFSessionsArea( ospf_sessions_area_lst=list() ) ): self.vrf_name = vrf_name self.router_id = router_id self.ospf_sessions_area_lst = ospf_sessions_area_lst def __eq__(self, other): if not isinstance(other, OSPFSessionsVRF): raise NotImplementedError() return ((str(self.vrf_name) == str(other.vrf_name)) and (str(self.router_id) == str(other.router_id)) and (self.ospf_sessions_area_lst == other.ospf_sessions_area_lst)) def __repr__(self): return f"<OSPFSessionsVRF vrf_name={self.vrf_name} " \ f"router_id={self.router_id} " \ f"ospf_sessions_area_lst={self.ospf_sessions_area_lst}>\n" def to_json(self): d = dict() d['vrf_name'] = self.vrf_name d['router_id'] = self.router_id d['areas'] = self.ospf_sessions_area_lst.to_json() return d class ListOSPFSessionsVRF: ospf_sessions_vrf_lst: list def __init__(self, ospf_sessions_vrf_lst: list()): self.ospf_sessions_vrf_lst = ospf_sessions_vrf_lst def __eq__(self, others): if not isinstance(others, ListOSPFSessionsVRF): raise NotImplementedError() for ospf_session_vrf in self.ospf_sessions_vrf_lst: if ospf_session_vrf not in others.ospf_sessions_vrf_lst: return False for ospf_session_vrf in others.ospf_sessions_vrf_lst: if ospf_session_vrf not in self.ospf_sessions_vrf_lst: return False return True def __repr__(self): result = "<ListOSPFSessionsVRF \n" for ospf_session_vrf in self.ospf_sessions_vrf_lst: result = result + f"{ospf_session_vrf}" return result + ">" def to_json(self): data = list() for ospf in self.ospf_sessions_vrf_lst: data.append(ospf.to_json()) return data class OSPF: hostname: str ospf_sessions_vrf_lst: ListOSPFSessionsVRF def __init__(self, hostname=NOT_SET, ospf_sessions_vrf_lst=NOT_SET): self.hostname = hostname self.ospf_sessions_vrf_lst = ospf_sessions_vrf_lst def __eq__(self, other): if not isinstance(other, OSPF): raise NotImplementedError() return ((str(self.hostname) == str(other.hostname)) and (self.ospf_sessions_vrf_lst == other.ospf_sessions_vrf_lst)) def __repr__(self): return f"<OSPF hostname={self.hostname} " \ f"ospf_sessions_vrf_lst={self.ospf_sessions_vrf_lst}>" def to_json(self): d = dict() d['hostname'] = self.hostname d['vrfs'] = self.ospf_sessions_vrf_lst.to_json() return d
# Note: this file was automatically converted to Python from the # original steve-language source code. Please see the original # file for more detailed comments and documentation. import breve class Camera( breve.Abstract ): '''Summary: creates a new rendering perspective in the simulated world. <P> The Camera class is used to set up a viewing perspective in a simulation. Creating a new camera object places a viewing area with the new camera perspective in the main viewing window. <P> See the OBJECT(Image) class to read data from a Camera (or from the main simulation window) into a pixel buffer. This can be useful for implementing vision algorithms.''' def __init__( self ): breve.Abstract.__init__( self ) self.cameraPointer = None self.shared = 0 Camera.init( self ) def delete( self ): if ( self.cameraPointer and ( not self.shared ) ): breve.breveInternalFunctionFinder.cameraFree( self, self.cameraPointer ) def disable( self ): '''Disables this camera. The view from this camera will not be updated or drawn to the viewing window. ''' breve.breveInternalFunctionFinder.cameraSetEnabled( self, self.cameraPointer, 0 ) def disableSmoothDrawing( self ): '''Disable smooth drawing for the main camera. See METHOD(enable-smooth-drawing) for more information.''' breve.breveInternalFunctionFinder.cameraSetDrawSmooth( self, self.cameraPointer, 0 ) def disableText( self ): '''Disables text for this camera.''' breve.breveInternalFunctionFinder.cameraTextSetEnabled( self, self.cameraPointer, 0 ) def enable( self ): '''Enables the camera. The view from this camera will be updated and drawn to the viewing window after each iteration.''' breve.breveInternalFunctionFinder.cameraSetEnabled( self, self.cameraPointer, 1 ) def enableSmoothDrawing( self ): '''Enable smooth drawing for the camera. Smooth drawing enables a smoother blending of colors, textures and lighting. This feature is especially noticeable when dealing with spheres or large objects. <p> The disadvantage of smooth drawing is a potential performance hit. The degree of this performance hit depends on the number of polygons in the scene. If speed is an issue, it is often best to disable both lighting and smooth drawing.''' breve.breveInternalFunctionFinder.cameraSetDrawSmooth( self, self.cameraPointer, 1 ) def enableText( self ): '''Enables text for this camera.''' breve.breveInternalFunctionFinder.cameraTextSetEnabled( self, self.cameraPointer, 1 ) def getHeight( self ): '''Returns the current camera width.''' return breve.breveInternalFunctionFinder.cameraGetHeight( self, self.cameraPointer ) def getRotation( self ): '''Returns a vector containing the rotation of the camera about the X- and Y-axes return cameraGetRotation(cameraPointer).''' return breve.breveInternalFunctionFinder.cameraGetRotation( self, self.cameraPointer ) def getWidth( self ): '''Returns the current camera width.''' return breve.breveInternalFunctionFinder.cameraGetWidth( self, self.cameraPointer ) def init( self ): self.cameraPointer = breve.breveInternalFunctionFinder.cameraNew( self) self.setSize( 100, 100 ) self.setPosition( 0, 0 ) def look( self, target, position ): '''Moves the camera to position and aims it at target. target is is the target's location <b>relative to the camera</b>, not the target's "real-world" location.''' breve.breveInternalFunctionFinder.cameraPosition( self, self.cameraPointer, position, target ) def setCameraPointer( self, p ): '''Used internally.''' if ( not self.shared ): breve.breveInternalFunctionFinder.cameraFree( self, self.cameraPointer ) self.cameraPointer = p self.shared = 1 def setPosition( self, newX, newY ): '''Sets the position of the camera viewing area inside the main window.''' breve.breveInternalFunctionFinder.cameraPositionDisplay( self, self.cameraPointer, newX, newY ) def setRotation( self, rx, ry ): '''Sets the rotation of the camera about the X- and Y-axes.''' breve.breveInternalFunctionFinder.cameraSetRotation( self, self.cameraPointer, rx, ry ) def setSize( self, newHeight, newWidth ): '''Sets the size of the camera viewing area.''' breve.breveInternalFunctionFinder.cameraResizeDisplay( self, self.cameraPointer, newWidth, newHeight ) def setZClip( self, distance ): '''Sets the Z clipping plan to theDistance. The Z clipping plan determines how far the camera can see. A short Z clipping distance means that objects far away will not be drawn. <p> The default value is 500.0 and this works well for most simulations, so there is often no need to use this method. <p> Using a short Z clipping distance improves drawing quality, avoids unnecessary rendering and can speed up drawing during the simulation. However, it may also cause objects you would like to observe in the simulation to not be drawn because they are too far away.''' breve.breveInternalFunctionFinder.cameraSetZClip( self, self.cameraPointer, distance ) breve.Camera = Camera # Add our newly created classes to the breve namespace breve.Cameras = Camera
# Copyright (c) 2019-2020 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Stdlib imports # Third party imports from pyVmomi import vim # Cloudify imports from cloudify.exceptions import NonRecoverableError # This package imports from vsphere_plugin_common.utils import op from vsphere_plugin_common import with_server_client from vsphere_plugin_common.constants import HYPERVISOR_HOST_ID @op @with_server_client def create(ctx, server_client, name, use_external_resource): vmware_resource = server_client._get_obj_by_name( vim.HostSystem, name, ) if use_external_resource: if not vmware_resource: raise NonRecoverableError( 'Could not use existing hypervisor_host "{name}" as no ' 'hypervisor_host by that name exists!'.format( name=name, ) ) else: raise NonRecoverableError( 'Datastores cannot currently be created by this plugin.' ) ctx.instance.runtime_properties[HYPERVISOR_HOST_ID] = \ vmware_resource.id @op @with_server_client def delete(ctx, name, use_external_resource, **_): if use_external_resource: ctx.logger.info( 'Not deleting existing hypervisor host: {name}'.format( name=name, ) ) else: ctx.logger.info( 'Not deleting hypervisor host {name} as creation and deletion of ' 'hypervisor_hosts is not currently supported by this plugin.' .format(name=name,) )
"""This is the front end fof the command line utility. Features can be accessed according to the available commands""" import sys, argparse, pkgutil from importlib import import_module import os.path import fcsio.cli.utilities def main(): """save the full command""" cache_argv = sys.argv front_end_args = sys.argv[:2] back_end_args = sys.argv[1:] """only parse the front end args""" sys.argv = front_end_args args = do_args() sys.argv = cache_argv # put the full arguments back """Now import modules accordingly""" task_module = import_module('fcsio.cli.utilities.'+args.task) """Launch the module with its commands""" task_module.external_cmd(back_end_args) def do_args(): """get the list of possible utilities""" util_path = os.path.dirname(fcsio.cli.utilities.__file__) """get the package list""" packlist = [name for _, name, _ in pkgutil.iter_modules([util_path])] parser = argparse.ArgumentParser(description="Work with FCS files from the command line", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('task',choices=packlist,help="Specify which task to execute") args = parser.parse_args() return args if __name__=="__main__": main()
''' New Integration Test for hybrid. @author: Legion ''' import zstackwoodpecker.test_util as test_util import zstackwoodpecker.test_lib as test_lib import zstackwoodpecker.test_state as test_state import zstackwoodpecker.operations.hybrid_operations as hyb_ops import zstackwoodpecker.operations.resource_operations as res_ops import time import os test_obj_dict = test_state.TestStateDict() ks_inv = None datacenter_inv = None def test(): global ks_inv global datacenter_inv datacenter_type = os.getenv('datacenterType') ks_existed = hyb_ops.query_aliyun_key_secret() if not ks_existed: ks_inv = hyb_ops.add_aliyun_key_secret('test_hybrid', 'test for hybrid', os.getenv('aliyunKey'), os.getenv('aliyunSecret')) # Clear datacenter remained in local datacenter_local = hyb_ops.query_datacenter_local() if datacenter_local: for d in datacenter_local: hyb_ops.del_datacenter_in_local(d.uuid) datacenter_list = hyb_ops.get_datacenter_from_remote(datacenter_type) regions = [ i.regionId for i in datacenter_list] for r in regions: datacenter_inv = hyb_ops.add_datacenter_from_remote(datacenter_type, r, 'datacenter for test') # Add Identity Zone iz_list = hyb_ops.get_identity_zone_from_remote(datacenter_type, r) vpn_gateway_list = [] for iz in iz_list: if not iz.availableInstanceTypes: continue iz_inv = hyb_ops.add_identity_zone_from_remote(datacenter_type, datacenter_inv.uuid, iz.zoneId) vpn_gateway_list = hyb_ops.sync_vpc_vpn_gateway_from_remote(datacenter_inv.uuid) if vpn_gateway_list: vpn_gateway = vpn_gateway_list[0] break else: hyb_ops.del_identity_zone_in_local(iz_inv.uuid) if vpn_gateway_list: break else: hyb_ops.del_datacenter_in_local(datacenter_inv.uuid) if not vpn_gateway: test_util.test_fail("VpnGate for route entry creating was not found in all available dataCenter") hyb_ops.sync_ecs_vpc_from_remote(datacenter_inv.uuid) hyb_ops.sync_ecs_vswitch_from_remote(datacenter_inv.uuid) vswitch_local = hyb_ops.query_ecs_vswitch_local() vpc_local = hyb_ops.query_ecs_vpc_local() # Get Vpc which has available gateway vpc_uuid = [vs.ecsVpcUuid for vs in vswitch_local if vs.uuid == vpn_gateway.vSwitchUuid][0] vpc_inv = [vpc for vpc in vpc_local if vpc.uuid == vpc_uuid][0] # Get Aliyun virtual router hyb_ops.sync_aliyun_virtual_router_from_remote(vpc_inv.uuid) vr_local = hyb_ops.query_aliyun_virtual_router_local() vr = [v for v in vr_local if v.vrId == vpc_inv.vRouterId][0] route_entry_inv = hyb_ops.create_aliyun_vpc_virtualrouter_entry_remote('172.18.200.0/24', vr.uuid, vrouter_type='vrouter', next_hop_type='VpnGateway', next_hop_uuid=vpn_gateway.uuid) time.sleep(30) hyb_ops.del_aliyun_route_entry_remote(route_entry_inv.uuid) test_util.test_pass('Create Delete Vpc Route Entry Test Success') def env_recover(): global datacenter_inv if datacenter_inv: hyb_ops.del_datacenter_in_local(datacenter_inv.uuid) global ks_inv if ks_inv: hyb_ops.del_aliyun_key_secret(ks_inv.uuid) #Will be called only if exception happens in test(). def error_cleanup(): global test_obj_dict test_lib.lib_error_cleanup(test_obj_dict)
import requests from . import embed from . import extra class DMChannel: """ Nertivia DM Channel Same as Text Channel but is used to send messages to a user. Attributes: - id (int): The ID of the channel. """ def __init__(self, id) -> None: self.id = id def send(self, content = "", embed: embed.Embed = None, buttons: list = None) -> dict: """ Sends a message to the channel. Args: - content (str): The content of the message. - embed (embed.Embed): The embed of the message. - buttons (list): The buttons of the message. Aliases: - send_message(content, embed, buttons) Returns: - dict: The response of the request. """ content = str(content) body = {} if content != "": body["message"] = content if embed is not None: body["htmlEmbed"] = embed.json if buttons != None: body["buttons"] = [] for button in buttons: body["buttons"].append(button.json) response = requests.post(f"https://nertivia.net/api/messages/channels/{self.id}", headers={"authorization": extra.Extra.getauthtoken()}, json=body) return response.json() send_message = send
import json #Usage #Auxiliary set of files of manage_responses.py function #Mainly functions that manage dictionairies def get_final_json(server_response_text, query_result, audio_encode): json_trial = json.loads(server_response_text) json_trial.update({"user_response" : query_result.query_text}) json_trial.update({"dialogflow_response" : query_result.fulfillment_text}) json_trial.update({"dialogflow_response_in_B64" : audio_encode.decode()}) json_final = json.dumps(json_trial) return json_final
#coding=utf-8 """ @From book Fluent Python cannot run on Python 2.7 """ import collections class DoubleDict(collections.UserDict): kk = {} def __setitem__(self, key, value): ## In Python 2.7 super(DoubleDict, self).__setitem__( key, [value] * 2) def main(): dd = DoubleDict(one = 1) print dd dd['two']= 2 print dd dd.update(three = 3) print dd if __name__ == "__main__": main() """ Result $ python Test1.py {'one': 1} {'two': [2, 2], 'one': 1} {'three': [3, 3], 'two': [2, 2], 'one': 1} """
__pragma__('noalias', 'update') class Scene: def __init__(self, config=None): if config is None: self.scene = __new__(Phaser.Scene()) else: self.scene = __new__(Phaser.Scene(config)) self.scene.init = self.init self.scene.preload = self.preload self.scene.create = self.create self.scene.update = self.update self.add = self.scene.add self.load = self.scene.load self.physics = self.scene.physics self.anims = self.scene.anims self.input = self.scene.input def init(self): pass def preload(self): pass def create(self): pass def update(self): pass class Sprite: def __init__(self): self.sprite = __new__(Phaser.GameObjects.Sprite(scene, x, y, texture)) self.destroy = self.sprite.destroy def move_to(self, x, y, depth=None): self.sprite.x = x self.sprite.y = y if depth is not None: self.sprite.depth = depth class Text: def __init__(self, scene, x, y, text, style=None): self.text = __new__(Phaser.GameObjects.Text(scene, x, y, text, style)) def setText(self, text): self.text.setText(text) class Game: def __init__(self, config=None): if config is None: self.game = __new__(Phaser.Game()) else: self.game = __new__(Phaser.Game(config))
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2021-01-16 10:28:33 # @Author : Zhi Liu ([email protected]) # @Link : http://iridescent.ink # @Version : $1.0$ from __future__ import division, print_function, absolute_import import torch as th from torchsar.utils.const import * from torchsar.dsp.normalsignals import rect def sar_tran(t, Tp, Kr, Fc, A=1.): return A * rect(t / Tp) * th.exp(2j * PI * Fc * t + 1j * PI * Kr * t**2) def sar_recv(t, tau, Tp, Kr, Fc, A=1.): t = t - tau return A * rect(t / Tp) * th.exp(2j * PI * Fc * t + 1j * PI * Kr * t**2) if __name__ == '__main__': import matplotlib.pyplot as plt from torch.fft import fft, fftshift Kr = 40e+12 Tp = 2.5e-06 Br = abs(Kr) * Tp alpha = 1.24588 # 1.1-1.4 Fsr = alpha * Br # Fc = 5.3e9 Fc = 0. Tsr = 1.2 * Tp Nsr = int(Fsr * Tsr) t = th.linspace(-Tsr / 2., Tsr / 2, Nsr) f = th.linspace(-Fsr / 2., Fsr / 2, Nsr) St = sar_tran(t, Tp, Kr, Fc) Yt = fftshift(fft(fftshift(St, dim=0), dim=0), dim=0) plt.figure(1) plt.subplot(221) plt.plot(t * 1e6, th.real(St)) plt.plot(t * 1e6, th.abs(St)) plt.grid() plt.legend({'Real part', 'Amplitude'}) plt.title('Matched filter') plt.xlabel('Time/μs') plt.ylabel('Amplitude') plt.subplot(222) plt.plot(t * 1e6, th.angle(St)) plt.grid() plt.subplot(223) plt.plot(f, th.abs(Yt)) plt.grid() plt.subplot(224) plt.plot(f, th.angle(Yt)) plt.grid() plt.show()
import os import errno import json import gdal from googleapiclient.http import MediaFileUpload from google.cloud import storage # Create the service client from googleapiclient.discovery import build from apiclient.http import MediaIoBaseDownload GOOGLE_APPLICATION_CREDENTIALS = os.getenv('APPLICATION_CREDENTIALS') BUCKET_NAME = os.getenv('BUCKET_NAME') GEO_FILTER_PATH = os.getenv('GEO_FILTER_PATH') PATH_PREFIX = os.getenv('PATH_PREFIX') ORDER_ID = os.getenv('ORDER_ID') ITEM_TYPE = os.getenv('ITEM_TYPE') ITEM_ID_PATH = os.getenv('ITEM_ID_PATH') DL_IMAGE_PATH = os.getenv('DL_IMAGE_PATH') BAND_ID = os.getenv('BAND_ID') def download_img(dl_path, id_num): gcs_service = build('storage', 'v1') if not os.path.exists(os.path.dirname(dl_path)): try: os.makedirs(os.path.dirname(dl_path)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise with open(dl_path, 'wb') as f: # Download the file from the Google Cloud Storage bucket. request = gcs_service.objects().get_media(bucket=BUCKET_NAME, object=dl_path) media = MediaIoBaseDownload(f, request) print('Downloading image ', id_num, '...') print('Download Progress: ') done = False while not done: prog, done = media.next_chunk() print(prog.progress()) print('Image ', id_num, ' downloaded.') return dl_path def clip_img(img, id_num): img_cropped = img[:-4] + '_cropped.tif' if not os.path.exists(os.path.dirname(img_cropped)): try: os.makedirs(os.path.dirname(img_cropped)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise print('Clipping image ', id_num, '...') cmd = 'gdalwarp -of GTiff -cutline ' + GEO_FILTER_PATH + ' -crop_to_cutline '\ + DL_IMAGE_PATH + img + ' ' + DL_IMAGE_PATH + img_cropped response = os.system(cmd) if response != 0: raise RuntimeError('Clip command exited with nonzero status. Status: ' \ + str(response)) return img_cropped def upload_img(img_clipped, item_id, ul_path, BUCKET_NAME): media = MediaFileUpload(img_clipped, mimetype='image/tif', resumable=True) request = gcs_service.objects().insert(bucket=BUCKET_NAME, name=ul_path, media_body=media) print('Uploading image ', id_num, '...') response = None while response is None: # _ is a placeholder for a progress object that we ignore. # (Our file is small, so we skip reporting progress.) _, response = request.next_chunk() print('Upload complete') return response if __name__ == '__main__': inpath = r'' + PATH_PREFIX + ORDER_ID + '/' + ITEM_TYPE + '/' with open(ITEM_ID_PATH) as f: item_ids = f.read().splitlines() for id_num, item_id in enumerate(item_ids): dl_path = r'' + inpath + item_id + BAND_ID + '.tif' ul_path = r'' + PATH_PREFIX + ORDER_ID + '/clipped/' \ + ITEM_TYPE + '/' + item_id + BAND_ID + '.tif' img = download_img(dl_path, id_num) img_clipped = clip_img(img, id_num) response = upload_img(img_clipped, item_id, ul_path, BUCKET_NAME) #print(response) print('Done.')
# -*- coding: utf-8 -*- # DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. # This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. # Any opinions,findings, conclusions or recommendations expressed in this material are those # of the author(s) and do not necessarily reflect the views of the Centers for Disease Control. # (c) 2020 Massachusetts Institute of Technology. # The software/firmware is provided to you on an As-Is basis # Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 # or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work # are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work # other than as specifically authorized by the U.S. Government may violate any copyrights that # exist in this work. # Copyright (c) 2020 Massachusetts Institute of Technology # SPDX short identifier: MIT #Developed as part of: SimAEN, 2020 #Authors: DI25756, JO26228, ED22162 """ Created on Wed Sep 9 08:38:17 2020 @author: DI25756 """ def readConfig(file): # print('******Got here********') config = dict() f = open(file,'r') for line in f: line = line.rstrip() line = line.replace(' ', '') line = line.replace(r"config['",''); line = line.replace(r"']",''); if not not len(line): if line[0] != '#': n,v = line.split('=') config[n] = float(v) if config[n] >= 1: config[n] = int(config[n]) # print('**************') # print(config) f.close() return config if __name__ == "__main__": config = readConfig(r'C:\Users\DI25756\Documents\MATLAB\CDC-PA\pytools\config.txt')
# import os # import re # # # DEFAULT SETTING # # WORKER_PATH = re.sub(r'([\\/]items$)|([\\/]spiders$)|([\\/]utils$)', '', os.getcwd()) # # SCHEDULER = 'ReSpider.core.scheduler.Scheduler' # python <Queue> 队列 # DUPEFILTER = 'ReSpider.dupefilter.RFPDupeFilters' # 去重组件 # # # SCHEDULER = 'ReSpider.extend.redis.scheduler.RedisScheduler' # redis 队列 # # DUPEFILTER = 'ReSpider.extend.redis.dupefilter.RFPDupeFilters # # DOWNLOADER = 'ReSpider.core.downloader.Downloader' # SSL_FINGERPRINT = False # ssl指纹 # # PIPELINE_MANAGER = 'ReSpider.pipelines.PipelineManager' # 管道管理 # # # 重试 # RETRY_ENABLED = False # RETRY_HTTP_CODES = [400, 401, 405, 408, 500, 502, 503, 504, 522, # 999, 600, 601, 602, 603, 604, 605, 606] # MAX_RETRY_TIMES = 5 # 最大重试次数 # # # 管道 # ITEM_PIPELINES = { # 'ReSpider.pipelines.file.CSVPipeline': 4, # 'ReSpider.pipelines.file.FilePipeline': 4, # # 'ReSpider.pipelines.redis.RedisPipeline': 5, # # 'ReSpider.pipelines.mysql.MySQLPipeline': 6 # # 'ReSpider.pipelines.mongo.MongoPipeline': 8 # } # # # 默认User-Agent # DEFAULT_USERAGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.74 Safari/537.36' # # 随机User-Agent # RANDOM_USERAGENT = False # # # 下载中间件 # DOWNLOADER_MIDDLEWARES = { # # 'ReSpider.middlewares.useragent.UserAgentMiddleware': 2, # # 'ReSpider.extend.puppeteer.downloadmiddleware.PuppeteerMiddleware': 5, # # 'ReSpider.middlewares.retry.RetryMiddleware': 8 # } # # # 并发请求 # TASK_LIMIT = CONCURRENT_REQUESTS = 4 # # 等待任务时间 # HEART_BEAT_TIME = 3 # # # 下载延迟 # DOWNLOAD_DELAY = 0 # # # MySQL配置 # MYSQL_HOST = '127.0.0.1' # MYSQL_PORT = 3306 # MYSQL_DB = 'crawler' # MYSQL_USERNAME = 'root' # MYSQL_PASSWORD = 'root' # # # MongoDB配置 # # MONGODB_HOST = '127.0.0.1' # MONGODB_PORT = 27017 # MONGODB_DB = 'data_temp' # MONGODB_USERNAME = None # MONGODB_PASSWORD = None # MONGODB_URL = None # 如果需要使用密码, 需要使用url: mongodb://username:password@host:port # # # Redis配置 # REDIS_HOST = '127.0.0.1' # REDIS_PORT = 6379 # REDIS_PASSWORD = None # REDIS_DB = 0 # # # 自定义任务队列 # REDIS_TASK_QUEUE = '%(redis_key)s:scheduler' # # 自定义去重 # REDIS_DUPE_FILTERS = '%(redis_key)s:dupefilter' # # 保存失败任务 # SAVE_FAILED_TASK = True # # 自定义失败任务队列 # FAILED_TASK_QUEUE = '%(redis_key)s:scheduler:failed' # # 重试失败任务 # RETRY_FAILED_TASK = False # # # 日志配置 # LOG_NAME = None # LOG_PATH = f'{WORKER_PATH}/log/' # 保存日志目录 # LOG_TO_CONSOLE = True # 打印到控制台 # LOG_TO_FILE = False # 保存到文件 # LOG_MODE = 'w' # 写文件模式 # LOG_ENCODING = 'utf-8' # log文件编码 # LOG_LEVEL_CONSOLE = 'DEBUG' # 控制台输出log等级 # LOG_LEVEL_FILE = 'WARNING' # 文件输出log等级 # LOG_FILE_SIZE = 5 * 1024 * 1024 # 每个日志文件大小, bytes # LOG_BACKUP_COUNT = 7 # 日志文件保存数量 # # # # 请求次数统计 # REQUEST_COUNT_INTERVAL_TIME = 60 # # # 爬虫常驻 # ALWAYS_RUNNING = False # # # 数据存储 # DATA_PATH = f'{WORKER_PATH}/data/' # # # PUPPETEER SETTING(浏览器渲染) # PUPPETEER_SETTING = dict( # PUPPETEER_HEADLESS=False, # 无头 # PUPPETEER_EXECUTABLE_PATH='D:/Package/Chromium64/chrome.exe', # PUPPETEER_USER_DIR=None, # 用户数据目录 # # pyppeteer timeout # PUPPETEER_DOWNLOAD_TIMEOUT=60, # # pyppeteer browser window # PUPPETEER_WINDOW_WIDTH=1400, # PUPPETEER_WINDOW_HEIGHT=700 # ) # # # cookies 池配置 # COOKIE_POOL_KEY = None # # # ip池配置 # PROXY_POOL_URL = None
#codes to for analyse the model. import re import os from astropy import units as u from tardis import constants import numpy as np import pandas as pd class LastLineInteraction(object): @classmethod def from_model(cls, model): return cls(model.runner.last_line_interaction_in_id, model.runner.last_line_interaction_out_id, model.runner.last_line_interaction_shell_id, model.runner.output_nu, model.plasma.atomic_data.lines) def __init__(self, last_line_interaction_in_id, last_line_interaction_out_id, last_line_interaction_shell_id, output_nu, lines, packet_filter_mode='packet_nu'): # mask out packets which did not perform a line interaction # TODO mask out packets which do not escape to observer? mask = last_line_interaction_out_id != -1 self.last_line_interaction_in_id = last_line_interaction_in_id[mask] self.last_line_interaction_out_id = last_line_interaction_out_id[mask] self.last_line_interaction_shell_id = last_line_interaction_shell_id[mask] self.last_line_interaction_angstrom = output_nu.to( u.Angstrom, equivalencies=u.spectral())[mask] self.lines = lines self._wavelength_start = 0 * u.angstrom self._wavelength_end = np.inf * u.angstrom self._atomic_number = None self._ion_number = None self.packet_filter_mode = packet_filter_mode self.update_last_interaction_filter() @property def wavelength_start(self): return self._wavelength_start.to('angstrom') @wavelength_start.setter def wavelength_start(self, value): if not isinstance(value, u.Quantity): raise ValueError('needs to be a Quantity') self._wavelength_start = value self.update_last_interaction_filter() @property def wavelength_end(self): return self._wavelength_end.to('angstrom') @wavelength_end.setter def wavelength_end(self, value): if not isinstance(value, u.Quantity): raise ValueError('needs to be a Quantity') self._wavelength_end = value self.update_last_interaction_filter() @property def atomic_number(self): return self._atomic_number @atomic_number.setter def atomic_number(self, value): self._atomic_number = value self.update_last_interaction_filter() @property def ion_number(self): return self._ion_number @ion_number.setter def ion_number(self, value): self._ion_number = value self.update_last_interaction_filter() def update_last_interaction_filter(self): if self.packet_filter_mode == 'packet_nu': packet_filter = ( (self.last_line_interaction_angstrom > self.wavelength_start) & (self.last_line_interaction_angstrom < self.wavelength_end)) elif self.packet_filter_mode == 'line_in_nu': line_in_nu = ( self.lines.wavelength.iloc[ self.last_line_interaction_in_id].values) packet_filter = ( (line_in_nu > self.wavelength_start.to(u.angstrom).value) & (line_in_nu < self.wavelength_end.to(u.angstrom).value)) self.last_line_in = self.lines.iloc[ self.last_line_interaction_in_id[packet_filter]] self.last_line_out = self.lines.iloc[ self.last_line_interaction_out_id[packet_filter]] if self.atomic_number is not None: self.last_line_in = self.last_line_in.xs( self.atomic_number, level='atomic_number', drop_level=False) self.last_line_out = self.last_line_out.xs( self.atomic_number, level='atomic_number', drop_level=False) if self.ion_number is not None: self.last_line_in = self.last_line_in.xs( self.ion_number, level='ion_number', drop_level=False) self.last_line_out = self.last_line_out.xs( self.ion_number, level='ion_number', drop_level=False) last_line_in_count = self.last_line_in.line_id.value_counts() last_line_out_count = self.last_line_out.line_id.value_counts() self.last_line_in_table = self.last_line_in.reset_index()[ [ 'wavelength', 'atomic_number', 'ion_number', 'level_number_lower', 'level_number_upper']] self.last_line_in_table['count'] = last_line_in_count self.last_line_in_table.sort_values(by='count', ascending=False, inplace=True) self.last_line_out_table = self.last_line_out.reset_index()[ [ 'wavelength', 'atomic_number', 'ion_number', 'level_number_lower', 'level_number_upper']] self.last_line_out_table['count'] = last_line_out_count self.last_line_out_table.sort_values(by='count', ascending=False, inplace=True) def plot_wave_in_out(self, fig, do_clf=True, plot_resonance=True): if do_clf: fig.clf() ax = fig.add_subplot(111) wave_in = self.last_line_list_in['wavelength'] wave_out = self.last_line_list_out['wavelength'] if plot_resonance: min_wave = np.min([wave_in.min(), wave_out.min()]) max_wave = np.max([wave_in.max(), wave_out.max()]) ax.plot([min_wave, max_wave], [min_wave, max_wave], 'b-') ax.plot(wave_in, wave_out, 'b.', picker=True) ax.set_xlabel('Last interaction Wave in') ax.set_ylabel('Last interaction Wave out') def onpick(event): print("-" * 80) print("Line_in (%d/%d):\n%s" % ( len(event.ind), self.current_no_packets, self.last_line_list_in.ix[event.ind])) print("\n\n") print("Line_out (%d/%d):\n%s" % ( len(event.ind), self.current_no_packets, self.last_line_list_in.ix[event.ind])) print("^" * 80) def onpress(event): pass fig.canvas.mpl_connect('pick_event', onpick) fig.canvas.mpl_connect('on_press', onpress) class TARDISHistory(object): """ Records the history of the model """ def __init__(self, hdf5_fname, iterations=None): self.hdf5_fname = hdf5_fname if iterations is None: iterations = [] hdf_store = pd.HDFStore(self.hdf5_fname, 'r') for key in hdf_store.keys(): if key.split('/')[1] == 'atom_data': continue iterations.append( int(re.match(r'model(\d+)', key.split('/')[1]).groups()[0])) self.iterations = np.sort(np.unique(iterations)) hdf_store.close() else: self.iterations=iterations self.levels = None self.lines = None def load_atom_data(self): if self.levels is None or self.lines is None: hdf_store = pd.HDFStore(self.hdf5_fname, 'r') self.levels = hdf_store['atom_data/levels'] self.lines = hdf_store['atom_data/lines'] hdf_store.close() def load_t_inner(self, iterations=None): t_inners = [] hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: t_inners.append(hdf_store['model%03d/configuration' %iter].ix['t_inner']) hdf_store.close() t_inners = np.array(t_inners) return t_inners def load_t_rads(self, iterations=None): t_rads_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter%03d' % iter t_rads_dict[current_iter] = hdf_store['model%03d/t_rads' % iter] t_rads = pd.DataFrame(t_rads_dict) hdf_store.close() return t_rads def load_ws(self, iterations=None): ws_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') if iterations is None: iterations = self.iterations elif np.isscalar(iterations): iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) ws_dict[current_iter] = hdf_store['model{:03d}/ws'.format(iter)] hdf_store.close() return pd.DataFrame(ws_dict) def load_level_populations(self, iterations=None): level_populations_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter%03d' % iter level_populations_dict[current_iter] = hdf_store[ 'model{:03d}/level_populations'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(level_populations_dict.values()[0]) else: return pd.Panel(level_populations_dict) def load_jblues(self, iterations=None): jblues_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) jblues_dict[current_iter] = hdf_store[ 'model{:03d}/j_blues'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(jblues_dict.values()[0]) else: return pd.Panel(jblues_dict) def load_ion_populations(self, iterations=None): ion_populations_dict = {} hdf_store = pd.HDFStore(self.hdf5_fname, 'r') is_scalar = False if iterations is None: iterations = self.iterations elif np.isscalar(iterations): is_scalar = True iterations = [self.iterations[iterations]] else: iterations = self.iterations[iterations] for iter in iterations: current_iter = 'iter{:03d}'.format(iter) ion_populations_dict[current_iter] = hdf_store[ 'model{:03d}/ion_populations'.format(iter)] hdf_store.close() if is_scalar: return pd.DataFrame(ion_populations_dict.values()[0]) else: return pd.Panel(ion_populations_dict) def load_spectrum(self, iteration, spectrum_keyword='luminosity_density'): hdf_store = pd.HDFStore(self.hdf5_fname, 'r') spectrum = hdf_store['model%03d/%s' % (self.iterations[iteration], spectrum_keyword)] hdf_store.close() return spectrum def calculate_relative_lte_level_populations(self, species, iteration=-1): self.load_atom_data() t_rads = self.load_t_rads(iteration) beta_rads = 1 / (constants.k_B.cgs.value * t_rads.values[:,0]) species_levels = self.levels.ix[species] relative_lte_level_populations = ( (species_levels.g.values[np.newaxis].T / float(species_levels.g.loc[0])) * np.exp(-beta_rads * species_levels.energy.values[np.newaxis].T)) return pd.DataFrame(relative_lte_level_populations, index=species_levels.index) def calculate_departure_coefficients(self, species, iteration=-1): self.load_atom_data() t_rads = self.load_t_rads(iteration) beta_rads = 1 / (constants.k_B.cgs.value * t_rads.values[:,0]) species_levels = self.levels.ix[species] species_level_populations = self.load_level_populations(iteration).ix[species] departure_coefficient = ((species_level_populations.values * species_levels.g.ix[0]) / (species_level_populations.ix[0].values * species_levels.g.values[np.newaxis].T)) \ * np.exp(beta_rads * species_levels.energy.values[np.newaxis].T) return pd.DataFrame(departure_coefficient, index=species_levels.index) def get_last_line_interaction(self, iteration=-1): iteration = self.iterations[iteration] self.load_atom_data() hdf_store = pd.HDFStore(self.hdf5_fname, 'r') model_string = 'model'+('%03d' % iteration) + '/%s' last_line_interaction_in_id = hdf_store[model_string % 'last_line_interaction_in_id'].values last_line_interaction_out_id = hdf_store[model_string % 'last_line_interaction_out_id'].values last_line_interaction_shell_id = hdf_store[model_string % 'last_line_interaction_shell_id'].values try: montecarlo_nu = hdf_store[model_string % 'montecarlo_nus_path'].values except KeyError: montecarlo_nu = hdf_store[model_string % 'montecarlo_nus'].values hdf_store.close() return LastLineInteraction(last_line_interaction_in_id, last_line_interaction_out_id, last_line_interaction_shell_id, montecarlo_nu, self.lines)
# -*- coding: utf-8 -*- """ Created on Wed Sep 21 11:14:53 2016 @author: Administrator """ #数据库中读取数据 import pymongo_class as mongdb_class import pandas as pd dataunion = mongdb_class.MongoClass('10.82.0.1',27017,'bigdata','dataunions'); artlist = dataunion.find_mongo({}); datayuan = mongdb_class.MongoClass('10.82.0.1',27017,'bigdata','datayuans'); artlist1 = datayuan.find_mongo({}); #jiqizhixin = mongdb_class.MongoClass('10.82.0.1',27017,'bigdata','jiqizhixins'); #artlist2 = jiqizhixin.find_mongo({}); leiphone = mongdb_class.MongoClass('10.82.0.1',27017,'bigdata','leiphones'); artlist3 = leiphone.find_mongo({}); #数据模型转换 doc = pd.DataFrame(artlist); docs1 = pd.DataFrame(artlist1); #docs2 = pd.DataFrame(artlist2); docs3 = pd.DataFrame(artlist3); docs = doc.append(docs1,True).append(docs3,True) docs = docs.sort(column='createDate', ascending=False) import MLaction MLaction.action(docs); dataunion.updata_mongo({"isnew" : True},{"isnew" :False }) datayuan.updata_mongo({"isnew" : True},{"isnew" :False }) #jiqizhixin.updata_mongo({"isnew" : True},{"isnew" :False }) leiphone.updata_mongo({"isnew" : True},{"isnew" :False })
import cv2 import numpy as np import dlib from imutils import face_utils import face_recognition from keras.models import load_model from statistics import mode from utils.datasets import get_labels from utils.inference import detect_faces from utils.inference import draw_text from utils.inference import draw_bounding_box from utils.inference import apply_offsets from utils.inference import load_detection_model from utils.preprocessor import preprocess_input from gaze_tracking import GazeTracking from datetime import datetime,date USE_WEBCAM = True # If false, loads video file source # parameters for loading data and images emotion_model_path = './models/emotion_model.hdf5' emotion_labels = get_labels('fer2013') # hyper-parameters for bounding boxes shape frame_window = 10 emotion_offsets = (20, 40) # loading models detector = dlib.get_frontal_face_detector() emotion_classifier = load_model(emotion_model_path, compile=False) predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # getting input model shapes for inference emotion_target_size = emotion_classifier.input_shape[1:3] # starting lists for calculating modes emotion_window = [] # starting video streaming cv2.namedWindow('Webcam capture') gaze = GazeTracking() # Select video or webcam feed print("Webcam selection for capture") cap = cv2.VideoCapture(0) # Webcam source save_time = datetime.time(datetime.now()) data_to_file = [] while cap.isOpened(): # True: ret, bgr_image = cap.read() gaze.refresh(bgr_image) bgr_image = gaze.annotated_frame() text = "" if gaze.is_right(): text = "Looking mono chino de pelo morado" elif gaze.is_left(): text = "Looking mona china" elif gaze.is_up(): text = "Looking mono chino rubio intenso" elif gaze.is_down(): text = "Looking logo" elif gaze.is_center(): text = "Looking mono chino de pelo verde" cv2.putText(bgr_image, text, (30, 30), cv2.FONT_HERSHEY_DUPLEX, 1, (147, 58, 31), 2) left_pupil = gaze.pupil_left_coords() right_pupil = gaze.pupil_right_coords() gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY) rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) faces = detector(rgb_image) for face_coordinates in faces: x1, x2, y1, y2 = apply_offsets(face_utils.rect_to_bb(face_coordinates), emotion_offsets) gray_face = gray_image[y1:y2, x1:x2] try: gray_face = cv2.resize(gray_face, (emotion_target_size)) except: continue gray_face = preprocess_input(gray_face, True) gray_face = np.expand_dims(gray_face, 0) gray_face = np.expand_dims(gray_face, -1) emotion_prediction = emotion_classifier.predict(gray_face) emotion_probability = np.max(emotion_prediction) emotion_label_arg = np.argmax(emotion_prediction) emotion_text = emotion_labels[emotion_label_arg] emotion_window.append(emotion_text) if len(emotion_window) > frame_window: emotion_window.pop(0) try: emotion_mode = mode(emotion_window) except: continue if (emotion_text and text): actual_time = datetime.time(datetime.now()) # Save data each 2 seconds if ((datetime.combine(date.today(), actual_time) - datetime.combine(date.today(), save_time)).total_seconds() > 2): save_time = actual_time data_to_file.append([emotion_text, text]) if emotion_text == 'angry': color = emotion_probability * np.asarray((255, 0, 0)) elif emotion_text == 'sad': color = emotion_probability * np.asarray((0, 0, 255)) elif emotion_text == 'happy': color = emotion_probability * np.asarray((255, 255, 0)) elif emotion_text == 'surprise': color = emotion_probability * np.asarray((0, 255, 255)) else: color = emotion_probability * np.asarray((0, 255, 0)) color = color.astype(int) color = color.tolist() draw_bounding_box(face_utils.rect_to_bb(face_coordinates), rgb_image, color) draw_text(face_utils.rect_to_bb(face_coordinates), rgb_image, emotion_mode, color, 0, -45, 1, 1) bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) cv2.imshow('Webcam capture', bgr_image) if cv2.waitKey(1) & 0xFF == ord('q'): break data_file = open("data_file.txt", "w") for data in data_to_file: data_file.write(str(data[0]) + " " + str(data[1]) + "\n") data_file.close() cap.release() cv2.destroyAllWindows()
import requests from ast import literal_eval import json import re def get_unfollowed_followers(): headers = { 'cookie': 'mid=XRvsVwAEAAFhekNSfuB2niWmAW9v; csrftoken=ppIenJiCBh20h06wjwBUAC2Q1E3e4FnQ; shbid=8575; ds_user_id=38135600; sessionid=38135600%3AVCSshmWATt5OoG%3A26; rur=VLL; shbts=1562906659.046413; urlgen="{\\"47.146.141.77\\": 5650\\054 \\"2605:e000:1219:c6ab:b0d5:deef:d05a:8f1d\\": 20001\\054 \\"104.238.46.139\\": 8100}:1hlnqs:5CeGhKHBCy5XOdf3xbMSqWb7Ag8"', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9', 'user-agent': 'Mozilla/5.0 (Linux; Android 8.0.0; Pixel 2 XL Build/OPD1.170816.004) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Mobile Safari/537.36', 'accept': '*/*', 'referer': 'https://www.instagram.com/explore/', 'authority': 'www.instagram.com', 'x-requested-with': 'XMLHttpRequest', 'x-ig-app-id': '936619743392459', } params = ( ('__a', '1'), ('include_reel', 'true'), ) response = json.loads(requests.get('https://www.instagram.com/accounts/activity/', headers=headers, params=params).text) activities=response['graphql']['user']['activity_feed']['edge_web_activity_feed']['edges'] recently_followed=[] for activity in activities: try: follow_activity=activity['node']['user']['followed_by_viewer'] except: continue followed_by_viewer=follow_activity if(followed_by_viewer):recently_followed.append(activity) return recently_followed def follow(): headers = { 'cookie': 'mid=XRvsVwAEAAFhekNSfuB2niWmAW9v; csrftoken=ppIenJiCBh20h06wjwBUAC2Q1E3e4FnQ; shbid=8575; ds_user_id=38135600; sessionid=38135600%3AVCSshmWATt5OoG%3A26; rur=VLL; shbts=1562906659.046413; urlgen="{\\"104.238.46.121\\": 8100}:1hm7gC:mfM1yOHtVLmbulivKxtMGo9SYGo"', 'origin': 'https://www.instagram.com', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'en-US,en;q=0.9', 'user-agent': 'Mozilla/5.0 (Linux; Android 8.0.0; Pixel 2 XL Build/OPD1.170816.004) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Mobile Safari/537.36', 'x-requested-with': 'XMLHttpRequest', 'x-csrftoken': 'ppIenJiCBh20h06wjwBUAC2Q1E3e4FnQ', 'x-ig-app-id': '936619743392459', 'x-instagram-ajax': 'eaa96c04bc05', 'content-type': 'application/x-www-form-urlencoded', 'accept': '*/*', 'referer': 'https://www.instagram.com/', 'authority': 'www.instagram.com', 'content-length': '0', } response = json.loads(requests.post('https://www.instagram.com/web/friendships/3908640144/follow/', headers=headers).text) return response def watch_insta(): unfollowed_followers=get_unfollowed_followers() for follower in unfollowed_followers: username=follower['node']['user']['id'] print(username) users_page=requests.get('https://instagram.com/' + username).text print(users_page) user_ids=re.findall("profilePage_",users_page,re.DOTALL) print('user_ids:',user_ids) watch_insta()
# -*- coding:utf-8 -*- from django.template import Library register = Library() # 必须叫register # @register.tag # @register.tag_function @register.filter def mod(param): """判断单双""" # if param % 2 == 0: # return True # else: # return False return param % 2 @register.filter def mod1(param1, param2): """判断单双多参数""" # if param % 2 == 0: # return True # else: # return False return param1 % param2
# # ESnet Network Operating System (ENOS) Copyright (c) 2015, The Regents # of the University of California, through Lawrence Berkeley National # Laboratory (subject to receipt of any required approvals from the # U.S. Dept. of Energy). All rights reserved. # # If you have questions about your rights to use or distribute this # software, please contact Berkeley Lab's Innovation & Partnerships # Office at [email protected]. # # NOTICE. This Software was developed under funding from the # U.S. Department of Energy and the U.S. Government consequently retains # certain rights. As such, the U.S. Government has been granted for # itself and others acting on its behalf a paid-up, nonexclusive, # irrevocable, worldwide license in the Software to reproduce, # distribute copies to the public, prepare derivative works, and perform # publicly and display publicly, and to permit other to do so. # """ demo should be run no more than once to initialize the topology and add the perfsonar testers """ from layer2.testbed.topology import TestbedTopology from net.es.enos.esnet import ESnetTopology from net.es.enos.esnet import PerfSONARTester #identifying pt hosts should be part of the general topology code and not just part of ps_demo def add_ps_nodes(): #it would be better to use the TopologyProvider.getInstance but that isn't working. Hence this tempoary code estopo = ESnetTopology() if (estopo): links = estopo.getLinks() for link in links: if "pt" in link: desc=ESnetTopology.idToDescription(link) ps_node= PerfSONARTester() node_name = desc[3:] ps_node.setResourceName(node_name) ps_node.addLink(links.get(link)) perf_testers[node_name+'.es.net'] = ps_node def main(): if not 'topo' in globals() or topo == None: global topo topo=TestbedTopology() if not 'PSTests' in globals(): PSTests = {} globals()['PSTests'] = PSTests if not 'perf_testers' in globals(): global perf_testers perf_testers=dict() add_ps_nodes() if __name__ == '__main__': main()
# Generated by Django 2.1.5 on 2019-02-18 11:27 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('todo', '0001_initial'), ] operations = [ migrations.AddField( model_name='todo', name='date', field=models.DateTimeField(default=django.utils.timezone.now), ), ]
from hyperopt.hp import choice from hyperopt.hp import randint from hyperopt.hp import pchoice from hyperopt.hp import uniform from hyperopt.hp import quniform from hyperopt.hp import loguniform from hyperopt.hp import qloguniform from hyperopt.hp import normal from hyperopt.hp import qnormal from hyperopt.hp import lognormal from hyperopt.hp import qlognormal