content
stringlengths
5
1.05M
from django import forms from django.core import validators def check_for_z(val): if val[0].lower() != 'z': raise forms.ValidationError('man this is wrong use Z') print('not using z') class my_form(forms.Form): name = forms.CharField(widget=forms.TextInput(attrs={'class' : 'inp'}),validators=[check_for_z]) email = forms.EmailField() # widget=forms.TextInput(attrs={'class' : 'inp'}) vrfmail = forms.EmailField(required=True) text = forms.CharField(widget=forms.Textarea(attrs = {'class':'inp'})) bot = forms.CharField(required=False,widget =forms.HiddenInput,validators=[ validators.MaxLengthValidator(0) ]) # def clean_bot(self): # bot = self.cleaned_data['bot'] # if len(bot)>0 : # raise forms.ValidationError(' hi man error ') # return bot # این راه حل برای من raise error نداد اصلن # ولی راه دوم با vlidators هست # البته توی راه دوم هم ارورر فقط توی کنسول میده # راه سوم ولدیت کردن ایمیل def clean(self): # برای اینکه بفهمد فرم که یک ولیدیتور است از # clean نام استفاده میکنیم بدون آندر اسگور all_clean_data = super().clean() # متد بسار مهم کلین که همیشه برای # is_valid() # میشود تا بر اساس آن دیتا را لیبل کنیم em = all_clean_data['email'] vm = all_clean_data['vrfmail'] if em != vm : raise forms.ValidationError("two emails must be identical")
from django.core.cache import cache import logging, sys, csv, os, math, re, string, subprocess, time, stat from plotty import settings from plotty.results.Utilities import present_value, present_value_csv, scenario_hash, length_cmp, t_quantile from plotty.results.Exceptions import LogTabulateStarted, PipelineError from plotty.results.CSVParser import parse_csv import tempfile import StringIO, urllib class Messages(object): def __init__(self): self.info_messages = list() self.warn_messages = list() def extend(self, other): self.info_messages.extend(other.info_messages) self.warn_messages.extend(other.warn_messages) def info(self, text, extra=""): self.info_messages.append((text, extra)) def warn(self, text, extra=""): self.warn_messages.append((text, extra)) def empty(self): return (len(self.info_messages) + len(self.warn_messages)) == 0 def infos(self): return self.info_messages def warnings(self): return self.warn_messages class DataTable: """ The core data structure. DataTable has one property, DataTable.rows. This is an array of DataRow objects, one per scenario in the file(s) being used. A DataTable is constructed by parsing the given list of CSV files. Django's caching settings are used to try to cache the parsed CSV data. """ def __init__(self, logs, wait=True): """ Creates a new DataTable by reading each CSV file provided, or loading them from cache if they are present. This routine will also check whether the log files specified have been modified since they were cached (based on last modified date), and if so, will expire the cache. logs: an array of paths to CSV files, relative to settings.BM_LOG_DIR. wait: if True, we will wait for the logs to be tabulated. if not, depending on the size of the logs, we will spawn a subprocess and wait. """ self.rows = [] self.scenarioColumns = set() self.valueColumns = set() self.messages = Messages() self.lastModified = 0 for i, log in enumerate(logs): dir_path = os.path.join(settings.BM_LOG_DIR, log) cached_vals = cache.get("LOGFILE-" + log) file_last_modified = os.path.getmtime(dir_path) if cached_vals is None or cached_vals['last_modified'] < file_last_modified: # cache is invalid, we need to reload messages = Messages() try: rows, lastModified, scenarioColumns, valueColumns = self.loadLog(log, wait, messages) except LogTabulateStarted as e: e.index = i e.length = len(logs) raise e # store the results in the cache ret = cache.set("LOGFILE-" + log, { 'last_modified': lastModified, 'rows': rows, 'scenarioColumns': scenarioColumns, 'valueColumns': valueColumns, 'messages': messages}) logging.debug('For log %s: cache empty or expired, stored %d rows to cache.' % (log, len(rows))) else: lastModified = cached_vals['last_modified'] rows = cached_vals['rows'] scenarioColumns = cached_vals['scenarioColumns'] valueColumns = cached_vals['valueColumns'] messages = cached_vals['messages'] logging.debug('For log %s: loaded %d rows from cache (dir last modified: %d, cache last modified: %d)' % (log, len(rows), file_last_modified, cached_vals['last_modified'])) self.rows.extend(rows) self.scenarioColumns |= scenarioColumns self.valueColumns |= valueColumns self.messages.extend(messages) if self.lastModified < lastModified: self.lastModified = lastModified self.valueColumnsDisplay = dict([(x,x) for x in self.valueColumns]) def __iter__(self): """ Lets us do `for row in datatable` instead of `for row in datatable.rows`. """ return iter(self.rows) def loadLog(self, log, wait, messages): """ Load a log file directly (services the cache) log: a relative path to the log file to be parsed. wait: should we wait for the parser (true), or return immediately while it runs in the background (false) """ # is this a log directory, or a plain csv file? log_path = os.path.join(settings.BM_LOG_DIR, log) lastModified = os.path.getmtime(log_path) if os.path.isdir(log_path): rows = self.loadLogDirectory(log, wait) else: rows = parse_csv(log_path) # make column names safe num_unnamed_columns = [0] safe_chars = frozenset('_.') def make_column_name_safe(k, tag): if any(c.isalnum() or c in safe_chars for c in k): newk = ''.join(c if c.isalnum() or c in safe_chars else '.' for c in k) if newk[0].isdigit(): newk = "_" + newk else: newk = tag + str(num_unnamed_columns[0]) num_unnamed_columns[0] += 1 return newk clean_rows = [] scenario_column_names = {'logfile': 'logfile'} value_column_names = {} duplicate_value_columns = set() nonnumeric_value_columns = set() for row in rows: # validate scenario keys for k in row.scenario.keys(): # sanitise the column name if k not in scenario_column_names: scenario_column_names[k] = make_column_name_safe(k, "scenario_") newk = scenario_column_names[k] # rename the column in the row if necessary if k != newk: row.scenario[newk] = row.scenario[k] del row.scenario[k] # add the log's name to its scenario columns; force cast from unicode row.scenario['logfile'] = str(log) # validate value keys value = {} for k, v in row.value: # if the value isn't numeric, we're not going to use it, so # need to do nothing for this (k, v) try: v = float(v) except ValueError: if k not in nonnumeric_value_columns: messages.warn("Non-numeric values for value column '%s'." % k, "For example, scenario %s has %s value '%s'." % ( row.scenario, k, v)) nonnumeric_value_columns.add(k) continue # sanitise the column name if k not in value_column_names: value_column_names[k] = make_column_name_safe(k, "value_") newk = value_column_names[k] # check for duplicates that are distinct (we let repeated values # through silently) if newk in value and v != value[newk]: # only output a warning once per column if newk not in duplicate_value_columns: messages.warn("Duplicate values for value column '%s'." % k, "For example, scenario %s has %s values %s and %s." % ( row.scenario, k, value[newk], v)) duplicate_value_columns.add(newk) # write the value into this row; we do this regardless of # duplicates, so the last value always wins value[newk] = v # add the row clean_rows.append(DataRow(row.scenario, value)) # summarise what we've done logging.debug('Parsed %d results from log %s' % (len(clean_rows), log)) scenario_columns = set(scenario_column_names.values()) value_columns = set(value_column_names.values()) return clean_rows, lastModified, scenario_columns, value_columns def loadLogDirectory(self, log, wait): """ Tabulate a log directory into the CSV cache """ # path to the log directory log_path = os.path.join(settings.BM_LOG_DIR, log) # the tabulation script will output a csv file into the csv directory csv_dir = os.path.join(settings.CACHE_ROOT, "csv") if not os.path.exists(csv_dir): os.mkdir(csv_dir) csv_file = os.path.join(csv_dir, log + ".csv.gz") # we need to re-parse the log file if the csv doesn't yet exist or the # log directory has changed since the csv was written lastModified = os.path.getmtime(log_path) if not os.path.exists(csv_file) or os.path.getmtime(csv_file) < lastModified: logging.debug("Retabulating CSV for " + log_path + " since CSV was out of date or non-existent") if not wait: # we're not going to wait for the parser; run it in the background pid = subprocess.Popen([settings.LOGPARSER_PYTHON, settings.TABULATE_EXECUTABLE, log_path, csv_file, settings.CACHE_ROOT]).pid raise LogTabulateStarted(log, pid) else: # call the parser directly if settings.USE_NEW_LOGPARSER: from plotty.results.LogParser import tabulate_log_folder tabulate_log_folder(log_path, csv_file) else: from plotty.results.Tabulate import extract_csv extract_csv(log_path, csv_file) else: logging.debug("Valid CSV already exists for " + log_path + ", skipping retabulation.") # parse the resulting CSV rows = parse_csv(csv_file) return rows def headers(self): """ Returns the headers that would be used to output a table of this data as two lists - scenario headers and value headers. """ scenarios = set() values = set() values_with_ci = set() # XXX TODO: Why do we need to loop here? Can't we just use # self.valueColumns and self.scenarioColumns, assuming they're being # kept up to date? for row in self.rows: for key in row.scenario.iterkeys(): if key not in scenarios: scenarios.add(key) for key,val in row.values.items(): if key not in values: values.add(key) if isinstance(val, DataAggregate): values_with_ci.add(key) s_list = list(scenarios) s_list.sort() v_list = list(values) v_list.sort() vci_list = list(values_with_ci) vci_list.sort() return s_list, v_list, vci_list def selectValueColumns(self, vals, derivedVals): """ Selects the specified set of value columns and throws away all others from each row in the table. vals: a list of value columns to keep. """ vals = set(map(lambda x: str(x), vals)) derivedVals = set(map(lambda x: str(x), derivedVals)) derived_vals = [] subst_variable = lambda i: "s%02i" % i value_columns_lower = dict([(str.lower(s), s) for s in self.valueColumns]) # Super hack: this avoids e.g. 'time.gc' being interpreted as referring # to the 'time' column, thereby creating an invalid expression. So, we # sort the possible keys by length, so 'time.gc' is always tested before # 'time'. value_columns_keys = value_columns_lower.keys() value_columns_keys.sort(length_cmp) for expr in derivedVals: # Try to compile the derived columns val = str.lower(str(expr)) # Replace the value column tokens in the expression with a simple # substitution key. We'll also prepare a simple exemplar row to make # sure the expression evaluates cleanly at this point. statement = val subst_key = {} exemplar_row = {} for i,valid_val in enumerate(value_columns_keys): if statement.find(valid_val) > -1: var = subst_variable(i) statement = statement.replace(valid_val, var) subst_key[var] = value_columns_lower[valid_val] exemplar_row[var] = 1.0 # It's a clean and reasonable expression, prepare it properly. # This is a hack that lets us be more flexible with value column # names. A number of column names (particularly stats outputs # from MMTk) are invalid python identifiers. try: # This is safe - compile won't evaluate the code, just parse it compiled = compile(statement, statement, 'eval') except SyntaxError: raise PipelineError("The expression '%s' is not a valid Python expression" % expr) except ValueError: raise PipelineError("The expression '%s' is not a valid Python expression" % expr) # Now try evaluating it, without access to the standard library try: v = eval(compiled, {'__builtins__': None}, exemplar_row) except: raise PipelineError("The expression '%s' is not a valid Python expression" % expr) derived_vals.append((expr, compiled, subst_key.copy())) # From now on, the derived value cols should be treated exactly like # any other value column vals.add(expr) for row in self.rows: # Calculate derived cols first, since they might not be selected # in their own right. for name,code,subst in derived_vals: # Calculate the substitution dictionary evaled_subst = {} invalid = False for token,key in subst.items(): if key not in row.values: invalid = True break else: evaled_subst[token] = row.values[key] if invalid: continue # Evaluate the code with none of the builtin functions available. # This means none of the python builtin methods, which include the # import statement, are available to the code. This is pretty good # security, but does restrict us somewhat in mathematics. try: row.values[name] = eval(code, {'__builtins__': None}, evaled_subst) except: continue # Now select the value columns we're after for (key,val) in row.values.items(): if key not in vals: del row.values[key] self.valueColumns = vals self.valueColumnsDisplay = dict([(x,x if x not in self.valueColumnsDisplay else self.valueColumnsDisplay[x]) for x in vals]) def selectScenarioColumns(self, cols): """ Selects the specified set of scenario columns and throws away all others from each row in the table. cols: a list of scenario columns to keep. """ for row in self.rows: for (key,val) in row.scenario.items(): if key not in cols: del row.scenario[key] self.scenarioColumns = set(cols) def getScenarioValues(self): scenarioValues = {} for row in self.rows: for col in row.scenario: if col not in scenarioValues: scenarioValues[col] = set() scenarioValues[col].add(row.scenario[col]) for k in scenarioValues.iterkeys(): valuesList = list(scenarioValues[k]) formattedValues = [] otherValues = [] for v in valuesList: if isinstance(v, ScenarioValue): formattedValues.append(v) else: otherValues.append(v) formattedValues.sort(key=lambda fv: fv.index) otherValues.sort() formattedValues.extend(otherValues) scenarioValues[k] = formattedValues return scenarioValues def renderToTable(self): """ Renders the values in this data table into a HTML table. """ scenarios, values, _ = self.headers() output = '<table class="results"><thead>' for name in scenarios: output += '<th class="scenario-header">' + name + '</th>' for name in values: output += '<th class="value-header">' + name + '</th>' output += '</thead><tbody>' for row in self.rows: s = '<tr>' for key in scenarios: if key in row.scenario: if isinstance(row.scenario[key], ScenarioValue): s+= '<td title="' + row.scenario[key].value + '">' + row.scenario[key].display + '</td>' else: s+= '<td>' + str(row.scenario[key]) + '</td>' else: s+= '<td>*</td>' for key in values: if key in row.values: s += '<td>' + present_value(row.values[key]) + '</td>' else: s += '<td>*</td>' s += '</tr>' output += s output += '</tbody></table>' return output def renderToCSV(self): scenarios, values, values_with_ci = self.headers() scenarios.sort(key=str.lower) values.sort(key=str.lower) output = '' for name in scenarios: output += '"' + name + '",' for name in values: output += '"' + name + '",' if name in values_with_ci: output += '"' + name + '.' + str(settings.CONFIDENCE_LEVEL * 100) + '%-CI.lowerBound",' output += '"' + name + '.' + str(settings.CONFIDENCE_LEVEL * 100) + '%-CI.upperBound",' if len(output)>0 and output[-1] == ',': output = output[:-1] output += "\r\n" for row in self.rows: for key in scenarios: if key in row.scenario: output += '"' + str(row.scenario[key]) + '",' else: output += '"",' for key in values: if key in row.values: output += present_value_csv(key, row.values[key], values_with_ci) + ',' else: if key in values_with_ci: output += '"","",""' else: output += '"",' if output[-1] == ',': output = output[:-1] output += "\r\n" return output class DataRow: """ A simple object that holds a row of data. The data is stored in two dictionaries - DataRow.scenario for the scenario columns, and DataRow.values for the value columns. """ def __init__(self, scenario=None, values=None): if scenario is None: scenario = {} if values is None: values = {} self.values = values self.scenario = scenario def __repr__(self): return '(DataRow scenario=%s values=%s)' % (self.scenario, self.values) class ScenarioValue: def __init__(self, indexOrOther, value=None, display=None, group = None, color = None): if not value is None: self.index = indexOrOther self.value = value self.display = display self.group = group self.color = color elif isinstance(indexOrOther, ScenarioValue): self.index = indexOrOther.index self.value = indexOrOther.value self.display = indexOrOther.display self.group = indexOrOther.group self.color = indexOrOther.color else: self.index = None self.value = str(indexOrOther) self.display = str(indexOrOther) self.group = None self.color = None def isFormatted(): return not self.index is None def __str__(self): return str(self.display) def __float__(self): raise PipelineError("ScenarioValue shouldn't treated as a float") def __ne__(self, other): return not (self == other) def __eq__(self, other): if isinstance(other, ScenarioValue): return self.value == other.value return self.value == other def __cmp__(self, other): raise PipelineError("ScenarioValues shouldn't be compared directly") def __hash__(self): return hash(self.value) class DataAggregate: """ Holds an aggregate of values that were mutliple rows but have been condensed into one as part of an Aggregate block. This object can report the mean or geomean of those values, as well as their minimum and maximum, and standard deviation and a confidence interval (with confidence decided by settings.CONFIDENCE_LEVEL). It is also possible to divide two DataAggregates (generally for normalisation), in which case relevant statistical techniques are used to determine the new confidence interval and standard deviation. """ def __init__(self, newType): """ Create a new DataAggregate of the specified type. newType: either 'mean' or 'geomean', the type of aggregate reported by this object. """ self.type = newType self._isValid = False self._values = [] # Private methods def _calculate(self): """ Calculates the summary statistics for data in self._values. This method only does calculations for a single variable - calculations for a compound variable (A + B, A / B, etc, where A and B are DataAggregates) should be handled by the appropriate operator overload below. """ valMin = float('+inf') valMax = float('-inf') valMean = 0.0 valM2 = 0.0 valLogSum = 0.0 n = 0 allow_cis = len(self._values) > 1 for val in self._values: # We can also aggregate sets of DataAggregates if isinstance(val, DataAggregate): val = val.value() allow_cis = False n += 1 if val < valMin: valMin = val if val > valMax: valMax = val if self.type == 'geomean': if valLogSum is None: continue # If any value is zero, the geomean is also zero if val == 0: valLogSum = None continue valLogSum += math.log(val) else: delta = val - valMean valMean += delta/n valM2 += delta * (val - valMean) self._min = valMin self._max = valMax if self.type == 'geomean': if valLogSum is not None: self._value = math.exp(valLogSum / n) else: self._value = 0.0 self._stdev = 0 self._ciUp = self._ciDown = float('nan') elif self.type == 'mean': self._value = valMean if allow_cis: self._stdev = math.sqrt(valM2 / (n - 1)) ciDelta = t_quantile(1 - settings.CONFIDENCE_LEVEL, n-1) * self._stdev / math.sqrt(n) self._ciUp = self._value + ciDelta self._ciDown = self._value - ciDelta else: self._stdev = 0 self._ciUp = self._ciDown = float('nan') self._isValid = True # Mutators def append(self, value): """ Push a new value into this aggregate. """ self._values.append(value) self._isValid = False def map(self, func): """ Apply a function to every value in this aggregate. """ self._isValid = False self._values = map(func, self._values) def setType(self, newType): """ Change the type of this aggregate. newType : either 'mean' or 'geomean'. """ self.type = newType self._isValid = False def manual(self, value, ciUp, ciDown, newMin, newMax): """ Set the values of this DataAggregate manually. Used by operator overloads. """ self._value = value self._ciUp = ciUp self._ciDown = ciDown self._min = newMin self._max = newMax self._isValid = True # Getters def value(self): if not self._isValid: self._calculate() return self._value def values(self): return self._values def stdev(self): if not self._isValid: self._calculate() return self._stdev def count(self): if not self._isValid: self._calculate() return len(self._values) def sem(self): if not self._isValid: self._calculate() return self._stdev / math.sqrt(len(self._values)) def min(self): if not self._isValid: self._calculate() return self._min def max(self): if not self._isValid: self._calculate() return self._max def ci(self): if not self._isValid: self._calculate() return self._ciDown, self._ciUp def ciPercent(self): if not self._isValid: self._calculate() if math.isnan(self._ciUp): return self._ciDown, self._ciUp if self._value == 0: return float('NaN'), float('NaN') ciDown = (self._value - self._ciDown) * 100 / self._value ciUp = (self._ciUp - self._value) * 100 / self._value return ciDown, ciUp # Overloads def __repr__(self): if not self._isValid: self._calculate() if math.isnan(self._ciUp): return "%.3f" % self._value else: return "%.3f CI(%.3f, %.3f) min=%.3f max=%.3f vals=%s" % (self._value, self._ciDown, self._ciUp, self._min, self._max, self._values) def __str__(self): return self.__repr__() def __float__(self): return self.value() def __cmp__(self, other): if float(self) > float(other): return 1 elif float(self) < float(other): return -1 else: return 0 def __div__(self, other): """ Divides this DataAggregate by some other value. If the other value is a DataAggregate, statistical techniques are used to compute the new value and standard error. If not, we just divide every value in this DataAggregate by the other value, and force the summary data to be regenerated. """ if isinstance(other, DataAggregate): #logging.debug(other) res = DataAggregate(self.type) if other.value() <> 0: val = self.value() / other.value() else: val = math.copysign(float('inf'), self.value()) # Motulsky, 'Intuitive Biostatistics', pp285-6 if self.value() <> 0 and other.value() <> 0: tinv = t_quantile(1 - settings.CONFIDENCE_LEVEL, self.count() + other.count() - 2) g = (tinv * (other.sem() / other.value()))**2 if g >= 1.0: ciUp = ciDown = float('nan') else: sem = ( val / (1-g) ) * math.sqrt((1-g) * (self.sem() / self.value())**2 + (other.sem() / other.value()) ** 2) ciUp = ( val / (1-g) ) + tinv*sem ciDown = ( val / (1-g) ) - tinv*sem else: ciUp = ciDown = float('nan') if other.max() <> 0 and other.min() <> 0: valMin = self.min() / other.max() valMax = self.max() / other.min() else: valMin = math.copysign(float('inf'), self.min()) valMax = math.copysign(float('inf'), self.max()) res.manual(value=val, ciUp=ciUp, ciDown=ciDown, newMin=valMin, newMax=valMax) return res else: res = copy.copy(self) res.map(lambda d: d / float(other)) return res
import numpy as np from numpy import sqrt as sqrt from numpy import cos as cos from numpy import sin as sin import matplotlib.pyplot as plt from matplotlib import cm as cm from matplotlib.ticker import LinearLocator as LinearLocator from matplotlib.ticker import FormatStrFormatter as FormatStrFormatter from numpy.fft import fftshift as fftshift from numpy.fft import ifftshift as ifftshift from numpy.fft import fft2 as fft2 def apershow(obj): obj = -abs(obj) plt.imshow(obj) plt.set_cmap('Greys') plt.show() l1 = 100 #Generate test surface matrix from a detector x = np.linspace(-1, 1, l1) y = np.linspace(-1, 1, l1) [X,Y] = np.meshgrid(x,y) r = sqrt(X**2+Y**2) Z = sqrt(14)*(8*X**4-8*X**2*r**2+r**4)*(6*r**2-5) for i in range(len(Z)): for j in range(len(Z)): if x[i]**2+y[j]**2>1: Z[i][j]=0 fig = plt.figure(1) ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.RdYlGn, linewidth=0, antialiased=False, alpha = 0.6) v = max(abs(Z.max()),abs(Z.min())) ax.set_zlim(-v*5, v*5) cset = ax.contourf(X, Y, Z, zdir='z', offset=-v*5, cmap=cm.RdYlGn) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) fig.colorbar(surf, shrink=1, aspect=30) plt.show() d = 400 A = np.zeros([d,d]) A[d/2-49:d/2+51,d/2-49:d/2+51] = Z plt.imshow(A) plt.show() abbe = np.exp(1j*2*np.pi*A) for i in range(len(abbe)): for j in range(len(abbe)): if abbe[i][j]==1: abbe[i][j]=0 fig = plt.figure(2) AP = abs(fftshift(fft2(fftshift(abbe))))**2 AP = AP/AP.max() plt.imshow(AP) plt.show()
''' Variables: Creation, Initialization, Saving, and Loading When you train a model, you use variables to hold and update parameters. Variables are in-memory buffers containing tensors. They must be explicitly initialized and can be saved to disk during and after training. You can later restore saved values to exercise or analyze the model. We'll see two classes: The tf.Variable class. (It has tf.Variable() constructor) The tf.train.Saver class. ''' #Creation somevar = tf.Variable([1.0, 2.0]) #[1.0, 2.0] is also a tensor, don't you think, iit? :p # Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") #we're passing a tensor(an n-dim array) to the Variable constructor to construct a variable ''' Calling tf.Variable() adds several ops to the graph: - A variable op that holds the variable value. - An initializer op that sets the variable to its initial value. This is actually a tf.assign op. - The ops for the initial value, such as the zeros op for the biases variable in the example are also added to the graph. The value returned by tf.Variable() value is an instance of the Python class tf.Variable (obvious na! :/ ) ''' #Initialization ''' already covered but we will revisit again! :) 'Variable Initializers' must be run explicitly before other ops in your model can be run. ''' # Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") ... # Add an op to initialize the variables. init_op = tf.global_variables_initializer() # Later, when launching the model with tf.Session() as sess: # Run the init operation at the very start of the session sess.run(init_op) ... # Use the model ... #Initialization from another Variable ''' You sometimes need to initialize a variable from the initial value of another variable. As the op added by tf.global_variables_initializer() initializes all variables in parallel you have to be careful when this is needed. To initialize a new variable from the value of another variable use the other variable's initialized_value() property. You can use the initialized value directly as the initial value for the new variable, or you can use it as any other tensor to compute a value for the new variable. ''' # Create a variable with a random value. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") # Create another variable with the same value as 'weights'. w2 = tf.Variable(weights.initialized_value(), name="w2") #this is like w2 = weights # Create another variable with twice the value of 'weights' w_twice = tf.Variable(weights.initialized_value() * 2.0, name="w_twice") #Custom Initialization The convenience function tf.global_variables_initializer() adds an op to initialize all variables in the model. You can also pass an explicit list of variables to initialize to tf.variables_initializer we'll see this later
#!//dls_sw/prod/R3.14.12.3/support/pythonSoftIoc/2-11/pythonIoc from pkg_resources import require require('cothread==2.13') #require('epicsdbbuilder==1.0') require("numpy") import argparse import logging import PIStepScan import PIController from PIConstants import * def parse_arguments(): parser = argparse.ArgumentParser(description="Run a calibration routine for PI E727 controller analogue output. " "Will set up a waveform to step one axis over a specified range, " "issuing triggers at each step that are used to trigger an external " "measurement device (assume a Zebra) to measure the output signal " "(at the moment you have to configure your measurement device separately, this script " "doesn't do that).") parser.add_argument("--address", type=str, help="IP address of controller") parser.add_argument("--port", type=int, help="IP port number of controller", default=50000) parser.add_argument("--axis", type=int, choices=[1, 2, 3], help="Axis number to scan", required=True) parser.add_argument("--start", type=float, help="Start position (EGU)", required=True) parser.add_argument("--end", type=float, help="End position (EGU)", required=True) parser.add_argument("-s", "--number_of_steps", type=int, help="Number of steps to make", required=True) parser.add_argument("-m", "--move_time", type=int, help="Time for each move, per step (ms)") parser.add_argument("-t", "--time_in_position", type=int, help="Time to wait in position at each step (ms)", required=True) parser.add_argument("-n", "--n_repeats", type=int, default=1, help="Repeat the scan n times") parser.add_argument("-d", "--dryrun", action="store_true", help="Print commands instead of sending them") return parser.parse_args() def create_params(args): # Create parameter objects to push into the PIStepScan class param_dict = {"STATE": STATE_NOT_CONFIGRED, "NX": args.number_of_steps, "NY": 1, "NZ": 1, "DX": (args.end - args.start) / float(args.number_of_steps), "DY": 1, "DZ": 1, "X0": args.start, "Y0": 50, "Z0": 50, "MOVETIME": args.move_time, "EXPOSURE": args.time_in_position, "axis_to_scan": args.axis } return param_dict def main(): args = parse_arguments() logging.basicConfig(level=logging.DEBUG) # Create controller object pi_controller = PIController.PIController(args.address, args.port, debug=args.dryrun) step_scan = PIStepScan.PICalibrationScan(pi_controller) step_scan.insert_params(create_params(args)) step_scan.get_scan_parameters() step_scan.configure_scan() step_scan.start_scan() if __name__ == "__main__": main()
# (C) Copyright 2016 Hewlett Packard Enterprise Development LP # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ############################################################################### # Name: test_ft_lag_statistics.py # # Description: Tests that a configured static Link Aggregation can summarize # accurate individual interfaces statistics as they change # # Author: Jose Hernandez # # Topology: |Host| ----- |Switch| ---------------------- |Switch| ----- |Host| # (Static LAG - 3 links) # # Success Criteria: PASS -> Statistics are accurate and represent the sum of # each individual member # # FAILED -> Information from the statistics does not # represent the sum of each individual member # ############################################################################### from time import sleep from lacp_lib import create_lag from lacp_lib import turn_on_interface from lacp_lib import validate_turn_on_interfaces from lacp_lib import associate_interface_to_lag from lacp_lib import verify_lag_config from lacp_lib import create_vlan from lacp_lib import verify_vlan_full_state from lacp_lib import check_connectivity_between_hosts from lacp_lib import associate_vlan_to_l2_interface from lacp_lib import associate_vlan_to_lag from lacp_lib import verify_lag_interface_key from lacp_lib import verify_lag_interface_priority from lacp_lib import verify_lag_interface_id from lacp_lib import verify_lag_interface_system_id from lacp_lib import verify_lag_interface_system_priority from lacp_lib import verify_lag_interface_lag_id from lacp_lib import validate_lag_state_static from lacp_lib import LOCAL_STATE from lacp_lib import REMOTE_STATE from lacp_lib import retry_wrapper from lacp_lib import compare_lag_interface_basic_settings import pytest TOPOLOGY = """ # +-----------------+ # | | # | Host 1 | # | | # +-----------------+ # | # | # +-------------------------------+ # | | # | | # | Switch 1 | # | | # +-------------------------------+ # | | | # | | | # | | | # +-------------------------------+ # | | # | | # | Switch 2 | # | | # +-------------------------------+ # | # | # +-----------------+ # | | # | Host 2 | # | | # +-----------------+ # Nodes [type=openswitch name="Switch 1"] sw1 [type=openswitch name="Switch 2"] sw2 [type=host name="Host 1" image="openswitch/ubuntutest:latest"] hs1 [type=host name="Host 2" image="openswitch/ubuntutest:latest"] hs2 # Links sw1:1 -- hs1:1 sw2:1 -- hs2:1 sw1:2 -- sw2:2 sw1:3 -- sw2:3 sw1:4 -- sw2:4 """ # Global variables SW_LBL_PORTS = ['1', '2', '3', '4'] LAG_ID = '1' LAG_VLAN = 900 NETWORK = '10.90.0.' NETMASK = '24' NUMBER_PINGS = 5 BASE_IPERF_PORT = 5000 IPERF_TIME = 30 IPERF_BW = '10m' SW_COUNTERS_DELAY = 20 def compare_values(value1, value2, error=0.02): value2_max = value2 * (1 + error) value2_min = value2 * (1 - error) assert value1 <= value2_max, ' '.join( ['Value of {} is more than {}'.format(value1, error * 100), 'percent higher than {}'.format(value2)] ) assert value1 >= value2_min, ' '.join( ['Value of {} is more than {}'.format(value1, error * 100), 'percent lower than {}'.format(value2)] ) def compare_switches_counters(sw_list, stats): # Verify switches counters match for port in SW_LBL_PORTS: print('Compare port {} between switches'.format(port)) print('rx from sw1 vs tx from sw2') compare_values( int(stats[sw_list[0]][port]['{}_packets'.format('rx')]), int(stats[sw_list[1]][port]['{}_packets'.format('tx')]) ) print('tx from sw1 vs rx from sw2') compare_values( int(stats[sw_list[0]][port]['{}_packets'.format('tx')]), int(stats[sw_list[1]][port]['{}_packets'.format('rx')]) ) def compare_lag_to_switches_counters(sw_stats, lag_stats, ports): for param in [ 'rx_bytes', 'rx_packets', 'rx_crc_fcs', 'rx_dropped', 'rx_error', 'tx_packets', 'tx_bytes', 'tx_collisions', 'tx_dropped', 'tx_errors', 'speed' ]: total = 0 for port in ports: total += int(sw_stats[port][param]) print('Verifying LAG interface value for {}'.format(param)) compare_values(int(lag_stats[param]), total) for port in ports: assert lag_stats['speed_unit'] == sw_stats[port]['speed_unit'],\ 'Unexpected change in speed unit {}, Expected {}'.format( lag_stats['speed_unit'], sw_stats[port]['speed_unit'] ) def verify_lacp_state( sw1, sw2 ): lacp_def_value = '' lacp_def_priority = '' sys_id = '' print('Verify LACP state on LAG members') for port in SW_LBL_PORTS[1:]: sw1_lacp_state = sw1.libs.vtysh.show_lacp_interface(port) sw2_lacp_state = sw2.libs.vtysh.show_lacp_interface(port) sw_lacp_states = [sw1_lacp_state, sw2_lacp_state] for ( sw_lacp_state, rev_sw_lacp_state ) in zip( sw_lacp_states, reversed(sw_lacp_states) ): verify_lag_interface_lag_id(sw_lacp_state) verify_lag_interface_key( sw_lacp_state, rev_sw_lacp_state, key=lacp_def_value, value_check=True, cross_check=True ) verify_lag_interface_priority( sw_lacp_state, rev_sw_lacp_state, priority=lacp_def_value, value_check=True, cross_check=True ) verify_lag_interface_system_priority( sw_lacp_state, sw2_int_map_lacp=rev_sw_lacp_state, system_priority=lacp_def_priority, value_check=True, cross_check=True ) verify_lag_interface_system_id( sw_lacp_state, sw2_int_map_lacp=rev_sw_lacp_state, system_id=sys_id, value_check=True, cross_check=True ) verify_lag_interface_id( sw_lacp_state, rev_sw_lacp_state, id='', value_check=True, cross_check=True ) validate_lag_state_static(sw_lacp_state, LOCAL_STATE) validate_lag_state_static(sw_lacp_state, REMOTE_STATE) def enable_switches_interfaces(sw_list, step): step('Enable switches interfaces') for sw in sw_list: for port in SW_LBL_PORTS: turn_on_interface(sw, port) # Defining internal method to use decorator @retry_wrapper( 'Ensure interfaces are turned on', 'Interfaces not yet ready', 5, 60) def internal_check_interfaces(sw_list): for sw in sw_list: validate_turn_on_interfaces(sw, SW_LBL_PORTS) internal_check_interfaces(sw_list) def configure_lags(sw_list, sw_real_ports, step): step('Create LAGs') for sw in sw_list: create_lag(sw, LAG_ID, 'off') for port in sw_real_ports[sw][1:]: associate_interface_to_lag(sw, port, LAG_ID) verify_lag_config( sw, LAG_ID, sw_real_ports[sw][1:] ) check_func = retry_wrapper( 'Verify LACP status on both devices', 'Configuration not yet applied', 2, 4 )(verify_lacp_state) check_func( sw_list[0], sw_list[1] ) def configure_vlans(sw_list, sw_real_ports, step): step('Configure VLANs on devices') for sw in sw_list: # Create VLAN create_vlan(sw, LAG_VLAN) # Associate VLAN to LAG associate_vlan_to_lag(sw, str(LAG_VLAN), LAG_ID) # Associate VLAN to host interface associate_vlan_to_l2_interface( sw, str(LAG_VLAN), sw_real_ports[sw][0] ) # Verify VLAN configuration was successfully applied verify_vlan_full_state( sw, LAG_VLAN, interfaces=[ sw_real_ports[sw][0], 'lag{}'.format(LAG_ID) ] ) def configure_workstations(hs_list, step): step('Configure workstations') for hs_num, hs in enumerate(hs_list): hs.libs.ip.interface( SW_LBL_PORTS[0], addr='{}{}/{}'.format(NETWORK, hs_num + 1, NETMASK), up=True ) def validate_connectivity(hs_list, wait, step): step('Check workstations connectivity') if wait is False: check_connectivity_between_hosts( hs_list[0], '{}{}'.format(NETWORK, 1), hs_list[1], '{}{}'.format(NETWORK, 2), NUMBER_PINGS, True ) else: check_func = retry_wrapper( 'Verifying workstations connectivity', 'Configuration not yet applied', 5, 15 )(check_connectivity_between_hosts) check_func( hs_list[0], '{}{}'.format(NETWORK, 1), hs_list[1], '{}{}'.format(NETWORK, 2), NUMBER_PINGS, True ) def verify_lag_statistics(sw_list, hs_list, sw_real_ports, step): sw_stats_before = {} sw_stats_after = {} step('Verify LAG statistics') print('Collect all switch ports statistics') for sw in sw_list: sw_stats_before[sw] = {} for port in SW_LBL_PORTS: sw_stats_before[sw][port] = sw.libs.vtysh.show_interface(port) sw_stats_before[sw]['lag{}'.format(LAG_ID)] =\ sw.libs.vtysh.show_interface('lag{}'.format(LAG_ID)) print('Verify LAG statistic interface basic settings') compare_lag_interface_basic_settings( sw_stats_before[sw]['lag{}'.format(LAG_ID)], LAG_ID, sw_real_ports[sw][1:] ) print('Compare LAG counters vs switches interfaces') compare_lag_to_switches_counters( sw_stats_before[sw], sw_stats_before[sw]['lag{}'.format(LAG_ID)], SW_LBL_PORTS[1:] ) print('Start iperf servers') for i, hs in enumerate(hs_list): hs.libs.iperf.server_start(BASE_IPERF_PORT + i, udp=True) print('Start traffic transmission') for hs, other_base in zip(hs_list, [2, 1]): hs.libs.iperf.client_start( '{}{}'.format(NETWORK, other_base), BASE_IPERF_PORT + other_base - 1, time=IPERF_TIME, udp=True, bandwidth=IPERF_BW ) print('Wait for traffic to finish in {} seconds'.format(IPERF_TIME)) sleep(IPERF_TIME) print('Stop iperf') for hs in hs_list: hs.libs.iperf.server_stop() hs.libs.iperf.client_stop() @retry_wrapper( 'Obtain interfaces information and verify their consistency', 'Information provided by counters is not yet reliable', 5, SW_COUNTERS_DELAY) def internal_check(): print('Get statistics from switches') for sw in sw_list: sw_stats_after[sw] = {} for port in SW_LBL_PORTS: sw_stats_after[sw][port] = sw.libs.vtysh.show_interface(port) sw_stats_after[sw]['lag{}'.format(LAG_ID)] =\ sw.libs.vtysh.show_interface('lag{}'.format(LAG_ID)) print('Verify obtained information is consistent') print('Compare counters between siwtches') compare_switches_counters(sw_list, sw_stats_after) internal_check() print('Compare switch counters individually') for sw in sw_list: print('Verify LAG statistic interface basic settings') compare_lag_interface_basic_settings( sw_stats_after[sw]['lag{}'.format(LAG_ID)], LAG_ID, sw_real_ports[sw][1:] ) print('Compare LAG counters vs switches interfaces') compare_lag_to_switches_counters( sw_stats_after[sw], sw_stats_after[sw]['lag{}'.format(LAG_ID)], SW_LBL_PORTS[1:] ) @pytest.mark.skipif(True, reason="Skipping due to instability") def test_ft_lag_statistics(topology, step): hs1 = topology.get('hs1') hs2 = topology.get('hs2') sw1 = topology.get('sw1') sw2 = topology.get('sw2') assert hs1 is not None, 'hs1 was not initialized' assert hs2 is not None, 'hs2 was not initialized' assert sw1 is not None, 'sw1 was not initialized' assert sw2 is not None, 'sw2 was not initialized' sw_real_ports = { sw1: [sw1.ports[port] for port in SW_LBL_PORTS], sw2: [sw2.ports[port] for port in SW_LBL_PORTS] } # Enable switches interfaces enable_switches_interfaces([sw1, sw2], step) # Configure static LAGs with members configure_lags([sw1, sw2], sw_real_ports, step) # Add VLAN configuration to LAGs and workstation interfaces configure_vlans([sw1, sw2], sw_real_ports, step) # Configure workstations configure_workstations([hs1, hs2], step) # Validate workstations can communicate validate_connectivity([hs1, hs2], True, step) # Obtain and validate LAG statistics verify_lag_statistics([sw1, sw2], [hs1, hs2], sw_real_ports, step)
from django.urls import path from . import views urlpatterns = [ path('',views.add_show,name="addandshow"), path('delete/<int:id>/',views.delete_data,name="deletedata"), path('<int:id>/',views.update_data,name="updatedata"), ]
from flask import request from flask_restplus import Resource, Namespace, fields ns_user = Namespace("users", description="Users related operations") user_model = ns_user.model( "user", { "email": fields.String(required=True, description="user email address"), "username": fields.String(required=True, description="user username"), }, ) @ns_user.route("/ping") class UsersPing(Resource): def get(self): return {"status": "success", "message": "pong!"} @ns_user.route("/") class UsersList(Resource): @ns_user.doc("create a new user") @ns_user.expect(user_model, validate=True) def post(self): from project.api.service.storage.users import store_user post_data = request.get_json() username = post_data.get("username") email = post_data.get("email") store_user(username, email) response_object = { "status": "success", "message": "{} was added!".format(email), } return response_object, 201
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2020-06-15 20:55 import logging from typing import Union, List import torch from torch import nn from torch.utils.data import DataLoader from elit.common.dataset import PadSequenceDataLoader, SamplerBuilder, TransformableDataset from elit.common.structure import History from elit.common.transform import FieldLength, TransformList from elit.common.vocab import Vocab from elit.components.classifiers.transformer_classifier import TransformerComponent from elit.components.taggers.tagger import Tagger from elit.datasets.ner.tsv import TSVTaggingDataset from elit.layers.crf.crf import CRF from elit.layers.transformers.encoder import TransformerEncoder from elit.transform.transformer_tokenizer import TransformerSequenceTokenizer from elit.utils.time_util import CountdownTimer from elit.utils.torch_util import clip_grad_norm from elit.common.util import merge_locals_kwargs from alnlp.modules.util import lengths_to_mask # noinspection PyAbstractClass class TransformerTaggingModel(nn.Module): def __init__(self, encoder: TransformerEncoder, num_labels, crf=False, secondary_encoder=None) -> None: """ A shallow tagging model use transformer as decoder. Args: encoder: A pretrained transformer. num_labels: Size of tagset. crf: True to enable CRF. crf_constraints: The allowed transitions (from_label_id, to_label_id). """ super().__init__() self.encoder = encoder self.secondary_encoder = secondary_encoder # noinspection PyUnresolvedReferences self.classifier = nn.Linear(encoder.transformer.config.hidden_size, num_labels) self.crf = CRF(num_labels) if crf else None def forward(self, lens: torch.LongTensor, input_ids, token_span, token_type_ids=None): mask = lengths_to_mask(lens) x = self.encoder(input_ids, token_span=token_span, token_type_ids=token_type_ids) if self.secondary_encoder: x = self.secondary_encoder(x, mask=mask) x = self.classifier(x) return x, mask class TransformerTagger(TransformerComponent, Tagger): def __init__(self, **kwargs) -> None: """A simple tagger using a linear layer with an optional CRF (:cite:`lafferty2001conditional`) layer for any tagging tasks including PoS tagging and many others. Args: **kwargs: Not used. """ super().__init__(**kwargs) self._tokenizer_transform = None self.model: TransformerTaggingModel = None # noinspection PyMethodOverriding def fit_dataloader(self, trn: DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: History, gradient_accumulation=1, grad_norm=None, transformer_grad_norm=None, teacher: Tagger = None, kd_criterion=None, temperature_scheduler=None, ratio_width=None, **kwargs): optimizer, scheduler = optimizer if teacher: scheduler, lambda_scheduler = scheduler else: lambda_scheduler = None self.model.train() timer = CountdownTimer(history.num_training_steps(len(trn), gradient_accumulation=gradient_accumulation)) total_loss = 0 for idx, batch in enumerate(trn): out, mask = self.feed_batch(batch) y = batch['tag_id'] loss = self.compute_loss(criterion, out, y, mask) if gradient_accumulation and gradient_accumulation > 1: loss /= gradient_accumulation if teacher: with torch.no_grad(): out_T, _ = teacher.feed_batch(batch) # noinspection PyNoneFunctionAssignment kd_loss = self.compute_distill_loss(kd_criterion, out, out_T, mask, temperature_scheduler) _lambda = float(lambda_scheduler) loss = _lambda * loss + (1 - _lambda) * kd_loss loss.backward() total_loss += loss.item() prediction = self.decode_output(out, mask, batch) self.update_metrics(metric, out, y, mask, batch, prediction) if history.step(gradient_accumulation): self._step(optimizer, scheduler, grad_norm, transformer_grad_norm, lambda_scheduler) report = f'loss: {total_loss / (idx + 1):.4f} {metric}' timer.log(report, logger=logger, ratio_percentage=False, ratio_width=ratio_width) del loss del out del mask def _step(self, optimizer, scheduler, grad_norm, transformer_grad_norm, lambda_scheduler): clip_grad_norm(self.model, grad_norm, self.model.encoder.transformer, transformer_grad_norm) optimizer.step() scheduler.step() if lambda_scheduler: lambda_scheduler.step() optimizer.zero_grad() def compute_distill_loss(self, kd_criterion, out_S, out_T, mask, temperature_scheduler): logits_S = out_S[mask] logits_T = out_T[mask] temperature = temperature_scheduler(logits_S, logits_T) return kd_criterion(logits_S, logits_T, temperature) def build_model(self, **kwargs) -> torch.nn.Module: model = TransformerTaggingModel(self.build_transformer(), len(self.vocabs.tag), self.config.crf, self.config.get('secondary_encoder', None), ) return model # noinspection PyMethodOverriding def build_dataloader(self, data, batch_size, shuffle, device, logger: logging.Logger = None, sampler_builder: SamplerBuilder = None, gradient_accumulation=1, **kwargs) -> DataLoader: if isinstance(data, TransformableDataset): dataset = data else: args = dict((k, self.config.get(k, None)) for k in ['delimiter', 'max_seq_len', 'sent_delimiter', 'char_level', 'hard_constraint']) dataset = self.build_dataset(data, **args) if self.config.token_key is None: self.config.token_key = next(iter(dataset[0])) logger.info( f'Guess [bold][blue]token_key={self.config.token_key}[/blue][/bold] according to the ' f'training dataset: [blue]{dataset}[/blue]') dataset.append_transform(self.tokenizer_transform) dataset.append_transform(self.last_transform()) if not isinstance(data, list): dataset.purge_cache() if self.vocabs.mutable: self.build_vocabs(dataset, logger) if sampler_builder is not None: sampler = sampler_builder.build([len(x[f'{self.config.token_key}_input_ids']) for x in dataset], shuffle, gradient_accumulation=gradient_accumulation if shuffle else 1) else: sampler = None return PadSequenceDataLoader(dataset, batch_size, shuffle, device=device, batch_sampler=sampler) def build_dataset(self, data, transform=None, **kwargs): return TSVTaggingDataset(data, transform=transform, **kwargs) def last_transform(self): return TransformList(self.vocabs, FieldLength(self.config.token_key)) @property def tokenizer_transform(self) -> TransformerSequenceTokenizer: if not self._tokenizer_transform: self._tokenizer_transform = TransformerSequenceTokenizer(self.transformer_tokenizer, self.config.token_key, ret_token_span=True) return self._tokenizer_transform def build_vocabs(self, trn, logger, **kwargs): self.vocabs.tag = Vocab(pad_token=None, unk_token=None) timer = CountdownTimer(len(trn)) max_seq_len = 0 token_key = self.config.token_key for each in trn: max_seq_len = max(max_seq_len, len(each[token_key])) timer.log(f'Building vocab [blink][yellow]...[/yellow][/blink] (longest sequence: {max_seq_len})') self.vocabs.tag.set_unk_as_safe_unk() self.vocabs.lock() self.vocabs.summary(logger) # noinspection PyMethodOverriding def fit(self, trn_data, dev_data, save_dir, transformer, average_subwords=False, word_dropout: float = 0.2, hidden_dropout=None, layer_dropout=0, scalar_mix=None, mix_embedding: int = 0, grad_norm=5.0, transformer_grad_norm=None, lr=5e-5, transformer_lr=None, transformer_layers=None, gradient_accumulation=1, adam_epsilon=1e-6, weight_decay=0, warmup_steps=0.1, secondary_encoder=None, crf=False, reduction='sum', batch_size=32, sampler_builder: SamplerBuilder = None, epochs=3, patience=5, token_key=None, max_seq_len=None, sent_delimiter=None, char_level=False, hard_constraint=False, transform=None, logger=None, devices: Union[float, int, List[int]] = None, **kwargs): return super().fit(**merge_locals_kwargs(locals(), kwargs)) def feed_batch(self, batch: dict): features = [batch[k] for k in self.tokenizer_transform.output_key] if len(features) == 2: input_ids, token_span = features else: input_ids, token_span = features[0], None lens = batch[f'{self.config.token_key}_length'] x, mask = self.model(lens, input_ids, token_span, batch.get(f'{self.config.token_key}_token_type_ids')) return x, mask # noinspection PyMethodOverriding def distill(self, teacher: str, trn_data, dev_data, save_dir, transformer: str, batch_size=None, temperature_scheduler='flsw', epochs=None, devices=None, logger=None, seed=None, **kwargs): return super().distill(**merge_locals_kwargs(locals(), kwargs))
import unittest from unittest import mock import dbt.flags as flags from dbt.adapters.mysql import MySQLAdapter from .utils import config_from_parts_or_dicts, mock_connection class TestMySQLAdapter(unittest.TestCase): def setUp(self): pass flags.STRICT_MODE = True profile_cfg = { 'outputs': { 'test': { 'type': 'mysql', 'server': 'thishostshouldnotexist', 'port': 3306, 'schema': 'dbt_test_schema', 'username': 'dbt', 'password': 'dbt', } }, 'target': 'test' } project_cfg = { 'name': 'X', 'version': '0.1', 'profile': 'test', 'project-root': '/tmp/dbt/does-not-exist', 'quoting': { 'identifier': False, 'schema': True, }, 'config-version': 2 } self.config = config_from_parts_or_dicts(project_cfg, profile_cfg) self._adapter = None @property def adapter(self): if self._adapter is None: self._adapter = MySQLAdapter(self.config) return self._adapter @mock.patch('dbt.adapters.mysql.connections.mysql.connector') def test_acquire_connection(self, connector): connection = self.adapter.acquire_connection('dummy') connector.connect.assert_not_called() connection.handle self.assertEqual(connection.state, 'open') self.assertNotEqual(connection.handle, None) connector.connect.assert_called_once() def test_cancel_open_connections_empty(self): self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_cancel_open_connections_main(self): key = self.adapter.connections.get_thread_identifier() self.adapter.connections.thread_connections[key] = mock_connection( 'main') self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_placeholder(self): pass
"""Tests for evohomeclient package""" from datetime import datetime import requests_mock from . import EvohomeClient UNAUTH_RESPONSE = """[{ "code": "Unauthorized", "message": "Unauthorized" }]""" TASK_ACCEPTED_LIST = """[{"id": "123"}]""" TASK_ACCEPTED = """{"id": "123"}""" VALID_SESSION_RESPONSE = """{ "sessionId": "EE32E3A8-1C09-4A5C-9572-24A088197A38", "userInfo": { "userID": 123456, "username": "username", "firstname": "Forename", "lastname": "Surname", "streetAddress": "Street Address", "city": "City", "state": "", "zipcode": "AB1 2CD", "country": "GB", "telephone": "", "userLanguage": "en-GB", "isActivated": true, "deviceCount": 0, "tenantID": 5, "securityQuestion1": "NotUsed", "securityQuestion2": "NotUsed", "securityQuestion3": "NotUsed", "latestEulaAccepted": false } }""" VALID_ZONE_RESPONSE = """[ { "locationID": 23456, "name": "Home", "streetAddress": "Street Address", "city": "City", "state": "", "country": "GB", "zipcode": "AB1 2CD", "type": "Residential", "hasStation": true, "devices": [ { "gatewayId": 333444, "deviceID": 131313, "thermostatModelType": "DOMESTIC_HOT_WATER", "deviceType": 96, "name": "", "scheduleCapable": false, "holdUntilCapable": false, "thermostat": { "units": "Celsius", "indoorTemperature": 24.0100, "outdoorTemperature": 128.0000, "outdoorTemperatureAvailable": false, "outdoorHumidity": 128.0000, "outdootHumidityAvailable": false, "indoorHumidity": 128.0000, "indoorTemperatureStatus": "Measured", "indoorHumidityStatus": "NotAvailable", "outdoorTemperatureStatus": "NotAvailable", "outdoorHumidityStatus": "NotAvailable", "isCommercial": false, "allowedModes": [ "DHWOn", "DHWOff" ], "deadband": 0.0000, "minHeatSetpoint": 5.0000, "maxHeatSetpoint": 30.0000, "minCoolSetpoint": 50.0000, "maxCoolSetpoint": 90.0000, "changeableValues": { "mode": "DHWOff", "status": "Scheduled" }, "scheduleCapable": false, "vacationHoldChangeable": false, "vacationHoldCancelable": false, "scheduleHeatSp": 0.0000, "scheduleCoolSp": 0.0000 }, "alertSettings": { "deviceID": 131313, "tempHigherThanActive": false, "tempHigherThan": 100.0000, "tempHigherThanMinutes": 0, "tempLowerThanActive": false, "tempLowerThan": -50.0000, "tempLowerThanMinutes": 0, "faultConditionExistsActive": false, "faultConditionExistsHours": 0, "normalConditionsActive": true, "communicationLostActive": false, "communicationLostHours": 0, "thermostatAlertActive": false, "communicationFailureActive": true, "communicationFailureMinutes": 15, "deviceLostActive": false, "deviceLostHours": 0 }, "isUpgrading": false, "isAlive": true, "thermostatVersion": "03.00.10.06", "macID": "001122334455", "locationID": 23456, "domainID": 28111, "instance": 250 }, { "gatewayId": 333444, "deviceID": 121212, "thermostatModelType": "EMEA_ZONE", "deviceType": 96, "name": "RoomName", "scheduleCapable": false, "holdUntilCapable": false, "thermostat": { "units": "Celsius", "indoorTemperature": 17.5400, "outdoorTemperature": 128.0000, "outdoorTemperatureAvailable": false, "outdoorHumidity": 128.0000, "outdootHumidityAvailable": false, "indoorHumidity": 128.0000, "indoorTemperatureStatus": "Measured", "indoorHumidityStatus": "NotAvailable", "outdoorTemperatureStatus": "NotAvailable", "outdoorHumidityStatus": "NotAvailable", "isCommercial": false, "allowedModes": [ "Heat", "Off" ], "deadband": 0.0000, "minHeatSetpoint": 5.0000, "maxHeatSetpoint": 35.0000, "minCoolSetpoint": 50.0000, "maxCoolSetpoint": 90.0000, "changeableValues": { "mode": "Off", "heatSetpoint": { "value": 15.0, "status": "Scheduled" }, "vacationHoldDays": 0 }, "scheduleCapable": false, "vacationHoldChangeable": false, "vacationHoldCancelable": false, "scheduleHeatSp": 0.0000, "scheduleCoolSp": 0.0000 }, "alertSettings": { "deviceID": 121212, "tempHigherThanActive": true, "tempHigherThan": 30.0000, "tempHigherThanMinutes": 0, "tempLowerThanActive": true, "tempLowerThan": 5.0000, "tempLowerThanMinutes": 0, "faultConditionExistsActive": false, "faultConditionExistsHours": 0, "normalConditionsActive": true, "communicationLostActive": false, "communicationLostHours": 0, "communicationFailureActive": true, "communicationFailureMinutes": 15, "deviceLostActive": false, "deviceLostHours": 0 }, "isUpgrading": false, "isAlive": true, "thermostatVersion": "03.00.10.06", "macID": "001122334455", "locationID": 23456, "domainID": 28111, "instance": 10 } ] } ]""" VALID_ZONE_RESPONSE_NO_DHW = """[ { "locationID": 23456, "name": "Home", "streetAddress": "Street Address", "city": "City", "state": "", "country": "GB", "zipcode": "AB1 2CD", "type": "Residential", "hasStation": true, "devices": [ { "gatewayId": 333444, "deviceID": 121212, "thermostatModelType": "EMEA_ZONE", "deviceType": 96, "name": "RoomName", "scheduleCapable": false, "holdUntilCapable": false, "thermostat": { "units": "Celsius", "indoorTemperature": 17.5400, "outdoorTemperature": 128.0000, "outdoorTemperatureAvailable": false, "outdoorHumidity": 128.0000, "outdootHumidityAvailable": false, "indoorHumidity": 128.0000, "indoorTemperatureStatus": "Measured", "indoorHumidityStatus": "NotAvailable", "outdoorTemperatureStatus": "NotAvailable", "outdoorHumidityStatus": "NotAvailable", "isCommercial": false, "allowedModes": [ "Heat", "Off" ], "deadband": 0.0000, "minHeatSetpoint": 5.0000, "maxHeatSetpoint": 35.0000, "minCoolSetpoint": 50.0000, "maxCoolSetpoint": 90.0000, "changeableValues": { "mode": "Off", "heatSetpoint": { "value": 15.0, "status": "Scheduled" }, "vacationHoldDays": 0 }, "scheduleCapable": false, "vacationHoldChangeable": false, "vacationHoldCancelable": false, "scheduleHeatSp": 0.0000, "scheduleCoolSp": 0.0000 }, "alertSettings": { "deviceID": 121212, "tempHigherThanActive": true, "tempHigherThan": 30.0000, "tempHigherThanMinutes": 0, "tempLowerThanActive": true, "tempLowerThan": 5.0000, "tempLowerThanMinutes": 0, "faultConditionExistsActive": false, "faultConditionExistsHours": 0, "normalConditionsActive": true, "communicationLostActive": false, "communicationLostHours": 0, "communicationFailureActive": true, "communicationFailureMinutes": 15, "deviceLostActive": false, "deviceLostHours": 0 }, "isUpgrading": false, "isAlive": true, "thermostatVersion": "03.00.10.06", "macID": "001122334455", "locationID": 23456, "domainID": 28111, "instance": 10 } ] } ]""" @requests_mock.Mocker() def test_429_returned_raises_exception(mock): # pylint: disable=invalid-name """test that exception is raised for a 429 error""" mock.post( "http://localhost:5050/WebAPI/api/Session", status_code=429, text="""[ { "code": "TooManyRequests", "message": "Request count limitation exceeded, please try again later." } ]""", ) try: client = EvohomeClient("username", "password", hostname="http://localhost:5050") list(client.temperatures()) # Shouldn't get here assert False # pylint: disable=bare-except except: assert True @requests_mock.Mocker() def test_valid_login(mock): """test valid path""" mock.post("http://localhost:5050/WebAPI/api/Session", text=VALID_SESSION_RESPONSE) mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", text=VALID_ZONE_RESPONSE, ) client = EvohomeClient("username", "password", hostname="http://localhost:5050") data = list(client.temperatures()) assert len(data) == 2 # assert x[1].name == "RoomName" assert data == [ { "thermostat": "DOMESTIC_HOT_WATER", "id": 131313, "name": "", "temp": 24.01, "setpoint": 0, "status": "Scheduled", "mode": "DHWOff", }, { "thermostat": "EMEA_ZONE", "id": 121212, "name": "RoomName", "temp": 17.54, "setpoint": 15.0, "status": "Scheduled", "mode": "Off", }, ] @requests_mock.Mocker() def test_expired_sessionid(mock): """test expired sessionid""" mock.post("http://localhost:5050/WebAPI/api/Session", text=VALID_SESSION_RESPONSE) mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", [ {"text": UNAUTH_RESPONSE, "status_code": 401}, {"text": VALID_ZONE_RESPONSE, "status_code": 200}, ], ) client = EvohomeClient( "username", "password", hostname="http://localhost:5050", user_data={"userInfo": {"userID": "123456"}, "sessionId": "sessionhere"}, ) data = list(client.temperatures()) assert len(data) == 2 # assert x[1].name == "RoomName" assert data == [ { "thermostat": "DOMESTIC_HOT_WATER", "id": 131313, "name": "", "temp": 24.01, "setpoint": 0, "status": "Scheduled", "mode": "DHWOff", }, { "thermostat": "EMEA_ZONE", "id": 121212, "name": "RoomName", "temp": 17.54, "setpoint": 15.0, "status": "Scheduled", "mode": "Off", }, ] @requests_mock.Mocker() def test_get_zone_modes(mock): """test get zone modes""" mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", text=VALID_ZONE_RESPONSE, ) client = EvohomeClient( "username", "password", hostname="http://localhost:5050", user_data={"userInfo": {"userID": "123456"}, "sessionId": "sessionhere"}, ) modes = client.get_modes("RoomName") modes2 = client.get_modes(121212) assert modes == modes2 == ["Heat", "Off"] @requests_mock.Mocker() def test_set_status(mock): """test that statuses can be set correctly""" mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", text=VALID_ZONE_RESPONSE, ) mock.put( "http://localhost:5050/WebAPI/api/evoTouchSystems?locationId=23456", text=TASK_ACCEPTED, ) mock.get( "http://localhost:5050/WebAPI/api/commTasks?commTaskId=123", [ {"status_code": 200, "text": """{"state":"pending"}"""}, {"status_code": 200, "text": """{"state":"Succeeded"}"""}, ], ) client = EvohomeClient( "username", "password", hostname="http://localhost:5050", user_data={"userInfo": {"userID": "123456"}, "sessionId": "sessionhere"}, ) client.set_status_normal() client.set_status_custom() client.set_status_eco() client.set_status_away() client.set_status_dayoff() client.set_status_heatingoff(datetime(2019, 10, 10, 10, 10, 10)) @requests_mock.Mocker() def test_zone_temp(mock): """test that zone temps can be set correctly""" mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", text=VALID_ZONE_RESPONSE, ) mock.put( "http://localhost:5050/WebAPI/api/devices/121212/thermostat/changeableValues/heatSetpoint", text=TASK_ACCEPTED, ) mock.put( "http://localhost:5050/WebAPI/api/devices/131313/thermostat/changeableValues", text=TASK_ACCEPTED_LIST, ) mock.get( "http://localhost:5050/WebAPI/api/commTasks?commTaskId=123", [ {"status_code": 200, "text": """{"state":"pending"}"""}, {"status_code": 200, "text": """{"state":"Succeeded"}"""}, ], ) client = EvohomeClient( "username", "password", hostname="http://localhost:5050", user_data={"userInfo": {"userID": "123456"}, "sessionId": "sessionhere"}, ) client.set_temperature("RoomName", 25) client.set_temperature("RoomName", 25, until=datetime(2019, 10, 10, 10, 10, 10)) client.cancel_temp_override("RoomName") mock.get( "http://localhost:5050/WebAPI/api/commTasks?commTaskId=123", [ {"status_code": 200, "text": """{"state":"pending"}"""}, {"status_code": 200, "text": """{"state":"Succeeded"}"""}, ], ) client.set_dhw_on() client.set_dhw_off(datetime(2019, 10, 10, 10, 10, 10)) client.set_dhw_auto() @requests_mock.Mocker() def test_zone_temp_no_dhw(mock): """test that zone temps can be set correctly""" mock.get( "http://localhost:5050/WebAPI/api/locations?userId=123456&allData=True", text=VALID_ZONE_RESPONSE_NO_DHW, ) mock.put( "http://localhost:5050/WebAPI/api/devices/121212/thermostat/changeableValues/heatSetpoint", text=TASK_ACCEPTED_LIST, ) mock.put( "http://localhost:5050/WebAPI/api/devices/131313/thermostat/changeableValues", text=TASK_ACCEPTED_LIST, ) mock.get( "http://localhost:5050/WebAPI/api/commTasks?commTaskId=123", [ {"status_code": 200, "text": """{"state":"pending"}"""}, {"status_code": 200, "text": """{"state":"Succeeded"}"""}, ], ) client = EvohomeClient( "username", "password", hostname="http://localhost:5050", user_data={"userInfo": {"userID": "123456"}, "sessionId": "sessionhere"}, debug=True, ) try: client.set_dhw_on() assert False except: # pylint: disable=bare-except pass
# -*- coding: utf-8 -*- #Need to import this library to support array type from array import array # Returns the name of the object if it is supported. # Returns an empty string else def supported_object(obj): if type(obj) not in (tuple, list, array): return "" if(type(obj) == tuple): return "tuple" if(type(obj) == list): return "list" if(type(obj) == array): return "array" #Function that generates the string if the object is supported def generate_string(obj, cont): output = supported_object(obj) output += " of " output += str(len(obj)) if(len(obj) < 2): output += " element " else: output += " elements " output += "containing" if cont != []: output += " " + str(set(cont)) else: output += " : " return output def supertype(obj,indent=0): if supported_object(obj) != "": cont=[] i=0 while (i<len(obj)) and supported_object(obj[i]) == "": i+=1 if i >= len(obj): for j in obj: cont.append(supertype(j,indent+1)) cont = generate_string(obj, cont) if i< len(obj): for j in obj: cont+='\n'+' '*(indent+1)+'-'+str(supertype(j,indent+1)) if(indent==0): print(cont) else: return(cont) # elif type(obj)==numpy.ndarray: # return('numpy array of shape '+str(obj.shape)) # #If we want to add specific info about some types (as shape of nunmpy array) we can add elif right here else: try: cont = (str(type(obj))[8:-2]+' of shape '+str(obj.shape)) except: try: cont = (str(type(obj))[8:-2]+' of '+str(len(obj))+' element') if len(obj)>1: cont+='s' except: cont = (str(type(obj))[8:-2]) if(indent==0): print(cont) else: return(cont) #The [8:-2] allows us to make "<class 'str'>" into "str"
# import h5py # import json # from abc import ABC, abstractmethod # from .utils import * # class BaseClientDataLoader(ABC): # @abstractmethod # def __init__(self, data_path, partition_path, client_idx, partition_method, tokenize, data_fields): # self.data_path = data_path # self.partition_path = partition_path # self.client_idx = client_idx # self.partition_method = partition_method # self.tokenize = tokenize # self.data_fields = data_fields # self.train_data = None # self.test_data = None # self.attributes = None # self.load_data() # if self.tokenize: # self.spacy_tokenizer = SpacyTokenizer() # def get_train_batch_data(self, batch_size=None): # if batch_size is None: # return self.train_data # else: # batch_data_list = list() # start = 0 # length = len(self.train_data["Y"]) # while start < length: # end = start + batch_size if start + batch_size < length else length # batch_data = dict() # for field in self.data_fields: # batch_data[field] = self.train_data[field][start: end] # batch_data_list.append(batch_data) # start = end # return batch_data_list # def get_test_batch_data(self, batch_size=None): # if batch_size is None: # return self.test_data # else: # batch_data_list = list() # start = 0 # length = len(self.test_data["Y"]) # while start < length: # end = start + batch_size if start + batch_size < length else length # batch_data = dict() # for field in self.data_fields: # batch_data[field] = self.test_data[field][start: end] # batch_data_list.append(batch_data) # start = end # return batch_data_list # def get_train_data_num(self): # if "X" in self.train_data: # return len(self.train_data["X"]) # elif "context_X" in self.train_data: # return len(self.train_data["context_X"]) # else: # print(self.train_data.keys()) # return None # def get_test_data_num(self): # if "X" in self.test_data: # return len(self.test_data["X"]) # elif "context_X" in self.test_data: # return len(self.test_data["context_X"]) # else: # return None # def get_attributes(self): # return self.attributes # def load_data(self): # data_dict = h5py.File(self.data_path, "r") # partition_dict = h5py.File(self.partition_path, "r") # def generate_client_data(data_dict, index_list): # data = dict() # for field in self.data_fields: # data[field] = [decode_data_from_h5(data_dict[field][str(idx)][()]) for idx in index_list] # return data # if self.client_idx is None: # train_index_list = [] # test_index_list = [] # for client_idx in partition_dict[self.partition_method]["partition_data"].keys(): # train_index_list.extend(decode_data_from_h5(partition_dict[self.partition_method]["partition_data"][client_idx]["train"][()])) # test_index_list.extend(decode_data_from_h5(partition_dict[self.partition_method]["partition_data"][client_idx]["test"][()])) # self.train_data = generate_client_data(data_dict, train_index_list) # self.test_data = generate_client_data(data_dict, test_index_list) # else: # client_idx = str(self.client_idx) # train_index_list = decode_data_from_h5(partition_dict[self.partition_method]["partition_data"][client_idx]["train"][()]) # test_index_list = decode_data_from_h5(partition_dict[self.partition_method]["partition_data"][client_idx]["test"][()]) # self.train_data = generate_client_data(data_dict, train_index_list) # self.test_data = generate_client_data(data_dict, test_index_list) # self.attributes = json.loads(data_dict["attributes"][()]) # self.attributes["n_clients"] = decode_data_from_h5(partition_dict[self.partition_method]["n_clients"][()]) # data_dict.close() # partition_dict.close()
import tensorflow as tf import numpy as np from keras.models import Sequential, Model from keras.layers import Dense, Input, InputLayer, Conv2D, MaxPooling2D, Reshape, Flatten from keras.models import load_model mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 def create_sequential_model(): single_output_model = Sequential([ InputLayer(input_shape=(28, 28)), Reshape((28,28,1),input_shape=(28,28,)), Conv2D(filters=6, kernel_size=5, strides=1, input_shape=(28, 28, 1), name="Conv2D_1"), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name="MaxPooling2D_1"), Conv2D(filters=16, kernel_size=5, strides=1, name="Conv2D_2"), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name="MaxPooling2D_2"), Flatten(), Dense(120, activation="relu", name="Dense_1"), Dense(84, activation="relu", name="Dense_2"), Dense(10, activation="softmax", name="Softmax") ]) return single_output_model def create_model(): input_tensor = Input(shape=(28, 28)) reshape_layer = Reshape((28, 28, 1), input_shape=(28, 28,))(input_tensor) conv2D_layer_1 = Conv2D(filters=6, kernel_size=5, strides=1, input_shape=(28, 28, 1))(reshape_layer) maxpool2D_layer_1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv2D_layer_1) conv2D_layer_2 = Conv2D(filters=16, kernel_size=5, strides=1)(maxpool2D_layer_1) maxpool2D_layer_2 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv2D_layer_2) flatten_layer = Flatten()(maxpool2D_layer_2) dense_layer_1 = Dense(120, activation="relu")(flatten_layer) dense_layer_2 = Dense(84, activation="relu")(dense_layer_1) dense_layer_3 = Dense(10, activation="softmax")(dense_layer_2) classic_model =Model( inputs=input_tensor, outputs=dense_layer_3 ) return classic_model def train_model(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = create_sequential_model() # model = create_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, batch_size=32) # model.evaluate(x_test, y_test) return model def save_model(model, name_path): model.save(name_path) def load_from_model(name_path): model = load_model(name_path) # Load model from json+weights # from keras.models import model_from_json # json_path = "./saved_models/gan/generator.json" # weight_path = "./saved_models/gan/generator_weights.hdf5" # # structure = open(json_path, "r") # model = model_from_json( # structure # ) # model.load_weights(weight_path) return model def generate_encapsulate_model_with_output_layer_names(model, output_layer_names): enc_model = Model( inputs=model.input, outputs=list(map(lambda oln: model.get_layer(oln).output, output_layer_names)) ) return enc_model def generate_encapsulate_model(model): enc_model = Model( inputs=model.input, # ignore 1st layer (input), since some old models do not have 1st layer as Keras layer outputs=list(map(lambda layer: layer.output, model.layers[1:])) ) return enc_model # model = train_model() # save_model(model, "../models/keras_model.h5") model = load_from_model("../models/keras_model.h5") # model = load_from_model("../models/enc_keras_model.h5") input_sample = np.ndarray(shape=(28,28), buffer=np.random.rand(28,28)) input_sample = np.expand_dims(input_sample, axis=0) print(model.predict(input_sample)) # model.summary() # # for l in model.layers: # print(l.name) output_layer_names = ["Conv2D_1", "MaxPooling2D_1", "Conv2D_2", "MaxPooling2D_2", "Dense_1", "Dense_2", "Softmax"] # enc_model = generate_encapsulate_model_with_output_layer_names(model, output_layer_names) # enc_model = generate_encapsulate_model(model) # print(enc_model.predict(input_sample)) # enc_model.compile(optimizer='adam', # loss='sparse_categorical_crossentropy', # metrics=['accuracy']) # save_model(enc_model, "../models/enc_keras_model.h5")
# 2017 John Shell from datetime import datetime, timezone from random import randint as rand import discord import pytz from .grasslands import Peacock log = Peacock() def m2id(mem): """ Convert member object to id str :param mem: discord.Member or id str :return: str id """ if isinstance(mem, discord.Member) or isinstance(mem, discord.User): mid = mem.id elif isinstance(mem, discord.TextChannel) or isinstance(mem, discord.Guild): print(mem.name) mid = None else: mid = mem return str(mid) def ts(dt): """ Generate timestamp from datetime object, it's just cleaner :param dt: datetime object :return: seconds since epoch """ if not isinstance(dt, datetime): return dt try: dt = dt.replace(tzinfo=pytz.utc) return (dt - datetime(1970, 1, 1, tzinfo=timezone.utc)).total_seconds() except TypeError: return dt class DBHandler(object): """ Handle connections between leaf and the database. If config.yml has Databasing turned off, functionality will be solely to let the user know it is off. """ def __init__(self, config): if config.get("dbconf") is None: log.f( "DBHandler", "Could not find database config entry " "in config.yml. " "Certain features will be disabled", ) self.useDB = False return self.useDB = True self.config = config db_conf = self.config.get("dbconf") from pymongo import MongoClient if "remote_uri" in db_conf: client = MongoClient(db_conf["remote_uri"]) else: client = MongoClient("localhost", db_conf["port"]) if "name" not in db_conf: self.db = client["petal"] else: self.db = client[db_conf["name"]] self.members = self.db["members"] self.reminders = self.db["reminders"] self.motd = self.db["motd"] self.void = self.db["void"] self.ac = self.db["ac"] self.subs = self.db["subs"] self.emoji = self.db["emoji"] self.dinos = self.db["dinos"] log.f("DBHandler", "Database system ready") def member_exists(self, member): """ :param member: id of member to look up :return: bool member id is in the member collection """ if not self.useDB: return False if self.members.find_one({"uid": m2id(member)}) is not None: return True return False def add_member(self, member, verbose=False): if not self.useDB: return False if self.member_exists(member): if verbose: log.f( "DBhandler", "Member already exists in database, " "use update_member to update them", ) return False else: data = { "name": member.name, "uid": member.id, "discord_date": ts(member.created_at), "local_date": ts(datetime.utcnow()), "aliases": [], "discriminator": member.discriminator, "isBot": member.bot, "avatar_url": str(member.avatar_url), "location": "Brisbane, Australia", "osu": "", "banned": False, "subreddit": "aww", "message_count": 0, "last_active": ts(datetime.utcnow()), "last_message": 0, "last_message_channel": "0", "strikes": [], "subscriptions": [], "commands_count": 0, } try: data["guilds"] = [member.guild.id] except AttributeError: log.f( "dbhandler", f"{member.name} is a User type object, cannot add server attribute", ) if isinstance(member, discord.Member): data["server_date"] = ts(member.joined_at) data["joins"] = [ts(member.joined_at)] if member.display_name != member.name: data["aliases"].append(member.display_name) pid = self.members.insert_one(data).inserted_id log.f("DBhandler", f"New member added to DB! (_id: {pid})") return True def get_member(self, member): """ Retrieves a Dictionary representation of a member :param member: discord.Member or str id of member :return: dict member """ if not self.useDB: return None r = self.members.find_one({"uid": m2id(member)}) if r is not None: return r return None def get_attribute(self, member, key, verbose=True): """ Retrieves a specific field from a stored member object :param member: discord.Member or str id of member :param key: field to return :param verbose: :return: member[key] or None if none """ if not self.useDB: return False mem = self.get_member(member) if mem is None: if verbose: log.f("DBHandler", f"{member.name} {m2id(member)} not found in db") return None if key in mem: return mem[key] else: if verbose: log.f("DBHandler", f"{m2id(member)} has no field: {key}") return None def update_member(self, member, data=None, type=0, subdict=""): """ Updates a the database with keys and values provided in the data field :param member: member to update :param data: dictionary containing data to update :param type: 0 = None, 1 = Message, 2 = Command :param subdict: Whether this operation is an update to a subdict of the user :return: str response """ if not self.useDB: return False if data is None: log.f("DBhandler", "Please provide data first!") return False self.add_member(member) # mem: MONGO DOCUMENT (as python dict) mem = self.get_member(member) if mem is None: log.f("DBhandler", "Member doesn't exist") return False # TODO: get member dict first then query over. Update finally count = 0 if subdict: # This operation is running in Subdict mode; Update the dict provided if not subdict in mem: mem[subdict] = data count += 1 else: mem[subdict].update(data) else: for key in data: # data: DICT # key: STR (probably) # mem[key]: CURRENT VALUE # data[key]: NEW VALUE if isinstance(data[key], dict): print(str(key) + "\n" + str(data) + "\n") mem[key] = data[key] print(str(mem[key])) for vk in mem[key]: mem[key][vk] = ts(mem[key][vk]) elif key in mem: if isinstance(mem[key], list): if isinstance(data[key], list): for item in data[key]: # log.f("DBHandler", "Item: " + item) if item not in mem[key]: # log.f("DBHandler", "ON key: " + key + " added " + item + " to " + str(mem[key])) mem[key].append(item) count += 1 else: if data[key] not in mem[key]: mem[key].append(data[key]) log.f("DBHandler", f"added { data[key]} to {key}") count += 1 else: # log.f("DBHandler", "replace key: " + key + " -> " # + str(mem[key]) + " with " # + str(data[key])) # log.f("Replaced " + key + ": " + str(mem[key]) + " -> " + str(ts(data[key]))) mem[key] = ts(data[key]) else: # log.f("Added " + key) mem[key] = ts(data[key]) count += 1 if type == 1: mem["message_count"] += 1 elif type == 2: mem["commands_count"] += 1 if count > 0: log.f("DBHandler", "Added {count} fields to {mem['name']}") self.members.replace_one({"uid": m2id(member)}, mem, upsert=False) return True def get_void(self): void_size = self.void.count() if void_size == 0: return "Nothing in void storage" response = None while response is None: index = rand(0, void_size - 1) response = self.void.find_one({"number": index}) return response def save_void(self, content, name, id): if self.void.count({"content": content}) > 0: return None self.void.insert( {"content": content, "number": self.void.count(), "author": name + " " + id} ) return self.void.count() def delete_void(self, number): return self.void.delete_one({"number": number}) def get_reminders(self, timestamp): timestamp = ts(timestamp) return self.reminders.find({"ts": {"$lr": timestamp}}) def add_reminder(self, author, content, timestamp): timestamp = ts(timestamp) return self.reminders.insert_one( {"ts": timestamp, "author": author.id, "content": content} ) def get_motd_entry(self, update=False): response = self.motd.find_one({"used": False, "approved": True}) if response is None: return None if not update: return response self.motd.update( {"_id": response["_id"]}, {"$set": {"used": True}}, upsert=False, multi=False, ) return response def get_motd_max(self): return self.motd.find_one(sort=[("num", -1)]) def submit_motd(self, author, content): num = self.get_motd_max() if num is None: idx: int = 2000 else: idx: int = num["num"] + 1 entry = { "author": author, "num": idx, "content": content, "approved": False, "used": False, } # print(str(entry)) return self.motd.find_one({"_id": self.motd.insert_one(entry).inserted_id}) def update_motd(self, num, approve=True): if approve: self.motd.update_one( {"num": num}, {"$set": {"approved": True, "used": False}}, upsert=False ) else: self.motd.update_one( {"num": num}, {"$set": {"approved": False, "used": False}}, upsert=False ) return self.motd.find_one({"num": num}) def read_cmd_image(self, invoker: str) -> (bytes, None): # TODO: `invoker` is a string key in the DB with Base64 image data. Find and return it. # Should return a bytes class object if the data is in the DB, or `None` if not. pass def write_cmd_image(self, invoker: str, img: bytes): # TODO: `img` is a bstring of Base64 data. Write it into the DB under the key `invoker`. # Should return `True` if the image was written, or `False` if it was not. pass
from anvil import * import anvil.facebook.auth import anvil.google.auth, anvil.google.drive from anvil.google.drive import app_files import anvil.microsoft.auth import anvil.users import anvil.server if not get_url_hash(): while not anvil.users.login_with_form(): pass # disabling report module # open_form('landing.main') open_form('landing.select_action_survey') else: schema=anvil.server.call('get_form', get_url_hash()) open_form('form.main', schema)
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. load(":shape.bzl", "shape") # Define shapes for systemd units. This is not intended to be an exhaustive # list of every systemd unit setting from the start, but should be added to as # more use cases generate units with these shapes. unit_t = shape.shape( description = str, requires = shape.list(str, default = []), after = shape.list(str, default = []), before = shape.list(str, default = []), ) fstype_t = shape.enum("btrfs", "9p") mount_t = shape.shape( unit = unit_t, what = str, where = shape.path, # add more filesystem types here as required type = shape.field(fstype_t, optional = True), options = shape.list(str, default = []), )
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: model.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='model.proto', package='modeltest', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0bmodel.proto\x12\tmodeltest\"\x11\n\x02hi\x12\x0b\n\x03msg\x18\x01 \x01(\t\"/\n\x05input\x12\x11\n\tinputType\x18\x01 \x01(\t\x12\x13\n\x0binputStream\x18\x02 \x01(\t\"2\n\x06output\x12\x12\n\noutputType\x18\x01 \x01(\t\x12\x14\n\x0coutputStream\x18\x02 \x01(\t\"1\n\tproxyinfo\x12\x11\n\tproxyName\x18\x01 \x01(\t\x12\x11\n\tproxyPort\x18\x02 \x01(\t\"\x1a\n\x08response\x12\x0e\n\x06status\x18\x01 \x01(\t2\xa9\x01\n\x0ePredictService\x12\x30\n\x07Predict\x12\x10.modeltest.input\x1a\x11.modeltest.output\"\x00\x12\x37\n\x08SetProxy\x12\x14.modeltest.proxyinfo\x1a\x13.modeltest.response\"\x00\x12,\n\x04Ping\x12\r.modeltest.hi\x1a\x13.modeltest.response\"\x00\x62\x06proto3') ) _HI = _descriptor.Descriptor( name='hi', full_name='modeltest.hi', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='msg', full_name='modeltest.hi.msg', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=26, serialized_end=43, ) _INPUT = _descriptor.Descriptor( name='input', full_name='modeltest.input', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='inputType', full_name='modeltest.input.inputType', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='inputStream', full_name='modeltest.input.inputStream', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=45, serialized_end=92, ) _OUTPUT = _descriptor.Descriptor( name='output', full_name='modeltest.output', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='outputType', full_name='modeltest.output.outputType', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outputStream', full_name='modeltest.output.outputStream', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=94, serialized_end=144, ) _PROXYINFO = _descriptor.Descriptor( name='proxyinfo', full_name='modeltest.proxyinfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proxyName', full_name='modeltest.proxyinfo.proxyName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxyPort', full_name='modeltest.proxyinfo.proxyPort', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=146, serialized_end=195, ) _RESPONSE = _descriptor.Descriptor( name='response', full_name='modeltest.response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='modeltest.response.status', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=197, serialized_end=223, ) DESCRIPTOR.message_types_by_name['hi'] = _HI DESCRIPTOR.message_types_by_name['input'] = _INPUT DESCRIPTOR.message_types_by_name['output'] = _OUTPUT DESCRIPTOR.message_types_by_name['proxyinfo'] = _PROXYINFO DESCRIPTOR.message_types_by_name['response'] = _RESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) hi = _reflection.GeneratedProtocolMessageType('hi', (_message.Message,), dict( DESCRIPTOR = _HI, __module__ = 'model_pb2' # @@protoc_insertion_point(class_scope:modeltest.hi) )) _sym_db.RegisterMessage(hi) input = _reflection.GeneratedProtocolMessageType('input', (_message.Message,), dict( DESCRIPTOR = _INPUT, __module__ = 'model_pb2' # @@protoc_insertion_point(class_scope:modeltest.input) )) _sym_db.RegisterMessage(input) output = _reflection.GeneratedProtocolMessageType('output', (_message.Message,), dict( DESCRIPTOR = _OUTPUT, __module__ = 'model_pb2' # @@protoc_insertion_point(class_scope:modeltest.output) )) _sym_db.RegisterMessage(output) proxyinfo = _reflection.GeneratedProtocolMessageType('proxyinfo', (_message.Message,), dict( DESCRIPTOR = _PROXYINFO, __module__ = 'model_pb2' # @@protoc_insertion_point(class_scope:modeltest.proxyinfo) )) _sym_db.RegisterMessage(proxyinfo) response = _reflection.GeneratedProtocolMessageType('response', (_message.Message,), dict( DESCRIPTOR = _RESPONSE, __module__ = 'model_pb2' # @@protoc_insertion_point(class_scope:modeltest.response) )) _sym_db.RegisterMessage(response) _PREDICTSERVICE = _descriptor.ServiceDescriptor( name='PredictService', full_name='modeltest.PredictService', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=226, serialized_end=395, methods=[ _descriptor.MethodDescriptor( name='Predict', full_name='modeltest.PredictService.Predict', index=0, containing_service=None, input_type=_INPUT, output_type=_OUTPUT, serialized_options=None, ), _descriptor.MethodDescriptor( name='SetProxy', full_name='modeltest.PredictService.SetProxy', index=1, containing_service=None, input_type=_PROXYINFO, output_type=_RESPONSE, serialized_options=None, ), _descriptor.MethodDescriptor( name='Ping', full_name='modeltest.PredictService.Ping', index=2, containing_service=None, input_type=_HI, output_type=_RESPONSE, serialized_options=None, ), ]) _sym_db.RegisterServiceDescriptor(_PREDICTSERVICE) DESCRIPTOR.services_by_name['PredictService'] = _PREDICTSERVICE # @@protoc_insertion_point(module_scope)
from unittest import TestCase from currencies import server from currencies import repository class TestService(TestCase): def setUp(self): app = server.start(repository) self.client = app.test_client() def test_root_returns_200(self): response = self.client.get("/") assert response.status_code == 200 def test_root_returns_a_list(self): response = self.client.get("/") assert isinstance(response.json, list) def test_root_returns_a_non_empty_list(self): response = self.client.get("/") assert len(response.json) > 0
from django.shortcuts import render, reverse from django.http import HttpResponse, HttpResponseRedirect from batchthis.models import Batch, Fermenter, BatchTestType, BatchNoteType from django.shortcuts import get_object_or_404 from .forms import BatchTestForm, BatchNoteForm, BatchAdditionForm, RefractometerCorrectionForm from batchthis.utils import Utils from django.contrib.auth.decorators import login_required # Create your views here. def index(request): top_batches = Batch.objects.all()[:5] total_batch_count = Batch.objects.all().count() active_batches = Batch.objects.filter(active=True) active_batch_count = len(active_batches) active_fermenters = Fermenter.objects.filter(status=Fermenter.STATUS_ACTIVE) active_fermenters_count = len(active_fermenters) total_volume = 0 for batch in active_batches: total_volume += batch.size fermenter_detail = {} for fermenter in active_fermenters: fermenter_batch = fermenter.batch.filter(active=True) if not fermenter.name in fermenter_detail.keys(): fermenter_detail[fermenter.name] = {'batch': fermenter_batch[0].name, 'size': fermenter_batch[0].size} context = { 'active_batches': active_batches, 'active_fermenters': active_fermenters, 'top_batches': top_batches, 'total_batch_count': total_batch_count, 'active_batch_count': active_batch_count, 'active_fermenters_count': active_fermenters_count, 'total_volume': total_volume, 'fermenter_detail': fermenter_detail } return render(request,'batchthis/index.html',context=context) @login_required def batchListing(request): batches = Batch.objects.all() context = { 'batches': batches } return render(request,'batchthis/batches.html', context=context) def batch(request, pk): batch = get_object_or_404(Batch,pk=pk) testTypes = BatchTestType.objects.all() fermenters = batch.fermenter.all() gravity_tests = batch.tests.filter(type__shortid='specific-gravity') current_gravity = batch.startingGravity if len(gravity_tests) > 0: # We have gravity tests. Get the latest current_gravity = gravity_tests[len(gravity_tests)-1].value percent_complete = round((batch.startingGravity-current_gravity)/(batch.startingGravity-batch.estimatedEndGravity)*100) thirdSugarBreak = round(batch.startingGravity-((batch.startingGravity-batch.estimatedEndGravity)/3),3) thirdSugarBreakPercent = round((batch.startingGravity-thirdSugarBreak)/(batch.startingGravity-batch.estimatedEndGravity)*100) ferm_notes = batch.notes.filter(notetype__name='Fermentation Note') gen_notes = batch.notes.filter(notetype__name='General Note') taste_notes = batch.notes.filter(notetype__name='Tasting Note') gravityChart = {} for test in gravity_tests: if not "dates" in gravityChart.keys(): gravityChart["shortid"] = "specific-gravity" gravityChart["dates"] = [] gravityChart["values"] = [] strfmt = "%m/%d/%y" gravityChart["dates"].append(test.datetime.strftime(strfmt)) gravityChart["values"].append(test.value) context = { "batch": batch, "percentComplete": percent_complete, "gravityChart": gravityChart, "gravityTests": gravity_tests, "testTypes": testTypes, "fermenters": fermenters, "thirdSugarBreak": thirdSugarBreak, "thirdSugarBreakPercent": thirdSugarBreakPercent, "startingGravity": batch.startingGravity, "endingGravity": batch.estimatedEndGravity, "gennotes": gen_notes, "fermnotes": ferm_notes, "tastenotes": taste_notes } return render(request, 'batchthis/batch.html', context=context) def batchTest(request, pk=None): if request.method == 'GET': if pk: form = BatchTestForm() form.fields['batch'].queryset = Batch.objects.filter(pk=pk) form.initial = {'batch':pk} # We have a batchID. Let's auto assign the batch to the note else: form = BatchTestForm() # We don't have a batchID. Only show active batches form.fields['batch'].queryset = Batch.objects.filter(active=True) else: form = BatchTestForm(request.POST) form.save() return HttpResponseRedirect(reverse('batch', kwargs={'pk': pk})) return render(request,"batchthis/addTest.html", {'form':form}) def batchAddition(request, pk=None): if request.method == 'GET': form = BatchAdditionForm() if pk: form.fields['batch'].queryset = Batch.objects.filter(pk=pk) form.initial = {'batch':pk} else: form.fields['batch'].queryset = Batch.objects.filter(active=True) else: form = BatchAdditionForm(request.POST) form.save() return HttpResponseRedirect(reverse('batch', kwargs={'pk': pk})) return render(request, "batchthis/addAddon.html", {'form': form}) def batchNote(request, pk=None, noteType=None): if request.method == 'GET': form = BatchNoteForm() form.initial = {} if pk: form.fields['batch'].queryset = Batch.objects.filter(pk=pk) form.initial['batch'] = pk if noteType: noteTypes = BatchNoteType.objects.filter(name=noteType) form.fields['notetype'].queryset = noteTypes form.initial['notetype'] = noteTypes[0].pk else: form.fields['batch'].queryset = Batch.objects.all() else: form = BatchNoteForm(request.POST) form.save() return HttpResponseRedirect(reverse('batch', kwargs={'pk':pk})) return render(request, "batchthis/addNote.html", {'form':form}) def activity(request, pk=None): print("Getting activity for batch " + str(pk)) batch = Batch.objects.get(pk=pk) activity = batch.activity.all().order_by('datetime') print("Found " + str(len(activity)) + " entries in activity") context = { 'activity': activity } return render(request, "batchthis/activity.html", context=context) def refractometerCorrection(request): form = RefractometerCorrectionForm(initial={'startUnit': 'bx','currentUnit': 'bx'}) result = (0,0) if request.method == "POST": form = RefractometerCorrectionForm(request.POST) params = {} if form.is_valid(): # Calculate Correction startData = form.cleaned_data['startData'] startUnit = form.cleaned_data['startUnit'] currentData = form.cleaned_data['currentData'] currentUnit = form.cleaned_data['currentUnit'] if startUnit == 'sg': params['startSG'] = startData else: params['startBrix'] = startData if currentUnit == 'sg': params['currentSG'] = currentData else: params['currentBrix'] = currentData result = Utils.refractometerCorrection(**params) context = { 'form': form, 'sg': '%.3f' % result[0], # Format SG to normal readable notation 'abv': round(result[1],1) } return render(request, 'batchthis/util.refractometer.html', context) def batchGraphs(request, pk): # Capture each type of test. No need to show graphs on tests not performed batch = Batch.objects.get(pk=pk) tests = batch.tests.all() # Build data var for chart data testGroup = {} for test in tests: if not test.type.name in testGroup.keys(): testGroup[test.type.name] = {} testGroup[test.type.name]['shortid'] = test.type.shortid testGroup[test.type.name]['dates'] = [] testGroup[test.type.name]['values'] = [] date_format = "%m/%d/%y" strdate = test.datetime.strftime(date_format) testGroup[test.type.name]['dates'].append(strdate) testGroup[test.type.name]['values'].append(test.value) context = {"tests": testGroup, "testTypes": testGroup.keys() } return render(request, "batchthis/batchGraphs.html", context)
""" Decorators for exposing function arguments / returns """ from io import StringIO import sys import functools as ftl # , pprint from .. import pprint as pp from .base import Decorator def get_inner(func, args=(), kws=None): """""" kws = kws or {} while isinstance(func, ftl.partial): kws.update(func.keywords) args += func.args func = func.func return func, args, kws class show(Decorator): """ Decorator to print function call details - parameters names and effective values optional arguments specify stuff to print before and after, as well as specific pretty printing options to `show_func`. Examples -------- >>> from recipes.decor import expose >>> @expose.show() ... def foo(a, b, c, **kw): ... return a ... ... foo('aaa', 42, id, gr=8, bar=...) foo(a = aaa, b = 42, c = <built-in function id>, kwargs = {'bar': Ellipsis, 'gr': 8} ) Out[43]: 'aaa' """ def __init__(self, pre='', post='', **options): self.pre = pre self.post = post self.options = options def wrapper(self, *args, **kws): print(self.pre) print(pp.caller(self.func, args, kws, **self.options)) result = self.func(*args, **kws) print(self.post) sys.stdout.flush() return result args = show def returns(func): """Decorator to print function return details""" @ftl.wraps(func) def wrapper(*args, **kw): r = func(*args, **kw) print('%s\nreturn %s' % (func.__name__, r)) return r return wrapper def suppress(func): """Suppress all print statements in a function call""" @ftl.wraps(func) def wrapper(*args, **kws): # shadow stdout temporarily actualstdout = sys.stdout sys.stdout = StringIO() # call the actual function r = func(*args, **kws) # restore stdout sys.stdout = actualstdout sys.stdout.flush() return r return wrapper # class InfoPrintWrapper(DecoratorBase): # def setup(self, pre='', post=''): # self.pre = pre # self.post = post # def __call__(self) # # def make_wrapper(self, func): # # @ftl.wraps(func) # # def wrapper(*args, **kw): # # print(self.pre) # # r = func(*args, **kw) # # print(self.post) # # return r # # return wrapper # class SameLineDone(InfoPrintWrapper): # def setup(self, pre='', post='', **kws): # self.pre = pre # up = '\033[1A' # right = '\033[%iC' % (len(pre) + 3) # self.post = up + right + post
def resolve(): ''' code here ''' import collections import itertools N = int(input()) Ss = [input()[0] for _ in range(N)] march_letter = [item for item in Ss if item in ['M', 'A', 'R', 'C', 'H']] march_cnt = collections.Counter(march_letter) if len(march_cnt) < 3: res = 0 else: res_list = itertools.combinations(march_cnt.values(),3) res = 0 for element in res_list: res += element[0]*element[1]*element[2] print(res) if __name__ == "__main__": resolve()
import ast import inspect import textwrap from .base import TohuBaseGenerator from .ipython_support import get_ast_node_for_classes_defined_interactively_in_ipython __all__ = ["Placeholder", "placeholder", "foreach"] class Placeholder: def __init__(self, name): self.name = name placeholder = Placeholder("<generic>") def get_ast_node_for_classes_defined_in_source_files(cls): orig_cls_source = textwrap.dedent(inspect.getsource(cls)) orig_cls_ast_node = ast.parse(orig_cls_source) return orig_cls_ast_node def get_cls_compiled_ast_node(cls): try: orig_cls_ast_node = get_ast_node_for_classes_defined_in_source_files(cls) except TypeError as exc: if exc.args[0] == "<module '__main__'> is a built-in class": orig_cls_ast_node = get_ast_node_for_classes_defined_interactively_in_ipython(cls) else: # unexpected error; re-raise the exception raise orig_cls_compiled = compile(orig_cls_ast_node, "<string>", "exec") return orig_cls_compiled def reevaluate_class_definition( orig_cls_compiled_ast_node, *, orig_cls_name, global_vars, local_vars, **custom_var_defs ): my_global_vars = global_vars.copy() my_global_vars.update(custom_var_defs) my_global_vars.update(local_vars) my_local_vars = {} exec(orig_cls_compiled_ast_node, my_global_vars, my_local_vars) # Sanity check to ensure the code only evaluated the expected class definition assert list(my_local_vars.keys()) == [orig_cls_name], "Unexpected object(s) found during code evaluation." reevaluated_cls = my_local_vars[orig_cls_name] return reevaluated_cls def restore_globals(global_vars, names, clashes): for name in names: if name in clashes: # restore items that were previously defined global_vars[name] = clashes[name] else: # remove items which didn't exist before global_vars.pop(name) def foreach(**var_defs): new_names = var_defs.keys() parent_frame = inspect.currentframe().f_back global_vars = parent_frame.f_globals local_vars = parent_frame.f_locals clashes = {name: global_vars[name] for name in new_names if name in global_vars} global_vars.update(var_defs) def make_foreach_closure(cls): if not inspect.isclass(cls): raise TypeError( f"Foreach decorator must be applied to a tohu generator class, not an object of type {type(cls)}." ) if not issubclass(cls, TohuBaseGenerator): raise TypeError("Decorated class must be a subclass of TohuBaseGenerator.") orig_cls_compiled_ast_node = get_cls_compiled_ast_node(cls) orig_cls_name = cls.__name__ class ForeachWrapper: def __init__(self, *args, **kwargs): self.init_args = args self.init_kwargs = kwargs def foreach(self, **custom_var_defs): custom_var_names = list(custom_var_defs.keys()) missing_params = list(set(new_names).difference(custom_var_names)) extra_params = list(set(custom_var_names).difference(new_names)) if missing_params: raise ValueError(f"Missing parameter(s): {', '.join(missing_params)!r}") if extra_params: raise ValueError(f"Extra parameter(s) provided: {', '.join(extra_params)!r}") # Re-evaluate the class definition, including the previously missing # variable values to replace the placeholders. rewritten_cls = reevaluate_class_definition( orig_cls_compiled_ast_node, orig_cls_name=orig_cls_name, global_vars=global_vars, local_vars=local_vars, **custom_var_defs, ) return rewritten_cls(*self.init_args, **self.init_kwargs) restore_globals(global_vars, new_names, clashes) return ForeachWrapper return make_foreach_closure
def generateTraverse(content, numberOfAssertions): with open("traverse_tests/main_model_" + str(numberOfAssertions) + ".c", 'w+') as f: for i,line in enumerate(content): if "int action_run;" in line: for x in range(0, numberOfAssertions): f.write('\nint path_' + str(x) + " = 0;\n") elif "standard_metadata.egress_spec = port;" in line: for x in range(0, numberOfAssertions): f.write('\n\tpath_' + str(x) + " = 1;\n") elif "//Emit hdr.ethernet" in line: for x in range(0, numberOfAssertions): f.write('\tif(!path_' + str(x) + ") { printf(\"assertion error: traverse_path\"); }\n") f.write(line) def generateEquality(content, numberOfAssertions): with open("equality_tests/main_model_" + str(numberOfAssertions) + ".c", 'w+') as f: for i,line in enumerate(content): if "standard_metadata.egress_spec = port;" in line: for x in range(0, numberOfAssertions): f.write("\tif(!(hdr.ipv4.ttl != 0)) { printf(\"assertion error: hdr.ipv4.ttl != 0\"); }\n") f.write(line) def generateFakeEquality(content, numberOfAssertions): with open("symbolic_equality_tests/main_model_fake_vars" + str(numberOfAssertions) + ".c", 'w+') as f: for i,line in enumerate(content): if "standard_metadata.egress_spec = port;" in line: for x in range(0, numberOfAssertions): varname = "hdr.ipv4.fake_var_" + str(x) f.write("\tif(!(" + varname + " != 0)) { printf(\"assertion error: " + varname + " != 0\"); }\n") f.write(line) def generateFakeVarsFile(content, numberOfAssertions): with open("main_model_fake_vars.c", 'w+') as f: for i,line in enumerate(content): if "} ipv4_t;" in line: for x in range(0, numberOfAssertions): f.write("\tuint32_t fake_var_" + str(x) + " : 32;\n") f.write(line) numberOfAssertions = 200 with open("main_model.c") as f: content = f.readlines() generateFakeVarsFile(content, numberOfAssertions) with open("main_model_fake_vars.c") as f: contentFake = f.readlines() for x in range(0, numberOfAssertions): generateTraverse(content, x) generateEquality(content, x) generateFakeEquality(contentFake, x)
from flask import Flask, render_template, request from flask_socketio import SocketIO, emit, disconnect from streamer import Stream, auth, preprocessor, clf_path app = Flask(__name__) socketio = SocketIO(app) @app.route('/', methods=['GET']) def index(): return render_template('index.html') @socketio.on('connect', namespace='/topic') def connect(): topic = request.args.get('topic') print(topic) @socketio.on('disconnect', namespace='/topic') def disconnect_cleanup(): stream.disconnect() disconnect() if __name__ == '__main__': # Create stream object with given credentials global stream stream = Stream(auth, preprocessor, clf_path, socketio) # Streaming filter stream_thread = stream.filter( track=["jakarta"], threaded=True ) socketio.run(app, host='0.0.0.0', port=8000)
from typing import Optional from distil.primitives.ensemble_forest import EnsembleForestPrimitive from common_primitives.extract_columns_semantic_types import ( ExtractColumnsBySemanticTypesPrimitive, ) from common_primitives.grouping_field_compose import GroupingFieldComposePrimitive from common_primitives.column_parser import ColumnParserPrimitive from common_primitives.dataset_to_dataframe import DatasetToDataFramePrimitive from common_primitives.simple_profiler import SimpleProfilerPrimitive from common_primitives.xgboost_gbtree import XGBoostGBTreeClassifierPrimitive from common_primitives.xgboost_regressor import XGBoostGBTreeRegressorPrimitive from common_primitives.construct_predictions import ConstructPredictionsPrimitive from processing.metrics import ( regression_metrics, classification_metrics, confidence_metrics, ) from d3m.metadata.pipeline import Pipeline, PrimitiveStep, Resolver from d3m.metadata.base import ArgumentType from d3m.metadata.pipeline import Pipeline, PrimitiveStep from d3m.metadata.pipeline import Resolver def create_pipeline( metric: str, use_boost: bool = False, grid_search=False, n_jobs: int = -1, compute_confidences=False, resolver: Optional[Resolver] = None, ) -> Pipeline: previous_step = 0 tune_steps = [] input_val = "steps.{}.produce" ts_tabular_pipeline = Pipeline() ts_tabular_pipeline.add_input(name="inputs") # step 0 - Extract dataframe from dataset step = PrimitiveStep( primitive_description=DatasetToDataFramePrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference="inputs.0" ) step.add_output("produce") ts_tabular_pipeline.add_step(step) step = PrimitiveStep( primitive_description=SimpleProfilerPrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(previous_step), ) step.add_output("produce") ts_tabular_pipeline.add_step(step) previous_step += 1 # Parse columns. step = PrimitiveStep( primitive_description=ColumnParserPrimitive.metadata.query(), resolver=resolver ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(previous_step), ) step.add_output("produce") semantic_types = ( "http://schema.org/Boolean", "http://schema.org/Integer", "http://schema.org/Float", "https://metadata.datadrivendiscovery.org/types/FloatVector", "http://schema.org/DateTime", ) step.add_hyperparameter("parse_semantic_types", ArgumentType.VALUE, semantic_types) ts_tabular_pipeline.add_step(step) previous_step += 1 parse_step = previous_step # Extract attributes step = PrimitiveStep( primitive_description=ExtractColumnsBySemanticTypesPrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(parse_step), ) step.add_output("produce") step.add_hyperparameter( "semantic_types", ArgumentType.VALUE, ( "https://metadata.datadrivendiscovery.org/types/Attribute", "https://metadata.datadrivendiscovery.org/types/PrimaryKey", ), ) ts_tabular_pipeline.add_step(step) previous_step += 1 attributes_step = previous_step # Extract targets step = PrimitiveStep( primitive_description=ExtractColumnsBySemanticTypesPrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(parse_step), ) step.add_output("produce") target_types = ( "https://metadata.datadrivendiscovery.org/types/Target", "https://metadata.datadrivendiscovery.org/types/TrueTarget", ) step.add_hyperparameter("semantic_types", ArgumentType.VALUE, target_types) ts_tabular_pipeline.add_step(step) previous_step += 1 target_step = previous_step if use_boost: if metric in regression_metrics: step = PrimitiveStep( primitive_description=XGBoostGBTreeRegressorPrimitive.metadata.query(), resolver=resolver, ) elif metric in classification_metrics and metric not in confidence_metrics: # xgboost classifier doesn't support probability generation so no support for confidence-based metrics step = PrimitiveStep( primitive_description=XGBoostGBTreeClassifierPrimitive.metadata.query(), resolver=resolver, ) else: step = PrimitiveStep( primitive_description=EnsembleForestPrimitive.metadata.query(), resolver=resolver, ) step.add_hyperparameter("grid_search", ArgumentType.VALUE, grid_search) step.add_hyperparameter("small_dataset_fits", ArgumentType.VALUE, 1) step.add_hyperparameter( "compute_confidences", ArgumentType.VALUE, compute_confidences ) step.add_hyperparameter("n_jobs", ArgumentType.VALUE, n_jobs) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(attributes_step), ) step.add_argument( name="outputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(target_step), ) step.add_output("produce") if not use_boost: step.add_hyperparameter("metric", ArgumentType.VALUE, metric) ts_tabular_pipeline.add_step(step) previous_step += 1 tune_steps.append(previous_step) step = PrimitiveStep( primitive_description=ConstructPredictionsPrimitive.metadata.query(), resolver=resolver, ) step.add_argument( name="inputs", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(previous_step), ) step.add_argument( name="reference", argument_type=ArgumentType.CONTAINER, data_reference=input_val.format(parse_step), ) step.add_output("produce") ts_tabular_pipeline.add_step(step) previous_step += 1 # Adding output step to the pipeline ts_tabular_pipeline.add_output( name="output", data_reference=input_val.format(previous_step) ) return (ts_tabular_pipeline, tune_steps)
from __future__ import absolute_import, division, print_function import iotbx.phil import iotbx.pdb import iotbx.mrcfile from cctbx import crystal from cctbx import maptbx from libtbx.utils import Sorry import sys, os from cctbx.array_family import flex from scitbx.math import matrix from copy import deepcopy from libtbx.utils import null_out import libtbx.callbacks # import dependency from libtbx import group_args from six.moves import range from six.moves import zip master_phil = iotbx.phil.parse(""" input_files { seq_file = None .type = path .short_caption = Sequence file .help = Sequence file (unique chains only, \ 1-letter code, chains separated by \ blank line or greater-than sign.) \ Can have chains that are DNA/RNA/protein and\ all can be present in one file. \ If not supplied, must supply molecular mass or \ solvent content. map_file = None .type = path .help = File with CCP4-style map .short_caption = Map file half_map_file = None .type = path .multiple = True .short_caption = Half map .help = Half map (two should be supplied) for FSC calculation. Must \ have grid identical to map_file ncs_file = None .type = path .help = File with symmetry information (typically point-group NCS with \ the center specified). Typically in PDB format. \ Can also be a .ncs_spec file from phenix. \ Created automatically if symmetry is specified. .short_caption = symmetry file pdb_file = None .type = path .help = Optional PDB file matching map_file to be offset pdb_to_restore = None .type = path .help = Optional PDB file to restore to position matching original \ map_file. Used in combination with info_file=xxx.pkl \ and restored_pdb=yyyy.pdb .short_caption = PDB to restore info_file = None .type = path .help = Optional pickle file with information from a previous run.\ Can be used with pdb_to_restore to restore a PDB file to \ to position matching original \ map_file. .short_caption = Info file target_ncs_au_file = None .type = path .help = Optional PDB file to partially define the ncs asymmetric \ unit of the map. The coordinates in this file will be used \ to mark part of the ncs au and all points nearby that are \ not part of another ncs au will be added. input_weight_map_pickle_file = None .type = path .short_caption = Input weight map pickle file .help = Weight map pickle file } output_files { magnification_map_file = magnification_map.ccp4 .type = path .help = Input map file with magnification applied. Only written if\ magnification is applied. .short_caption = Magnification map file magnification_ncs_file = magnification_ncs.ncs_spec .type = path .help = Input NCS with magnification applied. Only written if\ magnification is applied. .short_caption = Magnification NCS file shifted_map_file = shifted_map.ccp4 .type = path .help = Input map file shifted to new origin. .short_caption = Shifted map file shifted_sharpened_map_file = shifted_sharpened_map.ccp4 .type = path .help = Input map file shifted to new origin and sharpened. .short_caption = Shifted sharpened map file sharpened_map_file = sharpened_map.ccp4 .type = str .short_caption = Sharpened map file .help = Output sharpened map file, superimposed on the original map. .input_size = 400 shifted_pdb_file = shifted_pdb.pdb .type = path .help = Input pdb file shifted to new origin. .short_caption = Shifted pdb file shifted_ncs_file = shifted_ncs.ncs_spec .type = path .help = NCS information shifted to new origin. .short_caption = Output NCS info file shifted_used_ncs_file = shifted_used_ncs.ncs_spec .type = path .help = NCS information (just the part that is used) shifted \ to new origin. .short_caption = Output used NCS info file output_directory = segmented_maps .type = path .help = Directory where output files are to be written \ applied. .short_caption = Output directory box_map_file = box_map_au.ccp4 .type = path .help = Output map file with one NCS asymmetric unit, cut out box .short_caption = Box NCS map file box_mask_file = box_mask_au.ccp4 .type = path .help = Output mask file with one NCS asymmetric unit, cut out box .short_caption = Box NCS mask file box_buffer = 5 .type = int .help = Buffer (grid units) around NCS asymmetric unit in box_mask and map .short_caption = Box buffer size au_output_file_stem = shifted_au .type = str .help = File stem for output map files with one NCS asymmetric unit .short_caption = Output au file stem write_intermediate_maps = False .type = bool .help = Write out intermediate maps and masks for visualization .short_caption = Write intermediate maps write_output_maps = True .type = bool .help = Write out maps .short_caption = Write maps remainder_map_file = remainder_map.ccp4 .type = path .help = output map file with remainder after initial regions identified .short_caption = Output remainder map file output_info_file = segment_and_split_map_info.pkl .type = path .help = Output pickle file with information about map and masks .short_caption = Output pickle file restored_pdb = None .type = path .help = Output name of PDB restored to position matching original \ map_file. Used in combination with info_file=xxx.pkl \ and pdb_to_restore=xxxx.pdb .short_caption = Restored PDB file output_weight_map_pickle_file = weight_map_pickle_file.pkl .type = path .short_caption = Output weight map pickle file .help = Output weight map pickle file } crystal_info { chain_type = *None PROTEIN RNA DNA .type = choice .short_caption = Chain type .help = Chain type. Determined automatically from sequence file if \ not given. Mixed chain types are fine (leave blank if so). sequence = None .type = str .short_caption = Sequence .help = Sequence as string is_crystal = None .type = bool .short_caption = Is a crystal .help = Defines whether this is a crystal (or cryo-EM).\ Default is True if use_sg_symmetry=True and False otherwise. use_sg_symmetry = False .type = bool .short_caption = Use space-group symmetry .help = If you set use_sg_symmetry=True then the symmetry of the space\ group will be used. For example in P1 a point at one end of \ the \ unit cell is next to a point on the other end. Normally for \ cryo-EM data this should be set to False and for crystal data \ it should be set to True. This will normally also set the \ value of is_crystal (same value as use_sg_symmetry) and \ restrict_map_size (False if use_sg_symmetry=True). resolution = None .type = float .short_caption = resolution .help = Nominal resolution of the map. This is used later to decide on\ resolution cutoffs for Fourier inversion of the map. Note: \ the resolution is not cut at this value, it is cut at \ resolution*d_min_ratio if at all. space_group = None .type = space_group .help = Space group (used for boxed maps) .style = hidden unit_cell = None .type = unit_cell .help = Unit Cell (used for boxed maps) .style = hidden original_unit_cell = None .type = unit_cell .help = Original unit cell (of input map). Used internally .style = hidden original_unit_cell_grid = None .type = ints .help = Original unit cell grid (of input map). Used internally .style = hidden molecular_mass = None .type = float .help = Molecular mass of molecule in Da. Used as alternative method \ of specifying solvent content. .short_caption = Molecular mass in Da solvent_content = None .type = float .help = Solvent fraction of the cell. Used for ID of \ solvent content in boxed maps. .short_caption = Solvent content solvent_content_iterations = 3 .type = int .help = Iterations of solvent fraction estimation. Used for ID of \ solvent content in boxed maps. .short_caption = Solvent fraction iterations .style = hidden wang_radius = None .type = float .help = Wang radius for solvent identification. \ Default is 1.5* resolution .short_caption = Wang radius buffer_radius = None .type = float .help = Buffer radius for mask smoothing. \ Default is resolution .short_caption = Buffer radius pseudo_likelihood = None .type = bool .help = Use pseudo-likelihood method for half-map sharpening. \ (In development) .short_caption = Pseudo-likelihood .style = hidden } reconstruction_symmetry { symmetry = None .type = str .short_caption = Symmetry type .help = Symmetry used in reconstruction. For example D7, C3, C2\ I (icosahedral),T (tetrahedral), or ANY (try everything and \ use the highest symmetry found). Not needed if ncs_file is supplied. \ include_helical_symmetry = True .type = bool .short_caption = Include helical symmetry .help = You can include or exclude searches for helical symmetry symmetry_center = None .type = floats .short_caption = symmetry center .help = Center (in A) for symmetry operators (if symmetry is found \ automatically). \ If set to None, first guess is the center of the cell and then \ if that fails, found automatically as the center of the \ density in the map. optimize_center = False .type = bool .short_caption = Optimize symmetry center .help = Optimize position of symmetry center. Also checks for center \ at (0,0,0) vs center of map helical_rot_deg = None .type = float .short_caption = helical rotation .help = helical rotation about z in degrees helical_trans_z_angstrom = None .type = float .short_caption = helical translation .help = helical translation along z in Angstrom units max_helical_optimizations = 2 .type = int .short_caption = Max helical optimizations .help = Number of optimizations of helical parameters\ when finding symmetry max_helical_ops_to_check = 5 .type = int .short_caption = Max helical ops to check .help = Number of helical operations in each direction to check \ when finding symmetry max_helical_rotations_to_check = None .type = int .short_caption = Max helical rotations .help = Number of helical rotations to check \ when finding symmetry two_fold_along_x = None .type = bool .short_caption = D two-fold along x .help = Specifies if D or I two-fold is along x (True) or y (False). \ If None, both are tried. smallest_object = None .type = float .short_caption = Smallest object to consider .help = Dimension of smallest object to consider\ when finding symmetry. Default is 5 * resolution score_basis = ncs_score cc *None .type = choice .short_caption = Symmetry score basis .help = Symmetry score basis. Normally ncs_score (sqrt(n)* cc) is \ used except for identification of helical symmetry scale_weight_fractional_translation= 1.05 .type = float .short_caption = Scale on fractional translation .help = Give slight increase in weighting in helical symmetry \ search to translations that are a fraction (1/2, 1/3) of \ the d-spacing of the peak of intensity in the fourier \ transform of the density. random_points = 100 .type = int .short_caption = Random points .help = Number of random points in map to examine in finding symmetry identify_ncs_id = True .type = bool .short_caption = Identify NCS ID .help = If symmetry is not point-group symmetry, try each possible \ operator when evaluating symmetry and choose the one that \ results in the most uniform density at symmetry-related points. min_ncs_cc = 0.75 .type = float .short_caption = Minimum symmetry CC to keep it .help = Minimum symmetry CC to keep operators when identifying \ automatically n_rescore = 5 .type = int .short_caption = symmetry operators to rescore .help = Number of symmetry operators to rescore op_max = 14 .type = int .short_caption = Max operators to try .help = If symmetry is ANY, try up to op_max-fold symmetries tol_r = 0.02 .type = float .help = tolerance in rotations for point group or helical symmetry .short_caption = Rotation tolerance abs_tol_t = 2 .type = float .help = tolerance in translations (A) for point group or helical symmetry .short_caption = Translation tolerance absolute max_helical_operators= None .type = int .help = Maximum helical operators (if extending existing helical\ operators) .short_caption = Maximum helical operators rel_tol_t = .05 .type = float .help = tolerance in translations (fractional) for point group or \ helical symmetry .short_caption = Translation tolerance fractional require_helical_or_point_group_symmetry = False .type = bool .help = normally helical or point-group symmetry (or none) is expected. \ However in some cases (helical + rotational symmetry for \ example) this is not needed and is not the case. .short_caption = Require helical or point-group or no symmetry } map_modification { magnification = None .type = float .short_caption = Magnification .help = Magnification to apply to input map. Input map grid will be \ scaled by magnification factor before anything else is done. b_iso = None .type = float .short_caption = Target b_iso .help = Target B-value for map (sharpening will be applied to yield \ this value of b_iso). If sharpening method is not supplied, \ default is to use b_iso_to_d_cut sharpening. b_sharpen = None .type = float .short_caption = Sharpening .help = Sharpen with this b-value. Contrast with b_iso that yield a \ targeted value of b_iso. B_sharpen greater than zero is sharpening.\ Less than zero is blurring. b_blur_hires = 200 .type = float .short_caption = high_resolution blurring .help = Blur high_resolution data (higher than d_cut) with \ this b-value. Contrast with b_sharpen applied to data up to\ d_cut. \ Note on defaults: If None and b_sharpen is positive (sharpening) \ then high-resolution data is left as is (not sharpened). \ If None and b_sharpen is negative (blurring) high-resolution data\ is also blurred. resolution_dependent_b = None .type = floats .short_caption = resolution_dependent b .help = If set, apply resolution_dependent_b (b0 b1 b2). \ Log10(amplitudes) will start at 1, change to b0 at half \ of resolution specified, changing linearly, \ change to b1/2 at resolution specified, \ and change to b1/2+b2 at d_min_ratio*resolution normalize_amplitudes_in_resdep = False .type = bool .short_caption = Normalize amplitudes in resdep .help = Normalize amplitudes in resolution-dependent sharpening d_min_ratio = 0.833 .type = float .short_caption = Sharpen d_min ratio .help = Sharpening will be applied using d_min equal to \ d_min_ratio times resolution. Default is 0.833 scale_max = 100000 .type = float .short_caption = Scale_max .help = Scale amplitudes from inverse FFT to yield maximum of this value input_d_cut = None .type = float .short_caption = d_cut .help = High-resolution limit for sharpening rmsd = None .type = float .short_caption = RMSD of model .help = RMSD of model to true model (if supplied). Used to \ estimate expected fall-of with resolution of correct part \ of model-based map. If None, assumed to be resolution \ times rmsd_resolution_factor. rmsd_resolution_factor = 0.25 .type = float .short_caption = rmsd resolution factor .help = default RMSD is resolution times resolution factor fraction_complete = None .type = float .short_caption = Completeness model .help = Completness of model (if supplied). Used to \ estimate correct part \ of model-based map. If None, estimated from max(FSC). regions_to_keep = None .type = int .short_caption = Regions to keep .help = You can specify a limit to the number of regions to keep\ when generating the asymmetric unit of density. auto_sharpen = True .type = bool .short_caption = Automatically determine sharpening .help = Automatically determine sharpening using kurtosis maximization\ or adjusted surface area auto_sharpen_methods = no_sharpening b_iso *b_iso_to_d_cut \ resolution_dependent model_sharpening \ half_map_sharpening target_b_iso_to_d_cut None .type = choice(multi=True) .short_caption = Sharpening methods .help = Methods to use in sharpening. b_iso searches for b_iso to \ maximize sharpening target (kurtosis or adjusted_sa). \ b_iso_to_d_cut applies b_iso only up to resolution specified, with \ fall-over of k_sharpen. Resolution dependent adjusts 3 parameters \ to sharpen variably over resolution range. Default is \ b_iso_to_d_cut . target_b_iso_to_d_cut uses target_b_iso_ratio \ to set b_iso. box_in_auto_sharpen = False .type = bool .short_caption = Use box for auto_sharpening .help = Use a representative box of density for initial \ auto-sharpening instead of the entire map. density_select_in_auto_sharpen = True .type = bool .short_caption = density_select to choose box .help = Choose representative box of density for initial \ auto-sharpening with density_select method \ (choose region where there is high density). \ Normally use this as well as density_select=True which \ carries out density_select at start of segmentation. density_select_threshold_in_auto_sharpen = None .type = float .short_caption = density_select threshold to choose box .help = Threshold for density select choice of box. Default is 0.05. \ If your map has low overall contrast you might need to make this\ bigger such as 0.2. allow_box_if_b_iso_set = False .type = bool .short_caption = Allow box if b_iso set .help = Allow box_in_auto_sharpen (if set to True) even if \ b_iso is set. Default is to set box_n_auto_sharpen=False \ if b_iso is set. soft_mask = True .type = bool .help = Use soft mask (smooth change from inside to outside with radius\ based on resolution of map). Required if you use half-map \ sharpening without a model, otherwise optional. .short_caption = Soft mask use_weak_density = False .type = bool .short_caption = Use box with poor density .help = When choosing box of representative density, use poor \ density (to get optimized map for weaker density) discard_if_worse = None .type = bool .short_caption = Discard sharpening if worse .help = Discard sharpening if worse local_sharpening = None .type = bool .short_caption = Local sharpening .help = Sharpen locally using overlapping regions. \ NOTE: Best to turn off local_aniso_in_local_sharpening \ if symmetry is present.\ If local_aniso_in_local_sharpening is True and symmetry is \ present this can distort the map for some symmetry copies \ because an anisotropy correction is applied\ based on local density in one copy and is transferred without \ rotation to other copies. local_aniso_in_local_sharpening = None .type = bool .short_caption = Local anisotropy .help = Use local anisotropy in local sharpening. \ Default is True unless symmetry is present. overall_before_local = True .type = bool .short_caption = Overall before local .help = Apply overall scaling before local scaling select_sharpened_map = None .type = int .short_caption = Sharpened map to use .help = Select a single sharpened map to use read_sharpened_maps = None .type = bool .short_caption = Read sharpened maps .help = Read in previously-calculated sharpened maps write_sharpened_maps = None .type = bool .short_caption = Write sharpened maps .help = Write out local sharpened maps smoothing_radius = None .type = float .short_caption = Smoothing radius .help = Sharpen locally using smoothing_radius. Default is 2/3 of \ mean distance between centers for sharpening box_center = None .type = floats .short_caption = Center of box .help = You can specify the center of the box (A units) box_size = 40 40 40 .type = ints .short_caption = Size of box .help = You can specify the size of the boxes to use (grid units) target_n_overlap = 10 .type = int .short_caption = Target overlap of boxes .help = You can specify the targeted overlap of boxes in local \ sharpening restrict_map_size = None .type = bool .short_caption = Restrict box map size .help = Restrict box map to be inside full map (required for cryo-EM data).\ Default is True if use_sg_symmetry=False. restrict_z_turns_for_helical_symmetry = 1 .type = float .short_caption = Restrict Z turns for helical symmetry .help = Restrict Z turns for helical symmetry. Number of \ turns of helix going each direction in Z is specified. restrict_z_distance_for_helical_symmetry = None .type = float .short_caption = Restrict Z distance for helical symmetry .help = Restrict Z distance (+/- this distance from center) \ for helical symmetry. remove_aniso = True .type = bool .short_caption = Remove aniso .help = You can remove anisotropy (overall and locally) during sharpening cc_cut = 0.2 .type = float .short_caption = Min reliable CC in half-maps .help = Estimate of minimum highly reliable CC in half-map FSC. Used\ to decide at what CC value to smooth the remaining CC values. max_cc_for_rescale = 0.2 .type = float .short_caption = Max CC for rescaleMin reliable CC in half-maps .help = Used along with cc_cut and scale_using_last to correct for \ small errors in FSC estimation at high resolution. If the \ value of FSC near the high-resolution limit is above \ max_cc_for_rescale, assume these values are correct and do not \ correct them. scale_using_last = 3 .type = int .short_caption = Last N bins in FSC assumed to be about zero .help = If set, assume that the last scale_using_last bins in the FSC \ for half-map or model sharpening are about zero (corrects for \ errors in the half-map process). max_box_fraction = 0.5 .type = float .short_caption = Max size of box for auto_sharpening .help = If box is greater than this fraction of entire map, use \ entire map. density_select_max_box_fraction = 0.95 .type = float .short_caption = Max size of box for density_select .help = If box is greater than this fraction of entire map, use \ entire map for density_select. Default is 0.95 mask_atoms = True .type = bool .short_caption = Mask atoms .help = Mask atoms when using model sharpening mask_atoms_atom_radius = 3 .type =float .short_caption = Mask radius .help = Mask for mask_atoms will have mask_atoms_atom_radius value_outside_atoms = None .type = str .short_caption = Value outside atoms .help = Value of map outside atoms (set to 'mean' to have mean \ value inside and outside mask be equal) k_sharpen = 10 .type = float .short_caption = sharpening transition .help = Steepness of transition between sharpening (up to resolution \ ) and not sharpening (d < resolution). Note: for blurring, \ all data are blurred (regardless of resolution), while for \ sharpening, only data with d about resolution or lower are \ sharpened. This prevents making very high-resolution data too \ strong. Note 2: if k_sharpen is zero, then no \ transition is applied and all data is sharpened or blurred. \ Note 3: only used if b_iso is set. iterate = False .type = bool .short_caption = Iterate auto-sharpening .help = You can iterate auto-sharpening. This is useful in cases where \ you do not specify the solvent content and it is not \ accurately estimated until sharpening is optimized. optimize_b_blur_hires = False .type = bool .short_caption = Optimize value of b_blur_hires .help = Optimize value of b_blur_hires. \ Only applies for auto_sharpen_methods b_iso_to_d_cut and \ b_iso. This is normally carried out and helps prevent \ over-blurring at high resolution if the same map is \ sharpened more than once. optimize_d_cut = None .type = bool .short_caption = Optimize value of d_cut .help = Optimize value of d_cut. \ Only applies for auto_sharpen_methods b_iso_to_d_cut and \ b_iso. Not normally carried out. adjust_region_weight = True .type = bool .short_caption = Adjust region weight .help = Adjust region_weight to make overall change in surface area \ equal to overall change in normalized regions over the range \ of search_b_min to search_b_max using b_iso_to_d_cut. region_weight_method = initial_ratio *delta_ratio b_iso .type = choice .short_caption = Region weight method .help = Method for choosing region_weights. Initial_ratio uses \ ratio of surface area to regions at low B value. Delta \ ratio uses change in this ratio from low to high B. B_iso \ uses resolution-dependent b_iso (not weights) with the \ formula b_iso=5.9*d_min**2 region_weight_factor = 1.0 .type = float .short_caption = Region weight factor .help = Multiplies region_weight after calculation with \ region_weight_method above region_weight_buffer = 0.1 .type = float .short_caption = Region weight factor buffer .help = Region_weight adjusted to be region_weight_buffer \ away from minimum or maximum values region_weight_default = 30. .type = float .short_caption = Region weight default .help = Region_weight adjusted to be region_weight_default\ if no information available target_b_iso_ratio = 5.9 .type = float .short_caption = Target b_iso ratio .help = Target b_iso ratio : b_iso is estimated as \ target_b_iso_ratio * resolution**2 signal_min = 3.0 .type = float .short_caption = Minimum signal .help = Minimum signal in estimation of optimal b_iso. If\ not achieved, use any other method chosen. target_b_iso_model_scale = 0. .type = float .short_caption = scale on target b_iso ratio for model .help = For model sharpening, the target_biso is scaled \ (normally zero). search_b_min = -100 .type = float .short_caption = Low bound for b_iso search .help = Low bound for b_iso search. search_b_max = 300 .type = float .short_caption = High bound for b_iso search .help = High bound for b_iso search. search_b_n = 21 .type = int .short_caption = Number of b_iso values to search .help = Number of b_iso values to search. residual_target = 'adjusted_sa' .type = str .short_caption = Residual target .help = Target for maximization steps in sharpening. \ Can be kurtosis or adjusted_sa (adjusted surface area) sharpening_target = 'adjusted_sa' .type = str .short_caption = Overall sharpening target .help = Overall target for sharpening. Can be kurtosis or adjusted_sa \ (adjusted surface area). Used to decide which sharpening approach \ is used. Note that during optimization, residual_target is used \ (they can be the same.) region_weight = 40 .type = float .short_caption = Region weighting .help = Region weighting in adjusted surface area calculation.\ Score is surface area minus region_weight times number of regions.\ Default is 40. A smaller value will give more sharpening. sa_percent = 30. .type = float .short_caption = Percent of target regions in adjusted_sa .help = Percent of target regions used in calulation of adjusted \ surface area. Default is 30. fraction_occupied = 0.20 .type = float .short_caption = Fraction of molecular volume inside contours .help = Fraction of molecular volume targeted to be inside contours. \ Used to set contour level. Default is 0.20 n_bins = 20 .type = int .short_caption = Resolution bins .help = Number of resolution bins for sharpening. Default is 20. max_regions_to_test = 30 .type = int .short_caption = Max regions to test .help = Number of regions to test for surface area in adjusted_sa \ scoring of sharpening eps = None .type = float .short_caption = Shift used in calculation of derivatives for \ sharpening maximization. Default is 0.01 for kurtosis and 0.5 for \ adjusted_sa. k_sol = 0.35 .type = float .help = k_sol value for model map calculation. IGNORED (Not applied) .short_caption = k_sol IGNORED .style = hidden b_sol = 50 .type = float .help = b_sol value for model map calculation. IGNORED (Not applied) .short_caption = b_sol IGNORED .style = hidden } segmentation { select_au_box = None .type = bool .help = Select box containing at least one representative region of \ the map. Also select just symmetry operators relevant to that box. \ Default is true if number of operators is at least \ n_ops_to_use_au_box .short_caption = select au box n_ops_to_use_au_box = 25 .type = int .help = If number of operators is this big or more and \ select_au_box is None, set it to True. .short_caption = N ops to use au_box n_au_box = 5 .type = int .help = Number of symmetry copies to try and get inside au_box .short_caption = N au box lower_bounds = None .type = ints .help = You can select a part of your map for analysis with \ lower_bounds and upper_bounds. .short_caption = Lower bounds upper_bounds = None .type = ints .help = You can select a part of your map for analysis with \ lower_bounds and upper_bounds. .short_caption = Upper bounds density_select = True .type = bool .help = Run map_box with density_select=True to cut out the region \ in the input map that contains density. Useful if the input map \ is much larger than the structure. Done before segmentation is\ carried out. .short_caption = Trim map to density density_select_threshold = 0.05 .type = float .help = Choose region where density is this fraction of maximum or greater .short_caption = threshold for density_select get_half_height_width = None .type = bool .help = Use 4 times half-width at half-height as estimate of max size .short_caption = Half-height width estimation box_ncs_au = True .type = bool .help = Box the map containing just the au of the map .short_caption = Box NCS au cell_cutoff_for_solvent_from_mask = 150 .type = float .help = For cells with average edge over this cutoff, use the\ low resolution mask (backup) method for solvent estimation .short_caption = Cell cutoff for solvent_from_mask mask_padding_fraction = 0.025 .type = float .help = Adjust threshold of standard deviation map in low resolution \ mask identification of solvent content to give this much more \ inside mask than would be obtained with the value of\ fraction_of_max_mask_threshold. .short_caption = Mask padding fraction fraction_of_max_mask_threshold = .05 .type = float .help = threshold of standard deviation map in low resolution mask \ identification of solvent content. .short_caption = Fraction of max mask_threshold mask_threshold = None .type = float .help = threshold in identification of overall mask. If None, guess \ volume of molecule from sequence and symmetry copies. .short_caption = Density select threshold grid_spacing_for_au = 3 .type = int .help = Grid spacing for asymmetric unit when constructing asymmetric unit. .short_caption = Grid spacing for constructing asymmetric unit radius = None .type = float .help = Radius for constructing asymmetric unit. .short_caption = Radius for constructing asymmetric unit value_outside_mask = 0.0 .type = float .help = Value to assign to density outside masks .short_caption = Value outside mask density_threshold = None .type = float .short_caption = Density threshold .help = Threshold density for identifying regions of density. \ Applied after normalizing the density in the region of \ the molecule to an rms of 1 and mean of zero. starting_density_threshold = None .type = float .short_caption = Starting density threshold .help = Optional guess of threshold density iteration_fraction = 0.2 .type = float .short_caption = Iteration fraction .help = On iteration of finding regions, assume target volume is \ this fraction of the value on previous iteration max_overlap_fraction = 0.05 .type = float .short_caption = Max overlap .help = Maximum fractional overlap allowed to density in another \ asymmetric unit. Definition of a bad region. remove_bad_regions_percent = 1 .type = float .short_caption = Remove worst overlapping regions .help = Remove the worst regions that are part of more than one NCS \ asymmetric unit, up to remove_bad_regions_percent of the total require_complete = True .type = bool .short_caption = Require all symmetry copies to be represented for a region .help = Require all symmetry copies to be represented for a region split_if_possible = True .type = bool .short_caption = Split regions if mixed .help = Split regions that are split in some symmetry copies.\ If None, split if most copies are split. write_all_regions = False .type = bool .short_caption = Write all regions .help = Write all regions to ccp4 map files. max_per_au = None .type = int .short_caption = Max regions in au .help = Maximum number of regions to be kept in the NCS asymmetric unit max_per_au_ratio = 5. .type = int .short_caption = Max ratio of regions to expected .help = Maximum ratio of number of regions to be kept in the \ NCS asymmetric unit to those expected min_ratio_of_ncs_copy_to_first = 0.5 .type = float .short_caption = Minimum ratio of ncs copy to first .help = Minimum ratio of the last ncs_copy region size to maximum min_ratio = 0.1 .type = float .short_caption = Minimum ratio to keep .help = Minimum ratio of region size to maximum to keep it max_ratio_to_target = 3 .type = float .help = Maximum ratio of grid points in top region to target .short_caption = Max ratio to target min_ratio_to_target = 0.3 .type = float .help = Minimum ratio of grid points in top region to target .short_caption = Min ratio to target min_volume = 10 .type = int .help = Minimum region size to consider (in grid points) .short_caption = Minimum region size residues_per_region = 50 .type = float .help = Target number of residues per region .short_caption = Residues per region seeds_to_try = 10 .type = int .help = Number of regions to try as centers .short_caption = Seeds to try iterate_with_remainder = True .type = bool .short_caption = Iterate .help = Iterate looking for regions based on remainder from first analysis weight_rad_gyr = 0.1 .type = float .short_caption = Weight on radius of gyration .help = Weight on radius of gyration of group of regions in NCS AU \ relative to weight on closeness to neighbors. Normalized to\ largest cell dimension with weight=weight_rad_gyr*300/cell_max expand_size = None .type = int .help = Grid points to expand size of regions when excluding for next \ round. If None, set to approx number of grid points to get \ expand_target below .short_caption = Expand size expand_target = 1.5 .type = float .help = Target expansion of regions (A) .short_caption = Expand target mask_additional_expand_size = 1 .type = int .help = Mask expansion in addition to expand_size for final map .short_caption = Mask additional expansion mask_expand_ratio = 1 .type = int .help = Mask expansion relative to resolution for save_box_map_ncs_au .short_caption = Mask expand ratio exclude_points_in_ncs_copies = True .type = bool .help = Exclude points that are in symmetry copies when creating NCS au. \ Does not apply if add_neighbors=True .short_caption = Exclude points in symmetry copies add_neighbors = True .type = bool .help = Add neighboring regions around the au. Turns off \ exclude_points_in_ncs_copies also. .short_caption = Add neighbors add_neighbors_dist = 1. .type = float .help = Max increase in radius of gyration by adding region to keep it. .short_caption = Add neighbors dist } control { verbose = False .type = bool .help = '''Verbose output''' .short_caption = Verbose output shift_only = None .type = bool .short_caption = Shift only .help = Shift map and half_maps and stop sharpen_only = None .type = bool .short_caption = Sharpen only .help = Sharpen map and stop check_ncs = None .type = bool .short_caption = Check NCS .help = Check the NCS symmetry by estimating NCS correlation and stop resolve_size = None .type = int .help = "Size of resolve to use. " .style = hidden quick = True .type = bool .help = Run quickly if possible .short_caption = Quick run memory_check = True .type = bool .help = Map-to-model checks to make sure you have enough memory on \ your machine to run. You can disable this by setting this \ keyword to False. The estimates are approximate so it is \ possible your job could run even if the check fails. Note \ the check does not take any other uses of the memory on \ your machine into account. .short_caption = Memory check save_box_map_ncs_au = False .type = bool .help = Controls whether the map_box ncs_au is saved. Internal use only .style = hidden write_files = True .type = bool .help = Controls whether files are written .short_caption = Write files multiprocessing = *multiprocessing sge lsf pbs condor pbspro slurm .type = choice .short_caption = multiprocessing type .help = Choices are multiprocessing (single machine) or queuing systems queue_run_command = None .type = str .short_caption = Queue run command .help = run command for queue jobs. For example qsub. nproc = 1 .type = int .short_caption = Number of processors .help = Number of processors to use .style = renderer:draw_nproc_widget bold } """, process_includes=True) master_params = master_phil class map_and_b_object: def __init__(self, map_data=None, starting_b_iso=None, final_b_iso=None): from libtbx import adopt_init_args adopt_init_args(self, locals()) class pdb_info_object: def __init__(self, file_name=None, n_residues=None, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) import time self.init_asctime=time.asctime() def show_summary(self,out=sys.stdout): print("PDB file:%s" %(self.file_name), end=' ', file=out) if self.n_residues: print(" Residues: %d" %(self.n_residues), file=out) else: print(file=out) class seq_info_object: def __init__(self, file_name=None, sequence=None, n_residues=None, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) import time self.init_asctime=time.asctime() def show_summary(self,out=sys.stdout): if self.file_name: print("Sequence file:%s" %(self.file_name), end=' ', file=out) if self.n_residues: print(" Residues: %d" %(self.n_residues), file=out) else: print(file=out) class ncs_info_object: def __init__(self, file_name=None, number_of_operators=None, is_helical_symmetry=None, original_number_of_operators=None, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) import time self.init_asctime=time.asctime() if original_number_of_operators is None: self.original_number_of_operators=number_of_operators self._has_updated_operators=False def show_summary(self,out=sys.stdout): print("NCS file:%s Operators: %d" %(self.file_name, self.number_of_operators), file=out) if self.is_helical_symmetry: print("Helical symmetry is present", file=out) def has_updated_operators(self): return self._has_updated_operators def update_number_of_operators(self,number_of_operators=None): self.number_of_operators=number_of_operators self._has_updated_operators=True def update_is_helical_symmetry(self,is_helical_symmetry=None): self.is_helical_symmetry=is_helical_symmetry self._has_updated_operators=True class map_info_object: def __init__(self, file_name=None, origin=None, all=None, crystal_symmetry=None, is_map=None, map_id=None, b_sharpen=None, id=None, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) import time self.init_asctime=time.asctime() def show_summary(self,out=sys.stdout): if self.is_map: print("Map file:%s" %(self.file_name), end=' ', file=out) else: print("Mask file:%s" %(self.file_name), end=' ', file=out) if self.id is not None: print("ID: %d" %(self.id), end=' ', file=out) if self.b_sharpen is not None: print("B-sharpen: %7.2f" %(self.b_sharpen), end=' ', file=out) if self.map_id is not None: print("Map ID: %s" %(self.map_id), file=out) else: print(file=out) if self.origin and self.all: print(" Origin: %d %d %d Extent: %d %d %d" %( tuple(self.origin)+tuple(self.all)), file=out) if self.crystal_symmetry: print(" Map unit cell: %.1f %.1f %.1f %.1f %.1f %.1f " %( self.crystal_symmetry.unit_cell().parameters()), file=out) def lower_upper_bounds(self): lower_bounds=self.origin upper_bounds=[] for a,b in zip(self.origin,self.all): upper_bounds.append(a+b) return list(self.origin),list(upper_bounds) class info_object: def __init__(self, acc=None, ncs_obj=None, min_b=None, max_b=None, b_sharpen=None, # b_sharpen applied to map ncs_group_list=None, origin_shift=None, crystal_symmetry=None, # after density_select original_crystal_symmetry=None, # before density_select full_crystal_symmetry=None, # from real_map object full_unit_cell_grid=None, # from real_map object edited_volume_list=None, region_range_dict=None, selected_regions=None, ncs_related_regions=None, self_and_ncs_related_regions=None, map_files_written=None, bad_region_list=None, region_centroid_dict=None, original_id_from_id=None, remainder_id_dict=None, # dict relating regions in a remainder object to params=None, # input params input_pdb_info=None, input_map_info=None, input_ncs_info=None, input_seq_info=None, shifted_pdb_info=None, shifted_map_info=None, shifted_ncs_info=None, shifted_used_ncs_info=None, n_residues=None, solvent_fraction=None, output_ncs_au_map_info=None, output_ncs_au_mask_info=None, output_ncs_au_pdb_info=None, output_box_map_info=None, output_box_mask_info=None, output_region_map_info_list=None, output_region_pdb_info_list=None, sharpening_info_obj=None, box_map_bounds_first=None, box_map_bounds_last=None, final_output_sharpened_map_file=None, box_map_ncs_au=None, box_map_ncs_au_crystal_symmetry=None, ): if not selected_regions: selected_regions=[] if not ncs_related_regions: ncs_related_regions=[] if not self_and_ncs_related_regions: self_and_ncs_related_regions=[] if not map_files_written: map_files_written=[] if not output_region_map_info_list: output_region_map_info_list=[] if not output_region_pdb_info_list: output_region_pdb_info_list=[] from libtbx import adopt_init_args adopt_init_args(self, locals()) self.object_type="segmentation_info" import time self.init_asctime=time.asctime() def set_box_map_ncs_au_map_data(self,box_map_ncs_au_map_data=None, box_map_ncs_au_half_map_data_list=None, box_map_ncs_au_crystal_symmetry=None): self.box_map_ncs_au_map_data=box_map_ncs_au_map_data.deep_copy() self.box_map_ncs_au_half_map_data_list=[] for hm in box_map_ncs_au_half_map_data_list: self.box_map_ncs_au_half_map_data_list.append(hm.deep_copy()) self.box_map_ncs_au_crystal_symmetry=box_map_ncs_au_crystal_symmetry if self.origin_shift and self.origin_shift != (0,0,0): self.box_map_ncs_au_map_data=self.shift_map_back( map_data=self.box_map_ncs_au_map_data, crystal_symmetry=self.box_map_ncs_au_crystal_symmetry, shift_cart=self.origin_shift) new_hm_list=[] for hm in self.box_map_ncs_au_half_map_data_list: hm=self.shift_map_back( map_data=hm, crystal_symmetry=self.box_map_ncs_au_crystal_symmetry, shift_cart=self.origin_shift) new_hm_list.append(hm) self.box_map_ncs_au_half_map_data_list=new_hm_list def shift_map_back(self,map_data=None, crystal_symmetry=None,shift_cart=None): from scitbx.matrix import col new_origin=self.origin_shift_grid_units(crystal_symmetry=crystal_symmetry, map_data=map_data,shift_cart=shift_cart,reverse=True) new_all=list(col(map_data.all())+col(new_origin)) shifted_map_data = map_data.deep_copy() shifted_map_data.resize(flex.grid(new_origin,new_all)) return shifted_map_data def origin_shift_grid_units(self,crystal_symmetry=None,map_data=None, shift_cart=None,reverse=False): # Get origin shift in grid units from shift_cart from scitbx.matrix import col cell=crystal_symmetry.unit_cell().parameters()[:3] origin_shift_grid=[] for s,c,a in zip(shift_cart,cell,map_data.all()): if s<0: delta=-0.5 else: delta=0.5 origin_shift_grid.append( int(delta+ a*s/c)) if reverse: return list(-col(origin_shift_grid)) else: return origin_shift_grid def is_segmentation_info_object(self): return True def set_params(self,params): self.params=deepcopy(params) def set_input_seq_info(self,file_name=None,sequence=None,n_residues=None): self.input_seq_info=seq_info_object(file_name=file_name, sequence=sequence, n_residues=n_residues) def set_input_pdb_info(self,file_name=None,n_residues=None): self.input_pdb_info=pdb_info_object(file_name=file_name, n_residues=n_residues) def set_input_ncs_info(self,file_name=None,number_of_operators=None): self.input_ncs_info=ncs_info_object(file_name=file_name, number_of_operators=number_of_operators) def update_ncs_info(self,number_of_operators=None,is_helical_symmetry=None, shifted=False): if shifted: ncs_info=self.shifted_ncs_info else: ncs_info=self.input_ncs_info assert ncs_info if number_of_operators is not None: ncs_info.update_number_of_operators( number_of_operators=number_of_operators) if is_helical_symmetry is not None: ncs_info.update_is_helical_symmetry( is_helical_symmetry=is_helical_symmetry) def set_sharpening_info(self,sharpening_info_obj=None): self.sharpening_info_obj=sharpening_info_obj def set_input_map_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None): self.input_map_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, is_map=True) def set_ncs_obj(self,ncs_obj=None): self.ncs_obj=ncs_obj def set_origin_shift(self,origin_shift=None): if not origin_shift: origin_shift=(0,0,0) self.origin_shift=tuple(origin_shift) def set_crystal_symmetry(self,crystal_symmetry): self.crystal_symmetry=deepcopy(crystal_symmetry) def set_original_crystal_symmetry(self,crystal_symmetry): self.original_crystal_symmetry=deepcopy(crystal_symmetry) def set_full_crystal_symmetry(self,crystal_symmetry): self.full_crystal_symmetry=deepcopy(crystal_symmetry) def set_full_unit_cell_grid(self,unit_cell_grid): self.full_unit_cell_grid=deepcopy(unit_cell_grid) def set_box_map_bounds_first_last(self,box_map_bounds_first, box_map_bounds_last): self.box_map_bounds_first=box_map_bounds_first self.box_map_bounds_last=[] for l in box_map_bounds_last: self.box_map_bounds_last.append(l+1) # it is one bigger... def set_accessor(self,acc): self.acc=acc def set_shifted_map_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None,b_sharpen=None): self.shifted_map_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, b_sharpen=b_sharpen, is_map=True) def set_shifted_pdb_info(self,file_name=None,n_residues=None): self.shifted_pdb_info=pdb_info_object(file_name=file_name, n_residues=n_residues) def set_shifted_ncs_info(self,file_name=None,number_of_operators=None, is_helical_symmetry=None): self.shifted_ncs_info=ncs_info_object(file_name=file_name, number_of_operators=number_of_operators, is_helical_symmetry=is_helical_symmetry) def set_shifted_used_ncs_info(self,file_name=None,number_of_operators=None, is_helical_symmetry=None): self.shifted_used_ncs_info=ncs_info_object(file_name=file_name, number_of_operators=number_of_operators, is_helical_symmetry=is_helical_symmetry) def set_solvent_fraction(self,solvent_fraction): self.solvent_fraction=solvent_fraction def set_n_residues(self,n_residues): # may not be the same as seq file self.n_residues=n_residues def set_output_ncs_au_map_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None): self.output_ncs_au_map_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, is_map=True) def set_output_ncs_au_mask_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None): self.output_ncs_au_mask_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, is_map=False) def set_output_ncs_au_pdb_info(self,file_name=None,n_residues=None): self.output_ncs_au_pdb_info=pdb_info_object(file_name=file_name, n_residues=n_residues) def set_output_box_map_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None): self.output_box_map_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, is_map=True) def set_output_box_mask_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None): self.output_box_mask_info=map_info_object(file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, is_map=False) def add_output_region_map_info(self,file_name=None,crystal_symmetry=None, origin=None,all=None,map_id=None): self.output_region_map_info_list.append(map_info_object( file_name=file_name, crystal_symmetry=crystal_symmetry, origin=origin, all=all, id=len(self.output_region_map_info_list)+1, map_id=map_id, is_map=True) ) def add_output_region_pdb_info(self,file_name=None,n_residues=None): self.output_region_pdb_info_list.append(pdb_info_object( file_name=file_name, n_residues=n_residues) ) def show_summary(self,out=sys.stdout): print("\n========== Summary of %s: ========\n" %(self.object_type), file=out) print("Created: %s" %(self.init_asctime), file=out) print("\nInput files used:\n", file=out) if self.input_map_info: self.input_map_info.show_summary(out=out) if self.input_pdb_info: self.input_pdb_info.show_summary(out=out) if self.input_ncs_info: self.input_ncs_info.show_summary(out=out) if self.input_seq_info: self.input_seq_info.show_summary(out=out) print(file=out) if self.crystal_symmetry: print("Working unit cell: %.1f %.1f %.1f %.1f %.1f %.1f " %( self.crystal_symmetry.unit_cell().parameters()), file=out) if self.n_residues: print("Estimated total number of residues: %d" %(self.n_residues), file=out) if self.solvent_fraction: print("Estimated solvent fraction: %5.3f" %(self.solvent_fraction), file=out) if self.origin_shift and self.origin_shift != (0,0,0): print("\nOrigin offset applied: %.1f %.1f %.1f" %(self.origin_shift), file=out) else: print("\nNo origin offset applied", file=out) if self.shifted_map_info: print("\nShifted/sharpened map, pdb and ncs files created "+\ "(after origin offset):\n", file=out) if self.shifted_map_info: self.shifted_map_info.show_summary(out=out) if self.shifted_pdb_info: self.shifted_pdb_info.show_summary(out=out) if self.shifted_ncs_info: self.shifted_ncs_info.show_summary(out=out) if self.output_ncs_au_pdb_info: print("\nOutput PDB file with dummy atoms representing the NCS AU:", file=out) self.output_ncs_au_pdb_info.show_summary(out=out) if self.output_ncs_au_mask_info or self.output_ncs_au_map_info: print("\nOutput map files showing just the NCS AU (same size", end=' ', file=out) if self.origin_shift and self.origin_shift != (0,0,0): print("\nand location as shifted map files:\n", file=out) else: print("\nand location as input map:\n", file=out) if self.output_ncs_au_mask_info: self.output_ncs_au_mask_info.show_summary(out=out) if self.output_ncs_au_map_info: self.output_ncs_au_map_info.show_summary(out=out) if self.output_box_mask_info or self.output_box_map_info: print("\nOutput cut-out map files trimmed to contain just "+\ "the \nNCS AU (superimposed on", end=' ', file=out) if self.origin_shift and self.origin_shift != (0,0,0): print("shifted map files, note origin offset):\n", file=out) else: print("input map, note origin offset):\n", file=out) if self.output_box_mask_info: self.output_box_mask_info.show_summary(out=out) if self.output_box_map_info: self.output_box_map_info.show_summary(out=out) if self.output_region_pdb_info_list: print("\nOutput PDB files representing one region of connected"+\ " density.\nThese are useful for marking where to look in cut-out map"+\ " files.", file=out) for output_region_pdb_info in self.output_region_pdb_info_list: output_region_pdb_info.show_summary(out=out) if self.output_region_map_info_list: print("\nOutput cut-out map files trimmed to contain just "+\ "one region of \nconnected density (superimposed on", end=' ', file=out) if self.origin_shift and self.origin_shift != (0,0,0): print("shifted map files, note origin offset):\n", file=out) else: print(" input map, note origin offset):\n", file=out) for output_region_map_info in self.output_region_map_info_list: output_region_map_info.show_summary(out=out) print("\n"+50*"="+"\n", file=out) class make_ccp4_map: # just a holder so map_to_structure_factors will run def __init__(self,map=None,unit_cell=None): self.data=map self.unit_cell_parameters=unit_cell.parameters() self.space_group_number=1 self.unit_cell_grid=map.all() def crystal_symmetry(self): return crystal.symmetry(self.unit_cell_parameters, self.space_group_number) class b_vs_region_info: def __init__(self): self.b_iso=0. self.b_vs_region_dict={} self.sa_sum_v_vs_region_dict={} self.sa_nn_vs_region_dict={} self.sa_ratio_b_vs_region_dict={} class box_sharpening_info: def __init__(self,tracking_data=None, crystal_symmetry=None, solvent_fraction=None, b_iso=None, resolution=None, d_min_ratio=None, scale_max=None, lower_bounds=None, upper_bounds=None, wrapping=None, n_real=None, n_buffer=None, map_data=None, smoothing_radius=None, smoothed_box_mask_data=None, original_box_map_data=None, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) del self.tracking_data # do not save it if tracking_data: self.crystal_symmetry=tracking_data.crystal_symmetry self.solvent_fraction=tracking_data.solvent_fraction self.wrapping=tracking_data.params.crystal_info.use_sg_symmetry def get_gaussian_weighting(self,out=sys.stdout): # return a gaussian function centered on center of the map, fall-off # based on smoothing_radius # Calculate weight map, max near location of centers_ncs_cart # U=rmsd**2 # (b_eff=8*3.14159**2*U) # rmsd is at least distance between centers, not too much bigger than # unit cell size, typically 10-20 A, print("\nFall-off of local weight is 1/%6.1f A\n" %( self.smoothing_radius), file=out) u=self.smoothing_radius**2 from cctbx import xray xrs,scatterers=set_up_xrs(crystal_symmetry=self.crystal_symmetry) unit_cell=self.crystal_symmetry.unit_cell() for xyz_fract in [(0.5,0.5,0.5,)]: scatterers.append( xray.scatterer(scattering_type="H", label="H", site=xyz_fract, u=u, occupancy=1.0)) xrs = xray.structure(xrs, scatterers=scatterers) f_array,phases=get_f_phases_from_map(map_data=self.map_data, crystal_symmetry=self.crystal_symmetry, d_min=self.resolution, scale_max=self.scale_max, d_min_ratio=self.d_min_ratio, get_remove_aniso_object=False,# don't need it out=out) weight_f_array=f_array.structure_factors_from_scatterers( algorithm = 'direct', xray_structure = xrs).f_calc() weight_map=get_map_from_map_coeffs(map_coeffs=weight_f_array, crystal_symmetry=self.crystal_symmetry,n_real=self.map_data.all()) min_value=weight_map.as_1d().min_max_mean().min weight_map=weight_map-min_value # all positive or zero max_value=weight_map.as_1d().min_max_mean().max weight_map=weight_map/max(1.e-10,max_value) # normalize; max=1 now min_value=1.e-10 # just a small value for all distances far from center s = (weight_map <min_value ) # make extra sure every point is above this weight_map=weight_map.set_selected(s,min_value) return weight_map def remove_buffer_from_bounds(self,minimum=1): # back off by n_buffer in each direction, leave at # least minimum grid on either side of center adjusted_lower_bounds,adjusted_upper_bounds=[],[] delta_lower_bounds,delta_upper_bounds=[],[] for lb,ub in zip(self.lower_bounds,self.upper_bounds): sum=lb+ub if sum >=0: mid=(1+sum)//2 else: mid=(-1+sum)//2 alb=min(mid-minimum,lb+self.n_buffer) aub=max(mid+minimum,ub-self.n_buffer) adjusted_lower_bounds.append(alb) adjusted_upper_bounds.append(aub) delta_lower_bounds.append(alb-lb) delta_upper_bounds.append(aub-ub) return adjusted_lower_bounds,adjusted_upper_bounds,\ delta_lower_bounds,delta_upper_bounds def merge_into_overall_map(self,overall_map=None): # Smoothly fill out edges of the small map with overall_map assert self.smoothed_box_mask_data is not None assert self.original_box_map_data is not None self.map_data= (self.map_data * self.smoothed_box_mask_data) + \ (self.original_box_map_data * (1-self.smoothed_box_mask_data)) def remove_buffer(self,out=sys.stdout): # remove the buffer from this box new_lower_bounds,new_upper_bounds,delta_lower,delta_upper=\ self.remove_buffer_from_bounds() cut_out_lower_bounds=[] cut_out_upper_bounds=[] for o,a,dlb,dub in zip(self.map_data.origin(),self.map_data.all(), delta_lower,delta_upper): cut_out_lower_bounds.append(o+dlb) cut_out_upper_bounds.append(a+dub-1) self.map_data,self.crystal_symmetry,\ self.smoothed_box_mask_data,self.original_box_map_data=cut_out_map( map_data=self.map_data, crystal_symmetry=self.crystal_symmetry, soft_mask=False, resolution=self.resolution, shift_origin=True, min_point=cut_out_lower_bounds, max_point=cut_out_upper_bounds,out=out) self.lower_bounds=new_lower_bounds self.upper_bounds=new_upper_bounds class sharpening_info: def __init__(self, tracking_data=None, crystal_symmetry=None, is_crystal=None, sharpening_method=None, solvent_fraction=None, n_residues=None, ncs_copies=None, ncs_file=None, seq_file=None, sequence=None, n_real=None, region_weight=None, n_bins=None, eps=None, d_min=None, d_min_ratio=None, scale_max=None, input_d_cut=None, b_blur_hires=None, rmsd=None, rmsd_resolution_factor=None, k_sol=None, b_sol=None, fraction_complete=None, wrapping=None, sharpening_target=None, residual_target=None, fraction_occupied=None, nproc=None, multiprocessing=None, queue_run_command=None, resolution=None, # changed from d_cut resolution_dependent_b=None, # linear sharpening normalize_amplitudes_in_resdep=None, # linear sharpening b_sharpen=None, b_iso=None, # expected B_iso after applying b_sharpen k_sharpen=None, optimize_b_blur_hires=None, iterate=None, optimize_d_cut=None, kurtosis=None, adjusted_sa=None, sa_ratio=None, normalized_regions=None, score=None, input_weight_map_pickle_file=None, output_weight_map_pickle_file=None, read_sharpened_maps=None, write_sharpened_maps=None, select_sharpened_map=None, output_directory=None, smoothing_radius=None, local_sharpening=None, local_aniso_in_local_sharpening=None, overall_before_local=None, use_local_aniso=None, original_aniso_obj=None, auto_sharpen=None, box_in_auto_sharpen=None, density_select_in_auto_sharpen=None, density_select_threshold_in_auto_sharpen=None, use_weak_density=None, discard_if_worse=None, max_box_fraction=None, cc_cut=None, max_cc_for_rescale=None, scale_using_last=None, density_select_max_box_fraction=None, mask_atoms=None, mask_atoms_atom_radius=None, value_outside_atoms=None, soft_mask=None, allow_box_if_b_iso_set=None, search_b_min=None, search_b_max=None, search_b_n=None, adjust_region_weight=None, region_weight_method=None, region_weight_factor=None, region_weight_buffer=None, region_weight_default=None, target_b_iso_ratio=None, signal_min=None, target_b_iso_model_scale=None, box_sharpening_info_obj=None, chain_type=None, target_scale_factors=None, remove_aniso=None, d_min_list=None, verbose=None, resolve_size=None, pdb_inp=None, # XXX probably do not need this local_solvent_fraction=None, wang_radius=None, buffer_radius=None, pseudo_likelihood=None, preliminary_sharpening_done=False, ): from libtbx import adopt_init_args adopt_init_args(self, locals()) del self.tracking_data # don't need it as part of the object del self.box_sharpening_info_obj# don't need it as part of the object del self.pdb_inp # don't need it as part of the object if tracking_data: # use tracking data information self.update_with_tracking_data(tracking_data=tracking_data) if box_sharpening_info_obj: # update information self.update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) if self.resolution_dependent_b is None: self.resolution_dependent_b=[0,0,0] if self.target_scale_factors and \ self.sharpening_method!='model_sharpening' \ and self.sharpening_method!='half_map_sharpening': assert self.sharpening_method is None # XXX may want to print out error self.sharpening_method='model_sharpening' if self.sharpening_method=='b_iso' and self.k_sharpen is not None: self.k_sharpen=None if pdb_inp: self.sharpening_method='model_sharpening' self.box_in_auto_sharpen=True self.density_select_in_auto_sharpen=False self.sharpening_target='model' def get_d_cut(self): if self.input_d_cut is not None: return self.input_d_cut else: return self.resolution def get_target_b_iso(self): if self.target_b_iso_ratio is None: return None if self.resolution is None: return None return self.target_b_iso_ratio*self.resolution**2 def set_resolution_dependent_b(self, resolution_dependent_b=None, sharpening_method='resolution_dependent'): if resolution_dependent_b: self.resolution_dependent_b=resolution_dependent_b if sharpening_method: self.sharpening_method=sharpening_method def sharpening_is_defined(self): if self.sharpening_method is None: return False if self.target_scale_factors: return True if self.sharpening_method=='target_b_iso_to_d_cut': return True if self.b_iso is not None or \ self.b_sharpen is not None or \ (self.resolution_dependent_b is not None and self.resolution_dependent_b!=[0,0,0]): return True return False def update_with_box_sharpening_info(self,box_sharpening_info_obj=None): if not box_sharpening_info_obj: return self self.crystal_symmetry=box_sharpening_info_obj.crystal_symmetry self.solvent_fraction=box_sharpening_info_obj.solvent_fraction self.wrapping=box_sharpening_info_obj.wrapping self.n_real=box_sharpening_info_obj.n_real return self def update_with_tracking_data(self,tracking_data=None): self.update_with_params(params=tracking_data.params, crystal_symmetry=tracking_data.crystal_symmetry, solvent_fraction=tracking_data.solvent_fraction, n_residues=tracking_data.n_residues, ncs_copies=tracking_data.input_ncs_info.number_of_operators) return self def update_with_params(self,params=None, crystal_symmetry=None, is_crystal=None, solvent_fraction=None, auto_sharpen=None, sharpening_method=None, pdb_inp=None, half_map_data_list=None, n_residues=None,ncs_copies=None): self.crystal_symmetry=crystal_symmetry self.is_crystal=is_crystal self.solvent_fraction=solvent_fraction self.auto_sharpen=auto_sharpen self.n_residues=n_residues self.ncs_copies=ncs_copies self.seq_file=params.input_files.seq_file self.chain_type=params.crystal_info.chain_type self.verbose=params.control.verbose self.resolve_size=params.control.resolve_size self.multiprocessing=params.control.multiprocessing self.nproc=params.control.nproc self.queue_run_command=params.control.queue_run_command self.wrapping=params.crystal_info.use_sg_symmetry self.fraction_occupied=params.map_modification.fraction_occupied self.sa_percent=params.map_modification.sa_percent self.region_weight=params.map_modification.region_weight self.max_regions_to_test=params.map_modification.max_regions_to_test self.regions_to_keep=params.map_modification.regions_to_keep self.d_min_ratio=params.map_modification.d_min_ratio self.scale_max=params.map_modification.scale_max self.input_d_cut=params.map_modification.input_d_cut self.b_blur_hires=params.map_modification.b_blur_hires self.rmsd=params.map_modification.rmsd self.rmsd_resolution_factor=params.map_modification.rmsd_resolution_factor self.k_sol=params.map_modification.k_sol self.b_sol=params.map_modification.b_sol self.fraction_complete=params.map_modification.fraction_complete self.resolution=params.crystal_info.resolution # changed from d_cut # NOTE: # resolution=X-ray resolution or nominal resolution of cryoEM map # high-res cutoff of reflections is d_min*d_min_ratio self.buffer_radius=params.crystal_info.buffer_radius self.wang_radius=params.crystal_info.wang_radius self.pseudo_likelihood=params.crystal_info.pseudo_likelihood self.max_box_fraction=params.map_modification.max_box_fraction self.cc_cut=params.map_modification.cc_cut self.max_cc_for_rescale=params.map_modification.max_cc_for_rescale self.scale_using_last=params.map_modification.scale_using_last self.density_select_max_box_fraction=params.map_modification.density_select_max_box_fraction self.mask_atoms=params.map_modification.mask_atoms self.mask_atoms_atom_radius=params.map_modification.mask_atoms_atom_radius self.value_outside_atoms=params.map_modification.value_outside_atoms self.soft_mask=params.map_modification.soft_mask self.allow_box_if_b_iso_set=params.map_modification.allow_box_if_b_iso_set self.k_sharpen=params.map_modification.k_sharpen self.optimize_b_blur_hires=params.map_modification.optimize_b_blur_hires self.iterate=params.map_modification.iterate self.optimize_d_cut=params.map_modification.optimize_d_cut self.sharpening_target=params.map_modification.sharpening_target self.residual_target=params.map_modification.residual_target self.eps=params.map_modification.eps self.n_bins=params.map_modification.n_bins self.input_weight_map_pickle_file=params.input_files.input_weight_map_pickle_file self.output_weight_map_pickle_file=params.output_files.output_weight_map_pickle_file self.read_sharpened_maps=params.map_modification.read_sharpened_maps self.write_sharpened_maps=params.map_modification.write_sharpened_maps self.select_sharpened_map=params.map_modification.select_sharpened_map self.output_directory=params.output_files.output_directory self.smoothing_radius=params.map_modification.smoothing_radius self.local_sharpening=params.map_modification.local_sharpening self.local_aniso_in_local_sharpening=\ params.map_modification.local_aniso_in_local_sharpening self.overall_before_local=\ params.map_modification.overall_before_local self.box_in_auto_sharpen=params.map_modification.box_in_auto_sharpen self.density_select_in_auto_sharpen=params.map_modification.density_select_in_auto_sharpen self.density_select_threshold_in_auto_sharpen=params.map_modification.density_select_threshold_in_auto_sharpen self.use_weak_density=params.map_modification.use_weak_density self.discard_if_worse=params.map_modification.discard_if_worse self.box_center=params.map_modification.box_center self.box_size=params.map_modification.box_size self.target_n_overlap=params.map_modification.target_n_overlap self.restrict_map_size=params.map_modification.restrict_map_size self.remove_aniso=params.map_modification.remove_aniso self.min_ratio_of_ncs_copy_to_first=\ params.segmentation.min_ratio_of_ncs_copy_to_first self.max_ratio_to_target=params.segmentation.max_ratio_to_target self.min_ratio_to_target=params.segmentation.min_ratio_to_target self.residues_per_region=params.segmentation.residues_per_region self.mask_padding_fraction=\ params.segmentation.mask_padding_fraction self.fraction_of_max_mask_threshold=\ params.segmentation.fraction_of_max_mask_threshold self.cell_cutoff_for_solvent_from_mask=\ params.segmentation.cell_cutoff_for_solvent_from_mask self.starting_density_threshold=\ params.segmentation.starting_density_threshold self.density_threshold=params.segmentation.density_threshold self.min_ratio=params.segmentation.min_ratio self.min_volume=params.segmentation.min_volume self.search_b_min=params.map_modification.search_b_min self.search_b_max=params.map_modification.search_b_max self.search_b_n=params.map_modification.search_b_n self.adjust_region_weight=params.map_modification.adjust_region_weight self.region_weight_method=params.map_modification.region_weight_method self.region_weight_factor=params.map_modification.region_weight_factor self.region_weight_buffer=params.map_modification.region_weight_buffer self.region_weight_default=params.map_modification.region_weight_default self.target_b_iso_ratio=params.map_modification.target_b_iso_ratio self.signal_min=params.map_modification.signal_min self.target_b_iso_model_scale=params.map_modification.target_b_iso_model_scale if sharpening_method is not None: self.sharpening_method=sharpening_method if not self.sharpening_method and \ len(params.map_modification.auto_sharpen_methods)==1: self.sharpening_method=params.map_modification.auto_sharpen_methods[0] if half_map_data_list or self.sharpening_method=='half_map_sharpening': self.sharpening_method='half_map_sharpening' self.sharpening_target='half_map' elif pdb_inp or self.sharpening_method=='model_sharpening': self.sharpening_method='model_sharpening' self.box_in_auto_sharpen=True self.density_select_in_auto_sharpen=False self.sharpening_target='model' elif params.map_modification.b_iso is not None or \ params.map_modification.b_sharpen is not None: if self.sharpening_method is None: raise Sorry("b_iso is not set") # if sharpening values are specified, set them if params.map_modification.b_iso is not None: self.b_iso=params.map_modification.b_iso # but we need b_sharpen elif params.map_modification.b_sharpen is not None: self.b_sharpen=params.map_modification.b_sharpen elif (params.map_modification.resolution_dependent_b is not None and params.map_modification.resolution_dependent_b!=[0,0,0]): self.sharpening_method='resolution_dependent' self.resolution_dependent_b=\ params.map_modification.resolution_dependent_b if self.sharpening_method=='b_iso' and self.k_sharpen is not None: self.k_sharpen=None return self def show_summary(self,verbose=False,out=sys.stdout): method_summary_dict={ 'b_iso':"Overall b_iso sharpening", 'b_iso_to_d_cut':"b_iso sharpening to high_resolution cutoff", 'resolution_dependent':"Resolution-dependent sharpening", 'model_sharpening':"Model sharpening", 'half_map_sharpening':"Half-map sharpening", 'no_sharpening':"No sharpening", None:"No sharpening", } target_summary_dict={ 'adjusted_sa':"Adjusted surface area", 'kurtosis':"Map kurtosis", 'model':"Map-model CC", } print("\nSummary of sharpening:\n", file=out) print("Sharpening method used: %s\n" %( method_summary_dict.get(self.sharpening_method)), file=out) if self.sharpening_method=="b_iso": if self.b_sharpen is not None: print("Overall b_sharpen applied: %7.2f A**2" %( self.b_sharpen), file=out) if self.b_iso is not None: print("Final b_iso obtained: %7.2f A**2" %(self.b_iso), file=out) elif self.sharpening_method=="b_iso_to_d_cut": if self.b_sharpen is not None: print("Overall b_sharpen applied: %7.2f A**2" %( self.b_sharpen), file=out) if self.b_iso is not None: print("Final b_iso obtained: %7.2f A**2" %(self.b_iso), file=out) if self.input_d_cut: print("High-resolution cutoff: %7.2f A" %(self.input_d_cut), file=out) else: print("High-resolution cutoff: %7.2f A" %(self.resolution), file=out) elif self.sharpening_method=="resolution_dependent": print("Resolution-dependent b values (%7.2f,%7.2f,%7.2f)\n" %( tuple(self.resolution_dependent_b)), file=out) print("Effective b_iso vs resolution obtained:", file=out) from cctbx.maptbx.refine_sharpening import get_effective_b_values d_min_values,b_values=get_effective_b_values( d_min_ratio=self.d_min_ratio, resolution_dependent_b=self.resolution_dependent_b, resolution=self.resolution) print(" Resolution Effective B-iso", file=out) print(" (A) (A**2)", file=out) for dd,b in zip(d_min_values,b_values): print(" %7.1f %7.2f " %( dd,b), file=out) elif self.sharpening_method=="model_sharpening": print("Resolution-dependent model sharpening", file=out) if self.d_min_list and self.target_scale_factors: print("Scale vs resolution:", file=out) for d_min,sc in zip( self.d_min_list, self.target_scale_factors): print("Dmin: %7.2f Scale: %9.6f" %(d_min,sc), file=out) elif self.sharpening_method=="half_map_sharpening": print("Resolution-dependent half-map sharpening", file=out) if self.d_min_list and self.target_scale_factors: print("Scale vs resolution:", file=out) for d_min,sc in zip( self.d_min_list, self.target_scale_factors): print("Dmin: %7.2f Scale: %9.6f" %(d_min,sc), file=out) if self.sharpening_method in ["b_iso_to_d_cut"] and \ self.k_sharpen and self.resolution: print("Transition from sharpening"+\ " to not sharpening (k_sharpen):%7.2f " %(self.k_sharpen), file=out) print("\nSharpening target used: %s" %( target_summary_dict.get(self.sharpening_target)), file=out) if self.adjusted_sa is not None: print("Final adjusted map surface area: %7.2f" %(self.adjusted_sa), file=out) if self.kurtosis is not None: print("Final map kurtosis: %7.2f" %(self.kurtosis), file=out) print(file=out) if verbose: for x in dir(self): if x.startswith("__"): continue if type(getattr(self,x)) in [type('a'),type(1),type(1.),type([]), type((1,2,))]: print("%s : %s" %(x,getattr(self,x)), file=out) def get_effective_b_iso(self,map_data=None,out=sys.stdout): map_coeffs_ra,map_coeffs,f_array,phases=effective_b_iso( map_data=map_data, resolution=self.resolution, d_min_ratio=self.d_min_ratio, scale_max=self.scale_max, crystal_symmetry=self.crystal_symmetry, out=out) return map_coeffs_ra.b_iso def sharpen_and_score_map(self,map_data=None,set_b_iso=False,out=sys.stdout): if self.n_real is None: # need to get it self.n_real=map_data.all() map_and_b=sharpen_map_with_si( sharpening_info_obj=self, map_data=map_data, resolution=self.resolution,out=out) self.map_data=map_and_b.map_data if set_b_iso: self.b_iso=map_and_b.final_b_iso score_map(map_data=self.map_data, sharpening_info_obj=self, out=null_out()) return self def show_score(self,out=sys.stdout): print("Adjusted surface area: %7.3f Kurtosis: %7.3f Score: %7.3f\n" %( self.adjusted_sa,self.kurtosis,self.score), file=out) def is_target_b_iso_to_d_cut(self): if self.sharpening_method=='target_b_iso_to_d_cut': return True else: return False def is_b_iso_sharpening(self): if self.is_resolution_dependent_sharpening(): return False if self.is_model_sharpening(): return False if self.is_half_map_sharpening(): return False return True def is_resolution_dependent_sharpening(self): if self.sharpening_method=='resolution_dependent': return True else: return False def is_model_sharpening(self): if self.sharpening_method=='model_sharpening': return True else: return False def is_half_map_sharpening(self): if self.sharpening_method=='half_map_sharpening': return True else: return False def as_map_coeffs(self,out=sys.stdout): map_data=getattr(self,'map_data',None) if map_data: map_coeffs,dummy=get_f_phases_from_map(map_data=self.map_data, crystal_symmetry=self.crystal_symmetry, d_min=self.resolution, d_min_ratio=self.d_min_ratio, scale_max=self.scale_max, return_as_map_coeffs=True, out=out) return map_coeffs else: return None def as_map_data(self): return getattr(self,'map_data',None) class ncs_group_object: def __init__(self, ncs_obj=None, ncs_ops_used=None, ncs_group_list=None, edited_mask=None, crystal_symmetry=None, max_cell_dim=None, origin_shift=None, edited_volume_list=None, region_range_dict=None, selected_regions=None, ncs_related_regions=None, self_and_ncs_related_regions=None, equiv_dict=None, map_files_written=None, bad_region_list=None, region_centroid_dict=None, region_scattered_points_dict=None, shared_group_dict=None, co=None, min_b=None, max_b=None, original_id_from_id=None, remainder_id_dict=None, # dict relating regions in a remainder object to # those in the original map ): if not selected_regions: selected_regions=[] if not ncs_related_regions: ncs_related_regions=[] if not self_and_ncs_related_regions: self_and_ncs_related_regions=[] if not map_files_written: map_files_written=[] from libtbx import adopt_init_args adopt_init_args(self, locals()) if self.crystal_symmetry and not self.max_cell_dim: self.max_cell_dim=0. for x in self.crystal_symmetry.unit_cell().parameters()[:3]: self.max_cell_dim=max(max_cell_dim,x) def as_info_object(self): return info_object( ncs_obj=self.ncs_obj, max_b=self.max_b, min_b=self.min_b, ncs_group_list=self.ncs_group_list, origin_shift=self.origin_shift, edited_volume_list=self.edited_volume_list, region_range_dict=self.region_range_dict, selected_regions=self.selected_regions, ncs_related_regions=self.ncs_related_regions, self_and_ncs_related_regions=self.self_and_ncs_related_regions, bad_region_list=self.bad_region_list, region_centroid_dict=self.region_centroid_dict, original_id_from_id=self.original_id_from_id, map_files_written=self.map_files_written, ) def set_ncs_ops_used(self,ncs_ops_used): self.ncs_ops_used=deepcopy(ncs_ops_used) def set_selected_regions(self,selected_regions): self.selected_regions=deepcopy(selected_regions) def set_ncs_related_regions(self,ncs_related_regions): self.ncs_related_regions=deepcopy(ncs_related_regions) def set_self_and_ncs_related_regions(self,self_and_ncs_related_regions): self.self_and_ncs_related_regions=deepcopy(self_and_ncs_related_regions) def set_map_files_written(self,map_files_written): self.map_files_written=deepcopy(map_files_written) def scale_map(map,scale_rms=1.0,out=sys.stdout): sd=map.as_double().as_1d().sample_standard_deviation() if (sd > 1.e-10): scale=scale_rms/sd if 0: print("Scaling map by %7.3f to set SD=1" %(scale), file=out) map=map*scale else: print("Cannot scale map...all zeros", file=out) return map def scale_map_coeffs(map_coeffs,scale_max=None,out=sys.stdout): f_array,phases=map_coeffs_as_fp_phi(map_coeffs) max_value=f_array.data().min_max_mean().max if scale_max: scale=scale_max/max(1.e-10,max_value) else: scale=1.0 if 0: print("Scaling map_coeffs by %9.3f to yield maximum of %7.0f" %( scale,scale_max), file=out) return f_array.array(data=f_array.data()*scale ).phase_transfer(phase_source=phases, deg=True) def get_map_object(file_name=None,must_allow_sharpening=None, get_map_labels=None,out=sys.stdout): # read a ccp4 map file and return sg,cell and map objects 2012-01-16 if not os.path.isfile(file_name): raise Sorry("The map file %s is missing..." %(file_name)) map_labels=None if file_name.endswith(".xplor"): import iotbx.xplor.map m = iotbx.xplor.map.reader(file_name=file_name) m.unit_cell_grid=m.data.all() # just so we have something m.space_group_number=0 # so we have something else: from iotbx import mrcfile m = mrcfile.map_reader(file_name=file_name) print("MIN MAX MEAN RMS of map: %7.2f %7.2f %7.2f %7.2f " %( m.header_min, m.header_max, m.header_mean, m.header_rms), file=out) print("grid: ",m.unit_cell_grid, file=out) print("cell: %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f " %tuple( m.unit_cell_parameters), file=out) print("SG: ",m.space_group_number, file=out) if must_allow_sharpening and m.cannot_be_sharpened(): raise Sorry("Input map is already modified and should not be sharpened") if get_map_labels: map_labels=m.labels print("ORIGIN: ",m.data.origin(), file=out) print("EXTENT: ",m.data.all(), file=out) print("IS PADDED: ",m.data.is_padded(), file=out) map_data=m.data acc=map_data.accessor() shift_needed = not \ (map_data.focus_size_1d() > 0 and map_data.nd() == 3 and map_data.is_0_based()) if(shift_needed): map_data = map_data.shift_origin() origin_shift=( m.data.origin()[0]/m.data.all()[0], m.data.origin()[1]/m.data.all()[1], m.data.origin()[2]/m.data.all()[2]) origin_frac=origin_shift # NOTE: fraction of NEW cell else: origin_frac=(0.,0.,0.) # determine if we need to trim off the outer part of the map duplicating inner offsets=[] need_offset=False for g,e in zip(m.unit_cell_grid,map_data.all() ): offset=e-g offsets.append(offset) if offsets == [1,1,1]: if origin_frac!=(0.,0.,0.): # this was a shifted map...we can't do this raise Sorry("Sorry if a CCP4 map has an origin other than (0,0,0) "+ "the extent \nof the map must be the same as the grid or 1 "+ "\ngreater for "+ "segment_and_split_map routines."+ "The file %s has a grid of %s and extent of %s" %( file_name,str(m.unit_cell_grid),str(map_data.all()))) map=map_data[:-1,:-1,:-1] acc=map.accessor() else: map=map_data # now get space group and cell from cctbx import crystal from cctbx import sgtbx from cctbx import uctbx if m.space_group_number==0: n=1 # fix mrc formatting else: n=m.space_group_number if hasattr(m,'unit_cell_parameters'): space_group_info=sgtbx.space_group_info(number=n) unit_cell=uctbx.unit_cell(m.unit_cell_parameters) original_unit_cell_grid=m.unit_cell_grid original_crystal_symmetry=crystal.symmetry( unit_cell=unit_cell,space_group_info=space_group_info) if original_crystal_symmetry and map.all()==m.unit_cell_grid: crystal_symmetry=original_crystal_symmetry print("\nUnit cell crystal symmetry used: ", file=out) else: crystal_symmetry=m.crystal_symmetry() print("\nBox crystal symmetry used: ", file=out) crystal_symmetry.show_summary(f=out) space_group=crystal_symmetry.space_group() unit_cell=crystal_symmetry.unit_cell() else: space_group=None unit_cell=None crystal_symmetry=None original_crystal_symmetry,original_unit_cell_grid=None,None map=scale_map(map,out=out) if get_map_labels: return map,space_group,unit_cell,crystal_symmetry,origin_frac,acc,\ original_crystal_symmetry,original_unit_cell_grid,map_labels else: return map,space_group,unit_cell,crystal_symmetry,origin_frac,acc,\ original_crystal_symmetry,original_unit_cell_grid def write_ccp4_map(crystal_symmetry, file_name, map_data, output_unit_cell_grid=None, labels=None): if output_unit_cell_grid is None: output_unit_cell_grid=map_data.all() if labels is None: labels=flex.std_string([""]) iotbx.mrcfile.write_ccp4_map( file_name=file_name, unit_cell=crystal_symmetry.unit_cell(), space_group=crystal_symmetry.space_group(), unit_cell_grid = output_unit_cell_grid, map_data=map_data.as_double(), labels=labels) def set_up_xrs(crystal_symmetry=None): # dummy xrs to write out atoms lines=["ATOM 92 SG CYS A 10 8.470 28.863 18.423 1.00 22.05 S"] # just a random line to set up x-ray structure from cctbx.array_family import flex from cctbx import xray pdb_inp=iotbx.pdb.input(source_info="",lines=lines) xrs = pdb_inp.xray_structure_simple(crystal_symmetry=crystal_symmetry) scatterers = flex.xray_scatterer() return xrs,scatterers def write_atoms(tracking_data=None,sites=None,file_name=None, crystal_symmetry=None, atom_name=None,resname=None,atom_type=None,occ=None, out=sys.stdout): if crystal_symmetry is None: crystal_symmetry=tracking_data.crystal_symmetry xrs,scatterers=set_up_xrs(crystal_symmetry=crystal_symmetry) from cctbx import xray unit_cell=crystal_symmetry.unit_cell() for xyz_cart in sites: scatterers.append( xray.scatterer(scattering_type="O", label="O", site=unit_cell.fractionalize(xyz_cart), u=0.38, occupancy=1.0)) text=write_xrs(xrs=xrs,scatterers=scatterers,file_name=file_name,out=out) if atom_name and resname and atom_type: text=text.replace("O O "," %2s %3s A" %(atom_name,resname) ) text=text.replace(" O"," %1s" %(atom_type)) if occ: text=text.replace(" 1.00 "," %.2f " %(occ)) return text def write_xrs(xrs=None,scatterers=None,file_name="atoms.pdb",out=sys.stdout): from cctbx import xray xrs = xray.structure(xrs, scatterers=scatterers) text=xrs.as_pdb_file() if file_name: f=open(file_name,'w') print(text, file=f) f.close() print("Atoms written to %s" %file_name, file=out) return text def get_b_iso(miller_array,d_min=None,return_aniso_scale_and_b=False, d_max=100000.): if d_min: res_cut_array=miller_array.resolution_filter(d_max=d_max, d_min=d_min) else: res_cut_array=miller_array from mmtbx.scaling import absolute_scaling try: aniso_scale_and_b=absolute_scaling.ml_aniso_absolute_scaling( miller_array=res_cut_array, n_residues=200, n_bases=0, ignore_errors=True) b_cart=aniso_scale_and_b.b_cart except Exception as e: b_cart=[0,0,0] aniso_scale_and_b=None b_aniso_mean=0. if b_cart: for k in [0,1,2]: b_aniso_mean+=b_cart[k] if return_aniso_scale_and_b: return b_aniso_mean/3.0,aniso_scale_and_b else: # usual return b_aniso_mean/3.0 def map_coeffs_as_fp_phi(map_coeffs): amplitudes=map_coeffs.amplitudes() amplitudes.set_observation_type_xray_amplitude() assert amplitudes.is_real_array() phases=map_coeffs.phases(deg=True) return amplitudes,phases def map_coeffs_to_fp(map_coeffs): amplitudes=map_coeffs.amplitudes() amplitudes.set_observation_type_xray_amplitude() assert amplitudes.is_real_array() return amplitudes def get_f_phases_from_model(f_array=None,pdb_inp=None,overall_b=None, k_sol=None, b_sol=None, out=sys.stdout): xray_structure=pdb_inp.construct_hierarchy().extract_xray_structure( crystal_symmetry=f_array.crystal_symmetry()) print("Getting map coeffs from model with %s atoms.." %( xray_structure.sites_frac().size()), file=out) if overall_b is not None: print("Setting overall b_iso to %7.1f for model " %( overall_b), file=out) xray_structure.set_b_iso(value=overall_b) model_f_array=f_array.structure_factors_from_scatterers( xray_structure = xray_structure).f_calc() return model_f_array def get_f_phases_from_map(map_data=None,crystal_symmetry=None,d_min=None, d_max=100000., d_min_ratio=None,return_as_map_coeffs=False,remove_aniso=None, get_remove_aniso_object=True, scale_max=None, origin_frac=None, out=sys.stdout): if d_min is not None: d_min_use=d_min if d_min_ratio is not None: d_min_use=d_min*d_min_ratio else: d_min_use=None from mmtbx.command_line.map_to_structure_factors import run as map_to_sf if crystal_symmetry.space_group().type().number() in [0,1]: args=['d_min=None','box=True','keep_origin=False', 'scale_max=%s' %scale_max] else: # cannot use box for other space groups args=['d_min=%s'%(d_min_use),'box=False','keep_origin=False', 'scale_max=%s' %scale_max] map_coeffs=map_to_sf(args=args, space_group_number=crystal_symmetry.space_group().type().number(), ccp4_map=make_ccp4_map(map_data,crystal_symmetry.unit_cell()), return_as_miller_arrays=True,nohl=True,out=null_out()) if d_min_use: map_coeffs=map_coeffs.resolution_filter(d_min=d_min_use,d_max=d_max) if origin_frac and tuple(origin_frac) != (0.,0.,0.): # shift origin map_coeffs=map_coeffs.translational_shift(origin_frac,deg=False) map_coeffs=scale_map_coeffs(map_coeffs,scale_max=scale_max,out=out) if remove_aniso: print("\nRemoving aniso in data before analysis\n", file=out) get_remove_aniso_object=True from cctbx.maptbx.refine_sharpening import analyze_aniso map_coeffs,map_coeffs_ra=analyze_aniso( remove_aniso=remove_aniso, get_remove_aniso_object=get_remove_aniso_object, map_coeffs=map_coeffs,resolution=d_min,out=out) if return_as_map_coeffs: return map_coeffs,map_coeffs_ra else: return map_coeffs_as_fp_phi(map_coeffs) def apply_sharpening(map_coeffs=None, sharpening_info_obj=None, n_real=None,b_sharpen=None,crystal_symmetry=None, target_scale_factors=None, f_array=None,phases=None,d_min=None,k_sharpen=None, b_blur_hires=None, out=sys.stdout): if map_coeffs and f_array is None and phases is None: f_array,phases=map_coeffs_as_fp_phi(map_coeffs) if sharpening_info_obj is not None: b_sharpen=sharpening_info_obj.b_sharpen b_blur_hires=sharpening_info_obj.b_blur_hires k_sharpen=sharpening_info_obj.k_sharpen if sharpening_info_obj.input_d_cut: d_min=sharpening_info_obj.input_d_cut else: d_min=sharpening_info_obj.resolution# changed from d_cut n_real=sharpening_info_obj.n_real target_scale_factors=sharpening_info_obj.target_scale_factors n_bins=sharpening_info_obj.n_bins remove_aniso=sharpening_info_obj.remove_aniso resolution=sharpening_info_obj.resolution if target_scale_factors: assert sharpening_info_obj is not None print("\nApplying target scale factors vs resolution", file=out) if not map_coeffs: map_coeffs=f_array.phase_transfer(phase_source=phases,deg=True) f_array,phases=map_coeffs_as_fp_phi(map_coeffs) f_array_b_iso=get_b_iso(f_array,d_min=d_min) if not f_array.binner(): (local_d_max,local_d_min)=f_array.d_max_min() f_array.setup_binner(n_bins=n_bins,d_max=local_d_max,d_min=local_d_min) from cctbx.maptbx.refine_sharpening import apply_target_scale_factors map_and_b=apply_target_scale_factors(f_array=f_array,phases=phases, resolution=d_min, target_scale_factors=target_scale_factors, n_real=n_real, out=out) return map_and_b elif b_sharpen is None or ( b_sharpen in [0,None] and k_sharpen in [0,None]): if not map_coeffs: map_coeffs=f_array.phase_transfer(phase_source=phases,deg=True) map_data=get_map_from_map_coeffs(map_coeffs=map_coeffs, crystal_symmetry=crystal_symmetry,n_real=n_real) return map_and_b_object(map_data=map_data) elif k_sharpen is None or d_min is None or k_sharpen<=0 or \ ( b_blur_hires is None and b_sharpen < 0): # 2016-08-10 original method: apply b_sharpen to all data # Use this if blurring (b_sharpen<0) or if k_sharpen is not set from cctbx import adptbx # next lines from xtriage (basic_analysis.py) b_cart_aniso_removed=[ b_sharpen, b_sharpen, b_sharpen, 0, 0, 0] from mmtbx.scaling import absolute_scaling u_star_aniso_removed=adptbx.u_cart_as_u_star( f_array.unit_cell(), adptbx.b_as_u( b_cart_aniso_removed ) ) f_array_sharpened=absolute_scaling.anisotropic_correction( f_array,0.0,u_star_aniso_removed,must_be_greater_than=-0.0001) else: # Apply sharpening only to data from infinity to d_min, with transition # steepness of k_sharpen. # 2017-08-21 if b_blur_hires is set, sharpen with # b_sharpen-b_blur_hires data beyond d_min (with same # transition, so transition goes from b_sharpen TO b_sharpen-b_blur_hires data_array=f_array.data() sthol_array=f_array.sin_theta_over_lambda_sq() d_spacings=f_array.d_spacings() scale_array=flex.double() import math if b_blur_hires is not None: b_sharpen_hires_use=b_sharpen-b_blur_hires else: b_sharpen_hires_use=0. for x,(ind,sthol),(ind1,d) in zip(data_array,sthol_array,d_spacings): # for small value b=b_sharpen # for large value b=-b_sharpen_hires_use # transition is determined by k_sharpen value=min(20.,max(-20.,k_sharpen*(d_min-d))) lowres_weight=1./(1.+math.exp(value)) hires_weight=max(0.,1-lowres_weight) b_sharpen_use=b_sharpen*lowres_weight+b_sharpen_hires_use*hires_weight log_scale=sthol*b_sharpen_use scale_array.append(math.exp(log_scale)) data_array=data_array*scale_array f_array_sharpened=f_array.customized_copy(data=data_array) actual_b_iso=get_b_iso(f_array_sharpened,d_min=d_min) print("B-iso after sharpening by b_sharpen=%6.1f is %7.2f\n" %( b_sharpen,actual_b_iso), file=out) sharpened_map_coeffs=f_array_sharpened.phase_transfer( phase_source=phases,deg=True) # And get new map map_data=get_map_from_map_coeffs(map_coeffs=sharpened_map_coeffs, crystal_symmetry=crystal_symmetry, n_real=n_real) mb=map_and_b_object(map_data=map_data,final_b_iso=actual_b_iso) return mb def get_map_from_map_coeffs(map_coeffs=None,crystal_symmetry=None, n_real=None,apply_sigma_scaling=True): from cctbx import maptbx from cctbx.maptbx import crystal_gridding if map_coeffs.crystal_symmetry().space_group_info()!= \ crystal_symmetry.space_group_info(): assert str(map_coeffs.crystal_symmetry().space_group_info() ).replace(" ","").lower()=='p1' # use map_coeffs.crystal_symmetry crystal_symmetry=map_coeffs.crystal_symmetry() if n_real: cg=crystal_gridding( unit_cell=crystal_symmetry.unit_cell(), space_group_info=crystal_symmetry.space_group_info(), pre_determined_n_real=n_real) else: cg=None fft_map = map_coeffs.fft_map( resolution_factor = 0.25, crystal_gridding=cg, symmetry_flags=maptbx.use_space_group_symmetry) if apply_sigma_scaling: fft_map.apply_sigma_scaling() else: fft_map.apply_volume_scaling() map_data=fft_map.real_map_unpadded() return map_data def find_symmetry_center(map_data,crystal_symmetry=None,out=sys.stdout): # find center if necessary: origin=list(map_data.origin()) all=list(map_data.all()) centroid_wx={} centroid_w={} from cctbx import maptbx for ai in [0,1,2]: centroid_wx[ai]=0. centroid_w[ai]=0. for i in range(0,all[ai]): if ai==0: start_tuple=tuple((i,0,0)) end_tuple=tuple((i,all[1],all[2])) elif ai==1: start_tuple=tuple((0,i,0)) end_tuple=tuple((all[0],i,all[2])) elif ai==2: start_tuple=tuple((0,0,i)) end_tuple=tuple((all[0],all[1],i)) new_map_data = maptbx.copy(map_data, start_tuple,end_tuple) mean_value=max(0.,new_map_data.as_1d().as_double().min_max_mean().mean) centroid_wx[ai]+=mean_value*(i-origin[ai]) centroid_w[ai]+=mean_value if centroid_w[ai]>0: centroid_wx[ai]=centroid_wx[ai]/centroid_w[ai] print("CENTROID OF DENSITY: (%7.2f, %7.2f, %7.2f) (grid units) " %( tuple((centroid_wx[0],centroid_wx[1],centroid_wx[2],))), file=out) xyz_fract=matrix.col((centroid_wx[0]/all[0],centroid_wx[1]/all[1],centroid_wx[2]/all[2],)) xyz_cart=crystal_symmetry.unit_cell().orthogonalize(xyz_fract) print("CENTROID (A): (%7.3f, %7.3f, %7.3f) " %( tuple(xyz_cart)), file=out) return xyz_cart def get_center_of_map(map_data,crystal_symmetry): all=list(map_data.all()) origin=list(map_data.origin()) sx,sy,sz=[all[0]/2+origin[0],all[1]/2+origin[1],all[2]/2+origin[2]] site_fract=matrix.col((sx/all[0],sy/all[1],sz/all[2],)) return crystal_symmetry.unit_cell().orthogonalize(site_fract) def select_remaining_ncs_ops( map_data=None, crystal_symmetry=None, random_points=None, closest_sites=None, ncs_object=None, out=sys.stdout): # identify which NCS ops still apply. Choose the ones that maximize # scoring with score_ncs_in_map if ncs_object.max_operators()<1: return ncs_object used_ncs_id_list=[ncs_object.ncs_groups()[0].identity_op_id()] ncs_copies=ncs_object.max_operators() # find ncs_id that maximizes score (if any) improving=True from copy import deepcopy best_ops_to_keep=deepcopy(used_ncs_id_list) working_best_ops_to_keep=None best_score=None while improving: improving=False working_best_ops_to_keep=deepcopy(best_ops_to_keep) working_score=None for ncs_id in range(ncs_copies): if ncs_id in best_ops_to_keep:continue ops_to_keep=deepcopy(best_ops_to_keep) ops_to_keep.append(ncs_id) ncs_used_obj=ncs_object.deep_copy(ops_to_keep=ops_to_keep) score,ncs_cc=score_ncs_in_map(map_data=map_data,ncs_object=ncs_used_obj, ncs_in_cell_only=True, allow_score_with_pg=False, sites_orth=closest_sites, crystal_symmetry=crystal_symmetry,out=null_out()) if score is None: continue if working_score is None or score >working_score: working_score=score working_best_ops_to_keep=deepcopy(ops_to_keep) if working_score is not None and ( best_score is None or working_score>best_score): improving=True best_score=working_score best_ops_to_keep=deepcopy(working_best_ops_to_keep) ncs_used_obj=ncs_object.deep_copy(ops_to_keep=best_ops_to_keep) return ncs_used_obj def run_get_ncs_from_map(params=None, map_data=None, crystal_symmetry=None, map_symmetry_center=None, ncs_obj=None, out=sys.stdout, ): # Get or check NCS operators. Try various possibilities for center of NCS ncs_obj_to_check=None if params.reconstruction_symmetry.symmetry and ( not ncs_obj or ncs_obj.max_operators()<2): if params.reconstruction_symmetry.optimize_center: center_try_list=[True,False] else: center_try_list=[True] elif ncs_obj: center_try_list=[True] ncs_obj_to_check=ncs_obj elif params.reconstruction_symmetry.optimize_center: center_try_list=[None] else: return None,None,None # did not even try # check separately for helical symmetry if params.reconstruction_symmetry.symmetry.lower()=='helical': helical_list=[True] elif params.reconstruction_symmetry.symmetry.lower() in ['all','any'] and\ params.reconstruction_symmetry.include_helical_symmetry: helical_list=[False,True] else: helical_list=[False] new_ncs_obj,ncs_cc,ncs_score=None,None,None for use_center_of_map in center_try_list: for include_helical in helical_list: local_params=deepcopy(params) local_params.reconstruction_symmetry.include_helical_symmetry=\ include_helical new_ncs_obj,ncs_cc,ncs_score=get_ncs_from_map(params=local_params, map_data=map_data, map_symmetry_center=map_symmetry_center, use_center_of_map_as_center=use_center_of_map, crystal_symmetry=crystal_symmetry, ncs_obj_to_check=ncs_obj_to_check, out=out ) if new_ncs_obj: return new_ncs_obj,ncs_cc,ncs_score return new_ncs_obj,ncs_cc,ncs_score def get_ncs_from_map(params=None, map_data=None, map_symmetry_center=None, symmetry=None, symmetry_center=None, helical_rot_deg=None, helical_trans_z_angstrom=None, two_fold_along_x=None, op_max=None, crystal_symmetry=None, optimize_center=None, sites_orth=None, random_points=None, n_rescore=None, use_center_of_map_as_center=None, min_ncs_cc=None, identify_ncs_id=None, ncs_obj_to_check=None, ncs_in_cell_only=False, out=sys.stdout): # Purpose: check through standard point groups and helical symmetry to see # if map has symmetry. If symmetry==ANY then take highest symmetry that fits # Otherwise limit to the one specified with symmetry. # Use a library of symmetry matrices. For helical symmetry generate it # along the z axis. # Center of symmetry is as supplied, or center of map or center of density # If center is not supplied and use_center_of_map_as_center, try that # and return None if it fails to achieve a map cc of min_ncs_cc if ncs_in_cell_only is None: ncs_in_cell_only=(not params.crystal_info.use_sg_symmetry) if symmetry is None: symmetry=params.reconstruction_symmetry.symmetry if symmetry_center is None: symmetry_center=params.reconstruction_symmetry.symmetry_center if optimize_center is None: optimize_center=params.reconstruction_symmetry.optimize_center if helical_rot_deg is None: helical_rot_deg=params.reconstruction_symmetry.helical_rot_deg if helical_trans_z_angstrom is None: helical_trans_z_angstrom=\ params.reconstruction_symmetry.helical_trans_z_angstrom if n_rescore is None: n_rescore=params.reconstruction_symmetry.n_rescore if random_points is None: random_points=params.reconstruction_symmetry.random_points if op_max is None: op_max=params.reconstruction_symmetry.op_max if two_fold_along_x is None: two_fold_along_x=params.reconstruction_symmetry.two_fold_along_x if identify_ncs_id is None: identify_ncs_id=params.reconstruction_symmetry.identify_ncs_id if min_ncs_cc is None: min_ncs_cc=params.reconstruction_symmetry.min_ncs_cc # if ncs_obj_to_check is supplied...just use that ncs if ncs_obj_to_check and ncs_obj_to_check.max_operators()>1: symmetry="SUPPLIED NCS" if map_symmetry_center is None: map_symmetry_center=get_center_of_map(map_data,crystal_symmetry) if optimize_center is None: if symmetry_center is None and (not use_center_of_map_as_center): optimize_center=True print("Setting optimize_center=True as no symmetry_center is supplied", file=out) else: optimize_center=False if symmetry_center is not None: symmetry_center=matrix.col(symmetry_center) elif use_center_of_map_as_center: print("Using center of map as NCS center", file=out) symmetry_center=map_symmetry_center else: # Find it if not ncs_obj_to_check: print("Finding NCS center as it is not supplied", file=out) symmetry_center=find_symmetry_center( map_data,crystal_symmetry=crystal_symmetry, out=out) print("Center of NCS (A): (%7.3f, %7.3f, %7.3f) " %( tuple(symmetry_center)), file=out) ncs_list=get_ncs_list(params=params, symmetry=symmetry, symmetry_center=symmetry_center, helical_rot_deg=helical_rot_deg, two_fold_along_x=two_fold_along_x, op_max=op_max, helical_trans_z_angstrom=helical_trans_z_angstrom, ncs_obj_to_check=ncs_obj_to_check, map_data=map_data, crystal_symmetry=crystal_symmetry, out=out, ) print("Total of %d NCS types to examine..." %(len(ncs_list)), file=out) if not sites_orth: sites_orth=get_points_in_map( map_data,n=random_points,crystal_symmetry=crystal_symmetry) # some random points in the map # Now make sure symmetry applied to points in points_list gives similar values results_list=[] for ncs_obj in ncs_list: symmetry=ncs_obj.get_ncs_name() score,cc_avg=score_ncs_in_map(map_data=map_data,ncs_object=ncs_obj, identify_ncs_id=identify_ncs_id, ncs_in_cell_only=ncs_in_cell_only, sites_orth=sites_orth,crystal_symmetry=crystal_symmetry,out=out) if cc_avg < min_ncs_cc: score=0. # Do not allow low CC values to be used if score is None: print("symmetry:",symmetry," no score",ncs_obj.max_operators(), file=out) else: results_list.append([score,cc_avg,ncs_obj,symmetry]) if not results_list: return None,None,None results_list.sort() results_list.reverse() # Rescore top n_rescore if n_rescore and not ncs_obj_to_check: print("Rescoring top %d results" %(min(n_rescore,len(results_list))), file=out) rescore_list=results_list[n_rescore:] new_sites_orth=get_points_in_map( map_data,n=10*random_points,crystal_symmetry=crystal_symmetry) new_sites_orth.extend(sites_orth) for orig_score,orig_cc_avg,ncs_obj,symmetry in results_list[:n_rescore]: score,cc_avg=score_ncs_in_map(map_data=map_data,ncs_object=ncs_obj, identify_ncs_id=identify_ncs_id, ncs_in_cell_only=ncs_in_cell_only, sites_orth=new_sites_orth,crystal_symmetry=crystal_symmetry,out=out) if cc_avg < min_ncs_cc: score=0. # Do not allow low CC values to be used if score is None: print("symmetry:",symmetry," no score",ncs_obj.max_operators(), file=out) else: rescore_list.append([score,cc_avg,ncs_obj,symmetry]) rescore_list.sort() rescore_list.reverse() results_list=rescore_list if len(results_list)==1: # check for C1 score,cc_avg,ncs_obj,symmetry=results_list[0] if symmetry and symmetry.strip()=='C1': score=1. cc_avg=1. results_list=[[score,cc_avg,ncs_obj,symmetry],] print("Ranking of NCS types:", file=out) if min_ncs_cc is not None: print("NOTE: any NCS type with CC < %.2f (min_ncs_cc) is unscored " %( min_ncs_cc), file=out) print("\n SCORE CC OPERATORS SYMMETRY", file=out) for score,cc_avg,ncs_obj,symmetry in results_list: if not symmetry: symmetry="" if not cc_avg: cc_avg=0.0 print(" %6.2f %5.2f %2d %s" %( score,cc_avg,ncs_obj.max_operators(), symmetry.strip(),), file=out) score,cc_avg,ncs_obj,ncs_info=results_list[0] # Optimize center if necessary if optimize_center: symmetry_center,cc_avg,score,ncs_obj=optimize_center_position( map_data,sites_orth, crystal_symmetry, ncs_info,symmetry_center,ncs_obj,score,cc_avg, params=params, helical_rot_deg=helical_rot_deg, two_fold_along_x=two_fold_along_x, op_max=op_max, min_ncs_cc=min_ncs_cc, identify_ncs_id=identify_ncs_id, ncs_obj_to_check=ncs_obj_to_check, ncs_in_cell_only=ncs_in_cell_only, helical_trans_z_angstrom=helical_trans_z_angstrom,out=out) print("New center: (%7.3f, %7.3f, %7.3f)" %(tuple(symmetry_center)), file=out) if cc_avg < min_ncs_cc: print("No suitable symmetry found", file=out) return None,None,None print("\nBest NCS type is: ", end=' ', file=out) print("\n SCORE CC OPERATORS SYMMETRY", file=out) if not ncs_info: ncs_info="" print(" %6.2f %5.2f %2d %s Best NCS type" %( score,cc_avg,ncs_obj.max_operators(), ncs_info.strip(),), file=out) return ncs_obj,cc_avg,score def optimize_center_position(map_data,sites_orth,crystal_symmetry, ncs_info,symmetry_center,ncs_obj,score,cc_avg, params=None, helical_rot_deg=None, two_fold_along_x=None, op_max=None, identify_ncs_id=None, ncs_obj_to_check=None, ncs_in_cell_only=None, min_ncs_cc=None, helical_trans_z_angstrom=None,out=sys.stdout): if ncs_info is None: ncs_info="None" symmetry=ncs_info.split()[0] print("Optimizing center position...type is %s" %(ncs_info), file=out) if len(ncs_info.split())>1 and ncs_info.split()[1]=='(a)': two_fold_along_x=True elif len(ncs_info.split())>1 and ncs_info.split()[1]=='(b)': two_fold_along_x=False else: two_fold_along_x=None best_center=matrix.col(symmetry_center) best_ncs_obj=ncs_obj best_score=score best_cc_avg=cc_avg print("Starting center: (%7.3f, %7.3f, %7.3f)" %(tuple(best_center)), file=out) from libtbx.utils import null_out scale=5. for itry in range(6): scale=scale/5. for i in range(-4,5): for j in range(-4,5): local_center=matrix.col(symmetry_center)+matrix.col((scale*i,scale*j,0.,)) ncs_list=get_ncs_list(params=params,symmetry=symmetry, symmetry_center=local_center, helical_rot_deg=helical_rot_deg, two_fold_along_x=two_fold_along_x, op_max=op_max, helical_trans_z_angstrom=helical_trans_z_angstrom, ncs_obj_to_check=ncs_obj_to_check, map_data=map_data, crystal_symmetry=crystal_symmetry, out=null_out(), ) if ncs_list: ncs_obj=ncs_list[0] score,cc_avg=score_ncs_in_map(map_data=map_data,ncs_object=ncs_obj, identify_ncs_id=identify_ncs_id, ncs_in_cell_only=ncs_in_cell_only, sites_orth=sites_orth,crystal_symmetry=crystal_symmetry,out=out) if cc_avg < min_ncs_cc: score=0. # Do not allow low CC values to be used else: ncs_obj=None score,cc_avg=None,None if best_score is None or score>best_score: best_cc_avg=cc_avg best_score=score best_center=local_center best_ncs_obj=ncs_obj symmetry_center=best_center cc_avg=best_cc_avg score=best_score ncs_obj=best_ncs_obj return best_center,best_cc_avg,best_score,best_ncs_obj def score_ncs_in_map_point_group_symmetry( map_data=None,ncs_object=None,sites_orth=None, crystal_symmetry=None,out=sys.stdout): ncs_group=ncs_object.ncs_groups()[0] all_value_lists=[] for c,t,r in zip(ncs_group.centers(), ncs_group.translations_orth(), ncs_group.rota_matrices()): new_sites_cart=flex.vec3_double() r_inv=r.inverse() for site in sites_orth: new_sites_cart.append(r_inv * (matrix.col(site) - t)) # get value at new_sites cart and make sure they are all the same... new_sites_fract=crystal_symmetry.unit_cell().fractionalize(new_sites_cart) values=flex.double() for site_fract in new_sites_fract: values.append(map_data.value_at_closest_grid_point(site_fract)) all_value_lists.append(values) return get_cc_among_value_lists(all_value_lists) def get_cc_among_value_lists(all_value_lists): a=all_value_lists[0] cc_avg=0. cc_low=None cc_n=0. for j in range(1,len(all_value_lists)): b=all_value_lists[j] cc=flex.linear_correlation(a,b).coefficient() cc_avg+=cc cc_n+=1. if cc_low is None or cc<cc_low: cc_low=cc cc_avg=cc_avg/max(1.,cc_n) if cc_n>0: import math return cc_low*math.sqrt(len(all_value_lists)),cc_avg else: return None,None def score_ncs_in_map(map_data=None,ncs_object=None,sites_orth=None, identify_ncs_id=None, ncs_in_cell_only=None, allow_score_with_pg=True, crystal_symmetry=None,out=sys.stdout): if not ncs_object or ncs_object.max_operators()<2: return None,None ncs_group=ncs_object.ncs_groups()[0] # don't use point-group symmetry if we have only some of the ops if allow_score_with_pg and ( (not identify_ncs_id) or ncs_group.is_point_group_symmetry()): return score_ncs_in_map_point_group_symmetry( map_data=map_data,ncs_object=ncs_object, sites_orth=sites_orth,crystal_symmetry=crystal_symmetry,out=out) # This version does not assume point-group symmetry: find the NCS # operator that maps each point on to all others the best, then save # that list of values identify_ncs_id_list=list(range(ncs_group.n_ncs_oper()))+[None] all_value_lists=[] if not sites_orth: sites_orth=get_points_in_map(map_data,n=100, minimum_fraction_of_max=0.05, crystal_symmetry=crystal_symmetry) for site in sites_orth: best_id=0 best_score=None best_values=None for site_ncs_id in identify_ncs_id_list: #last is real one if site_ncs_id is None: site_ncs_id=best_id real_thing=True else: real_thing=False if identify_ncs_id and site_ncs_id: local_site=ncs_group.rota_matrices()[site_ncs_id] * matrix.col(site) + \ ncs_group.translations_orth()[site_ncs_id] else: local_site=site new_sites_cart=flex.vec3_double() for c,t,r in zip(ncs_group.centers(), ncs_group.translations_orth(), ncs_group.rota_matrices()): r_inv=r.inverse() new_sites_cart.append(r_inv * (matrix.col(local_site) - t)) new_sites_fract=crystal_symmetry.unit_cell().fractionalize( new_sites_cart) values=flex.double() for site_frac in new_sites_fract: if (not ncs_in_cell_only) or ( site_frac[0]>=0 and site_frac[0]<=1 and \ site_frac[1]>=0 and site_frac[1]<=1 and \ site_frac[2]>=0 and site_frac[2]<=1): values.append(map_data.value_at_closest_grid_point(site_frac)) else: values.append(0.) score=values.standard_deviation_of_the_sample() if real_thing or (best_score is None or score < best_score): best_score=score best_id=site_ncs_id best_values=values all_value_lists.append(best_values) values_by_site_dict={} # all_value_lists[j][i] -> values_by_site_dict[i][j] # there are sites_orth.size() values of j # there are len(ncs_group_centers)==len(all_value_lists[0]) values of i for i in range(len(all_value_lists[0])): values_by_site_dict[i]=flex.double() # value_list[0][1] for j in range(sites_orth.size()): values_by_site_dict[i].append(all_value_lists[j][i]) new_all_values_lists=[] for i in range(len(all_value_lists[0])): new_all_values_lists.append(values_by_site_dict[i]) score,cc=get_cc_among_value_lists(new_all_values_lists) return score,cc def get_points_in_map(map_data,n=None, minimum_fraction_of_max=0., random_xyz=None, max_tries_ratio=100,crystal_symmetry=None): map_1d=map_data.as_1d() map_mean=map_1d.min_max_mean().mean map_max=map_1d.min_max_mean().max minimum_value=map_mean+minimum_fraction_of_max*(map_max-map_mean) points_list=flex.vec3_double() import random random.seed(1) nu,nv,nw=map_data.all() xyz_fract=crystal_symmetry.unit_cell().fractionalize( tuple((17.4,27.40128571,27.32985714,))) for i in range(int(max_tries_ratio*n)): # max tries ix=random.randint(0,nu-1) iy=random.randint(0,nv-1) iz=random.randint(0,nw-1) xyz_fract=matrix.col((ix/nu,iy/nv,iz/nw,)) value=map_data.value_at_closest_grid_point(xyz_fract) if value > minimum_value and value <map_max: if random_xyz: offset=[] for i in range(3): offset.append((random.random()-0.5)*2.*random_xyz) offset=crystal_symmetry.unit_cell().fractionalize(matrix.col(offset)) new_xyz_fract=[] for x,o in zip(xyz_fract,offset): new_xyz_fract.append(max(0,min(1,x+o))) xyz_fract=matrix.col(new_xyz_fract) points_list.append(xyz_fract) if points_list.size()>=n: break sites_orth=crystal_symmetry.unit_cell().orthogonalize(points_list) return sites_orth def get_ncs_list(params=None,symmetry=None, symmetry_center=None, helical_rot_deg=None, helical_trans_z_angstrom=None, op_max=None, two_fold_along_x=None, ncs_obj_to_check=None, crystal_symmetry=None, map_data=None, include_helical_symmetry=None, max_helical_ops_to_check=None, require_helical_or_point_group_symmetry=None, out=sys.stdout): # params.reconstruction_symmetry.require_helical_or_point_group_symmetry # params.reconstruction_symmetry.include_helical_symmetry): # params.reconstruction_symmetry.max_helical_ops_to_check)) if ncs_obj_to_check and ncs_obj_to_check.max_operators()>1: return [ncs_obj_to_check] # ,["SUPPLIED NCS"] from mmtbx.ncs.ncs import generate_ncs_ops ncs_list=generate_ncs_ops( symmetry=symmetry, helical_rot_deg=helical_rot_deg, helical_trans_z_angstrom=helical_trans_z_angstrom, op_max=op_max, two_fold_along_x=two_fold_along_x, include_helical_symmetry=\ params.reconstruction_symmetry.include_helical_symmetry, max_helical_ops_to_check=\ params.reconstruction_symmetry.max_helical_ops_to_check, require_helical_or_point_group_symmetry=\ params.reconstruction_symmetry.require_helical_or_point_group_symmetry, out=out) # Generate helical symmetry from map if necessary if symmetry.lower()=='helical' or ( symmetry.lower() in ['all','any'] and params.reconstruction_symmetry.include_helical_symmetry): if helical_rot_deg is None or helical_trans_z_angstrom is None: # returns ncs for symmetry_center at symmetry_center ncs_object,helical_rot_deg,helical_trans_z_angstrom=\ find_helical_symmetry(params=params, symmetry_center=symmetry_center, map_data=map_data, crystal_symmetry=crystal_symmetry,out=out) if ncs_object: ncs_name="Type: Helical %5.2f deg %6.2f Z-trans " %( helical_rot_deg,helical_trans_z_angstrom) ncs_object.set_ncs_name(ncs_name) ncs_list.append(ncs_object) if symmetry_center and tuple(symmetry_center) != (0,0,0,): print("Offsetting NCS center by (%.2f, %.2f, %.2f) A " %(tuple(symmetry_center)), file=out) new_list=[] for ncs_obj in ncs_list: new_list.append(ncs_obj.coordinate_offset(coordinate_offset=symmetry_center)) ncs_list=new_list if (require_helical_or_point_group_symmetry): for ncs_obj in ncs_list: assert ncs_obj.is_helical_along_z() or ncs_obj.is_point_group_symmetry() return ncs_list def find_helical_symmetry(params=None, symmetry_center=None, map_data=None, crystal_symmetry=None, max_z_to_test=2, max_peaks_to_score=5,out=sys.stdout): params=deepcopy(params) # so changing them does not go back if str(params.reconstruction_symmetry.score_basis)=='None': params.reconstruction_symmetry.score_basis='cc' if params.reconstruction_symmetry.smallest_object is None: params.reconstruction_symmetry.smallest_object=\ 5*params.crystal_info.resolution print("\nLooking for helical symmetry with center at (%.2f, %.2f, %.2f) A\n" %( tuple(symmetry_center)), file=out) print("\nFinding likely translations along z...", file=out) map_coeffs,dummy=get_f_phases_from_map(map_data=map_data, crystal_symmetry=crystal_symmetry, d_min=params.crystal_info.resolution, return_as_map_coeffs=True, out=out) f_array,phases=map_coeffs_as_fp_phi(map_coeffs) from cctbx.maptbx.refine_sharpening import quasi_normalize_structure_factors (d_max,d_min)=f_array.d_max_min() f_array.setup_binner(d_max=d_max,d_min=d_min,n_bins=20) normalized=quasi_normalize_structure_factors( f_array,set_to_minimum=0.01) # Now look along c* and get peaks zero_index_a=0 # look along c* zero_index_b=1 c_star_list=get_c_star_list(f_array=normalized, zero_index_a=zero_index_a, zero_index_b=zero_index_b) likely_z_translations=get_helical_trans_z_angstrom(params=params, c_star_list=c_star_list, crystal_symmetry=crystal_symmetry, out=out) # Now for each z...get the rotation. Try +/- z and try rotations abc=crystal_symmetry.unit_cell().parameters()[:3] max_z=max(abc[0],abc[1]) if params.reconstruction_symmetry.max_helical_rotations_to_check: min_delta_rot=360/max(1, params.reconstruction_symmetry.max_helical_rotations_to_check) else: min_delta_rot=0.01 delta_rot=max(min_delta_rot, (180./3.141659)*params.crystal_info.resolution/max_z) delta_z=params.crystal_info.resolution/4. print("\nOptimizing helical paramers:", file=out) print("\n Rot Trans Score CC", file=out) n_rotations=int(0.5+360/delta_rot) rotations=[] for k in range(1,n_rotations): helical_rot_deg=k*delta_rot if helical_rot_deg > 180: helical_rot_deg=helical_rot_deg-360 rotations.append(helical_rot_deg) done=False n_try=0 score_list=[] quick=params.control.quick best_ncs_cc=None best_ncs_obj=None best_score=None best_helical_trans_z_angstrom=None best_helical_rot_deg=None import math for helical_trans_z_angstrom in likely_z_translations[:max_z_to_test]: n_try+=1 if done: break for helical_rot_deg in rotations: if done: break if abs(helical_trans_z_angstrom)+abs(math.sin( helical_rot_deg*(3.14159/180.))*max_z) < \ params.reconstruction_symmetry.smallest_object: continue # this is identity new_ncs_obj,ncs_cc,ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=try_helical_params( optimize=0, helical_rot_deg=helical_rot_deg, helical_trans_z_angstrom=helical_trans_z_angstrom, params=params, map_data=map_data, map_symmetry_center=symmetry_center, # should not be needed XXX symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=null_out()) if not ncs_score: continue if ncs_cc> 0.95 or \ ncs_cc > 2*params.reconstruction_symmetry.min_ncs_cc or \ (quick and (ncs_cc> 0.90 or ncs_cc > 1.5*params.reconstruction_symmetry.min_ncs_cc)): print(" %.2f %.2f %.2f %.2f (ok to go on)" %( new_helical_rot_deg,new_helical_trans_z_angstrom, ncs_score,ncs_cc), file=out) done=True if params.control.verbose: print(" %.2f %.2f %.2f %.2f" %( new_helical_rot_deg,new_helical_trans_z_angstrom,ncs_score,ncs_cc), file=out) score_list.append( [ncs_score,ncs_cc,new_helical_rot_deg,new_helical_trans_z_angstrom]) score_list.sort() score_list.reverse() done=False for ncs_score,ncs_cc,helical_rot_deg,helical_trans_z_angstrom in \ score_list[:max_peaks_to_score]: if done: continue # rescore and optimize: new_ncs_obj,ncs_cc,ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=try_helical_params( params=params, best_score=best_score, helical_rot_deg=helical_rot_deg, helical_trans_z_angstrom=helical_trans_z_angstrom, delta_z=delta_z/2., delta_rot=delta_rot/2., map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=null_out()) if not ncs_score or ncs_score <0: continue if best_score is None or ncs_score>best_score: best_ncs_cc=ncs_cc best_ncs_obj=new_ncs_obj best_score=ncs_score best_helical_trans_z_angstrom=new_helical_trans_z_angstrom best_helical_rot_deg=new_helical_rot_deg # after trying out a range quit if good enough if best_ncs_cc> 0.90 or \ best_ncs_cc > 1.5*params.reconstruction_symmetry.min_ncs_cc or \ ( (quick or n_try>1) and \ ncs_cc>=params.reconstruction_symmetry.min_ncs_cc): print(" %.2f %.2f %.2f %.2f (high enough to go on)" %( best_helical_rot_deg,best_helical_trans_z_angstrom, best_score,best_ncs_cc), file=out) done=True # Optimize one more time trying fractional values, but only if # that makes the delta less than the resolution print("\nTrying fraction of rot/trans", file=out) for iter in [0,1]: if not best_helical_rot_deg: continue for ifract in range(2,11): if iter==0: # try fractional test_helical_rot_deg=best_helical_rot_deg/ifract test_helical_trans_z_angstrom=best_helical_trans_z_angstrom/ifract if test_helical_trans_z_angstrom > params.crystal_info.resolution*1.1: continue # skip it...would have been a peak if ok else: # iter >0 if ifract > 0: continue # skip these else: # optimize current best test_helical_rot_deg=best_helical_rot_deg test_helical_trans_z_angstrom=best_helical_trans_z_angstrom new_ncs_obj,new_ncs_cc,new_ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=\ try_helical_params( params=params, helical_rot_deg=test_helical_rot_deg, helical_trans_z_angstrom=test_helical_trans_z_angstrom, delta_z=delta_z/2., delta_rot=delta_rot/2., map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=out) if new_ncs_score is not None: new_ncs_score=new_ncs_score*\ params.reconstruction_symmetry.scale_weight_fractional_translation # give slight weight to smaller if best_score is None or new_ncs_score > best_score: best_ncs_cc=new_ncs_cc best_ncs_obj=new_ncs_obj best_score=new_ncs_score best_helical_trans_z_angstrom=new_helical_trans_z_angstrom best_helical_rot_deg=new_helical_rot_deg print(" %.2f %.2f %.2f %.2f (improved fractions)" %( best_helical_rot_deg,best_helical_trans_z_angstrom, best_score,best_ncs_cc), file=out) else: print(" %.2f %.2f %.2f %.2f (worse with fractions)" %( new_helical_rot_deg,new_helical_trans_z_angstrom, new_ncs_score,new_ncs_cc), file=out) # Optimize one more time trying multiples of values to get better param imult=int(0.5+ 0.33*max_z/params.reconstruction_symmetry.max_helical_ops_to_check) working_ncs_cc=best_ncs_cc working_ncs_obj=best_ncs_obj working_score=None if best_helical_rot_deg: working_helical_rot_deg=best_helical_rot_deg*imult working_helical_trans_z_angstrom=best_helical_trans_z_angstrom*imult else: working_helical_rot_deg=None working_helical_trans_z_angstrom=None imult=0 if imult > 1: print("\nTrying %sx multiples of rot/trans" %(imult), file=out) improved=False for iter in [1,2,3]: if iter > 1 and not improved: break improved=False new_ncs_obj,new_ncs_cc,new_ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=\ try_helical_params( params=params, helical_rot_deg=working_helical_rot_deg, helical_trans_z_angstrom=working_helical_trans_z_angstrom, delta_z=delta_z/(2.*iter), delta_rot=delta_rot/(2.*iter), map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=out) if new_ncs_score is not None: if working_score is None or new_ncs_score > working_score: working_ncs_cc=new_ncs_cc working_ncs_obj=new_ncs_obj working_score=new_ncs_score working_helical_trans_z_angstrom=new_helical_trans_z_angstrom working_helical_rot_deg=new_helical_rot_deg print(" %.2f %.2f %.2f %.2f (Scoring for multiple)" %( working_helical_rot_deg,working_helical_trans_z_angstrom, working_score,working_ncs_cc), file=out) # and rescore with this: working_helical_rot_deg=working_helical_rot_deg/imult working_helical_trans_z_angstrom=working_helical_trans_z_angstrom/imult for iter in [1,2,3]: new_ncs_obj,new_ncs_cc,new_ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=\ try_helical_params( params=params, helical_rot_deg=working_helical_rot_deg, helical_trans_z_angstrom=working_helical_trans_z_angstrom, delta_z=delta_z/(2.*iter), delta_rot=delta_rot/(2.*iter), map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=null_out()) if new_ncs_score is not None: working_ncs_obj,working_ncs_cc,working_ncs_score,\ working_helical_trans_z_angstrom,working_helical_rot_deg=\ new_ncs_obj,new_ncs_cc,new_ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg if best_score is None or working_ncs_score > best_score: if params.control.verbose: print("\nTaking parameters from multiples", file=out) best_ncs_cc=working_ncs_cc best_ncs_obj=working_ncs_obj best_score=working_ncs_score best_helical_trans_z_angstrom=working_helical_trans_z_angstrom best_helical_rot_deg=working_helical_rot_deg print(" %.2f %.2f %.2f %.2f (improved by multiples)" %( best_helical_rot_deg,best_helical_trans_z_angstrom, best_score,best_ncs_cc), file=out) improved=True working_ncs_cc=best_ncs_cc working_ncs_obj=best_ncs_obj working_score=None working_helical_trans_z_angstrom=best_helical_trans_z_angstrom*imult working_helical_rot_deg=best_helical_rot_deg*imult if best_helical_rot_deg and best_helical_trans_z_angstrom and best_score and best_ncs_cc: # Check to make sure there is no overlap print(" %.2f %.2f %.2f %.2f (Final)" %( best_helical_rot_deg,best_helical_trans_z_angstrom,\ best_score,best_ncs_cc), file=out) from mmtbx.ncs.ncs import get_helical_symmetry ncs_object=get_helical_symmetry( helical_rot_deg=best_helical_rot_deg, helical_trans_z_angstrom=best_helical_trans_z_angstrom, max_ops=params.reconstruction_symmetry.max_helical_ops_to_check) else: ncs_object=None return ncs_object,best_helical_rot_deg,best_helical_trans_z_angstrom def try_helical_params( optimize=None, best_score=None, delta_z=None, delta_rot=None, helical_rot_deg=None, helical_trans_z_angstrom=None, params=None, map_data=None, map_symmetry_center=None, symmetry_center=None, crystal_symmetry=None, out=sys.stdout): if delta_z is None or delta_rot is None: assert not optimize local_params=deepcopy(params) local_params.reconstruction_symmetry.min_ncs_cc=-100 local_params.reconstruction_symmetry.n_rescore=0 local_params.reconstruction_symmetry.symmetry='helical' local_params.reconstruction_symmetry.helical_rot_deg=helical_rot_deg local_params.reconstruction_symmetry.helical_trans_z_angstrom=\ helical_trans_z_angstrom abc=crystal_symmetry.unit_cell().parameters()[:3] max_z=max(abc[0],abc[1]) import math if abs(helical_trans_z_angstrom)+abs(math.sin( helical_rot_deg*(3.14159/180.))*max_z) < \ params.reconstruction_symmetry.smallest_object: return None,None,None,\ None,None best_helical_trans_z_angstrom,best_helical_rot_deg=\ helical_trans_z_angstrom,helical_rot_deg best_ncs_score=best_score best_ncs_obj=None best_ncs_cc=None test_ncs_obj,test_ncs_cc,test_ncs_score=get_ncs_from_map(params=local_params, map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=null_out()) if params.reconstruction_symmetry.score_basis=='cc': test_ncs_score=test_ncs_cc if best_ncs_score is None or test_ncs_score>best_ncs_score: best_ncs_score=test_ncs_score best_ncs_cc=test_ncs_cc best_ncs_obj=test_ncs_obj if optimize is None: optimize=params.reconstruction_symmetry.max_helical_optimizations # save in case we need to go back working_helical_trans_z_angstrom,working_helical_rot_deg=\ helical_trans_z_angstrom,helical_rot_deg working_ncs_score=best_ncs_score working_ncs_cc=best_ncs_cc working_ncs_obj=best_ncs_obj if optimize and (best_score is None or best_ncs_score > best_score): # try with few to many operators.. if params.control.verbose: print("\nOptimizing by varying number of operators", file=out) print("Starting score: %.2f" %(working_ncs_score), file=out) for k in range(optimize): local_params.reconstruction_symmetry.max_helical_ops_to_check=min(k+1, params.reconstruction_symmetry.max_helical_ops_to_check) best_score=None # start over for each number of operators for i in [0,-1,1]: for j in [0,-1,1]: new_ncs_obj,new_ncs_cc,new_ncs_score,\ new_helical_trans_z_angstrom,new_helical_rot_deg=try_helical_params( optimize=False, helical_rot_deg=max(0.1,best_helical_rot_deg+i*delta_rot), helical_trans_z_angstrom=max(0.01,best_helical_trans_z_angstrom+j*delta_z), delta_z=delta_z, delta_rot=delta_rot, params=params, map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=out) if new_ncs_score and new_ncs_score>0 and ( best_score is None or new_ncs_score>best_score): if params.control.verbose: print("Working score for %s ops: %.2f" %( local_params.reconstruction_symmetry.max_helical_ops_to_check, new_ncs_score), file=out) best_score=new_ncs_score best_ncs_score=new_ncs_score best_helical_trans_z_angstrom=new_helical_trans_z_angstrom best_helical_rot_deg=new_helical_rot_deg best_ncs_obj=new_ncs_obj best_ncs_cc=new_ncs_cc delta_rot=delta_rot/2 delta_z=delta_z/2 #rescore with what we now have (best values) and compare with working local_params.reconstruction_symmetry.max_helical_ops_to_check=\ params.reconstruction_symmetry.max_helical_ops_to_check if params.control.verbose: print("Rescoring with original number of operators (%s)" %( local_params.reconstruction_symmetry.max_helical_ops_to_check), file=out) local_params.reconstruction_symmetry.helical_rot_deg=best_helical_rot_deg local_params.reconstruction_symmetry.helical_trans_z_angstrom=\ best_helical_trans_z_angstrom best_ncs_obj,best_ncs_cc,best_ncs_score=get_ncs_from_map( params=local_params, map_data=map_data, map_symmetry_center=symmetry_center, symmetry_center=symmetry_center, crystal_symmetry=crystal_symmetry, out=null_out()) if params.reconstruction_symmetry.score_basis=='cc': best_ncs_score=best_ncs_cc # now take it if better if best_ncs_cc and best_ncs_cc>working_ncs_cc: if params.control.verbose: print("Using optimized values (%.2f > %.2f)" %( best_ncs_cc,working_ncs_cc), file=out) # keep these (best) else: if params.control.verbose: print("Rejecting optimized values (%.2f <= %.2f)" %( best_ncs_cc,working_ncs_cc), file=out) # resture working values best_helical_trans_z_angstrom,best_helical_rot_deg=\ working_helical_trans_z_angstrom,working_helical_rot_deg best_ncs_score=working_ncs_score best_ncs_obj=working_ncs_obj best_ncs_cc=working_ncs_cc if params.reconstruction_symmetry.score_basis=='cc': best_ncs_score=best_ncs_cc return best_ncs_obj,best_ncs_cc,best_ncs_score,\ best_helical_trans_z_angstrom,best_helical_rot_deg def get_d_and_value_list(c_star_list): d_list=[] from scitbx.array_family import flex value_list=flex.double() for hkl,value,d in c_star_list: d_list.append(d) value_list.append(value) max_value=value_list.min_max_mean().max if value_list.size()>3: max_value=value_list[2] new_d_list=[] new_value_list=[] for d,value in zip(d_list,value_list): if value < max_value/1000: # reject those that are really zero continue new_d_list.append(d) new_value_list.append(value) return new_d_list,new_value_list def get_helical_trans_z_angstrom(params=None, c_star_list=None,crystal_symmetry=None, minimum_ratio=2., max_first_peak=1,out=sys.stdout): # Find highest-resolution peak along c*...guess it is n*z_translation # where n is small max_z=flex.double(crystal_symmetry.unit_cell().parameters()[:3]).min_max_mean().max if params.control.verbose: print("Values along c*: ", file=out) d_list,value_list=get_d_and_value_list(c_star_list) for d,value in zip(d_list,value_list): if params.control.verbose: print(" %.2f A : %.2f " %(d,value), file=out) d_list,value_list=get_max_min_list( d_list=d_list,value_list=value_list,minimum_ratio=1.0) d_list,value_list=get_max_min_list( d_list=d_list,value_list=value_list,minimum_ratio=2.0, maximum_only=True) sort_list=[] for d,value in zip(d_list,value_list): sort_list.append([value,d]) sort_list.sort() sort_list.reverse() likely_z_translations=[] dis_min=params.crystal_info.resolution/4 for value,d in sort_list: likely_z_translations_local=[] for i in range(1,max_first_peak+1): z=d/i if z > max_z: continue if z < dis_min: continue # no way if is_close_to_any(z=z,others=likely_z_translations, dis_min=dis_min): continue likely_z_translations_local.append(z) likely_z_translations.append(z) print("\nMaximal values along c* and likely z-translations: ", file=out) for z in likely_z_translations: print(" %.2f A " %(z), end=' ', file=out) print(file=out) return likely_z_translations def small_deltas(z_translations,dis_min=None): delta_list=[] for z,z1 in zip(z_translations,z_translations[1:]): delta=abs(z-z1) if not is_close_to_any(z=delta,others=z_translations+delta_list, dis_min=dis_min): delta_list.append(abs(delta)) return delta_list def is_close_to_any(z=None,others=None, dis_min=None): for x in others: if abs(x-z)<dis_min: return True return False def get_max_min_list(d_list=None,value_list=None, minimum_ratio=None,maximum_only=False): max_min_list=[] max_min_d_list=[] for value_prev,d_prev, \ value,d, \ value_next,d_next in zip( value_list+[0,0], d_list+[0,0], [0]+value_list+[0], [0]+d_list+[0], [0,0]+value_list, [0,0]+d_list): if d and ( value >= value_prev *minimum_ratio) and ( value >= value_next*minimum_ratio): # local max max_min_list.append(value) max_min_d_list.append(d) if (not maximum_only) and d and ( value <= value_prev ) and ( value <= value_next): # local min max_min_list.append(value) max_min_d_list.append(d) return max_min_d_list,max_min_list def get_c_star_list(f_array=None, zero_index_a=0,zero_index_b=1,zero_index_c=2): c_star_list=[] for value,(indices,d) in zip(f_array.data(), f_array.d_spacings()): if indices[zero_index_a]==0 and indices[zero_index_b]==0 and \ indices[zero_index_c] >=4: c_star_list.append([tuple(indices),value,d]) c_star_list.sort() return c_star_list def get_params_from_args(args): command_line = iotbx.phil.process_command_line_with_files( map_file_def="input_files.map_file", seq_file_def="input_files.seq_file", pdb_file_def="input_files.pdb_in", ncs_file_def="input_files.ncs_file", args=args, master_phil=master_phil) return command_line.work.extract() def get_mask_around_molecule(map_data=None, wang_radius=None, buffer_radius=None, return_masked_fraction=False, minimum_fraction_of_max=0.01, solvent_content=None, solvent_content_iterations=None, crystal_symmetry=None, out=sys.stdout): # use iterated solvent fraction tool to identify mask around molecule try: from phenix.autosol.map_to_model import iterated_solvent_fraction solvent_fraction,mask=iterated_solvent_fraction( crystal_symmetry=crystal_symmetry, wang_radius=wang_radius, solvent_content=solvent_content, solvent_content_iterations=solvent_content_iterations, map_as_double=map_data, out=out) except Exception as e: print("No mask obtained...", file=out) return None,None if not mask: print("No mask obtained...", file=out) return None,None # Now expand the mask to increase molecular region expand_size=estimate_expand_size( crystal_symmetry=crystal_symmetry, map_data=map_data, expand_target=buffer_radius, out=out) print("Target mask expand size is %d based on buffer_radius of %7.1f A" %( expand_size,buffer_radius), file=out) co,sorted_by_volume,min_b,max_b=get_co(map_data=mask, threshold=0.5,wrapping=False) masked_fraction=sorted_by_volume[1][0]/mask.size() bool_region_mask = co.expand_mask(id_to_expand=sorted_by_volume[1][1], expand_size=expand_size) s=(bool_region_mask==True) expanded_fraction=s.count(True)/s.size() print("\nLargest masked region before buffering: %7.2f" %(masked_fraction), file=out) print("\nLargest masked region after buffering: %7.2f" %(expanded_fraction), file=out) if solvent_content: delta_as_is=abs(solvent_content- (1-masked_fraction)) delta_expanded=abs(solvent_content- (1-expanded_fraction)) if delta_expanded > delta_as_is: # already there expand_size=0 print ("Setting expand size to zero as masked fraction already ", "close to solvent_content",file=out) s=None minimum_size=sorted_by_volume[1][0] * minimum_fraction_of_max if expand_size==0: result=co.result() else: result=None for v1,i1 in sorted_by_volume[1:]: if v1 < minimum_size: break if expand_size > 0: bool_region_mask = co.expand_mask( id_to_expand=i1, expand_size=expand_size) else: bool_region_mask=(result==i1) if s is None: s = (bool_region_mask==True) else: s |= (bool_region_mask==True) mask.set_selected(s,1) mask.set_selected(~s,0) masked_fraction=mask.count(1)/mask.size() print("Masked fraction after buffering: %7.2f" %(masked_fraction), file=out) if return_masked_fraction: return mask.as_double(),1-masked_fraction else: # usual return solvent fraction estimate return mask.as_double(),solvent_fraction # This is solvent fraction est. def get_mean_in_and_out(sel=None, map_data=None, verbose=False, out=sys.stdout): mean_value_in,fraction_in=get_mean_in_or_out(sel=sel, map_data=map_data, out=out) mean_value_out,fraction_out=get_mean_in_or_out(sel= ~sel, map_data=map_data, out=out) if mean_value_out is None: mean_value_out=mean_value_in if mean_value_in is None: mean_value_in=mean_value_out if verbose: print("\nMean inside mask: %7.2f Outside mask: %7.2f Fraction in: %7.2f" %( mean_value_in,mean_value_out,fraction_in), file=out) return mean_value_in,mean_value_out,fraction_in def get_mean_in_or_out(sel=None, map_data=None, out=sys.stdout): masked_map=map_data.deep_copy() masked_map.set_selected(~sel,0) mean_after_zeroing_in_or_out=masked_map.as_1d().min_max_mean().mean masked_map.set_selected(sel,1) fraction_in_or_out=masked_map.as_1d().min_max_mean().mean if fraction_in_or_out >1.e-10: mean_value=mean_after_zeroing_in_or_out/fraction_in_or_out else: mean_value=None return mean_value,fraction_in_or_out def apply_soft_mask(map_data=None, mask_data=None, rad_smooth=None, crystal_symmetry=None, set_outside_to_mean_inside=False, set_mean_to_zero=False, threshold=0.5, verbose=False, out=sys.stdout): # apply a soft mask based on mask_data to map_data. # set value outside mask==mean value inside mask or mean value outside mask s = mask_data > threshold # s marks inside mask # get mean inside or outside mask if verbose: print("\nStarting map values inside and outside mask:", file=out) mean_value_in,mean_value_out,fraction_in=get_mean_in_and_out(sel=s, verbose=verbose,map_data=map_data, out=out) if verbose: print("\nMask inside and outside values", file=out) mask_mean_value_in,mask_mean_value_out,mask_fraction_in=get_mean_in_and_out( sel=s,map_data=mask_data, verbose=verbose,out=out) # Smooth the mask in place. First make it a binary mask mask_data = mask_data.set_selected(~s, 0) # outside mask==0 mask_data = mask_data.set_selected( s, 1) if mask_data.count(1) and mask_data.count(0): # something to do if verbose: print("Smoothing mask...", file=out) maptbx.unpad_in_place(map=mask_data) mask_data = maptbx.smooth_map( map = mask_data, crystal_symmetry = crystal_symmetry, rad_smooth = rad_smooth) # Make sure that mask_data max value is now 1, scale if not max_mask_data_value=mask_data.as_1d().min_max_mean().max if max_mask_data_value > 1.e-30 and max_mask_data_value!=1.0: mask_data=mask_data*(1./max_mask_data_value) if verbose: print("Scaling mask by %.2f to yield maximum of 1.0 " %( 1./max_mask_data_value), file=out) else: if verbose: print("Not smoothing mask that is a constant...", file=out) if verbose: print("\nSmoothed mask inside and outside values", file=out) smoothed_mean_value_in,smoothed_mean_value_out,smoothed_fraction_in=\ get_mean_in_and_out(sel=s,map_data=mask_data, verbose=verbose,out=out) # Now replace value outside mask with mean_value, value inside with current, # smoothly going from one to the other based on mask_data # set_to_mean will be a constant map with value equal to inside or outside if set_outside_to_mean_inside or mean_value_out is None: target_value_for_outside=mean_value_in if verbose: print("Setting value outside mask to mean inside (%.2f)" %( target_value_for_outside), file=out) else: target_value_for_outside=mean_value_out if verbose: print("Setting value outside mask to mean outside (%.2f)" %( target_value_for_outside), file=out) set_to_mean=mask_data.deep_copy() ss = set_to_mean > -1.e+30 # select everything set_to_mean.set_selected(ss, target_value_for_outside) masked_map= (map_data * mask_data ) + (set_to_mean * (1-mask_data)) if set_mean_to_zero: # remove average masked_map=masked_map - masked_map.as_1d().min_max_mean().mean if verbose: print("\nFinal mean value inside and outside mask:", file=out) mean_value_in,mean_value_out,fraction_in=get_mean_in_and_out(sel=s, map_data=masked_map, verbose=verbose,out=out) return masked_map,mask_data def estimate_expand_size( crystal_symmetry=None, map_data=None, expand_target=None, out=sys.stdout): abc = crystal_symmetry.unit_cell().parameters()[:3] N_ = map_data.all() nn=0. for i in range(3): delta=abc[i]/N_[i] nn+=expand_target/delta nn=max(1,int(0.5+nn/3.)) print("Expand size (grid units): %d (about %4.1f A) " %( nn,nn*abc[0]/N_[0]), file=out) return max(1,nn) def get_max_z_range_for_helical_symmetry(params,out=sys.stdout): if not params.input_files.ncs_file: return ncs_obj,dummy_tracking_data=get_ncs(params=params,out=out) if not ncs_obj.is_helical_along_z(): return if params.map_modification.restrict_z_distance_for_helical_symmetry: #take it return params.map_modification.restrict_z_distance_for_helical_symmetry if not params.map_modification.restrict_z_turns_for_helical_symmetry: return print("Identifying maximum z-range for helical symmetry", file=out) print("Maximum of %7.1f turns up and down in Z allowed..." %( params.map_modification.restrict_z_turns_for_helical_symmetry), file=out) r,t=ncs_obj.ncs_groups()[0].helix_rt_forwards() cost=r[0] sint=r[1] import math theta=abs(180.*math.atan2(sint,cost)/3.14159) trans=abs(t) pitch=trans*360./max(0.1,theta) max_z=params.map_modification.restrict_z_turns_for_helical_symmetry*pitch print("Z-values restricted to +/- %7.1f A" %(max_z), file=out) print("\nRunning map-box once to get position of molecule, again to"+\ " apply\n Z restriction\n", file=out) return max_z def dist(x,y): dd=0. for a,b in zip(x,y): dd+=(a-b)**2 return dd**0.5 def get_ncs_closest_sites( closest_sites=None, sites_cart=None, used_ncs_id_list=None, box_ncs_object=None, box_crystal_symmetry=None, out=sys.stdout): # try to find NCS ops mapping sites_cart close to closest_sites best_id=None best_rms=None best_sites=closest_sites.deep_copy() for ncs_id in range(box_ncs_object.max_operators()): if ncs_id in used_ncs_id_list: continue test_sites=closest_sites.deep_copy() ncs_sites_cart=get_ncs_sites_cart(sites_cart=sites_cart, ncs_obj=box_ncs_object,unit_cell=box_crystal_symmetry.unit_cell(), ncs_id=ncs_id, ncs_in_cell_only=False) test_sites.extend(ncs_sites_cart) rms=radius_of_gyration_of_vector(test_sites) if best_rms is None or rms < best_rms: best_rms=rms best_ncs_id=ncs_id best_sites=test_sites.deep_copy() used_ncs_id_list.append(best_ncs_id) return best_sites,used_ncs_id_list def get_closest_sites( high_points=None, sites_cart=None, box_ncs_object=None, box_crystal_symmetry=None, out=sys.stdout): if not box_ncs_object.is_point_group_symmetry() and not \ box_ncs_object.is_helical_along_z(): # extract point_group symmetry if present and box_ncs_object doesn't have it print("Trying to extract point-group symmetry from box_ncs_object "+\ "with %d ops" %( box_ncs_object.max_operators()), file=out) ncs_object=box_ncs_object.deep_copy(extract_point_group_symmetry=True) if ncs_object: print("New number of operators satisfying point-group symmetry: %d" %( ncs_object.max_operators()), file=out) box_ncs_object=ncs_object else: print("No point-group symmetry found", file=out) ncs_copies=box_ncs_object.max_operators() closest_sites=high_points from scitbx.matrix import col for id in range(sites_cart.size()): local_sites_cart=sites_cart[id:id+1] local_sites_cart.extend(get_ncs_sites_cart(sites_cart=local_sites_cart, ncs_obj=box_ncs_object,unit_cell=box_crystal_symmetry.unit_cell(), ncs_in_cell_only=True)) if local_sites_cart.size() <ncs_copies: continue # some were out of range xx=col((0.,0.,0.,)) for site in closest_sites: xx+=col(site) xx=xx/max(1,closest_sites.size()) target=flex.vec3_double() target.append(xx) dd,id1,id2=target.min_distance_between_any_pair_with_id( local_sites_cart) best_points=local_sites_cart[id2:id2+1] closest_sites.extend(best_points) return closest_sites[1:] def get_range(sites=None,unit_cell=None,map_data=None, boundary_tolerance=None,out=sys.stdout): x_values=flex.double() y_values=flex.double() z_values=flex.double() for site_cart in sites: (x,y,z)=tuple(site_cart) x_values.append(x) y_values.append(y) z_values.append(z) x_min_max_mean=x_values.min_max_mean() x_min=x_min_max_mean.min x_max=x_min_max_mean.max y_min_max_mean=y_values.min_max_mean() y_min=y_min_max_mean.min y_max=y_min_max_mean.max z_min_max_mean=z_values.min_max_mean() z_min=z_min_max_mean.min z_max=z_min_max_mean.max print("\nRange for box:", file=out) print(" X Y Z", file=out) print(" LOW: %7.1f %7.1f %7.1f " %(tuple([x_min,y_min,z_min])), file=out) print(" HIGH: %7.1f %7.1f %7.1f \n" %(tuple([x_max,y_max,z_max])), file=out) # move to 0, 1 if near ends if x_min<=boundary_tolerance: x_min=0. if y_min<=boundary_tolerance: y_min=0. if z_min<=boundary_tolerance: z_min=0. a,b,c,al,bet,gam=unit_cell.parameters() if x_min>=a-boundary_tolerance: x_min=a if y_min>=b-boundary_tolerance: y_min=b if z_min>=c-boundary_tolerance: z_min=c print("\nAdjusted range for box:", file=out) print(" X Y Z", file=out) print(" LOW: %7.1f %7.1f %7.1f " %(tuple([x_min,y_min,z_min])), file=out) print(" HIGH: %7.1f %7.1f %7.1f \n" %(tuple([x_max,y_max,z_max])), file=out) nx,ny,nz=map_data.all() # convert to grid units i_min=max(0,min(nx,int(0.5+nx*x_min/a))) j_min=max(0,min(ny,int(0.5+ny*y_min/b))) k_min=max(0,min(nz,int(0.5+nz*z_min/c))) i_max=max(0,min(nx,int(0.5+nx*x_max/a))) j_max=max(0,min(ny,int(0.5+ny*y_max/b))) k_max=max(0,min(nz,int(0.5+nz*z_max/c))) lower_bounds=[i_min,j_min,k_min] upper_bounds=[i_max,j_max,k_max] print("\nGrid bounds for box:", file=out) print(" X Y Z", file=out) print(" LOW: %7d %7d %7d " %(tuple([i_min,j_min,k_min])), file=out) print(" HIGH: %7d %7d %7d \n" %(tuple([i_max,j_max,k_max])), file=out) return lower_bounds,upper_bounds def get_bounds_for_au_box(params, box=None,out=sys.stdout): # Try to get bounds for a box that include one au if not box.ncs_object or box.ncs_object.max_operators()<2: return None,None,None box_ncs_object=box.ncs_object box_map_data=box.map_box box_crystal_symmetry=box.box_crystal_symmetry random_points=10*params.reconstruction_symmetry.random_points sites_cart=get_points_in_map(box_map_data,n=random_points, minimum_fraction_of_max=params.segmentation.density_select_threshold, random_xyz=params.crystal_info.resolution*2., crystal_symmetry=box_crystal_symmetry) assert sites_cart.size() >0 # apply symmetry to sites_orth and see where the molecule is ncs_sites_cart=get_ncs_sites_cart(sites_cart=sites_cart, ncs_obj=box_ncs_object,unit_cell=box_crystal_symmetry.unit_cell(), ncs_in_cell_only=True) # generate this in a lower-memory way XXX low_res_map_data=get_low_res_map_data(sites_cart=ncs_sites_cart, d_min=params.crystal_info.resolution*7., crystal_symmetry=box_crystal_symmetry, out=out) high_points=get_high_points_from_map( # actually returns just one. map_data=low_res_map_data, unit_cell=box_crystal_symmetry.unit_cell(),out=out) from scitbx.matrix import col high_points=high_points[0:1] cutout_center=col(high_points[0]) print("Center of box will be near (%7.1f,%7.1f,%7.1f)" %( tuple(cutout_center))) # now figure out box that contains at least one copy of each ncs-related # point. # Find closest ncs-related points for each unique random point to this # center. Starting box is the box that contains all of these. closest_sites=get_closest_sites( high_points=high_points, sites_cart=sites_cart, box_ncs_object=box_ncs_object, box_crystal_symmetry=box_crystal_symmetry, out=out) if not closest_sites or closest_sites.size()<1: print("\nNo sites representing au of map found...skipping au box\n", file=out) return None,None,None print("\nTotal of %d sites representing 1 au found" %( closest_sites.size()), file=out) # write out closest_sites to match original position coordinate_offset=-1*matrix.col(box.shift_cart) write_atoms(file_name='one_au.pdb', crystal_symmetry=box_crystal_symmetry,sites=closest_sites+coordinate_offset) unique_closest_sites=closest_sites.deep_copy() # Now if desired, find NCS-related groups of sites if params.segmentation.n_au_box >1: print("\nFinding up to %d related au" %(params.segmentation.n_au_box), file=out) print("Starting RMSD of sites: %7.1f A " %( radius_of_gyration_of_vector(closest_sites)), file=out) sites_orig=closest_sites.deep_copy() used_ncs_id_list=[box_ncs_object.ncs_groups()[0].identity_op_id()] for i in range(params.segmentation.n_au_box-1): closest_sites,used_ncs_id_list=get_ncs_closest_sites( used_ncs_id_list=used_ncs_id_list, closest_sites=closest_sites, sites_cart=sites_orig, box_ncs_object=box_ncs_object, box_crystal_symmetry=box_crystal_symmetry, out=out) print("\nNew total of %d sites representing %d au found" %( closest_sites.size(),params.segmentation.n_au_box), file=out) print("New rmsd: %7.1f A " %( radius_of_gyration_of_vector(closest_sites)), file=out) lower_bounds,upper_bounds=get_range( sites=closest_sites,map_data=box_map_data, boundary_tolerance=params.crystal_info.resolution, unit_cell=box_crystal_symmetry.unit_cell(), out=out) return lower_bounds,upper_bounds,unique_closest_sites+coordinate_offset def get_low_res_map_data(sites_cart=None, crystal_symmetry=None, d_min=None, out=sys.stdout): from cctbx import xray xrs,scatterers=set_up_xrs(crystal_symmetry=crystal_symmetry) unit_cell=crystal_symmetry.unit_cell() sites_fract=unit_cell.fractionalize(sites_cart) for xyz_fract in sites_fract: scatterers.append( xray.scatterer(scattering_type="H", label="H", site=xyz_fract, u=0, occupancy=1.0)) xrs = xray.structure(xrs, scatterers=scatterers) # generate f_array to d_min with xrs f_array= xrs.structure_factors(d_min=d_min, anomalous_flag=False).f_calc() weight_f_array=f_array.structure_factors_from_scatterers( algorithm = 'direct', xray_structure = xrs).f_calc() return get_map_from_map_coeffs(map_coeffs=weight_f_array, crystal_symmetry=crystal_symmetry) def get_bounds_for_helical_symmetry(params, box=None,crystal_symmetry=None): original_cell=box.map_data.all() new_cell=box.map_box.all() z_first=box.gridding_first[2] z_last=box.gridding_last[2] assert z_last>=z_first z_middle=(z_first+z_last)//2 delta_z=crystal_symmetry.unit_cell().parameters()[5]/box.map_data.all()[2] n_z_max= int(0.5+ params.map_modification.restrict_z_distance_for_helical_symmetry/delta_z) new_z_first=max(z_first,z_middle-n_z_max) new_z_last=min(z_last,z_middle+n_z_max) lower_bounds=deepcopy(box.gridding_first) upper_bounds=deepcopy(box.gridding_last) lower_bounds[2]=new_z_first upper_bounds[2]=new_z_last return lower_bounds,upper_bounds def check_memory(map_data,ratio_needed,maximum_fraction_to_use=0.90, maximum_map_size=1, out=sys.stdout): map_size=map_data.size()/(1024*1024*1024) if maximum_map_size and map_size>maximum_map_size: raise Sorry("Maximum map size for this tool is %s GB" %(maximum_map_size)) needed_memory=ratio_needed*map_size from libtbx.utils import guess_total_memory # returns total memory bytes_total_memory=guess_total_memory() if bytes_total_memory: total_memory=bytes_total_memory/(1024*1024*1024) else: total_memory=None print("\nMap size is " +\ "%.2f GB. This will require about %.1f GB of memory" %( map_size,needed_memory) +"\nfor this stage of analysis\n", file=out) if total_memory: print("Total memory on this computer is about %.1f GB." %( total_memory), file=out) if (needed_memory>= 0.5* total_memory): print("\n ** WARNING: It is possible that this computer may not"+\ " have **\n *** sufficient memory to complete this job. ***\n", file=out) if (needed_memory >= maximum_fraction_to_use*total_memory): raise Sorry("This computer does not have sufficient "+ "memory (%.0f GB needed) \nto run this job" %(needed_memory)) def get_params(args,map_data=None,crystal_symmetry=None, half_map_data_list=None, sharpening_target_pdb_inp=None, ncs_object=None, sequence=None, out=sys.stdout): params=get_params_from_args(args) print("\nSegment_and_split_map\n", file=out) print("Command used: %s\n" %( " ".join(['segment_and_split_map']+args)), file=out) master_params.format(python_object=params).show(out=out) # Set space-group defaults if params.crystal_info.use_sg_symmetry: if params.map_modification.restrict_map_size is None: params.map_modification.restrict_map_size=False if params.crystal_info.is_crystal is None: params.crystal_info.is_crystal=True else: if params.map_modification.restrict_map_size is None: params.map_modification.restrict_map_size=True if params.crystal_info.is_crystal is None: params.crystal_info.is_crystal=False # Turn off files if desired if params.control.write_files is False: params.output_files.magnification_map_file=None params.output_files.magnification_map_file = None params.output_files.magnification_ncs_file = None params.output_files.shifted_map_file = None params.output_files.shifted_sharpened_map_file = None params.output_files.sharpened_map_file = None params.output_files.shifted_pdb_file = None params.output_files.shifted_ncs_file = None params.output_files.shifted_used_ncs_file = None params.output_files.box_map_file = None params.output_files.box_mask_file = None params.output_files.write_output_maps = False params.output_files.remainder_map_file = None params.output_files.output_info_file = None params.output_files.restored_pdb = None params.output_files.output_weight_map_pickle_file = None from cctbx.maptbx.auto_sharpen import set_sharpen_params params=set_sharpen_params(params,out) if params.input_files.seq_file and not params.crystal_info.sequence and \ not sequence: if not params.crystal_info.sequence: if sequence: params.crystal_info.sequence=sequence else: params.crystal_info.sequence=open(params.input_files.seq_file).read() print("Read sequence from %s" %(params.input_files.seq_file), file=out) if not params.crystal_info.resolution and ( params.map_modification.b_iso is not None or \ params.map_modification.auto_sharpen or params.map_modification.resolution_dependent_b or params.map_modification.b_sharpen): raise Sorry("Need resolution for segment_and_split_map with sharpening") if params.map_modification.auto_sharpen and ( params.map_modification.b_iso is not None or params.map_modification.b_sharpen is not None or params.map_modification.resolution_dependent_b is not None): print("Turning off auto_sharpen as it is not compatible with "+\ "b_iso, \nb_sharpen, or resolution_dependent_b", file=out) params.map_modification.auto_sharpen=False if params.control.write_files and \ params.output_files.output_directory and \ (not os.path.isdir(params.output_files.output_directory)): os.mkdir(params.output_files.output_directory) if not params.output_files.output_directory: params.output_files.output_directory="" # Test to see if we can use adjusted_sa as target and use box_map with it if (params.map_modification.residual_target=='adjusted_sa' or params.map_modification.sharpening_target=='adjusted_sa') and \ (params.map_modification.box_in_auto_sharpen or params.map_modification.density_select_in_auto_sharpen): print("Checking to make sure we can use adjusted_sa as target...", end=' ', file=out) try: from phenix.autosol.map_to_model import iterated_solvent_fraction except Exception as e: raise Sorry("Please either set box_in_auto_sharpen=False and "+ "\ndensity_select_in_auto_sharpen=False or \n"+\ "set residual_target=kurtosis and sharpening_target=kurtosis") print("OK", file=out) if not half_map_data_list: half_map_data_list=[] if params.input_files.info_file: map_data=None pdb_hierarchy=None from libtbx import easy_pickle print("Loading tracking data from %s" %( params.input_files.info_file), file=out) tracking_data=easy_pickle.load(params.input_files.info_file) return params,map_data,half_map_data_list,pdb_hierarchy,tracking_data,None else: tracking_data=info_object() tracking_data.set_params(params) # PDB file if params.input_files.pdb_file: print("\nInput PDB file to be used to identify region to work with: %s\n" %( params.input_files.pdb_file), file=out) pdb_inp = iotbx.pdb.input(file_name=params.input_files.pdb_file) pdb_hierarchy = pdb_inp.construct_hierarchy() pdb_atoms = pdb_hierarchy.atoms() pdb_atoms.reset_i_seq() tracking_data.set_input_pdb_info(file_name=params.input_files.pdb_file, n_residues=pdb_hierarchy.overall_counts().n_residues) else: pdb_hierarchy=None if map_data: pass # ok elif params.input_files.map_file: from iotbx import mrcfile ccp4_map=iotbx.mrcfile.map_reader( file_name=params.input_files.map_file) if not crystal_symmetry: crystal_symmetry=ccp4_map.crystal_symmetry() # 2018-07-18 tracking_data.set_full_crystal_symmetry( crystal.symmetry(ccp4_map.unit_cell().parameters(), ccp4_map.space_group_number)) tracking_data.set_full_unit_cell_grid(ccp4_map.unit_cell_grid) map_data=ccp4_map.data.as_double() else: raise Sorry("Need ccp4 map") if not crystal_symmetry: raise Sorry("Need crystal_symmetry") if params.input_files.half_map_file: if len(params.input_files.half_map_file) != 2: raise Sorry("Please supply none or two half_map_file values") from iotbx import mrcfile half_map_data_list=[] half_map_data_list.append(iotbx.mrcfile.map_reader( file_name=params.input_files.half_map_file[0]).data.as_double()) half_map_data_list.append(iotbx.mrcfile.map_reader( file_name=params.input_files.half_map_file[1]).data.as_double()) # Get the NCS object ncs_obj,dummy_tracking_data=get_ncs(params=params, ncs_object=ncs_object,out=out) if (not params.map_modification.auto_sharpen or params.map_modification.b_iso is not None) and ( not params.crystal_info.molecular_mass and not params.crystal_info.solvent_content and not params.input_files.seq_file and not params.crystal_info.sequence and not sequence): params.crystal_info.solvent_content=get_iterated_solvent_fraction( crystal_symmetry=crystal_symmetry, verbose=params.control.verbose, resolve_size=params.control.resolve_size, mask_padding_fraction=\ params.segmentation.mask_padding_fraction, fraction_of_max_mask_threshold=\ params.segmentation.fraction_of_max_mask_threshold, cell_cutoff_for_solvent_from_mask=\ params.segmentation.cell_cutoff_for_solvent_from_mask, mask_resolution=params.crystal_info.resolution, map=map_data, out=out) if params.crystal_info.solvent_content: print("Estimated solvent content: %.2f" %( params.crystal_info.solvent_content), file=out) else: raise Sorry("Unable to estimate solvent content...please supply "+ "solvent_content \nor molecular_mass") if params.map_modification.auto_sharpen or \ params.map_modification.b_iso is not None or \ params.map_modification.b_sharpen is not None or \ params.map_modification.resolution_dependent_b is not None: # Sharpen the map print("Auto-sharpening map before using it", file=out) local_params=deepcopy(params) if tracking_data.solvent_fraction: # XXX was previously always done but may not have been set local_params.crystal_info.solvent_content=tracking_data.solvent_fraction from cctbx.maptbx.auto_sharpen import run as auto_sharpen acc=map_data.accessor() map_data,new_map_coeffs,new_crystal_symmetry,new_si=auto_sharpen( args=[],params=local_params, map_data=map_data, crystal_symmetry=crystal_symmetry, write_output_files=False, pdb_inp=sharpening_target_pdb_inp, ncs_obj=ncs_obj, return_map_data_only=False, return_unshifted_map=True, half_map_data_list=half_map_data_list, n_residues=tracking_data.n_residues, ncs_copies=ncs_obj.max_operators(), out=out) tracking_data.b_sharpen=new_si.b_sharpen if not tracking_data.solvent_fraction: tracking_data.solvent_fraction=new_si.solvent_fraction if tracking_data.params.output_files.sharpened_map_file: sharpened_map_file=os.path.join( tracking_data.params.output_files.output_directory, tracking_data.params.output_files.sharpened_map_file) sharpened_map_data=map_data.deep_copy() if acc is not None: # offset the map to match original if possible sharpened_map_data.reshape(acc) print("Gridding of sharpened map:", file=out) print("Origin: ",sharpened_map_data.origin(), file=out) print("All: ",sharpened_map_data.all(), file=out) print("\nWrote sharpened map in original location with "+\ "origin at %s\nto %s" %( str(sharpened_map_data.origin()),sharpened_map_file), file=out) # NOTE: original unit cell and grid write_ccp4_map(tracking_data.full_crystal_symmetry, sharpened_map_file,sharpened_map_data, output_unit_cell_grid=tracking_data.full_unit_cell_grid,) params.input_files.map_file=sharpened_map_file # overwrite map_file name here # done with any sharpening params.map_modification.auto_sharpen=False# so we don't do it again later params.map_modification.b_iso=None params.map_modification.b_sharpen=None params.map_modification.resolution_dependent_b=None if params.control.sharpen_only: print("Stopping after sharpening", file=out) return # check on size right away if params.control.memory_check: # map_box and mask generation use about 50GB of memory for # map with 1 billion elements check_memory(map_data=map_data,maximum_map_size=None, ratio_needed=50,out=out) if params.map_modification.magnification and \ params.map_modification.magnification!=1.0: print("\nAdjusting magnification by %7.3f\n" %( params.map_modification.magnification), file=out) if ncs_obj: # Magnify ncs print("NCS before applying magnification...", file=out) ncs_obj.format_all_for_group_specification(out=out) ncs_obj=ncs_obj.adjust_magnification( magnification=params.map_modification.magnification) if params.output_files.magnification_ncs_file: file_name=os.path.join(params.output_files.output_directory, params.output_files.magnification_ncs_file) print("Writing NCS after magnification of %7.3f to %s" %( params.map_modification.magnification,file_name), file=out) ncs_obj.format_all_for_group_specification(out=out) ncs_obj.format_all_for_group_specification(file_name=file_name) params.input_files.ncs_file=file_name else: raise Sorry("Need magnification_ncs_file defined if magnification is"+ " applied \nto input NCS file") # Magnify map shrunk_uc = [] for i in range(3): shrunk_uc.append( crystal_symmetry.unit_cell().parameters()[i] * params.map_modification.magnification ) uc_params=crystal_symmetry.unit_cell().parameters() from cctbx import uctbx new_unit_cell=uctbx.unit_cell( parameters=(shrunk_uc[0],shrunk_uc[1],shrunk_uc[2], uc_params[3],uc_params[4],uc_params[5])) print("Original unit cell: (%7.4f, %7.4f, %7.4f, %7.4f, %7.4f, %7.4f)" %( crystal_symmetry.unit_cell().parameters()), file=out) crystal_symmetry=crystal.symmetry( unit_cell=new_unit_cell, space_group=crystal_symmetry.space_group()) print("New unit cell: (%7.4f, %7.4f, %7.4f, %7.4f, %7.4f, %7.4f)" %( crystal_symmetry.unit_cell().parameters()), file=out) # magnify original unit cell too.. cell=list(tracking_data.full_crystal_symmetry.unit_cell().parameters()) for i in range(3): cell[i]=cell[i]*params.map_modification.magnification tracking_data.set_full_crystal_symmetry( crystal.symmetry(tuple(cell),ccp4_map.space_group_number)) print("New original (full unit cell): "+\ " (%7.4f, %7.4f, %7.4f, %7.4f, %7.4f, %7.4f)" %( tracking_data.full_crystal_symmetry.unit_cell.parameters()), file=out) if params.output_files.magnification_map_file: file_name=os.path.join(params.output_files.output_directory, params.output_files.magnification_map_file) # write out magnified map (our working map) (before shifting it) print("\nWriting magnification map (input map with "+\ "magnification of %7.3f \n" %(params.map_modification.magnification) +\ "applied) to %s \n" %(file_name), file=out) #write_ccp4_map(crystal_symmetry,file_name,map_data) # NOTE: original unit cell and grid write_ccp4_map(tracking_data.full_crystal_symmetry, file_name,map_data, output_unit_cell_grid=tracking_data.original_unit_cell_grid,) params.input_files.map_file=file_name else: raise Sorry("Need a file name to write out magnification_map_file") params.map_modification.magnification=None # no longer need it. tracking_data.set_input_map_info(file_name=params.input_files.map_file, crystal_symmetry=crystal_symmetry, origin=map_data.origin(), all=map_data.all()) tracking_data.set_crystal_symmetry(crystal_symmetry=crystal_symmetry) tracking_data.set_original_crystal_symmetry(crystal_symmetry=crystal_symmetry) tracking_data.set_accessor(acc=map_data.accessor()) # Save center of map map_symmetry_center=get_center_of_map(map_data,crystal_symmetry) # Check for helical ncs...if present we may try to cut map at +/- 1 turn params.map_modification.restrict_z_distance_for_helical_symmetry=\ get_max_z_range_for_helical_symmetry(params,out=out) # either use map_box with density_select=True or just shift the map if params.segmentation.density_select: print("\nTrimming map to density...", file=out) args= ["output_format=ccp4"] if params.segmentation.density_select_threshold is not None: print("Threshold for density selection will be: %6.2f \n"%( params.segmentation.density_select_threshold), file=out) args.append("density_select_threshold=%s" %( params.segmentation.density_select_threshold)) if params.segmentation.get_half_height_width is not None: args.append("get_half_height_width=%s" %( params.segmentation.get_half_height_width)) if params.input_files.ncs_file: args.append("symmetry_file=%s" %(params.input_files.ncs_file)) if params.input_files.pdb_file: args.append("pdb_file=%s" %(params.input_files.pdb_file)) args.append("ccp4_map_file=%s" %(params.input_files.map_file)) file_name_prefix=os.path.join(params.output_files.output_directory, "density_select") args.append("output_file_name_prefix=%s" %(file_name_prefix)) from mmtbx.command_line.map_box import run as run_map_box args.append("keep_input_unit_cell_and_grid=False") # for new defaults if params.segmentation.lower_bounds and params.segmentation.upper_bounds: bounds_supplied=True print("\nRunning map_box with supplied bounds", file=out) box=run_map_box(args, map_data=map_data, ncs_object=ncs_obj, crystal_symmetry=crystal_symmetry, lower_bounds=params.segmentation.lower_bounds, upper_bounds=params.segmentation.upper_bounds, write_output_files=params.output_files.write_output_maps, log=out) else: bounds_supplied=False box=run_map_box(["density_select=True"]+args, map_data=map_data, crystal_symmetry=crystal_symmetry, ncs_object=ncs_obj, write_output_files=params.output_files.write_output_maps, log=out) # Run again to select au box shifted_unique_closest_sites=None selected_au_box=None if params.segmentation.select_au_box is None and box.ncs_object and \ box.ncs_object.max_operators() >= params.segmentation.n_ops_to_use_au_box: params.segmentation.select_au_box=True print("Setting select_au_box to True as there are %d operators" %( box.ncs_object.max_operators()), file=out) if params.segmentation.select_au_box and not bounds_supplied: lower_bounds,upper_bounds,unique_closest_sites=get_bounds_for_au_box( params, box=box,out=out) #unique_closest_sites relative to original map if lower_bounds and upper_bounds: bounds_supplied=True selected_au_box=True score,ncs_cc=score_ncs_in_map(map_data=box.map_box, allow_score_with_pg=False, sites_orth=unique_closest_sites+box.shift_cart, ncs_object=box.ncs_object,ncs_in_cell_only=True, crystal_symmetry=box.box_crystal_symmetry,out=null_out()) print("NCS CC before rerunning box: %7.2f SCORE: %7.1f OPS: %d " %( ncs_cc,score,box.ncs_object.max_operators()), file=out) print("\nRunning map-box again with boxed range ...", file=out) del box box=run_map_box(args,lower_bounds=lower_bounds, map_data=map_data, crystal_symmetry=crystal_symmetry, ncs_object=ncs_obj, upper_bounds=upper_bounds, log=out) box.map_box=box.map_box.as_double() # Do we need double? shifted_unique_closest_sites=unique_closest_sites+box.shift_cart # Or run again for helical symmetry elif params.map_modification.restrict_z_distance_for_helical_symmetry and \ not bounds_supplied: bounds_supplied=True lower_bounds,upper_bounds=get_bounds_for_helical_symmetry(params, crystal_symmetry=crystal_symmetry,box=box) print("\nRunning map-box again with restricted Z range ...", file=out) box=run_map_box(args, map_data=map_data, crystal_symmetry=crystal_symmetry, ncs_object=ncs_obj, lower_bounds=lower_bounds,upper_bounds=upper_bounds, write_output_files=params.output_files.write_output_maps, log=out) #----------------------------- if bounds_supplied and box.ncs_object: print("Selecting remaining NCS operators", file=out) box.ncs_object=select_remaining_ncs_ops( map_data=box.map_box, crystal_symmetry=box.box_crystal_symmetry, closest_sites=shifted_unique_closest_sites, random_points=params.reconstruction_symmetry.random_points, ncs_object=box.ncs_object, out=out) score,ncs_cc=score_ncs_in_map(map_data=box.map_box, allow_score_with_pg=False, ncs_object=box.ncs_object,ncs_in_cell_only=True, sites_orth=shifted_unique_closest_sites, crystal_symmetry=box.box_crystal_symmetry,out=null_out()) if score is not None: print("NCS CC after selections: %7.2f SCORE: %7.1f OPS: %d" %( ncs_cc,score,box.ncs_object.max_operators()), file=out) #----------------------------- origin_shift=box.shift_cart # Note: moving cell with (0,0,0) in middle to (0,0,0) at corner means # total_shift_cart and origin_shift both positive map_data=box.map_box map_data=scale_map(map_data,out=out) crystal_symmetry=box.box_crystal_symmetry print("New unit cell: %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f " %( crystal_symmetry.unit_cell().parameters()), file=out) tracking_data.set_crystal_symmetry(crystal_symmetry=crystal_symmetry) print("Moving origin to (0,0,0)", file=out) print("Adding (%8.2f,%8.2f,%8.2f) to all coordinates\n"%( tuple(origin_shift)), file=out) # NOTE: size and cell params are now different! tracking_data.set_box_map_bounds_first_last( box.gridding_first,box.gridding_last) new_half_map_data_list=[] ii=0 for hm in half_map_data_list: ii+=1 hm=hm.shift_origin() # shift if necessary hm=box.cut_and_copy_map(map_data=hm).as_double() hm.reshape(flex.grid(hm.all())) new_half_map_data_list.append(hm) cutout_half_map_file=os.path.join(params.output_files.output_directory, "cutout_half_map_%s.ccp4" %(ii)) print("Writing cutout half_map data to %s" %(cutout_half_map_file), file=out) write_ccp4_map(crystal_symmetry,cutout_half_map_file,new_half_map_data_list[-1]) half_map_data_list=new_half_map_data_list if params.map_modification.soft_mask: mask_data,map_data,half_map_data_list,\ soft_mask_solvent_fraction,smoothed_mask_data,\ original_box_map_data=\ get_and_apply_soft_mask_to_maps( resolution=params.crystal_info.resolution, wang_radius=params.crystal_info.wang_radius, buffer_radius=params.crystal_info.buffer_radius, map_data=map_data,crystal_symmetry=crystal_symmetry, half_map_data_list=half_map_data_list, out=out) print("\nSolvent fraction from soft mask procedure: %7.2f (not used)\n" %( soft_mask_solvent_fraction), file=out) shifted_ncs_object=box.ncs_object if not shifted_ncs_object or shifted_ncs_object.max_operators()<2: from mmtbx.ncs.ncs import ncs shifted_ncs_object=ncs() shifted_ncs_object.set_unit_ncs() else: # shift if necessary... shift_needed = not \ (map_data.focus_size_1d() > 0 and map_data.nd() == 3 and map_data.is_0_based()) a,b,c = crystal_symmetry.unit_cell().parameters()[:3] N_ = map_data.all() O_ =map_data.origin() sx,sy,sz= O_[0]/N_[0], O_[1]/N_[1], O_[2]/N_[2] # Note: If (0,0,0) is in the middle of the box, origin at sx,sy,sz # is negative, shift of coordinates will be positive sx_cart,sy_cart,sz_cart=crystal_symmetry.unit_cell().orthogonalize( [sx,sy,sz]) print("Origin for input map is at (%8.2f,%8.2f,%8.2f)" % ( sx_cart,sy_cart,sz_cart), file=out) print("Cell dimensions of this map are: (%8.2f,%8.2f,%8.2f)" % (a,b,c), file=out) if shift_needed: if(not crystal_symmetry.space_group().type().number() in [0,1]): raise RuntimeError("Not implemented") origin_shift=[-sx_cart,-sy_cart,-sz_cart] # positive if (0,0,0) in middle print("Adding (%8.2f,%8.2f,%8.2f) to all coordinates"%( tuple(origin_shift))+" to put origin at (0,0,0)\n", file=out) map_data=map_data.shift_origin() new_half_map_data_list=[] for hm in half_map_data_list: new_half_map_data_list.append(hm.shift_origin()) half_map_data_list=new_half_map_data_list else: origin_shift=(0.,0.,0.) # Get NCS object if any if params.input_files.ncs_file and not ncs_obj: ncs_obj,dummy_obj=get_ncs(file_name=params.input_files.ncs_file) if ncs_obj: shifted_ncs_object=ncs_obj.coordinate_offset( coordinate_offset=matrix.col(origin_shift)) # shift to match shifted map else: from mmtbx.ncs.ncs import ncs shifted_ncs_object=ncs() shifted_ncs_object.set_unit_ncs() update_tracking_data_with_sharpening( map_data=map_data, tracking_data=tracking_data,out=out) # Set origin shift now tracking_data.set_origin_shift(origin_shift) map_symmetry_center=matrix.col(map_symmetry_center)+matrix.col(origin_shift) # New ctr if shifted_ncs_object and params.control.check_ncs: ncs_obj_to_check=shifted_ncs_object else: ncs_obj_to_check=None found_ncs=False if params.reconstruction_symmetry.symmetry or ncs_obj_to_check or \ params.reconstruction_symmetry.optimize_center: looking_for_ncs=True new_ncs_obj,ncs_cc,ncs_score=run_get_ncs_from_map(params=params, map_data=map_data, map_symmetry_center=map_symmetry_center, crystal_symmetry=crystal_symmetry, ncs_obj=ncs_obj_to_check, out=out, ) if new_ncs_obj: found_ncs=True shifted_ncs_object=new_ncs_obj.deep_copy() # offset this back to where it would have been before the origin offset.. new_ncs_obj=new_ncs_obj.coordinate_offset( coordinate_offset=-1*matrix.col(origin_shift)) # XXX save it in tracking_data if params.output_files.output_directory: if not os.path.isdir(params.output_files.output_directory): os.mkdir(params.output_files.output_directory) file_name=os.path.join(params.output_files.output_directory, 'ncs_from_map.ncs_spec') f=open(file_name,'w') new_ncs_obj.format_all_for_group_specification(out=f) f.close() print("Wrote NCS operators (for original map) to %s" %(file_name), file=out) if not params.control.check_ncs: params.input_files.ncs_file=file_name # set it else: looking_for_ncs=False if params.control.check_ncs: print("Done checking NCS", file=out) return params,map_data,half_map_data_list,pdb_hierarchy,tracking_data,None if looking_for_ncs and (not found_ncs) and \ params.reconstruction_symmetry.symmetry.upper() not in ['ANY','ALL']: raise Sorry( "Unable to identify %s symmetry automatically in this map." %( params.reconstruction_symmetry.symmetry)+ "\nPlease supply a symmetry file with symmetry matrices.") if params.segmentation.expand_size is None: params.segmentation.expand_size=estimate_expand_size( crystal_symmetry=crystal_symmetry, map_data=map_data, expand_target=params.segmentation.expand_target, out=out) if params.output_files.output_info_file and params.control.shift_only: write_info_file(params=params,tracking_data=tracking_data,out=out) return params,map_data,half_map_data_list,pdb_hierarchy,\ tracking_data,shifted_ncs_object def write_info_file(params=None,tracking_data=None,out=sys.stdout): # write out the info file from libtbx import easy_pickle tracking_data.show_summary(out=out) print("\nWriting summary information to: %s" %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.output_info_file)), file=out) print("\nTo restore original position of a PDB file built into these maps, use:", file=out) print("phenix.segment_and_split_map info_file=%s" %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.output_info_file))+" pdb_to_restore=mypdb.pdb\n", file=out) easy_pickle.dump(os.path.join(tracking_data.params.output_files.output_directory,params.output_files.output_info_file), tracking_data) def get_and_apply_soft_mask_to_maps( resolution=None, #params.crystal_info.resolution wang_radius=None, #params.crystal_info.wang_radius buffer_radius=None, #params.crystal_info.buffer_radius map_data=None,crystal_symmetry=None, solvent_content=None, solvent_content_iterations=None, rad_smooth=None, half_map_data_list=None, out=sys.stdout): smoothed_mask_data=None if not resolution: raise Sorry("Need resolution for soft_mask") if not rad_smooth: rad_smooth=resolution print("\nApplying soft mask with smoothing radius of %s\n" %( rad_smooth), file=out) if wang_radius: wang_radius=wang_radius else: wang_radius=1.5*resolution if buffer_radius: buffer_radius=buffer_radius else: buffer_radius=2.*resolution original_map_data=map_data.deep_copy() # Check to make sure this is possible cell_dims=crystal_symmetry.unit_cell().parameters()[:3] min_cell_dim=min(cell_dims) if wang_radius > 0.25 * min_cell_dim or buffer_radius > 0.25 * min_cell_dim: raise Sorry("Cell is too small to get solvent fraction") mask_data,solvent_fraction=get_mask_around_molecule(map_data=map_data, crystal_symmetry=crystal_symmetry, wang_radius=wang_radius, solvent_content=solvent_content, solvent_content_iterations=solvent_content_iterations, buffer_radius=buffer_radius, return_masked_fraction=True, out=out) if mask_data: map_data,smoothed_mask_data=apply_soft_mask(map_data=map_data, mask_data=mask_data.as_double(), rad_smooth=rad_smooth, crystal_symmetry=crystal_symmetry, out=out) new_half_map_data_list=[] if not half_map_data_list: half_map_data_list=[] for half_map in half_map_data_list: half_map,smoothed_mask_data=apply_soft_mask(map_data=half_map, mask_data=mask_data.as_double(), rad_smooth=rad_smooth, crystal_symmetry=crystal_symmetry, out=out) new_half_map_data_list.append(half_map) half_map_data_list=new_half_map_data_list else: print("Unable to get mask...skipping", file=out) return mask_data,map_data,half_map_data_list,\ solvent_fraction,smoothed_mask_data,original_map_data def get_ncs(params=None,tracking_data=None,file_name=None, ncs_object=None,out=sys.stdout): if not file_name: file_name=params.input_files.ncs_file if (not ncs_object or ncs_object.max_operators()<2) and file_name: print("Reading ncs from %s" %(file_name), file=out) is_helical_symmetry=None if (not ncs_object or ncs_object.max_operators()<2) and not file_name: # No ncs supplied...use just 1 ncs copy.. from mmtbx.ncs.ncs import ncs ncs_object=ncs() ncs_object.set_unit_ncs() #ncs_object.display_all(log=out) elif (not ncs_object or ncs_object.max_operators()<2) and \ not os.path.isfile(file_name): raise Sorry("The ncs file %s is missing" %(file_name)) else: # get the ncs if not ncs_object: from mmtbx.ncs.ncs import ncs ncs_object=ncs() try: # see if we can read biomtr records pdb_inp=iotbx.pdb.input(file_name=file_name) ncs_object.ncs_from_pdb_input_BIOMT(pdb_inp=pdb_inp,log=out) except Exception as e: # try as regular ncs object ncs_object.read_ncs(file_name=file_name,log=out) #ncs_object.display_all(log=out) ncs_object.select_first_ncs_group() if ncs_object.max_operators()<1: from mmtbx.ncs.ncs import ncs ncs_object=ncs() ncs_object.set_unit_ncs() print("\nTotal of %d NCS operators read\n" %( ncs_object.max_operators()), file=out) if not tracking_data or not params: return ncs_object,None if ncs_object.max_operators()<2: print("No NCS present", file=out) elif ncs_object.is_helical_along_z( abs_tol_t=tracking_data.params.reconstruction_symmetry.abs_tol_t, rel_tol_t=tracking_data.params.reconstruction_symmetry.rel_tol_t, tol_r=tracking_data.params.reconstruction_symmetry.tol_r): print("This NCS is helical symmetry", file=out) is_helical_symmetry=True elif ncs_object.is_point_group_symmetry( abs_tol_t=tracking_data.params.reconstruction_symmetry.abs_tol_t, rel_tol_t=tracking_data.params.reconstruction_symmetry.rel_tol_t, tol_r=tracking_data.params.reconstruction_symmetry.tol_r): print("This NCS is point-group symmetry", file=out) elif params.crystal_info.is_crystal: print("This NCS is crystal symmetry", file=out) elif not ( params.reconstruction_symmetry.require_helical_or_point_group_symmetry): print("WARNING: NCS is not crystal symmetry nor point-group "+\ "symmetry nor helical symmetry", file=out) else: raise Sorry("Need point-group or helical symmetry.") if not ncs_object or ncs_object.max_operators()<1: raise Sorry("Need ncs information from an ncs_info file") if tracking_data: tracking_data.set_input_ncs_info(file_name=file_name, # XXX may be updated ops number_of_operators=ncs_object.max_operators()) if tracking_data and is_helical_symmetry: # update shifted_ncs_info if tracking_data.shifted_ncs_info: # XXX may not be needed shifted=True else: shifted=False print("Updating NCS info (shifted=%s)" %(shifted), file=out) tracking_data.update_ncs_info(is_helical_symmetry=True,shifted=shifted) if tracking_data.input_map_info and tracking_data.input_map_info.all: z_range=tracking_data.crystal_symmetry.unit_cell(). \ parameters()[2] print("Extending NCS operators to entire cell (z_range=%.1f)" %( z_range), file=out) max_operators= \ tracking_data.params.reconstruction_symmetry.max_helical_operators if max_operators: print("Maximum new number of NCS operators will be %s" %( max_operators), file=out) ncs_object.extend_helix_operators(z_range=z_range, max_operators=max_operators) #ncs_object.display_all() print("New number of NCS operators is: %s " %( ncs_object.max_operators()), file=out) tracking_data.update_ncs_info( number_of_operators=ncs_object.max_operators(),is_helical_symmetry=True, shifted=shifted) return ncs_object,tracking_data def score_threshold(b_vs_region=None,threshold=None, sorted_by_volume=None,n_residues=None, ncs_copies=None, fraction_occupied=None, solvent_fraction=None, map_data=None, residues_per_region=50, min_volume=None, min_ratio=None, max_ratio_to_target=None, min_ratio_to_target=None, weight_score_grid_points=1., weight_score_ratio=1.0, weight_near_one=0.1, min_ratio_of_ncs_copy_to_first=None, target_in_all_regions=None, crystal_symmetry=None, chain_type=None, out=sys.stdout): # We want about 1 region per 50-100 residues for the biggest region. # One possibility is to try to maximize the median size of the N top # regions, where N=number of expected regions= n_residues/residues_per_region # Also note we have an idea how big a region should be (how many # grid points) if we make an assumption about the fractional volume that # should be inside a region compared to the total volume of protein/nucleic # acid in the region...this gives us target_in_top_regions points. # So using this, make the median size as close to target_in_top_regions as # we can. # If we have solvent fraction but not ncs_copies or n_residues, guess the # number of residues and ncs copies from the volume if ncs_copies is not None and n_residues is not None: expected_regions=max(ncs_copies, max(1,int(0.5+n_residues/residues_per_region))) else: if chain_type in [None,'None']: chain_type="PROTEIN" assert crystal_symmetry is not None assert solvent_fraction is not None volume_per_residue,nres,chain_type=get_volume_of_seq( "A",chain_type=chain_type,out=out) expected_regions=max(1,int(0.5+(1-solvent_fraction)*\ crystal_symmetry.unit_cell().volume()/volume_per_residue )) # NOTE: This is expected residues. expected_regions should be this # divided by residues_per_region expected_regions=max(1,int(0.5+expected_regions/residues_per_region)) ncs_copies=1 target_in_top_regions=target_in_all_regions/expected_regions nn=len(sorted_by_volume)-1 # first one is total ok=True too_low=None # marker for way too low too_high=None if nn < ncs_copies: ok=False #return # not enough v1,i1=sorted_by_volume[1] if v1 < min_volume: ok=False #return if v1 > max_ratio_to_target*target_in_top_regions: ok=False #return too_low=True if v1 < min_volume or v1 < 0.1*min_ratio_to_target*target_in_top_regions: # way too high too_high=True # there should be about ncs_copies copies of each size region if ncs_copies>1 if ncs_copies>1: v2,i2=sorted_by_volume[max(1,min(ncs_copies,nn))] score_ratio=v2/v1 # want it to be about 1 if score_ratio < min_ratio_of_ncs_copy_to_first: ok=False #return # not allowed else: score_ratio=1.0 # for ncs_copies=1 nn2=min(nn,max(1,(expected_regions+1)//2)) median_number,iavg=sorted_by_volume[nn2] # number in each region should be about target_in_top_regions if median_number > target_in_top_regions: score_grid_points=target_in_top_regions/max(1.,median_number) else: score_grid_points=median_number/target_in_top_regions if v1> target_in_top_regions: score_grid_points_b=target_in_top_regions/max(1.,v1) else: score_grid_points_b=v1/target_in_top_regions score_grid_points=0.5*(score_grid_points+score_grid_points_b) score_grid_points=score_grid_points**2 # maybe even **3 if threshold>1.: score_near_one=1./threshold else: score_near_one=threshold # Normalize weight_score_ratio by target_in_top_regions: sc=min(1.,0.5*median_number/max(1,target_in_top_regions)) overall_score=( (sc*weight_score_ratio*score_ratio+ weight_score_grid_points*score_grid_points+ weight_near_one*score_near_one ) / (weight_score_ratio+weight_score_grid_points+weight_near_one)) half_expected_regions=max(1,(1+expected_regions)//2) ratio=sorted_by_volume[min(len(sorted_by_volume)-1,half_expected_regions)][0]/v1 if ok and v1 >= target_in_top_regions/2 and \ len(sorted_by_volume)>half_expected_regions: last_volume=sorted_by_volume[half_expected_regions][0] if ratio >=min_ratio and \ last_volume>=min_volume: has_sufficient_regions=True else: has_sufficient_regions=False else: has_sufficient_regions=False print("%7.2f %5.2f %5d %4d %5d %5d %6.3f %5s %5.3f %s %s" %( b_vs_region.b_iso,threshold,target_in_top_regions,expected_regions, v1,median_number,ratio,has_sufficient_regions,overall_score,ok,nn), file=out) if not b_vs_region.b_iso in b_vs_region.b_vs_region_dict.keys(): b_vs_region.b_vs_region_dict[b_vs_region.b_iso]={} b_vs_region.sa_sum_v_vs_region_dict[b_vs_region.b_iso]={} b_vs_region.sa_nn_vs_region_dict[b_vs_region.b_iso]={} b_vs_region.sa_ratio_b_vs_region_dict[b_vs_region.b_iso]={} b_vs_region.b_vs_region_dict[b_vs_region.b_iso][threshold]=nn b_vs_region.sa_nn_vs_region_dict[b_vs_region.b_iso][threshold]=None b_vs_region.sa_ratio_b_vs_region_dict[b_vs_region.b_iso][threshold]=None return overall_score,has_sufficient_regions,\ too_low,too_high,expected_regions,ok def choose_threshold(b_vs_region=None,map_data=None, fraction_occupied=None, solvent_fraction=None, n_residues=None, ncs_copies=None, scale=0.95, calculate_sa=None, # calculate surface area of top sa_percent of target sa_percent=None, # calculate surface area of top sa_fraction of target density_threshold=None, starting_density_threshold=None, wrapping=None, residues_per_region=None, min_volume=None, min_ratio=None, max_ratio_to_target=None, min_ratio_to_target=None, min_ratio_of_ncs_copy_to_first=None, verbose=None, crystal_symmetry=None, chain_type=None, out=sys.stdout): best_threshold=None best_threshold_has_sufficient_regions=None best_score=None best_ok=None if not ncs_copies: ncs_copies=1 print("\nChecking possible cutoffs for region identification", file=out) print("Scale: %7.3f" %(scale), file=out) used_ranges=[] # Assume any threshold that is lower than a threshold that gave a non-zero value # and is zero is an upper bound on the best value. Same the other way around upper_bound=1000 lower_bound=0.0001 best_nn=None if density_threshold is not None: # use it print("\nUsing input threshold of %5.2f " %( density_threshold), file=out) n_range_low_high_list=[[0,0]] # use as is else: n_range_low_high_list=[[-16,4],[-32,16],[-64,80]] if starting_density_threshold is not None: starting_density_threshold=starting_density_threshold print("Starting density threshold is: %7.3f" %( starting_density_threshold), file=out) else: starting_density_threshold=1.0 if verbose: local_out=out else: from libtbx.utils import null_out local_out=null_out() target_in_all_regions=map_data.size()*fraction_occupied*(1-solvent_fraction) print("\nTarget number of points in all regions: %.0f" %( target_in_all_regions), file=local_out) local_threshold=find_threshold_in_map(target_points=int( target_in_all_regions),map_data=map_data) print("Cutoff will be threshold of %7.2f marking %7.1f%% of cell" %( local_threshold,100.*(1.-solvent_fraction)), file=out) print("B-iso Threshold Target N Biggest Median Ratio Enough Score OK Regions", file=local_out) unique_expected_regions=None for n_range_low,n_range_high in n_range_low_high_list: last_score=None for nn in range(n_range_low,n_range_high+1): if nn in used_ranges: continue used_ranges.append(nn) if density_threshold is not None: threshold=density_threshold else: threshold=starting_density_threshold*(scale**nn) if threshold < lower_bound or threshold > upper_bound: continue co,sorted_by_volume,min_b,max_b=get_co( map_data=map_data.deep_copy(), threshold=threshold,wrapping=wrapping) if len(sorted_by_volume)<2: score,has_sufficient_regions,too_low,too_high,expected_regions,ok=\ None,None,None,None,None,None continue # don't go on else: score,has_sufficient_regions,too_low,too_high,expected_regions,ok=\ score_threshold(b_vs_region=b_vs_region, threshold=threshold, sorted_by_volume=sorted_by_volume, fraction_occupied=fraction_occupied, solvent_fraction=solvent_fraction, residues_per_region=residues_per_region, min_volume=min_volume, min_ratio=min_ratio, max_ratio_to_target=max_ratio_to_target, min_ratio_to_target=min_ratio_to_target, min_ratio_of_ncs_copy_to_first=min_ratio_of_ncs_copy_to_first, ncs_copies=ncs_copies, n_residues=n_residues, map_data=map_data, target_in_all_regions=target_in_all_regions, crystal_symmetry=crystal_symmetry, chain_type=chain_type, out=local_out) if expected_regions: unique_expected_regions=max(1, (ncs_copies-1+expected_regions)//ncs_copies) if too_high and threshold<upper_bound: upper_bound=threshold if too_low and threshold>lower_bound: lower_bound=threshold if score is None: if best_threshold and best_threshold_has_sufficient_regions: if threshold >best_threshold: # new upper bound upper_bound=threshold elif threshold <best_threshold: # new lower bound lower_bound=threshold elif (ok or not best_ok) and \ (best_score is None or score > best_score): best_threshold=threshold best_threshold_has_sufficient_regions=has_sufficient_regions best_score=score best_ok=ok if best_threshold is not None: print("\nBest threshold: %5.2f\n" %(best_threshold), file=out) return best_threshold,unique_expected_regions,best_score,best_ok elif density_threshold is not None: # use it anyhow return density_threshold,unique_expected_regions,None,None else: return None,unique_expected_regions,None,None def get_co(map_data=None,threshold=None,wrapping=None): co=maptbx.connectivity(map_data=map_data,threshold=threshold, wrapping=wrapping) regions=co.regions() rr=list(range(0,co.regions().size())) regions_0=regions[0] rr_0=rr[0] regions=regions[1:] rr=rr[1:] if rr: z = zip(regions,rr) sorted_by_volume = sorted(z, key=lambda x: x[0], reverse=True) else: sorted_by_volume = [] sorted_by_volume=[(regions_0,rr_0)]+sorted_by_volume min_b, max_b = co.get_blobs_boundaries_tuples() # As grid points, not A return co,sorted_by_volume,min_b,max_b def get_connectivity(b_vs_region=None, map_data=None, solvent_fraction=None, n_residues=None, ncs_copies=None, fraction_occupied=None, iterate_with_remainder=None, min_volume=None, min_ratio=None, wrapping=None, residues_per_region=None, max_ratio_to_target=None, min_ratio_to_target=None, min_ratio_of_ncs_copy_to_first=None, starting_density_threshold=None, density_threshold=None, crystal_symmetry=None, chain_type=None, verbose=None, out=sys.stdout): print("\nGetting connectivity", file=out) libtbx.call_back(message='segment',data=None) # Normalize map data now to SD of the part that is not solvent map_data=renormalize_map_data( map_data=map_data,solvent_fraction=solvent_fraction) # Try connectivity at various thresholds # Choose one that has about the right number of grid points in top regions scale=0.95 best_threshold=None best_scale=scale best_score=None best_ok=None best_unique_expected_regions=None for ii in range(3): threshold,unique_expected_regions,score,ok=choose_threshold( density_threshold=density_threshold, starting_density_threshold=starting_density_threshold, b_vs_region=b_vs_region, map_data=map_data, n_residues=n_residues, ncs_copies=ncs_copies, fraction_occupied=fraction_occupied, solvent_fraction=solvent_fraction, scale=scale, wrapping=wrapping, residues_per_region=residues_per_region, min_volume=min_volume, min_ratio=min_ratio, max_ratio_to_target=max_ratio_to_target, min_ratio_to_target=min_ratio_to_target, min_ratio_of_ncs_copy_to_first=min_ratio_of_ncs_copy_to_first, crystal_symmetry=crystal_symmetry, chain_type=chain_type, verbose=verbose, out=out) # Take it if it improves (score, ok) if threshold is not None: if best_score is None or \ ((ok or not best_ok) and (score > best_score)): best_score=score best_unique_expected_regions=unique_expected_regions best_ok=ok best_threshold=threshold best_scale=scale if best_ok or density_threshold is not None: break else: scale=scale**0.333 # keep trying if best_threshold is None or ( density_threshold is not None and best_score is None): if iterate_with_remainder: # on first try failed raise Sorry("No threshold found...try with density_threshold=xxx") else: # on iteration...ok print("Note: No threshold found", file=out) return None,None,None,None,None,None,None,None else: starting_density_threshold=best_threshold # try it next time co,sorted_by_volume,min_b,max_b=get_co( map_data=map_data,threshold=best_threshold,wrapping=wrapping) return co,sorted_by_volume,min_b,max_b,best_unique_expected_regions,\ best_score,threshold,starting_density_threshold def get_volume_of_seq(text,chain_type=None,out=sys.stdout): from iotbx.bioinformatics import chain_type_and_residues # get chain type and residues (or use given chain type and count residues) chain_type,n_residues=chain_type_and_residues(text=text,chain_type=chain_type) if chain_type is None and n_residues is None: return None,None,None if chain_type=='PROTEIN': mw_residue=110.0 # from $CDOC/matthews.doc density_factor=1.23 # 1.66/DENSITY-OF-PROTEIN=1.66/1.35 else: mw_residue=330.0 # guess for DNA/RNA density_factor=1.15 # 1.66/DENSITY-OF-DNA=1.66/1.45 return len(text)*density_factor*mw_residue,len(text),chain_type def create_rna_dna(cns_dna_rna_residue_names): dd={} for key in cns_dna_rna_residue_names.keys(): dd[cns_dna_rna_residue_names[key]]=key return dd def get_solvent_content_from_seq_file(params, sequence=None, seq_file=None, ncs_copies=None, map_volume=None, out=sys.stdout): if not sequence and not os.path.isfile(seq_file): raise Sorry( "The sequence file '%s' is missing." %(seq_file)) if not sequence: print("\nReading sequence from %s " %(seq_file), file=out) sequence=open(seq_file).read() from iotbx.bioinformatics import get_sequences sequences=get_sequences(text=sequence) # get unique part of these sequences from mmtbx.validation.chain_comparison import \ extract_unique_part_of_sequences as eups print("Unique part of sequences:", file=out) copies_in_unique,base_copies,unique_sequence_dict=eups(sequences) all_unique_sequence=[] for seq in copies_in_unique.keys(): print("Copies: %s base copies: %s Sequence: %s" %( copies_in_unique[seq],base_copies,seq)) all_unique_sequence.append(seq) if base_copies != ncs_copies: print("NOTE: %s copies of unique portion but ncs_copies=%s" %( base_copies,ncs_copies), file=out) if ncs_copies==1: ncs_copies=base_copies print("Using ncs_copies=%s instead" %(ncs_copies), file=out) else: print("Still using ncs_copies=%s" %(ncs_copies), file=out) volume_of_chains=0. n_residues=0 chain_types_considered=[] for seq in all_unique_sequence: volume,nres,chain_type=get_volume_of_seq(seq, chain_type=params.crystal_info.chain_type,out=out) if volume is None: continue volume_of_chains+=volume n_residues+=nres if not chain_type in chain_types_considered: chain_types_considered.append(chain_type) chain_types_considered.sort() print("\nChain types considered: %s\n" %( " ".join(chain_types_considered)), file=out) volume_of_molecules=volume_of_chains*ncs_copies n_residues_times_ncs=n_residues*ncs_copies solvent_fraction=1.-(volume_of_molecules/map_volume) solvent_fraction=max(0.001,min(0.999,solvent_fraction)) if solvent_fraction==0.001 or solvent_fraction==0.999: print("NOTE: solvent fraction of %7.2f very unlikely..." %( solvent_fraction) + "please check ncs_copies and sequence ", file=out) print("Solvent content from composition: %7.2f" %(solvent_fraction), file=out) print("Cell volume: %.1f NCS copies: %d Volume of unique chains: %.1f" %( map_volume,ncs_copies,volume_of_chains), file=out) print("Total residues: %d Volume of all chains: %.1f Solvent fraction: %.3f "%( n_residues_times_ncs,volume_of_molecules,solvent_fraction), file=out) return solvent_fraction,n_residues,n_residues_times_ncs def get_solvent_fraction(params, ncs_object=None,ncs_copies=None, crystal_symmetry=None,tracking_data=None,out=sys.stdout): if tracking_data and not crystal_symmetry: #crystal_symmetry=tracking_data.original_crystal_symmetry not used crystal_symmetry=tracking_data.crystal_symmetry map_volume=crystal_symmetry.unit_cell().volume() if tracking_data and not ncs_copies: #ncs_copies=tracking_data.input_ncs_info.original_number_of_operators ncs_copies=tracking_data.input_ncs_info.number_of_operators # 2018-01-29 put back if not ncs_copies: ncs_copies=1 if params.input_files.seq_file or params.crystal_info.sequence: solvent_content,n_residues,n_residues_times_ncs=\ get_solvent_content_from_seq_file( params, sequence=params.crystal_info.sequence, seq_file=params.input_files.seq_file, ncs_copies=ncs_copies, map_volume=map_volume, out=out) if not params.crystal_info.solvent_content: params.crystal_info.solvent_content=solvent_content print("Solvent fraction from composition: %7.2f "%( params.crystal_info.solvent_content), file=out) else: print("Solvent content from parameters: %7.2f" %( params.crystal_info.solvent_content), file=out) else: if params.crystal_info.solvent_content: print("Solvent content from parameters: %7.2f" %( params.crystal_info.solvent_content), file=out) elif params.crystal_info.molecular_mass: params.crystal_info.solvent_content=\ get_solvent_fraction_from_molecular_mass( crystal_symmetry=crystal_symmetry, molecular_mass=params.crystal_info.molecular_mass, out=out) else: print("Getting solvent content automatically.", file=out) if tracking_data: if params.input_files.seq_file or params.crystal_info.sequence: tracking_data.set_input_seq_info(file_name=params.input_files.seq_file, sequence=params.crystal_info.sequence, n_residues=n_residues) tracking_data.set_n_residues( n_residues=n_residues_times_ncs) if params.crystal_info.solvent_content: tracking_data.set_solvent_fraction(params.crystal_info.solvent_content) return tracking_data else: return params.crystal_info.solvent_content def top_key(dd): if not dd: return None,None elif len(dd)==1: return list(dd.items())[0] else: best_key=None best_n=None for key in dd.keys(): if not best_n or dd[key] > best_n: best_n=dd[key] best_key=key return best_key,best_n def choose_max_regions_to_consider(params, sorted_by_volume=None, ncs_copies=None): max_per_au=params.segmentation.max_per_au min_ratio=params.segmentation.min_ratio min_volume=params.segmentation.min_volume # sort and eliminate regions with few points and those at end of list if len(sorted_by_volume)<2: return 0 max_grid_points=sorted_by_volume[1][0] cntr=0 for p in sorted_by_volume[1:]: cntr+=1 if max_per_au and (cntr>max_per_au*ncs_copies): cntr-=1 break v,i=p # v=volume in grid points, i=id if v/max_grid_points<min_ratio or v < min_volume: cntr-=1 break return cntr def get_edited_mask(sorted_by_volume=None, max_regions_to_consider=None, co=None, out=sys.stdout): conn_obj=co.result() origin=list(conn_obj.accessor().origin()) all=list(conn_obj.accessor().all()) conn_obj.accessor().show_summary(out) edited_mask=conn_obj.deep_copy() first=True edited_volume_list=[] original_id_from_id={} for i in range(1,max_regions_to_consider+1): v,id=sorted_by_volume[i] original_id_from_id[i]=id edited_volume_list.append(v) s = (conn_obj==id) if first: edited_mask=edited_mask.set_selected(~s,0) first=False edited_mask=edited_mask.set_selected(s,i) # edited mask has ID of # regions, labeled in decreasing size from 1 to max_regions_to_consider return edited_mask,edited_volume_list,original_id_from_id def choose_subset(a,target_number=1): new_array=flex.vec3_double() assert type(new_array)==type(a) n=a.size() nskip=max(1,n//target_number) i=0 for x in a: if i%nskip==0 or i==n-1: new_array.append(x) i+=1 return new_array def run_get_duplicates_and_ncs( ncs_obj=None, min_b=None, max_b=None, edited_mask=None, original_id_from_id=None, edited_volume_list=None, max_regions_to_consider=None, regions_left=None, tracking_data=None, out=sys.stdout, ): duplicate_dict,equiv_dict,equiv_dict_ncs_copy_dict,region_range_dict,\ region_centroid_dict,region_scattered_points_dict=\ get_duplicates_and_ncs( ncs_obj=ncs_obj, min_b=min_b, max_b=max_b, edited_mask=edited_mask, edited_volume_list=edited_volume_list, original_id_from_id=original_id_from_id, max_regions_to_consider=max_regions_to_consider, tracking_data=tracking_data, out=out) # check that we have region_centroid for all values complete=True missing=[] for i in range(1,max_regions_to_consider+1): if not i in region_centroid_dict.keys(): if (regions_left is None) or (i in regions_left): complete=False missing.append(i) if complete: return duplicate_dict,equiv_dict,equiv_dict_ncs_copy_dict,\ region_range_dict,region_centroid_dict,\ region_scattered_points_dict else: raise Sorry("Cannot find region-centroid for all regions? Missing: %s" %( missing)) def copy_dict_info(from_dict,to_dict): for key in from_dict.keys(): to_dict[key]=from_dict[key] def get_centroid_from_blobs(min_b=None,max_b=None, id=None,original_id_from_id=None): orig_id=original_id_from_id[id] upper=max_b[orig_id] lower=min_b[orig_id] avg=[] for u,l in zip(upper,lower): avg.append(0.5*(u+l)) return avg def get_duplicates_and_ncs( ncs_obj=None, min_b=None, max_b=None, edited_mask=None, original_id_from_id=None, edited_volume_list=None, max_regions_to_consider=None, target_points_per_region=30, minimum_points_per_region=10, maximum_points_per_region=100, tracking_data=None, out=sys.stdout, ): unit_cell=tracking_data.crystal_symmetry.unit_cell() region_scattered_points_dict=get_region_scattered_points_dict( edited_volume_list=edited_volume_list, edited_mask=edited_mask, unit_cell=unit_cell, target_points_per_region=target_points_per_region, minimum_points_per_region=minimum_points_per_region, maximum_points_per_region=maximum_points_per_region) # Now just use the scattered points to get everything else: region_n_dict={} # count of points used by region (differs from volume due # to the sampling) region_range_dict={} # keyed by region in edited_mask; range for x, y, z region_centroid_dict={} # keyed by region in edited_mask; range for x, y, z for id in region_scattered_points_dict.keys(): sites=region_scattered_points_dict[id] region_n_dict[id]=sites.size() if region_n_dict[id]: region_centroid_dict[id]=list(sites.mean()) else: # No points...use bounds from object region_centroid_dict[id]=get_centroid_from_blobs(min_b=min_b, max_b=max_b, id=id,original_id_from_id=original_id_from_id) # Now get NCS relationships ncs_group=ncs_obj.ncs_groups()[0] duplicate_dict={} # keyed by id, number of duplicates for that region equiv_dict={} # equiv_dict[id][other_id]=number_of points other_id matches # id through an ncs relationship equiv_dict_ncs_copy_dict={} for id in region_scattered_points_dict.keys(): duplicate_dict[id]=0 equiv_dict[id]={} equiv_dict_ncs_copy_dict[id]={} # Figure out which ncs operator is the identity identity_op=ncs_group.identity_op_id() print("Identity operator is %s" %(identity_op), file=out) # 2017-12-16 Score poorly if it involves a cell translation unless it # is a crystal if len(ncs_group.translations_orth())>1: # Skip if no ncs... for id in region_scattered_points_dict.keys(): for xyz_cart in region_scattered_points_dict[id]: n=0 for i0 in range(len(ncs_group.translations_orth())): if i0==identity_op: continue r=ncs_group.rota_matrices_inv()[i0] # inverse maps pos 0 on to pos i t=ncs_group.translations_orth_inv()[i0] n+=1 new_xyz_cart=r * matrix.col(xyz_cart) + t new_xyz_frac=unit_cell.fractionalize(new_xyz_cart) if tracking_data.params.crystal_info.use_sg_symmetry or \ (new_xyz_frac[0]>=0 and new_xyz_frac[0]<=1 and \ new_xyz_frac[1]>=0 and new_xyz_frac[1]<=1 and \ new_xyz_frac[2]>=0 and new_xyz_frac[2]<=1): value=edited_mask.value_at_closest_grid_point(new_xyz_frac) else: value=0 # value for nothing there 2017-12-16 if value==id: duplicate_dict[id]+=1 break # only count once elif value>0: # notice which one is matched if not value in equiv_dict[id]: equiv_dict[id][value]=0 equiv_dict_ncs_copy_dict[id][value]={} equiv_dict[id][value]+=1 if not n in equiv_dict_ncs_copy_dict[id][value]: equiv_dict_ncs_copy_dict[id][value][n]=0 equiv_dict_ncs_copy_dict[id][value][n]+=1 # how many are ncs copy n return duplicate_dict,equiv_dict,equiv_dict_ncs_copy_dict,\ region_range_dict,region_centroid_dict,region_scattered_points_dict def get_region_scattered_points_dict( edited_volume_list=None, edited_mask=None, unit_cell=None, sampling_rate=None, target_points_per_region=None, minimum_points_per_region=None, maximum_points_per_region=None): # Get sampled points in each region sample_dict={} region_scattered_points_dict={} # some points in each region if not sampling_rate: sampling_rate=edited_volume_list[0]//target_points_per_region sampling_rate_set=False else: sampling_rate_set=True volumes=flex.int() sampling_rates=flex.int() id_list=[] # have to set up dummy first set: volumes.append(0) sampling_rates.append(0) id_list.append(0) for i in range(len(edited_volume_list)): id=i+1 v=edited_volume_list[i] region_scattered_points_dict[id]=flex.vec3_double() volumes.append(v) if sampling_rate_set: sample_dict[id]=sampling_rate sampling_rates.append(sampling_rate) else: sample_dict[id]=max(1, max(v//maximum_points_per_region, min(v//minimum_points_per_region, sampling_rate) )) sampling_rates.append(max(1, max(v//maximum_points_per_region, min(v//minimum_points_per_region, sampling_rate) ))) id_list.append(id) sample_regs_obj = maptbx.sample_all_mask_regions( mask=edited_mask, volumes=volumes, sampling_rates=sampling_rates, unit_cell=unit_cell) for id in id_list[1:]: # skip the dummy first set region_scattered_points_dict[id]=sample_regs_obj.get_array(id) return region_scattered_points_dict def remove_bad_regions(params=None, duplicate_dict=None, edited_volume_list=None, out=sys.stdout): worst_list=[] for id in duplicate_dict.keys(): fract=duplicate_dict[id]/edited_volume_list[id-1] if duplicate_dict[id] and fract >=params.segmentation.max_overlap_fraction: worst_list.append([fract,id]) else: del duplicate_dict[id] worst_list.sort() worst_list.reverse() bad_region_list=[] max_number_to_remove=int(0.5+ 0.01*params.segmentation.remove_bad_regions_percent*len(edited_volume_list)) if worst_list: print("\nRegions that span multiple NCS au:", file=out) for fract,id in worst_list: print("ID: %d Duplicate points: %d (%.1f %%)" %( id,duplicate_dict[id],100.*fract), end=' ', file=out) if len(bad_region_list)<max_number_to_remove: bad_region_list.append(id) print(" (removed)", file=out) else: print(file=out) new_sorted_by_volume=[] region_list=[] region_volume_dict={} for i in range(len(edited_volume_list)): id=i+1 v=edited_volume_list[i] new_sorted_by_volume.append([v,id]) region_list.append(id) region_volume_dict[id]=v if bad_region_list: print("Bad regions (excluded)",bad_region_list, file=out) return region_list,region_volume_dict,new_sorted_by_volume,bad_region_list def sort_by_ncs_overlap(matches,equiv_dict_ncs_copy_dict_id): sort_list=[] for id1 in matches: key,n=top_key(equiv_dict_ncs_copy_dict_id[id1]) # Take top ncs_copy sort_list.append([n,id1]) sort_list.sort() sort_list.reverse() key_list=[] for n,id1 in sort_list: key_list.append(id1) return key_list def get_ncs_equivalents( bad_region_list=None, region_list=None, region_scattered_points_dict=None, equiv_dict=None, ncs_copies=None, equiv_dict_ncs_copy_dict=None, min_coverage=.10, out=sys.stdout): equiv_dict_ncs_copy={} for id in region_list: if id in bad_region_list: continue match_dict=equiv_dict.get(id,{}) # which are matches matches=list(match_dict.keys()) if not matches: continue key_list=sort_by_ncs_overlap(matches,equiv_dict_ncs_copy_dict[id]) n_found=0 for id1 in key_list: # id matches id1 N=match_dict[id1] # 2017-12-16 Do not include if there is a cell translation key,n=top_key(equiv_dict_ncs_copy_dict[id][id1]) # ncs_copy, n-overlap if n<min_coverage*region_scattered_points_dict[id].size(): break else: if not id in equiv_dict_ncs_copy:equiv_dict_ncs_copy[id]={} equiv_dict_ncs_copy[id][id1]=key n_found+=1 if n_found>=ncs_copies-1: break return equiv_dict_ncs_copy def get_overlap(l1,l2): overlap_list=[] l1a=single_list(l1) l2a=single_list(l2) for i in l1a: if i in l2a and not i in overlap_list: overlap_list.append(i) return overlap_list def group_ncs_equivalents(params, region_list=None, region_volume_dict=None, equiv_dict_ncs_copy=None, tracking_data=None, split_if_possible=None, out=sys.stdout): # equiv_dict_ncs_copy[id][id1]=ncs_copy # group together all the regions that are related to region 1...etc # if split_if_possible then skip all groups with multiple entries ncs_equiv_groups_as_list=[] ncs_equiv_groups_as_dict={} for id in region_list: equiv_group={} #equiv_group[ncs_copy]=[id1,id2,id3...] equiv_group[0]=[id] # always for id1 in equiv_dict_ncs_copy.get(id,{}).keys(): ncs_copy=equiv_dict_ncs_copy[id][id1] if not ncs_copy in equiv_group: equiv_group[ncs_copy]=[] equiv_group[ncs_copy].append(id1) # id1 is ncs_copy of id all_single=True equiv_group_as_list=[] total_grid_points=0 missing_ncs_copies=[] present_ncs_copies=[] for ncs_copy in range(tracking_data.input_ncs_info.number_of_operators): # goes 0 to ncs_copies-1 (including extra ones if present) local_equiv_group=equiv_group.get(ncs_copy,[]) if local_equiv_group: equiv_group_as_list.append(local_equiv_group) present_ncs_copies.append(ncs_copy) if ncs_copy > 0 and \ len(local_equiv_group)>1 and len(equiv_group.get(0,[]))==1: all_single=False for id in equiv_group.get(ncs_copy,[]): total_grid_points+=region_volume_dict[id] else: missing_ncs_copies.append(ncs_copy) equiv_group_as_list.sort() if tracking_data.input_ncs_info.is_helical_symmetry: # complete if we have original_number_of_operators worth if (not params.segmentation.require_complete) or \ len(present_ncs_copies)>= \ tracking_data.input_ncs_info.original_number_of_operators: complete=True else: complete=False else: if len(missing_ncs_copies)==0: complete=True else: complete=False if complete and \ (not str(equiv_group_as_list) in ncs_equiv_groups_as_dict or total_grid_points>ncs_equiv_groups_as_dict[str(equiv_group_as_list)]) \ and (all_single or (not split_if_possible)): ncs_equiv_groups_as_dict[str(equiv_group_as_list)]=total_grid_points ncs_equiv_groups_as_list.append([total_grid_points,equiv_group_as_list]) ncs_equiv_groups_as_list.sort() ncs_equiv_groups_as_list.reverse() # Now remove any group that duplicates a previous group # 2015-11-07 allow a member to be in multiple groups though (for example # one that spans several groups because it contains 2 region in other ncs # copies) # Make sure that if there are duplicates they are all in the leading # positions of the list (these must be very big ones as they match 2 # regions in other ncs copies) max_duplicates=tracking_data.input_ncs_info.number_of_operators-1 # not all duplicates ncs_group_list=[] used_list=[] print("All equiv groups:", file=out) used_regions=[] for total_grid_points,equiv_group_as_list in ncs_equiv_groups_as_list: duplicate=False n_dup=0 for equiv_group in equiv_group_as_list: for x in equiv_group: if x in used_list: n_dup+=1 if n_dup>max_duplicates or n_dup >len(equiv_group_as_list)-1: duplicate=True if not duplicate and n_dup>0: # check carefully to make sure that all # are leading entries for ncs_group in ncs_group_list: overlaps=get_overlap(ncs_group,equiv_group_as_list) if not overlaps: continue overlaps.sort() expected_match=single_list(equiv_group_as_list)[:len(overlaps)] expected_match.sort() if overlaps!=expected_match: # not leading entries duplicate=True break if not duplicate: #print >>out,"NCS GROUP:",equiv_group_as_list,":",total_grid_points ncs_group_list.append(equiv_group_as_list) for equiv_group in equiv_group_as_list: for x in equiv_group: if not x in used_list: used_list.append(x) print("Total NCS groups: %d" %len(ncs_group_list), file=out) # Make a dict that lists all ids that are in the same group as region x shared_group_dict={} for ncs_group in ncs_group_list: for group_list in ncs_group: for id1 in group_list: if not id1 in shared_group_dict: shared_group_dict[id1]=[] for other_group_list in ncs_group: if other_group_list is group_list:continue for other_id1 in other_group_list: if not other_id1 in shared_group_dict [id1]: shared_group_dict[id1].append(other_id1) return ncs_group_list,shared_group_dict def identify_ncs_regions(params, sorted_by_volume=None, co=None, min_b=None, max_b=None, ncs_obj=None, tracking_data=None, out=sys.stdout): # 1.choose top regions to work with # 2.remove regions that are in more than one au of the NCS # 3.identify groups of regions that are related by NCS # Also note the centers and bounds of each region # Choose number of top regions to consider max_regions_to_consider=choose_max_regions_to_consider(params, sorted_by_volume=sorted_by_volume, ncs_copies=tracking_data.input_ncs_info.original_number_of_operators) print("\nIdentifying NCS-related regions.Total regions to consider: %d" %( max_regions_to_consider), file=out) if max_regions_to_consider<1: print("\nUnable to identify any NCS regions", file=out) return None,tracking_data,None # Go through all grid points; discard if not in top regions # Renumber regions in order of decreasing size load_saved_files=False # set to True to load results from previous run dump_files=False # set to True to dump results and speed up next run if not load_saved_files: edited_mask,edited_volume_list,original_id_from_id=get_edited_mask( sorted_by_volume=sorted_by_volume, co=co, max_regions_to_consider=max_regions_to_consider,out=out) if dump_files: from libtbx import easy_pickle easy_pickle.dump("edited_mask.pkl", [edited_mask,edited_volume_list,original_id_from_id]) else: from libtbx import easy_pickle [edited_mask,edited_volume_list,original_id_from_id ]=easy_pickle.load("edited_mask.pkl") print("Loading edited_mask.pkl", file=out) # edited_mask contains re-numbered region id's # Identify duplicate and ncs relationships between regions # duplicate_dict[id]= number of duplicates for that region # equiv_dict[id][other_id]=number_of points other_id matches # id through an ncs relationship if not load_saved_files: duplicate_dict,equiv_dict,equiv_dict_ncs_copy_dict,\ region_range_dict,region_centroid_dict,\ region_scattered_points_dict=\ run_get_duplicates_and_ncs( ncs_obj=ncs_obj, min_b=min_b, max_b=max_b, edited_mask=edited_mask, original_id_from_id=original_id_from_id, edited_volume_list=edited_volume_list, max_regions_to_consider=max_regions_to_consider, tracking_data=tracking_data, out=out) # Remove any bad regions region_list,region_volume_dict,new_sorted_by_volume,\ bad_region_list=remove_bad_regions( params=params, duplicate_dict=duplicate_dict, edited_volume_list=edited_volume_list, out=out) # Identify groups of regions that are ncs-related # equiv_dict_ncs_copy[id][id1]=ncs_copy of id that corresponds to id1 equiv_dict_ncs_copy=get_ncs_equivalents( region_list=region_list, bad_region_list=bad_region_list, region_scattered_points_dict=region_scattered_points_dict, equiv_dict=equiv_dict, ncs_copies=tracking_data.input_ncs_info.number_of_operators, equiv_dict_ncs_copy_dict=equiv_dict_ncs_copy_dict, out=out) if dump_files: from libtbx import easy_pickle easy_pickle.dump("save.pkl",[duplicate_dict,equiv_dict,region_range_dict,region_centroid_dict,region_scattered_points_dict,region_list,region_volume_dict,new_sorted_by_volume,bad_region_list,equiv_dict_ncs_copy,tracking_data]) print("Dumped save.pkl", file=out) else: from libtbx import easy_pickle [duplicate_dict,equiv_dict,region_range_dict,region_centroid_dict,region_scattered_points_dict,region_list,region_volume_dict,new_sorted_by_volume,bad_region_list,equiv_dict_ncs_copy,tracking_data]=easy_pickle.load("save.pkl") print("Loaded save.pkl", file=out) # Group together regions that are ncs-related. Also if one ncs # copy has 2 or more regions linked together, group the other ones. # each entry in ncs_group_list is a list of regions for each ncs_copy: # e.g., [[8], [9, 23], [10, 25], [11, 27], [12, 24], [13, 22], [14, 26]] # May contain elements that are in bad_region_list (to exclude later) if not load_saved_files: ncs_group_list,shared_group_dict=group_ncs_equivalents(params, split_if_possible=params.segmentation.split_if_possible, tracking_data=tracking_data, region_volume_dict=region_volume_dict, region_list=region_list, equiv_dict_ncs_copy=equiv_dict_ncs_copy, out=out) if dump_files: from libtbx import easy_pickle easy_pickle.dump("group_list.pkl",[ncs_group_list,shared_group_dict]) print("Dumped to group_list.pkl", file=out) else: from libtbx import easy_pickle [ncs_group_list,shared_group_dict]=easy_pickle.load("group_list.pkl") print("Loaded group_list.pkl", file=out) ncs_group_obj=ncs_group_object( ncs_group_list=ncs_group_list, shared_group_dict=shared_group_dict, ncs_obj=ncs_obj, crystal_symmetry=tracking_data.crystal_symmetry, edited_mask=edited_mask, origin_shift=tracking_data.origin_shift, co=co, min_b=min_b, max_b=max_b, equiv_dict=equiv_dict, bad_region_list=bad_region_list, original_id_from_id=original_id_from_id, edited_volume_list=edited_volume_list, region_range_dict=region_range_dict, region_scattered_points_dict=region_scattered_points_dict, region_centroid_dict=region_centroid_dict) return ncs_group_obj,tracking_data,equiv_dict_ncs_copy def get_center_list(regions, region_centroid_dict=None): center_list=[] for region in regions: center_list.append(region_centroid_dict[region]) return center_list def get_average_center(regions, region_centroid_dict=None): center_list=get_center_list(regions,region_centroid_dict=region_centroid_dict) for region in regions: center_list.append(region_centroid_dict[region]) average_center=deepcopy(center_list[0]) if len(center_list)>1: for r in center_list[1:]: for i in range(3): average_center[i]+=r[i] for i in range(3): average_center[i]/=len(center_list) return average_center def get_dist(r,s): dd=0. for i in range(3): dd+=(r[i]-s[i])**2 return dd**0.5 def has_intersection(set1,set2): set1a=single_list(set1) set2a=single_list(set2) for x in set1a: if x in set2a: return True return False def get_scattered_points_list(other_regions, region_scattered_points_dict=None): scattered_points_list=flex.vec3_double() for x in other_regions: scattered_points_list.extend(region_scattered_points_dict[x]) return scattered_points_list def get_inter_region_dist_dict(ncs_group_obj=None, selected_regions=None,target_scattered_points=None): dd={} for i in range(len(selected_regions)): id=selected_regions[i] if not id in dd: dd[id]={} test_centers=ncs_group_obj.region_scattered_points_dict[id] for j in range(i+1,len(selected_regions)): id1=selected_regions[j] test_centers1=ncs_group_obj.region_scattered_points_dict[id1] dist=get_closest_dist(test_centers,test_centers1) dd[id][id1]=dist if not id1 in dd: dd[id1]={} dd[id1][id]=dist return dd def get_dist_to_first_dict(ncs_group_obj=None, selected_regions=None, inter_region_dist_dict=None, target_scattered_points=None): # Get distance to region 0 ( or to target_scattered_points if supplied) dist_to_first_dict={} if target_scattered_points: start_region=0 for x in selected_regions: dist_to_first_dict[x]=get_closest_dist( ncs_group_obj.region_scattered_points_dict[x], target_scattered_points) else: start_region=1 x0=selected_regions[0] dist_to_first_dict[x0]=0 for x in selected_regions[1:]: dist_to_first_dict[x]=inter_region_dist_dict[x0][x] changing=True while changing: changing=False for x in selected_regions[start_region:]: for y in selected_regions[start_region:]: if x==y: continue if dist_to_first_dict[y]<dist_to_first_dict[x] and \ inter_region_dist_dict[x][y]<dist_to_first_dict[x]: dist_to_first_dict[x]=max( dist_to_first_dict[y],inter_region_dist_dict[x][y]) changing=True return dist_to_first_dict def radius_of_gyration_of_vector(xyz): return (xyz-xyz.mean()).rms_length() def get_radius_of_gyration(ncs_group_obj=None, selected_regions=None): # return radius of gyration of points in selected regions centers=flex.vec3_double() for s in selected_regions: centers.append(ncs_group_obj.region_centroid_dict[s]) centers=centers-centers.mean() return centers.rms_length() def get_closest_neighbor_rms(ncs_group_obj=None,selected_regions=None, target_scattered_points=None,verbose=False,out=sys.stdout): # return rms closest distance of each region center to lowest_numbered region, # allowing sequential tracking taking max of inter-region distances # XXX can't we save some of this for next time? inter_region_dist_dict=get_inter_region_dist_dict(ncs_group_obj=ncs_group_obj, selected_regions=selected_regions) if verbose: print("Inter-region distance dict:", file=out) keys=list(inter_region_dist_dict.keys()) keys.sort() for key in keys: for key2 in inter_region_dist_dict[key].keys(): print("%s %s : %.1f " %(key,key2,inter_region_dist_dict[key][key2]), file=out) dist_to_first_dict=get_dist_to_first_dict(ncs_group_obj=ncs_group_obj, selected_regions=selected_regions, inter_region_dist_dict=inter_region_dist_dict, target_scattered_points=target_scattered_points) if verbose: print("Distance-to-first dict:", file=out) keys=list(dist_to_first_dict.keys()) keys.sort() for key in keys: print("\n %s: %.1f " %(key,dist_to_first_dict[key]), file=out) if target_scattered_points: start_region=0 # we are getting dist to target_scattered_points else: start_region=1 # we are getting dist to region 0 rms=0. rms_n=0. for x in selected_regions[start_region:]: dist=dist_to_first_dict[x] rms+=dist**2 rms_n+=1. if rms_n>1: rms/=rms_n rms=rms**0.5 return rms def get_rms(selected_regions=None, region_centroid_dict=None): # return rms distance of each region center from average of all others rms=0. rms_n=0. for x in selected_regions: other_regions=remove_one_item(selected_regions,item_to_remove=x) current_center=get_average_center(other_regions, region_centroid_dict=region_centroid_dict) test_center=region_centroid_dict[x] dist=get_dist(current_center,test_center) rms+=dist**2 rms_n+=1. if rms_n>1: rms/=rms_n return rms**0.5 def single_list(list_of_lists): single=[] for x in list_of_lists: if type(x)==type([1,2,3]): single+=single_list(x) else: single.append(x) return single def get_closest_dist(test_center,target_centers): # make sure we have target_centers=vec3_double and not a list, # and vec3_double or tuple for test_center if type(test_center)==type([1,2,3]): test_center=flex.vec3_double(test_center) if type(target_centers)==type([1,2,3]): target_centers=flex.vec3_double(target_centers) if test_center.size()<1 or target_centers.size()<1: return None closest_dist=test_center.min_distance_between_any_pair(target_centers) return closest_dist def region_lists_have_ncs_overlap(set1,set2,ncs_group_obj=None,cutoff=0): for id1 in set1: for id2 in set2: if id2 in ncs_group_obj.shared_group_dict.get(id1,[]): return True return False def get_effective_radius(ncs_group_obj=None, target_scattered_points=None, weight_rad_gyr=None, selected_regions=None): sr=deepcopy(selected_regions) sr.sort() rad_gyr=get_radius_of_gyration(ncs_group_obj=ncs_group_obj, selected_regions=sr) rms=get_closest_neighbor_rms(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, selected_regions=sr) max_cell_dim=0. if ncs_group_obj.max_cell_dim and ncs_group_obj.max_cell_dim > 1.0: wrg=weight_rad_gyr*(300/ncs_group_obj.max_cell_dim) # have a consistent scale else: wrg=weight_rad_gyr effective_radius=(rms+wrg*rad_gyr)/(1.+wrg) return effective_radius def add_neighbors(params, selected_regions=None, max_length_of_group=None, target_scattered_points=None, tracking_data=None, equiv_dict_ncs_copy=None, ncs_group_obj=None,out=sys.stdout): # Add neighboring regions on to selected_regions. # Same rules as select_from_seed selected_regions=single_list(deepcopy(selected_regions)) added_regions=[] start_dist=get_effective_radius(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, weight_rad_gyr=params.segmentation.weight_rad_gyr, selected_regions=selected_regions) delta_dist=params.segmentation.add_neighbors_dist max_dist=start_dist+delta_dist starting_selected_regions=deepcopy(selected_regions) for x in selected_regions: # delete, add in alternatives one at a time and # keep all the ok ones ncs_groups_to_use=get_ncs_related_regions( ncs_group_obj=ncs_group_obj, selected_regions=[x], include_self=False) for x in ncs_groups_to_use: # try adding from each group if x in selected_regions+added_regions: continue ncs_group=[[x]] current_scattered_points_list=get_scattered_points_list(selected_regions, region_scattered_points_dict=ncs_group_obj.region_scattered_points_dict) for ncs_set in ncs_group: # pick the best ncs_set from this group if has_intersection(ncs_group_obj.bad_region_list,ncs_set): continue dist=get_effective_radius(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, weight_rad_gyr=params.segmentation.weight_rad_gyr, selected_regions=selected_regions+ncs_set) if dist <= max_dist: added_regions.append(x) selected_regions=selected_regions+added_regions dist=get_effective_radius(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, weight_rad_gyr=params.segmentation.weight_rad_gyr, selected_regions=selected_regions) # Identify all the NCS operators required to map final to starting # equiv_dict_ncs_copy[id][id1]=ncs_copy of id that corresponds to id1 ncs_group=ncs_group_obj.ncs_obj.ncs_groups()[0] identity_op=ncs_group.identity_op_id() ncs_ops_used=[identity_op] for id in selected_regions: related_regions=get_ncs_related_regions( ncs_group_obj=ncs_group_obj, selected_regions=[id], include_self=False) for id1 in selected_regions: if not id1 in related_regions: continue ncs_copy1=equiv_dict_ncs_copy.get(id,{}).get(id1,None) ncs_copy2=equiv_dict_ncs_copy.get(id1,{}).get(id,None) for a in [ncs_copy1,ncs_copy2]: if a is not None and not a in ncs_ops_used: ncs_ops_used.append(a) selected_regions.sort() ncs_ops_used.sort() for x in selected_regions: print("GROUP ",x,":",ncs_group_obj.shared_group_dict.get(x,[]), file=out) return selected_regions,dist,ncs_ops_used def select_from_seed(params, starting_regions, target_scattered_points=None, max_length_of_group=None, ncs_groups_to_use=None, tracking_data=None, ncs_group_obj=None): selected_regions=single_list(deepcopy(starting_regions)) # do not allow any region in ncs_group_obj.bad_region_list # also do not allow any region that is in an ncs-related group to any region # already used. Use ncs_group_obj.equiv_dict to identify these. if not ncs_groups_to_use: ncs_groups_to_use=ncs_group_obj.ncs_group_list for ncs_group in ncs_groups_to_use: # try adding from each group if max_length_of_group is not None and \ len(selected_regions)>=max_length_of_group: break best_ncs_set=None best_dist=None if has_intersection(ncs_group,selected_regions): continue current_scattered_points_list=get_scattered_points_list(selected_regions, region_scattered_points_dict=ncs_group_obj.region_scattered_points_dict) if target_scattered_points: current_scattered_points_list.extend(target_scattered_points) for ncs_set in ncs_group: # pick the best ncs_set from this group if has_intersection(ncs_group_obj.bad_region_list,ncs_set): continue # does any ncs copy of anything in selected_regions actually overlap # with any member of ncs_set... might be efficient to delete the entire # ncs_group if any ncs_set overlaps, but could lose some. if region_lists_have_ncs_overlap(ncs_set,selected_regions, ncs_group_obj=ncs_group_obj): continue dist=get_effective_radius(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, weight_rad_gyr=params.segmentation.weight_rad_gyr, selected_regions=selected_regions+ncs_set) if best_dist is None or dist<best_dist: best_dist=dist best_ncs_set=ncs_set if best_ncs_set is not None: selected_regions+=best_ncs_set dist=get_effective_radius(ncs_group_obj=ncs_group_obj, target_scattered_points=target_scattered_points, weight_rad_gyr=params.segmentation.weight_rad_gyr, selected_regions=selected_regions) return selected_regions,dist def remove_one_item(input_list,item_to_remove=None): new_list=[] for item in input_list: if item != item_to_remove: new_list.append(item) return new_list def get_ncs_related_regions_specific_list( ncs_group_obj=None, target_regions=None, include_self=False): all_regions=[] for target_region in target_regions: all_regions+=get_ncs_related_regions_specific_target( ncs_group_obj=ncs_group_obj, target_region=target_region, other_regions=remove_one_item( target_regions,item_to_remove=target_region), include_self=include_self) return all_regions def get_ncs_related_regions_specific_target( ncs_group_obj=None, target_region=None, other_regions=None, include_self=False): # similar to get_ncs_related_regions, but find just one ncs group that # contains x but does not contain any member of other_regions for ncs_group in ncs_group_obj.ncs_group_list: # might this be the group ids_in_group=single_list(ncs_group) if not target_region in ids_in_group: continue # does not contain target contains_others=False for other_id in other_regions: if other_id in ids_in_group: contains_other=True break# contains other members if not contains_others: # this is the group if include_self: return ids_in_group else: return remove_one_item(ids_in_group,item_to_remove=target_region) return [] def get_ncs_related_regions( ncs_group_obj=None, selected_regions=None, include_self=False): # returns a simple list of region ids # if include_self then include selected regions and all ncs-related # otherwise do not include selected regions or anything that might # overlap with them ncs_related_regions=[] if include_self: for id in selected_regions: if not id in ncs_related_regions: ncs_related_regions.append(id) for ncs_group in ncs_group_obj.ncs_group_list: ids_in_group=single_list(ncs_group) if id in ids_in_group: # this group contains this selected id for i in ids_in_group: if not i in ncs_related_regions: ncs_related_regions.append(i) else: for id in selected_regions: found=False for ncs_group in ncs_group_obj.ncs_group_list: ids_in_group=single_list(ncs_group) if id in ids_in_group: # this group contains this selected id found=True for i in ids_in_group: if (not i==id) and (not i in selected_regions) and \ (not i in ncs_related_regions): ncs_related_regions.append(i) break # don't look at any more ncs groups return ncs_related_regions def all_elements_are_length_one(list_of_elements): for x in list_of_elements: if type(x)==type([1,2,3]): if len(x)!=1: return False return True def as_list_of_lists(ll): new_list=[] for x in ll: new_list.append([x]) return new_list def select_regions_in_au(params, ncs_group_obj=None, target_scattered_points=None, unique_expected_regions=None, equiv_dict_ncs_copy=None, tracking_data=None, out=sys.stdout): # Choose one region or set of regions from each ncs_group # up to about unique_expected_regions # Optimize closeness of centers... # If target scattered_points is supplied, include them as allowed target if not ncs_group_obj.ncs_group_list: return ncs_group_obj,[] max_length_of_group=max(1,unique_expected_regions* params.segmentation.max_per_au_ratio) print("Maximum length of group: %d" %(max_length_of_group), file=out) if all_elements_are_length_one(ncs_group_obj.ncs_group_list): # This is where there is no ncs. Basically skipping everything best_selected_regions=single_list(ncs_group_obj.ncs_group_list) best_rms=None else: #-------------- Find initial set of regions -------------------- # Seed with members of the first NCS group or with the target points # and find the member of each NCS group that is closest if target_scattered_points: starting_regions=[None] else: starting_regions=ncs_group_obj.ncs_group_list[0] best_selected_regions=None best_rms=None ok_seeds_examined=0 for starting_region in starting_regions: # NOTE starting_region is a list if not starting_region and not target_scattered_points:continue if ok_seeds_examined >= params.segmentation.seeds_to_try: break # don't bother to keep trying if starting_region and starting_region in ncs_group_obj.bad_region_list: continue # do not use if starting_region: # NOTE: starting_region is a list itself starting_region_list=[starting_region] else: starting_region_list=[] selected_regions,rms=select_from_seed(params, starting_region_list, target_scattered_points=target_scattered_points, max_length_of_group=max_length_of_group, tracking_data=tracking_data, ncs_group_obj=ncs_group_obj) if not selected_regions: continue ok_seeds_examined+=1 if best_rms is None or rms<best_rms: best_rms=rms best_selected_regions=selected_regions print("New best selected: rms: %7.1f: %s " %( rms,str(selected_regions)), file=out) if best_rms is not None: print("Best selected so far: rms: %7.1f: %s " %( best_rms,str(best_selected_regions)), file=out) if not best_selected_regions: print("\nNo NCS regions found ...", file=out) return ncs_group_obj,[] # Now we have a first version of best_rms, best_selected_regions #-------------- END Find initial set of regions -------------------- #-------------- Optimize choice of regions ------------------------- max_tries=10 improving=True itry=0 while improving and itry<max_tries: itry+=1 improving=False previous_selected_regions=deepcopy(best_selected_regions) previous_selected_regions.sort() print("\nTry %d for optimizing regions" %(itry), file=out) # Now see if replacing any regions with alternatives would improve it for x in previous_selected_regions: starting_regions=remove_one_item(previous_selected_regions, item_to_remove=x) # identify ncs_related regions to x, but not to other members of # selected_regions ncs_related_regions=get_ncs_related_regions_specific_list( ncs_group_obj=ncs_group_obj, include_self=True, target_regions=[x]) if not ncs_related_regions: continue ncs_groups_to_use=[as_list_of_lists(ncs_related_regions)] new_selected_regions,rms=select_from_seed(params,starting_regions, target_scattered_points=target_scattered_points, max_length_of_group=max_length_of_group, tracking_data=tracking_data, ncs_groups_to_use=ncs_groups_to_use, ncs_group_obj=ncs_group_obj) if not new_selected_regions: continue if best_rms is None or rms<best_rms: best_selected_regions=new_selected_regions best_selected_regions.sort() best_rms=rms improving=True print("Optimized best selected: rms: %7.1f: %s " %( best_rms,str(best_selected_regions)), file=out) # Done with this try selected_regions=best_selected_regions selected_regions.sort() if params.map_modification.regions_to_keep: selected_regions=selected_regions[:params.map_modification.regions_to_keep] rms=get_closest_neighbor_rms(ncs_group_obj=ncs_group_obj, selected_regions=selected_regions,verbose=False,out=out) if params.segmentation.add_neighbors and \ ncs_group_obj.ncs_obj.max_operators()>1: print("\nAdding neighbor groups...", file=out) selected_regions,rms,ncs_ops_used=add_neighbors(params, selected_regions=selected_regions, max_length_of_group=max_length_of_group, target_scattered_points=target_scattered_points, equiv_dict_ncs_copy=equiv_dict_ncs_copy, tracking_data=tracking_data, ncs_group_obj=ncs_group_obj,out=out) else: ncs_ops_used=None print("\nFinal selected regions with rms of %6.2f: " %(rms), end=' ', file=out) for x in selected_regions: print(x, end=' ', file=out) if ncs_ops_used: print("\nNCS operators used: ", end=' ', file=out) for op in ncs_ops_used: print(op, end=' ', file=out) print(file=out) # Save an ncs object containing just the ncs_ops_used ncs_group_obj.set_ncs_ops_used(ncs_ops_used) # Identify scattered points for all selected regions: scattered_points=get_scattered_points_list(selected_regions, region_scattered_points_dict=ncs_group_obj.region_scattered_points_dict) # Identify ncs-related regions for all the selected regions self_and_ncs_related_regions=get_ncs_related_regions( ncs_group_obj=ncs_group_obj, selected_regions=selected_regions, include_self=True) ncs_related_regions=get_ncs_related_regions( ncs_group_obj=ncs_group_obj, selected_regions=selected_regions, include_self=False) print("NCS-related regions (not used): %d " %(len(ncs_related_regions)), file=out) ncs_group_obj.set_selected_regions(selected_regions) ncs_group_obj.set_self_and_ncs_related_regions(self_and_ncs_related_regions) ncs_group_obj.set_ncs_related_regions(ncs_related_regions) return ncs_group_obj,scattered_points def get_bool_mask_as_int(ncs_group_obj=None,mask_as_int=None,mask_as_bool=None): if mask_as_int: mask_as_int=mask_as_int.deep_copy() else: mask_as_int=ncs_group_obj.edited_mask.deep_copy() s = (mask_as_bool==True) mask_as_int = mask_as_int.set_selected(s,1) mask_as_int = mask_as_int.set_selected(~s,0) return mask_as_int def get_bool_mask_of_regions(ncs_group_obj=None,region_list=None, expand_size=None): s = (ncs_group_obj.edited_mask == -1) if region_list is None: region_list=[] for id in region_list: if not expand_size: s |= (ncs_group_obj.edited_mask==id) # just take this region else: # expand the size of the regions...use expand_mask which operates # on the original id numbers and uses the co bool_region_mask = ncs_group_obj.co.expand_mask( id_to_expand=ncs_group_obj.original_id_from_id[id], expand_size=expand_size) s |= (bool_region_mask== True) bool_mask = ncs_group_obj.co.expand_mask(id_to_expand=1,expand_size=1) # just to get bool mask bool_mask = bool_mask.set_selected(s,True) bool_mask = bool_mask.set_selected(~s,False) return bool_mask def create_remaining_mask_and_map(params, ncs_group_obj=None, map_data=None, crystal_symmetry=None, out=sys.stdout): if not ncs_group_obj.selected_regions: print("No regions selected", file=out) return map_data # create new remaining_map containing everything except the part that # has been interpreted (and all points in interpreted NCS-related copies) bool_all_used=get_bool_mask_of_regions(ncs_group_obj=ncs_group_obj, region_list=ncs_group_obj.selected_regions+ ncs_group_obj.self_and_ncs_related_regions, expand_size=params.segmentation.expand_size) map_data_remaining=map_data.deep_copy() s=(bool_all_used==True) map_data_remaining=map_data_remaining.set_selected(s, params.segmentation.value_outside_mask) return map_data_remaining def get_lower(lower_bounds,lower): new_lower=[] for i in range(3): if lower_bounds[i] is None: new_lower.append(lower[i]) elif lower[i] is None: new_lower.append(lower_bounds[i]) else: new_lower.append(min(lower_bounds[i],lower[i])) return new_lower def get_upper(upper_bounds,upper): new_upper=[] for i in range(3): if upper_bounds[i] is None: new_upper.append(upper[i]) elif upper[i] is None: new_upper.append(upper_bounds[i]) else: new_upper.append(max(upper_bounds[i],upper[i])) return new_upper def get_bounds(ncs_group_obj=None,id=None): orig_id=ncs_group_obj.original_id_from_id[id] lower=ncs_group_obj.min_b[orig_id] upper=ncs_group_obj.max_b[orig_id] return lower,upper def get_selected_and_related_regions(params, ncs_group_obj=None): # Identify all points in the targeted regions bool_selected_regions=get_bool_mask_of_regions(ncs_group_obj=ncs_group_obj, region_list=ncs_group_obj.selected_regions, expand_size=params.segmentation.expand_size+\ params.segmentation.mask_additional_expand_size) # and all points in NCS-related copies (to be excluded) if params.segmentation.exclude_points_in_ncs_copies and ( not params.segmentation.add_neighbors): bool_ncs_related_mask=get_bool_mask_of_regions(ncs_group_obj=ncs_group_obj, region_list=ncs_group_obj.ncs_related_regions) # NOTE: using ncs_related_regions here NOT self_and_ncs_related_regions else: bool_ncs_related_mask=None lower_bounds=[None,None,None] upper_bounds=[None,None,None] if ncs_group_obj.selected_regions: for id in ncs_group_obj.selected_regions: lower,upper=get_bounds( ncs_group_obj=ncs_group_obj,id=id) lower_bounds=get_lower(lower_bounds,lower) upper_bounds=get_upper(upper_bounds,upper) return bool_selected_regions,bool_ncs_related_mask,lower_bounds,upper_bounds def adjust_bounds(params, lower_bounds,upper_bounds,map_data=None,out=sys.stdout): # range is lower_bounds to upper_bounds lower_bounds=list(lower_bounds) upper_bounds=list(upper_bounds) if params is None or params.output_files.box_buffer is None: box_buffer=0 else: box_buffer=params.output_files.box_buffer for i in range(3): if lower_bounds[i] is None: lower_bounds[i]=0 if upper_bounds[i] is None: upper_bounds[i]=0 lower_bounds[i]-=box_buffer lower_bounds[i]=max(0,lower_bounds[i]) upper_bounds[i]+=box_buffer upper_bounds[i]=min(map_data.all()[i]-1,upper_bounds[i]) """ print >>out,"\nRange: X:(%6d,%6d) Y:(%6d,%6d) Z:(%6d,%6d)" %( lower_bounds[0],upper_bounds[0], lower_bounds[1],upper_bounds[1], lower_bounds[2],upper_bounds[2]) """ return lower_bounds,upper_bounds def write_region_maps(params, ncs_group_obj=None, map_data=None, tracking_data=None, remainder_ncs_group_obj=None, regions_to_skip=None, out=sys.stdout): remainder_regions_written=[] map_files_written=[] if not ncs_group_obj: return map_files_written,remainder_regions_written if not ncs_group_obj.selected_regions: return map_files_written,remainder_regions_written for id in ncs_group_obj.selected_regions: if regions_to_skip and id in regions_to_skip: print("Skipping remainder region %d (already written out)" %(id), file=out) continue print("Writing region %d" %(id), end=' ', file=out) # dummy atoms representing this region sites=ncs_group_obj.region_scattered_points_dict[id] bool_region_mask = ncs_group_obj.co.expand_mask( id_to_expand=ncs_group_obj.original_id_from_id[id], expand_size=params.segmentation.expand_size) s = (bool_region_mask==True) lower_bounds,upper_bounds=get_bounds(ncs_group_obj=ncs_group_obj,id=id) if remainder_ncs_group_obj: for remainder_id in remainder_ncs_group_obj.remainder_id_dict.keys(): if remainder_ncs_group_obj.remainder_id_dict[remainder_id]==id: remainder_regions_written.append(remainder_id) sites.extend( remainder_ncs_group_obj.region_scattered_points_dict[remainder_id]) print("(including remainder region %d)" %(remainder_id), end=' ', file=out) remainder_bool_region_mask = remainder_ncs_group_obj.co.expand_mask( id_to_expand=remainder_ncs_group_obj.original_id_from_id[remainder_id], expand_size=params.segmentation.expand_size) s|= (remainder_bool_region_mask==True) lower,upper=get_bounds( ncs_group_obj=remainder_ncs_group_obj,id=remainder_id) lower_bounds=get_lower(lower_bounds,lower) upper_bounds=get_upper(upper_bounds,upper) region_mask = map_data.deep_copy() region_mask = region_mask.set_selected(s,1) region_mask = region_mask.set_selected(~s,0) local_map_data=map_data.deep_copy() local_map_data=local_map_data * region_mask.as_double() # Now cut down the map to the size we want lower_bounds,upper_bounds=adjust_bounds(params,lower_bounds,upper_bounds, map_data=map_data,out=out) box_map,box_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( map_data=local_map_data, \ crystal_symmetry=tracking_data.crystal_symmetry, min_point=lower_bounds, max_point=upper_bounds,out=out) if remainder_ncs_group_obj: text="" else: text="_r" base_file='map%s_%d.ccp4' %(text, id) base_pdb_file='atoms%s_%d.pdb' %(text, id) if tracking_data.params.output_files.output_directory: if not os.path.isdir(tracking_data.params.output_files.output_directory): os.mkdir(tracking_data.params.output_files.output_directory) file_name=os.path.join(tracking_data.params.output_files.output_directory,base_file) pdb_file_name=os.path.join( tracking_data.params.output_files.output_directory,base_pdb_file) else: file_name=base_file pdb_file_name=base_pdb_file write_ccp4_map(box_crystal_symmetry,file_name, box_map) print("to %s" %(file_name), file=out) map_files_written.append(file_name) tracking_data.add_output_region_map_info( file_name=file_name, crystal_symmetry=box_crystal_symmetry, origin=box_map.origin(), all=box_map.all(), map_id=base_file) print("Atoms representation written to %s" %(pdb_file_name), file=out) write_atoms(tracking_data=tracking_data,sites=sites,file_name=pdb_file_name, out=out) tracking_data.add_output_region_pdb_info( file_name=pdb_file_name) return map_files_written,remainder_regions_written def get_bounds_from_sites(sites_cart=None,map_data=None, unit_cell=None): lower_bounds=[None,None,None] upper_bounds=[None,None,None] sites_frac=unit_cell.fractionalize(sites_cart) nx,ny,nz=map_data.all() for x_frac in sites_frac: x=[ int(0.5+nx*x_frac[0]), int(0.5+ny*x_frac[1]), int(0.5+nz*x_frac[2])] if lower_bounds[0] is None or x[0]<lower_bounds[0]: lower_bounds[0]=x[0] if lower_bounds[1] is None or x[1]<lower_bounds[1]: lower_bounds[1]=x[1] if lower_bounds[2] is None or x[2]<lower_bounds[2]: lower_bounds[2]=x[2] if upper_bounds[0] is None or x[0]>upper_bounds[0]: upper_bounds[0]=x[0] if upper_bounds[1] is None or x[1]>upper_bounds[1]: upper_bounds[1]=x[1] if upper_bounds[2] is None or x[2]>upper_bounds[2]: upper_bounds[2]=x[2] return lower_bounds,upper_bounds def write_output_files(params, tracking_data=None, map_data=None, half_map_data_list=None, ncs_group_obj=None, remainder_ncs_group_obj=None, pdb_hierarchy=None, removed_ncs=None, out=sys.stdout): half_map_data_list_au=[] if not half_map_data_list: half_map_data_list=[] if params.output_files.au_output_file_stem: au_mask_output_file=os.path.join(tracking_data.params.output_files.output_directory,params.output_files.au_output_file_stem+"_mask.ccp4") au_map_output_file=os.path.join(tracking_data.params.output_files.output_directory,params.output_files.au_output_file_stem+"_map.ccp4") au_atom_output_file=os.path.join(tracking_data.params.output_files.output_directory,params.output_files.au_output_file_stem+"_atoms.pdb") else: au_mask_output_file=None au_map_output_file=None au_atom_output_file=None # Write out pdb file with dummy atoms for the AU to au_atom_output_file if au_atom_output_file and params.output_files.write_output_maps: sites=flex.vec3_double() for id in ncs_group_obj.selected_regions: sites.extend(ncs_group_obj.region_scattered_points_dict[id]) if remainder_ncs_group_obj: for id in remainder_ncs_group_obj.selected_regions: sites.extend(remainder_ncs_group_obj.region_scattered_points_dict[id]) write_atoms(tracking_data=tracking_data,sites=sites, file_name=au_atom_output_file,out=out) tracking_data.set_output_ncs_au_pdb_info(file_name=au_atom_output_file) # Write out mask and map representing one NCS copy and none of # other NCS copies. Expand the mask to include neighboring points (but # not those explicitly in other NCS copies if params.map_modification.soft_mask and params.control.save_box_map_ncs_au: mask_expand_size=estimate_expand_size( crystal_symmetry=tracking_data.crystal_symmetry, map_data=map_data, expand_target=tracking_data.params.segmentation.mask_expand_ratio*\ tracking_data.params.crystal_info.resolution, out=out) params.segmentation.mask_additional_expand_size = max(mask_expand_size, params.segmentation.mask_additional_expand_size,) bool_selected_regions,bool_ncs_related_mask,lower_bounds,upper_bounds=\ get_selected_and_related_regions( params,ncs_group_obj=ncs_group_obj) if bool_ncs_related_mask is not None: s_ncs_related = (bool_ncs_related_mask==True) else: s_ncs_related = None # Add in remainder regions if present if remainder_ncs_group_obj: bool_remainder_selected_regions,bool_remainder_ncs_related_mask,\ remainder_lower_bounds,remainder_upper_bounds=\ get_selected_and_related_regions( params,ncs_group_obj=remainder_ncs_group_obj) lower_bounds=get_lower(lower_bounds,remainder_lower_bounds) upper_bounds=get_upper(upper_bounds,remainder_upper_bounds) s_remainder_au = (bool_remainder_selected_regions==True) bool_selected_regions=bool_selected_regions.set_selected( s_remainder_au,True) if s_ncs_related is not None and \ bool_remainder_ncs_related_mask is not None: s_ncs_related |= (bool_remainder_ncs_related_mask==True) # Now create NCS mask by eliminating all points in target (expanded) in # NCS-related copies if s_ncs_related is not None: bool_selected_regions=bool_selected_regions.set_selected( s_ncs_related,False) if tracking_data.params.map_modification.regions_to_keep is None: # Identify full (possibly expanded) ncs au starting with what we have au_mask=get_one_au(tracking_data=tracking_data, starting_mask=bool_selected_regions, removed_ncs=removed_ncs, ncs_obj=ncs_group_obj.ncs_obj,map_data=map_data,out=out) print("\nExpanding NCS AU if necessary...", file=out) print("Size of AU mask: %s Current size of AU: %s" %( au_mask.count(True),bool_selected_regions.count(True)), file=out) bool_selected_regions=(bool_selected_regions | au_mask) print("New size of AU mask: %s" %(bool_selected_regions.count(True)), file=out) sites_cart=get_marked_points_cart(mask_data=bool_selected_regions, unit_cell=ncs_group_obj.crystal_symmetry.unit_cell(), every_nth_point=tracking_data.params.segmentation.grid_spacing_for_au, boundary_radius=tracking_data.params.segmentation.radius) sites_lower_bounds,sites_upper_bounds=get_bounds_from_sites( unit_cell=ncs_group_obj.crystal_symmetry.unit_cell(), sites_cart=sites_cart,map_data=map_data) print("Original bounds: %5s %5s %5s to %5s %5s %5s" %( tuple(lower_bounds+upper_bounds)), file=out) lower_bounds=get_lower(lower_bounds,sites_lower_bounds) upper_bounds=get_upper(upper_bounds,sites_upper_bounds) print("Updated bounds: %5s %5s %5s to %5s %5s %5s" %( tuple(lower_bounds+upper_bounds)), file=out) lower_bounds,upper_bounds=adjust_bounds(params,lower_bounds,upper_bounds, map_data=map_data,out=out) box_ncs_au=params.segmentation.box_ncs_au if (not box_ncs_au): print("Using entire input map (box_ncs_au=False)", file=out) lower_bounds=map_data.origin() upper_bounds=tuple(matrix.col(map_data.all())+ matrix.col(map_data.origin())-matrix.col((1,1,1))) print("\nMaking two types of maps for AU of NCS mask and map with "+\ "buffer of %d grid units \nin each direction around AU" %( params.output_files.box_buffer), file=out) if params.output_files.write_output_maps: print("Both types of maps have the same origin and overlay on %s" %( os.path.join(tracking_data.params.output_files.output_directory, params.output_files.shifted_map_file)), file=out) print("\nThe standard maps (%s, %s) have the \noriginal cell dimensions." %( os.path.join(tracking_data.params.output_files.output_directory,au_mask_output_file), os.path.join(tracking_data.params.output_files.output_directory,au_map_output_file))+\ "\nThese maps show only the unique (NCS AU) part of the map.", file=out) print("\nThe cut out box_maps (%s, %s) have \nsmaller cell dimensions." %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_mask_file), os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_map_file),) +\ "\nThese maps also show only the unique part of the map and have this"+\ "\nunique part cut out.\n", file=out) # Write out NCS AU with shifted origin but initial crystal_symmetry # Mask mask_data_ncs_au=get_bool_mask_as_int( ncs_group_obj=ncs_group_obj,mask_as_bool=bool_selected_regions) if au_mask_output_file and params.output_files.write_output_maps: # Write out the mask (as int) write_ccp4_map(tracking_data.crystal_symmetry, au_mask_output_file,mask_data_ncs_au) print("Output NCS AU mask: %s" %(au_mask_output_file), file=out) tracking_data.set_output_ncs_au_mask_info( file_name=au_mask_output_file, crystal_symmetry=tracking_data.crystal_symmetry, origin=mask_data_ncs_au.origin(), all=mask_data_ncs_au.all()) # Map map_data_ncs_au=map_data.deep_copy() s=(bool_selected_regions==True) mask=map_data.deep_copy() mask=mask.set_selected(s,1) mask=mask.set_selected(~s,0) if params.map_modification.soft_mask: # buffer and smooth the mask print("Smoothing mask") map_data_ncs_au,smoothed_mask_data=apply_soft_mask(map_data=map_data_ncs_au, mask_data=mask.as_double(), rad_smooth=tracking_data.params.crystal_info.resolution, crystal_symmetry=tracking_data.crystal_symmetry, out=out) half_map_data_list_au=[] for hm in half_map_data_list: # apply mask to half maps hm_data_ncs_au,hm_smoothed_mask_data=apply_soft_mask( map_data=hm.deep_copy().as_double(), mask_data=mask.as_double(), rad_smooth=tracking_data.params.crystal_info.resolution, crystal_symmetry=tracking_data.crystal_symmetry, out=out) half_map_data_list_au.append(hm_data_ncs_au) elif (box_ncs_au): # usual. If box_ncs_au is False, do not mask map_data_ncs_au=map_data_ncs_au*mask one_d=map_data_ncs_au.as_1d() n_zero=mask.count(0) n_tot=mask.size() mean_in_box=one_d.min_max_mean().mean*n_tot/(n_tot-n_zero) map_data_ncs_au=map_data_ncs_au+(1-mask)*mean_in_box half_map_data_list_au=[] for hm in half_map_data_list: # apply mask to half maps one_d=hm.as_1d() mean_in_box=one_d.min_max_mean().mean*n_tot/(n_tot-n_zero) hm_data_ncs_au=hm+(1-mask)*mean_in_box half_map_data_list_au.append(hm_data_ncs_au) del one_d,mask if au_map_output_file and params.output_files.write_output_maps: # Write out the NCS au of density write_ccp4_map(tracking_data.crystal_symmetry,au_map_output_file, map_data_ncs_au) print("Output NCS AU map: %s" %(au_map_output_file), file=out) tracking_data.set_output_ncs_au_map_info( file_name=au_map_output_file, crystal_symmetry=tracking_data.crystal_symmetry, origin=map_data_ncs_au.origin(), all=map_data_ncs_au.all()) # Now box_map of cut out AU box_mask_ncs_au,box_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( map_data=mask_data_ncs_au.as_double(), crystal_symmetry=tracking_data.crystal_symmetry, min_point=lower_bounds, max_point=upper_bounds,out=out) # Mask if params.output_files.box_mask_file and params.output_files.write_output_maps: # write out box_map NCS mask representing one AU of the NCS write_ccp4_map( box_crystal_symmetry, os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_mask_file), box_mask_ncs_au) print("Output NCS au as box (cut out) mask: %s " %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_mask_file)), file=out) tracking_data.set_output_box_mask_info( file_name=os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_mask_file), crystal_symmetry=box_crystal_symmetry, origin=box_mask_ncs_au.origin(), all=box_mask_ncs_au.all()) # Map box_map_ncs_au,box_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( soft_mask=tracking_data.params.map_modification.soft_mask, resolution=tracking_data.params.crystal_info.resolution, map_data=map_data_ncs_au.as_double(), crystal_symmetry=tracking_data.crystal_symmetry, min_point=lower_bounds, max_point=upper_bounds,out=out) half_map_data_list_au_box=[] for hmdlu in half_map_data_list_au: hm_box_map_ncs_au,dummy_box_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( soft_mask=tracking_data.params.map_modification.soft_mask, resolution=tracking_data.params.crystal_info.resolution, map_data=hmdlu.as_double(), crystal_symmetry=tracking_data.crystal_symmetry, min_point=lower_bounds, max_point=upper_bounds,out=out) half_map_data_list_au_box.append(hm_box_map_ncs_au) if params.control.save_box_map_ncs_au: tracking_data.set_box_map_ncs_au_map_data( box_map_ncs_au_crystal_symmetry=box_crystal_symmetry, box_map_ncs_au_map_data=box_map_ncs_au, box_map_ncs_au_half_map_data_list=half_map_data_list_au_box, ) write_ccp4_map(tracking_data.crystal_symmetry,'map_data_ncs_au.ccp4',map_data_ncs_au) write_ccp4_map(box_crystal_symmetry,'box_map_ncs_au.ccp4',box_map_ncs_au) if params.output_files.box_map_file: # write out NCS map as box_map (cut out region of map enclosed in box_mask) if params.output_files.write_output_maps: write_ccp4_map(box_crystal_symmetry, os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_map_file), box_map_ncs_au) print("Output NCS au as box (cut out) map: %s " %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_map_file)), file=out) tracking_data.set_output_box_map_info( file_name=os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_map_file), crystal_symmetry=box_crystal_symmetry, origin=box_map_ncs_au.origin(), all=box_map_ncs_au.all()) # Write out all the selected regions if params.output_files.write_output_maps: print("\nWriting out region maps. "+\ "These superimpose on the NCS AU map \nand "+\ "mask %s,%s\n" %( os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_map_file), os.path.join(tracking_data.params.output_files.output_directory,params.output_files.box_mask_file),), file=out) map_files_written,remainder_regions_written=write_region_maps(params, map_data=map_data, tracking_data=tracking_data, ncs_group_obj=ncs_group_obj, remainder_ncs_group_obj=remainder_ncs_group_obj, out=out) # and pick up the remainder regions not already written remainder_map_files_written,dummy_remainder=write_region_maps(params, map_data=map_data, tracking_data=tracking_data, ncs_group_obj=remainder_ncs_group_obj, regions_to_skip=remainder_regions_written, out=out) map_files_written+=remainder_map_files_written else: map_files_written=[] return map_files_written def write_intermediate_maps(params, map_data=None, map_data_remaining=None, ncs_group_obj=None, tracking_data=None, out=sys.stdout): if map_data_remaining and params.output_files.remainder_map_file: write_ccp4_map( tracking_data.crystal_symmetry,params.output_files.remainder_map_file, map_data_remaining) print("Wrote output remainder map to %s" %( params.output_files.remainder_map_file), file=out) if params.segmentation.write_all_regions: for id in ncs_group_obj.selected_regions: region_mask=ncs_group_obj.edited_mask.deep_copy() s = (ncs_group_obj.edited_mask == -1) s |= (ncs_group_obj.edited_mask==id) region_mask = region_mask.set_selected(s,1) region_mask = region_mask.set_selected(~s,0) write_ccp4_map(tracking_data.crystal_symmetry, 'mask_%d.ccp4' %id, region_mask) print("Wrote output mask for region %d to %s" %(id, "mask_%d.ccp4" %(id)), file=out) def iterate_search(params, map_data_remaining=None, map_data=None, ncs_obj=None, ncs_group_obj=None, scattered_points=None, tracking_data=None, out=sys.stdout): # Write out intermediate maps if desired if params.output_files.write_intermediate_maps: write_intermediate_maps(params, map_data=map_data, map_data_remaining=map_data_remaining, ncs_group_obj=ncs_group_obj, tracking_data=tracking_data, out=out) new_params=deepcopy(params) new_params.segmentation.iterate_with_remainder=False new_params.segmentation.density_threshold=None new_params.output_files.write_output_maps=False new_params.output_files.output_info_file=None if params.output_files.write_intermediate_maps: new_params.output_files.au_output_file_stem=\ params.output_files.au_output_file_stem+"_cycle_2" else: new_params.output_files.au_output_file_stem=None fraction=params.segmentation.iteration_fraction if tracking_data.n_residues: new_n_residues=int(tracking_data.n_residues*fraction) new_solvent_fraction=max(0.001,min(0.999, 1- (1-tracking_data.solvent_fraction)*fraction)) new_tracking_data=deepcopy(tracking_data) if new_tracking_data.n_residues: new_tracking_data.set_n_residues(new_n_residues) new_tracking_data.set_solvent_fraction(new_solvent_fraction) new_tracking_data.set_origin_shift() # sets it to zero new_tracking_data.params.segmentation.starting_density_threshold=new_params.segmentation.starting_density_threshold # this is new print("\nIterating with remainder density", file=out) # NOTE: do not include pdb_hierarchy here unless you deep_copy it remainder_ncs_group_obj,dummy_remainder,remainder_tracking_data=run( None,params=new_params, map_data=map_data_remaining, ncs_obj=ncs_obj, target_scattered_points=scattered_points, tracking_data=new_tracking_data, is_iteration=True, out=out) if not remainder_ncs_group_obj: # Nothing to do return None # Combine the results to get remainder_id_dict # remainder_id_dict[id_remainder]=id_nearby remainder_ncs_group_obj=combine_with_iteration(params, map_data=map_data, crystal_symmetry=tracking_data.crystal_symmetry, ncs_group_obj=ncs_group_obj, remainder_ncs_group_obj=remainder_ncs_group_obj, out=out) return remainder_ncs_group_obj def bounds_overlap(lower=None,upper=None, other_lower=None,other_upper=None,tol=1): for i in range(3): if upper[i]+tol<other_lower[i]: return False if other_upper[i]+tol<lower[i]: return False return True def combine_with_iteration(params, map_data=None, crystal_symmetry=None, ncs_group_obj=None, remainder_ncs_group_obj=None, out=sys.stdout): if not ncs_group_obj.selected_regions or not remainder_ncs_group_obj \ or not remainder_ncs_group_obj.selected_regions: return None # see if any regions in ncs_obj overlap with remainder_ncs_group_obj... # If so, combine remainder_id_dict={} for id_remainder in remainder_ncs_group_obj.selected_regions: best_id=None best_overlaps=None remainder_centers=\ remainder_ncs_group_obj.region_scattered_points_dict[id_remainder] # figure out typical distance between scattered_points... touching_dist=get_touching_dist(remainder_centers) # Notice bounds of remainder region: r_lower,r_upper=get_bounds( ncs_group_obj=remainder_ncs_group_obj,id=id_remainder) for id in ncs_group_obj.selected_regions: # Skip if not likely to be very close... lower,upper=get_bounds(ncs_group_obj=ncs_group_obj,id=id) if not bounds_overlap(lower=lower,upper=upper, other_lower=r_lower,other_upper=r_upper): continue test_centers=ncs_group_obj.region_scattered_points_dict[id] dist=get_closest_dist(test_centers,remainder_centers) if touching_dist is not None and dist>touching_dist: continue bool_region_mask = ncs_group_obj.co.expand_mask( id_to_expand=ncs_group_obj.original_id_from_id[id], expand_size=params.segmentation.expand_size+1) # just touching s = (bool_region_mask== True) s &= (remainder_ncs_group_obj.edited_mask==id_remainder) overlaps=s.count(True) if best_overlaps is None or overlaps>best_overlaps: best_overlaps=overlaps best_id=id if best_overlaps: print("\nCombining remainder id %d with original id %d (overlaps=%d)" %( id_remainder,best_id,best_overlaps), file=out) remainder_id_dict[id_remainder]=best_id remainder_ncs_group_obj.remainder_id_dict=remainder_id_dict return remainder_ncs_group_obj def get_touching_dist(centers,default=100.,min_dist=8.): mean_dist=0. mean_dist_n=0. nskip=max(1,len(centers)//10) # try to get 10 for i in range(0,len(centers),nskip): if i==0: target=centers[1:] elif i==len(centers)-1: target=centers[:-1] else: target=centers[:i] target.extend(centers[i+1:]) other=centers[i:i+1] if not target or not other: continue dist=get_closest_dist(target,other) if dist is not None: mean_dist+=dist mean_dist_n+=1. if mean_dist_n>0: return max(min_dist,2.0*mean_dist/mean_dist_n) else: return default def get_grid_units(map_data=None,crystal_symmetry=None,radius=None, out=sys.stdout): N_ = map_data.all() sx,sy,sz= 1/N_[0], 1/N_[1], 1/N_[2] sx_cart,sy_cart,sz_cart=crystal_symmetry.unit_cell().orthogonalize( [sx,sy,sz]) grid_spacing=(sx_cart+sy_cart+sz_cart)/3. grid_units=int(radius/grid_spacing) min_cell_grid_units=min(N_[0], N_[1], N_[2]) grid_units=max(1,min(grid_units,int(min_cell_grid_units/3))) print("Grid units representing %7.1f A will be %d" %( radius,grid_units), file=out) return grid_units def cut_out_map(map_data=None, crystal_symmetry=None, soft_mask=None,soft_mask_radius=None,resolution=None, shift_origin=None, min_point=None,max_point=None,out=sys.stdout): from cctbx import uctbx from cctbx import maptbx na = map_data.all() # tuple with dimensions for i in range(3): assert min_point[i] >= 0 assert max_point[i] <= na[i] new_map_data = maptbx.copy(map_data, tuple(min_point), tuple(max_point)) # NOTE: end point of map is max_point, so size of map (new all()) is # (max_point-min_point+ (1,1,1)) # shrink unit cell, angles are the same # NOTE 2: the origin of output map will be min_point (not 0,0,0). shrunk_uc = [] for i in range(3): shrunk_uc.append( crystal_symmetry.unit_cell().parameters()[i]*new_map_data.all()[i]/na[i] ) uc_params=crystal_symmetry.unit_cell().parameters() new_unit_cell_box = uctbx.unit_cell( parameters=(shrunk_uc[0],shrunk_uc[1],shrunk_uc[2], uc_params[3],uc_params[4],uc_params[5])) new_crystal_symmetry=crystal.symmetry( unit_cell=new_unit_cell_box,space_group='p1') if soft_mask: if soft_mask_radius is None: soft_mask_radius=resolution assert soft_mask_radius is not None original_map_data=new_map_data.deep_copy() new_map_data,smoothed_mask_data=set_up_and_apply_soft_mask( map_data=new_map_data, shift_origin=shift_origin, crystal_symmetry=new_crystal_symmetry, resolution=resolution, radius=soft_mask_radius,out=out) else: original_map_data=None smoothed_mask_data=None return new_map_data, new_crystal_symmetry,\ smoothed_mask_data,original_map_data def set_up_and_apply_soft_mask(map_data=None,shift_origin=None, crystal_symmetry=None,resolution=None, radius=None,out=sys.stdout): acc=map_data.accessor() map_data = map_data.shift_origin() new_acc=map_data.accessor() # Add soft boundary to mean around outside of mask # grid_units is how many grid units are about equal to soft_mask_radius grid_units=get_grid_units(map_data=map_data, crystal_symmetry=crystal_symmetry,radius=radius,out=out) grid_units=int(0.5+0.5*grid_units) from cctbx import maptbx zero_boundary_map=maptbx.zero_boundary_box_map( map_data,grid_units).result() # this map is zero's around the edge and 1 in the middle # multiply zero_boundary_map--smoothed & new_map_data and return print("Applying soft mask to boundary of cut out map", file=out) new_map_data,smoothed_mask_data=apply_soft_mask(map_data=map_data, mask_data=zero_boundary_map, rad_smooth=resolution, crystal_symmetry=crystal_symmetry, out=out) if new_acc != acc: new_map_data.reshape(acc) smoothed_mask_data.reshape(acc) return new_map_data,smoothed_mask_data def apply_shift_to_pdb_hierarchy( origin_shift=None, crystal_symmetry=None, pdb_hierarchy=None,out=sys.stdout): if origin_shift is not None: sites_cart=pdb_hierarchy.atoms().extract_xyz() sites_cart_shifted=sites_cart+\ flex.vec3_double(sites_cart.size(), origin_shift) pdb_hierarchy.atoms().set_xyz(sites_cart_shifted) return pdb_hierarchy def apply_origin_shift(origin_shift=None, ncs_object=None, shifted_ncs_object=None, pdb_hierarchy=None, target_hierarchy=None, map_data=None, shifted_map_file=None, shifted_pdb_file=None, shifted_ncs_file=None, tracking_data=None, sharpening_target_pdb_inp=None, out=sys.stdout): if shifted_map_file: write_ccp4_map(tracking_data.crystal_symmetry, shifted_map_file, map_data) print("Wrote shifted map to %s" %( shifted_map_file), file=out) tracking_data.set_shifted_map_info(file_name= shifted_map_file, crystal_symmetry=tracking_data.crystal_symmetry, origin=map_data.origin(), all=map_data.all()) if origin_shift: # Note origin shift does not change crystal_symmetry if pdb_hierarchy: pdb_hierarchy=apply_shift_to_pdb_hierarchy( origin_shift=origin_shift, crystal_symmetry=tracking_data.crystal_symmetry, pdb_hierarchy=pdb_hierarchy, out=out) if sharpening_target_pdb_inp: sharpening_target_pdb_inp=apply_shift_to_pdb_hierarchy( origin_shift=origin_shift, crystal_symmetry=tracking_data.crystal_symmetry, pdb_hierarchy=sharpening_target_pdb_inp.construct_hierarchy(), out=out).as_pdb_input() if target_hierarchy: target_hierarchy=apply_shift_to_pdb_hierarchy( origin_shift=origin_shift, crystal_symmetry=tracking_data.crystal_symmetry, pdb_hierarchy=target_hierarchy, out=out) from scitbx.math import matrix if ncs_object and not shifted_ncs_object: shfted_ncs_object=ncs_object.coordinate_offset( coordinate_offset=matrix.col(origin_shift)) if shifted_pdb_file and pdb_hierarchy: import iotbx.pdb f=open(shifted_pdb_file,'w') print(iotbx.pdb.format_cryst1_record( crystal_symmetry=tracking_data.crystal_symmetry), file=f) print(pdb_hierarchy.as_pdb_string(), file=f) f.close() print("Wrote shifted pdb file to %s" %( shifted_pdb_file), file=out) tracking_data.set_shifted_pdb_info(file_name=shifted_pdb_file, n_residues=pdb_hierarchy.overall_counts().n_residues) if shifted_ncs_file and shifted_ncs_object: shifted_ncs_object.format_all_for_group_specification( file_name=shifted_ncs_file) print("Wrote %s NCS operators for shifted map to %s" %( shifted_ncs_object.max_operators(), shifted_ncs_file), file=out) if tracking_data.input_ncs_info.has_updated_operators(): print("NOTE: these may include additional operators added to fill the cell"+\ " or\nhave fewer operators if not all applied.", file=out) tracking_data.set_shifted_ncs_info(file_name=shifted_ncs_file, number_of_operators=shifted_ncs_object.max_operators(), is_helical_symmetry=tracking_data.input_ncs_info.is_helical_symmetry) tracking_data.shifted_ncs_info.show_summary(out=out) return shifted_ncs_object,pdb_hierarchy,target_hierarchy,tracking_data,\ sharpening_target_pdb_inp def restore_pdb(params,tracking_data=None,out=sys.stdout): if not params.output_files.restored_pdb: params.output_files.restored_pdb=\ params.input_files.pdb_to_restore[:-4]+"_restored.pdb" print("Shifting origin of %s and writing to %s" %( params.input_files.pdb_to_restore, params.output_files.restored_pdb), file=out) os=tracking_data.origin_shift origin_shift=(-os[0],-os[1],-os[2]) print("Origin shift will be: %.1f %.1f %.1f "%(origin_shift), file=out) import iotbx.pdb pdb_inp = iotbx.pdb.input(file_name=params.input_files.pdb_to_restore) pdb_hierarchy = pdb_inp.construct_hierarchy() pdb_hierarchy=apply_shift_to_pdb_hierarchy( origin_shift=origin_shift, crystal_symmetry=tracking_data.crystal_symmetry, pdb_hierarchy=pdb_hierarchy, out=out) f=open(params.output_files.restored_pdb,'w') print(iotbx.pdb.format_cryst1_record( crystal_symmetry=tracking_data.crystal_symmetry), file=f) print(pdb_hierarchy.as_pdb_string(), file=f) f.close() print("Wrote restored pdb file to %s" %( params.output_files.restored_pdb), file=out) def find_threshold_in_map(target_points=None, map_data=None, iter_max=10): map_1d=map_data.as_1d() map_mean=map_1d.min_max_mean().mean map_max=map_1d.min_max_mean().max map_min=map_1d.min_max_mean().min cutoff=map_mean low=map_min high=map_max for iter in range(iter_max): s = (map_1d >cutoff) n_cutoff=s.count(True) if n_cutoff == target_points: return cutoff elif n_cutoff < target_points: # lower it high=cutoff cutoff=0.5*(cutoff+low) else: # raise it low=cutoff cutoff=0.5*(cutoff+high) return cutoff def remove_points(mask,remove_points=None): keep_points=(remove_points==False) new_mask=(mask & keep_points) return new_mask def get_ncs_sites_cart(sites_cart=None,ncs_id=None, ncs_obj=None, unit_cell=None, ncs_in_cell_only=True): ncs_sites_cart=flex.vec3_double() if not ncs_obj or not ncs_obj.ncs_groups() or not ncs_obj.ncs_groups()[0] or \ not ncs_obj.ncs_groups()[0].translations_orth(): return ncs_sites_cart # identify ncs-related points ncs_group=ncs_obj.ncs_groups()[0] identity_op=ncs_group.identity_op_id() ncs_sites_cart=flex.vec3_double() for xyz_cart in sites_cart: for i0 in range(len(ncs_group.translations_orth())): if i0==identity_op: continue if ncs_id is not None and i0!=ncs_id: continue r=ncs_group.rota_matrices_inv()[i0] # inverse maps pos 0 on to pos i t=ncs_group.translations_orth_inv()[i0] new_xyz_cart=r * matrix.col(xyz_cart) + t ncs_sites_cart.append(new_xyz_cart) if ncs_in_cell_only: new_sites_cart=flex.vec3_double() ncs_sites_frac=unit_cell.fractionalize(ncs_sites_cart) for site_frac,site_cart in zip(ncs_sites_frac,ncs_sites_cart): if site_frac[0]>=0 and site_frac[0]<=1 and \ site_frac[1]>=0 and site_frac[1]<=1 and \ site_frac[2]>=0 and site_frac[2]<=1: new_sites_cart.append(site_cart) ncs_sites_cart=new_sites_cart return ncs_sites_cart def get_ncs_mask(map_data=None,unit_cell=None,ncs_object=None, starting_mask=None,radius=None,expand_radius=None,overall_mask=None, every_nth_point=None): assert every_nth_point is not None if not expand_radius: expand_radius=2.*radius working_au_mask=starting_mask.deep_copy() working_ncs_mask=mask_from_sites_and_map( # empty ncs mask map_data=map_data,unit_cell=unit_cell, sites_cart=flex.vec3_double(),radius=radius,overall_mask=overall_mask) au_points_last=working_au_mask.count(True) ncs_points_last=working_ncs_mask.count(True) max_tries=10000 for ii in range(max_tries): # just a big number; should take just a few # Find all points in au (sample every_nth_point in grid) au_sites_cart=get_marked_points_cart(mask_data=working_au_mask, unit_cell=unit_cell,every_nth_point=every_nth_point, boundary_radius=radius) # Find all points ncs-related to marked point in mask ncs_sites_cart=get_ncs_sites_cart(sites_cart=au_sites_cart, ncs_obj=ncs_object,unit_cell=unit_cell,ncs_in_cell_only=True) # Expand au slightly with all points near to au_sites_cart new_au_mask=mask_from_sites_and_map( map_data=map_data,unit_cell=unit_cell, sites_cart=au_sites_cart,radius=radius,overall_mask=overall_mask) working_au_mask=(working_au_mask | new_au_mask) # add on to existing keep_points=(working_ncs_mask==False) # cross off those in ncs working_au_mask=(working_au_mask & keep_points) # mark ncs au with all points not in au that are close to ncs_sites_cart new_ncs_mask=mask_from_sites_and_map( map_data=map_data,unit_cell=unit_cell, sites_cart=ncs_sites_cart,radius=radius,overall_mask=overall_mask) keep_points=(working_au_mask==False) # cross off those in au new_ncs_mask=(new_ncs_mask & keep_points) working_ncs_mask=(new_ncs_mask | working_ncs_mask) # add on to existing au_points=working_au_mask.count(True) ncs_points=working_ncs_mask.count(True) if au_points==au_points_last and ncs_points==ncs_points_last: break au_points_last=au_points ncs_points_last=ncs_points # Now expand the au and repeat working_au_mask=mask_from_sites_and_map( map_data=map_data,unit_cell=unit_cell, sites_cart=au_sites_cart,radius=expand_radius,overall_mask=overall_mask) keep_points=(working_ncs_mask==False) # cross off those in ncs working_au_mask=(working_au_mask & keep_points) return working_au_mask,working_ncs_mask def renormalize_map_data( map_data=None,solvent_fraction=None): sd=max(0.0001,map_data.sample_standard_deviation()) if solvent_fraction >= 10.: solvent_fraction=solvent_fraction/100. assert solvent_fraction > 0 and solvent_fraction < 1 scaled_sd=sd/(1-solvent_fraction)**0.5 map_data=(map_data-map_data.as_1d().min_max_mean().mean)/scaled_sd return map_data def mask_from_sites_and_map( map_data=None,unit_cell=None, sites_cart=None,radius=None,overall_mask=None): assert radius is not None from cctbx import maptbx sel = maptbx.grid_indices_around_sites( unit_cell = unit_cell, fft_n_real = map_data.focus(), fft_m_real = map_data.all(), sites_cart = sites_cart, site_radii = flex.double(sites_cart.size(), radius)) map_data_1d=map_data.as_1d() mask=(map_data_1d==0 and map_data_1d==1) # 1D bool array all False mask.set_selected(sel, True) # mark points around sites mask.reshape(map_data.accessor()) if overall_mask: assert overall_mask.all()==mask.all() mask=(mask & overall_mask) return mask def set_radius(unit_cell=None,map_data=None,every_nth_point=None): # Set radius so that radius will capture all points on grid if sampled # on every_nth_point a,b,c = unit_cell.parameters()[:3] nx,ny,nz=map_data.all() # furthest possible minimum distance between grid points max_diagonal_between_sampled=every_nth_point*( (a/nx)**2+(b/ny)**2+(c/nz)**2)**0.5 radius=max_diagonal_between_sampled*0.55 # big enough to cover everything return radius def get_marked_points_cart(mask_data=None,unit_cell=None, every_nth_point=3,boundary_radius=None): # return list of cartesian coordinates of grid points that are marked # only sample every every_nth_point in each direction... assert mask_data.origin() == (0,0,0) nx,ny,nz=mask_data.all() if boundary_radius: # How far from edges shall we stay: grid_frac=(1./nx,1./ny,1./nz) grid_orth=unit_cell.orthogonalize(grid_frac) boundary_grid_points=0 for go in grid_orth: bgp=int(0.99+boundary_radius/go) boundary_grid_points=max(boundary_grid_points,bgp) else: boundary_grid_points=0 marked_points=maptbx.marked_grid_points( map_data=mask_data, every_nth_point=every_nth_point).result() sites_frac=flex.vec3_double() boundary_points_skipped=0 for grid_point in marked_points: if boundary_grid_points: if \ grid_point[0]<boundary_grid_points or \ grid_point[0]>nx-boundary_grid_points or \ grid_point[1]<boundary_grid_points or \ grid_point[1]>ny-boundary_grid_points or \ grid_point[2]<boundary_grid_points or \ grid_point[2]>nz-boundary_grid_points: # XXX was typo previously boundary_points_skipped+=1 continue sites_frac.append( (grid_point[0]/nx, grid_point[1]/ny, grid_point[2]/nz)) sites_cart=unit_cell.orthogonalize(sites_frac) return sites_cart def get_overall_mask( map_data=None, mask_threshold=None, fraction_of_max_mask_threshold=None, mask_padding_fraction=None, solvent_fraction=None, crystal_symmetry=None, radius=None, resolution=None, d_max=100000., out=sys.stdout): # Make a local SD map from our map-data from cctbx.maptbx import crystal_gridding from cctbx import sgtbx cg=crystal_gridding( unit_cell=crystal_symmetry.unit_cell(), space_group_info=sgtbx.space_group_info(number=1), # Always pre_determined_n_real=map_data.all()) if not resolution: from cctbx.maptbx import d_min_from_map resolution=d_min_from_map( map_data,crystal_symmetry.unit_cell(), resolution_factor=1./4.) print("\nEstimated resolution of map: %6.1f A\n" %( resolution), file=out) if radius: smoothing_radius=2.*radius else: smoothing_radius=2.*resolution from mmtbx.command_line.map_to_structure_factors import run as map_to_sf args=['d_min=None','box=True'] from libtbx.utils import null_out map_coeffs=map_to_sf(args=args, space_group_number=1, # always p1 cell for this ccp4_map=make_ccp4_map(map_data,crystal_symmetry.unit_cell()), return_as_miller_arrays=True,nohl=True,out=null_out()) if not map_coeffs: raise Sorry("No map coeffs obtained") map_coeffs=map_coeffs.resolution_filter(d_min=resolution,d_max=d_max) complete_set = map_coeffs.complete_set() stol = flex.sqrt(complete_set.sin_theta_over_lambda_sq().data()) import math w = 4 * stol * math.pi * smoothing_radius sphere_reciprocal = 3 * (flex.sin(w) - w * flex.cos(w))/flex.pow(w, 3) try: temp = complete_set.structure_factors_from_map( flex.pow2(map_data-map_data.as_1d().min_max_mean().mean)) except Exception as e: print(e, file=out) raise Sorry("The sampling of the map appears to be too low for a "+ "\nresolution of %s. Try using a larger value for resolution" %( resolution)) fourier_coeff=complete_set.array(data=temp.data()*sphere_reciprocal) sd_map=fourier_coeff.fft_map( crystal_gridding=cg, ).apply_volume_scaling().real_map_unpadded() assert sd_map.all()==map_data.all() # now use sd_map # First mask out the map based on threshold mm=sd_map.as_1d().min_max_mean() max_in_sd_map=mm.max mean_in_map=mm.mean min_in_map=mm.min print("Highest value in SD map is %7.2f. Mean is %7.2f . Lowest is %7.2f " %( max_in_sd_map, mean_in_map, min_in_map), file=out) if fraction_of_max_mask_threshold: mask_threshold=fraction_of_max_mask_threshold*max_in_sd_map print("Using fraction of max as threshold: %.3f " %( fraction_of_max_mask_threshold), \ "which is threshold of %.3f" %(mask_threshold), file=out) if mask_padding_fraction: # Adjust threshold to increase by mask_padding_fraction, proportional # to fraction available overall_mask=(sd_map>= mask_threshold) current_above_threshold=overall_mask.count(True)/overall_mask.size() # current+(1-current)*pad additional_padding=(1-current_above_threshold)*mask_padding_fraction target_above_threshold=min( 0.99,current_above_threshold+additional_padding) print("Target with padding of %.2f will be %.2f" %( mask_padding_fraction,target_above_threshold), file=out) solvent_fraction=(1-target_above_threshold) mask_threshold=None if mask_threshold: print("Cutoff for mask will be input threshold", file=out) threshold=mask_threshold else: # guess based on solvent_fraction if solvent_fraction is None: print("Guessing solvent fraction of 0.9", file=out) solvent_fraction=0.9 # just guess threshold=find_threshold_in_map(target_points=int( (1.-solvent_fraction)*sd_map.size()), map_data=sd_map) print("Cutoff will be threshold marking about %7.1f%% of cell" %( 100.*(1.-solvent_fraction)), file=out) overall_mask=(sd_map>= threshold) print("Model region of map "+\ "(density above %7.3f )" %( threshold) +" includes %7.1f%% of map" %( 100.*overall_mask.count(True)/overall_mask.size()), file=out) return overall_mask,max_in_sd_map,sd_map def get_skew(data=None): mean=data.min_max_mean().mean sd=data.standard_deviation_of_the_sample() x=data-mean return (x**3).min_max_mean().mean/sd**3 def get_kurtosis(data=None): mean=data.min_max_mean().mean sd=data.standard_deviation_of_the_sample() x=data-mean return (x**4).min_max_mean().mean/sd**4 def score_map(map_data=None, sharpening_info_obj=None, solvent_fraction=None, fraction_occupied=None, wrapping=None, sa_percent=None, region_weight=None, max_regions_to_test=None, scale_region_weight=False, out=sys.stdout): if sharpening_info_obj: solvent_fraction=sharpening_info_obj.solvent_fraction wrapping=sharpening_info_obj.wrapping fraction_occupied=sharpening_info_obj.fraction_occupied sa_percent=sharpening_info_obj.sa_percent region_weight=sharpening_info_obj.region_weight max_regions_to_test=sharpening_info_obj.max_regions_to_test else: sharpening_info_obj=sharpening_info() if solvent_fraction is None: # skip SA score sharpening_info_obj.adjusted_sa=0. assert sharpening_info_obj.sharpening_target=='kurtosis' else: # usual map_data=renormalize_map_data( map_data=map_data,solvent_fraction=solvent_fraction) target_in_all_regions=map_data.size()*fraction_occupied*(1-solvent_fraction) print("\nTarget number of points in all regions: %.0f" %( target_in_all_regions), file=out) threshold=find_threshold_in_map(target_points=int( target_in_all_regions),map_data=map_data) print("Cutoff will be threshold of %7.2f marking %7.1f%% of cell" %( threshold,100.*(1.-solvent_fraction)), file=out) co,sorted_by_volume,min_b,max_b=get_co( map_data=map_data.deep_copy(), threshold=threshold,wrapping=wrapping) if len(sorted_by_volume)<2: return sharpening_info_obj# skip it, nothing to do target_sum= sa_percent* target_in_all_regions*0.01 print("Points for %.1f percent of target in all regions: %.1f" %( sa_percent,target_sum), file=out) cntr=0 sum_v=0. sum_new_v=0. for p in sorted_by_volume[1:max_regions_to_test+2]: cntr+=1 v,i=p sum_v+=v bool_expanded=co.expand_mask(id_to_expand=i,expand_size=1) new_v=bool_expanded.count(True)-v sum_new_v+=new_v sa_ratio=new_v/v if sum_v>=target_sum: break sa_ratio=sum_new_v/max(1.,sum_v) # ratio of SA to volume regions=len(sorted_by_volume[1:]) normalized_regions=regions/max(1,target_in_all_regions) skew=get_skew(map_data.as_1d()) if scale_region_weight: solvent_fraction_std=0.85 # typical value, ends up as scale on weight region_weight_scale=(1.-solvent_fraction)/(1.-solvent_fraction_std) region_weight_use=region_weight*region_weight_scale else: region_weight_use=region_weight sharpening_info_obj.adjusted_sa=\ sa_ratio - region_weight_use*normalized_regions sharpening_info_obj.sa_ratio=sa_ratio sharpening_info_obj.normalized_regions=normalized_regions sharpening_info_obj.kurtosis=get_kurtosis(map_data.as_1d()) if sharpening_info_obj.sharpening_target=='kurtosis': sharpening_info_obj.score=sharpening_info_obj.kurtosis else: sharpening_info_obj.score=sharpening_info_obj.adjusted_sa return sharpening_info_obj def sharpen_map_with_si(sharpening_info_obj=None, f_array_normalized=None, f_array=None,phases=None, map_data=None, overall_b=None, resolution=None, out=sys.stdout): si=sharpening_info_obj if si.sharpening_method=='no_sharpening': return map_and_b_object(map_data=map_data) if map_data and (not f_array or not phases): map_coeffs,dummy=get_f_phases_from_map(map_data=map_data, crystal_symmetry=si.crystal_symmetry, d_min=si.resolution, d_min_ratio=si.d_min_ratio, return_as_map_coeffs=True, scale_max=si.scale_max, out=out) f_array,phases=map_coeffs_as_fp_phi(map_coeffs) if si.remove_aniso: if si.use_local_aniso and \ (si.local_aniso_in_local_sharpening or (si.local_aniso_in_local_sharpening is None and si.ncs_copies==1)) and \ si.original_aniso_obj: # use original aniso_obj=si.original_aniso_obj print("\nRemoving aniso from map using saved aniso object before sharpening\n", file=out) else: print("\nRemoving aniso from map before sharpening\n", file=out) aniso_obj=None from cctbx.maptbx.refine_sharpening import analyze_aniso f_array,f_array_ra=analyze_aniso( aniso_obj=aniso_obj, remove_aniso=si.remove_aniso, f_array=f_array,resolution=si.resolution,out=out) if si.is_model_sharpening() or si.is_half_map_sharpening(): from cctbx.maptbx.refine_sharpening import scale_amplitudes ff=f_array.phase_transfer(phase_source=phases,deg=True) map_and_b=scale_amplitudes( map_coeffs=f_array.phase_transfer(phase_source=phases,deg=True), si=si,overall_b=overall_b,out=out) return map_and_b elif si.is_resolution_dependent_sharpening(): if f_array_normalized is None: from cctbx.maptbx.refine_sharpening import get_sharpened_map,\ quasi_normalize_structure_factors (d_max,d_min)=f_array.d_max_min() if not f_array.binner(): f_array.setup_binner(n_bins=si.n_bins,d_max=d_max,d_min=d_min) f_array_normalized=quasi_normalize_structure_factors( f_array,set_to_minimum=0.01) map_data=get_sharpened_map(ma=f_array_normalized,phases=phases, b=si.resolution_dependent_b,resolution=si.resolution,n_real=si.n_real, d_min_ratio=si.d_min_ratio) return map_and_b_object(map_data=map_data) else: map_and_b=apply_sharpening(n_real=si.n_real, f_array=f_array,phases=phases, sharpening_info_obj=si, crystal_symmetry=si.crystal_symmetry, out=null_out()) return map_and_b def put_bounds_in_range( lower_bounds=None,upper_bounds=None, box_size=None, n_buffer=None, n_real=None,out=sys.stdout): # put lower and upper inside (0,n_real) and try to make size at least minimum new_lb=[] new_ub=[] print("Putting bounds in range...(%s,%s,%s) to (%s,%s,%s)" %( tuple(list(lower_bounds)+list(upper_bounds))), file=out) if n_buffer: print("Buffer of %s added" %(n_buffer), file=out) for lb,ub,ms,nr in zip(lower_bounds,upper_bounds,box_size,n_real): if ub<lb: ub=lb if lb >ub: lb=ub extra=(ms-(ub-lb))//2 lb=lb-extra ub=ub+extra if n_buffer: lb=lb-n_buffer ub=ub+n_buffer if lb<0: shift=-lb lb+=shift ub+=shift boundary=int(ms-(ub-lb+1))//2 if boundary>0: lb=lb-boundary ub=ub+boundary if lb<0: lb=0 if ub>nr: ub=nr new_lb.append(lb) new_ub.append(ub) print("New bounds ...(%s,%s,%s) to (%s,%s,%s)" %( tuple(list(new_lb)+list(new_ub))), file=out) return tuple(new_lb),tuple(new_ub) def get_iterated_solvent_fraction(map=None, verbose=None, resolve_size=None, crystal_symmetry=None, mask_padding_fraction=None, fraction_of_max_mask_threshold=None, cell_cutoff_for_solvent_from_mask=None, mask_resolution=None, out=sys.stdout): if cell_cutoff_for_solvent_from_mask and \ crystal_symmetry.unit_cell().volume() > cell_cutoff_for_solvent_from_mask**3: #go directly to low_res_mask return get_solvent_fraction_from_low_res_mask( crystal_symmetry=crystal_symmetry, map_data=map.deep_copy(), mask_padding_fraction=mask_padding_fraction, fraction_of_max_mask_threshold=fraction_of_max_mask_threshold, mask_resolution=mask_resolution) try: from phenix.autosol.map_to_model import iterated_solvent_fraction solvent_fraction=iterated_solvent_fraction( crystal_symmetry=crystal_symmetry, map_as_double=map, verbose=verbose, resolve_size=resolve_size, return_solvent_fraction=True, out=out) if solvent_fraction<=0.989: # means that it was 0.99 which is hard limit return solvent_fraction else: # use backup method return get_solvent_fraction_from_low_res_mask( crystal_symmetry=crystal_symmetry, map_data=map.deep_copy(), mask_padding_fraction=mask_padding_fraction, fraction_of_max_mask_threshold=fraction_of_max_mask_threshold, mask_resolution=mask_resolution) except Exception as e: # catch case where map was not on proper grid if str(e).find("sym equiv of a grid point must be a grid point")>-1: print("\nSpace group:%s \n Unit cell: %s \n Gridding: %s \nError message: %s" %( crystal_symmetry.space_group().info(), str(crystal_symmetry.unit_cell().parameters()), str(map.all()),str(e)), file=out) raise Sorry( "The input map seems to be on a grid incompatible with crystal symmetry"+ "\n(symmetry equivalents of a grid point must be on "+ "an integer grid point)") elif str(e).find("maximum size for resolve is")>-1: raise Sorry(str(e)+ "\nIt may be possible to go on by supplying solvent content"+ "or molecular_mass") # Try to get solvent fraction with low_res mask return get_solvent_fraction_from_low_res_mask( crystal_symmetry=crystal_symmetry, map_data=map.deep_copy(), mask_padding_fraction=mask_padding_fraction, fraction_of_max_mask_threshold=fraction_of_max_mask_threshold, mask_resolution=mask_resolution) def get_solvent_fraction_from_low_res_mask( crystal_symmetry=None,map_data=None, fraction_of_max_mask_threshold=None, mask_padding_fraction=None, mask_resolution=None, out=sys.stdout): overall_mask,max_in_sd_map,sd_map=get_overall_mask(map_data=map_data, fraction_of_max_mask_threshold=fraction_of_max_mask_threshold, mask_padding_fraction=mask_padding_fraction, crystal_symmetry=crystal_symmetry, resolution=mask_resolution, out=out) solvent_fraction=overall_mask.count(False)/overall_mask.size() print("Solvent fraction from overall mask: %.3f " %(solvent_fraction), file=out) return solvent_fraction def get_solvent_fraction_from_molecular_mass( crystal_symmetry=None,molecular_mass=None,out=sys.stdout): map_volume=crystal_symmetry.unit_cell().volume() density_factor=1000*1.23 # just protein density, close enough... mm=molecular_mass molecule_fraction= mm*density_factor/map_volume if molecule_fraction > 1 and mm > 1000: mm=mm/1000 # was in Da solvent_fraction=max(0.01,min(1.,1 - ( mm*density_factor/map_volume))) print("Solvent content of %7.2f from molecular mass of %7.1f kDa" %( solvent_fraction,mm), file=out) return solvent_fraction def set_up_si(var_dict=None,crystal_symmetry=None, is_crystal=None, ncs_copies=None,n_residues=None, solvent_fraction=None,molecular_mass=None,pdb_inp=None,map=None, auto_sharpen=True,half_map_data_list=None,verbose=None, out=sys.stdout): si=sharpening_info(n_real=map.all()) args=[] auto_sharpen_methods=var_dict.get('auto_sharpen_methods') if auto_sharpen_methods and auto_sharpen_methods != ['None'] and \ len(auto_sharpen_methods)==1: sharpening_method=auto_sharpen_methods[0] else: sharpening_method=None for param in [ 'verbose','resolve_size','seq_file', 'sequence', 'box_size', 'target_n_overlap', 'restrict_map_size', 'box_center','remove_aniso', 'input_weight_map_pickle_file', 'output_weight_map_pickle_file', 'read_sharpened_maps', 'write_sharpened_maps', 'select_sharpened_map', 'output_directory', 'smoothing_radius','use_local_aniso', 'local_aniso_in_local_sharpening', 'overall_before_local', 'local_sharpening', 'box_in_auto_sharpen', 'density_select_in_auto_sharpen', 'density_select_threshold_in_auto_sharpen', 'use_weak_density', 'resolution', 'd_min_ratio', 'scale_max', 'input_d_cut', 'b_blur_hires', 'discard_if_worse', 'mask_atoms','mask_atoms_atom_radius','value_outside_atoms', 'soft_mask', 'tol_r','abs_tol_t', 'rel_tol_t', 'require_helical_or_point_group_symmetry', 'max_helical_operators', 'allow_box_if_b_iso_set', 'max_box_fraction', 'cc_cut', 'max_cc_for_rescale', 'scale_using_last', 'density_select_max_box_fraction', 'k_sharpen', 'optimize_b_blur_hires', 'iterate', 'optimize_d_cut', 'residual_target','sharpening_target', 'search_b_min','search_b_max','search_b_n','adjust_region_weight', 'region_weight_method', 'region_weight_factor', 'region_weight_buffer', 'region_weight_default', 'target_b_iso_ratio', 'signal_min', 'buffer_radius', 'wang_radius', 'pseudo_likelihood', 'target_b_iso_model_scale', 'b_iso','b_sharpen', 'resolution_dependent_b', 'normalize_amplitudes_in_resdep', 'region_weight', 'sa_percent', 'n_bins', 'eps', 'max_regions_to_test', 'regions_to_keep', 'fraction_occupied', 'rmsd', 'rmsd_resolution_factor', 'k_sol', 'b_sol', 'fraction_complete', 'nproc', 'multiprocessing', 'queue_run_command', 'verbose', ]: x=var_dict.get(param) if x is not None: if type(x)==type([1,2,3]): xx=[] for k in x: xx.append(str(k)) args.append("%s=%s" %(param," ".join(xx))) else: args.append("%s=%s" %(param,x)) local_params=get_params_from_args(args) # Set solvent content from molecular_mass if present if molecular_mass and not solvent_fraction: solvent_fraction=get_solvent_fraction_from_molecular_mass( crystal_symmetry=crystal_symmetry,molecular_mass=molecular_mass, out=out) if (local_params.input_files.seq_file or local_params.crystal_info.sequence) and \ not local_params.crystal_info.solvent_content and \ not solvent_fraction: # 2017-12-19 solvent_fraction=get_solvent_fraction(local_params, crystal_symmetry=crystal_symmetry, ncs_copies=ncs_copies,out=out) si.update_with_params(params=local_params, crystal_symmetry=crystal_symmetry, is_crystal=is_crystal, solvent_fraction=solvent_fraction, ncs_copies=ncs_copies, n_residues=n_residues, auto_sharpen=auto_sharpen, sharpening_method=sharpening_method, pdb_inp=pdb_inp, half_map_data_list=half_map_data_list, ) return si def bounds_to_frac(b,map_data): a=map_data.all() return b[0]/a[0],b[1]/a[1], b[2]/a[2] def bounds_to_cart(b,map_data,crystal_symmetry=None): bb=bounds_to_frac(b,map_data) a,b,c=crystal_symmetry.unit_cell().parameters()[:3] return a*bb[0],b*bb[1], c*bb[2] def select_inside_box(lower_bounds=None,upper_bounds=None,xrs=None, hierarchy=None): if not hierarchy or not xrs: return None selection = flex.bool(xrs.scatterers().size()) for atom_group in hierarchy.atom_groups(): for atom in atom_group.atoms(): if atom.xyz[0]>=lower_bounds[0] and \ atom.xyz[0]<=upper_bounds[0] and \ atom.xyz[1]>=lower_bounds[1] and \ atom.xyz[1]<=upper_bounds[1] and \ atom.xyz[2]>=lower_bounds[2] and \ atom.xyz[2]<=upper_bounds[2]: selection[atom.i_seq]=True asc1=hierarchy.atom_selection_cache() return hierarchy.select(selection) def make_empty_map(template_map=None,value=0.): # Create empty map original_map_in_box empty_map=flex.double(template_map.as_1d().as_double().size(),value) empty_map.reshape(flex.grid(template_map.all())) return empty_map def sum_box_data(starting_map=None,box_map=None, lower_bounds=None,upper_bounds=None): # sum box data into starting_map #Pull out current starting_map data starting_box_data= maptbx.copy(starting_map, tuple(lower_bounds), tuple(upper_bounds)) assert starting_box_data.all()==box_map.all() # Add to box_map starting_box_data=starting_box_data.as_1d() box_map_data=box_map.as_1d() starting_box_data+=box_map_data # put back into shape starting_box_data.reshape(flex.grid(box_map.all())) maptbx.set_box( map_data_from = starting_box_data, map_data_to = starting_map, start = lower_bounds, end = upper_bounds) return starting_map def copy_box_data(starting_map=None,box_map=None, lower_bounds=None,upper_bounds=None): # Copy box data into original_map_in_box maptbx.set_box( map_data_from = box_map, map_data_to = starting_map, start = lower_bounds, end = upper_bounds) return starting_map def select_box_map_data(si=None, map_data=None, first_half_map_data=None, second_half_map_data=None, pdb_inp=None, get_solvent_fraction=True,# XXX test not doing this... n_min=30, # at least 30 atoms to run model sharpening restrict_map_size=None, out=sys.stdout,local_out=sys.stdout): box_solvent_fraction=None solvent_fraction=si.solvent_fraction crystal_symmetry=si.crystal_symmetry box_size=si.box_size lower_bounds=None upper_bounds=None smoothed_box_mask_data=None original_box_map_data=None # n_buffer=None if (not pdb_inp and not si.box_in_auto_sharpen) and ( first_half_map_data and second_half_map_data): print("Creating density-based soft mask and applying to half-map data", file=out) if not si.soft_mask: raise Sorry( "Need to set soft_mask=True for half-map sharpening without model") # NOTE: could precede this by density_select on map_data, save bounds and # cut out half-maps with those bounds. That case could # cover si.soft_mask=False half_map_data_list=[first_half_map_data,second_half_map_data] box_mask_data,box_map,half_map_data_list,\ box_solvent_fraction,smoothed_box_mask_data,original_box_map_data=\ get_and_apply_soft_mask_to_maps( resolution=si.resolution, wang_radius=si.wang_radius, buffer_radius=si.buffer_radius, map_data=map_data,crystal_symmetry=crystal_symmetry, half_map_data_list=half_map_data_list, out=out) box_first_half_map,box_second_half_map=half_map_data_list box_crystal_symmetry=crystal_symmetry box_pdb_inp=pdb_inp elif pdb_inp or ( si.density_select_in_auto_sharpen and not si.box_in_auto_sharpen): # use map_box for pdb_inp (mask with model) # also use map_box for density_select_in_auto_sharpen sharpening because # need to use the same density select for all 3 maps. # XXX Perhaps we canuse above method for pdb_inp assert not si.local_sharpening if pdb_inp: print("Using map_box based on input model", file=out) hierarchy=pdb_inp.construct_hierarchy() max_box_fraction=si.max_box_fraction si.density_select_in_auto_sharpen=False else: #print >>out,"Using density_select in map_box" hierarchy=None assert si.density_select_in_auto_sharpen max_box_fraction=si.density_select_max_box_fraction #----------------------trimming model------------------------------- if si.box_center: # Have model but center at box_center and trim hierarchy lower_bounds,upper_bounds=box_from_center(si=si, map_data=map_data,out=out) if si.soft_mask: n_buffer=get_grid_units(map_data=map_data, crystal_symmetry=crystal_symmetry, radius=si.resolution,out=out) n_buffer=int(0.5+n_buffer*1.5) else: n_buffer=0 lower_bounds,upper_bounds=put_bounds_in_range( lower_bounds=lower_bounds,upper_bounds=upper_bounds, box_size=box_size,n_buffer=n_buffer, n_real=map_data.all(),out=out) lower_frac=bounds_to_frac(lower_bounds,map_data) upper_frac=bounds_to_frac(upper_bounds,map_data) lower_cart=bounds_to_cart( lower_bounds,map_data,crystal_symmetry=crystal_symmetry) upper_cart=bounds_to_cart( upper_bounds,map_data,crystal_symmetry=crystal_symmetry) if hierarchy: # trimming hierarchy to box and then using trimmed # hierarchy in map_box to create actual box xrs=hierarchy.extract_xray_structure( crystal_symmetry=si.crystal_symmetry) # find everything in box sel_hierarchy=select_inside_box(lower_bounds=lower_cart, upper_bounds=upper_cart, xrs=xrs,hierarchy=hierarchy) n=sel_hierarchy.overall_counts().n_atoms print("Selected atoms inside box: %d" %(n), file=out) if n<n_min: print("Skipping...using entire structure", file=out) else: hierarchy=sel_hierarchy #----------------------end trimming model------------------------------- from mmtbx.command_line.map_box import run as run_map_box args=["keep_input_unit_cell_and_grid=False"] if si.density_select_in_auto_sharpen: args.append('density_select=True') #print >>out,"Using density_select in map_box" if si.density_select_threshold_in_auto_sharpen is not None: args.append('density_select_threshold=%s' %( si.density_select_threshold_in_auto_sharpen)) elif si.box_in_auto_sharpen and not si.mask_atoms: print("Using map_box with model", file=out) elif si.mask_atoms: print("Using map_box with model and mask_atoms", file=out) args.append('mask_atoms=True') if si.mask_atoms_atom_radius: args.append('mask_atoms_atom_radius=%s' %(si.mask_atoms_atom_radius)) if si.value_outside_atoms: args.append('value_outside_atoms=%s' %(si.value_outside_atoms)) if si.soft_mask: print("Using soft mask", file=out) args.append('soft_mask=%s' %(si.soft_mask)) args.append('soft_mask_radius=%s' %(si.resolution)) else: raise Sorry("Unknown choice in select_box_data") if restrict_map_size: args.append('restrict_map_size=True') print("Getting map as box now", file=out) local_hierarchy=None if hierarchy: local_hierarchy=hierarchy.deep_copy() # run_map_box modifies its argument box=run_map_box(args, map_data=map_data,pdb_hierarchy=local_hierarchy, write_output_files=False, crystal_symmetry=crystal_symmetry,log=out) lower_bounds=box.gridding_first upper_bounds=box.gridding_last box_map=box.map_box box_map=scale_map(box_map,out=out) box_crystal_symmetry=box.box_crystal_symmetry box_pdb_inp=box.hierarchy.as_pdb_input() if first_half_map_data: print("Getting first map as box", file=out) if hierarchy: local_hierarchy=hierarchy.deep_copy() # required box_first=run_map_box(args, map_data=first_half_map_data,pdb_hierarchy=local_hierarchy, write_output_files=False, lower_bounds=lower_bounds, upper_bounds=upper_bounds, crystal_symmetry=crystal_symmetry, log=out) box_first_half_map=box_first.map_box.as_double() else: box_first_half_map=None if second_half_map_data: print("Getting second map as box", file=out) if hierarchy: local_hierarchy=hierarchy.deep_copy() # required box_second=run_map_box(args, map_data=second_half_map_data,pdb_hierarchy=local_hierarchy, write_output_files=False, lower_bounds=lower_bounds, upper_bounds=upper_bounds, crystal_symmetry=crystal_symmetry, log=out) box_second_half_map=box_second.map_box.as_double() else: box_second_half_map=None else: # cut out box based on box_center or regions if si.box_center: # center at box_center print("Cutting out box based on center at (%.2f,%.2f,%.2f) " %( si.box_center), file=out) lower_bounds,upper_bounds=box_from_center(si=si, map_data=map_data,out=out) elif si.use_weak_density: print("Cutting out box based on centering on weak density", file=out) lower_bounds,upper_bounds=box_of_smallest_region(si=si, map_data=map_data, out=out) else: print("Cutting out box based on centering on strong density", file=out) lower_bounds,upper_bounds=box_of_biggest_region(si=si, map_data=map_data, out=out) if si.soft_mask: n_buffer=get_grid_units(map_data=map_data, crystal_symmetry=crystal_symmetry, radius=si.resolution,out=out) n_buffer=int(0.5+n_buffer*1.5) else: n_buffer=0 lower_bounds,upper_bounds=put_bounds_in_range( lower_bounds=lower_bounds,upper_bounds=upper_bounds, box_size=box_size,n_buffer=n_buffer, n_real=map_data.all(),out=out) # select map data inside this box print("\nSelecting map data inside box", file=out) box_map,box_crystal_symmetry,\ smoothed_box_mask_data,original_box_map_data=cut_out_map( map_data=map_data.as_double(), crystal_symmetry=crystal_symmetry, soft_mask=si.soft_mask, soft_mask_radius=si.resolution, resolution=si.resolution, shift_origin=True, min_point=lower_bounds, max_point=upper_bounds,out=out) box_pdb_inp=None if first_half_map_data: box_first_half_map,box_first_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( map_data=first_half_map_data.as_double(), crystal_symmetry=crystal_symmetry, soft_mask=si.soft_mask, soft_mask_radius=si.resolution, resolution=si.resolution, shift_origin=True, min_point=lower_bounds, max_point=upper_bounds,out=local_out) else: box_first_half_map=None if second_half_map_data: box_second_half_map,box_second_crystal_symmetry,\ dummy_smoothed_box_mask_data,dummy_original_box_map_data=cut_out_map( map_data=second_half_map_data.as_double(), crystal_symmetry=crystal_symmetry, soft_mask=si.soft_mask, soft_mask_radius=si.resolution, resolution=si.resolution, shift_origin=True, min_point=lower_bounds, max_point=upper_bounds,out=local_out) else: box_second_half_map=None if not box_map or ( (not pdb_inp and not second_half_map_data) and \ box_map.size() > si.max_box_fraction* map_data.size()): return None,map_data,first_half_map_data,\ second_half_map_data,crystal_symmetry,None,\ smoothed_box_mask_data,None,None # no point # figure out solvent fraction in this box... if get_solvent_fraction: # if box_solvent_fraction is None: box_solvent_fraction=get_iterated_solvent_fraction( crystal_symmetry=box_crystal_symmetry, map=box_map, fraction_of_max_mask_threshold=si.fraction_of_max_mask_threshold, mask_resolution=si.resolution, out=out) if box_solvent_fraction is None: box_solvent_fraction=si.solvent_fraction print("Using overall solvent fraction for box", file=out) print("Local solvent fraction: %7.2f" %(box_solvent_fraction), file=out) else: box_solvent_fraction=None box_sharpening_info_obj=box_sharpening_info( lower_bounds=lower_bounds, upper_bounds=upper_bounds, n_real=box_map.all(), scale_max=si.scale_max, wrapping=False, crystal_symmetry=box_crystal_symmetry, solvent_fraction=box_solvent_fraction) return box_pdb_inp,box_map,box_first_half_map,box_second_half_map,\ box_crystal_symmetry,box_sharpening_info_obj,\ smoothed_box_mask_data,original_box_map_data,n_buffer def inside_zero_one(xyz): from scitbx.array_family import flex from scitbx.matrix import col offset=xyz-col((0.5,0.5,0.5)) lower_int=offset.iround().as_vec3_double() return xyz-lower_int def move_xyz_inside_cell(xyz_cart=None,crystal_symmetry=None): xyz_local=flex.vec3_double() if type(xyz_cart)==type(xyz_local): xyz_local=xyz_cart is_single=False else: is_single=True xyz_local.append(xyz_cart) xyz_frac=crystal_symmetry.unit_cell().fractionalize(xyz_local) new_xyz_frac=inside_zero_one(xyz_frac) new_xyz_cart=crystal_symmetry.unit_cell().orthogonalize(new_xyz_frac) if is_single: return new_xyz_cart[0] else: return new_xyz_cart def box_from_center( si=None, map_data=None, out=sys.stdout): cx,cy,cz=si.crystal_symmetry.unit_cell().fractionalize(si.box_center) if cx<0 or cx>1 or cy<0 or cy>1 or cz<0 or cz>1: print("Moving box center inside (0,1)", file=out) si.box_center=move_xyz_inside_cell( xyz_cart=si.box_center,crystal_symmetry=si.crystal_symmetry) cx,cy,cz=si.crystal_symmetry.unit_cell().fractionalize(si.box_center) print("\nBox centered at (%7.2f,%7.2f,%7.2f) A" %( tuple(si.box_center)), file=out) ax,ay,az=map_data.all() cgx,cgy,cgz=int(0.5+ax*cx),int(0.5+ay*cy),int(0.5+az*cz), print("Box grid centered at (%d,%d,%d)\n" %(cgx,cgy,cgz), file=out) return (cgx,cgy,cgz),(cgx,cgy,cgz) def box_of_smallest_region(si=None, map_data=None, return_as_list=None, out=sys.stdout): return box_of_biggest_region(si=si, map_data=map_data, return_as_list=return_as_list, use_smallest=True, out=out) def box_of_biggest_region(si=None, map_data=None, return_as_list=None, use_smallest=False, out=sys.stdout): n_residues=si.n_residues ncs_copies=si.ncs_copies solvent_fraction=si.solvent_fraction b_vs_region=b_vs_region_info() co,sorted_by_volume,min_b,max_b,unique_expected_regions,best_score,\ new_threshold,starting_density_threshold=\ get_connectivity( b_vs_region=b_vs_region, map_data=map_data, n_residues=n_residues, ncs_copies=ncs_copies, solvent_fraction=solvent_fraction, min_volume=si.min_volume, min_ratio=si.min_ratio, fraction_occupied=si.fraction_occupied, wrapping=si.wrapping, residues_per_region=si.residues_per_region, max_ratio_to_target=si.max_ratio_to_target, min_ratio_to_target=si.min_ratio_to_target, min_ratio_of_ncs_copy_to_first=si.min_ratio_of_ncs_copy_to_first, starting_density_threshold=si.starting_density_threshold, density_threshold=si.density_threshold, crystal_symmetry=si.crystal_symmetry, chain_type=si.chain_type, verbose=si.verbose, out=out) if len(sorted_by_volume)<2: return # nothing to do if use_smallest: small_ratio=0.25 maximum_position_ratio=0.75 v1,i1=sorted_by_volume[1] v_small=small_ratio*v1 maximum_position_small=maximum_position_ratio*(len(sorted_by_volume)-1)+1 best_pos=1 ii=0 for v,i in sorted_by_volume[1:]: ii+=1 if v < v_small: continue if ii > maximum_position_small: continue best_pos=ii v,i=sorted_by_volume[best_pos] print("\nVolume of target region %d: %d grid points: "%(best_pos,v), file=out) else: # usual v,i=sorted_by_volume[1] print("\nVolume of largest region: %d grid points: "%(v), file=out) print("Region %3d (%3d) volume:%5d X:%6d - %6d Y:%6d - %6d Z:%6d - %6d "%( 1,i,v, min_b[i][0],max_b[i][0], min_b[i][1],max_b[i][1], min_b[i][2],max_b[i][2]), file=out) if (not return_as_list): return min_b[i],max_b[i] else: # return a list of centers centers_frac=flex.vec3_double() a1,a2,a3=map_data.all() for v,i in sorted_by_volume[1:]: centers_frac.append( tuple(( (min_b[i][0]+max_b[i][0])/(2.*a1), (min_b[i][1]+max_b[i][1])/(2.*a2), (min_b[i][2]+max_b[i][2])/(2.*a3), )) ) return centers_frac def get_fft_map(n_real=None,map_coeffs=None): from cctbx import maptbx from cctbx.maptbx import crystal_gridding if n_real: cg=crystal_gridding( unit_cell=map_coeffs.crystal_symmetry().unit_cell(), space_group_info=map_coeffs.crystal_symmetry().space_group_info(), pre_determined_n_real=n_real) else: cg=None ccs=map_coeffs.crystal_symmetry() fft_map = map_coeffs.fft_map( resolution_factor = 0.25, crystal_gridding=cg, symmetry_flags=maptbx.use_space_group_symmetry) fft_map.apply_sigma_scaling() return fft_map def average_from_bounds(lower,upper,grid_all=None): avg=[] for u,l in zip(upper,lower): avg.append(0.5*(u+l)) if grid_all: avg_fract=[] for a,g in zip(avg,grid_all): avg_fract.append(a/g) avg=avg_fract return avg def get_ncs_copies(site_cart,ncs_object=None, only_inside_box=None,unit_cell=None): ncs_group=ncs_object.ncs_groups()[0] from scitbx.array_family import flex from scitbx.matrix import col sites_cart_ncs=flex.vec3_double() for t,r in zip(ncs_group.translations_orth_inv(), ncs_group.rota_matrices_inv()): sites_cart_ncs.append(r * col(site_cart) + t) if only_inside_box: assert unit_cell is not None sites_frac_ncs=unit_cell.fractionalize(sites_cart_ncs) new_sites_frac=flex.vec3_double() for x in sites_frac_ncs: if x[0]>=0 and x[0]<=1 and \ x[1]>=0 and x[1]<=1 and \ x[2]>=0 and x[2]<=1: new_sites_frac.append(x) sites_cart_ncs=unit_cell.orthogonalize(new_sites_frac) return sites_cart_ncs def fit_bounds_inside_box(lower,upper,box_size=None,all=None): # adjust bounds so upper>lower and box size is at least box_size new_lower=[] new_upper=[] if box_size: for u,l,s,a in zip(upper,lower,box_size,all): ss=u-l+1 delta=int((1+s-ss)/2) # desired increase in size, to subtract from l l=max(0,l-delta) ss=u-l+1 delta=(s-ss) # desired increase in size, to add to u u=min(a-1,u+delta) l=max(0,l) new_lower.append(l) new_upper.append(u) else: for u,l,a in zip(upper,lower,all): u=min(a-1,u) l=max(0,l) new_lower.append(l) new_upper.append(u) return new_lower,new_upper def split_boxes(lower=None,upper=None,target_size=None,target_n_overlap=None, fix_target_size_and_overlap=None): # purpose: split the region from lower to upper into overlapping # boxes of size about target_size # NOTE: does not actually use target_n_overlap unless # fix_target_size_and_overlap is set all_box_list=[] for l,u,ts in zip (lower,upper,target_size): n=u+1-l # offset defined by: ts-offset + ts-offset+...+ts =n # ts*n_box-offset*(n_box-1)=n approx # n_box (ts-offset) +offset=n # n_box= (n-offset)/(ts-offset) assert ts>target_n_overlap if fix_target_size_and_overlap: n_box=(n-target_n_overlap-1)/(ts-target_n_overlap) if n_box>int(n_box): n_box=int(n_box)+1 else: n_box=int(n_box) new_target_size=ts offset=ts-target_n_overlap else: # original version n_box=max(1,(n+(3*ts//4))//ts) new_target_size=int(0.9+n/n_box) offset=int(0.9+(n-new_target_size)/max(1,n_box-1)) box_list=[] for i in range(n_box): start_pos=max(l,l+i*offset) end_pos=min(u,start_pos+new_target_size) if fix_target_size_and_overlap: start_pos=max(0,min(start_pos,end_pos-new_target_size)) box_list.append([start_pos,end_pos]) all_box_list.append(box_list) new_lower_upper_list=[] for xs,xe in all_box_list[0]: for ys,ye in all_box_list[1]: for zs,ze in all_box_list[2]: new_lower_upper_list.append([(xs,ys,zs,),(xe,ye,ze,)]) return new_lower_upper_list def get_target_boxes(si=None,ncs_obj=None,map=None, pdb_inp=None,out=sys.stdout): print(80*"-", file=out) print("Getting segmented map to ID locations for sharpening", file=out) print(80*"-", file=out) if si.input_weight_map_pickle_file: from libtbx import easy_pickle file_name=si.input_weight_map_pickle_file print("Loading segmentation data from %s" %(file_name), file=out) tracking_data=easy_pickle.load(file_name) else: args=[ 'resolution=%s' %(si.resolution), 'seq_file=%s' %(si.seq_file), 'sequence=%s' %(si.sequence), 'solvent_content=%s' %(si.solvent_fraction), 'auto_sharpen=False', # XXX could sharpen overall 'write_output_maps=True', 'add_neighbors=False', 'density_select=False', ] if si.is_crystal: args.append("is_crystal=True") ncs_group_obj,remainder_ncs_group_obj,tracking_data=run( args, map_data=map.deep_copy(), ncs_obj=ncs_obj, crystal_symmetry=si.crystal_symmetry) if si.output_weight_map_pickle_file: from libtbx import easy_pickle file_name=os.path.join(si.output_directory,si.output_weight_map_pickle_file) print("Dumping segmentation data to %s" %(file_name), file=out) easy_pickle.dump(file_name,tracking_data) if not ncs_obj or ncs_obj.max_operators()==0: from mmtbx.ncs.ncs import ncs ncs_obj=ncs() ncs_obj.set_unit_ncs() print("Regions in this map:", file=out) centers_frac=flex.vec3_double() upper_bounds_list=[] lower_bounds_list=[] if pdb_inp and pdb_inp.atoms().extract_xyz().size()>1: xyz_list=pdb_inp.atoms().extract_xyz() i_end=xyz_list.size() n_centers=min(i_end,max(1,len(tracking_data.output_region_map_info_list))) n_steps=min(n_centers,xyz_list.size()) i_step=int(0.5+min(i_end/2,i_end/n_steps)) # about n_centers but up to n_atoms i_start=max(1,int(0.5+i_step/2)) from scitbx.matrix import col ma=map.all() for i in range(i_start,i_end,i_step): lower_cart=col(xyz_list[i]) lower_frac=si.crystal_symmetry.unit_cell().fractionalize(lower_cart) lower=[ int(0.5+ma[0]*lower_frac[0]), int(0.5+ma[1]*lower_frac[1]), int(0.5+ma[2]*lower_frac[2])] lower,upper=fit_bounds_inside_box( lower,lower,box_size=si.box_size,all=map.all()) upper_bounds_list.append(upper) lower_bounds_list.append(lower) average_fract=average_from_bounds(lower,upper,grid_all=map.all()) centers_frac.append(average_fract) else: for map_info_obj in tracking_data.output_region_map_info_list: lower,upper=map_info_obj.lower_upper_bounds() lower,upper=fit_bounds_inside_box( lower,upper, box_size=None, # take the whole region, not just center all=map.all()) for lower,upper in split_boxes(lower=lower,upper=upper, target_size=si.box_size, target_n_overlap=si.target_n_overlap): upper_bounds_list.append(upper) lower_bounds_list.append(lower) average_fract=average_from_bounds(lower,upper,grid_all=map.all()) centers_frac.append(average_fract) centers_cart=si.crystal_symmetry.unit_cell().orthogonalize(centers_frac) # Make ncs-related centers print("NCS ops:",ncs_obj.max_operators(), file=out) centers_cart_ncs_list=[] for i in range(centers_cart.size()): centers_cart_ncs_list.append(get_ncs_copies( centers_cart[i],ncs_object=ncs_obj,only_inside_box=True, unit_cell=si.crystal_symmetry.unit_cell()) ) all_cart=flex.vec3_double() for center_list in centers_cart_ncs_list: all_cart.extend(center_list) sharpening_centers_file=os.path.join( si.output_directory,"sharpening_centers.pdb") write_atoms(file_name=sharpening_centers_file, crystal_symmetry=si.crystal_symmetry,sites=centers_cart) ncs_sharpening_centers_file=os.path.join( si.output_directory,"ncs_sharpening_centers.pdb") write_atoms(file_name=ncs_sharpening_centers_file, crystal_symmetry=si.crystal_symmetry,sites=all_cart) print("\nSharpening centers (matching shifted_map_file).\n\n "+\ "Written to: \n%s \n%s\n"%( sharpening_centers_file,ncs_sharpening_centers_file), file=out) for i in range(centers_cart.size()): print("Center: %s (%7.2f,%7.2f,%7.2f) Bounds: %s :: %s " %( i,centers_cart[i][0],centers_cart[i][1],centers_cart[i][2], str(lower_bounds_list[i]),str(upper_bounds_list[i])), file=out) print(80*"-", file=out) print("Done getting segmented map to ID locations for sharpening", file=out) print(80*"-", file=out) return upper_bounds_list,lower_bounds_list,\ centers_cart_ncs_list,centers_cart,all_cart def get_box_size(lower_bound=None,upper_bound=None): box_size=[] for lb,ub in zip(lower_bound,upper_bound): box_size.append(ub-lb) return box_size def mean_dist_to_nearest_neighbor(all_cart): if all_cart.size()<2: # nothing to check return None sum_dist=0. sum_n=0. for i in range(all_cart.size()): xyz=all_cart[i:i+1] others=all_cart[:i] others.extend(all_cart[i+1:]) sum_dist+=get_closest_dist(xyz,others) sum_n+=1. return sum_dist/max(1.,sum_n) def run_local_sharpening(si=None, auto_sharpen_methods=None, map=None, ncs_obj=None, half_map_data_list=None, pdb_inp=None, out=sys.stdout): print(80*"-", file=out) print("Running local sharpening", file=out) print(80*"-", file=out) # run auto_sharpen_map_or_map_coeffs with box_in_auto_sharpen=True and # centered at different places. Identify the places as centers of regions. # Run on au of NCS and apply NCS to get remaining positions if si.overall_before_local: # first do overall sharpening of the map to get it about right print(80*"*", file=out) print("\nSharpening map overall before carrying out local sharpening\n", file=out) overall_si=deepcopy(si) overall_si.local_sharpening=False # don't local sharpen overall_si=auto_sharpen_map_or_map_coeffs(si=overall_si, auto_sharpen_methods=auto_sharpen_methods, map=map, half_map_data_list=half_map_data_list, pdb_inp=pdb_inp, out=out) sharpened_map=overall_si.map_data print("\nDone sharpening map overall before carrying out local sharpening\n", file=out) print(80*"*", file=out) else: sharpened_map=map # Accumulate sums starting_weight=0.01 # put starting map everywhere with low weight sum_weight_map=make_empty_map(template_map=map,value=starting_weight) # in case a pixel is not covered... sum_weight_value_map=starting_weight*sharpened_map.deep_copy() print("\nUsing overall map for any regions where "+\ "no local information is present", file=out) id_list=[] b_iso_list=flex.double() starting_b_iso_list=flex.double() # use sharpened map here upper_bounds_list,lower_bounds_list,\ centers_cart_ncs_list,centers_cart,all_cart=\ get_target_boxes(si=si,map=sharpened_map,ncs_obj=ncs_obj, pdb_inp=pdb_inp,out=out) dist=mean_dist_to_nearest_neighbor(all_cart) if not dist: dist=10. if not si.smoothing_radius: print("No nearest neighbors...best to set smoothing radius", file=out) print("\nMean distance to nearest center is %7.2f A " %( dist), file=out) if not si.smoothing_radius: si.smoothing_radius=float("%.0f" %(dist*2/3)) # 10A from nearest neighbor print("Using %s A for smoothing radius" %(si.smoothing_radius), file=out) i=-1 for ub,lb,centers_ncs_cart,center_cart in zip( upper_bounds_list,lower_bounds_list,centers_cart_ncs_list,centers_cart): i+=1 if si.select_sharpened_map is not None and i != si.select_sharpened_map: continue map_file_name='sharpened_map_%s.ccp4' %(i) if 0 and si.read_sharpened_maps: # cannot do this as no bounds print("\nReading sharpened map directly from %s" %(map_file_name), file=out) result=get_map_object(file_name=map_file_name, out=out) local_map_data=result[0] else: local_si=deepcopy(si) local_si.local_sharpening=False # don't do it again local_si.box_size=get_box_size(lower_bound=lb,upper_bound=ub) local_si.box_center=center_cart local_si.box_in_auto_sharpen=True local_si.density_select_in_auto_sharpen=False local_si.use_local_aniso=si.local_aniso_in_local_sharpening local_si.remove_aniso=si.local_aniso_in_local_sharpening local_si.max_box_fraction=999 # just bigger than 1 local_si.density_select_max_box_fraction=999 local_si.nproc=1 print(80*"+", file=out) print("Getting local sharpening for box %s" %(i), file=out) print(80*"+", file=out) bsi=auto_sharpen_map_or_map_coeffs(si=local_si, auto_sharpen_methods=auto_sharpen_methods, map=sharpened_map, half_map_data_list=half_map_data_list, pdb_inp=pdb_inp, return_bsi=True, # just return the bsi of sharpened data out=out) if not bsi.map_data: print("\nNo result for local map %s ...skipping" %(i), file=out) continue # merge with background using bsi.smoothed_box_mask_data if bsi.smoothed_box_mask_data: print("Merging small map into overall map in soft-mask region", file=out) bsi.merge_into_overall_map(overall_map=map) # XXX overall_map not used # Now remove buffer region if bsi.n_buffer: # extract just the good part print("Removing buffer from small map", file=out) bsi.remove_buffer(out=out) weight_data=bsi.get_gaussian_weighting(out=out) weighted_data=bsi.map_data*weight_data sum_weight_value_map=sum_box_data(starting_map=sum_weight_value_map, box_map=weighted_data, lower_bounds=bsi.lower_bounds, upper_bounds=bsi.upper_bounds) sum_weight_map=sum_box_data(starting_map=sum_weight_map, box_map=weight_data, lower_bounds=bsi.lower_bounds, upper_bounds=bsi.upper_bounds) id_list.append(i) starting_b_iso_list.append(bsi.starting_b_iso) b_iso_list.append(bsi.b_iso) print(80*"+", file=out) print("End of getting local sharpening for small box %s" %(i), file=out) print(80*"+", file=out) print("\nOverall map created from total of %s local maps" %(i), file=out) if si.overall_before_local: print("Note: overall map already sharpened with global sharpening", file=out) if starting_b_iso_list.size()<1: print("No results for local sharpening...", file=out) else: print("Summary of b_iso values by local map:", file=out) print(" ID Starting B-iso Sharpened B-iso", file=out) for i,starting_b_iso,b_iso in zip(id_list,starting_b_iso_list,b_iso_list): print(" %4s %7.2f %7.2f" %(i,starting_b_iso,b_iso), file=out) print("\nMean %7.2f %7.2f" %( starting_b_iso_list.min_max_mean().mean, b_iso_list.min_max_mean().mean), file=out) si.map_data=sum_weight_value_map/sum_weight_map # Get overall b_iso... print("\nGetting overall b_iso of composite map...", file=out) map_coeffs_aa,map_coeffs,f_array,phases=effective_b_iso( map_data=si.map_data, resolution=si.resolution, d_min_ratio=si.d_min_ratio, scale_max=si.scale_max, crystal_symmetry=si.crystal_symmetry, out=out) print(80*"+", file=out) print("End of getting local sharpening ", file=out) print(80*"+", file=out) return si def auto_sharpen_map_or_map_coeffs( si=None, resolution=None, # resolution is required crystal_symmetry=None, # supply crystal_symmetry and map or map=None, # map and n_real half_map_data_list=None, # two half-maps matching map is_crystal=None, map_coeffs=None, pdb_inp=None, ncs_obj=None, seq_file=None, sequence=None, rmsd=None, rmsd_resolution_factor=None, k_sol=None, b_sol=None, fraction_complete=None, n_real=None, solvent_content=None, molecular_mass=None, region_weight=None, sa_percent=None, n_bins=None, eps=None, max_regions_to_test=None, regions_to_keep=None, fraction_occupied=None, input_weight_map_pickle_file=None, output_weight_map_pickle_file=None, read_sharpened_maps=None, write_sharpened_maps=None, select_sharpened_map=None, output_directory=None, smoothing_radius=None, local_sharpening=None, local_aniso_in_local_sharpening=None, overall_before_local=None, use_local_aniso=None, auto_sharpen=None, box_in_auto_sharpen=None, # n_residues, ncs_copies required if not False density_select_in_auto_sharpen=None, density_select_threshold_in_auto_sharpen=None, allow_box_if_b_iso_set=None, use_weak_density=None, discard_if_worse=None, n_residues=None, ncs_copies=None, box_center=None, remove_aniso=None, box_size=None, target_n_overlap=None, lower_bounds=None, upper_bounds=None, restrict_map_size=None, auto_sharpen_methods=None, residual_target=None, sharpening_target=None, d_min_ratio=None, scale_max=None, input_d_cut=None, b_blur_hires=None, max_box_fraction=None, cc_cut=None, max_cc_for_rescale=None, scale_using_last=None, density_select_max_box_fraction=None, mask_atoms=None, mask_atoms_atom_radius=None, value_outside_atoms=None, soft_mask=None, tol_r=None, abs_tol_t=None, rel_tol_t=None, require_helical_or_point_group_symmetry=None, max_helical_operators=None, k_sharpen=None, optimize_d_cut=None, optimize_b_blur_hires=None, iterate=None, search_b_min=None, search_b_max=None, search_b_n=None, adjust_region_weight=None, region_weight_method=None, region_weight_factor=None, region_weight_buffer=None, region_weight_default=None, target_b_iso_ratio=None, signal_min=None, buffer_radius=None, wang_radius=None, pseudo_likelihood=None, target_b_iso_model_scale=None, b_iso=None, # if set, use it b_sharpen=None, # if set, use it resolution_dependent_b=None, # if set, use it normalize_amplitudes_in_resdep=None, # if set, use it return_bsi=False, verbose=None, resolve_size=None, nproc=None, multiprocessing=None, queue_run_command=None, out=sys.stdout): if si: # resolution=si.resolution crystal_symmetry=si.crystal_symmetry if not auto_sharpen: auto_sharpen=si.auto_sharpen if verbose is None: verbose=si.verbose if resolve_size is None: resolve_size=si.resolve_size if auto_sharpen is None: auto_sharpen=True if map_coeffs and not resolution: resolution=map_coeffs.d_min() if map_coeffs and not crystal_symmetry: crystal_symmetry=map_coeffs.crystal_symmetry() assert resolution is not None if map: return_as_map=True else: # convert from structure factors to create map if necessary map=get_fft_map(n_real=n_real, map_coeffs=map_coeffs).real_map_unpadded() return_as_map=False # Set ncs_copies if possible if ncs_copies is None and ncs_obj and ncs_obj.max_operators(): ncs_copies=ncs_obj.max_operators() print("Set ncs copies based on ncs_obj to %s" %(ncs_copies), file=out) # Determine if we are running model_sharpening if half_map_data_list and len(half_map_data_list)==2: auto_sharpen_methods=['half_map_sharpening'] elif pdb_inp: auto_sharpen_methods=['model_sharpening'] if not si: # Copy parameters to si (sharpening_info_object) si=set_up_si(var_dict=locals(), crystal_symmetry=crystal_symmetry, is_crystal=is_crystal, solvent_fraction=solvent_content, molecular_mass=molecular_mass, auto_sharpen=auto_sharpen, map=map, verbose=verbose, half_map_data_list=half_map_data_list, pdb_inp=pdb_inp, ncs_copies=ncs_copies, n_residues=n_residues,out=out) # Figure out solvent fraction if si.solvent_fraction is None: si.solvent_fraction=get_iterated_solvent_fraction( crystal_symmetry=crystal_symmetry, verbose=si.verbose, resolve_size=si.resolve_size, fraction_of_max_mask_threshold=si.fraction_of_max_mask_threshold, mask_resolution=si.resolution, map=map, out=out) if si.solvent_fraction: print("Estimated solvent content: %.2f" %(si.solvent_fraction), file=out) else: raise Sorry("Unable to estimate solvent content...please supply "+ "solvent_content \nor molecular_mass") # Determine if we are running half-map or model_sharpening if half_map_data_list and len(half_map_data_list)==2: first_half_map_data=half_map_data_list[0] second_half_map_data=half_map_data_list[1] else: first_half_map_data=None second_half_map_data=None # Decide if we are running local sharpening (overlapping set of sharpening # runs at various locations) libtbx.call_back(message='sharpen',data=None) if si.local_sharpening: return run_local_sharpening(si=si, auto_sharpen_methods=auto_sharpen_methods, map=map, ncs_obj=ncs_obj, half_map_data_list=half_map_data_list, pdb_inp=pdb_inp, out=out) # Get preliminary values of sharpening working_map=map # use another name for map XXX if si.iterate and not si.preliminary_sharpening_done: si.preliminary_sharpening_done=True si.iterate=False # first do overall sharpening of the map to get it about right print(80*"*", file=out) print("\nSharpening map overall before carrying out final sharpening\n", file=out) overall_si=deepcopy(si) overall_si.local_sharpening=False # don't local sharpen overall_si=auto_sharpen_map_or_map_coeffs(si=overall_si, auto_sharpen_methods=auto_sharpen_methods, map=map, half_map_data_list=half_map_data_list, pdb_inp=pdb_inp, out=out) working_map=overall_si.map_data # Get solvent content again overall_si.solvent_content=None overall_si.solvent_fraction=get_iterated_solvent_fraction( crystal_symmetry=crystal_symmetry, verbose=overall_si.verbose, resolve_size=overall_si.resolve_size, fraction_of_max_mask_threshold=si.fraction_of_max_mask_threshold, mask_resolution=si.resolution, map=working_map, out=out) print("Resetting solvent fraction to %.2f " %( overall_si.solvent_fraction), file=out) si.solvent_fraction=overall_si.solvent_fraction print("\nDone sharpening map overall before carrying out final sharpening\n", file=out) print(80*"*", file=out) si.b_blur_hires=0. # from now on, don't apply extra blurring else: working_map=map # Now identify optimal sharpening params print(80*"=", file=out) print("\nRunning auto_sharpen to get sharpening parameters\n", file=out) print(80*"=", file=out) result=run_auto_sharpen( # get sharpening parameters standard run si=si, map_data=working_map, first_half_map_data=first_half_map_data, second_half_map_data=second_half_map_data, pdb_inp=pdb_inp, auto_sharpen_methods=auto_sharpen_methods, print_result=False, return_bsi=return_bsi, out=out) if return_bsi: return result # it is a box_sharpening_info object else: si=result print(80*"=", file=out) print("\nDone running auto_sharpen to get sharpening parameters\n", file=out) print(80*"=", file=out) # Apply the optimal sharpening values and save map in si.map_data # First test without sharpening if sharpening_method is b_iso,b and # b_iso is not set if si.sharpening_method in [ 'b_iso','b_iso_to_d_cut','resolution_dependent'] and b_iso is None: local_si=deepcopy(si) local_si.sharpening_method='no_sharpening' local_si.sharpen_and_score_map(map_data=working_map,out=null_out()) print("\nScore for no sharpening: %7.2f " %(local_si.score), file=out) else: local_si=None print(80*"=", file=out) print("\nApplying final sharpening to entire map", file=out) print(80*"=", file=out) si.sharpen_and_score_map(map_data=working_map,set_b_iso=True,out=out) if si.discard_if_worse and local_si and local_si.score > si.score: print("Sharpening did not improve map "+\ "(%7.2f sharpened, %7.2f unsharpened). Discarding sharpened map" %( si.score,local_si.score), file=out) print("\nUse discard_if_worse=False to keep the sharpening", file=out) local_si.sharpen_and_score_map(map_data=working_map,out=out) si=local_si if not si.is_model_sharpening() and not si.is_half_map_sharpening(): si.show_score(out=out) si.show_summary(out=out) return si # si.map_data is the sharpened map def estimate_signal_to_noise(value_list=None,minimum_value_to_include=0): # get "noise" from rms value of value_list(n) compared with average of n-2,n-1,n+1,n+2 # assumes middle is the high part of the very smooth curve. # Don't include values < minimum_value_to_include mean_square_diff=0. mean_square_diff_n=0. for b2,b1,value,p1,p2 in zip(value_list, value_list[1:], value_list[2:], value_list[3:], value_list[4:]): too_low=False for xx in [b2,b1,value,p1,p2]: if xx <minimum_value_to_include: too_low=True if not too_low: mean_square_diff_n+=1 mean_square_diff+=( (b2+b1+p1+p2)*0.25 - value)**2 rmsd=(mean_square_diff/max(1,mean_square_diff_n))**0.5 if value_list.size()>0: min_adj_sa=max(value_list[0],value_list[-1]) max_adj_sa=value_list.min_max_mean().max signal_to_noise=(max_adj_sa-min_adj_sa)/max(1.e-10,rmsd) else: signal_to_noise=0. return signal_to_noise def optimize_b_blur_or_d_cut_or_b_iso( optimization_target='b_blur_hires', local_best_si=None, local_best_map_and_b=None, si_id_list=None, si_score_list=None, delta_b=None, original_b_iso=None, f_array=None, phases=None, delta_b_blur_hires=100, delta_d_cut=0.25, n_cycle_optimize=5, min_cycles=2, n_range=5, out=sys.stdout): assert optimization_target in ['b_blur_hires','d_cut','b_iso'] if optimization_target=='b_blur_hires': print("\nOptimizing b_blur_hires. ", file=out) elif optimization_target=='d_cut': print("\nOptimizing d_cut. ", file=out) local_best_si.input_d_cut=local_best_si.get_d_cut() elif optimization_target=='b_iso': print("\nOptimizing b_iso. ", file=out) local_best_si.show_summary(out=out) print("Current best score=%7.3f b_iso=%5.1f b_blur_hires=%5.1f d_cut=%5.1f" %( local_best_si.score,local_best_si.b_iso, local_best_si.b_blur_hires, local_best_si.get_d_cut()), file=out) # existing values: value_dict={} for id,score in zip(si_id_list,si_score_list): value_dict[id]=score best_score=local_best_si.score delta_b_iso=delta_b local_best_score=best_score improving=True working_best_si=deepcopy(local_best_si) for cycle in range(n_cycle_optimize): if not improving: break print("Optimization cycle %s" %(cycle), file=out) print("Current best score=%7.3f b_iso=%5.1f b_blur_hires=%5.1f d_cut=%5.1f" %( working_best_si.score,working_best_si.b_iso, working_best_si.b_blur_hires, working_best_si.get_d_cut()), file=out) if working_best_si.verbose: print(" B-sharpen B-iso B-blur Adj-SA "+\ "Kurtosis SA-ratio Regions d_cut b_blur_hires", file=out) local_best_working_si=deepcopy(working_best_si) improving=False for jj in range(-n_range,n_range+1): if optimization_target=='b_blur_hires': # ZZ try optimizing b_blur_hires test_b_blur_hires=max(0.,working_best_si.b_blur_hires+jj*delta_b_blur_hires) test_d_cut=working_best_si.get_d_cut() test_b_iso=working_best_si.b_iso elif optimization_target=='d_cut': test_b_blur_hires=working_best_si.b_blur_hires test_d_cut=working_best_si.get_d_cut()+jj*delta_d_cut test_b_iso=working_best_si.b_iso elif optimization_target=='b_iso': test_b_blur_hires=working_best_si.b_blur_hires test_d_cut=working_best_si.get_d_cut() test_b_iso=working_best_si.b_iso+jj*delta_b_iso id="%.3f_%.3f_%.3f" %(test_b_iso,test_b_blur_hires,test_d_cut) if id in value_dict: score=value_dict[id] else: local_si=deepcopy(local_best_si) local_f_array=f_array local_phases=phases local_si.b_blur_hires=test_b_blur_hires local_si.input_d_cut=test_d_cut local_si.b_iso=test_b_iso local_si.b_sharpen=original_b_iso-local_si.b_iso local_map_and_b=apply_sharpening( f_array=local_f_array,phases=local_phases, sharpening_info_obj=local_si, crystal_symmetry=local_si.crystal_symmetry, out=null_out()) local_si=score_map( map_data=local_map_and_b.map_data,sharpening_info_obj=local_si, out=null_out()) value_dict[id]=local_si.score if local_si.verbose: print(" %6.1f %6.1f %5s %7.3f %7.3f" %( local_si.b_sharpen,local_si.b_iso, local_si.b_blur_hires, local_si.adjusted_sa,local_si.kurtosis) + \ " %7.3f %7.3f %7.3f %7.3f " %( local_si.sa_ratio,local_si.normalized_regions, test_d_cut, test_b_blur_hires ), file=out) if local_si.score > local_best_score: local_best_score=local_si.score local_best_working_si=deepcopy(local_si) if local_best_score > best_score: best_score=local_best_score working_best_si=deepcopy(local_best_working_si) delta_b_iso=delta_b_iso/2 delta_b_blur_hires=delta_b_blur_hires/2 delta_d_cut=delta_d_cut/2 print("Current working best "+\ "score=%7.3f b_iso=%5.1f b_blur_hires=%5.1f d_cut=%5.1f" %( working_best_si.score,working_best_si.b_iso, working_best_si.b_blur_hires, working_best_si.get_d_cut()), file=out) improving=True if working_best_si and working_best_si.score > local_best_si.score: print("Using new values of b_iso and b_blur_hires and d_cut", file=out) local_best_si=working_best_si local_best_si.show_summary(out=out) return local_best_si,local_best_map_and_b def set_mean_sd_of_map(map_data=None,target_mean=None,target_sd=None): if not map_data: return None new_mean=map_data.as_1d().min_max_mean().mean new_sd=max(1.e-10,map_data.sample_standard_deviation()) map_data=(map_data-new_mean)/new_sd # normalized return map_data*target_sd + target_mean # restore original def run_auto_sharpen( si=None, map_data=None, first_half_map_data=None, second_half_map_data=None, pdb_inp=None, auto_sharpen_methods=None, print_result=True, return_bsi=False, out=sys.stdout): if si.verbose: local_out=out else: local_out=null_out() # Identifies parameters for optimal map sharpening using analysis of density, # model-correlation, or half-map correlation (first_half_map_data vs # vs second_half_map_data). # NOTE: We can apply this to any map_data (a part or whole of the map) # BUT: need to update n_real if we change the part of the map! # change with map data: crystal_symmetry, solvent_fraction, n_real, wrapping, smoothed_box_mask_data=None original_box_map_data=None if si.auto_sharpen and ( si.box_in_auto_sharpen or si.density_select_in_auto_sharpen or pdb_inp): original_box_sharpening_info_obj=deepcopy(si) # should really not be box box_pdb_inp,box_map_data,box_first_half_map_data,\ box_second_half_map_data,\ box_crystal_symmetry,box_sharpening_info_obj,\ smoothed_box_mask_data,original_box_map_data,n_buffer=\ select_box_map_data(si=si, map_data=map_data, first_half_map_data=first_half_map_data, second_half_map_data=second_half_map_data, pdb_inp=pdb_inp, restrict_map_size=si.restrict_map_size, out=out,local_out=local_out) if box_sharpening_info_obj is None: # did not do it print("Box map is similar in size to entire map..."+\ "skipping representative box of density", file=out) original_box_sharpening_info_obj=None crystal_symmetry=si.crystal_symmetry else: print("Using small map to identify optimal sharpening", file=out) print("Box map grid: %d %d %d" %( box_map_data.all()), file=out) print("Box map cell: %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f "%( box_crystal_symmetry.unit_cell().parameters()), file=out) original_map_data=map_data original_crystal_symmetry=si.crystal_symmetry map_data=box_map_data pdb_inp=box_pdb_inp if si.density_select_in_auto_sharpen and ( # catch empty pdb_inp not pdb_inp or not \ pdb_inp.construct_hierarchy().overall_counts().n_residues): pdb_inp=None crystal_symmetry=box_crystal_symmetry if box_first_half_map_data: first_half_map_data=box_first_half_map_data if box_second_half_map_data: second_half_map_data=box_second_half_map_data # SET si for box now... si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) else: original_box_sharpening_info_obj=None box_sharpening_info_obj=None crystal_symmetry=si.crystal_symmetry starting_mean=map_data.as_1d().min_max_mean().mean starting_sd=map_data.sample_standard_deviation() print("\nGetting original b_iso...", file=out) map_coeffs_aa,map_coeffs,f_array,phases=effective_b_iso( map_data=map_data, resolution=si.resolution, d_min_ratio=si.d_min_ratio, scale_max=si.scale_max, remove_aniso=si.remove_aniso, crystal_symmetry=si.crystal_symmetry, out=out) original_b_iso=map_coeffs_aa.b_iso if original_b_iso is None: print("Could not determine original b_iso...setting to 200", file=out) original_b_iso=200. si.original_aniso_obj=map_coeffs_aa # set it so we can apply it later if desired if first_half_map_data: first_half_map_coeffs,dummy=get_f_phases_from_map( map_data=first_half_map_data, crystal_symmetry=si.crystal_symmetry, d_min=si.resolution, d_min_ratio=si.d_min_ratio, remove_aniso=si.remove_aniso, scale_max=si.scale_max, return_as_map_coeffs=True, out=local_out) else: first_half_map_coeffs=None if second_half_map_data: second_half_map_coeffs,dummy=get_f_phases_from_map( map_data=second_half_map_data, crystal_symmetry=si.crystal_symmetry, d_min=si.resolution, d_min_ratio=si.d_min_ratio, scale_max=si.scale_max, remove_aniso=si.remove_aniso, return_as_map_coeffs=True, out=local_out) else: second_half_map_coeffs=None if pdb_inp: # Getting model information if pdb_inp present --------------------------- from cctbx.maptbx.refine_sharpening import get_model_map_coeffs_normalized model_map_coeffs=get_model_map_coeffs_normalized(pdb_inp=pdb_inp, si=si, f_array=f_array, resolution=si.resolution, out=out) else: model_map_coeffs=None # Try various methods for sharpening. # XXX fix this up local_si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) if si.adjust_region_weight and \ (not si.sharpening_is_defined()) and (not si.is_model_sharpening()) \ and (not si.is_half_map_sharpening()) and ( not si.is_target_b_iso_to_d_cut()) and ( si.sharpening_target=='adjusted_sa'): for iii in range(1): # just so we can break local_si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) local_si.sharpening_target='adjusted_sa' local_si.sharpening_method='b_iso_to_d_cut' sa_ratio_list=[] normalized_regions_list=[] if 0: #si.resolution: # 2017-07-26 reset b_low,b_mid,b_high, using 5.9*resolution**2 for b_mid delta_search=si.search_b_max-si.search_b_min b_mid=si.get_target_b_iso() b_low=b_mid-150*delta_search/400 b_high=b_mid+250*delta_search/400 print("Centering search on b_iso=%7.2f" %(b_mid), file=out) else: b_low=min(original_b_iso,si.search_b_min) b_high=max(original_b_iso,si.search_b_max) b_mid=b_low+0.375*(b_high-b_low) ok_region_weight=True results_list=[] kw_list=[] first=True id=0 for b_iso in [b_low,b_high,b_mid]: id+=1 if first and local_si.multiprocessing=='multiprocessing' or \ local_si.nproc==1: # can do anything local_log=out else: # skip log entirely local_log=None # will set this later and return as r.log_as_text first=False lsi=deepcopy(local_si) lsi.b_sharpen=original_b_iso-b_iso lsi.b_iso=b_iso # ------ SET UP RUN HERE ---------- kw_list.append( { 'f_array':f_array, 'phases':phases, 'crystal_symmetry':lsi.crystal_symmetry, 'local_si':lsi, 'id':id, 'out':local_log, }) # We are going to call autosharpening with this # ------ END OF SET UP FOR RUN ---------- """ local_map_and_b=apply_sharpening( f_array=f_array,phases=phases, sharpening_info_obj=lsi, crystal_symmetry=lsi.crystal_symmetry, out=null_out()) local_si=score_map(map_data=local_map_and_b.map_data, sharpening_info_obj=local_si, out=null_out()) """ # This is the actual run here ============= from libtbx.easy_mp import run_parallel results_list=run_parallel( method=si.multiprocessing, qsub_command=si.queue_run_command, nproc=si.nproc, target_function=run_sharpen_and_score,kw_list=kw_list) # results looks like: [result,result2] sort_list=[] for result in results_list: sort_list.append([result.id,result]) sort_list.sort() for id,result in sort_list: local_si=result.local_si if local_si.sa_ratio is None or local_si.normalized_regions is None: ok_region_weight=False sa_ratio_list.append(local_si.sa_ratio) normalized_regions_list.append(local_si.normalized_regions) if not ok_region_weight: break # skip it # Set region weight so that either: # (1) delta_sa_ratio==region_weight*delta_normalized_regions # (2) sa_ratio=region_weight*normalized_regions (at low B) # region weight from change over entire region d_sa_ratio=sa_ratio_list[0]-sa_ratio_list[1] d_normalized_regions=normalized_regions_list[0]-normalized_regions_list[1] delta_region_weight=si.region_weight_factor*d_sa_ratio/max( 1.e-10,d_normalized_regions) if d_sa_ratio < 0 or d_normalized_regions < 0: print("Not using delta_region_weight with unusable values", file=out) ok_region_weight=False # region weight from initial values init_region_weight=si.region_weight_factor* \ sa_ratio_list[0]/max(1.e-10,normalized_regions_list[0]) # Ensure that adjusted_sa at b_mid is > than either end # adjusted_sa=sa_ratio - region_weight*normalized_regions # sa[2]=sa_ratio_list[2]-region_weight*normalized_regions[2] # sa[1]=sa_ratio_list[1]-region_weight*normalized_regions[1] # sa[0]=sa_ratio_list[0]-region_weight*normalized_regions[0] # sa[2] >= sa[1] and sa[2] >= sa[0] # sa_ratio_list[2]-region_weight*normalized_regions[2] >= # sa_ratio_list[1]-region_weight*normalized_regions[1] # NOTE: sa_ratio_list and normalized_regions both decrease in order: # low med high or [0] [2] [1] max_region_weight = (sa_ratio_list[2]- sa_ratio_list[1])/max(0.001, normalized_regions_list[2]-normalized_regions_list[1]) min_region_weight = (sa_ratio_list[0]- sa_ratio_list[2])/max(0.001, normalized_regions_list[0]-normalized_regions_list[2]) min_region_weight=max(1.e-10,min_region_weight) # positive max_region_weight=max(1.e-10,max_region_weight) # positive delta_weight=max(0.,max_region_weight-min_region_weight) min_buffer=delta_weight*si.region_weight_buffer min_region_weight+=min_buffer max_region_weight-=min_buffer min_max_region_weight=True if min_region_weight >= max_region_weight: print("Warning: min_region_weight >= max_region_weight...", file=out) min_max_region_weight=False #ok_region_weight=False print("Region weight bounds: Min: %7.1f Max: %7.1f " %( min_region_weight,max_region_weight), file=out) print("Region weight estimates:", file=out) print("From ratio of low-B surface area to regions: %7.1f" %( init_region_weight), file=out) print("Ratio of change in surface area to change in regions: %7.1f" %( delta_region_weight), file=out) # put them in bounds but note if we did it out_of_range=False if ok_region_weight and si.region_weight_method=='initial_ratio': if min_max_region_weight and ( init_region_weight > max_region_weight or \ init_region_weight<min_region_weight): init_region_weight=max( min_region_weight,min(max_region_weight,init_region_weight)) out_of_range=True print("\nRegion weight adjusted to %7.1f using initial ratio" %( init_region_weight), file=out) si.region_weight=init_region_weight elif ok_region_weight and si.region_weight_method=='delta_ratio': if min_max_region_weight and ( delta_region_weight > max_region_weight or \ delta_region_weight<min_region_weight): delta_region_weight=max( min_region_weight,min(max_region_weight,delta_region_weight)) out_of_range=True si.region_weight=delta_region_weight print("\nRegion weight set to %7.1f using overall ratio and " %( si.region_weight) +\ "\nfactor of %5.1f" %(si.region_weight_factor), file=out) else: # just use default target for b_iso si.region_weight=si.region_weight_default print("Skipping region_weight analysis as signal-to-noise is zero ("+\ "adjusted sa\nvs b_iso does not have low values at extremes and "+\ "clear maximum in the middle.)", file=out) print("\nUnable to set region_weight ... using value of %7.2f" % ( si.region_weight), file=out) if si.discard_if_worse: print("Setting discard_if_worse=False as region_weight failed ", file=out) si.discard_if_worse=False if out_of_range and 'resolution_dependent' in auto_sharpen_methods: new_list=[] have_something_left=False for x in auto_sharpen_methods: if x != 'resolution_dependent': if str(x) != 'None': have_something_left=True new_list.append(x) if have_something_left: auto_sharpen_methods=new_list print("Removed resolution_dependent sharpening ( "+\ "weights were out of range)", file=out) if box_sharpening_info_obj: si.local_solvent_fraction=box_sharpening_info_obj.solvent_fraction else: si.local_solvent_fraction=si.solvent_fraction null_si=None best_si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) best_map_and_b=map_and_b_object() if si.sharpening_is_defined(): # Use this if come in with method print("\nUsing specified sharpening", file=out) best_si=set_up_sharpening(si=si,map_data=map_data,out=out) best_si.sharpen_and_score_map(map_data=map_data, out=out).show_score(out=out) best_si.show_summary(out=out) else: if best_si.is_model_sharpening(): print("\nSetting up model sharpening", file=out) elif best_si.is_half_map_sharpening(): print("\nSetting up half-map sharpening", file=out) else: print("\nTesting sharpening methods with target of %s" %( best_si.sharpening_target), file=out) if not auto_sharpen_methods or auto_sharpen_methods==['None']: auto_sharpen_methods=['no_sharpening'] for m in auto_sharpen_methods: # ------------------------ if m in ['no_sharpening','resolution_dependent','model_sharpening', 'half_map_sharpening','target_b_iso_to_d_cut']: if m=='target_b_iso_to_d_cut': b_min=si.get_target_b_iso() b_max=si.get_target_b_iso() else: b_min=original_b_iso b_max=original_b_iso b_n=1 k_sharpen=0. delta_b=0 if m in ['resolution_dependent','model_sharpening', 'half_map_sharpening']: pass # print out later else: print("\nB-sharpen B-iso k_sharpen SA "+\ "Kurtosis sa_ratio Normalized regions", file=out) # ------------------------ # ------------------------ else: # ['b_iso','b_iso_to_d_cut']: if si.search_b_n>1: b_min=min(original_b_iso,si.search_b_min) b_max=max(original_b_iso,si.search_b_max) else: # for just one, take it b_min=si.search_b_min b_max=si.search_b_max b_n=si.search_b_n delta_b=(b_max-b_min)/max(1,b_n-1) print("\nTesting %s with b_iso from %7.1f to %7.1f in %d steps of %7.1f" %( m,b_min,b_max,b_n,delta_b), file=out) print("(b_sharpen from %7.1f to %7.1f ) " %( original_b_iso-b_min,original_b_iso-b_max), file=out) if m=='b_iso': k_sharpen=0. else: k_sharpen=si.k_sharpen print("\nB-sharpen B-iso k_sharpen SA "+\ "Kurtosis sa_ratio Normalized regions", file=out) # ------------------------ local_best_map_and_b=map_and_b_object() local_best_si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) si_b_iso_list=flex.double() si_score_list=flex.double() si_id_list=[] kw_list=[] first=True if return_bsi: assert local_si.nproc==1 results_list=[] for i in range(b_n): # ============================================ local_si=deepcopy(si).update_with_box_sharpening_info( box_sharpening_info_obj=box_sharpening_info_obj) local_si.sharpening_method=m local_si.n_real=map_data.all() local_si.k_sharpen=k_sharpen if first and local_si.multiprocessing=='multiprocessing' or \ local_si.nproc==1: # can do anything local_log=out else: # skip log entirely local_log=None # will set this later and return as r.log_as_text first=False if m=='resolution_dependent': print("\nRefining resolution-dependent sharpening based on %s" %( local_si.residual_target), file=out) local_si.b_sharpen=0 local_si.b_iso=original_b_iso from cctbx.maptbx.refine_sharpening import run as refine_sharpening local_f_array,local_phases=refine_sharpening( map_coeffs=map_coeffs, sharpening_info_obj=local_si, out=out) elif m=='model_sharpening': print("\nUsing model-based sharpening", file=out) local_si.b_sharpen=0 local_si.b_iso=original_b_iso from cctbx.maptbx.refine_sharpening import scale_amplitudes scale_amplitudes( model_map_coeffs=model_map_coeffs,map_coeffs=map_coeffs, si=local_si,out=out) # local_si contains target_scale_factors now local_f_array=f_array local_phases=phases elif m=='half_map_sharpening': print("\nUsing half-map-based sharpening", file=out) local_si.b_sharpen=0 local_si.b_iso=original_b_iso from cctbx.maptbx.refine_sharpening import scale_amplitudes scale_amplitudes( model_map_coeffs=model_map_coeffs, map_coeffs=map_coeffs, first_half_map_coeffs=first_half_map_coeffs, second_half_map_coeffs=second_half_map_coeffs, si=local_si,out=out) # local_si contains target_scale_factors now local_f_array=f_array local_phases=phases else: local_f_array=f_array local_phases=phases b_iso=b_min+i*delta_b local_si.b_sharpen=original_b_iso-b_iso local_si.b_iso=b_iso # ------ SET UP RUN HERE ---------- kw_list.append( { 'f_array':local_f_array, 'phases':local_phases, 'crystal_symmetry':local_si.crystal_symmetry, 'original_b_iso':original_b_iso, 'local_si':local_si, 'm':m, 'return_bsi':return_bsi, 'out':local_log, 'id':i+1, }) # We are going to call autosharpening with this # ------ END OF SET UP FOR RUN ---------- # This is the actual run here ============= from libtbx.easy_mp import run_parallel results_list=run_parallel( method=si.multiprocessing, qsub_command=si.queue_run_command, nproc=si.nproc, target_function=run_sharpen_and_score,kw_list=kw_list) # results looks like: [result,result2] sort_list=[] for result in results_list: sort_list.append([result.id,result]) sort_list.sort() for id,result in sort_list: local_si=result.local_si local_map_and_b=result.local_map_and_b if result.text: print(result.text) # Run through all result to get these if local_si.b_sharpen is not None and local_si.b_iso is not None and\ local_si.k_sharpen is not None and local_si.kurtosis is not None \ and local_si.adjusted_sa is not None and local_si.score is not None: si_b_iso_list.append(local_si.b_iso) si_score_list.append(local_si.score) if local_si.k_sharpen is not None: si_id_list.append("%.3f_%.3f_%.3f" %( local_si.b_iso,local_si.k_sharpen, local_si.get_d_cut())) if m=='no_sharpening': null_si=local_si if local_best_si.score is None or local_si.score>local_best_si.score: local_best_si=local_si local_best_map_and_b=local_map_and_b # ============================================ # DONE WITH ALL RUNS if not local_best_si.is_model_sharpening() and \ not local_best_si.is_half_map_sharpening(): if local_best_si.sharpening_method=='resolution_dependent': print("\nBest scores for sharpening with "+\ "b[0]=%6.2f b[1]=%6.2f b[2]=%6.2f: " %( local_best_si.resolution_dependent_b[0], local_best_si.resolution_dependent_b[1], local_best_si.resolution_dependent_b[2]), file=out) else: print("\nBest scores for sharpening with "+\ "b_iso=%6.1f b_sharpen=%6.1f k_sharpen=%s: " %( local_best_si.b_iso,local_best_si.b_sharpen, local_best_si.k_sharpen), file=out) if local_best_si.score is not None: local_best_si.show_summary(out=out) print("Adjusted surface area: %7.3f Kurtosis: %7.3f Score: %7.3f\n" %( local_best_si.adjusted_sa,local_best_si.kurtosis,local_best_si.score), file=out) if si_score_list.size()>1: # test for signal signal_to_noise=estimate_signal_to_noise(value_list=si_score_list) print("Estimated signal-to-noise in ID of optimal sharpening: %5.1f" %( signal_to_noise), file=out) if signal_to_noise<local_best_si.signal_min and \ 'target_b_iso_to_d_cut' in auto_sharpen_methods: print("Skipping this analysis as signal-to-noise is less than %5.1f " %( local_best_si.signal_min), file=out) local_best_si.score=None optimize_b_blur_hires=False optimize_d_cut=False n_cycles=0 if local_best_si.score is not None and local_best_si.optimize_d_cut and \ local_best_si.sharpening_method in ['b_iso_to_d_cut','b_iso']: optimize_d_cut=True n_cycles+=1 if local_best_si.score is not None and \ local_best_si.optimize_b_blur_hires and \ local_best_si.k_sharpen is not None and \ local_best_si.sharpening_method in ['b_iso_to_d_cut','b_iso']: optimize_b_blur_hires=True n_cycles+=1 ########################################## optimize_b_iso=True for cycle in range(n_cycles): if optimize_b_blur_hires: local_best_si,local_best_map_and_b=optimize_b_blur_or_d_cut_or_b_iso( #optimization_target='k_sharpen', optimization_target='b_blur_hires', local_best_si=local_best_si, local_best_map_and_b=local_best_map_and_b, si_id_list=si_id_list, si_score_list=si_score_list, delta_b=delta_b, original_b_iso=original_b_iso, f_array=f_array, phases=phases, out=out) if optimize_d_cut: local_best_si,local_best_map_and_b=optimize_b_blur_or_d_cut_or_b_iso( optimization_target='d_cut', local_best_si=local_best_si, local_best_map_and_b=local_best_map_and_b, si_id_list=si_id_list, si_score_list=si_score_list, delta_b=delta_b, original_b_iso=original_b_iso, f_array=f_array, phases=phases, out=out) if optimize_b_iso: local_best_si,local_best_map_and_b=optimize_b_blur_or_d_cut_or_b_iso( optimization_target='b_iso', local_best_si=local_best_si, local_best_map_and_b=local_best_map_and_b, si_id_list=si_id_list, si_score_list=si_score_list, delta_b=delta_b, original_b_iso=original_b_iso, f_array=f_array, phases=phases, out=out) ########################################## if (local_best_si.score is not None or local_best_si.is_model_sharpening()) and ( best_si.score is None or local_best_si.score > best_si.score): best_si=local_best_si best_map_and_b=local_best_map_and_b if not best_si.is_model_sharpening() and \ not best_si.is_half_map_sharpening(): print("This is the current best score\n", file=out) if (best_si.score is not None ) and ( not best_si.is_model_sharpening() ) and (not best_si.is_half_map_sharpening()): print("\nOverall best sharpening method: %s Score: %7.3f\n" %( best_si.sharpening_method,best_si.score), file=out) best_si.show_summary(out=out) if (not best_si.is_model_sharpening()) and \ (not best_si.is_half_map_sharpening()) and null_si: if best_si.score>null_si.score: # we improved them.. print("Improved score with sharpening...", file=out) else: print("Did not improve score with sharpening...", file=out) if return_bsi: map_data=best_map_and_b.map_data map_data=set_mean_sd_of_map(map_data=map_data, target_mean=starting_mean,target_sd=starting_sd) box_sharpening_info_obj.map_data=map_data box_sharpening_info_obj.smoothed_box_mask_data=smoothed_box_mask_data box_sharpening_info_obj.original_box_map_data=original_box_map_data box_sharpening_info_obj.n_buffer=n_buffer box_sharpening_info_obj.crystal_symmetry=best_si.crystal_symmetry box_sharpening_info_obj.resolution=best_si.resolution box_sharpening_info_obj.d_min_ratio=best_si.d_min_ratio box_sharpening_info_obj.scale_max=best_si.scale_max box_sharpening_info_obj.smoothing_radius=best_si.smoothing_radius box_sharpening_info_obj.b_iso=best_map_and_b.final_b_iso box_sharpening_info_obj.starting_b_iso=best_map_and_b.starting_b_iso return box_sharpening_info_obj if original_box_sharpening_info_obj: # Put back original crystal_symmetry with original_box_sharpening_info_obj print("\nRestoring original symmetry to best sharpening info", file=out) best_si.update_with_box_sharpening_info( box_sharpening_info_obj=original_box_sharpening_info_obj) print("(%7.3f, %7.3f, %7.3f, %7.3f, %7.3f, %7.3f) "%(tuple( best_si.crystal_symmetry.unit_cell().parameters())), file=out) # and set tracking data with result return best_si def run_sharpen_and_score(f_array=None, phases=None, local_si=None, crystal_symmetry=None, original_b_iso=None, m=None, return_bsi=None, id=None, out=sys.stdout): local_map_and_b=apply_sharpening( f_array=f_array,phases=phases, sharpening_info_obj=local_si, crystal_symmetry=crystal_symmetry, out=null_out()) local_si=score_map(map_data=local_map_and_b.map_data, sharpening_info_obj=local_si, out=null_out()) # Record b_iso values if not local_map_and_b.starting_b_iso: local_map_and_b.starting_b_iso=original_b_iso if not local_map_and_b.final_b_iso: local_map_and_b.final_b_iso=local_si.b_iso # This is printout below here =============== if m=='resolution_dependent': text=\ "\nb[0] b[1] b[2] SA Kurtosis sa_ratio Normalized regions" text+="\n"+\ "\nB-sharpen B-iso k_sharpen SA "+\ "Kurtosis sa_ratio Normalized regions" text+="\n"+" %6.2f %6.2f %6.2f " %( local_si.resolution_dependent_b[0], local_si.resolution_dependent_b[1], local_si.resolution_dependent_b[2]) +\ " %7.3f %7.3f " %( local_si.adjusted_sa,local_si.kurtosis)+\ " %7.3f %7.3f" %( local_si.sa_ratio,local_si.normalized_regions) elif local_si.b_sharpen is not None and local_si.b_iso is not None and\ local_si.k_sharpen is not None and local_si.kurtosis is not None \ and local_si.adjusted_sa is not None: text=\ " %6.1f %6.1f %5s %7.3f %7.3f" %( local_si.b_sharpen,local_si.b_iso, local_si.k_sharpen,local_si.adjusted_sa,local_si.kurtosis) + \ " %7.3f %7.3f" %( local_si.sa_ratio,local_si.normalized_regions) else: text="" if return_bsi: r=group_args( local_si=local_si, local_map_and_b=local_map_and_b, text=text, id=id) else: r=group_args( local_si=local_si, local_map_and_b=None, text=text, id=id) return r def effective_b_iso(map_data=None,tracking_data=None, box_sharpening_info_obj=None, crystal_symmetry=None, resolution=None, remove_aniso=None, d_min_ratio=None, scale_max=None, out=sys.stdout): if not crystal_symmetry: if box_sharpening_info_obj: crystal_symmetry=box_sharpening_info_obj.crystal_symmetry else: crystal_symmetry=tracking_data.crystal_symmetry if resolution: d_min=resolution else: d_min=tracking_data.params.crystal_info.resolution if not d_min_ratio: d_min_ratio=tracking_data.params.map_modification.d_min_ratio map_coeffs,map_coeffs_ra=get_f_phases_from_map(map_data=map_data, crystal_symmetry=crystal_symmetry, d_min=d_min, d_min_ratio=d_min_ratio, scale_max=scale_max, remove_aniso=remove_aniso, return_as_map_coeffs=True, out=out) f_array,phases=map_coeffs_as_fp_phi(map_coeffs) b_iso=map_coeffs_ra.b_iso if b_iso is not None: print("Effective B-iso = %7.2f\n" %(b_iso), file=out) else: print("Effective B-iso not determined\n", file=out) return map_coeffs_ra,map_coeffs,f_array,phases def update_tracking_data_with_sharpening(map_data=None,tracking_data=None, si=None,out=sys.stdout): # Set shifted_map_info if map_data is new if tracking_data.params.output_files.shifted_sharpened_map_file: shifted_sharpened_map_file=os.path.join( tracking_data.params.output_files.output_directory, tracking_data.params.output_files.shifted_sharpened_map_file) else: shifted_sharpened_map_file=None from cctbx.maptbx.segment_and_split_map import write_ccp4_map if shifted_sharpened_map_file: write_ccp4_map(tracking_data.crystal_symmetry, shifted_sharpened_map_file,map_data) print("Wrote shifted, sharpened map to %s" %( shifted_sharpened_map_file), file=out) tracking_data.set_shifted_map_info(file_name= shifted_sharpened_map_file, crystal_symmetry=tracking_data.crystal_symmetry, origin=map_data.origin(), all=map_data.all(), b_sharpen=None) def get_high_points_from_map( map_data=None, boundary_radius=5., unit_cell=None, out=sys.stdout): max_in_map_data=map_data.as_1d().min_max_mean().max for cutoff in [0.99,0.98,0.95,0.90,0.50]: high_points_mask=(map_data>= cutoff*max_in_map_data) sda=map_data.as_1d().min_max_mean().max for nth_point in [4,2,1]: sites_cart=get_marked_points_cart(mask_data=high_points_mask, unit_cell=unit_cell,every_nth_point=nth_point, boundary_radius=boundary_radius) if sites_cart.size()>0: break if sites_cart.size()>0: break assert sites_cart.size()>0 del high_points_mask sites_cart=sites_cart[:1] xyz_frac=unit_cell.fractionalize(sites_cart[0]) value=map_data.value_at_closest_grid_point(xyz_frac) print("High point in map at (%7.2f %7.2f %7.2f) with value of %7.2f " %( sites_cart[0][0],sites_cart[0][1],sites_cart[0][2],value), file=out) return sites_cart def get_one_au(tracking_data=None, sites_cart=None, ncs_obj=None, map_data=None, starting_mask=None, radius=None, every_nth_point=None, removed_ncs=None, out=sys.stdout): unit_cell=tracking_data.crystal_symmetry.unit_cell() if removed_ncs: # take everything left mm=map_data.as_1d().min_max_mean() mask_threshold=mm.min+max(0.00001,0.0001*(mm.mean-mm.min)) # just above min else: mask_threshold=tracking_data.params.segmentation.mask_threshold every_nth_point=tracking_data.params.segmentation.grid_spacing_for_au radius=tracking_data.params.segmentation.radius if not radius: radius=set_radius(unit_cell=unit_cell,map_data=map_data, every_nth_point=every_nth_point) tracking_data.params.segmentation.radius=radius print("\nRadius for AU identification: %7.2f A" %(radius), file=out) overall_mask,max_in_sd_map,sd_map=get_overall_mask(map_data=map_data, mask_threshold=mask_threshold, crystal_symmetry=tracking_data.crystal_symmetry, resolution=tracking_data.params.crystal_info.resolution, solvent_fraction=tracking_data.solvent_fraction, radius=radius, out=out) if starting_mask: print("Points in starting mask:",starting_mask.count(True), file=out) print("Points in overall mask:",overall_mask.count(True), file=out) print("Points in both:",(starting_mask & overall_mask).count(True), file=out) if tracking_data.params.crystal_info.is_crystal: # take starting mask as overall... overall_mask= starting_mask else: # usual # make sure overall mask is at least as big.. overall_mask=(overall_mask | starting_mask) print("New size of overall mask: ",overall_mask.count(True), file=out) else: if not sites_cart: # pick top of map sites_cart=get_high_points_from_map( boundary_radius=radius, map_data=sd_map, unit_cell=unit_cell,out=out) starting_mask=mask_from_sites_and_map( # starting au mask map_data=sd_map,unit_cell=unit_cell, sites_cart=sites_cart,radius=radius, overall_mask=overall_mask) del sd_map au_mask,ncs_mask=get_ncs_mask( map_data=map_data,unit_cell=unit_cell,ncs_object=ncs_obj, starting_mask=starting_mask, radius=radius, overall_mask=overall_mask, every_nth_point=every_nth_point) print("Points in au: %d in ncs: %d (total %7.1f%%) both: %d Not marked: %d" %( au_mask.count(True),ncs_mask.count(True), 100.*float(au_mask.count(True)+ncs_mask.count(True))/au_mask.size(), (au_mask & ncs_mask).count(True), au_mask.size()-au_mask.count(True)-ncs_mask.count(True),), file=out) return au_mask def set_up_sharpening(si=None,map_data=None,out=sys.stdout): print("\nCarrying out specified sharpening/blurring of map", file=out) check_si=si # just use input information check_si.show_summary(out=out) if check_si.is_target_b_iso_to_d_cut(): check_si.b_iso=check_si.get_target_b_iso() check_si.b_sharpen=None print("Setting target b_iso of %7.1f " %(check_si.b_iso), file=out) if check_si.b_sharpen is None and check_si.b_iso is not None: # need to figure out b_sharpen print("\nGetting b_iso of map", file=out) b_iso=check_si.get_effective_b_iso(map_data=map_data,out=out) check_si.b_sharpen=b_iso-check_si.b_iso # sharpen is what to print("Value of b_sharpen to obtain b_iso of %s is %5.2f" %( check_si.b_iso,check_si.b_sharpen), file=out) elif check_si.b_sharpen is not None: print("Sharpening b_sharpen will be %s" %(check_si.b_sharpen), file=out) elif check_si.resolution_dependent_b: print("Resolution-dependent b_sharpening values:" +\ "b0: %7.2f b1: %7.2f b2: %7.2f " %( tuple(check_si.resolution_dependent_b)), file=out) elif check_si.target_scale_factors: print("Model sharpening scale values:", file=out) for x in check_si.target_scale_factors: print(x, end=' ', file=out) print(file=out) return check_si def run(args, params=None, map_data=None, crystal_symmetry=None, sequence=None, half_map_data_list=None, ncs_obj=None, tracking_data=None, target_scattered_points=None, is_iteration=False, pdb_hierarchy=None, target_xyz=None, target_hierarchy=None, sharpening_target_pdb_inp=None, out=sys.stdout): if is_iteration: print("\nIteration tracking data:", file=out) tracking_data.show_summary(out=out) else: # get the parameters and map_data (sharpened, magnified, shifted...) params,map_data,half_map_data_list,pdb_hierarchy,tracking_data,\ shifted_ncs_object=get_params( # args,map_data=map_data,crystal_symmetry=crystal_symmetry, half_map_data_list=half_map_data_list, ncs_object=ncs_obj, sequence=sequence, sharpening_target_pdb_inp=sharpening_target_pdb_inp,out=out) if params.control.shift_only: return map_data,ncs_obj,tracking_data elif params.control.check_ncs or \ params.control.sharpen_only: return None,None,tracking_data if params.input_files.pdb_to_restore: restore_pdb(params,tracking_data=tracking_data,out=out) return None,None,tracking_data # read and write the ncs (Normally point-group NCS) ncs_obj,tracking_data=get_ncs(params=params,tracking_data=tracking_data, ncs_object=shifted_ncs_object, out=out) if params.input_files.target_ncs_au_file: # read in target import iotbx.pdb target_hierarchy=iotbx.pdb.input( file_name=params.input_files.target_ncs_au_file).construct_hierarchy() print("\nShifting model based on origin shift (if any)", file=out) print("Coordinate shift is (%7.2f,%7.2f,%7.2f)" %( tuple(tracking_data.origin_shift)), file=out) if not map_data: raise Sorry("Need map data for segment_and_split_map") if params.output_files.shifted_map_file: shifted_map_file=os.path.join( tracking_data.params.output_files.output_directory, params.output_files.shifted_map_file) else: shifted_map_file=None if params.output_files.shifted_ncs_file: shifted_ncs_file=os.path.join( tracking_data.params.output_files.output_directory, params.output_files.shifted_ncs_file) else: shifted_ncs_file=None if params.output_files.shifted_ncs_file: shifted_pdb_file=os.path.join( tracking_data.params.output_files.output_directory, params.output_files.shifted_pdb_file) else: shifted_pdb_file=None ncs_obj,pdb_hierarchy,target_hierarchy,\ tracking_data,sharpening_target_pdb_inp=apply_origin_shift( shifted_map_file=shifted_map_file, shifted_pdb_file=shifted_pdb_file, shifted_ncs_file=shifted_ncs_file, origin_shift=tracking_data.origin_shift, shifted_ncs_object=shifted_ncs_object, pdb_hierarchy=pdb_hierarchy, target_hierarchy=target_hierarchy, map_data=map_data, tracking_data=tracking_data, sharpening_target_pdb_inp=sharpening_target_pdb_inp, out=out) if target_hierarchy: target_xyz=target_hierarchy.atoms().extract_xyz() del target_hierarchy # We can use params.input_files.target_ncs_au_file here to define ncs au if target_xyz and not target_scattered_points: target_scattered_points=flex.vec3_double() target_scattered_points.append(target_xyz.mean()) # get the chain types and therefore (using ncs_copies) volume fraction tracking_data=get_solvent_fraction(params, ncs_object=ncs_obj,tracking_data=tracking_data,out=out) # Done with getting params and maps # Summarize after any sharpening tracking_data.show_summary(out=out) original_ncs_obj=ncs_obj # in case we need it later... original_input_ncs_info=tracking_data.input_ncs_info removed_ncs=False n_residues=tracking_data.n_residues ncs_copies=tracking_data.input_ncs_info.number_of_operators if (not tracking_data.solvent_fraction) and \ params.crystal_info.molecular_mass: tracking_data.solvent_fraction=get_solvent_fraction_from_molecular_mass( crystal_symmetry=tracking_data.crystal_symmetry, molecular_mass=params.crystal_info.molecular_mass, out=out) if tracking_data.solvent_fraction: solvent_fraction=tracking_data.solvent_fraction else: raise Sorry("Need solvent fraction or molecular mass or sequence file") # Now usual method, using our new map...should duplicate best result above for itry in range(2): # get connectivity (conn=connectivity_object.result) b_vs_region=b_vs_region_info() si=sharpening_info(tracking_data=tracking_data) co,sorted_by_volume,min_b,max_b,unique_expected_regions,best_score,\ new_threshold,starting_density_threshold=\ get_connectivity( b_vs_region=b_vs_region, map_data=map_data, iterate_with_remainder=params.segmentation.iterate_with_remainder, n_residues=n_residues, ncs_copies=ncs_copies, solvent_fraction=solvent_fraction, fraction_occupied=si.fraction_occupied, min_volume=si.min_volume, min_ratio=si.min_ratio, wrapping=si.wrapping, residues_per_region=si.residues_per_region, max_ratio_to_target=si.max_ratio_to_target, min_ratio_to_target=si.min_ratio_to_target, min_ratio_of_ncs_copy_to_first=si.min_ratio_of_ncs_copy_to_first, starting_density_threshold=si.starting_density_threshold, density_threshold=si.density_threshold, crystal_symmetry=si.crystal_symmetry, chain_type=si.chain_type, verbose=si.verbose, out=out) params.segmentation.starting_density_threshold=starting_density_threshold # have to set tracking data as we are passing that above tracking_data.params.segmentation.starting_density_threshold=starting_density_threshold # have to set tracking data as we are passing that above if new_threshold: print("\nNew threshold is %7.2f" %(new_threshold), file=out) if co is None: # no luck return None,None,tracking_data # Check to see which regions are in more than one au of the NCS # and set them aside. Group ncs-related regions together ncs_group_obj,tracking_data,equiv_dict_ncs_copy=identify_ncs_regions( params,sorted_by_volume=sorted_by_volume, co=co, min_b=min_b, max_b=max_b, ncs_obj=ncs_obj, tracking_data=tracking_data, out=out) if ncs_group_obj and ncs_group_obj.ncs_group_list: # ok break elif ncs_obj and itry==0 and not is_iteration:# try again print("No NCS groups identified on first try...taking entire NCS AU.", file=out) # Identify ncs au au_mask=get_one_au(tracking_data=tracking_data, ncs_obj=ncs_obj, map_data=map_data,out=out) s=(au_mask==False) min_in_map=map_data.as_1d().min_max_mean().min map_data.set_selected(s,min_in_map) # mask out all but au from mmtbx.ncs.ncs import ncs ncs_obj=ncs() ncs_obj.set_unit_ncs() tracking_data.set_ncs_obj(ncs_obj=None) tracking_data.update_ncs_info(number_of_operators=1) if n_residues: n_residues=n_residues/ncs_copies solvent_fraction=max(0.001,min(0.999, 1-((1-solvent_fraction)/ncs_copies))) ncs_copies=1 params.segmentation.require_complete=False params.segmentation.iterate_with_remainder=False # so we do not iterate removed_ncs=True # Run again else: # tried twice, give up return None,None,tracking_data # Choose one region or group of regions from each ncs_group in the list # Optimize the closeness of centers # Select group of regions that are close together and represent one au ncs_group_obj,scattered_points=\ select_regions_in_au( params, ncs_group_obj=ncs_group_obj, equiv_dict_ncs_copy=equiv_dict_ncs_copy, tracking_data=tracking_data, target_scattered_points=target_scattered_points, unique_expected_regions=unique_expected_regions, out=out) # write out mask and map for all the selected regions... # Iterate if desired if params.segmentation.iterate_with_remainder and \ ncs_group_obj.selected_regions: print("\nCreating remaining mask and map", file=out) map_data_remaining=create_remaining_mask_and_map(params, ncs_group_obj=ncs_group_obj, map_data=map_data, crystal_symmetry=tracking_data.crystal_symmetry, out=out) remainder_ncs_group_obj=iterate_search(params, map_data=map_data, map_data_remaining=map_data_remaining, ncs_obj=ncs_obj, ncs_group_obj=ncs_group_obj, scattered_points=scattered_points, tracking_data=tracking_data, out=out) else: remainder_ncs_group_obj=None # collect all NCS ops that are needed to relate all the regions # that are used ncs_ops_used=ncs_group_obj.ncs_ops_used if remainder_ncs_group_obj and remainder_ncs_group_obj.ncs_ops_used: for x in remainder_ncs_group_obj.ncs_ops_used: if not x in ncs_ops_used: ncs_ops_used.append(x) if ncs_ops_used: ncs_ops_used.sort() print("Final NCS ops used: ",ncs_ops_used, file=out) # Save the used NCS ops ncs_used_obj=ncs_group_obj.ncs_obj.deep_copy(ops_to_keep=ncs_ops_used) if params.output_files.shifted_used_ncs_file: shifted_used_ncs_file=os.path.join( tracking_data.params.output_files.output_directory, params.output_files.shifted_used_ncs_file) ncs_used_obj.format_all_for_group_specification( file_name=shifted_used_ncs_file) tracking_data.set_shifted_used_ncs_info(file_name=shifted_used_ncs_file, number_of_operators=ncs_used_obj.max_operators(), is_helical_symmetry=tracking_data.input_ncs_info.is_helical_symmetry) tracking_data.shifted_used_ncs_info.show_summary(out=out) # Write out final maps and dummy atom files if params.output_files.write_output_maps: print("\nWriting output maps", file=out) else: print("\nSetting up but not writing output maps", file=out) map_files_written=write_output_files(params, tracking_data=tracking_data, map_data=map_data, half_map_data_list=half_map_data_list, ncs_group_obj=ncs_group_obj, remainder_ncs_group_obj=remainder_ncs_group_obj, pdb_hierarchy=pdb_hierarchy, removed_ncs=removed_ncs, out=out) ncs_group_obj.set_map_files_written(map_files_written) # Restore ncs info if we removed it if removed_ncs: print("\nRestoring original NCS info to tracking_data", file=out) tracking_data.input_ncs_info=original_input_ncs_info if params.output_files.output_info_file and ncs_group_obj: write_info_file(params=params,tracking_data=tracking_data,out=out) return ncs_group_obj,remainder_ncs_group_obj,tracking_data if __name__=="__main__": run(args=sys.argv[1:])
import os from PIL import Image, ImageDraw from PIL import ImageFilter, ImageEnhance from PIL.ImageFilter import ( GaussianBlur, MaxFilter ) import numpy as np import PostOnIg import random import json import randomWords from bing_image_downloader import downloader import randomWords import randomObjects import time import math # Resources # https://pythontic.com/image-processing/pillow/sharpen-filter paletteRGBCMYK = [ 0, 0, 0, # black 255, 0, 0, # R 0, 255, 0, # G 0, 0, 255, # B 255, 255, 0, # Y 0, 255, 255, # C 255, 0, 255, # M 255,255,255 # 180,180,180 # w ] # monochromatic noColors = random.randint(2,3) # original # noColors = random.randint(2,8) def quantizetopalette(silf, palette = paletteRGBCMYK, dither=Image.FLOYDSTEINBERG): """Convert an RGB or L mode image to use a given P image's palette.""" silf.load() # use palette from reference image made below palette.load() # silf = silf.convert('RGB').convert(mode = "P", matrix = None, dither, Image.WEB) im = silf.im.convert("P", 0, palette.im) # the 0 above means turn OFF dithering making solid colors return silf._new(im) # ------ counter for image ID ----- def get_var_value(filename="varstore.dat"): with open(filename, "a+") as f: f.seek(0) val = int(f.read() or 0) + 1 f.seek(0) f.truncate() f.write(str(val)) return val your_counter = get_var_value() print("Run No. {}".format(your_counter)) mainSearchWord = randomWords.generateWord() def bingQuery(searchWord): downloader.download(searchWord, limit=1, output_dir='dataset', adult_filter_off=False, force_replace=True) # image_path = filenames[0] try: image_path = './dataset/'+ searchWord + '/Image_1.jpg' return read_image(image_path) except FileNotFoundError: image_path = './dataset/'+ searchWord + '/Image_1.png' def pickImage(): folder=r"/Users/ottobenson/Documents/GitHub/pudding-club-IG2/pudding_club_1" a = random.choice(os.listdir(folder)) runQuery = True while(runQuery): try: img_file = folder+'/'+a print("IMAGE = " + img_file) return read_image(img_file) except: runQuery = True else: runQuery = False return read_image(img_file) def read_image(path): try: image = Image.open(path) return image except Exception as e: print(e) # need to figure out a way to loop back # if random.choice([True,False]): # # ------- low res ---------- # cropSize = (your_counter % 5) * 50 # else: # cropSize = 500 cropSize = random.randint(50,750) # shapeSize = int(cropSize/4) shapeSize = int(cropSize/random.randint(2,12)) def transformImage(dimg): dimg = dimg.resize(random.randint(1,cropSize), random.randint(1,cropSize)) return dimg def drawSpine(dimg, color): xy = [(random.randint(-cropSize,cropSize),\ random.randint(-cropSize,cropSize)) for i in range(random.randint(3,6))] dctx = ImageDraw.Draw(dimg) # create drawing context dctx.polygon(xy, fill=color) # draw polygon without outline del dctx return dimg def drawSplotch(dimg, color): xy = [(random.randint(-cropSize,cropSize),random.randint(-cropSize,cropSize)),\ (random.randint(-cropSize,cropSize),random.randint(-cropSize,cropSize)) ] dctx = ImageDraw.Draw(dimg) dctx.ellipse(xy, fill=color) del dctx return dimg def drawScribble(dimg, color, scale): x, y = random.randint(-cropSize, cropSize), random.randint(-cropSize, cropSize) xyA = [(x, y)] status = True while status: if x <= 0 or x >= cropSize or y <= 0 or y >= cropSize: status = False else: xDirect = random.randint(-scale, scale) yDirect = random.randint(-scale, scale) for i in range(random.randint(0, cropSize)): x += xDirect y += yDirect xyA.append((x, y)) xy = tuple(xyA) # convert array of points to tuple dctx = ImageDraw.Draw(dimg) # create drawing context dctx.point(xy, fill=color) # draw points del dctx # destroy drawing context return dimg listOfObjects = [] def drawObjects(dimg, position = [random.randint(-cropSize, cropSize), random.randint(-cropSize, cropSize)], object="tree-1"): try: fgPre = Image.open('./objects/'+ object + '.png') except Exception as e: print(e) x, y= position[0], position[1] resizeSize = [random.randint(1, int(cropSize/2)), random.randint(1, int(cropSize/2))] fg = fgPre.resize(list(resizeSize)) dimg.paste(fg, (x,y), fg) return dimg def drawImages(dimg, simg): x, y= random.randint(-cropSize, cropSize), random.randint(-cropSize, cropSize) # resizeSize = random.randint(1, int(cropSize/2)) resizeSize = [random.randint(1, int(cropSize/2)), random.randint(1, int(cropSize/2))] simg = simg.resize(list(resizeSize)) dimg.paste(simg, (x,y)) return dimg # ----- main process ------ def process(dimg, blurAmount=random.randint(1,5)): xsize, ysize = dimg.size randomAnchorX, randomAnchorY = 0, 0 try: randomAnchorX = random.randint(cropSize, xsize) randomAnchorY = random.randint(cropSize, ysize) except ValueError: dimg = Image.new('RGB', (cropSize, cropSize), (random.randint(0,255),random.randint(0,255),random.randint(0,255))) box = (randomAnchorX - cropSize, randomAnchorY - cropSize, randomAnchorX, randomAnchorY) # dimg = dimg.filter(GaussianBlur(blurAmount)) if random.choice((True, False, False, False)): dimg = dimg.filter(GaussianBlur(blurAmount)) dimg = dimg.crop(box) # max filter (bright-colored boxes) # rimg = simg.filter(MaxFilter(size=9)) # edge enhance # if random.randint(0,7) == 1: # dimg = dimg.filter(ImageFilter.EDGE_ENHANCE) # if random.randint(0,50) == 1: # dimg = dimg.transpose(Image.ROTATE_90) # if random.randint(0,50) == 1: # dimg = dimg.transpose(Image.ROTATE_180) # if random.randint(0,10) == 1: dimg = dimg.convert('RGB').convert(mode = "P", matrix = None, dither = Image.FLOYDSTEINBERG, palette = Image.WEB, colors = noColors) if dimg.mode != 'RGB': dimg = dimg.convert('RGB') return dimg def fuq(dimg): xsize, ysize = dimg.size try: randomAnchorX = random.randint(cropSize, xsize) randomAnchorY = random.randint(cropSize, ysize) except ValueError: dimg = Image.new('RGB', (cropSize, cropSize), (random.randint(0,255),random.randint(0,255),random.randint(0,255))) # box = (randomAnchorX - cropSize, randomAnchorY - cropSize, randomAnchorX, randomAnchorY) # p = random.randint(0,3) # if p == 0: # resize and paste im1 = dimg.resize((random.randint(1,cropSize), random.randint(1,cropSize)), Image.NEAREST) Image.Image.paste(dimg, img, (random.randint(0,xsize), random.randint(0,ysize))) return dimg runQuery = True while(runQuery): img = pickImage() try: testX, textY = img.size except AttributeError: runQuery = True else: runQuery = False img = fuq(img) outputScene = [] script = "" # procedure for y in range(random.randint(1, 4)): colorInstance = randomWords.generateColor() for x in range(random.randint(1, 3)): # img = drawSplotch(img, colorInstance) pick = random.randint(0, 6) if pick == 0: img = fuq(img) # img = drawSpine(img, colorInstance) # if pick == 1: # img = drawSplotch(img, colorInstance) if pick == 2: img = drawScribble(img, colorInstance, random.randint(1,3)) if pick == 3: img = process(img) else: img = process(img) # if pick == 5: # search = randomWords.generateWord() # img = drawImages(img, bingQuery(search)) # ----- display image ------ # img.show() # resizeSize = 900 # img = img.resize((resizeSize,resizeSize)) # img = img.convert("1", 8) # img = img.convert('RGB').convert(mode = "P", matrix = None, dither = Image.FLOYDSTEINBERG, # palette = random.choice([Image.ADAPTIVE, paletteRGBCMYK]), colors = noColors) # img = img.convert('RGB').convert(mode = "P", matrix = None, dither = Image.FLOYDSTEINBERG, # palette = Image.ADAPTIVE, colors = noColors) # # if random.randint(0,6) == 1: # palimage = Image.new('P', (16, 16)) # palimage.putpalette(paletteRGBCMYK * random.randint(6, 32)) # img = quantizetopalette(img, palimage, dither=Image.FLOYDSTEINBERG) # elif random.randint(0,6) != 1: # palimage = Image.new('P', (16, 16)) # palimage.putpalette(paletteRGBCMYK *32) # img = quantizetopalette(img, palimage, dither=Image.FLOYDSTEINBERG) # elif random.randint(0,6) != 1: # img = img.convert('RGB').convert(mode = "P", matrix = None, dither = Image.FLOYDSTEINBERG, # palette = Image.ADAPTIVE, colors = noColors) # img = img.convert('RGB').convert(mode = "P", matrix = None, dither = Image.FLOYDSTEINBERG, # palette = Image.ADAPTIVE, colors = noColors) # img = img.quantize(noColors, Image.MEDIANCUT, random.randint(0,6), paletteRGBCMYK, dither = Image.FLOYDSTEINBERG) if img.mode != 'RGB': img = img.convert('RGB') # caption the image def createCaption(): hardwareFile = open("hardware.dat", "r") if hardwareFile.mode == "r": hardware = hardwareFile.read() # unused caption content: # + randomWords.generateFlowers() + "\n-----------------------------------------------------" \ captionString = script + " \n" + \ time.strftime("%H:%M:%S %d-%m-%y ") + \ "\nHardware: " + hardware print(captionString) return captionString # save the image png_save_name = "pudd" + str(your_counter) + '.png' img.save('./dataset/'+ png_save_name) imgRSZ = Image.open('./dataset/'+ png_save_name) imgRSZ = imgRSZ.resize((700,700)) save_name = "pudd" + str(your_counter) + '.jpg' imgRSZ.save('./dataset/'+ '/' + save_name, optimize = False, quality = 100) # img.show() caption = createCaption() # upload the image PostOnIg.upload('./dataset/' + save_name, caption) saveString = open('./dataset/' + '/' + mainSearchWord + '.txt', 'w+') saveString.write(caption) saveString.close() # os.remove('./dataset/')
"""The Weibull distribution.""" from equadratures.distributions.template import Distribution from equadratures.distributions.recurrence_utils import custom_recurrence_coefficients import numpy as np from scipy.stats import weibull_min RECURRENCE_PDF_SAMPLES = 8000 class Weibull(Distribution): """ The class defines a Weibull object. It is the child of Distribution. :param double shape: Lower bound of the support of the Weibull distribution. :param double scale: Upper bound of the support of the Weibull distribution. """ def __init__(self, scale=None, shape=None): if shape is None: self.shape = 1.0 else: self.shape = shape if scale is None: self.scale = 1.0 else: self.scale = scale self.bounds = np.array([0.0, np.inf]) if self.shape < 0 or self.scale < 0: raise ValueError('Invalid parameters in Weibull distribution. Shape and Scale should be positive.') self.parent = weibull_min(c=self.shape, scale=self.scale) self.mean, self.variance, self.skewness, self.kurtosis = self.parent.stats(moments='mvsk') self.x_range_for_pdf = np.linspace(0, self.scale*10, RECURRENCE_PDF_SAMPLES) def get_description(self): """ A description of the Weibull distribution. :param Weibull self: An instance of the Weibull class. :return: A string describing the Weibull distribution. """ text = "is a Weibull distribution with a shape parameter of "+str(self.shape)+" and a scale parameter of "+str(self.scale) return text def get_pdf(self, points=None): """ A Weibull probability density function. :param Weibull self: An instance of the Weibull class. :param integer N: Number of points for defining the probability density function. """ if points is not None: #w = self.shape/self.scale * (points/self.scale)**(self.shape-1.0) * np.exp(-1.0 * (points/self.scale)**self.shape ) #return w return self.parent.pdf(points) else: raise ValueError( 'Please digit an input for getCDF method') def get_icdf(self, xx): """ An inverse Weibull cumulative density function. :param Weibull self: An instance of the Weibull class. :param array xx: A numpy array of uniformly distributed samples between [0,1]. :return: Inverse CDF samples associated with the Weibull distribution. """ #return self.scale * (-np.log(1.0 - xx))**(1.0/self.shape) return self.parent.ppf(xx) def get_cdf(self, points=None): """ A Weibull cumulative density function. :param Weibull self: An instance of the Weibull class. :param integer N: Number of points for defining the cumulative density function. :return: An array of N equidistant values over the support of the distribution. :return: Cumulative density values along the support of the Weibull distribution. """ if points is not None: # w = 1 - np.exp(-1.0 * ( (points) / (self.scale * 1.0) )**self.shape) # return w return self.parent.cdf(points) else: raise ValueError( 'Please digit an input for getCDF method')
"""Show config player.""" from mpf.core.placeholder_manager import ConditionalEvent from mpf.config_players.device_config_player import DeviceConfigPlayer RESERVED_KEYS = ["show", "priority", "speed", "block_queue", "start_step", "loops", "sync_ms", "manual_advance", "key", "show_tokens", "events_when_played", "events_when_stopped", "events_when_looped", "events_when_paused", "events_when_resumed", "events_when_advanced", "events_when_stepped_back", "events_when_updated", "events_when_completed"] class ShowPlayer(DeviceConfigPlayer): """Plays, starts, stops, pauses, resumes or advances shows based on config.""" config_file_section = 'show_player' show_section = 'shows' allow_placeholders_in_keys = True __slots__ = ["_actions"] def __init__(self, machine): """Initialise show player.""" super().__init__(machine) self._actions = { 'play': self._play, 'stop': self._stop, 'pause': self._pause, 'resume': self._resume, 'advance': self._advance, 'step_back': self._step_back, 'update': self._update, 'queue': self._queue } # pylint: disable-msg=too-many-arguments def play(self, settings, context, calling_context, priority=0, **kwargs): """Play, start, stop, pause, resume or advance show based on config.""" # make sure all shows play in sync queue = kwargs.get("queue", None) start_time = kwargs.get("start_time", None) show_tokens = kwargs.get("show_tokens", kwargs) if not start_time: start_time = self.machine.clock.get_time() for show, show_settings in settings.items(): # Look for a conditional event in the show name if show.condition and not show.condition.evaluate(kwargs): continue if 'hold' in show_settings and show_settings['hold'] is not None: raise AssertionError( "Setting 'hold' is no longer supported for shows. Use duration -1 in your show.") if priority: show_settings = dict(show_settings) try: show_settings['priority'] += priority except KeyError: show_settings['priority'] = priority self._update_show(show.name, show_settings, context, queue, start_time, show_tokens) def _expand_device(self, device): # parse conditionals devices = super()._expand_device(device) for index, device_entry in enumerate(devices): if not isinstance(device_entry, ConditionalEvent): devices[index] = self.machine.placeholder_manager.parse_conditional_template(device_entry) return devices def _expand_device_config(self, device_settings): """Validate show_tokens.""" for key in RESERVED_KEYS: if key in device_settings["show_tokens"]: self.raise_config_error("Key {} is not allowed in show_tokens of your show_player because it is also " "an option in show_player. Did you indent that option too far?".format(key), 1) return device_settings def handle_subscription_change(self, value, settings, priority, context, key): """Handle subscriptions.""" instance_dict = self._get_instance_dict(context) for show, show_settings in settings.items(): show_settings = dict(show_settings) show_key = show_settings["key"] if 'key' in show_settings and show_settings['key'] else key if show_settings['action'] != 'play': raise AssertionError("Can only use action play with subscriptions.") if value: self._play(show_key, instance_dict, show.name, show_settings, False, None, {}) else: self._stop(show_key, instance_dict, show.name, show_settings, False, None, {}) # pylint: disable-msg=too-many-arguments def _play(self, key, instance_dict, show, show_settings, queue, start_time, placeholder_args): stop_callback = None if show_settings['block_queue']: if not queue: raise AssertionError("block_queue can only be used with a queue event.") queue.wait() stop_callback = queue.clear start_step = show_settings['start_step'].evaluate(placeholder_args) start_running = show_settings['start_running'].evaluate(placeholder_args) show_tokens = {k: v.evaluate(placeholder_args) for k, v in show_settings['show_tokens'].items()} show_config = self.machine.show_controller.create_show_config( show, show_settings['priority'], show_settings['speed'], show_settings['loops'], show_settings['sync_ms'], show_settings['manual_advance'], show_tokens, show_settings['events_when_played'], show_settings['events_when_stopped'], show_settings['events_when_looped'], show_settings['events_when_paused'], show_settings['events_when_resumed'], show_settings['events_when_advanced'], show_settings['events_when_stepped_back'], show_settings['events_when_updated'], show_settings['events_when_completed']) previous_show = instance_dict.get(key, None) instance_dict[key] = self.machine.show_controller.replace_or_advance_show(previous_show, show_config, start_step, start_time, start_running, stop_callback) # pylint: disable-msg=too-many-arguments def _queue(self, key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del queue del instance_dict del start_time del key if show_settings['block_queue']: raise AssertionError("Cannot use queue with block_queue.") start_step = show_settings['start_step'].evaluate(placeholder_args) show_tokens = {k: v.evaluate(placeholder_args) for k, v in show_settings['show_tokens'].items()} show_config = self.machine.show_controller.create_show_config( show, show_settings['priority'], show_settings['speed'], show_settings['loops'], show_settings['sync_ms'], show_settings['manual_advance'], show_tokens, show_settings['events_when_played'], show_settings['events_when_stopped'], show_settings['events_when_looped'], show_settings['events_when_paused'], show_settings['events_when_resumed'], show_settings['events_when_advanced'], show_settings['events_when_stepped_back'], show_settings['events_when_updated'], show_settings['events_when_completed']) show_settings["show_queue"].enqueue_show(show_config, start_step) @staticmethod def _stop(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del show_settings del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].stop() del instance_dict[key] @staticmethod def _pause(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del show_settings del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].pause() @staticmethod def _resume(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del show_settings del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].resume() @staticmethod def _advance(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del show_settings del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].advance() @staticmethod def _step_back(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del show_settings del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].step_back() @staticmethod def _update(key, instance_dict, show, show_settings, queue, start_time, placeholder_args): del show del queue del start_time del placeholder_args if key in instance_dict: instance_dict[key].update( speed=show_settings.get('speed'), manual_advance=show_settings.get('manual_advance') ) # pylint: disable-msg=too-many-arguments def _update_show(self, show, show_settings, context, queue, start_time, placeholder_args): instance_dict = self._get_instance_dict(context) if 'key' in show_settings and show_settings['key']: key = show_settings['key'] else: key = show try: action = self._actions[show_settings['action']] except KeyError: raise AssertionError("Invalid action {} in show_player {}".format( show_settings['action'], key)) if 'show' in show_settings and show_settings['show']: show_name = show_settings['show'] else: show_name = show action(key, instance_dict, show_name, show_settings, queue, start_time, placeholder_args) def clear_context(self, context): """Stop running shows from context.""" for show in self._get_instance_dict(context).values(): show.stop() self._reset_instance_dict(context) def get_express_config(self, value): """Parse express config.""" return {"action": value}
# -*- coding: utf-8 -*- __author__ = "Konstantin Klementiev" __date__ = "23 Jul 2021" # !!! SEE CODERULES.TXT !!! import numpy as np import scipy.linalg as spl import sys; sys.path.append('..') # analysis:ignore from parseq.core import transforms as ctr from parseq.utils import math as uma from parseq.third_party import xrt cpus = 'half' # can be 'all' or 'half' def _line(xs, ys): k = (ys[1] - ys[0]) / (xs[1] - xs[0]) b = ys[1] - k*xs[1] return k, b class Tr0(ctr.Transform): name = 'mask Eiger' defaultParams = dict( cutoffNeeded=True, cutoff=2000, cutoffMaxBelow=0, cutoffMaxFrame=0, autoVMax=True, fracVMax=0.1, use2Droi=False, roi=[]) nThreads = cpus # nProcesses = cpus # inArrays and outArrays needed only for multiprocessing/multithreading: inArrays = ['elastic3Draw', 'dispersive2Draw'] outArrays = ['elastic3D', 'dispersive2D'] @staticmethod def run_main(data): dtparams = data.transformParams data.elastic3D = np.array(data.elastic3Draw) data.dispersive2D = np.array(data.dispersive2Draw) if dtparams['cutoffNeeded']: cutoff = dtparams['cutoff'] data.elastic3D[data.elastic3D > cutoff] = 0 data.dispersive2D[data.dispersive2D > cutoff] = 0 dtparams['cutoffMaxBelow'] = data.elastic3D.max() dtparams['cutoffMaxFrame'] = np.unravel_index( data.elastic3D.argmax(), data.elastic3D.shape)[0] shape2D = data.dispersive2D.shape data.elastic3D = np.concatenate( (data.elastic3D, data.dispersive2D.reshape(1, *shape2D)), axis=0) roi = dtparams['roi'] if dtparams['use2Droi'] and roi: cy, cx, dy, dx = roi xslice = slice(max(cx, 0), dx+cx) yslice = slice(max(cy, 0), dy+cy) tmp = np.zeros_like(data.dispersive2D) tmp[xslice, yslice] = data.dispersive2D[xslice, yslice] data.dispersive2D = tmp tmp = np.zeros_like(data.elastic3D) tmp[:, xslice, yslice] = data.elastic3D[:, xslice, yslice] data.elastic3D = tmp return True class Tr1(ctr.Transform): """Unpublished and therefore obfuscated""" name = 'project onto basis' defaultParams = dict( cutoffMin=None, cutoffMax=None, # condValue=0, convolve=True, convolveWith='Si111', convolveShow=True) nThreads = cpus # nProcesses = cpus # inArrays and outArrays needed only for multiprocessing/multithreading: inArrays = ['energy', 'i0', 'elastic3D', 'dispersive2D'] outArrays = ['xes'] @staticmethod def run_main (O00OOO000O000OO00 ): O0O0O00O00O0000OO =O00OOO000O000OO00 .transformParams O0OOO0O0O0O00OOOO =O0O0O00O00O0000OO ['roi'] if O0O0O00O00O0000OO ['use2Droi']and O0OOO0O0O0O00OOOO : OO00OOO0O00OO0O0O ,O0OOOO000O0O0OO00 ,O00OOOO00OO00OO00 ,OO000O0OO0OOO0OOO =O0OOO0O0O0O00OOOO OO0OO0O0O0OO0000O =slice (max (O0OOOO000O0O0OO00 ,0 ),OO000O0OO0OOO0OOO +O0OOOO000O0O0OO00 +1 ) O0O00OOOO0OO0O00O =slice (max (OO00OOO0O00OO0O0O ,0 ),O00OOOO00OO00OO00 +OO00OOO0O00OO0O0O +1 ) OOOOO0OO0O00OO000 =O00OOO000O000OO00 .elastic3D [:-1 ,OO0OO0O0O0OO0000O ,O0O00OOOO0OO0O00O ] else : OOOOO0OO0O00OO000 =O00OOO000O000OO00 .elastic3D [:-1 ,:,:] O0O0OO0O0O0OO0000 =OOOOO0OO0O00OO000 .shape [1 ]*OOOOO0OO0O00OO000 .shape [2 ] O0OO0O0OO0000OO0O =np .array (OOOOO0OO0O00OO000 ,dtype =np .float64 ).reshape ((-1 ,O0O0OO0O0O0OO0000 ),order ='F').T try : O0OO0O0OO0000OO0O *=O00OOO000O000OO00 .i0 .max ()/O00OOO000O000OO00 .i0 [np .newaxis ,:] except ValueError as OO00000O0OOOOOO00 : print (OO00000O0OOOOOO00 ) return if O0O0O00O00O0000OO ['use2Droi']and O0OOO0O0O0O00OOOO : O00OOO0OOO0OOOO0O =O00OOO000O000OO00 .dispersive2D [OO0OO0O0O0OO0000O ,O0O00OOOO0OO0O00O ].reshape ((-1 ,O0O0OO0O0O0OO0000 ),order ='F').T else : O00OOO0OOO0OOOO0O =O00OOO000O000OO00 .dispersive2D .reshape ((-1 ,O0O0OO0O0O0OO0000 ),order ='F').T OO0OOOOO0O0O0O00O =np .dot (O0OO0O0OO0000OO0O .T ,O00OOO0OOO0OOOO0O ) O00O0O0O0OOO0OOOO =np .dot (OO0OOOOO0O0O0O00O .T ,OO0OOOOO0O0O0O00O ) O0O000O00000OO00O =dict () OO0OO00O00000O0O0 ,OO0OOO0OOO00OOOO0 =spl .eigh (O00O0O0O0OOO0OOOO ,**O0O000O00000OO00O ) O0O00000O000OOOOO =np .dot (np .dot (OO0OOO0OOO00OOOO0 ,np .diag (1. /OO0OO00O00000O0O0 )),OO0OOO0OOO00OOOO0 .T ) OO0O0O0O0O0OOOOOO =np .dot (O0OO0O0OO0000OO0O .T *O0O00000O000OOOOO ,O0OO0O0OO0000OO0O *OO0OO00O00000O0O0 ) O0O000O00000OO00O =dict () OOOO0OOO0OO0OOO00 ,OO0OOOOO0OO00OO0O =spl .eigh (OO0O0O0O0O0OOOOOO ,**O0O000O00000OO00O ) O0O0O000O000O000O =O0O0O00O00O0000OO ['cutoffMin'] OOO0O0OOOOOOO0OO0 =O0O0O00O00O0000OO ['cutoffMax'] OO0OO0OOOOO00OO0O =OO0OOOOO0OO00OO0O [:,O0O0O000O000O000O :OOO0O0OOOOOOO0OO0 ] O000OOOOO0000O000 =np .dot (np .dot (OO0OO0OOOOO00OO0O ,np .diag (1. /OOOO0OOO0OO0OOO00 [O0O0O000O000O000O :OOO0O0OOOOOOO0OO0 ])),OO0OO0OOOOO00OO0O .T ) OOO0OOO0000OO0OO0 =np .dot (O000OOOOO0000O000 ,OO0OOOOO0O0O0O00O ).ravel () OOO00O000O000OO00 =np .argwhere (OOO0OOO0000OO0OO0 <=0 ).ravel () if len (OOO00O000O000OO00 )>1 : OOO0OOO0000OO0OO0 [:OOO00O000O000OO00 [0 ]]=0 OOO0OOO0000OO0OO0 [OOO00O000O000OO00 [-1 ]:]=0 OOO0OOO0000OO0OO0 [OOO0OOO0000OO0OO0 <0 ]=0 OOO0OOO0000OO0OO0 *=O00OOO0OOO0OOOO0O .sum ()/OOO0OOO0000OO0OO0 .sum () O00OOO000O000OO00 .xes =OOO0OOO0000OO0OO0 if O0O0O00O00O0000OO ['convolve']: OO0O00OOOOO0O0OO0 =O00OOO000O000OO00 .energy [1 ]-O00OOO000O000OO00 .energy [0 ] OO0O0OO000O0O0OOO =O0O0O00O00O0000OO ['convolveWith'] if xrt .rc [OO0O0OO000O0O0OOO ]is None : O0OOOO0O00O0O0O0O =xrt .crystals [OO0O0OO000O0O0OOO ] O0OOOO0O00O00OOO0 =O00OOO000O000OO00 .energy [len (O00OOO000O000OO00 .energy )//2 ] O00OOO00OO0OO0O00 =O0OOOO0O00O0O0O0O .get_dtheta_symmetric_Bragg (O0OOOO0O00O00OOO0 ) OO00000OO00OO0OOO =O0OOOO0O00O0O0O0O .get_Bragg_angle (O0OOOO0O00O00OOO0 )-O00OOO00OO0OO0O00 OOOO000O00OO0O000 =np .abs (O0OOOO0O00O0O0O0O .get_amplitude (O00OOO000O000OO00 .energy ,np .sin (OO00000OO00OO0OOO ))[0 ])**2 xrt .refl [OO0O0OO000O0O0OOO ]=OOOO000O00OO0O000 xrt .rc [OO0O0OO000O0O0OOO ]=np .convolve (OOOO000O00OO0O000 ,OOOO000O00OO0O000 ,'same')/(OOOO000O00OO0O000 .sum ()*OO0O00OOOOO0O0OO0 )*OO0O00OOOOO0O0OO0 O00OOO000O000OO00 .xes =np .convolve (O00OOO000O000OO00 .xes ,xrt .rc [OO0O0OO000O0O0OOO ],'same')/(xrt .rc [OO0O0OO000O0O0OOO ].sum ()*OO0O00OOOOO0O0OO0 )*OO0O00OOOOO0O0OO0 return True
@app.on_message(filters.command(["bandiera","bandiera@NFTlittlebot"]) & ~filters.user(bannati)) def gloria(client, message): username = message.from_user.username if player[username]["team"] != None and player[username]["team"] != "nessuno": team = player[username]["team"] if "Bandiera" in clan[team]: testo = "Sventoli con felicità la bandiera del tuo clan davanti a tutti!\n\n\n" for riga in clan[team]["Bandiera"]: testo += listToString(riga) + "\n" message.reply(testo) else: message.reply("Nessuno ha mai disegnato la vostra bandiera!") else: message.reply("Non hai un team!") @app.on_message(filters.command(["disegna","disegna@NFTlittlebot"]) & ~filters.user(bannati)) def gloria(client, message): username = message.from_user.username if player[username]["team"] != None and player[username]["team"] != "nessuno": team = player[username]["team"] if clan[team]["Sarto"] == username: if len(message.command) == 1: message.reply("Usa /disegna x y emoji per sostituire una casella!") x = int(message.command[1]) - 1 y = int(message.command[2]) - 1 emoji = message.command[3][0] try: clan[team]["Bandiera"][x][y] = emoji message.reply("Fatto") except: message.reply("Mmmm, non credo vada bene così...") else: message.reply("Non sei il sarto del clan!") else: message.reply("Non sei in un clan!")
#!/usr/bin/env python # coding: utf8 ''' @author: qitan @contact: [email protected] @file: myfilter.py @time: 2017/3/30 15:32 @desc: ''' from django import template from django.contrib.auth.models import Group from userauth.models import User, Department from django.db.models import Q from django.shortcuts import get_object_or_404 from deploy.models import SaltGroup register = template.Library() @register.filter(name='add_class') def add_class(value, arg): return value.as_widget(attrs={'class': arg, 'required':'required'}) @register.filter(name='group_minions') def minions(value): ''' 分组列表中显示所有主机 ''' try: group_minions = value.minions.all() return group_minions except: return '' @register.filter(name='group_users') def all_users(group): ''' 分组列表中显示所有主机 ''' try: #all_users = group.user_set.all() all_users = User.objects.filter(group=group) return all_users except: return '' @register.filter(name='department_users') def all_department_users(pk): ''' 部门所有用户 ''' try: all_department_users = Department.objects.get(pk=pk).user_set.all() return all_department_users except: return '' @register.filter(name='user_departments') def user_departments(user, level): ''' 用户所属部门(组) ''' try: #user = User.objects.get(pk=pk) if level == "1": department = {i.id:i.deptname for i in user.department.filter(level=1)} else: department = {i.id:i.deptname for i in user.department.filter(~Q(level=1))} return sorted(department.items()) except: return '' @register.filter(name='user_groups') def all_user_groups(pk): ''' 用户所属组 ''' try: user_group = [i.name for i in Group.objects.filter(user=pk)] return user_group except: return '' @register.filter(name='department_subs') def all_dept_subs(pk): ''' 子部门 ''' try: all_depts = ["<li>%s</li>"%i.deptname for i in Department.objects.filter(parent_id=pk)] return all_depts except: return '' @register.filter(name='getNextDept') def all_dept_node(pid): ''' 部门节点 :param pk: :return: ''' try: return Department.objects.filter(parent_id=pid).values('id', 'deptname', 'parent_id') except: return None @register.filter(name='department_level') def department_display(level): try: return 60 * (int(level) - 1) except: return '' @register.filter(name='is_super') def user_is_super(pk): ''' 是否为超级用户 ''' if pk: return User.objects.get(pk=pk).is_superuser else: return None @register.filter(name='str_split') def show_str(value, arg): ''' 分割权限控制中远程命令、远程目录列表 ''' if value: str_list = value.split(arg) return str_list else: return '' @register.filter(name='list_item') def show_item(value, arg): ''' 获取列表中指定项 ''' if value: return value[arg] else: return ''
""" Input classes for nimare data. """ import json class Analyzable(object): def to_array(self): pass class Mappable(Analyzable): def to_vol(self): pass class ConnMatrix(Analyzable): """Container for connectome data (i.e., connectivity matrices). """ def __init__(self, mat): pass def to_array(self): pass class Image(Mappable): """Container for volumetric brain images. """ def __init__(self, nimg): pass def to_array(self, masker): pass def to_vol(self): pass class CoordinateSet(Mappable): """Container for peak information, with optional additional metadata (e.g., intensity values). """ def __init__(self, foci): pass def to_array(self, method, masker): pass def to_vol(self, method, masker): pass class Surface(Mappable): """Container for surface brain data (i.e., from gifti files). """ def __init__(self, gimg): pass def to_array(self, masker): pass def to_vol(self, masker): pass
print('hello world new!')
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .multiple_pipeline_trigger import MultiplePipelineTrigger class BlobTrigger(MultiplePipelineTrigger): """Trigger that runs every time the selected Blob container changes. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param description: Trigger description. :type description: str :ivar runtime_state: Indicates if trigger is running or not. Updated when Start/Stop APIs are called on the Trigger. Possible values include: 'Started', 'Stopped', 'Disabled' :vartype runtime_state: str or ~azure.mgmt.datafactory.models.TriggerRuntimeState :param type: Required. Constant filled by server. :type type: str :param pipelines: Pipelines that need to be started. :type pipelines: list[~azure.mgmt.datafactory.models.TriggerPipelineReference] :param folder_path: Required. The path of the container/folder that will trigger the pipeline. :type folder_path: str :param max_concurrency: Required. The max number of parallel files to handle when it is triggered. :type max_concurrency: int :param linked_service: Required. The Azure Storage linked service reference. :type linked_service: ~azure.mgmt.datafactory.models.LinkedServiceReference """ _validation = { 'runtime_state': {'readonly': True}, 'type': {'required': True}, 'folder_path': {'required': True}, 'max_concurrency': {'required': True}, 'linked_service': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'description': {'key': 'description', 'type': 'str'}, 'runtime_state': {'key': 'runtimeState', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'pipelines': {'key': 'pipelines', 'type': '[TriggerPipelineReference]'}, 'folder_path': {'key': 'typeProperties.folderPath', 'type': 'str'}, 'max_concurrency': {'key': 'typeProperties.maxConcurrency', 'type': 'int'}, 'linked_service': {'key': 'typeProperties.linkedService', 'type': 'LinkedServiceReference'}, } def __init__(self, **kwargs): super(BlobTrigger, self).__init__(**kwargs) self.folder_path = kwargs.get('folder_path', None) self.max_concurrency = kwargs.get('max_concurrency', None) self.linked_service = kwargs.get('linked_service', None) self.type = 'BlobTrigger'
mysp = __import__('my-voice-analysis') p="converted" c=r"C:\Users\ishan\OneDrive\Documents\EngHack" import wave params = () rating = mysp.myspgend(p,c) pauses = mysp.mysppaus(p,c) speed = mysp.myspsr(p,c) articulation = mysp.myspatc(p,c) pronounce = mysp.mysppron(p,c) pauses_response = [] speed_response = [] articulation_response = [] speed_dict = { '0': [0,'Too Slow'], '1': [25, 'Slow'], '2': [50, 'Slow'], '3': [75, 'Good Speed, could be a bit faster'], '4': [100, 'Perfect Speed'], '5': [75, 'Good speed, could be a little slower'], '6': [50, 'Fast'], '7': [25, 'Fast'], '8': [0, 'Too fast']} articulation_dict = { '0': [0,'Too Slow'], '1': [0, 'Too Slow'], '2': [25, 'Slow'], '3': [50, 'Slow'], '4': [75, 'Good Articluation, could be a bit faster'], '5': [100, 'Perfect Articluation'], '6': [75, 'Good Articulation, could be a little slower'], '7': [50, 'Fast'], '8': [25, 'Fast'], '9': [0, 'Too fast']} if pauses > 100: pauses_response = [0, 'Too many pauses'] elif pauses > 80: pauses_response = [25, 'Too many pauses'] elif pauses > 60: pauses_response = [50, 'Just a few too many pauses'] elif pauses > 40: pauses_response = [75, 'Good, try to reduce the amount of pauses'] else: pauses_response = [100, 'Very few pauses, well done!'] try: speed_response = speed_dict[str(speed)] except KeyError: speed_response = [0, 'Too fast'] try: articulation_response = articulation_dict[str(articulation)] except KeyError: articluation_response = [0, 'Too fast'] percentages = [pauses_response[0], speed_response[0], articulation_response[0], pronounce] mean_percent = sum(percentages)/len(percentages) feedback_statement = 'Feedback for Speed: ' + speed_response[1] + ' Feedback for Articulation: ' + articulation_response[1] + ', Feedback for Pausing: ' + pauses_response[1] + ', Pronounce Rating (out of 100): ' + str(pronounce) print('\n'*5) print(mean_percent, feedback_statement) print('\n'*5)
r""" Algebras With Basis """ #***************************************************************************** # Copyright (C) 2008 Teresa Gomez-Diaz (CNRS) <[email protected]> # 2008-2009 Nicolas M. Thiery <nthiery at users.sf.net> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #****************************************************************************** from sage.misc.abstract_method import abstract_method from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.categories.all import ModulesWithBasis, Algebras from sage.categories.tensor import TensorProductsCategory, tensor from sage.categories.cartesian_product import CartesianProductsCategory from category_types import Category_over_base_ring class AlgebrasWithBasis(Category_over_base_ring): """ The category of algebras with a distinguished basis EXAMPLES:: sage: C = AlgebrasWithBasis(QQ); C Category of algebras with basis over Rational Field sage: C.super_categories() [Category of modules with basis over Rational Field, Category of algebras over Rational Field] We construct a typical parent in this category, and do some computations with it:: sage: A = C.example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: A.category() Category of algebras with basis over Rational Field sage: A.one_basis() word: sage: A.one() B[word: ] sage: A.base_ring() Rational Field sage: A.basis().keys() Words over {'a', 'b', 'c'} sage: (a,b,c) = A.algebra_generators() sage: a^3, b^2 (B[word: aaa], B[word: bb]) sage: a*c*b B[word: acb] sage: A.product <bound method FreeAlgebra_with_category._product_from_product_on_basis_multiply of An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field> sage: A.product(a*b,b) B[word: abb] sage: TestSuite(A).run(verbose=True) running ._test_additive_associativity() . . . pass running ._test_an_element() . . . pass running ._test_associativity() . . . pass running ._test_category() . . . pass running ._test_characteristic() . . . pass running ._test_distributivity() . . . pass running ._test_elements() . . . Running the test suite of self.an_element() running ._test_category() . . . pass running ._test_eq() . . . pass running ._test_nonzero_equal() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass pass running ._test_elements_eq_reflexive() . . . pass running ._test_elements_eq_symmetric() . . . pass running ._test_elements_eq_transitive() . . . pass running ._test_elements_neq() . . . pass running ._test_eq() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_one() . . . pass running ._test_pickling() . . . pass running ._test_prod() . . . pass running ._test_some_elements() . . . pass running ._test_zero() . . . pass sage: A.__class__ <class 'sage.categories.examples.algebras_with_basis.FreeAlgebra_with_category'> sage: A.element_class <class 'sage.combinat.free_module.FreeAlgebra_with_category.element_class'> Please see the source code of `A` (with ``A??``) for how to implement other algebras with basis. TESTS:: sage: TestSuite(AlgebrasWithBasis(QQ)).run() """ @cached_method def super_categories(self): """ EXAMPLES:: sage: AlgebrasWithBasis(QQ).super_categories() [Category of modules with basis over Rational Field, Category of algebras over Rational Field] """ R = self.base_ring() return [ModulesWithBasis(R), Algebras(R)] def example(self, alphabet = ('a','b','c')): """ Returns an example of algebra with basis:: sage: AlgebrasWithBasis(QQ).example() An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field An other set of generators can be specified as optional argument:: sage: AlgebrasWithBasis(QQ).example((1,2,3)) An example of an algebra with basis: the free algebra on the generators (1, 2, 3) over Rational Field """ from sage.categories.examples.algebras_with_basis import Example return Example(self.base_ring(), alphabet) class ParentMethods: @abstract_method(optional = True) def one_basis(self): """ When the one of an algebra with basis is an element of this basis, this optional method can return the index of this element. This is used to provide a default implementation of :meth:`.one`, and an optimized default implementation of :meth:`.from_base_ring`. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word: sage: A.one() B[word: ] sage: A.from_base_ring(4) 4*B[word: ] """ @cached_method def one_from_one_basis(self): """ Returns the one of the algebra, as per :meth:`Monoids.ParentMethods.one() <sage.categories.monoids.Monoids.ParentMethods.one>` By default, this is implemented from :meth:`.one_basis`, if available. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word: sage: A.one_from_one_basis() B[word: ] sage: A.one() B[word: ] TESTS: Try to check that #5843 Heisenbug is fixed:: sage: A = AlgebrasWithBasis(QQ).example() sage: B = AlgebrasWithBasis(QQ).example(('a', 'c')) sage: A == B False sage: Aone = A.one_from_one_basis sage: Bone = B.one_from_one_basis sage: Aone is Bone False Even if called in the wrong order, they should returns their respective one:: sage: Bone().parent() is B True sage: Aone().parent() is A True """ return self.monomial(self.one_basis()) #. @lazy_attribute def one(self): r""" EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word: sage: A.one() B[word: ] """ if self.one_basis is not NotImplemented: return self.one_from_one_basis else: return NotImplemented @lazy_attribute def from_base_ring(self): """ TESTS:: sage: A = AlgebrasWithBasis(QQ).example() sage: A.from_base_ring(3) 3*B[word: ] """ if self.one_basis is not NotImplemented: return self.from_base_ring_from_one_basis else: return NotImplemented def from_base_ring_from_one_basis(self, r): """ INPUTS: - `r`: an element of the coefficient ring Implements the canonical embeding from the ground ring. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: A.from_base_ring_from_one_basis(3) 3*B[word: ] sage: A.from_base_ring(3) 3*B[word: ] sage: A(3) 3*B[word: ] """ return self.term(self.one_basis(), r) #. @abstract_method(optional = True) def product_on_basis(self, i, j): """ The product of the algebra on the basis (optional) INPUT: - ``i``, ``j`` -- the indices of two elements of the basis of self Returns the product of the two corresponding basis elements If implemented, :meth:`product` is defined from it by bilinearity. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: Word = A.basis().keys() sage: A.product_on_basis(Word("abc"),Word("cba")) B[word: abccba] """ @lazy_attribute def product(self): """ The product of the algebra, as per :meth:`Magmas.ParentMethods.product() <sage.categories.magmas.Magmas.ParentMethods.product>` By default, this is implemented using one of the following methods, in the specified order: - :meth:`.product_on_basis` - :meth:`._multiply` or :meth:`._multiply_basis` - :meth:`.product_by_coercion` EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example() sage: a, b, c = A.algebra_generators() sage: A.product(a + 2*b, 3*c) 3*B[word: ac] + 6*B[word: bc] """ if self.product_on_basis is not NotImplemented: return self._product_from_product_on_basis_multiply # return self._module_morphism(self._module_morphism(self.product_on_basis, position = 0, codomain=self), # position = 1) elif hasattr(self, "_multiply") or hasattr(self, "_multiply_basis"): return self._product_from_combinatorial_algebra_multiply elif hasattr(self, "product_by_coercion"): return self.product_by_coercion else: return NotImplemented # Provides a product using the product_on_basis by calling linear_combination only once def _product_from_product_on_basis_multiply( self, left, right ): r""" Computes the product of two elements by extending bilinearly the method :meth:`product_on_basis`. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: (a,b,c) = A.algebra_generators() sage: A._product_from_product_on_basis_multiply(a*b + 2*c, a - b) B[word: aba] - B[word: abb] + 2*B[word: ca] - 2*B[word: cb] """ return self.linear_combination( ( self.product_on_basis( mon_left, mon_right ), coeff_left * coeff_right ) for ( mon_left, coeff_left ) in left.monomial_coefficients().iteritems() for ( mon_right, coeff_right ) in right.monomial_coefficients().iteritems() ) # Backward compatibility temporary cruft to help migrating form CombinatorialAlgebra def _product_from_combinatorial_algebra_multiply(self,left,right): """ Returns left\*right where left and right are elements of self. product() uses either _multiply or _multiply basis to carry out the actual multiplication. EXAMPLES:: sage: s = SymmetricFunctions(QQ).schur() sage: a = s([2]) sage: s._product_from_combinatorial_algebra_multiply(a,a) s[2, 2] + s[3, 1] + s[4] sage: s.product(a,a) s[2, 2] + s[3, 1] + s[4] """ A = left.parent() BR = A.base_ring() z_elt = {} #Do the case where the user specifies how to multiply basis elements if hasattr(self, '_multiply_basis'): for (left_m, left_c) in left._monomial_coefficients.iteritems(): for (right_m, right_c) in right._monomial_coefficients.iteritems(): res = self._multiply_basis(left_m, right_m) #Handle the case where the user returns a dictionary #where the keys are the monomials and the values are #the coefficients. If res is not a dictionary, then #it is assumed to be an element of self if not isinstance(res, dict): if isinstance(res, self._element_class): res = res._monomial_coefficients else: res = {res: BR(1)} for m in res: if m in z_elt: z_elt[ m ] = z_elt[m] + left_c * right_c * res[m] else: z_elt[ m ] = left_c * right_c * res[m] #We assume that the user handles the multiplication correctly on #his or her own, and returns a dict with monomials as keys and #coefficients as values else: m = self._multiply(left, right) if isinstance(m, self._element_class): return m if not isinstance(m, dict): z_elt = m.monomial_coefficients() else: z_elt = m #Remove all entries that are equal to 0 BR = self.base_ring() zero = BR(0) del_list = [] for m, c in z_elt.iteritems(): if c == zero: del_list.append(m) for m in del_list: del z_elt[m] return self._from_dict(z_elt) #def _test_product(self, **options): # tester = self._tester(**options) # tester.assert_(self.product is not None) # could check that self.product is in Hom( self x self, self) class ElementMethods: def __invert__(self): """ Returns the inverse of self if self is a multiple of one, and one is in the basis of this algebra. Otherwise throws an error. Caveat: this generic implementation is not complete; there may be invertible elements in the algebra that can't be inversed this way. It is correct though for graded connected algebras with basis. EXAMPLES:: sage: C = AlgebrasWithBasis(QQ).example() sage: x = C(2); x 2*B[word: ] sage: ~x 1/2*B[word: ] sage: a = C.algebra_generators().first(); a B[word: a] sage: ~a Traceback (most recent call last): ... ValueError: cannot invert self (= B[word: a]) """ # FIXME: make this generic mcs = self._monomial_coefficients one = self.parent().one_basis() if len(mcs) == 1 and one in mcs: return self.parent()( ~mcs[ one ] ) else: raise ValueError, "cannot invert self (= %s)"%self class CartesianProducts(CartesianProductsCategory): """ The category of algebras with basis, constructed as cartesian products of algebras with basis Note: this construction give the direct products of algebras with basis. See comment in :class:`Algebras.CartesianProducts <sage.categories.algebras.Algebras.CartesianProducts>` """ def extra_super_categories(self): """ A cartesian product of algebras with basis is endowed with a natural algebra with basis structure. EXAMPLES:: sage: AlgebrasWithBasis(QQ).CartesianProducts().extra_super_categories() [Category of algebras with basis over Rational Field] sage: AlgebrasWithBasis(QQ).CartesianProducts().super_categories() [Category of algebras with basis over Rational Field, Category of Cartesian products of algebras over Rational Field, Category of Cartesian products of modules with basis over Rational Field] """ return [self.base_category()] class ParentMethods: @cached_method # todo: reinstate once #5843 is fixed def one_from_cartesian_product_of_one_basis(self): """ Returns the one of this cartesian product of algebras, as per ``Monoids.ParentMethods.one`` It is constructed as the cartesian product of the ones of the summands, using their :meth:`.one_basis` methods. This implementation does not require multiplication by scalars nor calling cartesian_product. This might help keeping things as lazy as possible upon initialization. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: A.one_basis() word: sage: B = cartesian_product((A, A, A)) sage: B.one_from_cartesian_product_of_one_basis() B[(0, word: )] + B[(1, word: )] + B[(2, word: )] sage: B.one() B[(0, word: )] + B[(1, word: )] + B[(2, word: )] sage: cartesian_product([SymmetricGroupAlgebra(QQ, 3), SymmetricGroupAlgebra(QQ, 4)]).one() B[(0, [1, 2, 3])] + B[(1, [1, 2, 3, 4])] """ return self.sum_of_monomials( zip( self._sets_keys(), (set.one_basis() for set in self._sets)) ) @lazy_attribute def one(self): """ TESTS:: sage: A = AlgebrasWithBasis(QQ).example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: B = cartesian_product((A, A, A)) sage: B.one() B[(0, word: )] + B[(1, word: )] + B[(2, word: )] """ if all(hasattr(module, "one_basis") for module in self._sets): return self.one_from_cartesian_product_of_one_basis else: return NotImplemented #def product_on_basis(self, t1, t2): # would be easy to implement, but without a special # version of module morphism, this would not take # advantage of the bloc structure class TensorProducts(TensorProductsCategory): """ The category of algebras with basis constructed by tensor product of algebras with basis """ @cached_method def extra_super_categories(self): """ EXAMPLES:: sage: AlgebrasWithBasis(QQ).TensorProducts().extra_super_categories() [Category of algebras with basis over Rational Field] sage: AlgebrasWithBasis(QQ).TensorProducts().super_categories() [Category of algebras with basis over Rational Field, Category of tensor products of algebras over Rational Field, Category of tensor products of modules with basis over Rational Field] """ return [self.base_category()] class ParentMethods: """ implements operations on tensor products of algebras with basis """ @cached_method def one_basis(self): """ Returns the index of the one of this tensor product of algebras, as per ``AlgebrasWithBasis.ParentMethods.one_basis`` It is the tuple whose operands are the indices of the ones of the operands, as returned by their :meth:`.one_basis` methods. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: A.one_basis() word: sage: B = tensor((A, A, A)) sage: B.one_basis() (word: , word: , word: ) sage: B.one() B[word: ] # B[word: ] # B[word: ] """ # FIXME: this method should be conditionaly defined, # so that B.one_basis returns NotImplemented if not # all modules provide one_basis if all(hasattr(module, "one_basis") for module in self._sets): return tuple(module.one_basis() for module in self._sets) else: raise NotImplementedError def product_on_basis(self, t1, t2): """ The product of the algebra on the basis, as per ``AlgebrasWithBasis.ParentMethods.product_on_basis``. EXAMPLES:: sage: A = AlgebrasWithBasis(QQ).example(); A An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field sage: (a,b,c) = A.algebra_generators() sage: x = tensor( (a, b, c) ); x B[word: a] # B[word: b] # B[word: c] sage: y = tensor( (c, b, a) ); y B[word: c] # B[word: b] # B[word: a] sage: x*y B[word: ac] # B[word: bb] # B[word: ca] sage: x = tensor( ((a+2*b), c) ) ; x B[word: a] # B[word: c] + 2*B[word: b] # B[word: c] sage: y = tensor( (c, a) ) + 1; y B[word: ] # B[word: ] + B[word: c] # B[word: a] sage: x*y B[word: a] # B[word: c] + B[word: ac] # B[word: ca] + 2*B[word: b] # B[word: c] + 2*B[word: bc] # B[word: ca] TODO: optimize this implementation! """ return tensor( (module.monomial(x1)*module.monomial(x2) for (module, x1, x2) in zip(self._sets, t1, t2)) ) #. class ElementMethods: """ Implements operations on elements of tensor products of algebras with basis """ pass
#!/usr/bin/env python import numpy from numpy import * import mpi import sys from time import sleep sys.argv = mpi.mpi_init(len(sys.argv),sys.argv) myid=mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) numprocs=mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) print "hello from python main1 myid= ",myid port_name=mpi.mpi_open_port(mpi.MPI_INFO_NULL); print "port=",port_name client=mpi.mpi_comm_accept(port_name,mpi.MPI_INFO_NULL,0,mpi.MPI_COMM_WORLD) back=mpi.mpi_recv(1,mpi.MPI_INT,0,5678,client) print "back=",back back[0]=back[0]+1 mpi.mpi_send(back,1,mpi.MPI_INT,0,1234,client) sleep(10) mpi.mpi_close_port(port_name); mpi.mpi_comm_disconnect(client); mpi.mpi_finalize()
import aiohttp import os from redbot.core import Config, commands, checks from redbot.core.utils.chat_formatting import box import xml.etree.ElementTree as ET class Wolfram(commands.Cog): """Ask Wolfram Alpha any question.""" def __init__(self, bot): self.bot = bot self.session = aiohttp.ClientSession() default_global = {"WOLFRAM_API_KEY": None} self.config = Config.get_conf(self, 2788801004) self.config.register_guild(**default_global) @commands.command(name="wolfram", aliases=["ask"]) async def _wolfram(self, ctx, *question: str): """Ask Wolfram Alpha any question.""" api_key = await self.config.WOLFRAM_API_KEY() if api_key: url = "http://api.wolframalpha.com/v2/query?" query = " ".join(question) payload = {"input": query, "appid": api_key} headers = {"user-agent": "Red-cog/2.0.0"} async with self.session.get(url, params=payload, headers=headers) as r: result = await r.text() root = ET.fromstring(result) a = [] for pt in root.findall(".//plaintext"): if pt.text: a.append(pt.text.capitalize()) if len(a) < 1: message = "There is as yet insufficient data for a meaningful answer." else: message = "\n".join(a[0:3]) else: message = "No API key set for Wolfram Alpha. Get one at http://products.wolframalpha.com/api/" await ctx.send(box(message)) @checks.is_owner() @commands.command(name="setwolframapi", aliases=["setwolfram"]) async def _setwolframapi(self, ctx, key: str): """Set the api-key.""" if key: await self.config.WOLFRAM_API_KEY.set(key) await ctx.send("Key set.") def cog_unload(self): self.bot.loop.create_task(self.session.close())
AMR_HEADERS = ['ORF_ID', 'Start', 'Stop', 'Orientation', 'Best_Identities', 'Best_Hit_ARO'] ARGS_DICT={'disable_serotype':False,'disable_vf':False,'pi':90, 'options':{'vf': True, 'amr': True, 'serotype': True}} set_spfyids_o157 = set([u'https://www.github.com/superphy#spfy3418', u'https://www.github.com/superphy#spfy3419', u'https://www.github.com/superphy#spfy3412', u'https://www.github.com/superphy#spfy3413', u'https://www.github.com/superphy#spfy3414', u'https://www.github.com/superphy#spfy3415', u'https://www.github.com/superphy#spfy3416', u'https://www.github.com/superphy#spfy3417', u'https://www.github.com/superphy#spfy597', u'https://www.github.com/superphy#spfy596', u'https://www.github.com/superphy#spfy595', u'https://www.github.com/superphy#spfy594', u'https://www.github.com/superphy#spfy593', u'https://www.github.com/superphy#spfy592', u'https://www.github.com/superphy#spfy591', u'https://www.github.com/superphy#spfy590', u'https://www.github.com/superphy#spfy599', u'https://www.github.com/superphy#spfy598', u'https://www.github.com/superphy#spfy93', u'https://www.github.com/superphy#spfy92', u'https://www.github.com/superphy#spfy91', u'https://www.github.com/superphy#spfy90', u'https://www.github.com/superphy#spfy94', u'https://www.github.com/superphy#spfy4709', u'https://www.github.com/superphy#spfy1825', u'https://www.github.com/superphy#spfy1822', u'https://www.github.com/superphy#spfy1820', u'https://www.github.com/superphy#spfy1829', u'https://www.github.com/superphy#spfy5254', u'https://www.github.com/superphy#spfy1458', u'https://www.github.com/superphy#spfy1459', u'https://www.github.com/superphy#spfy2290', u'https://www.github.com/superphy#spfy1452', u'https://www.github.com/superphy#spfy1453', u'https://www.github.com/superphy#spfy1450', u'https://www.github.com/superphy#spfy1451', u'https://www.github.com/superphy#spfy1456', u'https://www.github.com/superphy#spfy1457', u'https://www.github.com/superphy#spfy1454', u'https://www.github.com/superphy#spfy1455', u'https://www.github.com/superphy#spfy1751', u'https://www.github.com/superphy#spfy1753', u'https://www.github.com/superphy#spfy1752', u'https://www.github.com/superphy#spfy1755', u'https://www.github.com/superphy#spfy1754', u'https://www.github.com/superphy#spfy1757', u'https://www.github.com/superphy#spfy1756', u'https://www.github.com/superphy#spfy1697', u'https://www.github.com/superphy#spfy2324', u'https://www.github.com/superphy#spfy4439', u'https://www.github.com/superphy#spfy4438', u'https://www.github.com/superphy#spfy4598', u'https://www.github.com/superphy#spfy3959', u'https://www.github.com/superphy#spfy4599', u'https://www.github.com/superphy#spfy3814', u'https://www.github.com/superphy#spfy1443', u'https://www.github.com/superphy#spfy5248', u'https://www.github.com/superphy#spfy2958', u'https://www.github.com/superphy#spfy4644', u'https://www.github.com/superphy#spfy4645', u'https://www.github.com/superphy#spfy4646', u'https://www.github.com/superphy#spfy4647', u'https://www.github.com/superphy#spfy4640', u'https://www.github.com/superphy#spfy4641', u'https://www.github.com/superphy#spfy4642', u'https://www.github.com/superphy#spfy4643', u'https://www.github.com/superphy#spfy244', u'https://www.github.com/superphy#spfy4648', u'https://www.github.com/superphy#spfy4649', u'https://www.github.com/superphy#spfy2355', u'https://www.github.com/superphy#spfy5253', u'https://www.github.com/superphy#spfy148', u'https://www.github.com/superphy#spfy149', u'https://www.github.com/superphy#spfy1133', u'https://www.github.com/superphy#spfy4310', u'https://www.github.com/superphy#spfy4851', u'https://www.github.com/superphy#spfy4850', u'https://www.github.com/superphy#spfy4853', u'https://www.github.com/superphy#spfy4852', u'https://www.github.com/superphy#spfy1783', u'https://www.github.com/superphy#spfy1780', u'https://www.github.com/superphy#spfy1785', u'https://www.github.com/superphy#spfy2776', u'https://www.github.com/superphy#spfy3622', u'https://www.github.com/superphy#spfy3621', u'https://www.github.com/superphy#spfy3620', u'https://www.github.com/superphy#spfy1719', u'https://www.github.com/superphy#spfy1715', u'https://www.github.com/superphy#spfy1714', u'https://www.github.com/superphy#spfy1716', u'https://www.github.com/superphy#spfy1711', u'https://www.github.com/superphy#spfy1712', u'https://www.github.com/superphy#spfy1917', u'https://www.github.com/superphy#spfy1913', u'https://www.github.com/superphy#spfy1858', u'https://www.github.com/superphy#spfy1859', u'https://www.github.com/superphy#spfy1856', u'https://www.github.com/superphy#spfy1857', u'https://www.github.com/superphy#spfy1854', u'https://www.github.com/superphy#spfy1855', u'https://www.github.com/superphy#spfy1852', u'https://www.github.com/superphy#spfy1853', u'https://www.github.com/superphy#spfy1851', u'https://www.github.com/superphy#spfy2913', u'https://www.github.com/superphy#spfy2916', u'https://www.github.com/superphy#spfy2918', u'https://www.github.com/superphy#spfy1769', u'https://www.github.com/superphy#spfy1767', u'https://www.github.com/superphy#spfy2253', u'https://www.github.com/superphy#spfy4446', u'https://www.github.com/superphy#spfy365', u'https://www.github.com/superphy#spfy366', u'https://www.github.com/superphy#spfy4445', u'https://www.github.com/superphy#spfy360', u'https://www.github.com/superphy#spfy361', u'https://www.github.com/superphy#spfy362', u'https://www.github.com/superphy#spfy363', u'https://www.github.com/superphy#spfy4708', u'https://www.github.com/superphy#spfy218', u'https://www.github.com/superphy#spfy2863', u'https://www.github.com/superphy#spfy4688', u'https://www.github.com/superphy#spfy4689', u'https://www.github.com/superphy#spfy5273', u'https://www.github.com/superphy#spfy5280', u'https://www.github.com/superphy#spfy108', u'https://www.github.com/superphy#spfy109', u'https://www.github.com/superphy#spfy103', u'https://www.github.com/superphy#spfy4616', u'https://www.github.com/superphy#spfy106', u'https://www.github.com/superphy#spfy107', u'https://www.github.com/superphy#spfy2225', u'https://www.github.com/superphy#spfy3409', u'https://www.github.com/superphy#spfy1060', u'https://www.github.com/superphy#spfy587', u'https://www.github.com/superphy#spfy588', u'https://www.github.com/superphy#spfy426', u'https://www.github.com/superphy#spfy4868', u'https://www.github.com/superphy#spfy3035', u'https://www.github.com/superphy#spfy4865', u'https://www.github.com/superphy#spfy4867', u'https://www.github.com/superphy#spfy4862', u'https://www.github.com/superphy#spfy4863', u'https://www.github.com/superphy#spfy3668', u'https://www.github.com/superphy#spfy3663', u'https://www.github.com/superphy#spfy3662', u'https://www.github.com/superphy#spfy3661', u'https://www.github.com/superphy#spfy3660', u'https://www.github.com/superphy#spfy5245', u'https://www.github.com/superphy#spfy1449', u'https://www.github.com/superphy#spfy1448', u'https://www.github.com/superphy#spfy1445', u'https://www.github.com/superphy#spfy1444', u'https://www.github.com/superphy#spfy1447', u'https://www.github.com/superphy#spfy1446', u'https://www.github.com/superphy#spfy1441', u'https://www.github.com/superphy#spfy4088', u'https://www.github.com/superphy#spfy1442', u'https://www.github.com/superphy#spfy1725', u'https://www.github.com/superphy#spfy1727', u'https://www.github.com/superphy#spfy1720', u'https://www.github.com/superphy#spfy4653', u'https://www.github.com/superphy#spfy1728', u'https://www.github.com/superphy#spfy1684', u'https://www.github.com/superphy#spfy4718', u'https://www.github.com/superphy#spfy4719', u'https://www.github.com/superphy#spfy1968', u'https://www.github.com/superphy#spfy4717', u'https://www.github.com/superphy#spfy1967', u'https://www.github.com/superphy#spfy2949', u'https://www.github.com/superphy#spfy43', u'https://www.github.com/superphy#spfy2940', u'https://www.github.com/superphy#spfy4713', u'https://www.github.com/superphy#spfy1438', u'https://www.github.com/superphy#spfy1439', u'https://www.github.com/superphy#spfy1430', u'https://www.github.com/superphy#spfy1431', u'https://www.github.com/superphy#spfy1432', u'https://www.github.com/superphy#spfy1433', u'https://www.github.com/superphy#spfy1434', u'https://www.github.com/superphy#spfy1435', u'https://www.github.com/superphy#spfy1436', u'https://www.github.com/superphy#spfy1437', u'https://www.github.com/superphy#spfy4657', u'https://www.github.com/superphy#spfy4656', u'https://www.github.com/superphy#spfy4655', u'https://www.github.com/superphy#spfy4654', u'https://www.github.com/superphy#spfy258', u'https://www.github.com/superphy#spfy259', u'https://www.github.com/superphy#spfy4651', u'https://www.github.com/superphy#spfy4650', u'https://www.github.com/superphy#spfy4716', u'https://www.github.com/superphy#spfy255', u'https://www.github.com/superphy#spfy4714', u'https://www.github.com/superphy#spfy257', u'https://www.github.com/superphy#spfy4712', u'https://www.github.com/superphy#spfy2261', u'https://www.github.com/superphy#spfy4710', u'https://www.github.com/superphy#spfy4711', u'https://www.github.com/superphy#spfy5308', u'https://www.github.com/superphy#spfy5258', u'https://www.github.com/superphy#spfy5259', u'https://www.github.com/superphy#spfy1698', u'https://www.github.com/superphy#spfy4652', u'https://www.github.com/superphy#spfy4447', u'https://www.github.com/superphy#spfy4444', u'https://www.github.com/superphy#spfy4442', u'https://www.github.com/superphy#spfy1097', u'https://www.github.com/superphy#spfy4443', u'https://www.github.com/superphy#spfy4440', u'https://www.github.com/superphy#spfy4441', u'https://www.github.com/superphy#spfy476', u'https://www.github.com/superphy#spfy478', u'https://www.github.com/superphy#spfy3612', u'https://www.github.com/superphy#spfy2710', u'https://www.github.com/superphy#spfy3619', u'https://www.github.com/superphy#spfy4285', u'https://www.github.com/superphy#spfy1841', u'https://www.github.com/superphy#spfy1840', u'https://www.github.com/superphy#spfy1843', u'https://www.github.com/superphy#spfy1842', u'https://www.github.com/superphy#spfy1845', u'https://www.github.com/superphy#spfy1844', u'https://www.github.com/superphy#spfy1847', u'https://www.github.com/superphy#spfy600', u'https://www.github.com/superphy#spfy1849', u'https://www.github.com/superphy#spfy1848', u'https://www.github.com/superphy#spfy609', u'https://www.github.com/superphy#spfy608', u'https://www.github.com/superphy#spfy2900', u'https://www.github.com/superphy#spfy5234', u'https://www.github.com/superphy#spfy1576', u'https://www.github.com/superphy#spfy5231', u'https://www.github.com/superphy#spfy1779', u'https://www.github.com/superphy#spfy1778', u'https://www.github.com/superphy#spfy1470', u'https://www.github.com/superphy#spfy1471', u'https://www.github.com/superphy#spfy1773', u'https://www.github.com/superphy#spfy1772', u'https://www.github.com/superphy#spfy1771', u'https://www.github.com/superphy#spfy1770', u'https://www.github.com/superphy#spfy1776', u'https://www.github.com/superphy#spfy1775', u'https://www.github.com/superphy#spfy1774', u'https://www.github.com/superphy#spfy359', u'https://www.github.com/superphy#spfy358', u'https://www.github.com/superphy#spfy357', u'https://www.github.com/superphy#spfy170', u'https://www.github.com/superphy#spfy2872', u'https://www.github.com/superphy#spfy2972', u'https://www.github.com/superphy#spfy4690', u'https://www.github.com/superphy#spfy4020', u'https://www.github.com/superphy#spfy2884', u'https://www.github.com/superphy#spfy2886', u'https://www.github.com/superphy#spfy500', u'https://www.github.com/superphy#spfy4623', u'https://www.github.com/superphy#spfy502', u'https://www.github.com/superphy#spfy503', u'https://www.github.com/superphy#spfy3481', u'https://www.github.com/superphy#spfy2988', u'https://www.github.com/superphy#spfy2289', u'https://www.github.com/superphy#spfy2286', u'https://www.github.com/superphy#spfy2283', u'https://www.github.com/superphy#spfy1058', u'https://www.github.com/superphy#spfy137', u'https://www.github.com/superphy#spfy4715', u'https://www.github.com/superphy#spfy4236', u'https://www.github.com/superphy#spfy2053', u'https://www.github.com/superphy#spfy5265', u'https://www.github.com/superphy#spfy1891', u'https://www.github.com/superphy#spfy1896', u'https://www.github.com/superphy#spfy1895', u'https://www.github.com/superphy#spfy1898', u'https://www.github.com/superphy#spfy1899', u'https://www.github.com/superphy#spfy5266', u'https://www.github.com/superphy#spfy1808', u'https://www.github.com/superphy#spfy3022', u'https://www.github.com/superphy#spfy5261', u'https://www.github.com/superphy#spfy3656', u'https://www.github.com/superphy#spfy3657', u'https://www.github.com/superphy#spfy3015', u'https://www.github.com/superphy#spfy3658', u'https://www.github.com/superphy#spfy3659', u'https://www.github.com/superphy#spfy3016', u'https://www.github.com/superphy#spfy336', u'https://www.github.com/superphy#spfy3727', u'https://www.github.com/superphy#spfy3728', u'https://www.github.com/superphy#spfy3729', u'https://www.github.com/superphy#spfy1730', u'https://www.github.com/superphy#spfy1879', u'https://www.github.com/superphy#spfy5278', u'https://www.github.com/superphy#spfy5279', u'https://www.github.com/superphy#spfy1870', u'https://www.github.com/superphy#spfy610', u'https://www.github.com/superphy#spfy1872', u'https://www.github.com/superphy#spfy1873', u'https://www.github.com/superphy#spfy1874', u'https://www.github.com/superphy#spfy1875', u'https://www.github.com/superphy#spfy1877', u'https://www.github.com/superphy#spfy1429', u'https://www.github.com/superphy#spfy1428', u'https://www.github.com/superphy#spfy1423', u'https://www.github.com/superphy#spfy1427', u'https://www.github.com/superphy#spfy1426', u'https://www.github.com/superphy#spfy1425', u'https://www.github.com/superphy#spfy1424', u'https://www.github.com/superphy#spfy4705', u'https://www.github.com/superphy#spfy4704', u'https://www.github.com/superphy#spfy4707', u'https://www.github.com/superphy#spfy261', u'https://www.github.com/superphy#spfy618', u'https://www.github.com/superphy#spfy263', u'https://www.github.com/superphy#spfy262', u'https://www.github.com/superphy#spfy265', u'https://www.github.com/superphy#spfy264', u'https://www.github.com/superphy#spfy267', u'https://www.github.com/superphy#spfy266', u'https://www.github.com/superphy#spfy260', u'https://www.github.com/superphy#spfy4720', u'https://www.github.com/superphy#spfy540', u'https://www.github.com/superphy#spfy2842', u'https://www.github.com/superphy#spfy168', u'https://www.github.com/superphy#spfy169', u'https://www.github.com/superphy#spfy167', u'https://www.github.com/superphy#spfy4972', u'https://www.github.com/superphy#spfy2158', u'https://www.github.com/superphy#spfy4107', u'https://www.github.com/superphy#spfy1647', u'https://www.github.com/superphy#spfy1748', u'https://www.github.com/superphy#spfy1749', u'https://www.github.com/superphy#spfy88', u'https://www.github.com/superphy#spfy89', u'https://www.github.com/superphy#spfy85', u'https://www.github.com/superphy#spfy86', u'https://www.github.com/superphy#spfy87', u'https://www.github.com/superphy#spfy1834', u'https://www.github.com/superphy#spfy1835', u'https://www.github.com/superphy#spfy1830', u'https://www.github.com/superphy#spfy1831', u'https://www.github.com/superphy#spfy1832', u'https://www.github.com/superphy#spfy1838', u'https://www.github.com/superphy#spfy3606', u'https://www.github.com/superphy#spfy2640', u'https://www.github.com/superphy#spfy1467', u'https://www.github.com/superphy#spfy1466', u'https://www.github.com/superphy#spfy1465', u'https://www.github.com/superphy#spfy1464', u'https://www.github.com/superphy#spfy1463', u'https://www.github.com/superphy#spfy1462', u'https://www.github.com/superphy#spfy1461', u'https://www.github.com/superphy#spfy1460', u'https://www.github.com/superphy#spfy1746', u'https://www.github.com/superphy#spfy1469', u'https://www.github.com/superphy#spfy1468', u'https://www.github.com/superphy#spfy4583', u'https://www.github.com/superphy#spfy4581', u'https://www.github.com/superphy#spfy15', u'https://www.github.com/superphy#spfy18', u'https://www.github.com/superphy#spfy340', u'https://www.github.com/superphy#spfy2964', u'https://www.github.com/superphy#spfy1513', u'https://www.github.com/superphy#spfy1512', u'https://www.github.com/superphy#spfy2969', u'https://www.github.com/superphy#spfy1516', u'https://www.github.com/superphy#spfy4639', u'https://www.github.com/superphy#spfy3421', u'https://www.github.com/superphy#spfy3420', u'https://www.github.com/superphy#spfy3423', u'https://www.github.com/superphy#spfy3422', u'https://www.github.com/superphy#spfy3425', u'https://www.github.com/superphy#spfy3424', u'https://www.github.com/superphy#spfy3427', u'https://www.github.com/superphy#spfy3426', u'https://www.github.com/superphy#spfy3428', u'https://www.github.com/superphy#spfy120', u'https://www.github.com/superphy#spfy121', u'https://www.github.com/superphy#spfy401', u'https://www.github.com/superphy#spfy150', u'https://www.github.com/superphy#spfy427', u'https://www.github.com/superphy#spfy589', u'https://www.github.com/superphy#spfy1123', u'https://www.github.com/superphy#spfy2747', u'https://www.github.com/superphy#spfy1887', u'https://www.github.com/superphy#spfy1886', u'https://www.github.com/superphy#spfy5033', u'https://www.github.com/superphy#spfy4846', u'https://www.github.com/superphy#spfy4847', u'https://www.github.com/superphy#spfy4845', u'https://www.github.com/superphy#spfy4848', u'https://www.github.com/superphy#spfy4849', u'https://www.github.com/superphy#spfy3649', u'https://www.github.com/superphy#spfy1709', u'https://www.github.com/superphy#spfy971', u'https://www.github.com/superphy#spfy1703', u'https://www.github.com/superphy#spfy4998', u'https://www.github.com/superphy#spfy974', u'https://www.github.com/superphy#spfy1871', u'https://www.github.com/superphy#spfy5271', u'https://www.github.com/superphy#spfy1869', u'https://www.github.com/superphy#spfy1868', u'https://www.github.com/superphy#spfy1900', u'https://www.github.com/superphy#spfy1863', u'https://www.github.com/superphy#spfy1862', u'https://www.github.com/superphy#spfy1861', u'https://www.github.com/superphy#spfy1860', u'https://www.github.com/superphy#spfy1867', u'https://www.github.com/superphy#spfy5260', u'https://www.github.com/superphy#spfy1864', u'https://www.github.com/superphy#spfy4788', u'https://www.github.com/superphy#spfy4758', u'https://www.github.com/superphy#spfy2928', u'https://www.github.com/superphy#spfy4785', u'https://www.github.com/superphy#spfy2690', u'https://www.github.com/superphy#spfy4787', u'https://www.github.com/superphy#spfy2692', u'https://www.github.com/superphy#spfy607', u'https://www.github.com/superphy#spfy606', u'https://www.github.com/superphy#spfy605', u'https://www.github.com/superphy#spfy5264', u'https://www.github.com/superphy#spfy604', u'https://www.github.com/superphy#spfy603', u'https://www.github.com/superphy#spfy602', u'https://www.github.com/superphy#spfy601', u'https://www.github.com/superphy#spfy2853', u'https://www.github.com/superphy#spfy2851', u'https://www.github.com/superphy#spfy2856', u'https://www.github.com/superphy#spfy2855', u'https://www.github.com/superphy#spfy575', u'https://www.github.com/superphy#spfy4674', u'https://www.github.com/superphy#spfy278', u'https://www.github.com/superphy#spfy279', u'https://www.github.com/superphy#spfy119', u'https://www.github.com/superphy#spfy4600', u'https://www.github.com/superphy#spfy111', u'https://www.github.com/superphy#spfy110', u'https://www.github.com/superphy#spfy282', u'https://www.github.com/superphy#spfy281', u'https://www.github.com/superphy#spfy280']) BEAUTIFY_VF_SEROTYPE = [ { "analysis": "Serotype", "contigid": "n/a", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": "n/a", "hitname": "O16:H48", "hitorientation": "n/a", "hitstart": "n/a", "hitstop": "n/a" }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "EC958", "hitorientation": "+", "hitstart": 2073473, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 306807, "hitstop": 309332 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 309358, "hitstop": 310075 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 310084, "hitstop": 310700 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 310746, "hitstop": 311336 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECS88", "hitorientation": "-", "hitstart": 3308040, "hitstop": 3308924 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z1307", "hitorientation": "-", "hitstart": 1019013, "hitstop": 1020053 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2203", "hitorientation": "-", "hitstart": 1588853, "hitstop": 1590079 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2204", "hitorientation": "-", "hitstart": 1588309, "hitstop": 1588839 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2205", "hitorientation": "-", "hitstart": 1587793, "hitstop": 1588296 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2206", "hitorientation": "-", "hitstart": 1586820, "hitstop": 1587734 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "agn43", "hitorientation": "+", "hitstart": 2071539, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "artj", "hitorientation": "-", "hitstart": 899844, "hitstop": 900575 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "aslA", "hitorientation": "-", "hitstart": 3984579, "hitstop": 3986007 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "b2972", "hitorientation": "-", "hitstart": 3113543, "hitstop": 3114352 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cadA", "hitorientation": "-", "hitstart": 4356481, "hitstop": 4358656 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cah", "hitorientation": "+", "hitstart": 2073486, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheA", "hitorientation": "-", "hitstart": 1973360, "hitstop": 1975324 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheB", "hitorientation": "-", "hitstart": 1967452, "hitstop": 1968501 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheR", "hitorientation": "-", "hitstart": 1968504, "hitstop": 1969364 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheW", "hitorientation": "-", "hitstart": 1972836, "hitstop": 1973339 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheZ", "hitorientation": "-", "hitstart": 1966393, "hitstop": 1967037 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cs3", "hitorientation": "-", "hitstart": 2994460, "hitstop": 2995092 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "csgD", "hitorientation": "-", "hitstart": 1102546, "hitstop": 1103196 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "csgG", "hitorientation": "-", "hitstart": 1100851, "hitstop": 1101684 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "eae", "hitorientation": "+", "hitstart": 314420, "hitstop": 315232 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpA", "hitorientation": "-", "hitstart": 310084, "hitstop": 310671 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpB", "hitorientation": "-", "hitstart": 309358, "hitstop": 310026 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpC", "hitorientation": "-", "hitstart": 306807, "hitstop": 309332 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpD", "hitorientation": "-", "hitstart": 305174, "hitstop": 306817 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpE", "hitorientation": "-", "hitstart": 304497, "hitstop": 305250 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpR", "hitorientation": "-", "hitstart": 310746, "hitstop": 311336 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ehaB", "hitorientation": "+", "hitstart": 392973, "hitstop": 394418 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entA", "hitorientation": "+", "hitstart": 628551, "hitstop": 629297 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entB", "hitorientation": "+", "hitstart": 627694, "hitstop": 628551 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entC", "hitorientation": "+", "hitstart": 624873, "hitstop": 626060 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entD", "hitorientation": "-", "hitstart": 609459, "hitstop": 610229 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entE", "hitorientation": "+", "hitstart": 626070, "hitstop": 627680 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entF", "hitorientation": "+", "hitstart": 614157, "hitstop": 617980 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entS", "hitorientation": "+", "hitstart": 622300, "hitstop": 623550 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL1", "hitorientation": "+", "hitstart": 1803439, "hitstop": 1804993 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL3", "hitorientation": "-", "hitstart": 3861987, "hitstop": 3863864 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL4", "hitorientation": "-", "hitstart": 4221348, "hitstop": 4222487 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espR1", "hitorientation": "-", "hitstart": 1544385, "hitstop": 1545447 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espX4", "hitorientation": "+", "hitstart": 4250703, "hitstop": 4252283 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espX5", "hitorientation": "-", "hitstart": 4281783, "hitstop": 4283075 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espY1", "hitorientation": "+", "hitstart": 58474, "hitstop": 59103 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fdeC", "hitorientation": "+", "hitstart": 314357, "hitstop": 315232 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepA", "hitorientation": "-", "hitstart": 610254, "hitstop": 612494 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepB", "hitorientation": "-", "hitstart": 623554, "hitstop": 624510 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepC", "hitorientation": "-", "hitstart": 619384, "hitstop": 620199 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepD", "hitorientation": "-", "hitstart": 621185, "hitstop": 622201 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepE", "hitorientation": "+", "hitstart": 618254, "hitstop": 619387 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepG", "hitorientation": "-", "hitstart": 620196, "hitstop": 621188 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fes", "hitorientation": "+", "hitstart": 612737, "hitstop": 613939 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimA", "hitorientation": "+", "hitstart": 4543115, "hitstop": 4543663 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimB", "hitorientation": "+", "hitstart": 4540957, "hitstop": 4541559 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimC", "hitorientation": "+", "hitstart": 4544355, "hitstop": 4545029 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimD", "hitorientation": "-", "hitstart": 1588853, "hitstop": 1590079 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimD", "hitorientation": "+", "hitstart": 4545096, "hitstop": 4547732 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimE", "hitorientation": "+", "hitstart": 4542037, "hitstop": 4542633 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimF", "hitorientation": "-", "hitstart": 1588309, "hitstop": 1588839 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimF", "hitorientation": "+", "hitstart": 4547742, "hitstop": 4548272 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimG", "hitorientation": "-", "hitstart": 1587793, "hitstop": 1588296 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimG", "hitorientation": "+", "hitstart": 4548285, "hitstop": 4548788 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimH", "hitorientation": "+", "hitstart": 4548808, "hitstop": 4549710 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimI", "hitorientation": "+", "hitstart": 4543620, "hitstop": 4544267 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgA", "hitorientation": "-", "hitstart": 1130204, "hitstop": 1130863 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgD", "hitorientation": "+", "hitstart": 1131854, "hitstop": 1132549 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgE", "hitorientation": "+", "hitstart": 1132574, "hitstop": 1133782 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgF", "hitorientation": "+", "hitstart": 1133802, "hitstop": 1134557 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgG", "hitorientation": "+", "hitstart": 1134729, "hitstop": 1135511 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgH", "hitorientation": "+", "hitstart": 1135564, "hitstop": 1136262 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgI", "hitorientation": "+", "hitstart": 1136274, "hitstop": 1137371 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgJ", "hitorientation": "+", "hitstart": 1137371, "hitstop": 1138312 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgK", "hitorientation": "+", "hitstart": 1138378, "hitstop": 1140021 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgL", "hitorientation": "+", "hitstart": 1140033, "hitstop": 1140986 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhA", "hitorientation": "-", "hitstart": 1962974, "hitstop": 1965050 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhB", "hitorientation": "-", "hitstart": 1965043, "hitstop": 1966191 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhC", "hitorientation": "-", "hitstart": 1977266, "hitstop": 1977844 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliA", "hitorientation": "-", "hitstart": 2001070, "hitstop": 2001789 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliD", "hitorientation": "+", "hitstart": 2003872, "hitstop": 2005278 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliF", "hitorientation": "+", "hitstart": 2013229, "hitstop": 2014887 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliG", "hitorientation": "+", "hitstart": 2014880, "hitstop": 2015875 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliH", "hitorientation": "+", "hitstart": 2015868, "hitstop": 2016554 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliI", "hitorientation": "+", "hitstart": 2016554, "hitstop": 2017927 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliK", "hitorientation": "+", "hitstart": 2018386, "hitstop": 2019513 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliM", "hitorientation": "+", "hitstart": 2020087, "hitstop": 2021091 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliP", "hitorientation": "+", "hitstart": 2021869, "hitstop": 2022606 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliR", "hitorientation": "+", "hitstart": 2022893, "hitstop": 2023678 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliY", "hitorientation": "-", "hitstart": 1999585, "hitstop": 2000385 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliZ", "hitorientation": "-", "hitstart": 2000473, "hitstop": 2001060 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flk", "hitorientation": "+", "hitstart": 2437950, "hitstop": 2438945 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gadX", "hitorientation": "-", "hitstart": 3664986, "hitstop": 3665618 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspC", "hitorientation": "-", "hitstart": 3112091, "hitstop": 3113049 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspL", "hitorientation": "-", "hitstart": 3111128, "hitstop": 3112092 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspo", "hitorientation": "+", "hitstart": 3465543, "hitstop": 3466220 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hcp", "hitorientation": "-", "hitstart": 115714, "hitstop": 117099 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hlye", "hitorientation": "-", "hitstart": 1229483, "hitstop": 1230538 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hofq", "hitorientation": "-", "hitstart": 3519465, "hitstop": 3520703 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ibeB", "hitorientation": "+", "hitstart": 595600, "hitstop": 596981 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ibeC", "hitorientation": "-", "hitstart": 4148532, "hitstop": 4150309 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "motA", "hitorientation": "-", "hitstart": 1976252, "hitstop": 1977139 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "motB", "hitorientation": "-", "hitstart": 1975329, "hitstop": 1976255 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "nada", "hitorientation": "+", "hitstart": 782085, "hitstop": 783128 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "nadb", "hitorientation": "+", "hitstart": 2710420, "hitstop": 2712042 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ompA", "hitorientation": "-", "hitstart": 1019013, "hitstop": 1020053 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ompt", "hitorientation": "-", "hitstart": 584680, "hitstop": 585633 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ppdb", "hitorientation": "-", "hitstart": 2963153, "hitstop": 2963716 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "tar/cheM", "hitorientation": "-", "hitstart": 1971030, "hitstop": 1972691 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "upaC", "hitorientation": "+", "hitstart": 392973, "hitstop": 394418 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbF", "hitorientation": "+", "hitstart": 1003920, "hitstop": 1004657 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbQ", "hitorientation": "+", "hitstart": 997859, "hitstop": 998407 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbR", "hitorientation": "+", "hitstart": 998490, "hitstop": 999191 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbS", "hitorientation": "+", "hitstart": 999216, "hitstop": 1001816 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbT", "hitorientation": "+", "hitstart": 1001807, "hitstop": 1002784 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbV", "hitorientation": "+", "hitstart": 1003391, "hitstop": 1003954 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycfz", "hitorientation": "-", "hitstart": 1180479, "hitstop": 1181267 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ygeH", "hitorientation": "+", "hitstart": 2992094, "hitstop": 2993470 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "yggr", "hitorientation": "-", "hitstart": 3094100, "hitstop": 3095080 } ] BEAUTIFY_SEROTYPE = [ { "analysis": "Serotype", "contigid": "n/a", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": "n/a", "hitname": "O16:H48", "hitorientation": "n/a", "hitstart": "n/a", "hitstop": "n/a" } ] BEAUTIFY_VF = [ { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "EC958", "hitorientation": "+", "hitstart": 2073473, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 306807, "hitstop": 309332 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 309358, "hitstop": 310075 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 310084, "hitstop": 310700 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECP", "hitorientation": "-", "hitstart": 310746, "hitstop": 311336 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ECS88", "hitorientation": "-", "hitstart": 3308040, "hitstop": 3308924 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z1307", "hitorientation": "-", "hitstart": 1019013, "hitstop": 1020053 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2203", "hitorientation": "-", "hitstart": 1588853, "hitstop": 1590079 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2204", "hitorientation": "-", "hitstart": 1588309, "hitstop": 1588839 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2205", "hitorientation": "-", "hitstart": 1587793, "hitstop": 1588296 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "Z2206", "hitorientation": "-", "hitstart": 1586820, "hitstop": 1587734 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "agn43", "hitorientation": "+", "hitstart": 2071539, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "artj", "hitorientation": "-", "hitstart": 899844, "hitstop": 900575 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "aslA", "hitorientation": "-", "hitstart": 3984579, "hitstop": 3986007 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "b2972", "hitorientation": "-", "hitstart": 3113543, "hitstop": 3114352 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cadA", "hitorientation": "-", "hitstart": 4356481, "hitstop": 4358656 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cah", "hitorientation": "+", "hitstart": 2073486, "hitstop": 2074658 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheA", "hitorientation": "-", "hitstart": 1973360, "hitstop": 1975324 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheB", "hitorientation": "-", "hitstart": 1967452, "hitstop": 1968501 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheR", "hitorientation": "-", "hitstart": 1968504, "hitstop": 1969364 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheW", "hitorientation": "-", "hitstart": 1972836, "hitstop": 1973339 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cheZ", "hitorientation": "-", "hitstart": 1966393, "hitstop": 1967037 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "cs3", "hitorientation": "-", "hitstart": 2994460, "hitstop": 2995092 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "csgD", "hitorientation": "-", "hitstart": 1102546, "hitstop": 1103196 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "csgG", "hitorientation": "-", "hitstart": 1100851, "hitstop": 1101684 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "eae", "hitorientation": "+", "hitstart": 314420, "hitstop": 315232 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpA", "hitorientation": "-", "hitstart": 310084, "hitstop": 310671 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpB", "hitorientation": "-", "hitstart": 309358, "hitstop": 310026 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpC", "hitorientation": "-", "hitstart": 306807, "hitstop": 309332 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpD", "hitorientation": "-", "hitstart": 305174, "hitstop": 306817 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpE", "hitorientation": "-", "hitstart": 304497, "hitstop": 305250 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ecpR", "hitorientation": "-", "hitstart": 310746, "hitstop": 311336 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ehaB", "hitorientation": "+", "hitstart": 392973, "hitstop": 394418 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entA", "hitorientation": "+", "hitstart": 628551, "hitstop": 629297 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entB", "hitorientation": "+", "hitstart": 627694, "hitstop": 628551 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entC", "hitorientation": "+", "hitstart": 624873, "hitstop": 626060 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entD", "hitorientation": "-", "hitstart": 609459, "hitstop": 610229 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entE", "hitorientation": "+", "hitstart": 626070, "hitstop": 627680 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entF", "hitorientation": "+", "hitstart": 614157, "hitstop": 617980 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "entS", "hitorientation": "+", "hitstart": 622300, "hitstop": 623550 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL1", "hitorientation": "+", "hitstart": 1803439, "hitstop": 1804993 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL3", "hitorientation": "-", "hitstart": 3861987, "hitstop": 3863864 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espL4", "hitorientation": "-", "hitstart": 4221348, "hitstop": 4222487 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espR1", "hitorientation": "-", "hitstart": 1544385, "hitstop": 1545447 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espX4", "hitorientation": "+", "hitstart": 4250703, "hitstop": 4252283 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espX5", "hitorientation": "-", "hitstart": 4281783, "hitstop": 4283075 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "espY1", "hitorientation": "+", "hitstart": 58474, "hitstop": 59103 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fdeC", "hitorientation": "+", "hitstart": 314357, "hitstop": 315232 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepA", "hitorientation": "-", "hitstart": 610254, "hitstop": 612494 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepB", "hitorientation": "-", "hitstart": 623554, "hitstop": 624510 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepC", "hitorientation": "-", "hitstart": 619384, "hitstop": 620199 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepD", "hitorientation": "-", "hitstart": 621185, "hitstop": 622201 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepE", "hitorientation": "+", "hitstart": 618254, "hitstop": 619387 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fepG", "hitorientation": "-", "hitstart": 620196, "hitstop": 621188 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fes", "hitorientation": "+", "hitstart": 612737, "hitstop": 613939 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimA", "hitorientation": "+", "hitstart": 4543115, "hitstop": 4543663 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimB", "hitorientation": "+", "hitstart": 4540957, "hitstop": 4541559 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimC", "hitorientation": "+", "hitstart": 4544355, "hitstop": 4545029 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimD", "hitorientation": "-", "hitstart": 1588853, "hitstop": 1590079 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimD", "hitorientation": "+", "hitstart": 4545096, "hitstop": 4547732 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimE", "hitorientation": "+", "hitstart": 4542037, "hitstop": 4542633 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimF", "hitorientation": "-", "hitstart": 1588309, "hitstop": 1588839 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimF", "hitorientation": "+", "hitstart": 4547742, "hitstop": 4548272 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimG", "hitorientation": "-", "hitstart": 1587793, "hitstop": 1588296 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimG", "hitorientation": "+", "hitstart": 4548285, "hitstop": 4548788 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimH", "hitorientation": "+", "hitstart": 4548808, "hitstop": 4549710 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fimI", "hitorientation": "+", "hitstart": 4543620, "hitstop": 4544267 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgA", "hitorientation": "-", "hitstart": 1130204, "hitstop": 1130863 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgD", "hitorientation": "+", "hitstart": 1131854, "hitstop": 1132549 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgE", "hitorientation": "+", "hitstart": 1132574, "hitstop": 1133782 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgF", "hitorientation": "+", "hitstart": 1133802, "hitstop": 1134557 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgG", "hitorientation": "+", "hitstart": 1134729, "hitstop": 1135511 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgH", "hitorientation": "+", "hitstart": 1135564, "hitstop": 1136262 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgI", "hitorientation": "+", "hitstart": 1136274, "hitstop": 1137371 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgJ", "hitorientation": "+", "hitstart": 1137371, "hitstop": 1138312 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgK", "hitorientation": "+", "hitstart": 1138378, "hitstop": 1140021 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flgL", "hitorientation": "+", "hitstart": 1140033, "hitstop": 1140986 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhA", "hitorientation": "-", "hitstart": 1962974, "hitstop": 1965050 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhB", "hitorientation": "-", "hitstart": 1965043, "hitstop": 1966191 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flhC", "hitorientation": "-", "hitstart": 1977266, "hitstop": 1977844 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliA", "hitorientation": "-", "hitstart": 2001070, "hitstop": 2001789 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliD", "hitorientation": "+", "hitstart": 2003872, "hitstop": 2005278 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliF", "hitorientation": "+", "hitstart": 2013229, "hitstop": 2014887 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliG", "hitorientation": "+", "hitstart": 2014880, "hitstop": 2015875 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliH", "hitorientation": "+", "hitstart": 2015868, "hitstop": 2016554 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliI", "hitorientation": "+", "hitstart": 2016554, "hitstop": 2017927 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliK", "hitorientation": "+", "hitstart": 2018386, "hitstop": 2019513 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliM", "hitorientation": "+", "hitstart": 2020087, "hitstop": 2021091 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliP", "hitorientation": "+", "hitstart": 2021869, "hitstop": 2022606 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliR", "hitorientation": "+", "hitstart": 2022893, "hitstop": 2023678 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliY", "hitorientation": "-", "hitstart": 1999585, "hitstop": 2000385 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "fliZ", "hitorientation": "-", "hitstart": 2000473, "hitstop": 2001060 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "flk", "hitorientation": "+", "hitstart": 2437950, "hitstop": 2438945 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gadX", "hitorientation": "-", "hitstart": 3664986, "hitstop": 3665618 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspC", "hitorientation": "-", "hitstart": 3112091, "hitstop": 3113049 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspL", "hitorientation": "-", "hitstart": 3111128, "hitstop": 3112092 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "gspo", "hitorientation": "+", "hitstart": 3465543, "hitstop": 3466220 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hcp", "hitorientation": "-", "hitstart": 115714, "hitstop": 117099 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hlye", "hitorientation": "-", "hitstart": 1229483, "hitstop": 1230538 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "hofq", "hitorientation": "-", "hitstart": 3519465, "hitstop": 3520703 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ibeB", "hitorientation": "+", "hitstart": 595600, "hitstop": 596981 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ibeC", "hitorientation": "-", "hitstart": 4148532, "hitstop": 4150309 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "motA", "hitorientation": "-", "hitstart": 1976252, "hitstop": 1977139 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "motB", "hitorientation": "-", "hitstart": 1975329, "hitstop": 1976255 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "nada", "hitorientation": "+", "hitstart": 782085, "hitstop": 783128 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "nadb", "hitorientation": "+", "hitstart": 2710420, "hitstop": 2712042 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ompA", "hitorientation": "-", "hitstart": 1019013, "hitstop": 1020053 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ompt", "hitorientation": "-", "hitstart": 584680, "hitstop": 585633 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ppdb", "hitorientation": "-", "hitstart": 2963153, "hitstop": 2963716 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "tar/cheM", "hitorientation": "-", "hitstart": 1971030, "hitstop": 1972691 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "upaC", "hitorientation": "+", "hitstart": 392973, "hitstop": 394418 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbF", "hitorientation": "+", "hitstart": 1003920, "hitstop": 1004657 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbQ", "hitorientation": "+", "hitstart": 997859, "hitstop": 998407 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbR", "hitorientation": "+", "hitstart": 998490, "hitstop": 999191 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbS", "hitorientation": "+", "hitstart": 999216, "hitstop": 1001816 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbT", "hitorientation": "+", "hitstart": 1001807, "hitstop": 1002784 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycbV", "hitorientation": "+", "hitstart": 1003391, "hitstop": 1003954 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ycfz", "hitorientation": "-", "hitstart": 1180479, "hitstop": 1181267 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "ygeH", "hitorientation": "+", "hitstart": 2992094, "hitstop": 2993470 }, { "analysis": "Virulence Factors", "contigid": "U00096.3", "filename": "GCA_000005845.2_ASM584v2_genomic.fna", "hitcutoff": 90, "hitname": "yggr", "hitorientation": "-", "hitstart": 3094100, "hitstop": 3095080 } ] BEAUTIFY_AMR = [ { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Escherichia coli gyrA conferring resistance to fluoroquinolones", "hitorientation": "+", "hitstart": 159252, "hitstop": 161879 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "PmrE", "hitorientation": "+", "hitstart": 388190, "hitstop": 389356 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "PmrF", "hitorientation": "-", "hitstart": 134984, "hitstop": 135952 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "arnA", "hitorientation": "-", "hitstart": 133002, "hitstop": 134984 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "baeR", "hitorientation": "-", "hitstart": 323408, "hitstop": 324130 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "baeS", "hitorientation": "-", "hitstart": 324127, "hitstop": 325530 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "mdtB", "hitorientation": "-", "hitstart": 330021, "hitstop": 333143 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtD", "hitorientation": "-", "hitstart": 325527, "hitstop": 326942 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000001.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mexN", "hitorientation": "-", "hitstart": 326943, "hitstop": 330020 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "PmrA", "hitorientation": "+", "hitstart": 28893, "hitstop": 29561 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "PmrB", "hitorientation": "+", "hitstart": 29562, "hitstop": 30662 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "PmrC", "hitorientation": "+", "hitstart": 27253, "hitstop": 28896 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtN", "hitorientation": "+", "hitstart": 58230, "hitstop": 59261 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtO", "hitorientation": "+", "hitstart": 59261, "hitstop": 61312 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000003.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtP", "hitorientation": "+", "hitstart": 61309, "hitstop": 62775 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000004.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtK", "hitorientation": "+", "hitstart": 126030, "hitstop": 127403 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000005.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "ACT-7", "hitorientation": "-", "hitstart": 4604, "hitstop": 5737 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000005.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtM", "hitorientation": "-", "hitstart": 187550, "hitstop": 188782 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000005.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "robA", "hitorientation": "-", "hitstart": 251658, "hitstop": 252527 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000006.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "CRP", "hitorientation": "-", "hitstart": 176803, "hitstop": 177435 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000006.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "gadX", "hitorientation": "+", "hitstart": 397, "hitstop": 1221 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000006.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtE", "hitorientation": "-", "hitstart": 5818, "hitstop": 6975 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000006.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mexD", "hitorientation": "-", "hitstart": 2680, "hitstop": 5793 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000007.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "H-NS", "hitorientation": "-", "hitstart": 187722, "hitstop": 188135 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000007.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "mdtG", "hitorientation": "-", "hitstart": 25571, "hitstop": 26797 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000007.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdtH", "hitorientation": "-", "hitstart": 35428, "hitstop": 36636 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000007.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "phoP", "hitorientation": "-", "hitstart": 101156, "hitstop": 101827 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000007.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "phoQ", "hitorientation": "-", "hitstart": 99696, "hitstop": 101156 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000008.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrK", "hitorientation": "-", "hitstart": 9140, "hitstop": 10303 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000008.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrY", "hitorientation": "-", "hitstart": 7602, "hitstop": 9140 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000008.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "evgA", "hitorientation": "+", "hitstart": 10719, "hitstop": 11333 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000008.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "evgS", "hitorientation": "+", "hitstart": 11338, "hitstop": 14931 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000008.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mexD", "hitorientation": "+", "hitstart": 104776, "hitstop": 107889 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000009.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "cpxA", "hitorientation": "+", "hitstart": 22429, "hitstop": 23802 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000009.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "cpxR", "hitorientation": "+", "hitstart": 21734, "hitstop": 22432 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000011.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Escherichia coli marR mutant resulting in antibiotic resistance", "hitorientation": "+", "hitstart": 51100, "hitstop": 51534 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000011.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "marA", "hitorientation": "+", "hitstart": 51554, "hitstop": 51937 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000012.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrA", "hitorientation": "-", "hitstart": 312493, "hitstop": 313665 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000012.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "emrB", "hitorientation": "-", "hitstart": 310938, "hitstop": 312476 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000012.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrR", "hitorientation": "-", "hitstart": 313792, "hitstop": 314322 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000013.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Staphylococcus aureus gyrB conferring resistance to aminocoumarin", "hitorientation": "-", "hitstart": 131568, "hitstop": 133982 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000013.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrD", "hitorientation": "+", "hitstart": 107782, "hitstop": 108966 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000013.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "mdtL", "hitorientation": "+", "hitstart": 145479, "hitstop": 146654 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000015.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Escherichia coli parC conferring resistance to fluoroquinolone", "hitorientation": "-", "hitstart": 68709, "hitstop": 70967 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000015.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "bacA", "hitorientation": "-", "hitstart": 104717, "hitstop": 105538 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000015.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "tolC", "hitorientation": "+", "hitstart": 80879, "hitstop": 82360 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000016.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "ACT-7", "hitorientation": "+", "hitstart": 286, "hitstop": 1431 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000022.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Mycobacterium tuberculosis rpoB mutants conferring resistance to rifampicin", "hitorientation": "-", "hitstart": 22720, "hitstop": 26748 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000023.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "macA", "hitorientation": "-", "hitstart": 5642, "hitstop": 6757 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000023.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "macB", "hitorientation": "-", "hitstart": 3699, "hitstop": 5645 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000023.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mdfA", "hitorientation": "-", "hitstart": 39796, "hitstop": 41028 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000024.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "CTX-M-55", "hitorientation": "-", "hitstart": 37702, "hitstop": 38577 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000026.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Mycobacterium tuberculosis katG mutations conferring resistance to isoniazid", "hitorientation": "+", "hitstart": 8536, "hitstop": 10716 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000027.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "APH(3'')", "hitorientation": "-", "hitstart": 10215, "hitstop": 11018 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000027.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "APH(6)", "hitorientation": "-", "hitstart": 9379, "hitstop": 10215 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000027.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "floR", "hitorientation": "+", "hitstart": 5030, "hitstop": 6244 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000027.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "sul2", "hitorientation": "-", "hitstart": 11079, "hitstop": 11894 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000027.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "tetG", "hitorientation": "-", "hitstart": 6844, "hitstop": 8043 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000028.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "emrE", "hitorientation": "+", "hitstart": 30648, "hitstop": 30980 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000032.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "acrE", "hitorientation": "+", "hitstart": 32702, "hitstop": 33859 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000032.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "acrS", "hitorientation": "-", "hitstart": 31641, "hitstop": 32303 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000032.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mexD", "hitorientation": "+", "hitstart": 33871, "hitstop": 36975 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "Klebsiella pneumoniae acrR mutant resulting in high level antibiotic resistance", "hitorientation": "+", "hitstart": 107902, "hitstop": 108495 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "acrE", "hitorientation": "-", "hitstart": 106513, "hitstop": 107706 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "mexD", "hitorientation": "-", "hitstart": 103341, "hitstop": 106490 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "rosA", "hitorientation": "-", "hitstart": 125513, "hitstop": 126733 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "rosB", "hitorientation": "-", "hitstart": 123599, "hitstop": 125275 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000036.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "vanG", "hitorientation": "-", "hitstart": 19876, "hitstop": 20970 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000037.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "MCR-1", "hitorientation": "+", "hitstart": 13553, "hitstop": 15178 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000050.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "FosA3", "hitorientation": "+", "hitstart": 4459, "hitstop": 4875 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000050.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "mphA", "hitorientation": "+", "hitstart": 89, "hitstop": 994 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000053.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "ErmB", "hitorientation": "-", "hitstart": 1455, "hitstop": 2192 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000062.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "sul1", "hitorientation": "+", "hitstart": 452, "hitstop": 1291 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000064.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "TEM-1", "hitorientation": "+", "hitstart": 3455, "hitstop": 4315 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000080.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "NDM-1", "hitorientation": "+", "hitstart": 724, "hitstop": 1536 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000090.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "aadA11", "hitorientation": "+", "hitstart": 690, "hitstop": 1535 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000090.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Strict", "hitname": "dfrA25", "hitorientation": "+", "hitstart": 36, "hitstop": 509 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000098.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "catI", "hitorientation": "-", "hitstart": 166, "hitstop": 825 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000101.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "arr-3", "hitorientation": "+", "hitstart": 37, "hitstop": 489 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000104.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "rmtB", "hitorientation": "+", "hitstart": 43, "hitstop": 798 }, { "analysis": "Antimicrobial Resistance", "contigid": "MOHB01000106.1", "filename": "GCA_001891995.1_ASM189199v1_genomic.fna", "hitcutoff": "Perfect", "hitname": "aadA5", "hitorientation": "-", "hitstart": 115, "hitstop": 903 } ] BEAUTIFY_STX1 = [ { "contig": "lcl|ECI-2644|NODE_8_length_178521_cov_25.218_ID_15", "genome": "ECI-2644_lcl.fasta", "probability": 0.9561446, "start": 174535, "stop": 175491, "subtype": "a", "subtype_gene": "stx1A" }, { "contig": "lcl|ECI-2644|NODE_8_length_178521_cov_25.218_ID_15", "genome": "ECI-2644_lcl.fasta", "probability": 0.9561446, "start": 175501, "stop": 175770, "subtype": "a", "subtype_gene": "stx1B" }, { "contig": "lcl|ECI-2644|NODE_8_length_178521_cov_25.218_ID_15", "genome": "ECI-2644_lcl.fasta", "probability": 0.9561446, "start": 174544, "stop": 175491, "subtype": "a", "subtype_gene": "stx1A" }, { "contig": "lcl|ECI-2644|NODE_8_length_178521_cov_25.218_ID_15", "genome": "ECI-2644_lcl.fasta", "probability": 0.9561446, "start": 175501, "stop": 175770, "subtype": "a", "subtype_gene": "stx1B" } ] BEAUTIFY_STX2 = [ { "contig": "lcl|ECI-2644|NODE_51_length_5713_cov_24.063_ID_101", "genome": "ECI-2644_lcl.fasta", "probability": 0.9460619, "start": 4390, "stop": 5349, "subtype": "a", "subtype_gene": "stx2A" }, { "contig": "lcl|ECI-2644|NODE_51_length_5713_cov_24.063_ID_101", "genome": "ECI-2644_lcl.fasta", "probability": 0.9460619, "start": 4109, "stop": 4378, "subtype": "a", "subtype_gene": "stx2B" } ] BEAUTIFY_EAE = [ { "contig": "N/A", "genome": "GCA_000005845.2_ASM584v2_genomic.fna", "probability": "N/A", "start": "N/A", "stop": "N/A", "subtype": "Subtype loci not found in genome", "subtype_gene": "N/A" } ]
#!/usr/bin/env python # coding: utf-8 import numpy as np from Layer import Layer class ImageDataSource(Layer): srcDimList = [(0),(0,1),(0,1,2)] def __init__(self,para): Layer.__init__(self,para) self.lastMiniBatch = True def createAndInitializeStruct(self): if self.top.isPadded(): (pHOut,pWOut) = self.top.getPadShape() (hIn,wIn,cIn) = self.imageDim # out_shape is padded outShape = (Layer.batchSize,hIn+2*pHOut,wIn+2*pWOut,cIn) self.pOut = np.zeros(outShape,dtype=float) # padded output # out is actual output. slice of pOut self.out = self.pOut[:,pHOut:-pHOut,pWOut:-pWOut,:] else: self.out = np.zeros((Layer.batchSize,)+self.imageDim,dtype=float) # out is actual output. slice of pOut self.pOut = self.out self.label = np.zeros((Layer.batchSize,)+self.labelDim,dtype=float) self.zeros = np.zeros(self.imageDim) self.zerosL = np.zeros(self.labelDim) def setTrainData(self,image,label): self.trainImage = image self.trainLabel = label self.trainNum = self.trainImage.shape[0] self.imageDim = self.trainImage.shape[1:] self.labelDim = self.trainLabel.shape[1:] self.sumAxis = ImageDataSource.srcDimList[len(self.trainImage.shape)-2] self.trainImageMean = np.mean(self.trainImage,axis=self.sumAxis) self.trainImageStd = np.std(self.trainImage,axis=self.sumAxis) self.trainImageNorm = (self.trainImage - self.trainImageMean)/self.trainImageStd def setTestData(self,image,label): self.testImage = image self.testLabel = label self.testNum = self.testImage.shape[0] self.testImageNorm = (self.testImage - self.trainImageMean)/self.trainImageStd def useTrainData(self): self.currentImageNum = self.trainNum self.currentImage = self.trainImageNorm self.currentLabel = self.trainLabel self.lastMiniBatch = True def useTestData(self): self.currentImageNum = self.testNum self.currentImage = self.testImageNorm self.currentLabel = self.testLabel self.lastMiniBatch = True def getY(self): return self.label def forward(self): Layer.currentBatchSize = Layer.batchSize if self.lastMiniBatch: self.lastMiniBatch = False if not Layer.inferenceMode: self.perm = np.random.permutation(self.currentImageNum) else: self.perm = np.arange(self.currentImageNum) self.currentStart = 0 self.sampleCount = 0 if (self.currentStart + Layer.batchSize) <= self.currentImageNum: j = 0 for i in self.perm[self.currentStart:self.currentStart+Layer.batchSize]: self.out[j] = self.currentImage[i] self.label[j] = self.currentLabel[i] j = j+1 self.currentStart = self.currentStart + Layer.batchSize if self.currentStart == self.currentImageNum: self.lastMiniBatch = True else: j = 0 for i in self.perm[self.currentStart:]: self.out[j] = self.currentImage[i] self.label[j] = self.currentLabel[i] j = j+1 Layer.currentBatchSize = j for k in range(j,Layer.batchSize): self.out[k] = self.zeros self.label[k] = self.zerosL self.lastMiniBatch = True self.sampleCount = self.sampleCount + Layer.currentBatchSize def currentDataSetSize(self): return self.currentImageNum def endOfEpoch(self): return self.lastMiniBatch
default_app_config = "oscarbluelight.dashboard.offers.apps.OffersDashboardConfig"
from cli.application import CliApplication if __name__ == "__main__" or __name__ == "src.cli.__main__": cli = CliApplication() cli.run()
from typing import Any, Union import numpy as np import biorbd from bioptim import Solution def compute_error_single_shooting( time: Union[np.ndarray, list], n_shooting: int, model: biorbd.Model, q: np.ndarray, q_integrated: np.ndarray, duration: float = None, ): """ Compute the error between the solution of the OCP and the solution of the integrated OCP Parameters ---------- time : np.ndarray Time vector n_shooting : int Number of shooting points model : biorbd.Model Model q : np.ndarray ocp generalized coordinates q_integrated : np.ndarray integrated generalized coordinates duration: float The duration to report the error in states btween the two solutions Returns ------- The error between the two solutions :tuple """ duration = time[-1] if duration is None else duration if time[-1] < duration: raise ValueError( f"Single shooting integration duration must be smaller than ocp duration :{time[-1]} s" ) # get the index of translation and rotation dof trans_idx = [] rot_idx = [] for i in range(model.nbQ()): if model.nameDof()[i].to_string()[-4:-1] == "Rot": rot_idx += [i] else: trans_idx += [i] rot_idx = np.array(rot_idx) trans_idx = np.array(trans_idx) sn_1s = int(n_shooting / time[-1] * duration) # shooting node at {duration} second single_shoot_error_r = ( rmse(q[rot_idx, sn_1s], q_integrated[rot_idx, sn_1s]) * 180 / np.pi if len(rot_idx) > 0 else np.nan ) single_shoot_error_t = ( (rmse(q[trans_idx, sn_1s], q_integrated[trans_idx, sn_1s]) / 1000) if len(trans_idx) > 0 else np.nan ) return ( single_shoot_error_t, single_shoot_error_r, ) def stack_states(states: list[dict], key: str = "q"): """ Stack the controls in one vector Parameters ---------- states : list[dict] List of dictionaries containing the states key : str Key of the states to stack such as "q" or "qdot" """ the_tuple = (s[key][:, :-1] if i < len(states) else s[key][:, :] for i, s in enumerate(states)) return np.hstack(the_tuple) def stack_controls(controls: list[dict], key: str = "tau"): """ Stack the controls in one vector Parameters ---------- controls : list[dict] List of dictionaries containing the controls key : str Key of the controls to stack such as "tau" or "qddot" """ the_tuple = (c[key][:, :-1] if i < len(controls) else c[key][:, :] for i, c in enumerate(controls)) return np.hstack(the_tuple) def define_time(time: list, n_shooting: tuple): """ Create the time vector Parameters ---------- time : list List of duration of each phase of the simulation n_shooting : tuple Number of shooting points for each phase """ the_tuple = ( np.linspace(0, float(time[i]) - 1 / n_shooting[i] * float(time[i]), n_shooting[i]) if i < len(time) else np.linspace(float(time[i]), float(time[i]) + float(time[i + 1]), n_shooting[i] + 1) for i, t in enumerate(time) ) return np.hstack(the_tuple) def rmse(predictions, targets) -> float: """ Compute the Root Mean Square Error Parameters ---------- predictions : numpy.array Predictions targets : numpy.array Targets Returns ------- rmse : float Root Mean Square Error """ return np.sqrt(((predictions - targets) ** 2).mean())
''' Created on Dec 4, 2018 @author: gsnyder Get a list of user objects ''' import json from blackduck.HubRestApi import HubInstance hub = HubInstance() user_groups = hub.get_user_groups() if 'totalCount' in user_groups and user_groups['totalCount'] > 0: print(json.dumps(user_groups)) else: print("No user_groups found")
# $Id$ # # Copyright (C) 2008 Greg Landrum # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # from rdkit.sping import pid import math, re from rdkit.sping.PIL.pidPIL import PILCanvas from rdkit.Chem.Draw.canvasbase import CanvasBase faceMap = {'sans': 'helvetica', 'serif': 'times'} def convertColor(color): color = pid.Color(color[0], color[1], color[2]) return color class Canvas(CanvasBase): def __init__(self, size, name, imageType='png'): if imageType == "pdf": from rdkit.sping.PDF.pidPDF import PDFCanvas as _Canvas elif imageType == "ps": from rdkit.sping.PS.pidPS import PSCanvas as _Canvas #@UnresolvedImport elif imageType == "svg": from rdkit.sping.SVG.pidSVG import SVGCanvas as _Canvas elif imageType == "png": from rdkit.sping.PIL.pidPIL import PILCanvas as _Canvas else: raise ValueError('unrecognized format: %s' % imageType) self.canvas = _Canvas(size=size, name=name) if hasattr(self.canvas, '_image'): self._image = self.canvas._image else: self._image = None self.size = size def addCanvasLine(self, p1, p2, color=(0, 0, 0), color2=None, **kwargs): if color2 and color2 != color: mp = (p1[0] + p2[0]) / 2., (p1[1] + p2[1]) / 2. color = convertColor(color) self.canvas.drawLine(p1[0], p1[1], mp[0], mp[1], color=color, width=int(kwargs.get('linewidth', 1)), dash=kwargs.get('dash', None)) color2 = convertColor(color2) self.canvas.drawLine(mp[0], mp[1], p2[0], p2[1], color=color2, width=int(kwargs.get('linewidth', 1)), dash=kwargs.get('dash', None)) else: color = convertColor(color) width = kwargs.get('linewidth', 1) self.canvas.drawLine(p1[0], p1[1], p2[0], p2[1], color=color, width=int(width), dash=kwargs.get('dash', None)) def addCanvasText(self, text, pos, font, color=(0, 0, 0), **kwargs): text = re.sub(r'\<.+?\>', '', text) font = pid.Font(face=faceMap[font.face], size=font.size) txtWidth, txtHeight = self.canvas.stringBox(text, font) bw, bh = txtWidth + txtHeight * 0.4, txtHeight * 1.4 offset = txtWidth * pos[2] labelP = pos[0] - txtWidth / 2 + offset, pos[1] + txtHeight / 2 color = convertColor(color) self.canvas.drawString(text, labelP[0], labelP[1], font, color=color) return (bw, bh, offset) def addCanvasPolygon(self, ps, color=(0, 0, 0), fill=True, stroke=False, **kwargs): if not fill and not stroke: return edgeWidth = kwargs.get('lineWidth', 0) edgeColor = pid.transparent color = convertColor(color) if not stroke: edgeWidth = 0 edgeColor = pid.transparent else: edgeWidth = kwargs.get('lineWidth', 1) edgeColor = color if not fill: fillColor = pid.transparent else: fillColor = color self.canvas.drawPolygon(ps, edgeColor=edgeColor, edgeWidth=int(edgeWidth), fillColor=fillColor, closed=1) def addCanvasDashedWedge(self, p1, p2, p3, dash=(2, 2), color=(0, 0, 0), color2=None, **kwargs): color = convertColor(color) dash = (4, 4) pts1 = self._getLinePoints(p1, p2, dash) pts2 = self._getLinePoints(p1, p3, dash) if len(pts2) < len(pts1): pts2, pts1 = pts1, pts2 for i in range(len(pts1)): self.canvas.drawLine(pts1[i][0], pts1[i][1], pts2[i][0], pts2[i][1], color=color, width=1) def flush(self): self.canvas.flush() def save(self): self.canvas.save()
import json import pprint import sys from .backuptools import BackupResource, BackupTools from .googledriveclient import GoogleDriveClient if __name__ == '__main__': config_file = sys.argv[1] args = sys.argv[2:] config: dict = None with open(config_file) as f: config = json.load(f) tools = BackupTools(config) result = tools.exec(*args) pprint.pprint(result)
from django.contrib import messages from django.contrib.auth import login, logout from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.urls import reverse from core.email_backend import EmailBackend # Create your views here. def go_index(request): return render(request, 'index.html') def go_index2(request): return render(request, 'index2.html') def go_index3(request): return render(request, 'index3.html') # LOGIN def go_login_page(request): return render(request, 'login/login.html') def go_login_forgot(request): return render(request, 'login/forgot-password.html') def go_register(request): return render(request, 'login/register.html') def go_recovery(request): return render(request, 'login/recovery-password.html') def do_login(request): if request.method != 'POST': return HttpResponse('<h2>Método não Permitido</h2>') else: user = EmailBackend.authenticate( request, username=request.POST.get('email'), password=request.POST.get('password') ) if user is not None: login(request, user) if user.user_type == '1': return HttpResponseRedirect(reverse('admin_home')) elif user.user_type == '2': return HttpResponseRedirect(reverse('staff_home')) elif user.user_type == '3': return HttpResponseRedirect(reverse('student_home')) else: return HttpResponse('<h2>Deu ruim no login</h2>') else: messages.error(request, 'Invalid Login Details') return HttpResponseRedirect('/') def get_user_detail(request): if request.user is not None: return HttpResponse(f'<h2>Email: {request.user.email} | UserType: {request.user.user_type}</h2>') else: return HttpResponse('<h2>Por favor, faça login!</h2>') def do_logout(request): logout(request) return HttpResponseRedirect('/')
import fnmatch import importlib import os from setuptools import setup import jenkins_monitor.version # Let's add this later # long_description = open('README.txt').read() def discover_packages(base): """ Discovers all sub-packages for a base package Note: does not work with namespaced packages (via pkg_resources or similar) """ mod = importlib.import_module(base) mod_fname = mod.__file__ mod_dirname = os.path.normpath(os.path.dirname(mod_fname)) for root, _dirnames, filenames in os.walk(mod_dirname): for _ in fnmatch.filter(filenames, '__init__.py'): yield '.'.join(os.path.relpath(root).split(os.sep)) def load_requirements(fname): with open(fname, 'r') as reqfile: reqs = reqfile.read() return list(filter(None, reqs.strip().splitlines())) REQUIREMENTS = dict() REQUIREMENTS['install'] = load_requirements('requirements.txt') setup_args = dict( name='monitor_jenkins', version=jenkins_monitor.version.__version__, description='Monitor basic Jenkins functions', # long_description = long_description, author='Couchbase Build and Release Team', author_email='[email protected]', license='Apache License, Version 2.0', packages=list(discover_packages('jenkins_monitor')), include_package_data=True, install_requires=REQUIREMENTS['install'], entry_points={ 'console_scripts': [ 'monitor_jenkins = jenkins_monitor.scripts.monitor_jenkins_prog:main', ] }, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Programming Language :: Python :: 3.6', ] ) if __name__ == '__main__': setup(**setup_args)
# Check that -vv makes the line number of the failing RUN command clear. # (-v is actually sufficient in the case of the internal shell.) # # RUN: env -u FILECHECK_OPTS not %{lit} -j 1 -vv %{inputs}/shtest-run-at-line > %t.out # RUN: FileCheck --input-file %t.out %s # # END. # CHECK: Testing: 4 tests # In the case of the external shell, we check for only RUN lines in stderr in # case some shell implementations format "set -x" output differently. # CHECK-LABEL: FAIL: shtest-run-at-line :: external-shell/basic.txt # CHECK: Script: # CHECK: RUN: at line 4{{.*}} true # CHECK-NEXT: RUN: at line 5{{.*}} false # CHECK-NEXT: RUN: at line 6{{.*}} true # CHECK: RUN: at line 4 # CHECK: RUN: at line 5 # CHECK-NOT: RUN # CHECK-LABEL: FAIL: shtest-run-at-line :: external-shell/line-continuation.txt # CHECK: Script: # CHECK: RUN: at line 4{{.*}} echo 'foo bar' | FileCheck # CHECK-NEXT: RUN: at line 6{{.*}} echo 'foo baz' | FileCheck # CHECK-NEXT: RUN: at line 9{{.*}} echo 'foo bar' | FileCheck # CHECK: RUN: at line 4 # CHECK: RUN: at line 6 # CHECK-NOT: RUN # CHECK-LABEL: FAIL: shtest-run-at-line :: internal-shell/basic.txt # CHECK: Script: # CHECK: : 'RUN: at line 1'; true # CHECK-NEXT: : 'RUN: at line 2'; false # CHECK-NEXT: : 'RUN: at line 3'; true # CHECK: Command Output (stdout) # CHECK: $ ":" "RUN: at line 1" # CHECK-NEXT: $ "true" # CHECK-NEXT: $ ":" "RUN: at line 2" # CHECK-NEXT: $ "false" # CHECK-NOT: RUN # CHECK-LABEL: FAIL: shtest-run-at-line :: internal-shell/line-continuation.txt # CHECK: Script: # CHECK: : 'RUN: at line 1'; : first line continued to second line # CHECK-NEXT: : 'RUN: at line 3'; echo 'foo bar' | FileCheck # CHECK-NEXT: : 'RUN: at line 5'; echo 'foo baz' | FileCheck # CHECK-NEXT: : 'RUN: at line 8'; echo 'foo bar' | FileCheck # CHECK: Command Output (stdout) # CHECK: $ ":" "RUN: at line 1" # CHECK-NEXT: $ ":" "first" "line" "continued" "to" "second" "line" # CHECK-NEXT: $ ":" "RUN: at line 3" # CHECK-NEXT: $ "echo" "foo bar" # CHECK-NEXT: $ "FileCheck" "{{.*}}" # CHECK-NEXT: $ ":" "RUN: at line 5" # CHECK-NEXT: $ "echo" "foo baz" # CHECK-NEXT: $ "FileCheck" "{{.*}}" # CHECK-NOT: RUN
# -*- coding: utf-8 -*- # Peter Zatka-Haas - April 2009 import os import pickle import random quotes_file = "commands/quotes.db" class Quotes: """ Users assign quotes, which momo stores. Momo can output the quote in channel later. Momo will respond: !setquote .. Momo registers the quote .. in a dictionary where the KEY is the sender of the command. Any previous quote already assigned will be overwritten !quote Momo says the quote assigned to the sender of this command If no quote has been assigned then momo responds accordingly !quote <user> Momo says the quote assigned to the <user> name given. If no quote has been assigned then momo responds accordingly !quote NICKNAME Momo will return a random quote from the dictionary """ def __init__(self, bot): self.bot = bot self.quotes = {} self.__load_quotes() bot.register_command('setquote', self.set_quote) bot.register_command('quote', self.get_quote) def set_quote(self, data): self.quotes[data['username']] = data['message'] self.bot.say("Okay, %s" % data['username'], data['channel']) self.__store_quotes() def get_quote(self, data): requester = data['username'] quotee = data['message'] quotee = quotee.strip() if len(quotee) == 0: quotee = requester if quotee == self.bot.nickname and self.quotes: quotee = random.choice(self.quotes.keys()) self.bot.say(self.__get_quote(requester, quotee)) def __get_quote(self, requester, quotee): if quotee in self.quotes: return '"%s" - %s' % (self.quotes[quotee], quotee) elif quotee == requester: return 'Sorry, you never set a quote. Try the setquote command!' elif quotee == self.bot.nickname: return 'Sorry, but there are no quotes. Try setting one!' else: return "%s hasn't set a quote yet." % quotee def __store_quotes(self): f = open(quotes_file, 'wb') pickle.dump(self.quotes, f) f.close() def __load_quotes(self): if os.path.exists(quotes_file): f = open(quotes_file, 'rb') self.quotes = pickle.load(f) f.close() else: self.quotes = {}
#!/usr/bin/env python3.5 # -*- coding: utf-8 -*- from distutils.core import setup setup(name='screenAlign', version='1.5', py_modules=['screenAlign'], author='Fahrstuhl', author_email='[email protected]', url='https://github.com/fahrstuhl/screenAlign.py', )
#☆𝒐𝒎𝒂𝒋𝒊𝒏𝒂𝒊☆# import sys import math from math import ceil, floor import itertools from functools import lru_cache from collections import deque sys.setrecursionlimit(10000000) input=lambda : sys.stdin.readline().rstrip() '''''✂''''''''''''''''''''''''''''''''''''''''''''''''''''''''' n,m=map(int,input().split()) l_max=1 r_min=10**5 for i in range(m): l,r=map(int,input().split()) l_max=max(l_max,l) r_min=min(r_min,r) print(max(r_min-l_max+1,0))
import math N=int(input("Enter values up to which you need to find prime numbers")) primeflag=[0 for i in range(N+1)] for i in range(2,int(math.sqrt(N))+1): for j in range(i*i,N+1,i): primeflag[j]=1 primeflag[0]=1 primeflag[1]=1 for i in range(N): if primeflag[i]==0: print(str(i) + "is prime")
#!/usr/bin/python3 # -*- encoding=utf8 -*- # This is very simple example of some code # which will use files and will try call external REST API # so - we will try to create mock for these methods import requests class MySuperProgram(): def read_string_from_file(self): """ This function reads first string in file and returns this string. """ with open('my_file.txt', 'r') as f: result = f.readline() return result def read_and_sort_all_strings(self): """ This function reads all strings from file and returns sorted list of strings. """ with open('my_file.txt', 'r') as f: result = f.readlines() return sorted(result) def title_all_words_in_line(self): """ This function reads all strings from file and returns sorted list of strings. """ with open('my_file.txt', 'r') as f: result = f.readline() return result.title() def get_current_ip(self): """ This function returns the current external ip of the host. """ res = requests.get('https://api.ipify.org/?format=json') data = res.json() return data['ip'] def get_current_country(self): """ This function returns the current external ip of the host. """ res = requests.get('https://api.ipify.org/?format=json') data = res.json() return data['country'] def get_current_status_code(self): res = requests.get('https://api.ipify.org/?format=json') return res
import pyxb import pyxb.binding.generate import pyxb.utils.domutils from xml.dom import Node import os.path schema_path = '%s/../schemas/xsi-type.xsd' % (os.path.dirname(__file__),) code = pyxb.binding.generate.GeneratePython(schema_location=schema_path) rv = compile(code, 'test', 'exec') eval(rv) originalOneFloor = oneFloor def oneFloorCtor (*args, **kw): return restaurant(*args, **kw) originalOneFloor._SetAlternativeConstructor(oneFloorCtor) from pyxb.exceptions_ import * import unittest class TestXSIType (unittest.TestCase): def testFailsNoType (self): xml = '<elt/>' doc = pyxb.utils.domutils.StringToDOM(xml) self.assertRaises(pyxb.AbstractInstantiationError, CreateFromDOM, doc.documentElement) def testDirect (self): xml = '<notAlt attrOne="low"><first>content</first></notAlt>' doc = pyxb.utils.domutils.StringToDOM(xml) instance = CreateFromDOM(doc.documentElement) self.assertEqual('content', instance.first) self.assertEqual('low', instance.attrOne) def testSubstitutions (self): xml = '<elt attrOne="low" xsi:type="alt1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><first>content</first></elt>' doc = pyxb.utils.domutils.StringToDOM(xml) instance = CreateFromDOM(doc.documentElement) self.assertEqual('content', instance.first) self.assertEqual('low', instance.attrOne) xml = '<elt attrTwo="hi" xsi:type="alt2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><second/></elt>' doc = pyxb.utils.domutils.StringToDOM(xml) instance = CreateFromDOM(doc.documentElement) self.assertTrue(instance.second is not None) self.assertEqual('hi', instance.attrTwo) def testMultilevel (self): xml = '<concreteBase><basement>dirt floor</basement></concreteBase>' doc = pyxb.utils.domutils.StringToDOM(xml) instance = CreateFromDOM(doc.documentElement) self.assertEqual('dirt floor', instance.basement) xml = '<oneFloor xsi:type="restaurant" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><basement>concrete</basement><lobby>tiled</lobby><room>eats</room></oneFloor>' doc = pyxb.utils.domutils.StringToDOM(xml) instance = CreateFromDOM(doc.documentElement) self.assertEqual(concreteBase_.basement, instance.__class__.basement) self.assertEqual(oneFloor_.lobby, instance.__class__.lobby) self.assertEqual(restaurant_.room, instance.__class__.room) self.assertEqual('tiled', instance.lobby) self.assertEqual('eats', instance.room) def testConstructor (self): kw = { 'basement' : 'concrete', 'lobby' : 'tiled', 'room' : 'eats' } ctd = restaurant_(**kw) dom = ctd.toDOM().documentElement xml = '<restaurant><basement>concrete</basement><lobby>tiled</lobby><room>eats</room></restaurant>' self.assertEqual(xml, dom.toxml()) rest = restaurant(**kw) dom = rest.toDOM().documentElement self.assertEqual(xml, dom.toxml()) self.assertRaises(pyxb.AbstractInstantiationError, originalOneFloor, **kw) def testNesting (self): instance = block(oneFloor=[ restaurant(basement="dirt", lobby="tile", room="messy"), restaurant(basement="concrete", lobby="carpet", room="tidy")]) self.assertEqual('dirt', instance.oneFloor[0].basement) self.assertEqual('messy', instance.oneFloor[0].room) self.assertEqual('concrete', instance.oneFloor[1].basement) self.assertEqual('tidy', instance.oneFloor[1].room) xml = instance.toxml() dom = pyxb.utils.domutils.StringToDOM(xml) instance2 = CreateFromDOM(dom.documentElement) r2 = instance2.toxml() r3 = instance2.toxml() self.assertEqual(r2, r3) self.assertEqual(xml, r2) if __name__ == '__main__': unittest.main()
import logging from collections import namedtuple import numpy as np from tensorboardX import SummaryWriter import torch import torch.nn as nn import torch.optim as optim HIDDEN_SIZE = 128 BATCH_SIZE = 16 PERCENTILE = 70 from cartpole import CartPole class Net(nn.Module): def __init__(self, obs_size, hidden_size, n_actions): super(Net, self).__init__() self.net = nn.Sequential( nn.Linear(obs_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, n_actions) ) def forward(self, x): return self.net(x) class CartPoleTraining: """ Training cartpole using cross entropy agoritham based on the code from the book 'Deep Reinforcement Learning Hands-On' """ Episode = namedtuple('Episode', field_names=['reward', 'steps']) EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 'action']) def __init__(self) -> None: self.cartpole = CartPole() def iterate_batches(self, net, batch_size): batch = [] episode_reward = 0.0 episode_steps = [] #start the episode self.cartpole.episode_start() state = self.cartpole.get_state() obs = self.cartpole.state_to_gym(state) sm = nn.Softmax(dim=1) while True: obs_v = torch.FloatTensor([obs]) act_probs_v = sm(net(obs_v)) act_probs = act_probs_v.data.numpy()[0] action = np.random.choice(len(act_probs), p=act_probs) bonsai_action = self.cartpole.gym_to_action(action) self.cartpole.episode_step(bonsai_action) is_done = self.cartpole.halted() reward = self.cartpole.get_last_reward() next_obs = self.cartpole.state_to_gym(self.cartpole.get_state()) episode_reward += reward step = self.EpisodeStep(observation=obs, action=action) episode_steps.append(step) if is_done: e = self.Episode(reward=episode_reward, steps=episode_steps) batch.append(e) episode_reward = 0.0 episode_steps = [] self.cartpole.episode_finish("") self.cartpole.episode_start() state = self.cartpole.get_state() next_obs = self.cartpole.state_to_gym(state) if len(batch) == batch_size: yield batch batch = [] obs = next_obs def filter_batch(self, batch, percentile): rewards = list(map(lambda s: s.reward, batch)) reward_bound = np.percentile(rewards, percentile) reward_mean = float(np.mean(rewards)) train_obs = [] train_act = [] for reward, steps in batch: if reward < reward_bound: continue train_obs.extend(map(lambda step: step.observation, steps)) train_act.extend(map(lambda step: step.action, steps)) train_obs_v = torch.FloatTensor(train_obs) train_act_v = torch.LongTensor(train_act) return train_obs_v, train_act_v, reward_bound, reward_mean def train(self): obs_size = self.cartpole._env.unwrapped.observation_space.shape[0] n_actions = self.cartpole._env.unwrapped.action_space.n net = Net(obs_size, HIDDEN_SIZE, n_actions) objective = nn.CrossEntropyLoss() optimizer = optim.Adam(params=net.parameters(), lr=0.01) writer = SummaryWriter(comment="-cartpole") for iter_no, batch in enumerate(self.iterate_batches(net, BATCH_SIZE)): obs_v, acts_v, reward_b, reward_m = self.filter_batch(batch, PERCENTILE) optimizer.zero_grad() action_scores_v = net(obs_v) loss_v = objective(action_scores_v, acts_v) loss_v.backward() optimizer.step() #env.render() print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % ( iter_no, loss_v.item(), reward_m, reward_b)) writer.add_scalar("loss", loss_v.item(), iter_no) writer.add_scalar("reward_bound", reward_b, iter_no) writer.add_scalar("reward_mean", reward_m, iter_no) if reward_m > 199: print("Solved!") break writer.close() if __name__ == '__main__': logging.basicConfig() log = logging.getLogger("cartpole") log.setLevel(level='INFO') cross_entropy_agent = CartPoleTraining() cross_entropy_agent.train() #TODO save the model after training and load it in agent # we will use our environment (wrapper of OpenAI env) cartpole = CartPole()
from dateutils import DateUtils import datetime import unittest CURRENT_YEAR = datetime.datetime.now().year class TestDateUtils(unittest.TestCase): def test_last_day_of_month(self): self.assertEqual(DateUtils.last_day_of_month(2019, 3), 31) self.assertEqual(DateUtils.last_day_of_month(2018, 7), 31) self.assertEqual(DateUtils.last_day_of_month(2016, 2), 29) self.assertEqual(DateUtils.last_day_of_month(2017, 2), 28) def test_date_from_string_exact(self): dates = DateUtils.date_from_string("01/01/2018") self.assertEqual(dates[0], datetime.date(2018, 1, 1)) self.assertEqual(dates[1], datetime.date(2018, 1, 1)) dates = DateUtils.date_from_string("31/01/2018") self.assertEqual(dates[0], datetime.date(2018, 1, 31)) self.assertEqual(dates[1], datetime.date(2018, 1, 31)) with self.assertRaises(ValueError): dates = DateUtils.date_from_string("01/0/2018") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("01/13/2018") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("01/99/2018") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("32/1/2018") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("0/1/2018") dates = DateUtils.date_from_string("12/06/2323") self.assertEqual(dates[0], datetime.date(2323, 6, 12)) self.assertEqual(dates[1], datetime.date(2323, 6, 12)) def test_date_from_string_year(self): dates = DateUtils.date_from_string("2018") self.assertEqual(dates[0], datetime.date(2018, 1, 1)) self.assertEqual(dates[1], datetime.date(2018, 12, 31)) dates = DateUtils.date_from_string("3000") self.assertEqual(dates[0], datetime.date(3000, 1, 1)) self.assertEqual(dates[1], datetime.date(3000, 12, 31)) dates = DateUtils.date_from_string("1950") self.assertEqual(dates[0], datetime.date(1950, 1, 1)) self.assertEqual(dates[1], datetime.date(1950, 12, 31)) # We don't support years that don't have four digits. with self.assertRaises(ValueError): dates = DateUtils.date_from_string("659") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("23") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("1") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("65900") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("100000000000") def test_date_from_string_month(self): dates = DateUtils.date_from_string("12/2018") self.assertEqual(dates[0], datetime.date(2018, 12, 1)) self.assertEqual(dates[1], datetime.date(2018, 12, 31)) dates = DateUtils.date_from_string("2/2016") self.assertEqual(dates[0], datetime.date(2016, 2, 1)) self.assertEqual(dates[1], datetime.date(2016, 2, 29)) dates = DateUtils.date_from_string("02/2016") self.assertEqual(dates[0], datetime.date(2016, 2, 1)) self.assertEqual(dates[1], datetime.date(2016, 2, 29)) # We don't support years that don't have four digits. with self.assertRaises(ValueError): dates = DateUtils.date_from_string("02/232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("111/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("0/2012") def test_date_from_string_week(self): dates = DateUtils.date_from_string("w1/2019") self.assertEqual(dates[0], datetime.date(2018, 12, 31)) self.assertEqual(dates[1], datetime.date(2019, 1, 6)) dates = DateUtils.date_from_string("w01/2019") self.assertEqual(dates[0], datetime.date(2018, 12, 31)) self.assertEqual(dates[1], datetime.date(2019, 1, 6)) dates = DateUtils.date_from_string("w01") self.assertEqual(dates[0], DateUtils.from_week_number(CURRENT_YEAR, 1)) self.assertEqual(dates[1], DateUtils.from_week_number(CURRENT_YEAR, 1, end=True)) dates = DateUtils.date_from_string("w52/2016") self.assertEqual(dates[0], datetime.date(2016, 12, 26)) self.assertEqual(dates[1], datetime.date(2017, 1, 1)) dates = DateUtils.date_from_string("w1/2017") self.assertEqual(dates[0], datetime.date(2017, 1, 2)) self.assertEqual(dates[1], datetime.date(2017, 1, 8)) with self.assertRaises(ValueError): dates = DateUtils.date_from_string("w02/232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("w111/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("w0/2012") def test_date_from_string_quarter(self): dates = DateUtils.date_from_string("q1/2019") self.assertEqual(dates[0], datetime.date(2019, 1, 1)) self.assertEqual(dates[1], datetime.date(2019, 3, 31)) dates = DateUtils.date_from_string("Q1/2019") self.assertEqual(dates[0], datetime.date(2019, 1, 1)) self.assertEqual(dates[1], datetime.date(2019, 3, 31)) dates = DateUtils.date_from_string("Q2") self.assertEqual(dates[0], datetime.date(CURRENT_YEAR, 4, 1)) self.assertEqual(dates[1], datetime.date(CURRENT_YEAR, 6, 30)) with self.assertRaises(ValueError): dates = DateUtils.date_from_string("Q2/232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("Q2/00232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("Q5/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("Q0/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("Q0234/2012") def test_date_from_string_half(self): dates = DateUtils.date_from_string("h1/2019") self.assertEqual(dates[0], datetime.date(2019, 1, 1)) self.assertEqual(dates[1], datetime.date(2019, 6, 30)) dates = DateUtils.date_from_string("H1/2019") self.assertEqual(dates[0], datetime.date(2019, 1, 1)) self.assertEqual(dates[1], datetime.date(2019, 6, 30)) dates = DateUtils.date_from_string("h2/2019") self.assertEqual(dates[0], datetime.date(2019, 7, 1)) self.assertEqual(dates[1], datetime.date(2019, 12, 31)) dates = DateUtils.date_from_string("H2/2019") self.assertEqual(dates[0], datetime.date(2019, 7, 1)) self.assertEqual(dates[1], datetime.date(2019, 12, 31)) with self.assertRaises(ValueError): dates = DateUtils.date_from_string("H2/232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("H2/00232") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("H5/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("H0/2012") with self.assertRaises(ValueError): dates = DateUtils.date_from_string("H0234/2012") def test_date_range(self): dates = DateUtils.date_range_from_string("w11-") self.assertEqual(dates[0], DateUtils.date_from_string("w11")[0]) self.assertEqual(dates[1], datetime.date.today()) if __name__ == '__main__': unittest.main()
import logging class GlobalRouting: def __init__(self, floorplan, top_rtl_parser, slot_manager): self.floorplan = floorplan self.top_rtl_parser = top_rtl_parser self.slot_manager = slot_manager self.v2s = floorplan.getVertexToSlot() self.s2e = floorplan.getSlotToEdges() self.e_name2path = {} # from edge to all slots passed self.naiveGlobalRouting() self.updateEdgePipelineLevel() def updateEdgePipelineLevel(self): """ update the pipeline_level filed based on the routing results """ for e_list in self.s2e.values(): for e in e_list: slot_path = [] src_slot = self.v2s[e.src] dst_slot = self.v2s[e.dst] slot_path = self.e_name2path[e.name] # 2 levels of pipelining for each slot crossing if src_slot == dst_slot: e.pipeline_level = 0 else: e.pipeline_level = (len(slot_path) + 1) * 2 def naiveGlobalRouting(self): """ each edge first go in the Y direction then in the X direction assume all slots are of the same size and are aligned the slot_path exclude the src slot and the dst slot """ for e_list in self.s2e.values(): for e in e_list: slot_path = [] src_slot = self.v2s[e.src] dst_slot = self.v2s[e.dst] slot_path.append(src_slot) curr = src_slot len_x = src_slot.getLenX() len_y = src_slot.getLenY() # first go in X direction x_diff = curr.getPositionX() - dst_slot.getPositionX() if x_diff: dir = 'LEFT' if x_diff > 0 else 'RIGHT' for i in range(int(abs(x_diff/len_x))): curr = self.slot_manager.createSlotForRouting(curr.getNeighborSlotName(dir)) slot_path.append(curr) y_diff = curr.getPositionY() - dst_slot.getPositionY() if y_diff: dir = 'DOWN' if y_diff > 0 else 'UP' for i in range(int(abs(y_diff/len_y))): curr = self.slot_manager.createSlotForRouting(curr.getNeighborSlotName(dir)) slot_path.append(curr) assert curr == dst_slot slot_path = slot_path[1:-1] # exclude the src and the dst logging.info(f'{e.name}: {self.v2s[e.src].getName()} -> {self.v2s[e.dst].getName()} : ' + ' '.join(s.getName() for s in slot_path)) self.e_name2path[e.name] = slot_path
import datetime from .. import db from sqlalchemy.dialects import postgresql class BookCarts(db.Model): """ BookCarts model for storing book details selected""" __tablename__ = "book_carts" id = db.Column(db.Integer, autoincrement=True, primary_key=True) book_id = db.Column(db.Integer) cart_id = db.Column(db.Integer) price = db.Column(db.Numeric(), nullable=False) quantity = db.Column(db.Integer) updated_at = db.Column(db.DateTime())
''' Created on Feb 27, 2012 @author: IslamM ''' import web from web.wsgiserver.ssl_builtin import BuiltinSSLAdapter from logging import getLogger log = getLogger(__name__) web.config.debug = False class UIMWEBApp(web.application): def run(self, certinfo, server_address=('0.0.0.0', 8080), timeout=900, rqs=10, nthreads=20): from web.wsgiserver import CherryPyWSGIServer from SimpleHTTPServer import SimpleHTTPRequestHandler from BaseHTTPServer import BaseHTTPRequestHandler class StaticApp(SimpleHTTPRequestHandler): """WSGI application for serving static files.""" def __init__(self, environ, start_response): self.headers = [] self.environ = environ self.start_response = start_response def send_response(self, status, msg=""): self.status = str(status) + " " + msg def send_header(self, name, value): self.headers.append((name, value)) def end_headers(self): pass def log_message(self, *a): pass def __iter__(self): environ = self.environ self.path = environ.get('PATH_INFO', '') self.client_address = environ.get('REMOTE_ADDR','-'), \ environ.get('REMOTE_PORT','-') self.command = environ.get('REQUEST_METHOD', '-') from cStringIO import StringIO self.wfile = StringIO() # for capturing error f = self.send_head() self.start_response(self.status, self.headers) if f: block_size = 16 * 1024 while True: buf = f.read(block_size) if not buf: break yield buf f.close() else: value = self.wfile.getvalue() yield value class WSGIWrapper(BaseHTTPRequestHandler): """WSGI wrapper for logging the status and serving static files.""" def __init__(self, app): self.app = app self.format = '%s - - [%s] "%s %s %s" - %s' def __call__(self, environ, start_response): def xstart_response(status, response_headers, *args): write = start_response(status, response_headers, *args) self.log(status, environ) return write path = environ.get('PATH_INFO', '').lower() if path.startswith('/static/') and not ('..' in path or '%2f' in path or '%2e' in path or '%5c' in path) and not path.endswith('/'): return StaticApp(environ, xstart_response) else: return self.app(environ, xstart_response) def log(self, status, environ): req = environ.get('PATH_INFO', '_') protocol = environ.get('ACTUAL_SERVER_PROTOCOL', '-') method = environ.get('REQUEST_METHOD', '-') host = '%s:%s' % (environ.get('REMOTE_ADDR', '-'), environ.get('REMOTE_PORT', '-')) time = self.log_date_time_string() msg = self.format % (host, time, protocol, method, req, status) log.debug(msg) #wrapper for the CherryPyWSGIServer to enable certificates #force the server address so the port is available func = WSGIWrapper(self.wsgifunc()) self.server = CherryPyWSGIServer(server_address, func, timeout = timeout, request_queue_size=rqs, numthreads=nthreads) protocol = 'http' if certinfo: protocol = 'https' adapter = BuiltinSSLAdapter(certinfo['cert'], certinfo['key']) self.server.ssl_adapter = adapter self.server.thread_name = 'HPIC4VCUIM' log.info('%s://%s:%d/', protocol, server_address[0], server_address[1]) try: self.server.start() except KeyboardInterrupt: log.info('Exception starting uim...') self.server.stop() log.info('Started uim...')
import pandas as pd import requests import time import folium import pathlib from folium.plugins import MarkerCluster from matplotlib import pylab from pylab import * from opencage.geocoder import OpenCageGeocode from pprint import pprint key = 'add your own Open Cage Code key here' geocoder = OpenCageGeocode(key) file = pathlib.Path('South_Baltimore_Business_Status_COVID19_Update.csv') if not file.exists (): lat = [] lng = [] df0 = pd.read_csv('South_Baltimore_Business_Status_COVID19.csv',encoding = "ISO-8859-1") df1 = df0.loc[:, ['Business_Name', 'Address']] df1['Address'] = df1['Address']+', Baltimore, MD' for i in range(len(df1)): ADDRESS = df1['Address'][i] result = geocoder.geocode(ADDRESS, no_annotations='1') temp = result[0]['geometry']['lat'] lat.append(result[0]['geometry']['lat']) lng.append(result[0]['geometry']['lng']) time.sleep(0.5) lat = pd.DataFrame(lat) lng = pd.DataFrame(lng) df0['Latitude'] = lat df0['Longitude'] = lng df0.to_csv('South_Baltimore_Business_Status_COVID19_Update.csv') df2 = pd.read_csv('South_Baltimore_Business_Status_COVID19_Update.csv',encoding = "ISO-8859-1") df2 = df2[df2.Status != 'CLOSED'] # df2['category'] = 'other' # central coordinates of Baltimore EDI_COORDINATES = (39.2904, -76.6122) # create empty map zoomed in on Baltimore map = folium.Map(location=EDI_COORDINATES, zoom_start=12) spots = MarkerCluster(name='spots').add_to(map) def makeHref(url,link_text = None): if link_text == None: link_text = str(url) return '<a href="' + url + '"target="_blank">' + re.sub(r"[']+", "\\\\'", link_text[:45]) +'</a>' def popopHTMLString(df2): '''input: a series that contains a url somewhere in it and generate html''' html = makeHref(df2.Website, df2.Business_Name) return html def plotDot(df2): htmlString = folium.Html(popopHTMLString(df2), script=True) folium.Marker(location=[df2.Latitude, df2.Longitude], popup = folium.Popup(htmlString), fill_color='#000000').add_to(spots) #use df.apply(,axis=1) to iterate through every row in your dataframe df2.apply(plotDot, axis = 1) map.fit_bounds(map.get_bounds()) folium.LayerControl().add_to(map) fn = 'south_baltimore_covid.html' map.save(fn)
from .. modello_lineare import RegressioneLineare from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression import numpy as np X, y = make_regression(n_samples=100, n_features=10, bias=5, random_state=42) rl_fit_intercept_true = RegressioneLineare(fit_intercept=True) lr_fit_intercept_true = LinearRegression(fit_intercept=True) rl_fit_intercept_true.fit(X, y) lr_fit_intercept_true.fit(X, y) rl_fit_intercept_false = RegressioneLineare(fit_intercept=False) lr_fit_intercept_false = LinearRegression(fit_intercept=False) rl_fit_intercept_false.fit(X, y) lr_fit_intercept_false.fit(X, y) def test_fit_intercept_true_intercept_(): assert np.allclose(rl_fit_intercept_true.intercept_, lr_fit_intercept_true.intercept_) def test_fit_intercept_true_coef_(): assert np.allclose(rl_fit_intercept_true.coef_, lr_fit_intercept_true.coef_) def test_fit_intercept_false_intercept_(): assert np.allclose(rl_fit_intercept_false.intercept_, lr_fit_intercept_false.intercept_) def test_fit_intercept_false_coef_(): assert np.allclose(rl_fit_intercept_false.coef_, lr_fit_intercept_false.coef_)
cc_library( name = "zlib", hdrs = glob(["include/*.h"]), srcs = ["lib/libz.a"], includes = ["include"], visibility = ["//visibility:public"], )
import os import os.path import pathlib import tempfile import logging import warnings from collections import namedtuple from joblib import Parallel, delayed, dump, load import pandas as pd import numpy as np try: import dask.dataframe as ddf except ImportError: ddf = None from ..algorithms import Recommender from .. import util from ..sharing import sharing_mode _logger = logging.getLogger(__name__) _AlgoKey = namedtuple('AlgoKey', ['type', 'data']) @util.last_memo(check_type='equality') def __load_algo(path): return load(path, mmap_mode='r') def _recommend_user(algo, user, n, candidates): dask = False if type(algo).__name__ == 'AlgoKey': # pickling doesn't preserve isinstance if algo.type == 'file': algo = __load_algo(algo.data) elif algo.type == 'future': algo = algo.data.result() dask = True else: raise ValueError('unknown algorithm key type %s', algo.type) _logger.debug('generating recommendations for %s', user) watch = util.Stopwatch() res = algo.recommend(user, n, candidates) _logger.debug('%s recommended %d/%s items for %s in %s', algo, len(res), n, user, watch) res['user'] = user res['rank'] = np.arange(1, len(res) + 1) if dask: res = ddf.from_pandas(res, npartitions=1) return res def __standard_cand_fun(candidates): """ Convert candidates from the forms accepted by :py:fun:`recommend` into a standard form, a function that takes a user and returns a candidate list. """ if isinstance(candidates, dict): return candidates.get elif candidates is None: return lambda u: None else: return candidates def recommend(algo, users, n, candidates=None, *, n_jobs=None, dask_result=False, **kwargs): """ Batch-recommend for multiple users. The provided algorithm should be a :py:class:`algorithms.Recommender`. Args: algo: the algorithm users(array-like): the users to recommend for n(int): the number of recommendations to generate (None for unlimited) candidates: the users' candidate sets. This can be a function, in which case it will be passed each user ID; it can also be a dictionary, in which case user IDs will be looked up in it. Pass ``None`` to use the recommender's built-in candidate selector (usually recommended). n_jobs(int): The number of processes to use for parallel recommendations. Passed as ``n_jobs`` to :cls:`joblib.Parallel`. The default, ``None``, will make the process sequential _unless_ called inside the :func:`joblib.parallel_backend` context manager. .. note:: ``nprocs`` is accepted as a deprecated alias. dask_result(bool): Whether to return a Dask data frame instead of a Pandas one. Returns: A frame with at least the columns ``user``, ``rank``, and ``item``; possibly also ``score``, and any other columns returned by the recommender. """ if n_jobs is None and 'nprocs' in kwargs: n_jobs = kwargs['nprocs'] warnings.warn('nprocs is deprecated, use n_jobs', DeprecationWarning) rec_algo = Recommender.adapt(algo) if candidates is None and rec_algo is not algo: warnings.warn('no candidates provided and algo is not a recommender, unlikely to work') del algo # don't need reference any more if 'ratings' in kwargs: warnings.warn('Providing ratings to recommend is not supported', DeprecationWarning) candidates = __standard_cand_fun(candidates) loop = Parallel(n_jobs=n_jobs) path = None try: _logger.debug('activating recommender loop') with loop: backend = loop._backend.__class__.__name__ njobs = loop._effective_n_jobs() _logger.info('parallel backend %s, effective njobs %s', backend, njobs) using_dask = backend == 'DaskDistributedBackend' astr = str(rec_algo) if using_dask: _logger.debug('pre-scattering algorithm %s', rec_algo) futures = loop._backend.client.scatter([rec_algo], broadcast=True, hash=False) rec_algo = _AlgoKey('future', futures[0]) elif njobs > 1: fd, path = tempfile.mkstemp(prefix='lkpy-predict', suffix='.pkl', dir=util.scratch_dir(joblib=True)) path = pathlib.Path(path) os.close(fd) _logger.debug('pre-serializing algorithm %s to %s', rec_algo, path) with sharing_mode(): dump(rec_algo, path) rec_algo = _AlgoKey('file', path) _logger.info('recommending with %s for %d users (n_jobs=%s)', astr, len(users), n_jobs) timer = util.Stopwatch() results = loop(delayed(_recommend_user)(rec_algo, user, n, candidates(user)) for user in users) if using_dask or dask_result: results = ddf.concat(results, interleave_partitions=True) if not dask_result: # only if we're running inside dask, but don't want results results = results.compute() else: results = pd.concat(results, ignore_index=True, copy=False) _logger.info('recommended for %d users in %s', len(users), timer) finally: util.delete_sometime(path) return results
print('======= DESAFIO 14 =======') c = float(input('Informe a temperatura em ºC: ')) f = ((9 * c) / 5) + 32 # também pode ser escrito sem parêntese nenhum: ordem de precedência! print('A temperatura de {:.1f}ºC corresponde a {:.1f}ºF!'.format(c, f))
from . import xlsx class XlsxImport(xlsx.XlsxImport): def handle(self): return self
from cradmin_legacy.crinstance import reverse_cradmin_url from cradmin_legacy import crapp from devilry.apps.core.models import Subject from devilry.devilry_cradmin import devilry_crinstance from devilry.devilry_admin.cradminextensions import devilry_crmenu_admin from devilry.devilry_admin.views.subject_for_period_admin import overview_for_periodadmin, subject_redirect from devilry.devilry_cradmin import devilry_crmenu class Menu(devilry_crmenu_admin.Menu): def build_menu(self): super(Menu, self).build_menu() subject = self.request.cradmin_role self.add_role_menuitem_object() self.add_subject_breadcrumb_item(subject=subject, active=True) def add_subject_breadcrumb_item(self, subject, active=False): return self.add_headeritem_object(devilry_crmenu.BreadcrumbMenuItem( label=subject.short_name, url=reverse_cradmin_url( instanceid='devilry_admin_subject_for_periodadmin', appname='overview', roleid=subject.id, viewname=crapp.INDEXVIEW_NAME ), active=active )) class CrAdminInstance(devilry_crinstance.BaseCrInstanceAdmin): menuclass = Menu roleclass = Subject apps = [ ('overview', overview_for_periodadmin.App), ('subject_redirect', subject_redirect.App) ] id = 'devilry_admin_subject_for_periodadmin' rolefrontpage_appname = 'overview' def get_rolequeryset(self): return Subject.objects.filter_user_is_admin_for_any_periods_within_subject(user=self.request.user) def get_titletext_for_role(self, role): """ Get a short title briefly describing the given ``role``. Remember that the role is a Subject. """ subject = role return subject @classmethod def matches_urlpath(cls, urlpath): return urlpath.startswith('/devilry_admin/subject_for_periodadmin') def get_devilryrole_for_requestuser(self): """ Only period admins will be redirected back to this crinstance """ return 'periodadmin'
import logging import os import textwrap import yaml from . import constants from .exceptions import DefinitionError from .steps import ( AdditionalBuildSteps, BuildContextSteps, GalaxyInstallSteps, GalaxyCopySteps, AnsibleConfigSteps ) from .utils import run_command, copy_file logger = logging.getLogger(__name__) # Files that need to be moved into the build context, and their naming inside the context CONTEXT_FILES = { 'galaxy': 'requirements.yml', 'python': 'requirements.txt', 'system': 'bindep.txt', } ALLOWED_KEYS = [ 'version', 'build_arg_defaults', 'dependencies', 'ansible_config', 'additional_build_steps', ] class AnsibleBuilder: def __init__(self, command_type=None, action=None, filename=constants.default_file, build_args=None, build_context=constants.default_build_context, tag=None, container_runtime=constants.default_container_runtime, output_filename=None, no_cache=False, verbosity=constants.default_verbosity): self.action = action self.definition = UserDefinition(filename=filename) self.tags = tag or [] self.build_context = build_context self.build_outputs_dir = os.path.join( build_context, constants.user_content_subfolder) self.container_runtime = container_runtime self.build_args = build_args or {} self.no_cache = no_cache self.containerfile = Containerfile( definition=self.definition, build_context=self.build_context, container_runtime=self.container_runtime, output_filename=output_filename) self.verbosity = verbosity @property def version(self): return self.definition.version @property def ansible_config(self): return self.definition.ansible_config def create(self): logger.debug('Ansible Builder is generating your execution environment build context.') return self.write_containerfile() def write_containerfile(self): # File preparation self.containerfile.create_folder_copy_files() # First stage, galaxy self.containerfile.prepare_galaxy_stage_steps() self.containerfile.prepare_ansible_config_file() self.containerfile.prepare_build_context() self.containerfile.prepare_galaxy_install_steps() # Second stage, builder self.containerfile.prepare_build_stage_steps() self.containerfile.prepare_galaxy_copy_steps() self.containerfile.prepare_introspect_assemble_steps() # Second stage self.containerfile.prepare_final_stage_steps() self.containerfile.prepare_prepended_steps() self.containerfile.prepare_galaxy_copy_steps() self.containerfile.prepare_system_runtime_deps_steps() self.containerfile.prepare_appended_steps() logger.debug('Rewriting Containerfile to capture collection requirements') return self.containerfile.write() @property def build_command(self): command = [ self.container_runtime, "build", "-f", self.containerfile.path ] for tag in self.tags: command.extend(["-t", tag]) for key, value in self.build_args.items(): if value: build_arg = f"--build-arg={key}={value}" else: build_arg = f"--build-arg={key}" command.append(build_arg) command.append(self.build_context) if self.no_cache: command.append('--no-cache') return command def build(self): logger.debug(f'Ansible Builder is building your execution environment image. Tags: {", ".join(self.tags)}') self.write_containerfile() run_command(self.build_command) return True class BaseDefinition: """Subclasses should populate these properties in the __init__ method self.raw - a dict that basically is the definition self.reference_path - the folder which dependencies are specified relative to """ @property def version(self): version = self.raw.get('version') if not version: raise ValueError("Expected top-level 'version' key to be present.") return str(version) @property def ansible_config(self): ansible_config = self.raw.get('ansible_config') if not ansible_config: pass else: return str(ansible_config) class UserDefinition(BaseDefinition): def __init__(self, filename): self.filename = filename self.reference_path = os.path.dirname(filename) try: with open(filename, 'r') as f: y = yaml.safe_load(f) self.raw = y if y else {} except FileNotFoundError: raise DefinitionError(textwrap.dedent(""" Could not detect '{0}' file in this directory. Use -f to specify a different location. """).format(filename)) except (yaml.parser.ParserError, yaml.scanner.ScannerError) as e: raise DefinitionError(textwrap.dedent(""" An error occured while parsing the definition file: {0} """).format(str(e))) if not isinstance(self.raw, dict): raise DefinitionError("Definition must be a dictionary, not {0}".format(type(self.raw).__name__)) if self.raw.get('dependencies') is not None: if not isinstance(self.raw.get('dependencies'), dict): raise DefinitionError(textwrap.dedent( f""" Error: Unknown type {type(self.raw.get('dependencies'))} found for dependencies, must be a dict.\n Allowed options are: {list(CONTEXT_FILES.keys())} """) ) # Populate build arg defaults, which are customizable in definition self.build_arg_defaults = {} user_build_arg_defaults = self.raw.get('build_arg_defaults', {}) if not isinstance(user_build_arg_defaults, dict): user_build_arg_defaults = {} # so that validate method can throw error for key, default_value in constants.build_arg_defaults.items(): self.build_arg_defaults[key] = user_build_arg_defaults.get(key, default_value) def get_additional_commands(self): """Gets additional commands from the exec env file, if any are specified. """ commands = self.raw.get('additional_build_steps') return commands def get_dep_abs_path(self, entry): """Unique to the user EE definition, files can be referenced by either an absolute path or a path relative to the EE definition folder This method will return the absolute path. """ req_file = self.raw.get('dependencies', {}).get(entry) if not req_file: return None if os.path.isabs(req_file): return req_file return os.path.join(self.reference_path, req_file) def validate(self): # Check that all specified keys in the definition file are valid. def_file_dict = self.raw yaml_keys = set(def_file_dict.keys()) invalid_keys = yaml_keys - set(ALLOWED_KEYS) if invalid_keys: raise DefinitionError(textwrap.dedent( f""" Error: Unknown yaml key(s), {invalid_keys}, found in the definition file.\n Allowed options are: {ALLOWED_KEYS} """) ) if self.raw.get('dependencies') is not None: dependencies_keys = set(self.raw.get('dependencies')) invalid_dependencies_keys = dependencies_keys - set(CONTEXT_FILES.keys()) if invalid_dependencies_keys: raise DefinitionError(textwrap.dedent( f""" Error: Unknown yaml key(s), {invalid_dependencies_keys}, found in dependencies.\n Allowed options are: {list(CONTEXT_FILES.keys())} """) ) for item in CONTEXT_FILES: requirement_path = self.get_dep_abs_path(item) if requirement_path: if not os.path.exists(requirement_path): raise DefinitionError("Dependency file {0} does not exist.".format(requirement_path)) build_arg_defaults = self.raw.get('build_arg_defaults') if build_arg_defaults: if not isinstance(build_arg_defaults, dict): raise DefinitionError( f"Error: Unknown type {type(build_arg_defaults)} found for build_arg_defaults; " f"must be a dict." ) unexpected_keys = set(build_arg_defaults.keys()) - set(constants.build_arg_defaults) if unexpected_keys: raise DefinitionError( f"Keys {unexpected_keys} are not allowed in 'build_arg_defaults'." ) for key, value in constants.build_arg_defaults.items(): user_value = build_arg_defaults.get(key) if user_value and not isinstance(user_value, str): raise DefinitionError( f"Expected build_arg_defaults.{key} to be a string; " f"Found a {type(user_value)} instead." ) additional_cmds = self.get_additional_commands() if additional_cmds: if not isinstance(additional_cmds, dict): raise DefinitionError(textwrap.dedent(""" Expected 'additional_build_steps' in the provided definition file to be a dictionary with keys 'prepend' and/or 'append'; found a {0} instead. """).format(type(additional_cmds).__name__)) expected_keys = frozenset(('append', 'prepend')) unexpected_keys = set(additional_cmds.keys()) - expected_keys if unexpected_keys: raise DefinitionError( f"Keys {*unexpected_keys,} are not allowed in 'additional_build_steps'." ) ansible_config_path = self.raw.get('ansible_config') if ansible_config_path: if not isinstance(ansible_config_path, str): raise DefinitionError(textwrap.dedent(""" Expected 'ansible_config' in the provided definition file to be a string; found a {0} instead. """).format(type(ansible_config_path).__name__)) class Containerfile: newline_char = '\n' def __init__(self, definition, build_context=None, container_runtime=None, output_filename=None): self.build_context = build_context self.build_outputs_dir = os.path.join( build_context, constants.user_content_subfolder) self.definition = definition if output_filename is None: filename = constants.runtime_files[container_runtime] else: filename = output_filename self.path = os.path.join(self.build_context, filename) self.container_runtime = container_runtime # Build args all need to go at top of file to avoid errors self.steps = [ "ARG EE_BASE_IMAGE={}".format( self.definition.build_arg_defaults['EE_BASE_IMAGE'] ), "ARG EE_BUILDER_IMAGE={}".format( self.definition.build_arg_defaults['EE_BUILDER_IMAGE'] ), ] def create_folder_copy_files(self): """Creates the build context file for this Containerfile moves files from the definition into the folder """ # courteously validate items before starting to write files self.definition.validate() os.makedirs(self.build_outputs_dir, exist_ok=True) for item, new_name in CONTEXT_FILES.items(): requirement_path = self.definition.get_dep_abs_path(item) if requirement_path is None: continue dest = os.path.join( self.build_context, constants.user_content_subfolder, new_name) copy_file(requirement_path, dest) if self.definition.ansible_config: copy_file( self.definition.ansible_config, os.path.join(self.build_outputs_dir, 'ansible.cfg') ) def prepare_ansible_config_file(self): ansible_config_file_path = self.definition.ansible_config if ansible_config_file_path: context_file_path = os.path.join( constants.user_content_subfolder, 'ansible.cfg') return self.steps.extend(AnsibleConfigSteps(context_file_path)) def prepare_prepended_steps(self): additional_prepend_steps = self.definition.get_additional_commands() if additional_prepend_steps: prepended_steps = additional_prepend_steps.get('prepend') if prepended_steps: return self.steps.extend(AdditionalBuildSteps(prepended_steps)) return False def prepare_appended_steps(self): additional_append_steps = self.definition.get_additional_commands() if additional_append_steps: appended_steps = additional_append_steps.get('append') if appended_steps: return self.steps.extend(AdditionalBuildSteps(appended_steps)) return False def prepare_build_context(self): if any(self.definition.get_dep_abs_path(thing) for thing in ('galaxy', 'system', 'python')): self.steps.extend(BuildContextSteps()) return self.steps def prepare_galaxy_install_steps(self): if self.definition.get_dep_abs_path('galaxy'): self.steps.extend(GalaxyInstallSteps(CONTEXT_FILES['galaxy'])) return self.steps def prepare_introspect_assemble_steps(self): # The introspect/assemble block is valid if there are any form of requirements if any(self.definition.get_dep_abs_path(thing) for thing in ('galaxy', 'system', 'python')): introspect_cmd = "RUN ansible-builder introspect --sanitize" requirements_file_exists = os.path.exists(os.path.join( self.build_outputs_dir, CONTEXT_FILES['python'] )) if requirements_file_exists: relative_requirements_path = os.path.join(constants.user_content_subfolder, CONTEXT_FILES['python']) self.steps.append(f"ADD {relative_requirements_path} {CONTEXT_FILES['python']}") # WORKDIR is /build, so we use the (shorter) relative paths there introspect_cmd += " --user-pip={0}".format(CONTEXT_FILES['python']) bindep_exists = os.path.exists(os.path.join(self.build_outputs_dir, CONTEXT_FILES['system'])) if bindep_exists: relative_bindep_path = os.path.join(constants.user_content_subfolder, CONTEXT_FILES['system']) self.steps.append(f"ADD {relative_bindep_path} {CONTEXT_FILES['system']}") introspect_cmd += " --user-bindep={0}".format(CONTEXT_FILES['system']) introspect_cmd += " --write-bindep=/tmp/src/bindep.txt --write-pip=/tmp/src/requirements.txt" self.steps.append(introspect_cmd) self.steps.append("RUN assemble") return self.steps def prepare_system_runtime_deps_steps(self): self.steps.extend([ "COPY --from=builder /output/ /output/", "RUN /output/install-from-bindep && rm -rf /output/wheels", ]) return self.steps def prepare_galaxy_stage_steps(self): self.steps.extend([ "", "FROM $EE_BASE_IMAGE as galaxy", "ARG ANSIBLE_GALAXY_CLI_COLLECTION_OPTS={}".format( self.definition.build_arg_defaults['ANSIBLE_GALAXY_CLI_COLLECTION_OPTS'] ), "USER root", "" ]) return self.steps def prepare_build_stage_steps(self): self.steps.extend([ "", "FROM $EE_BUILDER_IMAGE as builder" "", ]) return self.steps def prepare_final_stage_steps(self): self.steps.extend([ "", "FROM $EE_BASE_IMAGE", "USER root" "", ]) return self.steps def prepare_galaxy_copy_steps(self): if self.definition.get_dep_abs_path('galaxy'): self.steps.extend(GalaxyCopySteps()) return self.steps def write(self): with open(self.path, 'w') as f: for step in self.steps: f.write(step + self.newline_char) return True
from invoke import task import shutil from pathlib import Path @task def lint(c): c.run("isort --check winsnap", warn=True) c.run("black --check winsnap", warn=True) c.run("flake8 winsnap", warn=True) @task def format(c): c.run("isort winsnap", warn=True) c.run("black winsnap", warn=True) @task def bootstrap(c): import comtypes.client comtypes.client.GetModule(r"C:\\Windows\\System32\\UIAutomationCore.dll") @task(bootstrap) def package(c): windows = (Path(__file__) / ".." / "windows").resolve() if windows.exists(): shutil.rmtree(windows) c.run("briefcase create") c.run("briefcase build") # The first time it runs it fails but the next time it works. This is to bootstrap the uia # automation files for comtypes c.run("briefcase run", echo=False, warn=True) c.run("briefcase package") @task(package) def install(c): windows = (Path(__file__) / ".." / "windows").resolve() msi = list(windows.glob("*.msi"))[0] c.run(str(msi)) @task(bootstrap) def exe(c): c.run("pyinstaller winsnap.spec")
from time import time import numpy as np import cv2 as cv import win32gui, win32ui, win32con class Vision: # Attributes match_template_methods = list() normalized_match_template_methods = list() debug_modes = list() copper_ore_rgb = list() tin_ore_rgb = list() # --------------- Constructor def __init__(self): self.match_template_methods = [cv.TM_CCOEFF, cv.TM_CCOEFF_NORMED, cv.TM_CCORR, cv.TM_CCORR_NORMED, cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED] self.normalized_match_template_methods = [cv.TM_CCOEFF_NORMED, cv.TM_CCORR_NORMED, cv.TM_SQDIFF_NORMED] self.debug_modes = [None, 'rectangles', 'crosshairs', 'visual'] # Set colour codes self.copper_ore_rgb.extend([(255, 228, 154), (201, 163, 111), (149, 126, 86)]) self.tin_ore_rgb.extend([(92, 253, 152), (33, 147, 38), (59, 196, 119)]) # --------------- Methods # Method 1: Finding click positions based on the cv.matchTemplate() function def findClickPositions(self, haystack_img, needle_img, method=cv.TM_CCOEFF_NORMED, threshold=0.9, debug_mode=None): ''' This method performs the openCV.matchTemplate()-method, using the needle_img on the haystack_img. Heavily inspired and mostly inherited from: https://github.com/learncodebygaming/opencv_tutorials/blob/master/003_group_rectangles/main.py :param haystack_image: :param needle_image: :param threshold: :param debug_mode: :return click_points: ''' # Local constants group_threshold = 1 group_eps = 0.5 line_color = (0, 255, 0) line_type = cv.LINE_4 line_thickness = 2 marker_color = line_color marker_type = cv.MARKER_CROSS marker_size = 40 # Local variables needle_img_width = 0 needle_img_height = 0 rectangles = [] click_points = [] # Validate user inputs from parameters if method not in self.match_template_methods: method = self.match_template_methods[0] if debug_mode not in self.debug_modes: debug_mode = self.debug_modes[1] # We're already passing in image data from cv.imread(), get image shape now needle_img_width = needle_img.shape[0] needle_img_height = needle_img.shape[1] # Perform the matchTemplate function result_matrix = cv.matchTemplate(haystack_img, needle_img, method) # Grab positions from the match result matrix that exceed the given threshold locations = np.where(result_matrix >= threshold) # Transform the output from np.where to an array of tuples, containing our (X, Y) coordinates locations = list(zip(*locations[::-1])) # print('Found locations: {}'.format(len(locations))) # Create a list of rectangles out of the locations we found. Append each rectangle twice to escape the # cv.groupRectanges() function eliminating single rectangles, since we want them as well. for location in locations: rectangle = [int(location[0]), int(location[1]), needle_img_width, needle_img_height] rectangles.append(rectangle) rectangles.append(rectangle) # Group the rectangles so we get cleaner output rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=group_threshold, eps=group_eps) # print('Found rectangles: {}'.format(len(rectangles))) # Get the center point from each rectangle for (x_coordinate, y_coordinate, width, height) in rectangles: center_x = x_coordinate + int(width / 2) center_y = y_coordinate + int(height / 2) coordinate_tuple = (center_x, center_y) click_points.append(coordinate_tuple) # Draw rectangles if we're in rectangles-debug mode if debug_mode == self.debug_modes[1]: top_left = (x_coordinate, y_coordinate) bottom_right = (x_coordinate + width, y_coordinate + height) cv.rectangle(haystack_img, top_left, bottom_right, color=line_color, lineType=line_type, thickness=line_thickness) # Draw crosshairs if we're in crosshairs-debug mode elif debug_mode == self.debug_modes[2]: cv.drawMarker(haystack_img, (center_x, center_y), color=marker_color, marker_type=marker_type, markerSize=marker_size, thickness=line_thickness) # Show outputs if debug_mode: cv.imshow('Bot Vision', haystack_img) return click_points # Method 2: Return window handle, window_width and window_height of a given window def getWindowInfo(self, window_name='Albion Online Client'): # Local variables window_information = [] # Local variables window_handle = None window_width = None window_height = None # Try grabbing the albion online client window_handle and setting the width and height try: window_handle = win32gui.FindWindow(None, window_name) window_rectangle = win32gui.GetWindowRect(window_handle) window_width = window_rectangle[2] - window_rectangle[0] window_height = window_rectangle[3] - window_rectangle[1] except BaseException as exception: print('[VISION] Exception capturing a window_handle using win32gui.FindWindow()') print('[VISION] Exception info: ', exception) # Add results to the result array window_information.extend([window_handle, window_width, window_height]) return window_information # Method 3: Capturing the window from Albion and returning it in an openCV-understandable format def captureWindow(self, window_width, window_height, window_handle=None, debug_mode=False): # Parse out window handle - if it is none, we capture the whole desktop # IMPORTANT: To capture the Albion client, we need to set window_handle to None, since we only capture the # initial screenshot and never update it. See: https://www.youtube.com/watch?v=7k4j-uL8WSQ&list=PL1m2M8LQlzfKtkKq2lK5xko4X-8EZzFPI&t=132s if window_handle is None: window_handle = win32gui.GetDesktopWindow() # Get window device context - a structure that defines a set of graphic objects and their associated attributes # https://docs.microsoft.com/en-us/windows/win32/gdi/device-contexts window_device_context = win32gui.GetWindowDC(window_handle) device_context = win32ui.CreateDCFromHandle(window_device_context) compatible_device_context = device_context.CreateCompatibleDC() # Creates a bitmap out of the device context and convert it into a format openCV can read bitmap = win32ui.CreateBitmap() bitmap.CreateCompatibleBitmap(device_context, window_width, window_height) compatible_device_context.SelectObject(bitmap) compatible_device_context.BitBlt((0, 0), (window_width, window_height), device_context, (0, 0), win32con.SRCCOPY) bitmap_bits = bitmap.GetBitmapBits(True) img = np.frombuffer(bitmap_bits, dtype='uint8') img.shape = (window_height, window_width, 4) # Free resources device_context.DeleteDC() compatible_device_context.DeleteDC() win32gui.ReleaseDC(window_handle, window_device_context) win32gui.DeleteObject(bitmap.GetHandle()) # Drop alpha channel to avoid cv.matchTemplate() error img = img[..., :3] # Make image C_CONTIGUOUS to avoid typeErrors img = np.ascontiguousarray(img) if debug_mode: cv.imshow('Bot Vision', img) cv.waitKey() return img # Method 4: Showing the bot-vision def showBotVision(self, image, show_fps=True): cv.imshow('Bot Vision', image) if cv.waitKey(1) == ord('y'): cv.destroyAllWindows() return False
#!/usr/bin/env python """ Translate DNA reads from a fasta file. """ import sys import click from Bio import SeqIO from Bio.Seq import Seq from Bio.Alphabet import IUPAC, Gapped from flea.util import insert_gaps def _translate(record, gapped=False): result = record[:] if gapped: translated = record.seq.ungap('-').translate() result.seq = Seq(insert_gaps(str(record.seq), str(translated), '---', '-'), alphabet=Gapped(IUPAC.IUPACProtein)) else: result.seq = record.seq.translate() return result def translate(infile, outfile, gapped=False): alphabet=IUPAC.ambiguous_dna if gapped: alphabet = Gapped(alphabet) records = SeqIO.parse(infile, "fasta", alphabet=alphabet) result = (_translate(r, gapped) for r in records) SeqIO.write(result, outfile, "fasta") @click.command() @click.option('-g', '--gapped', is_flag=True, help='allow gaps') def main(gapped): translate(sys.stdin, sys.stdout, gapped) if __name__ == "__main__": main()
from selenium.webdriver.support.ui import Select class ContactHelper: def __init__(self, app): self.app = app def add_new_contact(self, contact): wd = self.app.wd # Нажимаем кнопку "Добавить контакт" wd.find_element_by_link_text("add new").click() # Заполняем поля wd.find_element_by_name("firstname").click() wd.find_element_by_name("firstname").send_keys(contact.first_name) wd.find_element_by_name("middlename").click() wd.find_element_by_name("middlename").send_keys(contact.middle_name) wd.find_element_by_name("lastname").click() wd.find_element_by_name("lastname").send_keys(contact.last_name) wd.find_element_by_name("nickname").click() wd.find_element_by_name("nickname").send_keys(contact.nickname) wd.find_element_by_name("title").click() wd.find_element_by_name("title").send_keys(contact.title) wd.find_element_by_name("theform").click() wd.find_element_by_name("company").click() wd.find_element_by_name("company").send_keys(contact.company) wd.find_element_by_name("address").click() wd.find_element_by_name("address").send_keys(contact.address) wd.find_element_by_name("home").click() wd.find_element_by_name("home").send_keys(contact.tel_home) wd.find_element_by_name("mobile").send_keys(contact.tel_mobile) wd.find_element_by_name("work").send_keys(contact.tel_work) wd.find_element_by_name("fax").send_keys(contact.tel_fax) wd.find_element_by_name("email").click() wd.find_element_by_name("email").send_keys(contact.email) wd.find_element_by_name("email2").send_keys(contact.email2) wd.find_element_by_name("email3").send_keys(contact.email3) wd.find_element_by_name("homepage").click() wd.find_element_by_name("homepage").send_keys(contact.homepage) # работа с выпадающими списками wd.find_element_by_name("bday").click() Select(wd.find_element_by_name("bday")).select_by_visible_text("1") wd.find_element_by_xpath("//option[@value='1']").click() wd.find_element_by_name("bmonth").click() Select(wd.find_element_by_name("bmonth")).select_by_visible_text("December") wd.find_element_by_xpath("//option[@value='December']").click() wd.find_element_by_name("byear").click() wd.find_element_by_name("byear").send_keys("2000") wd.find_element_by_name("aday").click() Select(wd.find_element_by_name("aday")).select_by_visible_text("1") wd.find_element_by_xpath("//div[@id='content']/form/select[3]/option[3]").click() wd.find_element_by_name("amonth").click() Select(wd.find_element_by_name("amonth")).select_by_visible_text("September") wd.find_element_by_xpath("//div[@id='content']/form/select[4]/option[10]").click() wd.find_element_by_name("byear").click() wd.find_element_by_name("ayear").click() wd.find_element_by_name("ayear").send_keys("2010") # Заполнение доп. полей wd.find_element_by_name("address2").click() wd.find_element_by_name("address2").send_keys(contact.address2) wd.find_element_by_name("phone2").click() wd.find_element_by_name("phone2").send_keys(contact.phone2) wd.find_element_by_name("notes").click() wd.find_element_by_name("notes").send_keys(contact.notes) # sumbit contact wd.find_element_by_xpath("//div[@id='content']/form/input[21]").click() self.return_to_home_page() def return_to_home_page(self): wd = self.app.wd wd.find_element_by_link_text("home page").click() def delete_first_contact(self): wd = self.app.wd # select first group wd.find_element_by_name("selected[]").click() # submit deletion wd.find_element_by_xpath("//input[@value='Delete']").click() wd.switch_to.alert.accept() def modify(self, contact): wd = self.app.wd # select first group wd.find_element_by_name("selected[]").click() # click edit wd.find_element_by_xpath("//img[@title='Edit']").click() # modify contact wd.find_element_by_name("firstname").click() wd.find_element_by_name("firstname").send_keys(contact.first_name) wd.find_element_by_name("middlename").click() wd.find_element_by_name("middlename").send_keys(contact.middle_name) wd.find_element_by_name("lastname").click() wd.find_element_by_name("lastname").send_keys(contact.last_name) # click update wd.find_element_by_name("update").click() self.return_to_home_page()
# -*- coding: utf-8 -*- # This example shows a simple calculation of SNOM contrast between two bulk materials: silicon and gold. from numpy import * from matplotlib.pyplot import * from NearFieldOptics import Materials as Mat from NearFieldOptics import TipModels as T ########################################################## #--- 1. Compute SNOM contrast of silicon relative to gold: # This uses `T.LightningRodModel` (the celebrated model # for SNOM, c.f. Phys. Rev. B 90, 085136.) to solve the # quasi-electrostatic scattering problem of a tip over # a planar sample and compute the scattered field and # demodulated "near-field signal". ########################################################## #mid-IR frequencies (in units of cm^-1) frequencies = linspace(700,1000,100) #The call signature for `T.LightningRodModel` is explicated below, # showing the meaning (in order) of the keyword arguments: # T.LightningRodModel(frequency, rp, tip radius, number q pts, # number z pts, tapping amplitude, normalization material, normalization frequency) S_lay_Si = T.LightningRodModel(frequencies,rp=Mat.Si.reflection_p,a=30,Nqs=244,\ Nzs=40,amplitude=80,normalize_to=Mat.Au.reflection_p,normalize_at=1000) ########################################################## #--- 2. Plot the results: # The computed arrays are of type `ArrayWithAxes` # and have a method `.plot(...)` which automatically # plots the array against its intrinsic axes. ########################################################## figure(); abs(S_lay_Si['signal_3']).plot() #The result is implicitly normalized to the signal from gold, # because of `normalize_to=...` in the calculation above. ylabel('s_3(Si)/s_3(Au)') show()
def main(): import argparse import re import traceback import requests from dlinkscraper import DLink parser = argparse.ArgumentParser( 'DuckDNS Updater', description= """This script updates your DuckDNS IPv4 address to scraped address from your D-Link router. Because in LTE routers, your visible public IP doesn't always match with IP that is needed to access you, we need to scrape it from router's admin page""" ) parser.add_argument('--token', '-t', type=str, required=True, help='Your DuckDNS token') parser.add_argument('--domain', '-d', type=str, required=True, help='Your DuckDNS domain') parser.add_argument( '--login', '-l', type=str, required=False, default='admin', help="Login to your router. It's always 'admin', so, yeah, " "you don't need to specify it...") parser.add_argument( '--password', '-p', type=str, required=True, help="Password to your router's admin" ) parser.add_argument( '--router-url', '-u', type=str, required=False, default='http://192.168.1.1', help="Base URL to you router. Usually something " "like 'http://192.168.1.1' (that's default)") parser.add_argument( '--no-cache', action='store_true', help="Don't cache and check last known IP. This is default behaviour, " "as it won't ping DuckDNS every time - only when IP changed") parser.add_argument( '--cache-file', type=str, required=False, default='last_ip.txt', help='Path to file where last known IP will be cached') args = parser.parse_args() dl = DLink(args.router_url) print('Logging in to router...') dl.login(args.login, args.password) print('Getting router main page...') dl.get_main_site() print('Logging out...') dl.logout() # Check if it's actually valid IP if dl.public_ip is None or not re.match(r'\d+\.\d+\.\d+\.\d+', dl.public_ip): print('Got invalid IP from router! Exit!') exit(-1) print('IP from router: ' + dl.public_ip) if not args.no_cache: print('Checking last known IP...') try: with open(args.cache_file, 'r') as f: saved_ip = f.read() print('Last IP: ' + saved_ip) except: saved_ip = 'error' print(f"Can't open cache file ({args.cache_file})") traceback.print_exc() if saved_ip == dl.public_ip: print('Last IP was the same :) Exit.') exit(0) else: print('IP changed!') req = requests.get( f'https://www.duckdns.org/update' f'?domains={args.domain}' f'&token={args.token}' f'&ip={dl.public_ip}' ) if req.ok and req.content.decode('utf-8') == 'OK': print('Updating IP success :)') if not args.no_cache: print('Saving current IP for later...') try: with open(args.cache_file, 'w') as f: f.write(dl.public_ip) except: print("Can't write cache file!") traceback.print_exc() print('Saving current IP success :)') exit(0) else: print('Updating IP failed!') exit(-1) if __name__ == '__main__': main()
import json import re import numpy as np from fastapi import FastAPI, HTTPException from .colours import random_hex from .identifiers import (catalogue_id_to_miro_id, valid_catalogue_ids, miro_id_to_identifiers, index_lookup) from .neighbours import get_neighbour_ids, palette_index from .palette_embedder import embed_hex_palette # initialise API app = FastAPI( title='Palette Similarity', description='Find similar images based on their colour, using approximate embeddings of euclidean distance in LAB space between 5-colour palettes', docs_url='/palette-similarity/docs', redoc_url='/palette-similarity/redoc' ) # create API endpoints @app.get('/works/{catalogue_id}') def palette_similarity_by_catalogue_id(catalogue_id: str, n: int = 10): catalogue_id = catalogue_id or np.random.choice(valid_catalogue_ids) if catalogue_id not in valid_catalogue_ids: raise HTTPException(status_code=404, detail="Invalid catalogue id") miro_id = catalogue_id_to_miro_id[catalogue_id] query_index = index_lookup[miro_id] query_embedding = np.array(palette_index[query_index]).reshape(1, -1) neighbour_ids = get_neighbour_ids( query_embedding, n, skip_first_result=True) return { 'original': miro_id_to_identifiers(miro_id), 'neighbours': [ miro_id_to_identifiers(miro_id) for miro_id in neighbour_ids ] } @app.get('/palette') def palette_similarity_by_palette(palette: list = None, n: int = 10): if palette: palette = json.loads(palette) else: palette = [random_hex() for _ in range(5)] if len(palette) != 5: raise HTTPException( status_code=422, detail='Palette must consist of 5 colours' ) for colour in palette: if not re.fullmatch(r'[A-Fa-f0-9]{6}', colour): raise HTTPException( status_code=422, detail=f'{colour} is not a valid hex colour' ) query_embedding = embed_hex_palette(palette) neighbour_ids = get_neighbour_ids(query_embedding, n) return { 'original': { 'palette': palette, }, 'neighbours': [ miro_id_to_identifiers(miro_id) for miro_id in neighbour_ids ] } @app.get('/healthcheck') def healthcheck(): return {'status': 'healthy'}
from pathlib import Path # Define path constant at import time PATH = Path(__file__).parent # Parent will fetch this files parent package
# Generated by Django 3.2.9 on 2021-12-31 13:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nezbank', '0002_auto_20211228_1743'), ] operations = [ migrations.AlterField( model_name='account', name='rate', field=models.DecimalField(decimal_places=2, max_digits=10, verbose_name='Средств на счете'), ), migrations.AlterField( model_name='accounttype', name='currency', field=models.CharField(max_length=50, verbose_name='Валюта'), ), migrations.AlterField( model_name='accounttype', name='value', field=models.DecimalField(decimal_places=2, max_digits=10, verbose_name='Курс'), ), ]
from selenium import webdriver from sys import platform as _platform import platform driver = "" opts = webdriver.ChromeOptions() opts.add_argument('headless') opts.add_argument('remote-debugging-port=9222') if _platform.startswith("linux"): driver = webdriver.Chrome(executable_path="webdrivers/chromedriver-linux", options=opts) elif _platform == "darwin": driver = webdriver.Chrome(executable_path="webdrivers/chromedriver-mac", options=opts) elif _platform == "win32" or _platform == "win64": driver = webdriver.Chrome(executable_path="webdrivers/chromedriver-windows.exe", options=opts) # driver.close()
## License: Apache 2.0. See LICENSE file in root directory. ## Copyright(c) 2017 Intel Corporation. All Rights Reserved. ##################################################### ## rs400 advanced mode tutorial ## ##################################################### # First import the library import pyrealsense2 as rs import time import json DS5_product_ids = ["0AD1", "0AD2", "0AD3", "0AD4", "0AD5", "0AF6", "0AFE", "0AFF", "0B00", "0B01", "0B03", "0B07"] def find_device_that_supports_advanced_mode() : ctx = rs.context() ds5_dev = rs.device() devices = ctx.query_devices(); for dev in devices: if dev.supports(rs.camera_info.product_id) and str(dev.get_info(rs.camera_info.product_id)) in DS5_product_ids: if dev.supports(rs.camera_info.name): print("Found device that supports advanced mode:", dev.get_info(rs.camera_info.name)) return dev raise Exception("No device that supports advanced mode was found") try: dev = find_device_that_supports_advanced_mode() advnc_mode = rs.rs400_advanced_mode(dev) print("Advanced mode is", "enabled" if advnc_mode.is_enabled() else "disabled") # Loop until we successfully enable advanced mode while not advnc_mode.is_enabled(): print("Trying to enable advanced mode...") advnc_mode.toggle_advanced_mode(True) # At this point the device will disconnect and re-connect. print("Sleeping for 5 seconds...") time.sleep(5) # The 'dev' object will become invalid and we need to initialize it again dev = find_device_that_supports_advanced_mode() advnc_mode = rs.rs400_advanced_mode(dev) print("Advanced mode is", "enabled" if advnc_mode.is_enabled() else "disabled") # Get each control's current value print("Depth Control: \n", advnc_mode.get_depth_control()) print("RSM: \n", advnc_mode.get_rsm()) print("RAU Support Vector Control: \n", advnc_mode.get_rau_support_vector_control()) print("Color Control: \n", advnc_mode.get_color_control()) print("RAU Thresholds Control: \n", advnc_mode.get_rau_thresholds_control()) print("SLO Color Thresholds Control: \n", advnc_mode.get_slo_color_thresholds_control()) print("SLO Penalty Control: \n", advnc_mode.get_slo_penalty_control()) print("HDAD: \n", advnc_mode.get_hdad()) print("Color Correction: \n", advnc_mode.get_color_correction()) print("Depth Table: \n", advnc_mode.get_depth_table()) print("Auto Exposure Control: \n", advnc_mode.get_ae_control()) print("Census: \n", advnc_mode.get_census()) #To get the minimum and maximum value of each control use the mode value: query_min_values_mode = 1 query_max_values_mode = 2 current_std_depth_control_group = advnc_mode.get_depth_control() min_std_depth_control_group = advnc_mode.get_depth_control(query_min_values_mode) max_std_depth_control_group = advnc_mode.get_depth_control(query_max_values_mode) print("Depth Control Min Values: \n ", min_std_depth_control_group) print("Depth Control Max Values: \n ", max_std_depth_control_group) # Set some control with a new (median) value current_std_depth_control_group.scoreThreshA = int((max_std_depth_control_group.scoreThreshA - min_std_depth_control_group.scoreThreshA) / 2) advnc_mode.set_depth_control(current_std_depth_control_group) print("After Setting new value, Depth Control: \n", advnc_mode.get_depth_control()) # Serialize all controls to a Json string serialized_string = advnc_mode.serialize_json() print("Controls as JSON: \n", serialized_string) as_json_object = json.loads(serialized_string) # We can also load controls from a json string # The C++ JSON parser requires double-quotes for the json object so we need # to replace the single quote of the pythonic json to double-quotes json_string = str(as_json_object).replace("'", '\"') advnc_mode.load_json(json_string) except Exception as e: print(e) pass
LINKS = { "GB_SAC_shape_file": "https://data.jncc.gov.uk/" + "data/52b4e00d-798e-4fbe-a6ca-2c5735ddf049/" + "GB-SAC-OSGB36-20190403.zip", # All below from: # https://environment.data.gov.uk/ecology/explorer/downloads/ # Data documentation (must read!) is here: # https://environment.data.gov.uk/ecology/explorer/docs/ "NFPD_FWfish_counts": "https://environment.data.gov.uk/" + "ecology/explorer/downloads/FW_Fish_Counts.zip", "NFPD_FWfish_banded_measurements": "https://environment" + ".data.gov.uk/ecology/explorer/downloads/" + "FW_Fish_Banded_Measurements.zip", "NFPD_FWfish_bulk_measurements": "https://environment" + ".data.gov.uk/ecology/explorer/downloads/" + "FW_Fish_Bulk_Measurements.zip", "NFPD_FWfish_data_types": "https://environment.data.gov.uk/" + "ecology/explorer/downloads/FW_Fish_Data_Types.zip", "Biosys_FWriver_macroinvertebrates": "https://environment" + ".data.gov.uk/ecology/explorer/downloads/INV_OPEN_DATA.zip", "Biosys_FWriver_macrophytes": "https://environment.data.gov" + ".uk/ecology/explorer/downloads/MACP_OPEN_DATA.zip", "Biosys_FWriver_diatoms": "https://environment.data.gov.uk/" + "ecology/explorer/downloads/DIAT_OPEN_DATA.zip", "Biosys_FWriver_taxon_info": "https://environment.data.gov" + ".uk/ecology/explorer/downloads/OPEN_DATA_TAXON_INFO.zip", } UNZIPPED_FILES = { "GB_SAC_shape_file": [ "GB_SAC_OSGB36_20191031.shp", "GB_SAC_OSGB36_20191031.shx", ], "NFPD_FWfish_counts": ["FW_Fish_Counts.csv"], "NFPD_FWfish_banded_measurements": [ "FW_Fish_Banded_Measurements.csv", ], "NFPD_FWfish_bulk_measurements": [ "FW_Fish_Bulk_Measurements.csv", ], "NFPD_FWfish_data_types": [ "FW_Fish_Data_Types.csv", ], "Biosys_FWriver_macroinvertebrates": [ "INV_OPEN_DATA_METRICS.csv", "INV_OPEN_DATA_SITE.csv", "INV_OPEN_DATA_TAXA.csv", ], "Biosys_FWriver_macrophytes": [ "MACP_OPEN_DATA_METRICS.csv", "MACP_OPEN_DATA_SITE.csv", "MACP_OPEN_DATA_TAXA.csv", ], "Biosys_FWriver_diatoms": [ "DIAT_OPEN_DATA_METRICS.csv", "DIAT_OPEN_DATA_SITE.csv", "DIAT_OPEN_DATA_TAXA.csv", ], "Biosys_FWriver_taxon_info": [ "OPEN_DATA_TAXON_INFO.csv", ], }
from .shelves import LSMShelf, Shelf from .dict import LSMDict
# -*- coding:utf-8 -*- # !/usr/bin/env python3 """ """ __all__ = ['issquare'] def issquare(n): """ :param n: :return: >>> issquare(256) True >>> issquare(255) False """ i = 1 while n > 0: n -= i i += 2 return n == 0 if __name__ == '__main__': import doctest doctest.testmod()
import password_strength as pwd from django.core.validators import BaseValidator from django.utils.translation import gettext, ungettext_lazy class PolicyBaseValidator(BaseValidator): def js_requirement(self): return {} class PolicyMinLengthValidator(PolicyBaseValidator): message = ungettext_lazy( 'Ensure this value has at least %(limit_value)d character (it has %(show_value)d).', 'Ensure this value has at least %(limit_value)d characters (it has %(show_value)d).', 'limit_value') code = 'min_value' def __init__(self, *args, **kwargs): super(PolicyMinLengthValidator, self).__init__(*args, **kwargs) def clean(self, value): return pwd.PasswordStats(value).length def compare(self, value, limit_value): return value < limit_value def js_requirement(self): return {'minlength': { 'minLength': self.limit_value, 'text': gettext('be at least minLength characters long'), }} class PolicyContainSpecialCharsValidator(PolicyBaseValidator): message = ungettext_lazy( 'Your input should contain at least %(limit_value)d special character (it has %(show_value)d).', 'Your input should contain at least %(limit_value)d special characters (it has %(show_value)d).', 'limit_value') code = 'special_length' def __init__(self, *args, **kwargs): super(PolicyContainSpecialCharsValidator, self).__init__(*args, **kwargs) def clean(self, value): return pwd.PasswordStats(value).special_characters def compare(self, value, limit_value): return value < limit_value def js_requirement(self): return {'containSpecialChars': { 'minLength': self.limit_value, 'text': gettext('Your input should contain at least minLength special character'), 'regex': "([^!%&@#$^*?_~])", 'regex_flags': 'g' }} class PolicyContainLowercaseValidator(PolicyBaseValidator): message = ungettext_lazy( 'Your input should contain at least %(limit_value)d lower case character (it has %(show_value)d).', 'Your input should contain at least %(limit_value)d lower case characters (it has %(show_value)d).', 'limit_value') code = 'lowercase_length' def __init__(self, *args, **kwargs): super(PolicyContainLowercaseValidator, self).__init__(*args, **kwargs) def clean(self, value): return pwd.PasswordStats(value).letters_lowercase def compare(self, value, limit_value): return value < limit_value def js_requirement(self): return {'containLowercase': { 'minLength': self.limit_value, 'regex': '[^a-z]', 'regex_flags': 'g', 'text': gettext("Your input should contain at least minLength lower case character") }} class PolicyContainUppercaseValidator(PolicyBaseValidator): message = ungettext_lazy( 'Your input should contain at least %(limit_value)d upper case character (it has %(show_value)d).', 'Your input should contain at least %(limit_value)d upper case characters (it has %(show_value)d).' 'limit_value') code = 'uppercase_length' def __init__(self, *args, **kwargs): super(PolicyContainUppercaseValidator, self).__init__(*args, **kwargs) def clean(self, value): return pwd.PasswordStats(value).letters_uppercase def compare(self, value, limit_value): return value < limit_value def js_requirement(self): return {'containUppercase': { 'minLength': self.limit_value, 'regex': '[^A-Z]', 'regex_flags': 'g', 'text': gettext("Your input should contain at least minLength upper case character") }} class PolicyContainNumbersValidator(PolicyBaseValidator): message = ungettext_lazy( 'Your input should contain at least %(limit_value)d number (it has %(show_value)d).', 'Your input should contain at least %(limit_value)d numbers (it has %(show_value)d).', 'limit_value') code = 'number_length' def __init__(self, *args, **kwargs): super(PolicyContainNumbersValidator, self).__init__(*args, **kwargs) def clean(self, value): return pwd.PasswordStats(value).numbers def compare(self, value, limit_value): return value < limit_value def js_requirement(self): return {'containNumbers': { 'minLength': self.limit_value, 'regex': '[^0-9]', 'regex_flags': 'g', 'text': gettext("Your input should contain at least minLength number") }}
from nltk.corpus import stopwords from nltk.tokenize import TweetTokenizer from nltk.stem.wordnet import WordNetLemmatizer def remove_stopwords(words): return [word for word in words if word not in stopwords.words('english')] def lemmatize(words): words = [WordNetLemmatizer().lemmatize(word, pos='n') for word in words] words = [WordNetLemmatizer().lemmatize(word, pos='v') for word in words] words = [WordNetLemmatizer().lemmatize(word, pos='a') for word in words] return words def tokenize_twitter(text): return TweetTokenizer().tokenize(text) def tokenize(text): return remove_stopwords(lemmatize(tokenize_twitter(text)))
#!/usr/bin/env python # coding: utf-8 import csv import random import datetime # Global data parameters product_data = 'product_data.txt' prod_availability = [[0.8, 0.85, 0.7, 0.6], [0.6, 0.75, 0.98], [0.85, 0.6], 1] street_data = ['Athens_streets.txt', 'Thessaloniki_streets.txt', 'Volos_streets.txt'] cities = ['Athens', 'Thessaloniki', 'Volos'] city_weights = [5, 3, 2] postal_codes = [range(11850,11860), range(54620,54625), range(38222,38225)] aisles = 5 shelves = 3 online_store = 10 stores_by_loc = [[1,2,3,4],[5,6,7],[8,9]] working_hours = [*[[8,21]]*5, [9,20]] working_hours_str = ['Mon-Fri: 08-21, Sat: 09-20, Sun: CLOSED', 'Mon-Sun: OPEN 24h'] area = [[400, 500, 320, 250], [240, 350, 1000], [500, 250], 'NULL'] first_reg_date = datetime.date(2019,1,1) last_reg_date = datetime.date(2020,5,1) first_birth_date = datetime.date(1945,1,1) last_birth_date = datetime.date(2000,1,1) first_price_date = datetime.date(2019,1,2) last_price_date = datetime.date(2020,6,1) max_price_changes = 10 reg_customers = 200 unreg_customers = 100 # Import product data from product_data.txt # Products belonging to different categories are separated by an empty line # and a line '===== {Category_name} =====' product_name = [] product_price = [] product_category = [] cat = 0 fp = open(product_data, 'r') line = fp.readline() while line: if line != '\n': tokens = line.split(',') if (tokens[0][0] != '='): product_category.append(cat) product_name.append(tokens[0]) product_price.append(float(tokens[1])) else: cat += 1 line = fp.readline() fp.close() # random.sample returns unique elements # barcodes need to be sorted so that product weights remain valid product_barcode = sorted(random.sample(range(10**12,10**13),len(product_name))) # Read street names from txt files and save them in a dictionary city_dict = {} for street_file,city,ps in zip(street_data, cities, postal_codes): city_dict[city] = {} with open(street_file,'r') as f: city_dict[city]['Streets'] = [] line = f.readline() while(line): if line: city_dict[city]['Streets'].append(line.replace(' \n','')) line = f.readline() city_dict[city]['Postal_codes'] = ps def generate_random_datetime(start_datetime, end_datetime): date_delta = (end_datetime - start_datetime).days time_delta = (end_datetime - start_datetime).seconds if not date_delta: random_date = start_datetime + datetime.timedelta(seconds = random.randrange(time_delta)) elif not time_delta: random_date = start_datetime + datetime.timedelta(days = random.randrange(date_delta)) else: random_date = start_datetime + datetime.timedelta(days = random.randrange(date_delta), seconds = random.randrange(time_delta)) return random_date def generate_random_sorted_dates(start_date, end_date, count): days_between_dates = (end_date - start_date).days # Make sure that "count" random days can be returned if (end_date - start_date).days < count: return False # Generate random dates until the number of unique random dates equals to count" while True: random_dates = [] for i in range(count): random_dates.append(generate_random_datetime(start_date, end_date)) sorted_unique_dates = sorted(set(random_dates)) if len(sorted_unique_dates) == count: return sorted_unique_dates # Generate a timestamp for a given date at which a transaction is possible # The online store (store_id == 10) is open 24/7 # The physical stores are open Mon-Fri: 8-21 and Sat: 9-20 def generate_random_working_datetime(date, store): if store == online_store: time = datetime.time(hour = random.randrange(0,23), minute = random.randrange(0,60), second = random.randrange(0,60)) else: day = date.weekday() if day < len(working_hours): opening = working_hours[day][0] closing = working_hours[day][1] time = datetime.time(hour = random.randrange(opening,closing-1), minute = random.randrange(0,60), second = random.randrange(0,60)) else: raise ValueError('The chosen store is closed at the given date') return datetime.datetime.combine(date, time) # Generate a pseudo-random price history consisting of a number of changes def generate_price_history(start_price, changes): price_hist_arr = [start_price] for i in range(changes): price_hist_arr.append(round(price_hist_arr[i]*random.uniform(0.8, 1.2),2)) if (random.random() < 0.1): price_hist_arr[-1] = "NULL" return price_hist_arr # Retrieve the product price that was valid at the date the transaction occured def get_current_price(price_info_dict, shop_date): for pr,sd,ed in zip(price_info_dict['Price'], price_info_dict['Start_date'], price_info_dict['End_date']): if sd <= shop_date: if ed == 'NULL': return pr elif ed > shop_date: return pr raise ValueError('The product had no valid price at the given date') # Choose the next store and shooping according to the shopping profile of each customer # freq represents how often a customer shops on average # store_pool are the stores the customer shops from def get_next_date_store(previous_date, freq, store_pool, store_weight): new_date = previous_date + datetime.timedelta(days = random.randrange(max(0,freq-2),freq+2)) chosen_store = random.choices(store_pool, weights = store_weight)[0] while True: # Online store is open every weekday and transactions can be performed # Physical stores are closed on Sundays (weekday 6) if chosen_store == online_store: # Accept every new date shop_date = new_date return shop_date, chosen_store else: if new_date.weekday() < len(working_hours): # Accept all weekdays except Sunday shop_date = new_date return shop_date, chosen_store new_date = previous_date + datetime.timedelta(days = random.randrange(max(0,freq-2),freq+2)) # Generate pseudo-random products for a specific transaction using the fuctions specified above # average_items shows the average number of items a specific customer buys # prod_weight shows the customer's preference for the offered products def generate_items(barcodes, average_items, price_dict, shop_date, prod_weight): transaction_items = random.randint(max(1,average_items-5),average_items+5) chosen_products = random.choices(barcodes, k = transaction_items, weights = prod_weight) chosen_prod_dict = dict((x, dict(quantity = chosen_products.count(x))) for x in set(chosen_products)) for b,info in chosen_prod_dict.items(): info['price'] = get_current_price(price_dict[b], shop_date) # Keep only the products that have a valid price at transaction date temp_dict = {} for b,info in chosen_prod_dict.items(): if info['price'] != 'NULL': temp_dict[b] = info return temp_dict # Generete a shopping profile for each customer def generate_prod_weights(shop_profile, pet, all_barcodes, barcodes_in_store): # Profile: Fit single # Shops mainly fresh and refrigerated products, some personal care and less liquor and homeware if shop_profile < 0.15: prod_weight = [10]*37 + [8]*32 + [2]*26 + [4]*17 + [1]*18 # Profile: Lazy single # Shops mainly refrigerated and personal care, some vegetables and liquor and less homeware elif shop_profile < 0.4: prod_weight = [4]*37 + [8]*32 + [3]*26 + [6]*17 + [1]*18 # Profile: Family guy # Shops mainly fresh and refrigerated products and personal care, some liquor and homeware else: prod_weight = [10]*37 + [8]*32 + [2]*26 + [7]*17 + [2]*18 if pet == 'dog': prod_weight += [5]*4 + [0]*8 elif pet == 'cat': prod_weight += [0]*4 + [5]*5 + [0]*3 elif pet == 'parrot': prod_weight += [0]*9 + [5]*3 else: prod_weight += [0]*12 # Keep only the weights for the products sold in the chosen store weights_in_store = [] for b,w in zip(all_barcodes,prod_weight): if b in barcodes_in_store: weights_in_store.append(w) return weights_in_store # Define the number and ID of the stores a specific customer shops from def generate_store_preference(store_profile): stores = 0 for sub_arr in stores_by_loc: stores += len(sub_arr) if store_profile < 0.55: # Customer shops from only one physical store store_pref = [random.randint(stores_by_loc[0][0],stores_by_loc[-1][-1])] store_prob = [1] elif store_profile < 0.7: # Customer shops from one physical store and online store_pref = [random.randint(stores_by_loc[0][0],stores_by_loc[-1][-1]), online_store] rand = random.uniform(0.7,0.95) store_prob = [rand, 1-rand] elif store_profile < 0.8: # Customer shops from 2 physical stores store_pref = random.sample(stores_by_loc[random.randint(0,len(stores_by_loc)-1)], k = 2) rand = random.uniform(0.7,0.95) store_prob = [rand, 1-rand] elif store_profile < 0.9: # Customer shops from 2 physical stores + online store_pref = [*random.sample(stores_by_loc[random.randint(0,len(stores_by_loc)-1)], k = 2), online_store] rand_1 = random.uniform(0.6, 0.8) rand_2 = random.uniform(0.05, 0.15) store_prob = [rand_1, rand_2, 1 - rand_1 - rand_2] else: # Customer shops only online store_pref = [online_store] store_prob = [1] return store_pref, store_prob def generate_random_address(city): address_dict = {} address_dict['Street'] = random.choice(city_dict[city]['Streets']) address_dict['Number'] = random.randint(1,200) address_dict['Postal_code'] = random.choice(city_dict[city]['Postal_codes']) address_dict['City'] = city return address_dict # Save store information in a dictionary # Add information for physical stores store_dict = {} for store_team, area_team, city in zip(stores_by_loc, area, cities): for s,a in zip(store_team, area_team): store_dict[s] = {} store_dict[s]['Area'] = a store_dict[s]['Opening_hours'] = working_hours_str[0] store_dict[s]['Address'] = generate_random_address(city) # Add information for the online store, assuming it is co-located with the first store store_dict[online_store] = {} store_dict[online_store]['Area'] = 'NULL' store_dict[online_store]['Opening_hours'] = working_hours_str[1] store_dict[online_store]['Address'] = store_dict[stores_by_loc[0][0]]['Address'] # Information for the price history of a product price_hist_dict = { b: { 'Price':[p], 'Start_date':[first_reg_date], 'End_date':[] } for b,p in zip(product_barcode, product_price) } for key, val in price_hist_dict.items(): price_change_dates = generate_random_sorted_dates(first_price_date,last_price_date, random.randint(0,max_price_changes)) price_hist = generate_price_history(val['Price'][0], len(price_change_dates)) price_hist_dict[key]['Price'] = price_hist price_hist_dict[key]['Start_date'] += price_change_dates price_hist_dict[key]['End_date'] = price_change_dates + ['NULL'] # Generate pseudo-random information for many customers and save them to a dictionary while True: card_id = [random.randint(10**7, 10**8) for i in range(reg_customers)] if len(card_id) == len(list(set(card_id))): break customer_name = ['Customer-{}'.format(i) for i in range(reg_customers)] customer_sex = ['M' if random.random() < 0.5 else 'F' for i in range(reg_customers)] reg_date = [generate_random_datetime(first_reg_date, last_reg_date) for i in range(reg_customers)] customer_dob=[generate_random_datetime(first_birth_date,last_birth_date) for i in range(reg_customers)] pet = [] for i in range(reg_customers): rand = random.random() if rand < 0.2: pet.append('dog') elif rand < 0.3: pet.append('cat') elif rand < 0.35: pet.append('parrot') else: pet.append('NULL') customer_dict = { card: { 'Name': n, 'Sex': s, 'Points': 0, 'Registration_date': d, 'Pet': p, 'DoB': dob, } for (card,n,s,d,p,dob) in zip(card_id, customer_name, customer_sex, reg_date, pet, customer_dob ) } offers_dict = {} for store_team, avail_team in zip(stores_by_loc, prod_availability): for s,av in zip(store_team, avail_team): offers_dict[s] = {} for b in random.sample(product_barcode, int(len(product_barcode)*av)): offers_dict[s][b] = { 'Aisle': random.randint(1,aisles), 'Shelf': random.randint(1,shelves) } offers_dict[online_store] = {} for b in random.sample(product_barcode, int(len(product_barcode)*prod_availability[-1])): offers_dict[online_store][b] = { 'Aisle': 'NULL', 'Shelf': 'NULL' } # Generate pseudo-random transactions for all customers taking into account each customers profile # (shop_freq, average_items, pet, shop_profile, payment_profile, store_pref, store_prob) # as well as the availability of products at the chose store the chosen date # and the price at the transaction date transaction_dict = {} for i in range(reg_customers): shop_freq = random.randint(2,8) average_items = random.randint(5,20) customer_id = card_id[i] reg_date = customer_dict[customer_id]['Registration_date'] pet = customer_dict[customer_id]['Pet'] shop_profile = random.random() payment_profile = random.random() store_pref, store_prob = generate_store_preference(random.random()) points = 0 # 1 point is given for 3 euros spent (no rewards are assumed) # Start from registration date (or the next few days) and until last_price_date shop_date, chosen_store = get_next_date_store(reg_date, 0, store_pref, store_prob) while shop_date < last_price_date: transaction_id = random.randint(10**12, 10**13) payment_method = 'cash' if random.random() < payment_profile else 'credit_card' barcode_in_store = sorted(list(offers_dict[chosen_store].keys())) barcode_weight = generate_prod_weights(shop_profile, pet, product_barcode, barcode_in_store) shopped_prod = generate_items(barcode_in_store, average_items, price_hist_dict, shop_date, barcode_weight) amount = 0 quantity = [] for key,val in shopped_prod.items(): amount += val['price'] * val['quantity'] quantity.append(val['quantity']) points += int(amount/3) total_pieces = sum(quantity) # Save all information on a dictionary transaction_dict[transaction_id] = { 'timestamp': generate_random_working_datetime(shop_date, chosen_store), 'store_id': chosen_store, 'card_id': customer_id, 'payment_method': payment_method, 'products': list(shopped_prod.keys()), 'quantity': quantity, 'total_amount': amount, 'total_pieces': total_pieces } shop_date, chosen_store = get_next_date_store(shop_date, shop_freq, store_pref, store_prob) customer_dict[customer_id]['Points'] = points # The store a customer mainly shops from shows the place they live in # Assume weighted distribution for customers who shop only online if store_pref[0] < 5: customer_dict[customer_id]['Address'] = generate_random_address('Athens') elif store_pref[0] < 8: customer_dict[customer_id]['Address'] = generate_random_address('Thessaloniki') elif store_pref[0] < 10: customer_dict[customer_id]['Address'] = generate_random_address('Volos') else: customer_dict[customer_id]['Address'] = generate_random_address(random.choices(['Athens','Thessaloniki','Volos'], weights = [5, 3, 2], k = 1)[0]) # Repeat the previous procedure, but assume that the customers are not registered and have no personal card # As a result no customer information can be kept # Assume that they have similar habits with registered customers for i in range(unreg_customers): shop_freq = random.randint(2,8) average_items = random.randint(5,20) reg_date = first_reg_date pet = customer_dict[card_id[i]]['Pet'] shop_profile = random.random() store_pref, store_prob = generate_store_preference(random.random()) shop_date, chosen_store = get_next_date_store(reg_date, 0, store_pref, store_prob) while shop_date < last_price_date: transaction_id = random.randint(10**12, 10**13) payment_method = 'cash' if random.random() < 0.4 else 'credit_card' barcode_in_store = sorted(list(offers_dict[chosen_store].keys())) barcode_weight = generate_prod_weights(shop_profile, pet, product_barcode, barcode_in_store) shopped_prod = generate_items(barcode_in_store, average_items, price_hist_dict, shop_date, barcode_weight) amount = 0 quantity = [] for key,val in shopped_prod.items(): amount += val['price'] * val['quantity'] quantity.append(val['quantity']) total_pieces = sum(quantity) transaction_dict[transaction_id] = { 'card_id': 'NULL', 'timestamp': generate_random_working_datetime(shop_date, chosen_store), 'store_id': chosen_store, 'payment_method': payment_method, 'products': list(shopped_prod.keys()), 'quantity': quantity, 'total_amount': amount, 'total_pieces': total_pieces } shop_date, chosen_store = get_next_date_store(shop_date, shop_freq, store_pref, store_prob) # Save all the generated data at csv files so it can be imported to the SQL database with open('csv_files/store.csv','w') as store_csv: store_writer = csv.writer(store_csv, delimiter=',', quotechar='"') store_writer.writerow(['store_id','area','street_name','street_number','postal_code','city','opening_hours']) for key,val in store_dict.items(): store_writer.writerow([key, val['Area'], val['Address']['Street'], val['Address']['Number'], val['Address']['Postal_code'], val['Address']['City'], val['Opening_hours']]) with open('csv_files/product.csv', 'w') as data_csv: data_writer = csv.writer(data_csv, delimiter=',', quotechar='"') data_writer.writerow(['barcode','name','label','current_price','category_id']) for c,b,n in zip(product_category, product_barcode, product_name): p = price_hist_dict[b]['Price'][-1] data_writer.writerow([b,n,random.randint(0,1),p,c]) with open('csv_files/price.csv', 'w') as hist_csv: hist_writer = csv.writer(hist_csv, delimiter = ',', quotechar = '"') hist_writer.writerow(['barcode', 'start_date', 'end_date', 'amount']) for key,val in price_hist_dict.items(): for i in range(len(val['Price'])): hist_writer.writerow([key, val['Start_date'][i], val['End_date'][i], val['Price'][i]]) with open('csv_files/customer.csv', 'w') as customer_csv: customer_writer = csv.writer(customer_csv, delimiter = ',', quotechar = '"') customer_writer.writerow(['card_id','name','reg_date','points','pet','sex','date_of_birth','street', 'number','postal_code','city']) for key,val in customer_dict.items(): customer_writer.writerow([key, val['Name'], val['Registration_date'], val['Points'], val['Pet'], val['Sex'], val['DoB'], val['Address']['Street'], val['Address']['Number'], val['Address']['Postal_code'], val['Address']['City']]) with open('csv_files/offers_products.csv', 'w') as offers_csv: offers_writer = csv.writer(offers_csv, delimiter = ',', quotechar = '"') offers_writer.writerow(['store_id','barcode','aisle','shelf']) for store,loc_dict in offers_dict.items(): for barcode,val in loc_dict.items(): offers_writer.writerow([store, barcode, val['Aisle'], val['Shelf']]) with open('csv_files/transaction.csv', 'w') as transaction_csv: transaction_writer = csv.writer(transaction_csv, delimiter = ',', quotechar = '"') transaction_writer.writerow(['transaction_id','total_amount','payment_method','timestamp','total_pieces', 'store_id','card_id']) for key,val in transaction_dict.items(): transaction_writer.writerow([key, '{:.2f}'.format(val['total_amount']), val['payment_method'], val['timestamp'], val['total_pieces'], val['store_id'], val['card_id']]) with open('csv_files/buy_products.csv', 'w') as buy_csv: buy_writer = csv.writer(buy_csv, delimiter = ',', quotechar = '"') buy_writer.writerow(['transaction_id','barcode','quantity']) for key,val in transaction_dict.items(): for b,q in zip(val['products'], val['quantity']): buy_writer.writerow([key, b, q]) category_name = ['Fresh products','Refrigerated products','Liquor','Personal care','Homeware','Pet products'] with open('csv_files/categories.csv', 'w') as categ_csv: categ_writer = csv.writer(categ_csv, delimiter = ',', quotechar = '"') categ_writer.writerow(['category_id','category_name']) for cid,cname in zip(range(1,7),category_name): categ_writer.writerow([cid, cname])
#!env python from functools import wraps import time import collections import threading import enum import json from threading import Event from threading import Lock from itertools import count import numpy as np import logging import queue from threading import RLock as Lock import argparse import exceptions ############# ## Globals ## ############# TIMEOUT_IN_SECONDS = None #600 POLL_SLEEP_MS = 100 REPORT_INTERVAL = 1 PLACEMENT_PERIOD = 2 DUMMY_EXEC_LATENCY = 0.000 DUMMY_LOAD_LATENCY = 0.000 DUMMY_UNLOAD_LATENCY = 0 KEEP_ALIVE_IN_SECONDS = 2 PLACEMENT_POLL_INTERVAL = 0.1 MODEL_INFO_FRESHNESS = 5. ############# ############# ############## ## Prefixes ## ############## KEYSPACE_PREFIX = "__keyspace@0__:" DB_FIELD_SEPARATOR = ":" UPDATING_FLAG_NAME = "updating_metrics" PLACEMENT_REQUEST_KEY = "requested-placements" WORKER_URL_KEY = "workers" MODEL_NAME_KEY = "models" MODEL_PLACEMENT_PREFIX = f"model-placement{DB_FIELD_SEPARATOR}" WORKER_PREFIX = f"worker{DB_FIELD_SEPARATOR}" MODEL_PREFIX = f"model{DB_FIELD_SEPARATOR}" STAT_PREFIX = f"statistic{DB_FIELD_SEPARATOR}" WORKER_STAT_PREFIX = f"{STAT_PREFIX}worker{DB_FIELD_SEPARATOR}" MODEL_STAT_PREFIX = f"{STAT_PREFIX}model{DB_FIELD_SEPARATOR}" ############## ############## def getLogger(identifier=None, hide_debug=False): #return logging.getLogger() logFormatter = logging.Formatter(f"%(threadName)s %(asctime)s [%(levelname)-5.5s] %(message)s") consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) logger = logging.getLogger() logger.addHandler(consoleHandler) if hide_debug: logger.setLevel(logging.INFO) else: logger.setLevel(logging.DEBUG) logger.setLevel(logging.WARNING) return logger def getParser(add_help=True, *args, **kwargs): parser = argparse.ArgumentParser(add_help=add_help) parser.add_argument('--redis_server', default="redis-server", help='Redis Server name') parser.add_argument('--redis_port', default=6379, type=int, help='Redis Server port') parser.add_argument('--workload_file', default="workload/workload.txt") parser.add_argument('--model_description_file', default="workload/models.json") parser.add_argument('--rng_seed', default=None, type=int, help="RNG Seed. Default is no seed.") ## Options that may affect multiple containers parser.add_argument('--max_concurrent_models', default=2, type=int, help="Maximum number of models that can be loaded at once") parser.add_argument('--num_workers_to_add', default=1, type=int, help="Number of workers to add to the system") parser.add_argument('--worker_memory', default=100, type=float, help="Amount of memory on each worker. (In reality would be per-worked, but this is for the simulation.)") parser.add_argument('--dummy_load', action="store_true", help="Set to true to use a dummy load, with no loading or unloading of models or inferences.") return parser def fixWorkerURL(worker_url): if not ":" in worker_url: worker_url += ":50051" return worker_url def stripWorkerURL(worker_url): if ":" in worker_url: worker_url = worker_url[:worker_url.index(':')] return worker_url def timing(f): @wraps(f) def wrap(*args, **kw): ts = time.time() result = f(*args, **kw) te = time.time() logging.info(f"TIMING: {f.__name__}({[str(i)[:100] for i in args], kw}): {te-ts}s") return result return wrap def gather_info(f): @wraps(f) def wrap(*args, **kw): ts = time.time() result = f(*args, **kw) te = time.time() logging.info(f"STATISTICS: {f.__name__}({[str(i)[:100] for i in args], kw}): {te-ts}s") return result return wrap def getData(img=None, format="FORMAT_NCHW", dtype=np.float32, c=3, h=224, w=224, scaling="INCEPTION", model="resnet"): """ Pre-process an image to meet the size, type and format requirements specified by the parameters. """ #np.set_printoptions(threshold='nan') from PIL import Image if img is None: img = Image.open("mug.jpg") if c == 1: sample_img = img.convert('L') else: sample_img = img.convert('RGB') resized_img = sample_img.resize((w, h), Image.BILINEAR) resized = np.array(resized_img) if resized.ndim == 2: resized = resized[:,:,np.newaxis] typed = resized.astype(dtype) if scaling == 'INCEPTION': scaled = (typed / 128) - 1 elif scaling == 'VGG': if c == 1: scaled = typed - np.asarray((128,), dtype=dtype) else: scaled = typed - np.asarray((123, 117, 104), dtype=dtype) else: scaled = typed # Swap to CHW if necessary #if format == model_config.ModelInput.FORMAT_NCHW: ordered = np.transpose(scaled, (2, 0, 1)) #else: # ordered = scaled if model == "inception": ordered = np.transpose(ordered, (2, 1, 0)) # Channels are in RGB order. Currently model configuration data # doesn't provide any information as to other channel orderings # (like BGR) so we just assume RGB. return json.dumps([[ordered.tolist()]]) def getModelInfo(db=None, json_file="workload/models.json", ): with open(json_file) as json_fid: model_stats = json.load(json_fid) #logging.debug(f"model_stats: {model_stats}") model_descriptions = {} for model_dict in model_stats: logging.debug(f"model_dict: {model_dict}") model_name = model_dict["name"] avg_exec_latency = model_dict["avg_exec_latency"] avg_load_latency = model_dict["avg_load_latency"] avg_unload_latency = model_dict["avg_unload_latency"] loaded_size = model_dict["loaded_size"] model_descriptions[model_name] = { "load_latency" : avg_load_latency, "exec_latency" : avg_exec_latency, "unload_latency" : avg_unload_latency, "loaded_size" : loaded_size, } if db is not None: logging.debug("Setting model info") db.set(f"{MODEL_STAT_PREFIX}{model_name}{DB_FIELD_SEPARATOR}avg_exec_latency", avg_exec_latency) db.set(f"{MODEL_STAT_PREFIX}{model_name}{DB_FIELD_SEPARATOR}avg_load_latency", avg_load_latency) db.set(f"{MODEL_STAT_PREFIX}{model_name}{DB_FIELD_SEPARATOR}avg_unload_latency", avg_unload_latency) db.set(f"{MODEL_STAT_PREFIX}{model_name}{DB_FIELD_SEPARATOR}loaded_size", loaded_size) else: logging.debug("Not setting any model info") return model_descriptions class InferenceRequest(object): _ids = count(1) def __init__(self, model_name, data, id_num=None, allow_timeout=True): if id_num is None: self.id = next(self._ids) else: self.id = id_num self.model_name = model_name self.data = data self.allow_timeout = allow_timeout self.complete = Event() #self.entry_time = time.time() self.times = { "entry_time" : time.time(), "assignment_time" : 0., "execution_time" : 0., "completion_time" : 0., } self.model_miss = False self.response = None #def __getattribute__(self, name): # if object.__getattribute__(self, "allow_timeout"): # if object.__getattribute__(self, "times")["entry_time"] + TIMEOUT_IN_SECONDS < time.time(): # raise exceptions.RequestTimeoutException("InferenceRequest invalid (timeout)") # return object.__getattribute__(self, name) def __repr__(self): return f"<{self.__class__.__name__}: {self.id}, {self.model_name}, \"{self.response}\">" def __str__(self): return repr(self) def isTimedOut(self): return time.time() >= self.times["entry_time"] + TIMEOUT_IN_SECONDS def toJSONString(self): attr_dict = { "id" : self.id, "allow_timeout": self.allow_timeout, "model_name" : self.model_name, "data" : self.data, "times" : self.times, "response" : self.response, "model_miss" : self.model_miss } return json.dumps(attr_dict) @classmethod def fromJSONString(cls, json_str): attr_dict = json.loads(json_str) new_request = cls( model_name=attr_dict["model_name"], data=attr_dict["data"], id_num=attr_dict["id"], allow_timeout=attr_dict["allow_timeout"], ) new_request.times = attr_dict["times"] new_request.response = attr_dict["response"] new_request.model_miss = attr_dict["model_miss"] return new_request def markAssignment(self): self.times["assignment_time"] = time.time() def markExecution(self): self.times["execution_time"] = time.time() def markCompletion(self): self.times["completion_time"] = time.time() def markModelMiss(self): self.model_miss = True def mergeRequests(self, other): self.times = other.times self.response = other.response def getResponse(self): response_dict = { "model" : self.model_name, "response" : self.response, "placement_delay" : self.times["assignment_time"] - self.times["entry_time"], "queue_delay" : self.times["execution_time"] - self.times["assignment_time"], "execution_delay" : self.times["completion_time"] - self.times["execution_time"], "overall_latency" : time.time() - self.times["entry_time"], "model_miss" : self.model_miss, } return json.dumps(response_dict) class Metrics(object): # TODO: make async def __init__(self, db, prefix, names_of_metrics=[], last_used_metrics=[], report_interval=REPORT_INTERVAL): self.db = db self.prefix = prefix self.report_interval = report_interval self.names_of_metrics = names_of_metrics self.metrics = { metric_name : collections.defaultdict(int) for metric_name in self.names_of_metrics } self.last_used_metrics = last_used_metrics self.lock = Lock() self.metrics_thread = threading.Timer(self.report_interval, self.pushMetrics) self.metrics_thread.start() def incrementMetricBy(self, metric_name, field_name, delta_value=1): with self.lock: self.metrics[metric_name][field_name] += delta_value def pushMetrics(self): #logging.info(f"pushMetrics") # Restart for next metrics self.metrics_thread = threading.Timer(self.report_interval, self.pushMetrics) self.metrics_thread.start() with self.lock: metrics_to_report = self.metrics self.metrics = { metric_name : collections.defaultdict(int) for metric_name in self.names_of_metrics } report_time = time.time() pipe = self.db.pipeline() for metric_name, metrics in metrics_to_report.items(): for field_name in metrics: pipe.incrby( f"{self.prefix}{field_name}{DB_FIELD_SEPARATOR}{metric_name}", metrics[field_name] ) for metrics in self.last_used_metrics: for field_name in metrics_to_report[metrics]: pipe.set( f"{self.prefix}{field_name}{DB_FIELD_SEPARATOR}last_used" , report_time ) #pipe.execute() results = pipe.execute() class RedisInterface(object): def __init__(self, redis_server="redis-server", redis_port=6379, *args, **kwargs): import redis self.db = redis.Redis(host=redis_server, port=redis_port) try: self.db.ping() except redis.exceptions.ConnectionError as e: print(f"Error connecting to Redis server @ {redis_server}. Is it started?") print(e) class ModelPlacements(object): class Model(object): def __init__(self, model_name, model_info=None): self.name = model_name if model_info is not None: self.load_latency = model_info["load_latency"] self.exec_latency = model_info["exec_latency"] self.unload_latency = model_info["unload_latency"] self.loaded_size = model_info["loaded_size"] else: self.load_latency = 0 self.exec_latency = 0 self.unload_latency = 0 self.loaded_size = 0 self.last_used = 0.0 def __str__(self): return self.name def __hash__(self): return hash(self.name) def __lt__(self, other): return self.name < other.name def __eq__(self, other): if isinstance(other, self.__class__): return self.name == other.name else: return self.name == other def getLoadLatency(self): return self.load_latency def getExecLatency(self): return self.exec_latency def getUnloadLatency(self): return self.unload_latency def getSize(self): return self.loaded_size def getName(self): return self.name def __init__(self, *args, **kwargs): self.models = set() self.workers = set() self.__workers_by_model = collections.defaultdict(set) self.__models_by_worker = collections.defaultdict(set) self.additions = queue.Queue() self.removals = queue.Queue() self.lock = Lock() self.is_synced = True def __str__(self): return '|'.join([f"{m}:{self.__workers_by_model[m]}" for m in self.models]) def addModel(self, model): self.models.add(model) def addWorker(self, worker): self.workers.add(worker) def getModels(self): return self.models def getWorkers(self): return self.workers def sync(self): with self.lock: self.__models_by_worker = collections.defaultdict(set) #{ worker : set([]) for worker in self.workers } for (model, workers) in self.__workers_by_model.items(): for worker in workers: self.__models_by_worker[worker].add(model) self.is_synced = True def getModelsFromWorker(self, worker): logging.debug("getModelsFromWorker()") with self.lock: if not self.is_synced: self.sync() return list(self.__models_by_worker[worker]) def getWorkersFromModel(self, model): return list(self.__workers_by_model[model]) def getModelsByWorker(self): with self.lock: if not self.is_synced: self.sync() return self.__models_by_worker def getWorkersByModel(self): return self.__workers_by_model def addModelToWorker(self, worker, model): with self.lock: self.__workers_by_model[model].add(worker) self.is_synced = False self.additions.put( (worker, model) ) def removeModelFromWorker(self, worker, model): logging.debug(f"removeModelFromWorker(self, {worker}, {model})") with self.lock: self.__workers_by_model[model].remove(worker) self.is_synced = False self.removals.put( (worker, model) ) def getEmptyWorkers(self): logging.debug(f"getEmptyWorkers") return [w for w in self.getWorkers() if len(self.getModelsFromWorker(w)) == 0] def getModelsInCache(self): return [m for m in self.getModels() if len(self.getWorkersFromModel(m)) > 0] def get_subsets_over_size(list_of_models, size_limit): list_of_subsets = [] if len(list_of_models) == 0: return list_of_subsets for i, base_model in enumerate(list_of_models): if base_model.getSize() > size_limit: list_of_subsets.append([base_model]) else: for subset in get_subsets_over_size(list_of_models[i+1:], size_limit-base_model.getSize()): list_of_subsets.append([base_model] + subset) return list_of_subsets def main(): models_info = getModelInfo(json_file="workload/models.azure.json") models = [ModelPlacements.Model(m_name, m_info) for m_name, m_info in models_info.items()] input_models = sorted(models[:100], key=(lambda m: m.getSize()), reverse=True) for m_set in get_subsets_over_size(input_models, 0.6): print([str(m) for m in m_set]) pass if __name__ == "__main__": # stuff only to run when not called via 'import' here main()
# (C) Copyright 1996-2016 ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation nor # does it submit to any jurisdiction. #importing Magics module from Magics.macro import * ref = 'axis6' #Setting of the output file name output = output(output_formats = ['png'], output_name_first_page_number = "off", output_name = ref) #Setting the cartesian view projection1 = mmap(page_y_position = 0., page_y_length = 4., subpage_y_position = 2., subpage_y_length = 1., subpage_frame = "off", subpage_map_projection = 'cartesian', subpage_x_axis_type = 'date', subpage_y_axis_type = 'regular', subpage_x_date_min = "1979-01-01", subpage_x_date_max = "2017-05-01", subpage_y_min = -20., subpage_y_max = 20.) #Horizontal axis horizontal = maxis(axis_orientation = "horizontal", axis_type = "date", axis_minor_tick = "on", axis_grid = 'on', axis_date_type = "climate", axis_days_label_height = 0.4, axis_hours_label_height = 0.4, axis_months_label_height = 0.4, axis_years_label_height = 0.4) vertical = maxis(axis_orientation = "vertical", axis_grid = 'on') title1 = mtext( text_lines = ["Using automatic labelling for long time serie..."], text_justification = "left", text_font_size = 0.5, text_colour = "charcoal") page1 = page() #Setting the cartesian view projection2 = mmap( page_id_line = 'off', page_y_position = 13., page_y_length = 4., subpage_y_position= 2., subpage_y_length= 1., subpage_frame= "off", subpage_map_projection = 'cartesian', subpage_x_axis_type = 'date', subpage_y_axis_type = 'regular', subpage_x_date_min = "1907-06-02", subpage_x_date_max = "2017-08-02", subpage_y_min = -20., subpage_y_max = 20.) title2 = mtext( text_lines = [ "Using automatic labelling for 10 years time serie..."], text_justification = "left", text_font_size = 0.5, text_colour = "charcoal") page2 = page() #Setting the cartesian view projection3 = mmap( page_id_line = 'off', page_y_position = 5., page_y_length = 4., subpage_y_position= 2., subpage_y_length= 1., subpage_frame= "off", subpage_map_projection = 'cartesian', subpage_x_axis_type = 'date', subpage_y_axis_type = 'regular', subpage_x_date_min = "1999-06-03", subpage_x_date_max = "2017-08-03", subpage_y_min = -20., subpage_y_max = 20.) title3 = mtext( text_lines = ["Using automatic labelling for One year time serie ..."], text_justification = "left", text_font_size = 0.5, text_colour = "charcoal") page3 = page() #Setting the cartesian view projection4 = mmap( page_id_line = 'off', page_y_position = 9., page_y_length = 4., subpage_y_position= 2., subpage_y_length= 1., subpage_frame= "off", subpage_map_projection = 'cartesian', subpage_x_axis_type = 'date', subpage_y_axis_type = 'regular', subpage_x_date_min = "1820-06-12", subpage_x_date_max = "2012-08-10", subpage_y_min = -20., subpage_y_max = 20.) title4 = mtext( text_lines = ["Using automatic labelling for short time serie..."], text_justification = "left", text_font_size = 0.5, text_colour = "charcoal") page4 = page() #Setting the cartesian view projection5 = mmap( page_id_line = 'off', page_y_position = 13., page_y_length = 4., subpage_y_position= 2., subpage_y_length= 1., subpage_frame= "off", subpage_map_projection = 'cartesian', subpage_x_axis_type = 'date', subpage_y_axis_type = 'regular', subpage_x_date_min = "2012-05-01 06:00", subpage_x_date_max = "2050-05-02 12:00", subpage_y_min = -20., subpage_y_max = 20.) title5 = mtext( text_lines = ["<font size='0.8'> Automatic Method to setup labelling of date axis: [axis_date_type = </font><font size='0.8' colour='navy'>automatic</font><font size='0.8'>]</font>", "Using automatic labelling for very short time serie..."], text_justification = "left", text_font_size = 0.5, text_colour = "charcoal") #To the plot plot(output, projection1, horizontal, vertical, title1, page1, projection2, horizontal, title2, page2, projection3, horizontal, title3, page3, projection4, horizontal, title4, page4, projection5, horizontal, title5, )
import xml.etree.cElementTree as ET import sqlite3 import vk_api import utils as ut import versions import os import random from math import ceil import events as ev with open('token.txt', 'r') as f: token = f.read() vk_session = vk_api.VkApi(token=token) vk = vk_session.get_api() rulesofinternet = { '1': "Do not talk about /b/", '2': "Do NOT talk about /b/", '3': "We are Anonymous", '4': "Anonymous is legion", '5': "Anonymous never forgives", '6': "Anonymous can be a horrible, senseless, uncaring monster", '7': "Anonymous is still able to deliver", '8': "There are no real rules about posting", '9': "There are no real rules about moderation either - enjoy your ban", '10': "If you enjoy any rival sites - DON'T", '11': "All your carefully picked arguments can easily be ignored", '12': "Anything you say can and will be used against you", '13': "Anything you say can be turned into something else - fixed", '14': "Do not argue with trolls - it means that they win", '15': "The harder you try the harder you will fail", '16': "If you fail in epic proportions, it may just become a winning failure", '17': "Every win fails eventually", '18': "Everything that can be labeled can be hated", '19': "The more you hate it the stronger it gets", '20': "Nothing is to be taken seriously", '21': "Original content is original only for a few seconds before getting old", '22': "Copypasta is made to ruin every last bit of originality", '23': "Copypasta is made to ruin every last bit of originality", '24': "Every repost is always a repost of a repost", '25': "Relation to the original topic decreases with every single post", '26': "Any topic can be easily turned into something totally unrelated", '27': "Always question a person's sexual preferences without any real reason", '28': "Always question a person's gender - just in case it's really a man", '29': "In the internet all girls are men and all kids are undercover FBI agents", '30': "There are no girls on the internet", '31': "TITS or GTFO - the choice is yours", '32': "You must have pictures to prove your statements", '33': "Lurk more - it's never enough", '34': "There is porn of it, no exceptions", '35': "If no porn is found at the moment, it will be made", '36': "There will always be even more fucked up shit than what you just saw", '37': "You cannot divide by zero (just because the calculator says so)", '38': "No real limits of any kind apply here - not even the sky", '39': "CAPSLOCK IS CRUISE CONTROL FOR COOL", '40': "EVEN WITH CRUISE CONTROL YOU STILL HAVE TO STEER", '41': "Desu isn't funny. Seriously guys. It's worse than Chuck Norris jokes.", '42': "Nothing is Sacred", '43': "The more beautiful and pure a thing is - the more satisfying it is to corrupt it", '44': "Even one positive comment about Japanese things can make you a weeaboo", '45': "When one sees a lion, one must get into the car", '46': "There is always furry porn of it", '47': "The pool is always closed", '48': "?????", '49': "PROFIT!", } class stats: def __init__(self, plid): data = sqlite3.connect(os.path.join('pl', '{}.db'.format(plid))) c = data.cursor() c.execute("SELECT x_pos FROM player") self.x_pos = int("{[0]}".format(c.fetchone())) c.execute("SELECT y_pos FROM player") self.y_pos = int("{[0]}".format(c.fetchone())) c.execute("SELECT money FROM player") self.money = int("{[0]}".format(c.fetchone())) def rofi(num): if num in rulesofinternet: return "{}: {}".format(num, rulesofinternet[str(num)]) else: return "Index is out of range (total rules in the database: {})".format(len(rulesofinternet)) def register(plid, fname, lname): if ut.isExist(plid): return "U're already registered" data = sqlite3.connect("lop.db") c = data.cursor() c.execute("INSERT INTO players VALUES (?, ?, ?)", [plid, f"{fname} {lname}", versions.latestVersion]) data.commit() data.close() player = sqlite3.connect(os.path.join('pl', '{}.db'.format(plid))) c = player.cursor() c.execute("CREATE TABLE player (x_pos INTEGER, y_pos INTEGER, money INTEGER)") c.execute("INSERT INTO player VALUES (25, 25, 127, 0)") c.execute("CREATE TABLE friends (id INTEGER, name TEXT, status INTEGER)") c.execute("""CREATE TABLE inventory (number INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, desc TEXT NOT NULL, type TEXT NOT NULL, tier TEXT NOT NULL, actions TEXT NOT NULL, del BOOLEAN NOT NULL, inTrade BOOLEAN)""") c.execute("""CREATE TABLE trades (tradeNumber INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, tradeType TEXT NOT NULL, tradeDesc TEXT NOT NULL, tradeStatus TEXT NOT NULL, name TEXT NOT NULL, desc TEXT NOT NULL, type TEXT NOT NULL, tier TEXT NOT NULL, actions TEXT NOT NULL, del BOOLEAN NOT NULL, senderID TEXT NOT NULL, oiNum INTEGER NOT NULL)""") player.commit() player.close() return f"Welcome to the game, {fname}" def delete(plid): if not ut.isExist(plid): return "Register first" data = sqlite3.connect("lop.db") c = data.cursor() c.execute("DELETE FROM players WHERE id=?", [plid]) data.commit() data.close() try: os.remove(os.path.join("pl", f"{plid}.db")) except FileNotFoundError: print(f"db not found while deleting {plid}") return "Account deleted. Seeya next time" def addFriend(plid, fid): if not ut.isExist(plid): return "Register first" if not ut.isExist(fid): return "ID is not registered" if str(plid) == str(fid): return "You have no friends?" player = sqlite3.connect(os.path.join('pl', f'{plid}.db')) c = player.cursor() c.execute("SELECT * FROM friends WHERE id=?", [fid]) answer = c.fetchone() if answer is None: c.execute("INSERT INTO friends VALUES (?, ?, ?)", [fid, searchByID(fid), "Requested"]) player.commit() player.close() friend = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = friend.cursor() c.execute("INSERT INTO friends VALUES (?, ?, ?)", [plid, searchByID(plid), "Request"]) vk.messages.send(random_id=0, user_id=fid, message=f"""{searchByID(plid)} sent a friend request. Enter "/addfriend {plid}" to accept it. Enter "/denyrequest {plid}" to deny it.""") friend.commit() friend.close() return "Request sent" if answer[2] == "Requested": return "Request already sended" if answer[2] == "Request": c.execute("UPDATE friends SET status='Accepted' WHERE id=?", [fid]) player.commit() player.close() friend = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = friend.cursor() c.execute("UPDATE friends SET status='Accepted' WHERE id=?", [plid]) vk.messages.send(random_id=0, user_id=fid, message=f"{searchByID(plid)} has accepted friend request") friend.commit() friend.close() return "Request accepted" def showInventory(plid): if not ut.isExist(plid): return "Register first" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM inventory ORDER BY number") items = c.fetchall() if not items: return "You have no items in inventory" message = "" for i in items: message += f"{i[0]}. {i[1]} // {i[2]}\n" return message def showTradeInventory(plid): if not ut.isExist(plid): return "Register first" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM trades ORDER BY tradeNumber") trades = c.fetchall() if not trades: return "You have no trades" msg = "" for i in trades: msg += f"{i[0]}. Type: {i[1]}, Status: {i[3]}\nItem: {i[4]}\nDescription: {i[2]}\n\n" return msg def sendMoney(plid, fid, count): if not ut.isExist(plid): return "Register first" if not ut.isExist(fid): return "User is not found" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() st = stats(plid) if st.money < int(count): return "Not enough money to send" c.execute("UPDATE player SET money = money - ?", [count]) data.commit() data.close() pl = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = pl.cursor() c.execute("UPDATE player SET money = money + ?", [count]) pl.commit() pl.close() sender = vk.users.get(user_ids=plid, name_case="gen")[0] vk.messages.send(random_id=0, user_id=fid, message=f"You got {count} credits from {sender['first_name']} {sender['last_name']}") return "Your money were successfully sent to the player" def sendGift(plid, fid, itemNumber, message): if not ut.isExist(fid): return "User is not found" if not ut.inFriends(plid, fid): return "User isn't in your friend list" if not ut.inInventory(plid, itemNumber): return "Item is not found" if ut.inTrade(plid, itemNumber): return "This item is already in trade" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM inventory WHERE number=?", [itemNumber]) sItem = c.fetchone() message = f"{' '.join(message)}" sender = vk.users.get(user_ids=plid, name_case="gen")[0] receiver = vk.users.get(user_ids=fid, name_case="dat")[0] c.execute("""INSERT INTO trades (tradeType, tradeDesc, tradeStatus, name, desc, type, tier, actions, del, senderID, oiNum) VALUES ("Gift", ?, "Sended", ?, ?, ?, ?, ?, ?, ?, ?)""", [f"Gift to {receiver['first_name']} {receiver['last_name']}: {message}", sItem[1], sItem[2], sItem[3], sItem[4], sItem[5], sItem[6], plid, itemNumber]) c.execute("UPDATE inventory SET inTrade=1 WHERE number=?", [itemNumber]) data.commit() data.close() fdata = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = fdata.cursor() c.execute("""INSERT INTO trades (tradeType, tradeDesc, tradeStatus, name, desc, type, tier, actions, del, senderID, oiNum) VALUES ("Gift", ?, "Awaiting", ?, ?, ?, ?, ?, ?, ?, ?)""", [f"Gift from {sender['first_name']} {sender['last_name']}: {message}", sItem[1], sItem[2], sItem[3], sItem[4], sItem[5], sItem[6], plid, itemNumber]) c.execute("SELECT tradeNumber FROM trades ORDER BY tradeNumber DESC LIMIT 1") tradeNum = c.fetchone()[0] fdata.commit() fdata.close() vk.messages.send(random_id=0, user_id=fid, message=f"""You got a Gift from {sender['first_name']} {sender['last_name']} with message: {message} Enter /acceptGift {tradeNum} to accept it Or enter /rejectGift {tradeNum} to reject it""") return "Trade request sended." def acceptGift(plid, tradeNumber): data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM trades WHERE tradeNumber=?", [tradeNumber]) item = c.fetchone() if item is None: return "Trade request isn't found" c.execute("INSERT INTO inventory (name, desc, type, tier, actions, del, inTrade) VALUES (?, ?, ?, ?, ?, ?, 0)", [item[4], item[5], item[6], item[7], item[8], item[9]]) c.execute("UPDATE trades SET tradeStatus='Accepted' WHERE tradeNumber=?", [tradeNumber]) data.commit() data.close() fdata = sqlite3.connect(os.path.join("pl", f"{item[10]}.db")) c = fdata.cursor() c.execute("DELETE FROM inventory WHERE number=?", [item[11]]) c.execute("UPDATE trades SET tradeStatus='Accepted' WHERE oiNum=?", [item[11]]) c.execute("SELECT tradeNumber FROM trades WHERE oiNum=?", [item[11]]) tr = c.fetchone()[0] fdata.commit() fdata.close() vk.messages.send(random_id=0, user_id=item[10], message=f"Your gift (trade№: {tr}) was accepted") return "Gift accepted and added to your inventory" def rejectGift(plid, tradeNumber): data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM trades WHERE tradeNumber=?", [tradeNumber]) tr = c.fetchone() if tr is None: return "Trade request isn't found" c.execute("UPDATE trades SET tradeStatus='Rejected' WHERE tradeNumber=?", [tradeNumber]) data.commit() data.close() fdata = sqlite3.connect(os.path.join("pl", f"{tr[10]}.db")) c = fdata.cursor() c.execute("UPDATE trades SET tradeStatus='Rejected' WHERE oiNum=?", [tr[11]]) c.execute("UPDATE inventory SET inTrade=0 WHERE number=?", [tr[11]]) c.execute("SELECT tradeNumber FROM trades WHERE oiNum=?", [tr[11]]) tr = c.fetchone()[0] fdata.commit() fdata.close() vk.messages.send(random_id=0, user_id=tr[10], message=f"Your gift (trade№: {tr}) was accepted") return "Gift rejected" def showShopList(plid): coords = getCoords(plid) x = coords[0] y = coords[1] if not os.path.exists(os.path.join("npc", f"merchant-{x}{y}.db" )): return "Here's no merchant on this square" data = sqlite3.connect(os.path.join("npc", f"merchant-{x}{y}.db")) c = data.cursor() c.execute("SELECT * FROM inventory") if c.fetchone() is None: if ev.refillMerchant(plid) is False: if random.randint(1, 100) <= 50: return ev.removeMerchant(plid) else: return "Merchant doesn't have any items now. Check him later" else: return "Merchant just got new items! Reenter the command to check them" c.execute("SELECT * FROM inventory") it = c.fetchall() msg = "Merchant shop list:\n" for i in it: msg += f"{i[0]}. {i[1]} // Price: {i[7]}\n" data.close() return msg def itemDesc(plid, itemNumber): if not ut.isExist(plid): return "User is not found" if not ut.inInventory(plid, itemNumber): return "Item is not found" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT name, desc FROM inventory WHERE number=?", [itemNumber]) desc = c.fetchone() data.close() return f"{desc[0]} ({desc[1]})" def buyItem(plid, itemNumber): coords = getCoords(plid) x = coords[0] y = coords[1] if not os.path.exists(os.path.join("npc", f"merchant-{x}{y}.db")): return "Here's no merchant on this square" st = stats(plid) data = sqlite3.connect(os.path.join("npc", f"merchant-{x}{y}.db")) c = data.cursor() c.execute("SELECT * FROM inventory") c.execute("SELECT price FROM inventory WHERE number=?", [itemNumber]) if c.fetchone() is None: return "Wrong item number" c.execute("SELECT price FROM inventory WHERE number=?", [itemNumber]) price = int(c.fetchone()[0]) if st.money < price: return "You can't buy this item" c.execute("SELECT * FROM inventory WHERE number=?", [itemNumber]) item = c.fetchone() c.execute("DELETE FROM inventory WHERE number=?", [itemNumber]) pldata = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = pldata.cursor() c.execute("INSERT INTO inventory (name, desc, type, tier, actions, del, inTrade) VALUES (?, ?, ?, ?, ?, ?, 0)", [item[1], item[2], item[3], item[4], item[5], item[6]]) c.execute("""INSERT INTO trades (tradeType, tradeDesc, tradeStatus, name, desc, type, tier, actions, del, senderID, oiNum) VALUES ("Purchase", ?, "Done", ?, ?, ?, ?, ?, ?, ?, ?)""", [f"Purchase for {price} riphs", item[1], item[2], item[3], item[4], item[5], item[6], f"merchant-{x}{y}", item[0]]) data.commit() data.close() pldata.commit() pldata.close() return "Item bought" def sellItem(plid, itemNumber): coords = getCoords(plid) x = coords[0] y = coords[1] if not os.path.exists(os.path.join("npc", f"merchant-{x}{y}.db")): return "Here's no merchant on this square" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() if not ut.inInventory(plid, itemNumber): return "Wrong item number" c.execute("SELECT * FROM inventory WHERE number=?", [itemNumber]) item = c.fetchone() if item[4] == "Common": mp = 1 if item[4] == "Uncommon": mp = 1.2 if item[4] == "Rare": mp = 1.4 if item[4] == "Exclusive": mp = 1.8 if item[4] == "Absolute": mp = 2.2 actions = item[5].split(" | ") mdata = sqlite3.connect(os.path.join("npc", f"merchant-{x}{y}.db")) mc = mdata.cursor() mc.execute("SELECT * FROM spList WHERE name=?", [item[1]]) if mc.fetchone() is None: price = random.randint(len(actions)+8, ceil(len(actions)+10*mp)) mc.execute("INSERT INTO spList VALUES(?, ?)", [item[2], price]) mdata.commit() else: mc.execute("SELECT price FROM spList WHERE name=?", [item[2]]) price = int(mc.fetchone()[0]) mdata.close() c.execute("DELETE FROM inventory WHERE itemNumber=?", [itemNumber]) c.execute("UPDATE player SET money = money + ?", [price]) c.execute(f"""INSERT INTO trades (tradeType, tradeDesc, tradeStatus, name, desc, type, tier, actions, del, senderID, oiNum) VALUES ('Sale', ?, 'Done', ?, ?, ?, ?, ?, ?, ?, ?)""", [f"Selling item for {price}", item[1], item[2], item[3], item[4], item[5], item[6], f"merchant-{x}{y}", itemNumber]) data.commit() data.close() return f"Item sold, you got {price}" def actions(plid): tree = ET.parse("session.tmx") root = tree.getroot() cds = getCoords(plid) x = cds[0] y = cds[1] acts = [] acts.append("Save -- You can save the current position") acts.append("Leave -- You can leave from the game") acts.append(">You can move in any directions") for objects in root.findall('objectgroup'): if objects.attrib['name'] == "Merchants": for m in objects: if m.attrib['x'] == str(x) and m.attrib['y'] == str(y): acts.append("Check -- You can check the itemlist") acts.append("Buy -- You can buy an item") if objects.attrib['name'] == "Players": for p in objects: if p.attrib['x'] == str(x) and p.attrib['y'] == str(y): if p.attrib['name'] != str(plid): acts.append(">You can try to interact with other players on this square") if objects.attrib['name'] == "Chests": for ch in objects: if ch.attrib['x'] == str(x) and ch.attrib['y'] == str(y): acts.append(f"Open -- You can open the {ch.attrib['type'][6:]} Chest") if ut.inTradeZone(plid): acts.append(">You're in the trade zone. Note that.") acts.sort() return "\n".join(acts) def putUpForAuc(plid, itemNumber, price): # in dev. if not ut.inInventory(plid, itemNumber): return "Wrong item number" if not ut.inTradeZone(plid): return "You must be in trade zone to put the item up" if ut.inTrade(plid, itemNumber): return "This item is already in some trade" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("UPDATE inventory SET inTrade=1 WHERE number=?", [itemNumber]) def removeFriend(plid, fid): if not ut.isExist(plid): return "Register first" if not ut.isExist(fid) and str(fid) != "???": return "User is not found" data = sqlite3.connect(os.path.join("pl", f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM friends WHERE id=?", [fid]) if c.fetchone() is None: return "User is not in your friends list" c.execute("SELECT * FROM friends WHERE id=?", [fid]) ans = c.fetchone() if ans[2] == "Accepted": c.execute("SELECT name FROM friends WHERE id=?", [fid]) if c.fetchone()[0] == "Cassette": return "You can't remove this cute thing from friend list" c.execute("DELETE FROM friends WHERE id=?", [fid]) data.commit() data.close() friend = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = friend.cursor() c.execute("DELETE FROM friends WHERE id=?", [plid]) vk.messages.send(random_id=0, user_id=fid, message=f"{searchByID(plid)} has removed you from friend list. :c\nUse \"/addfriend {plid}\" to send friend request") friend.commit() friend.close() return f"User has been removed from your friend list. \nUse \"/addfriend {fid}\" to send friend request" else: return "Please, use \"/denyrequest\" to cancel or deny friend request." def denyFriendRequest(plid, fid): if not ut.isExist(plid): return "Register first" data = sqlite3.connect(os.path.join('pl', f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM friends WHERE id=?", [fid]) answer = c.fetchone() if answer is None: return "This user isn't sent a request" if answer[2] == "Request": c.execute("DELETE FROM friends WHERE id=?", [fid]) data.commit() data.close() friend = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = friend.cursor() c.execute("DELETE FROM friends WHERE id=?", [plid]) vk.messages.send(random_id=0, user_id=fid, message=f"{searchByID(plid)} has denied friend request") friend.commit() friend.close() return "Request denied" if answer[2] == "Requested": c.execute("DELETE FROM friends WHERE id=?", [fid]) data.commit() data.close() friend = sqlite3.connect(os.path.join("pl", f"{fid}.db")) c = friend.cursor() c.execute("DELETE FROM friends WHERE id=?", [plid]) vk.messages.send(random_id=0, user_id=fid, message=f"{searchByID(plid)} has canceled friend request") friend.commit() friend.close() return "Request canceled" if answer[2] == "Accepted": return "Request already accepted." def friendList(plid): if not ut.isExist(plid): return "Register first" data = sqlite3.connect(os.path.join('pl', f"{plid}.db")) c = data.cursor() c.execute("SELECT * FROM friends WHERE status='Accepted'") message = "Mutual friends:" if c.fetchone() is None: message += "\nYou don't have any friends ;c" else: c.execute("SELECT * FROM friends WHERE status='Accepted'") friends = c.fetchall() for f in friends: message += f"\n{f[1]} ({f[0]})" c.execute("SELECT * FROM friends WHERE status='Requested'") message += "\n\nPending acceptance/rejection:" if c.fetchone() is None: message += "\nNo requests sent" else: c.execute("SELECT * FROM friends WHERE status='Requested'") awaiting = c.fetchall() for a in awaiting: message += f"\n{a[1]} ({a[0]})" c.execute("SELECT * FROM friends WHERE status='Request'") message += "\n\nPending for reply:" if c.fetchone() is None: message += "\nNo requests sent" else: c.execute("SELECT * FROM friends WHERE status='Request'") repl = c.fetchall() for r in repl: message += f"\n{r[1]} ({r[0]})" return message def searchByID(id): if not ut.isExist(id): return "User is not found" data = sqlite3.connect("lop.db") c = data.cursor() c.execute("SELECT name FROM players WHERE id=?", [id]) name = c.fetchone() data.close() return name[0] def playersOnTile(plid): tree = ET.parse("session.tmx") root = tree.getroot() pos = getCoords(plid) x = int(pos[0]) y = int(pos[1]) tileplayers = [] for i in root.findall('objectgroup[@name="Players"]'): for players in i: if int(players.attrib['x']) == x and int(players.attrib['y']) == y: tileplayers.append(players.attrib['name']) if not tileplayers: return "There's no players on tile" else: message = "Players on tile:" for i in tileplayers: message = message + f"\n{searchByID(i)}" return message def save(plid): data = sqlite3.connect(os.path.join('pl', f"{plid}.db")) c = data.cursor() pos = getCoords(plid) c.execute("UPDATE player SET x_pos=?, y_pos=?", [pos[0], pos[1]]) data.commit() data.close() return "Position saved." def playerToMap(plid): pos = getCoords(plid) tree = ET.parse("session.tmx") root = tree.getroot() for i in root.findall('objectgroup[@name="Players"]'): ET.SubElement(i, 'object', {'id': str(plid), 'name': str(plid), 'type': 'Player', 'x': str(pos[0]), 'y': str(pos[1]), 'width': '1', 'height': '1'}) for i in root.findall('objectgroup[@name="Players"]'): for p in i: if p.attrib['name'] == str(plid): ET.SubElement(p, 'ellipse') tree.write('session.tmx', 'UTF-8') def mapLeave(plid): tree = ET.parse("session.tmx") root = tree.getroot() data = sqlite3.connect(os.path.join('pl', '{}.db'.format(plid))) c = data.cursor() position = getCoords(plid) c.execute("UPDATE player SET x_pos={}, y_pos={}".format(position[0], position[1])) data.commit() data.close() for objects in root.findall('objectgroup[@name="Players"]'): for x in objects: if x.attrib['name'] == str(plid): objects.remove(x) tree.write('session.tmx', 'UTF-8') def getCoords(plid): """ Returns X and Y position for player (tuple) """ if not ut.isExist(plid): return "Register first" tree = ET.parse("session.tmx") root = tree.getroot() for i in root.findall("objectgroup[@name=\"Players\"]"): for pos in i: if pos.attrib["name"] == str(plid): x = pos.attrib['x'] y = pos.attrib['y'] return x, y st = stats(plid) return st.x_pos, st.y_pos if __name__ == '__main__': pass
import os import pathlib import tempfile import unittest from datetime import datetime from django.apps import apps from django.core.exceptions import ValidationError from django.core.files.uploadedfile import SimpleUploadedFile from django.db import connection from django.db.utils import DataError, IntegrityError from django.shortcuts import reverse from django.test import TestCase from faker import Faker from freezegun import freeze_time from model_bakery import baker from common.constants import models as constants from roleplay.enums import DomainTypes, RoleplaySystems, SiteTypes Domain = apps.get_model(constants.DOMAIN_MODEL) Place = apps.get_model(constants.PLACE_MODEL) PlayerInSession = apps.get_model(constants.ROLEPLAY_PLAYER_IN_SESSION) Race = apps.get_model(constants.RACE_MODEL) RaceUser = apps.get_model(constants.USER_RACE_RELATION) Session = apps.get_model(constants.SESSION_MODEL) User = apps.get_model(constants.USER_MODEL) connection_engine = connection.features.connection.settings_dict.get('ENGINE', None) fake = Faker() class TestDomain(TestCase): @classmethod def setUpTestData(cls): cls.model = Domain def test_str_ok(self): domain = baker.make(self.model) domain_type = DomainTypes(domain.domain_type) self.assertEqual(str(domain), f'{domain.name} [{domain_type.label.title()}]') def test_ok(self): entries = fake.pyint(min_value=1, max_value=100) baker.make(self.model, entries) self.assertEqual(entries, self.model.objects.count()) @freeze_time('2020-01-01') def test_image_upload_ok(self): tmpfile = tempfile.NamedTemporaryFile(mode='w', suffix='.jpg', dir='./tests/', delete=False) image_file = tmpfile.name with open(tmpfile.name, 'rb') as image_data: image = SimpleUploadedFile(name=image_file, content=image_data.read(), content_type='image/jpeg') place = baker.make(self.model) place.image = image place.save() expected_path = '/media/roleplay/domain/2020/01/01/{}/{}'.format(place.pk, image.name) expected_path = pathlib.Path(expected_path) self.assertIn(str(expected_path), place.image.path) tmpfile.close() os.unlink(tmpfile.name) os.unlink(place.image.path) @unittest.skipIf('sqlite3' in connection_engine, 'SQLite takes Varchar as Text') def test_max_name_length_ko(self): name = fake.password(length=26) with self.assertRaises(DataError) as ex: self.model.objects.create(name=name) self.assertRegex(str(ex.exception), r'.*value too long.*') def test_name_none_ko(self): with self.assertRaises(IntegrityError) as ex: self.model.objects.create(name=None) self.assertRegex(str(ex.exception), r'.*(null|NULL).*(constraint|CONSTRAINT).*') def test_is_domain_ok(self): instance = baker.make(self.model, domain_type=DomainTypes.DOMAIN) self.assertTrue(instance.is_domain) def test_is_domain_ko(self): instance = baker.make(self.model, domain_type=DomainTypes.SUBDOMAIN) self.assertFalse(instance.is_domain) def test_is_subdomain_ok(self): instance = baker.make(self.model, domain_type=DomainTypes.SUBDOMAIN) self.assertTrue(instance.is_subdomain) def test_is_subdomain_ko(self): instance = baker.make(self.model, domain_type=DomainTypes.DOMAIN) self.assertFalse(instance.is_subdomain) class TestPlace(TestCase): @classmethod def setUpTestData(cls): cls.model = Place cls.enum = SiteTypes def test_str_ok(self): place = baker.make(self.model) self.assertEqual(str(place), place.name) def test_ok(self): entries = fake.pyint(min_value=1, max_value=100) baker.make(self.model, entries) self.assertEqual(entries, self.model.objects.count()) @freeze_time('2020-01-01') def test_image_upload_ok(self): tmpfile = tempfile.NamedTemporaryFile(mode='w', suffix='.jpg', dir='./tests/', delete=False) image_file = tmpfile.name with open(tmpfile.name, 'rb') as image_data: image = SimpleUploadedFile(name=image_file, content=image_data.read(), content_type='image/jpeg') place = baker.make(self.model) place.image = image place.save() expected_path = '/media/roleplay/place/2020/01/01/{}/{}'.format(place.pk, image.name) expected_path = pathlib.Path(expected_path) self.assertIn(str(expected_path), place.image.path) tmpfile.close() os.unlink(tmpfile.name) os.unlink(place.image.path) def test_images_ok(self): images = [] for _ in range(0, 3): tmpfile = tempfile.NamedTemporaryFile(mode='w', suffix='.jpg', dir='./tests/', delete=False) image_file = tmpfile.name with open(tmpfile.name, 'rb') as image_data: image = SimpleUploadedFile(name=image_file, content=image_data.read(), content_type='image/jpeg') images.append(image) tmpfile.close() os.unlink(tmpfile.name) parent = None for image in images: place = self.model.objects.create(name=fake.country(), parent_site=parent) place.image = image place.save() parent = place obj_images = self.model.objects.first().images() self.assertEqual(len(images), len(obj_images)) for place in self.model.objects.all(): os.unlink(place.image.path) # TODO: Refactor this test so is not that complex def test_nested_world_ok(self): # noqa universe = self.model.objects.create(name='Universe', site_type=self.enum.WORLD) world = self.model.objects.create(name='World', site_type=self.enum.WORLD, parent_site=universe) self.assertIn(world, universe.get_worlds()) continents = [] for _ in range(0, 3): continents.append( self.model.objects.create(name=fake.country(), site_type=self.enum.CONTINENT, parent_site=world) ) countries = [] seas = [] rivers = [] unusuals = [] for continent in continents: self.assertIn(continent, world.get_continents()) countries.append( self.model.objects.create( name=fake.country(), site_type=self.enum.COUNTRY, parent_site=continent ) ) seas.append( self.model.objects.create(name=fake.name(), site_type=self.enum.SEA, parent_site=continent) ) rivers.append( self.model.objects.create(name=fake.name(), site_type=self.enum.RIVER, parent_site=continent) ) unusuals.append( self.model.objects.create(name=fake.name(), site_type=self.enum.UNUSUAL, parent_site=continent) ) for sea in seas: self.assertIn(sea, world.get_seas()) for river in rivers: self.assertIn(river, world.get_rivers()) for unusual in unusuals: self.assertIn(unusual, world.get_unusuals()) islands = [] cities = [] mountains = [] mines = [] deserts = [] tundras = [] hills = [] metropolis = [] for country in countries: self.assertIn(country, world.get_countries()) islands.append( self.model.objects.create(name=fake.country(), site_type=self.enum.ISLAND, parent_site=country) ) cities.append( self.model.objects.create(name=fake.city(), site_type=self.enum.CITY, parent_site=country) ) mountains.append( self.model.objects.create( name=fake.country(), site_type=self.enum.MOUNTAINS, parent_site=country ) ) deserts.append( self.model.objects.create(name=fake.name(), site_type=self.enum.DESERT, parent_site=country) ) hills.append( self.model.objects.create(name=fake.name(), site_type=self.enum.HILLS, parent_site=country) ) tundras.append( self.model.objects.create(name=fake.name(), site_type=self.enum.TUNDRA, parent_site=country) ) mines.append( self.model.objects.create(name=fake.name(), site_type=self.enum.MINES, parent_site=country) ) metropolis.append( self.model.objects.create(name=fake.name(), site_type=self.enum.METROPOLIS, parent_site=country) ) forests = [] for island in islands: self.assertIn(island, world.get_islands()) forests.append( self.model.objects.create(name=fake.name(), site_type=self.enum.FOREST, parent_site=island) ) for m in metropolis: self.assertIn(m, world.get_metropolis()) villages = [] towns = [] for city in cities: self.assertIn(city, world.get_cities()) villages.append( self.model.objects.create(name=fake.city(), site_type=self.enum.VILLAGE, parent_site=city) ) towns.append( self.model.objects.create(name=fake.city(), site_type=self.enum.TOWN, parent_site=city) ) houses = [] for village in villages: self.assertIn(village, world.get_villages()) houses.append( self.model.objects.create(name=fake.city(), site_type=self.enum.HOUSE, parent_site=village) ) for town in towns: self.assertIn(town, world.get_towns()) for house in houses: self.assertIn(house, world.get_houses()) for mountain in mountains: self.assertIn(mountain, world.get_mountains()) for mine in mines: self.assertIn(mine, world.get_mines()) for desert in deserts: self.assertIn(desert, world.get_deserts()) for hill in hills: self.assertIn(hill, world.get_hills()) for forest in forests: self.assertIn(forest, world.get_forests()) for tundra in tundras: self.assertIn(tundra, world.get_tundras()) @unittest.skipIf('sqlite3' in connection_engine, 'SQLite takes Varchar as Text') def test_max_name_length_ko(self): name = fake.password(length=101) with self.assertRaises(DataError) as ex: self.model.objects.create(name=name) self.assertRegex(str(ex.exception), r'.*value too long.*') def test_name_none_ko(self): with self.assertRaises(IntegrityError) as ex: self.model.objects.create(name=None) self.assertRegex(str(ex.exception), r'.*(null|NULL).*(constraint|CONSTRAINT).*') def test_is_house_ok(self): place = baker.make(self.model, site_type=self.enum.HOUSE) self.assertTrue(place.is_house) def test_is_town_ok(self): place = baker.make(self.model, site_type=self.enum.TOWN) self.assertTrue(place.is_town) def test_is_village_ok(self): place = baker.make(self.model, site_type=self.enum.VILLAGE) self.assertTrue(place.is_village) def test_is_city_ok(self): place = baker.make(self.model, site_type=self.enum.CITY) self.assertTrue(place.is_city) def test_is_metropolis_ok(self): place = baker.make(self.model, site_type=self.enum.METROPOLIS) self.assertTrue(place.is_metropolis) def test_is_forest_ok(self): place = baker.make(self.model, site_type=self.enum.FOREST) self.assertTrue(place.is_forest) def test_is_hills_ok(self): place = baker.make(self.model, site_type=self.enum.HILLS) self.assertTrue(place.is_hills) def test_is_mountains_ok(self): place = baker.make(self.model, site_type=self.enum.MOUNTAINS) self.assertTrue(place.is_mountains) def test_is_mines_ok(self): place = baker.make(self.model, site_type=self.enum.MINES) self.assertTrue(place.is_mines) def test_is_river_ok(self): place = baker.make(self.model, site_type=self.enum.RIVER) self.assertTrue(place.is_river) def test_is_sea_ok(self): place = baker.make(self.model, site_type=self.enum.SEA) self.assertTrue(place.is_sea) def test_is_desert_ok(self): place = baker.make(self.model, site_type=self.enum.DESERT) self.assertTrue(place.is_desert) def test_is_tundra_ok(self): place = baker.make(self.model, site_type=self.enum.TUNDRA) self.assertTrue(place.is_tundra) def test_is_unusual_ok(self): place = baker.make(self.model, site_type=self.enum.UNUSUAL) self.assertTrue(place.is_unusual) def test_is_island_ok(self): place = baker.make(self.model, site_type=self.enum.ISLAND) self.assertTrue(place.is_island) def test_is_country_ok(self): place = baker.make(self.model, site_type=self.enum.COUNTRY) self.assertTrue(place.is_country) def test_is_continent_ok(self): place = baker.make(self.model, site_type=self.enum.CONTINENT) self.assertTrue(place.is_continent) def test_is_world_ok(self): place = baker.make(self.model, site_type=self.enum.WORLD) self.assertTrue(place.is_world) def test_resolve_icon(self): for site_type in self.model.ICON_RESOLVERS.keys(): obj = self.model.objects.create(name=fake.country(), site_type=site_type) expected_url = '<span class="{}"></span>'.format(self.model.ICON_RESOLVERS.get(site_type, '')) self.assertEqual(expected_url, obj.resolve_icon()) def test_user_but_no_owner_save_ko(self): user = baker.make(User) with self.assertRaises(IntegrityError) as ex: self.model.objects.create( name=fake.city(), user=user ) self.assertEqual(str(ex.exception), 'a private world must have owner.') def test_user_but_no_owner_clean_ko(self): user = baker.make(User) world = self.model.objects.create( name=fake.city(), user=user, owner=user ) world.owner = None with self.assertRaises(ValidationError) as ex: world.clean() ex = ex.exception self.assertIn('user', ex.error_dict) message = ex.error_dict['user'][0].message self.assertEqual(message, 'a private world must have owner.') class TestRace(TestCase): @classmethod def setUpTestData(cls): cls.model = Race cls.m2m_model = RaceUser def test_create_ok(self): instance = self.model.objects.create(name=fake.word(), description=fake.paragraph()) self.model.objects.get(pk=instance.pk) def test_create_with_owner_ok(self): instance = self.model.objects.create(name=fake.word(), description=fake.paragraph()) users = baker.make(constants.USER_MODEL, 3) instance.add_owners(*users) owners = instance.owners result = all(user in owners for user in users) self.assertTrue(result) def test_str_ok(self): instance = self.model.objects.create(name=fake.word(), description=fake.paragraph()) expected = f'{instance.name} [{instance.pk}]' self.assertEqual(expected, str(instance)) class TestRaceUser(TestCase): @classmethod def setUpTestData(cls): cls.model = RaceUser def setUp(self): self.user = baker.make(constants.USER_MODEL) self.race = baker.make(constants.RACE_MODEL) def test_str_ok(self): instance = self.model.objects.create(user=self.user, race=self.race) expected = f'{instance.user.username} <-> {instance.race.name}' self.assertEqual(expected, str(instance)) class TestSession(TestCase): @classmethod def setUpTestData(cls): cls.model = Session cls.user = baker.make(constants.USER_MODEL) cls.chat = baker.make(constants.CHAT_MODEL) cls.world = baker.make(constants.PLACE_MODEL, site_type=SiteTypes.WORLD) def test_str_ok(self): name = fake.word() instance = self.model.objects.create( name=name, chat=self.chat, system=RoleplaySystems.PATHFINDER, world=self.world, ) system = RoleplaySystems(instance.system) expected = f'{name} [{system.label.title()}]' self.assertEqual(expected, str(instance)) def test_save_without_chat_ok(self): instance = self.model.objects.create( name=fake.word(), system=RoleplaySystems.PATHFINDER, world=self.world, ) instance.save() self.assertIsNotNone(instance.chat) self.assertIn(instance.name, instance.chat.name) def test_clean_non_world_ko(self): place = baker.make(constants.PLACE_MODEL, site_type=SiteTypes.CITY) session = self.model( name=fake.word(), description=fake.paragraph(), next_game=datetime.now(), system=RoleplaySystems.PATHFINDER, world=place, ) with self.assertRaisesRegex(ValidationError, 'world must be a world'): session.clean() def test_clean_no_world_given_ko(self): session = self.model( name=fake.word(), description=fake.paragraph(), next_game=datetime.now(), system=RoleplaySystems.PATHFINDER, ) with self.assertRaisesRegex(ValidationError, 'session hasn\'t any world'): session.clean() def test_add_game_masters_ok(self): iterations = fake.pyint(min_value=1, max_value=10) users = baker.make(_model=User, _quantity=iterations) instace = baker.make(self.model, world=self.world) queries = ( 'Bulk Create', ) with self.assertNumQueries(len(queries)): instace.add_game_masters(*users) expected = iterations result = PlayerInSession.objects.filter( player__in=users, is_game_master=True ).count() self.assertEqual(expected, result) def test_property_game_masters_ok(self): iterations = fake.pyint(min_value=1, max_value=10) users = baker.make(_model=User, _quantity=iterations) instace = baker.make(self.model, world=self.world) instace.add_game_masters(*users) expected = iterations result = instace.game_masters.count() self.assertEqual(expected, result) def test_get_absolute_url(self): instance = baker.make(self.model, world=self.world) expected_url = reverse('roleplay:session:detail', kwargs={'pk': instance.pk}) url = instance.get_absolute_url() self.assertEqual(expected_url, url) class TestPlayerInSession(TestCase): @classmethod def setUpTestData(cls): cls.model = PlayerInSession cls.world = baker.make(Place, site_type=SiteTypes.WORLD) cls.session = baker.make(Session, world=cls.world) def setUp(self): self.instance = baker.make(self.model, session=self.session) def test_str_ok(self): expected_str = '%(player)s in %(session)s (Game Master: %(is_game_master)s)' % { 'player': self.instance.player, 'session': self.instance.session, 'is_game_master': self.instance.is_game_master, } result_str = str(self.instance) self.assertEqual(expected_str, result_str)
import sublime, sublime_plugin import os.path import sys import struct def GetShortPath(path): target = '' try: with open(path, 'rb') as stream: content = stream.read() # skip first 20 bytes (HeaderSize and LinkCLSID) # read the LinkFlags structure (4 bytes) lflags = struct.unpack('I', content[0x14:0x18])[0] position = 0x18 # if the HasLinkTargetIDList bit is set then skip the stored IDList # structure and header if (lflags & 0x01) == 1: position = struct.unpack('H', content[0x4C:0x4E])[0] + 0x4E last_pos = position position += 0x04 # get how long the file information is (LinkInfoSize) length = struct.unpack('I', content[last_pos:position])[0] # skip 12 bytes (LinkInfoHeaderSize, LinkInfoFlags, and VolumeIDOffset) position += 0x0C # go to the LocalBasePath position lbpos = struct.unpack('I', content[position:position+0x04])[0] position = last_pos + lbpos # read the string at the given position of the determined length size= (length + last_pos) - position - 0x02 temp = struct.unpack('c' * size, content[position:position+size]) target = b''.join(temp).decode(sys.getfilesystemencoding()) except: # could not read the file pass return target class OpenLnkFile(sublime_plugin.EventListener): def on_load(self, view): window = view.window() path = view.file_name() ext = os.path.splitext(path)[1] if ext==".lnk": window.focus_view(view) window.run_command('close_file') real_path = GetShortPath(path) if os.path.isdir(real_path): data = window.project_data() if not data: data = {} if "folders" not in data: data["folders"] = [] if {'path': real_path} not in data["folders"]: data["folders"].append({'path': real_path}) window.set_project_data(data) else: window.open_file(GetShortPath(path))
#!/usr/bin/env python3 # CGIのヘッダ print("Content-Type : text/html; charset=utf-8") print("") #表示するメッセージ print("<h1>Hello!!!</h1>")
#!/usr/bin/env python3 from PIL import Image import os import re src = "./supplier-data/images/" dst = "./supplier-data/images/" def main(): # read all images fileslist = [] for root, dirs, files in os.walk(src): for name in files: if str(name).endswith(".tiff"): fileslist.append(name) # print(fileslist) for image in fileslist: im = Image.open(src + image) final_name = re.sub(r".tiff$", ".jpeg", image) final_name = dst + final_name print(src + image + " => " + final_name) im.resize((600,400)).convert("RGB").save(final_name, 'jpeg') if __name__ == "__main__": main()
import json import os import subprocess from ..models import XcTarget, XcProject, XcGroup, XcFile from ..parsers import XcProjectParser, SwiftCodeParser # Absolute path of this project root folder. root_path = __file__ for i in range(0, 4): root_path = os.path.dirname(root_path) # Models class XcModelsFixture(): def any_target(self, name='MyXcTarget', target_type=XcTarget.Type.APPLICATION, product_name='MyXcProduct', resource_files=set()): return XcTarget(name=name, target_type=target_type, product_name=product_name, resource_files=resource_files, build_configurations=list()) def any_project(self): targets = set([self.any_target()]) return XcProject('/', 'MyXcProject', build_configurations=list(), targets=targets, groups=list(), files=set()) def any_group(self, group_path='/MyGroup', filepath='/MyGroup', groups=list(), files=set()): return XcGroup(group_path, filepath, groups=groups, files=files) def any_file(self): return XcFile('/MyFile') # Xcode sample project class SampleXcodeProjectFixture(): @property def project_folder_path(self): """ Absolute path of the folder containing `.xcodeproj` of the Xcode project sample contained in this project. """ return os.path.join(root_path, 'SampleiOSApp') # Parsers class XcProjectParserFixture(): @property def sample_xc_project_parser(self): path = SampleXcodeProjectFixture().project_folder_path project_parser = XcProjectParser(path, verbose=False) project_parser.load() return project_parser class SwiftCodeParserFixture(): def any_swift_code_parser(self, swift_code, base_discriminant='', type_counter=0): command = ['sourcekitten', 'structure', '--text', swift_code] result = subprocess.run(command, capture_output=True) swift_structure = json.loads(result.stdout) root_substructures = swift_structure.get('key.substructure', []).copy() parser = SwiftCodeParser(substructures=root_substructures, base_discriminant=base_discriminant, type_counter=type_counter) parser.parse() return parser # Generators class XcProjectGraphGeneratorFixture(): @property def test_build_folder(self): return os.path.join(root_path, 'build', 'test') def any_graph_filepath(self, filename): return os.path.join(self.test_build_folder, filename)
from defines import * class Deposit: def __init__(self, data): self.amount = data[1] self.user_name = data[2] self.old_credit = data[3] self.new_credit = data[4] self.consumption = data[5] self.Type = data[6] self.date = data[7] def get_tye_string(self): if self.Type == PayPal: return paypal_label if self.Type == Bar: return cash_label if self.Type == Material: return material_label else: return self.Type
# Generated by Django 3.1.7 on 2021-03-02 21:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('autodo', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='car', name='image', ), migrations.AlterField( model_name='car', name='color', field=models.CharField(max_length=7), ), ]
from gym_iOTA.envs.iOTA_env import IotaEnv
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, codecs def main(): delimiter = sys.argv[1] fileNames = sys.argv[2:] files = [] for fileName in fileNames: files.append(codecs.open(fileName, "r", "utf-8")) ongoing = True while (ongoing): lines = [] for file in files: line = file.readline() if (line == ""): ongoing = False break lines.append(line.rstrip()) if (ongoing): print delimiter.join(lines) if __name__ == "__main__": main()
from django.contrib import admin from django.contrib.auth.models import User from django.core.validators import MaxValueValidator from django.core.validators import MinValueValidator from django.db import models from django.forms import CheckboxSelectMultiple from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _ def upload_path(instance, filename): extension = filename.split('.')[-1] return f'products/{instance.category}/{instance.slug}.{extension}' class ProductUsageUnits(models.Model): unit = models.ForeignKey(verbose_name=_('Unit'), to='food.Unit', limit_choices_to={'type': 'usage'}, default=None) value = models.PositiveSmallIntegerField(verbose_name=_('Value'), default=None) def __str__(self): return f'{self.value} {self.unit}' class ProductShoppingUnits(models.Model): unit = models.ForeignKey(verbose_name=_('Unit'), to='food.Unit', limit_choices_to={'type': 'shopping'}, default=None) value = models.PositiveSmallIntegerField(verbose_name=_('Value'), default=None) def __str__(self): return f'{self.value} {self.unit}' class Product(models.Model): TYPE_CHOICES = [ ('custom', _('Custom Made')), ('brand', _('Brand Product')), ('gourmet', _('Gourmet Food')), ('restaurant', _('Restaurant'))] FORM_CHOICES = [ ('solid', _('Solid')), ('liquid', _('Liquid'))] CATEGORY_CHOICES = [ ('other', _('Other')), ('fruits', _('Fruits')), ('vegetables', _('Vegetables')), ('meat', _('Meat'))] name = models.CharField(verbose_name=_('Name'), max_length=255, db_index=True, default=None) slug = models.SlugField(verbose_name=_('Slug'), editable=False, db_index=True, default=None) image = models.ImageField(verbose_name=_('Image'), upload_to=upload_path, null=True, blank=True, default=None) type = models.CharField(verbose_name=_('Type'), choices=TYPE_CHOICES, max_length=30, db_index=True, default=None) category = models.CharField(verbose_name=_('Category'), choices=CATEGORY_CHOICES, max_length=30, db_index=True, default=None) tags = models.ManyToManyField(verbose_name=_('Tags'), to='food.Tag', limit_choices_to={'type': 'product'}, blank=True, default=None) modification_date = models.DateTimeField(verbose_name=_('Modification Date'), auto_now=True) modification_author = models.ForeignKey(verbose_name=_('Modification Author'), to='auth.User', default=None) measurements_physical_form = models.CharField(verbose_name=_('Phisical Form'), choices=FORM_CHOICES, max_length=20, db_index=True, blank=True, null=True, default=None) measurements_usage_unit = models.ForeignKey(verbose_name=_('Usage Unit'), to='food.Unit', related_name='usage_unit', blank=True, null=True, default=None) measurements_shopping_unit = models.ForeignKey(verbose_name=_('Shopping Unit'), to='food.Unit', related_name='shopping_unit', blank=True, null=True, default=None) measurements_volume = models.DecimalField(verbose_name=_('Volume'), help_text=_('ml'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) measurements_weight = models.DecimalField(verbose_name=_('Net Weight'), help_text=_('g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) calories = models.PositiveSmallIntegerField(verbose_name=_('Calories'), help_text=_('kcal'), blank=True, null=True, default=None) roughage = models.DecimalField(verbose_name=_('Roughage'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) cooking_waste = models.DecimalField(verbose_name=_('Cooking Waste'), decimal_places=2, max_digits=3, validators=[MinValueValidator(0.0), MaxValueValidator(1.0)], blank=True, null=True, default=None) cooking_factor = models.IntegerField(verbose_name=_('Cooking Factor'), blank=True, null=True, default=None) cooking_product = models.ForeignKey(verbose_name=_('From Product'), to='food.Product', blank=True, null=True, default=None) proteins = models.DecimalField(verbose_name=_('Proteins'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) proteins_animal = models.DecimalField(verbose_name=_('Animal Proteins'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) proteins_plant = models.DecimalField(verbose_name=_('Plant Proteins'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) fats = models.DecimalField(verbose_name=_('Fats'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) fats_saturated = models.DecimalField(verbose_name=_('Saturated Fats'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) fats_monounsaturated = models.DecimalField(verbose_name=_('Monounsaturated Fats'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) fats_polyunsaturated = models.DecimalField(verbose_name=_('Polyunsaturated Fats'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) cholesterol = models.DecimalField(verbose_name=_('Cholesterol'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) carbohydrates = models.DecimalField(verbose_name=_('Carbohydrates'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) carbohydrates_sugars = models.DecimalField(verbose_name=_('Sugars'), help_text=_('g/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_folic_acid = models.DecimalField(verbose_name=_('Folic Acid'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_a = models.DecimalField(verbose_name=_('Vitamin A'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_b1 = models.DecimalField(verbose_name=_('Vitamin B1'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_b2 = models.DecimalField(verbose_name=_('Vitamin B2'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_b6 = models.DecimalField(verbose_name=_('Vitamin B6'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_b12 = models.DecimalField(verbose_name=_('Vitamin B12'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_c = models.DecimalField(verbose_name=_('Vitamin C'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_d = models.DecimalField(verbose_name=_('Vitamin D'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_e = models.DecimalField(verbose_name=_('Vitamin E'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) vitamins_pp = models.DecimalField(verbose_name=_('Vitamin PP'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_zinc = models.DecimalField(verbose_name=_('Zinc'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_phosphorus = models.DecimalField(verbose_name=_('Phosphorus'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_iodine = models.DecimalField(verbose_name=_('Iodine'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_magnesium = models.DecimalField(verbose_name=_('Magnesium'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_copper = models.DecimalField(verbose_name=_('Copper'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_potasium = models.DecimalField(verbose_name=_('Potasium'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_selenium = models.DecimalField(verbose_name=_('Selenium'), help_text=_('µg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_sodium = models.DecimalField(verbose_name=_('Sodium'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_calcium = models.DecimalField(verbose_name=_('Calcium'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) minerals_iron = models.DecimalField(verbose_name=_('Iron'), help_text=_('mg/100g'), decimal_places=2, max_digits=5, blank=True, null=True, default=None) def __str__(self): return f'{self.name}' def save(self, *args, **kwargs): self.slug = slugify(self.name) super().save(*args, **kwargs) class Meta: ordering = ['-name'] verbose_name = _('Product') verbose_name_plural = _('Products') class Admin(admin.ModelAdmin): change_list_template = 'admin/change_list_filter_sidebar.html' formfield_overrides = {models.ManyToManyField: {'widget': CheckboxSelectMultiple}} ordering = ['-name'] list_display = ['name', 'type', 'category', 'modification_author', 'modification_date', 'display_tags'] list_filter = ['type', 'category', 'tags', 'modification_author', 'modification_date'] search_fields = ['name'] fieldsets = [ (_('General'), {'fields': ['name', 'type', 'category', 'tags', 'image']}), (_('Measurements'), {'fields': ['measurements_physical_form', 'measurements_usage_unit', 'measurements_shopping_unit', 'measurements_volume', 'measurements_weight']}), (_('Cooking'), {'fields': ['cooking_waste', 'cooking_factor', 'cooking_product']}), (_('Nutrition'), {'fields': ['calories', 'roughage']}), (_('Proteins'), {'fields': ['proteins', 'proteins_animal', 'proteins_plant']}), (_('Fats'), {'fields': ['fats', 'fats_saturated', 'fats_monounsaturated', 'fats_polyunsaturated', 'cholesterol']}), (_('Carbohydrates'), {'fields': ['carbohydrates', 'carbohydrates_sugars']}), (_('Vitamins'), {'fields': ['vitamins_folic_acid', 'vitamins_a', 'vitamins_b1', 'vitamins_b2', 'vitamins_b6', 'vitamins_b12', 'vitamins_c', 'vitamins_d', 'vitamins_e', 'vitamins_pp']}), (_('Minerals'), {'fields': ['minerals_zinc', 'minerals_phosphorus', 'minerals_iodine', 'minerals_magnesium', 'minerals_copper', 'minerals_potasium', 'minerals_selenium', 'minerals_calcium', 'minerals_iron']}), ] def display_tags(self, obj): return ", ".join([tag.name for tag in obj.tags.all()]) display_tags.short_description = _('Tags') def save_model(self, request, obj, form, change): obj.modification_author = User.objects.get(id=request.user.id) super().save_model(request, obj, form, change)