Datasets:
File size: 14,097 Bytes
a793576 b9af923 02a0db9 a793576 6076831 a793576 269fb9b a793576 1ceb1cd a793576 269fb9b a793576 b9af923 93cb031 a730e07 b9af923 c157f40 a793576 15c8495 a793576 15c8495 a793576 980b652 137dfa8 0e47990 a730e07 a793576 d33e622 a793576 2a5dd90 a793576 a730e07 a793576 a730e07 a793576 0e47990 a730e07 a793576 2a5dd90 a793576 a730e07 a793576 a730e07 a793576 a730e07 a793576 d33e622 a793576 a730e07 a793576 a730e07 a793576 41d7af2 a793576 a730e07 a793576 a730e07 a793576 a730e07 a793576 41d7af2 a793576 b9af923 a730e07 b9af923 a730e07 b9af923 a730e07 b9af923 a793576 d167a54 db620ea a793576 a730e07 a793576 a730e07 a793576 b9af923 bcd7651 b9af923 d33e622 a793576 8e61bfb a793576 269fb9b 61576ef a793576 799dc38 d028c4a 04ca5b9 a793576 04ca5b9 a793576 b9af923 a730e07 b9af923 05f99a6 b9af923 a793576 137dfa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
"""Compas Dataset"""
from typing import List
from functools import partial
import datetime
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"id",
"name",
"first",
"last",
"compas_screening_date",
"sex",
"dob",
"age",
"age_cat",
"race",
"juv_fel_count",
"decile_score",
"juv_misd_count",
"juv_other_count",
"priors_count",
"days_b_screening_arrest",
"c_jail_in",
"c_jail_out",
"c_case_number",
"c_offense_date",
"c_arrest_date",
"c_days_from_compas",
"c_charge_degree",
"c_charge_desc",
"is_recid",
"r_case_number",
"r_charge_degree",
"r_days_from_arrest",
"r_offense_date",
"r_charge_desc",
"r_jail_in",
"r_jail_out",
"violent_recid",
"is_violent_recid",
"vr_case_number",
"vr_charge_degree",
"vr_offense_date",
"vr_charge_desc",
"type_of_assessment",
"decile_score",
"score_text",
"screening_date",
"v_type_of_assessment",
"v_decile_score",
"v_score_text",
"v_screening_date",
"in_custody",
"out_custody",
"priors_count",
"start",
"end",
"event",
"two_year_recid",
"two_year_recid"
]
_BASE_FEATURE_NAMES = [
"is_male",
"age",
"race",
"number_of_juvenile_fellonies",
"decile_score",
"number_of_juvenile_misdemeanors",
"number_of_other_juvenile_offenses",
"number_of_prior_offenses",
"days_before_screening_arrest",
"is_recidivous",
"days_in_custody",
"is_violent_recidivous",
"violence_decile_score",
"two_year_recidivous",
]
_ENCODING_DICS = {
"is_male": {
"Male": 1,
"Female": 0
},
"race": {
"Caucasian": 0,
"African-American": 1,
"Hispanic": 2,
"Asian": 3,
"Other": 4,
"Native American": 5,
}
}
DESCRIPTION = "COMPAS dataset for recidivism prediction."
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
_URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
}
features_types_per_config = {
"encoding": {
"feature": datasets.Value("string"),
"original_value": datasets.Value("string"),
"encoded_value": datasets.Value("int8"),
},
"two-years-recidividity": {
"is_male": datasets.Value("bool"),
"age": datasets.Value("int64"),
"race": datasets.Value("string"),
"number_of_juvenile_fellonies": datasets.Value("int64"),
"decile_score": datasets.Value("int64"),
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
"number_of_other_juvenile_offenses": datasets.Value("int64"),
"number_of_prior_offenses": datasets.Value("int64"),
"days_before_screening_arrest": datasets.Value("int64"),
"is_recidivous": datasets.Value("bool"),
"days_in_custody": datasets.Value("int64"),
"is_violent_recidivous": datasets.Value("bool"),
"violence_decile_score": datasets.Value("int64"),
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
},
"two-years-recidividity-no-race": {
"is_male": datasets.Value("bool"),
"age": datasets.Value("int64"),
"number_of_juvenile_fellonies": datasets.Value("int64"),
"decile_score": datasets.Value("int64"),
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
"number_of_other_juvenile_offenses": datasets.Value("int64"),
"number_of_prior_offenses": datasets.Value("int64"),
"days_before_screening_arrest": datasets.Value("int64"),
"is_recidivous": datasets.Value("bool"),
"days_in_custody": datasets.Value("int64"),
"is_violent_recidivous": datasets.Value("bool"),
"violence_decile_score": datasets.Value("int64"),
"two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
},
"priors-prediction": {
"is_male": datasets.Value("bool"),
"age": datasets.Value("int64"),
"race": datasets.Value("string"),
"number_of_juvenile_fellonies": datasets.Value("int64"),
"decile_score": datasets.Value("int64"),
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
"number_of_other_juvenile_offenses": datasets.Value("int64"),
"days_before_screening_arrest": datasets.Value("int64"),
"is_recidivous": datasets.Value("bool"),
"days_in_custody": datasets.Value("int64"),
"is_violent_recidivous": datasets.Value("bool"),
"violence_decile_score": datasets.Value("int64"),
"two_year_recidivous": datasets.Value("int64"),
"number_of_prior_offenses": datasets.Value("int64")
},
"priors-prediction-no-race": {
"is_male": datasets.Value("bool"),
"age": datasets.Value("int64"),
"number_of_juvenile_fellonies": datasets.Value("int64"),
"decile_score": datasets.Value("int64"),
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
"number_of_other_juvenile_offenses": datasets.Value("int64"),
"days_before_screening_arrest": datasets.Value("int64"),
"is_recidivous": datasets.Value("bool"),
"days_in_custody": datasets.Value("int64"),
"is_violent_recidivous": datasets.Value("bool"),
"violence_decile_score": datasets.Value("int64"),
"two_year_recidivous": datasets.Value("int64"),
"number_of_prior_offenses": datasets.Value("int64"),
},
"race": {
"is_male": datasets.Value("bool"),
"age": datasets.Value("int64"),
"number_of_juvenile_fellonies": datasets.Value("int64"),
"decile_score": datasets.Value("int64"),
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
"number_of_other_juvenile_offenses": datasets.Value("int64"),
"days_before_screening_arrest": datasets.Value("int64"),
"is_recidivous": datasets.Value("bool"),
"days_in_custody": datasets.Value("int64"),
"is_violent_recidivous": datasets.Value("bool"),
"violence_decile_score": datasets.Value("int64"),
"two_year_recidivous": datasets.Value("int64"),
"number_of_prior_offenses": datasets.Value("int64"),
"race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
"Hispanic", "Asian", "Other", "Native American")),
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class CompasConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(CompasConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Compas(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "two-years-recidividity"
BUILDER_CONFIGS = [
CompasConfig(name="race",
description="Multiclass classification, predict `race` out of other features."),
CompasConfig(name="two-years-recidividity",
description="Compas binary classification for two-year recidividity."),
CompasConfig(name="two-years-recidividity-no-race",
description="Compas binary classification for two-year recidividity. Race excluded from features."),
CompasConfig(name="priors-prediction",
description="Compas regression task for estimating number of prior offenses of defendant."),
CompasConfig(name="priors-prediction-no-race",
description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
CompasConfig(name="encoding",
description="Encoding dictionaries for discrete labels."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
if self.config.name == "encoding":
data = self.encoding_dics()
else:
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
data.drop("id", axis="columns", inplace=True)
data.drop("name", axis="columns", inplace=True)
data.drop("first", axis="columns", inplace=True)
data.drop("last", axis="columns", inplace=True)
data.drop("dob", axis="columns", inplace=True)
data.drop("age_cat", axis="columns", inplace=True)
data.drop("c_offense_date", axis="columns", inplace=True)
data.drop("c_jail_in", axis="columns", inplace=True)
data.drop("c_jail_out", axis="columns", inplace=True)
data.drop("c_arrest_date", axis="columns", inplace=True)
data.drop("c_charge_degree", axis="columns", inplace=True)
data.drop("c_charge_desc", axis="columns", inplace=True)
data.drop("r_case_number", axis="columns", inplace=True)
data.drop("r_charge_degree", axis="columns", inplace=True)
data.drop("r_offense_date", axis="columns", inplace=True)
data.drop("r_charge_desc", axis="columns", inplace=True)
data.drop("violent_recid", axis="columns", inplace=True)
data.drop("vr_case_number", axis="columns", inplace=True)
data.drop("vr_charge_degree", axis="columns", inplace=True)
data.drop("vr_offense_date", axis="columns", inplace=True)
data.drop("vr_charge_desc", axis="columns", inplace=True)
data.drop("type_of_assessment", axis="columns", inplace=True)
data.drop("score_text", axis="columns", inplace=True)
data.drop("v_score_text", axis="columns", inplace=True)
data.drop("v_screening_date", axis="columns", inplace=True)
data.drop("screening_date", axis="columns", inplace=True)
data.drop("start", axis="columns", inplace=True)
data.drop("end", axis="columns", inplace=True)
data.drop("event", axis="columns", inplace=True)
data.drop("two_year_recid.1", axis="columns", inplace=True)
data.drop("r_jail_in", axis="columns", inplace=True)
data.drop("r_jail_out", axis="columns", inplace=True)
data.drop("v_type_of_assessment", axis="columns", inplace=True)
data.drop("compas_screening_date", axis="columns", inplace=True)
data.drop("decile_score.1", axis="columns", inplace=True)
data.drop("priors_count.1", axis="columns", inplace=True)
data.drop("c_case_number", axis="columns", inplace=True)
data.drop("c_days_from_compas", axis="columns", inplace=True)
data.drop("r_days_from_arrest", axis="columns", inplace=True)
# handle nan values
data.loc[data.days_b_screening_arrest.isna(), "days_b_screening_arrest"] = -1
data["days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)
# transform columns into intervals
data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
in_dates = data.in_custody.apply(datetime.date.fromisoformat)
out_dates = data.out_custody.apply(datetime.date.fromisoformat)
days_in_custody = [delta.days for delta in out_dates - in_dates]
data["days_in_custody"] = days_in_custody
data.drop("in_custody", axis="columns", inplace=True)
data.drop("out_custody", axis="columns", inplace=True)
data = data[["sex",
"age",
"race",
"juv_fel_count",
"decile_score",
"juv_misd_count",
"juv_other_count",
"priors_count",
"days_b_screening_arrest",
"is_recid",
"days_in_custody",
"is_violent_recid",
"v_decile_score",
"two_year_recid"]]
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
if feature == "race":
if config != "race":
continue
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data.loc[:, "is_recidivous"] = data["is_recidivous"].apply(bool)
data.loc[:, "is_violent_recidivous"] = data["is_violent_recidivous"].apply(bool)
data = data.astype({"is_recidivous": "bool", "is_violent_recidivous": "bool"})
return data[list(features_types_per_config[config].keys())]
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
def encoding_dics(self):
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
for feature, d in _ENCODING_DICS.items()]
data = pandas.concat(data, axis="rows").reset_index()
data.drop("index", axis="columns", inplace=True)
data.columns = ["feature", "original_value", "encoded_value"]
return data
|