File size: 14,097 Bytes
a793576
 
 
b9af923
02a0db9
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6076831
a793576
 
 
 
 
 
269fb9b
a793576
 
1ceb1cd
a793576
 
269fb9b
a793576
b9af923
93cb031
a730e07
 
b9af923
 
 
 
 
 
 
 
 
 
c157f40
a793576
 
15c8495
a793576
 
 
 
15c8495
a793576
 
980b652
137dfa8
 
 
 
 
0e47990
a730e07
a793576
d33e622
a793576
 
 
 
2a5dd90
a793576
a730e07
a793576
a730e07
a793576
 
 
 
0e47990
a730e07
a793576
 
 
 
 
2a5dd90
a793576
a730e07
a793576
a730e07
a793576
 
 
 
 
a730e07
a793576
d33e622
a793576
 
 
 
 
a730e07
a793576
a730e07
a793576
 
41d7af2
a793576
 
 
a730e07
a793576
 
 
 
 
 
a730e07
a793576
a730e07
a793576
 
41d7af2
a793576
b9af923
 
a730e07
b9af923
 
 
 
 
 
a730e07
b9af923
a730e07
b9af923
 
 
 
 
 
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
d167a54
 
db620ea
a793576
 
 
 
 
 
 
a730e07
 
a793576
 
 
a730e07
a793576
 
 
 
 
 
 
 
 
 
 
 
 
b9af923
bcd7651
b9af923
 
 
d33e622
a793576
 
 
 
 
 
 
 
 
 
 
 
 
8e61bfb
 
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269fb9b
 
61576ef
 
a793576
799dc38
d028c4a
04ca5b9
a793576
 
 
 
 
 
04ca5b9
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9af923
 
 
 
 
 
a730e07
 
 
b9af923
 
05f99a6
 
 
 
 
b9af923
 
 
 
 
 
 
a793576
137dfa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""Compas Dataset"""

from typing import List
from functools import partial
import datetime

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
    "id",
    "name",
    "first",
    "last",
    "compas_screening_date",
    "sex",
    "dob",
    "age",
    "age_cat",
    "race",
    "juv_fel_count",
    "decile_score",
    "juv_misd_count",
    "juv_other_count",
    "priors_count",
    "days_b_screening_arrest",
    "c_jail_in",
    "c_jail_out",
    "c_case_number",
    "c_offense_date",
    "c_arrest_date",
    "c_days_from_compas",
    "c_charge_degree",
    "c_charge_desc",
    "is_recid",
    "r_case_number",
    "r_charge_degree",
    "r_days_from_arrest",
    "r_offense_date",
    "r_charge_desc",
    "r_jail_in",
    "r_jail_out",
    "violent_recid",
    "is_violent_recid",
    "vr_case_number",
    "vr_charge_degree",
    "vr_offense_date",
    "vr_charge_desc",
    "type_of_assessment",
    "decile_score",
    "score_text",
    "screening_date",
    "v_type_of_assessment",
    "v_decile_score",
    "v_score_text",
    "v_screening_date",
    "in_custody",
    "out_custody",
    "priors_count",
    "start",
    "end",
    "event",
    "two_year_recid",
    "two_year_recid"
]
_BASE_FEATURE_NAMES = [
    "is_male", 
    "age",
    "race",
    "number_of_juvenile_fellonies",
    "decile_score",
    "number_of_juvenile_misdemeanors",
    "number_of_other_juvenile_offenses",
    "number_of_prior_offenses",
    "days_before_screening_arrest",
    "is_recidivous",
    "days_in_custody",
    "is_violent_recidivous",
    "violence_decile_score",
    "two_year_recidivous",
]
_ENCODING_DICS = {
    "is_male": {
        "Male": 1,
        "Female": 0
    },
    "race": {
        "Caucasian": 0,
        "African-American": 1,
        "Hispanic": 2,
        "Asian": 3,
        "Other": 4,
        "Native American": 5,
    }
}

DESCRIPTION = "COMPAS dataset for recidivism prediction."
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
_URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
}
features_types_per_config = {
    "encoding": {
        "feature": datasets.Value("string"),
        "original_value": datasets.Value("string"),
        "encoded_value":  datasets.Value("int8"),
    },

    "two-years-recidividity": {
        "is_male": datasets.Value("bool"),
        "age": datasets.Value("int64"),
        "race": datasets.Value("string"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_prior_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("bool"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("bool"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    },
    
    "two-years-recidividity-no-race": {
        "is_male": datasets.Value("bool"),
        "age": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_prior_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("bool"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("bool"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    },
    
    "priors-prediction": {
        "is_male": datasets.Value("bool"),
        "age": datasets.Value("int64"),
        "race": datasets.Value("string"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("bool"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("bool"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.Value("int64"),
        "number_of_prior_offenses": datasets.Value("int64")
    },
    
    "priors-prediction-no-race": {
        "is_male": datasets.Value("bool"),
        "age": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("bool"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("bool"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.Value("int64"),
        "number_of_prior_offenses": datasets.Value("int64"),
    },

    "race": {
        "is_male": datasets.Value("bool"),
        "age": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("bool"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("bool"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.Value("int64"),
        "number_of_prior_offenses": datasets.Value("int64"),
        "race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
                                                          "Hispanic", "Asian", "Other", "Native American")),
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class CompasConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(CompasConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Compas(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "two-years-recidividity"
    BUILDER_CONFIGS = [
        CompasConfig(name="race",
                    description="Multiclass classification, predict `race` out of other features."),
        CompasConfig(name="two-years-recidividity",
                    description="Compas binary classification for two-year recidividity."),
        CompasConfig(name="two-years-recidividity-no-race",
                     description="Compas binary classification for two-year recidividity. Race excluded from features."),
        CompasConfig(name="priors-prediction",
                     description="Compas regression task for estimating number of prior offenses of defendant."),
        CompasConfig(name="priors-prediction-no-race",
                     description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
        CompasConfig(name="encoding",
                    description="Encoding dictionaries for discrete labels."),
    ]


    def _info(self):       
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        if self.config.name == "encoding":
            data = self.encoding_dics()
        else:
            data = pandas.read_csv(filepath)
            data = self.preprocess(data, config=self.config.name)
        
        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
        data.drop("id", axis="columns", inplace=True)
        data.drop("name", axis="columns", inplace=True)
        data.drop("first", axis="columns", inplace=True)
        data.drop("last", axis="columns", inplace=True)
        data.drop("dob", axis="columns", inplace=True)
        data.drop("age_cat", axis="columns", inplace=True)
        data.drop("c_offense_date", axis="columns", inplace=True)
        data.drop("c_jail_in", axis="columns", inplace=True)
        data.drop("c_jail_out", axis="columns", inplace=True)
        data.drop("c_arrest_date", axis="columns", inplace=True)
        data.drop("c_charge_degree", axis="columns", inplace=True)
        data.drop("c_charge_desc", axis="columns", inplace=True)
        data.drop("r_case_number", axis="columns", inplace=True)
        data.drop("r_charge_degree", axis="columns", inplace=True)
        data.drop("r_offense_date", axis="columns", inplace=True)
        data.drop("r_charge_desc", axis="columns", inplace=True)
        data.drop("violent_recid", axis="columns", inplace=True)
        data.drop("vr_case_number", axis="columns", inplace=True)
        data.drop("vr_charge_degree", axis="columns", inplace=True)
        data.drop("vr_offense_date", axis="columns", inplace=True)
        data.drop("vr_charge_desc", axis="columns", inplace=True)
        data.drop("type_of_assessment", axis="columns", inplace=True)
        data.drop("score_text", axis="columns", inplace=True)
        data.drop("v_score_text", axis="columns", inplace=True)
        data.drop("v_screening_date", axis="columns", inplace=True)
        data.drop("screening_date", axis="columns", inplace=True)
        data.drop("start", axis="columns", inplace=True)
        data.drop("end", axis="columns", inplace=True)
        data.drop("event", axis="columns", inplace=True)
        data.drop("two_year_recid.1", axis="columns", inplace=True)
        data.drop("r_jail_in", axis="columns", inplace=True)
        data.drop("r_jail_out", axis="columns", inplace=True)
        data.drop("v_type_of_assessment", axis="columns", inplace=True)
        data.drop("compas_screening_date", axis="columns", inplace=True)
        data.drop("decile_score.1", axis="columns", inplace=True)
        data.drop("priors_count.1", axis="columns", inplace=True)
        data.drop("c_case_number", axis="columns", inplace=True)
        data.drop("c_days_from_compas", axis="columns", inplace=True)
        data.drop("r_days_from_arrest", axis="columns", inplace=True)
        

        # handle nan values
        data.loc[data.days_b_screening_arrest.isna(), "days_b_screening_arrest"] = -1
        data["days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)

        # transform columns into intervals
        data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
        in_dates = data.in_custody.apply(datetime.date.fromisoformat)
        out_dates = data.out_custody.apply(datetime.date.fromisoformat)
        days_in_custody = [delta.days for delta in out_dates - in_dates]
        data["days_in_custody"] = days_in_custody
        data.drop("in_custody", axis="columns", inplace=True)
        data.drop("out_custody", axis="columns", inplace=True)

        data = data[["sex",
                     "age",
                     "race",
                     "juv_fel_count",
                     "decile_score",
                     "juv_misd_count",
                     "juv_other_count",
                     "priors_count",
                     "days_b_screening_arrest",
                     "is_recid",
                     "days_in_custody",
                     "is_violent_recid",
                     "v_decile_score",
                     "two_year_recid"]]

        data.columns = _BASE_FEATURE_NAMES

        for feature in _ENCODING_DICS:
            if feature == "race":
                if config != "race":
                    continue
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
        data.loc[:, "is_recidivous"] = data["is_recidivous"].apply(bool)
        data.loc[:, "is_violent_recidivous"] = data["is_violent_recidivous"].apply(bool)
        data = data.astype({"is_recidivous": "bool", "is_violent_recidivous": "bool"})
                
        return data[list(features_types_per_config[config].keys())]
       
    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")

    def encoding_dics(self):
        data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
                for feature, d in _ENCODING_DICS.items()]
        data = pandas.concat(data, axis="rows").reset_index()
        data.drop("index", axis="columns", inplace=True)
        data.columns = ["feature", "original_value", "encoded_value"]

        return data