mstz commited on
Commit
137dfa8
·
1 Parent(s): 1ceb1cd

Upload compas.py

Browse files
Files changed (1) hide show
  1. compas.py +23 -7
compas.py CHANGED
@@ -93,6 +93,12 @@ urls_per_split = {
93
  "train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
94
  }
95
  features_types_per_config = {
 
 
 
 
 
 
96
  "two-years-recidividity": {
97
  "sex": datasets.Value("int64"),
98
  "age": datasets.Value("int64"),
@@ -176,6 +182,8 @@ class Compas(datasets.GeneratorBasedBuilder):
176
  # dataset versions
177
  DEFAULT_CONFIG = "two-years-recidividity"
178
  BUILDER_CONFIGS = [
 
 
179
  CompasConfig(name="two-years-recidividity",
180
  description="Compas binary classification for two-year recidividity."),
181
  CompasConfig(name="two-years-recidividity-no-race",
@@ -207,8 +215,6 @@ class Compas(datasets.GeneratorBasedBuilder):
207
  data = pandas.read_csv(filepath)
208
  data = self.preprocess(data, config=self.config.name)
209
 
210
- print("data.columns")
211
- print(data.columns)
212
  for row_id, row in data.iterrows():
213
  data_row = dict(row)
214
 
@@ -257,10 +263,14 @@ class Compas(datasets.GeneratorBasedBuilder):
257
  # drop nan values
258
  data = data[~data.days_b_screening_arrest.isna()]
259
  data.loc[:, "days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)
 
260
  data = data[~data.r_days_from_arrest.isna()]
 
261
 
262
  # transform columns into intervals
 
263
  data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
 
264
  in_dates = data.in_custody.apply(datetime.date.fromisoformat)
265
  out_dates = data.out_custody.apply(datetime.date.fromisoformat)
266
  days_in_custody = [delta.days for delta in out_dates - in_dates]
@@ -284,16 +294,14 @@ class Compas(datasets.GeneratorBasedBuilder):
284
  "v_decile_score",
285
  "two_year_recid"]]
286
 
287
- print("data.columns again")
288
- print(data.columns)
289
  data.columns = _BASE_FEATURE_NAMES
290
- print("data.columns again 1")
291
- print(data.columns)
292
 
293
  # binarize features
294
  data.loc[:, "sex"] = data.sex.apply(self.encode_sex)
295
 
296
- if config == "two-years-recidividity":
 
 
297
  return self.two_years_recidividity_preprocessing(data)
298
  elif config == "two-years-recidividity-no-race":
299
  return self.two_years_recidividity_no_race_preprocessing(data)
@@ -304,6 +312,14 @@ class Compas(datasets.GeneratorBasedBuilder):
304
  else:
305
  raise ValueError(f"Unknown config: {config}")
306
 
 
 
 
 
 
 
 
 
307
 
308
  def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
309
  # categorize features
 
93
  "train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
94
  }
95
  features_types_per_config = {
96
+ "config": {
97
+ "feature": datasets.Value("string"),
98
+ "original_value": datasets.Value("string"),
99
+ "encoded_value": datasets.Value("int8"),
100
+ },
101
+
102
  "two-years-recidividity": {
103
  "sex": datasets.Value("int64"),
104
  "age": datasets.Value("int64"),
 
182
  # dataset versions
183
  DEFAULT_CONFIG = "two-years-recidividity"
184
  BUILDER_CONFIGS = [
185
+ CompasConfig(name="encoding",
186
+ description="Encoding dictionaries for discrete labels."),
187
  CompasConfig(name="two-years-recidividity",
188
  description="Compas binary classification for two-year recidividity."),
189
  CompasConfig(name="two-years-recidividity-no-race",
 
215
  data = pandas.read_csv(filepath)
216
  data = self.preprocess(data, config=self.config.name)
217
 
 
 
218
  for row_id, row in data.iterrows():
219
  data_row = dict(row)
220
 
 
263
  # drop nan values
264
  data = data[~data.days_b_screening_arrest.isna()]
265
  data.loc[:, "days_b_screening_arrest"] = data.days_b_screening_arrest.astype(int)
266
+ print("dropping from " + data.shape[0])
267
  data = data[~data.r_days_from_arrest.isna()]
268
+ print("dropped to" + data.shape[0])
269
 
270
  # transform columns into intervals
271
+ print("dropping from " + data.shape[0])
272
  data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
273
+ print("dropped to" + data.shape[0])
274
  in_dates = data.in_custody.apply(datetime.date.fromisoformat)
275
  out_dates = data.out_custody.apply(datetime.date.fromisoformat)
276
  days_in_custody = [delta.days for delta in out_dates - in_dates]
 
294
  "v_decile_score",
295
  "two_year_recid"]]
296
 
 
 
297
  data.columns = _BASE_FEATURE_NAMES
 
 
298
 
299
  # binarize features
300
  data.loc[:, "sex"] = data.sex.apply(self.encode_sex)
301
 
302
+ if config == "encoding":
303
+ return self.encoding_dictionaries()
304
+ elif config == "two-years-recidividity":
305
  return self.two_years_recidividity_preprocessing(data)
306
  elif config == "two-years-recidividity-no-race":
307
  return self.two_years_recidividity_no_race_preprocessing(data)
 
312
  else:
313
  raise ValueError(f"Unknown config: {config}")
314
 
315
+ def encoding_dictionaries(self):
316
+ race_dic, sex_dic = self.race_decoding_dic(), self.sex_decoding_dic()
317
+ race_data = [("race", race, code) for race, code in race_dic.items()]
318
+ sex_data = [("sex", sex, code) for sex, code in sex_dic.items()]
319
+ data = pandas.DataFrame(race_data + sex_data,
320
+ columns=["feature", "original_value", "encoded_value"])
321
+
322
+ return data
323
 
324
  def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
325
  # categorize features