mstz commited on
Commit
a793576
·
1 Parent(s): b7d290a

Upload compas.py

Browse files
Files changed (1) hide show
  1. compas.py +390 -0
compas.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Compas Dataset"""
2
+
3
+ from typing import List
4
+
5
+ import datasets
6
+
7
+ import pandas
8
+
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+ _ORIGINAL_FEATURE_NAMES = [
12
+ "id",
13
+ "name",
14
+ "first",
15
+ "last",
16
+ "compas_screening_date",
17
+ "sex",
18
+ "dob",
19
+ "age",
20
+ "age_cat",
21
+ "race",
22
+ "juv_fel_count",
23
+ "decile_score",
24
+ "juv_misd_count",
25
+ "juv_other_count",
26
+ "priors_count",
27
+ "days_b_screening_arrest",
28
+ "c_jail_in",
29
+ "c_jail_out",
30
+ "c_case_number",
31
+ "c_offense_date",
32
+ "c_arrest_date",
33
+ "c_days_from_compas",
34
+ "c_charge_degree",
35
+ "c_charge_desc",
36
+ "is_recid",
37
+ "r_case_number",
38
+ "r_charge_degree",
39
+ "r_days_from_arrest",
40
+ "r_offense_date",
41
+ "r_charge_desc",
42
+ "r_jail_in",
43
+ "r_jail_out",
44
+ "violent_recid",
45
+ "is_violent_recid",
46
+ "vr_case_number",
47
+ "vr_charge_degree",
48
+ "vr_offense_date",
49
+ "vr_charge_desc",
50
+ "type_of_assessment",
51
+ "decile_score",
52
+ "score_text",
53
+ "screening_date",
54
+ "v_type_of_assessment",
55
+ "v_decile_score",
56
+ "v_score_text",
57
+ "v_screening_date",
58
+ "in_custody",
59
+ "out_custody",
60
+ "priors_count",
61
+ "start",
62
+ "end",
63
+ "event",
64
+ "two_year_recid",
65
+ "two_year_recid"
66
+ ]
67
+ _BASE_FEATURE_NAMES = [
68
+ "sex",
69
+ "age",
70
+ "race",
71
+ "number_of_juvenile_fellonies",
72
+ "decile_score",
73
+ "number_of_juvenile_misdemeanors",
74
+ "number_of_other_juvenile_offenses",
75
+ "number_of_priors_offenses",
76
+ "days_before_screening_arrest",
77
+ "is_recidivous",
78
+ "days_of_recidividity_after_arrest",
79
+ "days_in_jail_before_recidividity",
80
+ "days_in_custody",
81
+ "is_violent_recidivous",
82
+ "violence_decile_score",
83
+ "time_in_custody",
84
+ "priors_count",
85
+ "two_year_recidivous"
86
+ ]
87
+ DESCRIPTION = "COMPAS dataset for recidivism prediction."
88
+ _HOMEPAGE = "https://github.com/propublica/compas-analysis"
89
+ _URLS = ("https://huggingface.co/datasets/mstz/compas/raw/compas-scores-two-years-violent.csv")
90
+ _CITATION = """"""
91
+
92
+ # Dataset info
93
+ urls_per_split = {
94
+ "train": "https://huggingface.co/datasets/mstz/compas/raw/compas-scores-two-years-violent.csv",
95
+ }
96
+ features_types_per_config = {
97
+ "two-year-recidividity": {
98
+ "sex": datasets.Value("int64"),
99
+ "age": datasets.Value("int64"),
100
+ "race": datasets.Value("int64"),
101
+ "number_of_juvenile_fellonies": datasets.Value("int64"),
102
+ "decile_score": datasets.Value("int64"),
103
+ "number_of_juvenile_misdemeanors": datasets.Value("int64"),
104
+ "number_of_other_juvenile_offenses": datasets.Value("int64"),
105
+ "number_of_priors_offenses": datasets.Value("int64"),
106
+ "days_before_screening_arrest": datasets.Value("int64"),
107
+ "is_recidivous": datasets.Value("int64"),
108
+ "days_of_recidividity_after_arrest": datasets.Value("int64"),
109
+ "days_in_jail_before_recidividity": datasets.Value("int64"),
110
+ "days_in_custody": datasets.Value("int64"),
111
+ "is_violent_recidivous": datasets.Value("int64"),
112
+ "violence_decile_score": datasets.Value("int64"),
113
+ "time_in_custody": datasets.Value("int64"),
114
+ "priors_count": datasets.Value("int64"),
115
+ "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
116
+ },
117
+
118
+ "two-year-recidividity-no-race": {
119
+ "sex": datasets.Value("int64"),
120
+ "age": datasets.Value("int64"),
121
+ "number_of_juvenile_fellonies": datasets.Value("int64"),
122
+ "decile_score": datasets.Value("int64"),
123
+ "number_of_juvenile_misdemeanors": datasets.Value("int64"),
124
+ "number_of_other_juvenile_offenses": datasets.Value("int64"),
125
+ "number_of_priors_offenses": datasets.Value("int64"),
126
+ "days_before_screening_arrest": datasets.Value("int64"),
127
+ "is_recidivous": datasets.Value("int64"),
128
+ "days_of_recidividity_after_arrest": datasets.Value("int64"),
129
+ "days_in_jail_before_recidividity": datasets.Value("int64"),
130
+ "days_in_custody": datasets.Value("int64"),
131
+ "is_violent_recidivous": datasets.Value("int64"),
132
+ "violence_decile_score": datasets.Value("int64"),
133
+ "time_in_custody": datasets.Value("int64"),
134
+ "priors_count": datasets.Value("int64"),
135
+ "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
136
+ },
137
+
138
+ "priors-prediction": {
139
+ "sex": datasets.Value("int64"),
140
+ "age": datasets.Value("int64"),
141
+ "race": datasets.Value("int64"),
142
+ "number_of_juvenile_fellonies": datasets.Value("int64"),
143
+ "decile_score": datasets.Value("int64"),
144
+ "number_of_juvenile_misdemeanors": datasets.Value("int64"),
145
+ "number_of_other_juvenile_offenses": datasets.Value("int64"),
146
+ "number_of_priors_offenses": datasets.Value("int64"),
147
+ "days_before_screening_arrest": datasets.Value("int64"),
148
+ "is_recidivous": datasets.Value("int64"),
149
+ "days_of_recidividity_after_arrest": datasets.Value("int64"),
150
+ "days_in_jail_before_recidividity": datasets.Value("int64"),
151
+ "days_in_custody": datasets.Value("int64"),
152
+ "is_violent_recidivous": datasets.Value("int64"),
153
+ "violence_decile_score": datasets.Value("int64"),
154
+ "time_in_custody": datasets.Value("int64"),
155
+ "two_year_recidivous": datasets.Value("int64"),
156
+ "priors_count": datasets.Value("int64")
157
+ },
158
+
159
+ "priors-prediction-no-race": {
160
+ "sex": datasets.Value("int64"),
161
+ "age": datasets.Value("int64"),
162
+ "number_of_juvenile_fellonies": datasets.Value("int64"),
163
+ "decile_score": datasets.Value("int64"),
164
+ "number_of_juvenile_misdemeanors": datasets.Value("int64"),
165
+ "number_of_other_juvenile_offenses": datasets.Value("int64"),
166
+ "number_of_priors_offenses": datasets.Value("int64"),
167
+ "days_before_screening_arrest": datasets.Value("int64"),
168
+ "is_recidivous": datasets.Value("int64"),
169
+ "days_of_recidividity_after_arrest": datasets.Value("int64"),
170
+ "days_in_jail_before_recidividity": datasets.Value("int64"),
171
+ "days_in_custody": datasets.Value("int64"),
172
+ "is_violent_recidivous": datasets.Value("int64"),
173
+ "violence_decile_score": datasets.Value("int64"),
174
+ "time_in_custody": datasets.Value("int64"),
175
+ "two_year_recidivous": datasets.Value("int64"),
176
+ "priors_count": datasets.Value("int64")
177
+ },
178
+ }
179
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
180
+
181
+
182
+ class CompasConfig(datasets.BuilderConfig):
183
+ def __init__(self, **kwargs):
184
+ super(CompasConfig, self).__init__(version=VERSION, **kwargs)
185
+ self.features = features_per_config[kwargs["name"]]
186
+
187
+
188
+ class Compas(datasets.GeneratorBasedBuilder):
189
+ # dataset versions
190
+ DEFAULT_CONFIG = "two-years-recidividity"
191
+ BUILDER_CONFIGS = [
192
+ CompasConfig(name="two-year-recidividity",
193
+ description="Compas binary classification for two-year recidividity."),
194
+ CompasConfig(name="two-years-recidividity-no-race",
195
+ description="Compas binary classification for two-year recidividity. Race excluded from features."),
196
+ CompasConfig(name="priors-prediction",
197
+ description="Compas regression task for estimating number of prior offenses of defendant."),
198
+ CompasConfig(name="priors-prediction-no-race",
199
+ description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
200
+ ]
201
+
202
+
203
+ def _info(self):
204
+ if self.config.name not in features_per_config:
205
+ raise ValueError(f"Unknown configuration: {self.config.name}")
206
+
207
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
208
+ features=features_per_config[self.config.name])
209
+
210
+ return info
211
+
212
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
213
+ downloads = dl_manager.download_and_extract(urls_per_split)
214
+
215
+ return [
216
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
217
+ ]
218
+
219
+ def _generate_examples(self, filepath: str):
220
+ data = pandas.read_csv(filepath)
221
+ print("preprocessing...")
222
+ data = self.preprocess(data, config=self.config.name)
223
+ print("done!")
224
+
225
+ for row_id, row in data.iterrows():
226
+ data_row = dict(row)
227
+
228
+ yield row_id, data_row
229
+
230
+ def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
231
+ print("dropping columns...")
232
+ data.drop("id", axis="columns", inplace=True)
233
+ data.drop("name", axis="columns", inplace=True)
234
+ data.drop("first", axis="columns", inplace=True)
235
+ data.drop("last", axis="columns", inplace=True)
236
+ data.drop("dob", axis="columns", inplace=True)
237
+ data.drop("age_cat", axis="columns", inplace=True)
238
+ data.drop("c_offense_date", axis="columns", inplace=True)
239
+ data.drop("c_arrest_date", axis="columns", inplace=True)
240
+ data.drop("c_charge_degree", axis="columns", inplace=True)
241
+ data.drop("c_charge_desc", axis="columns", inplace=True)
242
+ data.drop("r_case_number", axis="columns", inplace=True)
243
+ data.drop("r_charge_degree", axis="columns", inplace=True)
244
+ data.drop("r_charge_degree", axis="columns", inplace=True)
245
+ data.drop("r_offense_date", axis="columns", inplace=True)
246
+ data.drop("r_charge_desc", axis="columns", inplace=True)
247
+ data.drop("violent_recid", axis="columns", inplace=True)
248
+ data.drop("vr_case_number", axis="columns", inplace=True)
249
+ data.drop("vr_charge_degree", axis="columns", inplace=True)
250
+ data.drop("vr_offense_date", axis="columns", inplace=True)
251
+ data.drop("vr_charge_desc", axis="columns", inplace=True)
252
+ data.drop("type_of_assessment", axis="columns", inplace=True)
253
+ data.drop("score_text", axis="columns", inplace=True)
254
+ data.drop("v_score_text", axis="columns", inplace=True)
255
+ data.drop("v_screening_date", axis="columns", inplace=True)
256
+ data.drop("screening_date", axis="columns", inplace=True)
257
+ data.drop("start", axis="columns", inplace=True)
258
+ data.drop("end", axis="columns", inplace=True)
259
+ data.drop("event", axis="columns", inplace=True)
260
+ data.drop("two_year_recid.1", axis="columns", inplace=True)
261
+ data.drop("r_jail_in", axis="columns", inplace=True)
262
+ data.drop("r_jail_out", axis="columns", inplace=True)
263
+ data.drop("vr_case_number", axis="columns", inplace=True)
264
+ data.drop("type_of_assessment", axis="columns", inplace=True)
265
+ data.drop("v_type_of_assessment", axis="columns", inplace=True)
266
+ data.drop("v_score_text", axis="columns", inplace=True)
267
+ data.drop("start", axis="columns", inplace=True)
268
+ data.drop("end", axis="columns", inplace=True)
269
+ data.drop("event", axis="columns", inplace=True)
270
+ data.drop("compas_screening_date", axis="columns", inplace=True)
271
+ data.drop("dob", axis="columns", inplace=True)
272
+ data.drop("decile_score.1", axis="columns", inplace=True)
273
+ data.drop("priors_count.1", axis="columns", inplace=True)
274
+
275
+ # drop nan values
276
+ data = data[~data.days_b_screening_arrest.isna()]
277
+ data = data[~data.c_days_from_compas.isna()]
278
+ data = data[~data.r_days_from_arrest.isna()]
279
+
280
+ # transform columns into intervals
281
+ data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
282
+ in_dates = data.in_custody.apply(datetime.date.fromisoformat)
283
+ out_dates = data.out_custody.apply(datetime.date.fromisoformat)
284
+ days_in_custody = [delta.days for delta in out_dates - in_dates]
285
+ data["days_in_custody"] = days_in_custody
286
+ data.drop("in_custody", axis="columns", inplace=True)
287
+ data.drop("out_custody", axis="columns", inplace=True)
288
+
289
+ data = data[["sex",
290
+ "age",
291
+ "race",
292
+ "juv_fel_count",
293
+ "decile_score",
294
+ "juv_misd_count",
295
+ "juv_other_count",
296
+ "priors_count",
297
+ "days_b_screening_arrest",
298
+ "is_recid",
299
+ "r_days_from_arrest",
300
+ "days_in_jail_before_recidividity",
301
+ "days_in_custody",
302
+ "is_violent_recid",
303
+ "v_decile_score",
304
+ "time_in_custody",
305
+ "two_year_recid"]]
306
+
307
+ data.columns = _BASE_FEATURE_NAMES
308
+
309
+ # binarize features
310
+ data.loc[:, "sex"] = data.sex.apply(self.encode_sex)
311
+
312
+ if config == "two-years-recidividity":
313
+ return self.two_years_recidividity_preprocessing(data)
314
+ elif config == "two-years-recidividity-no-race":
315
+ return self.two_years_recidividity_no_race_preprocessing(data)
316
+ elif config == "priors-prediction":
317
+ return self.priors_prediction_preprocessing(data)
318
+ elif config == "priors-prediction-no-race":
319
+ return self.priors_prediction_no_race_preprocessing(data)
320
+ else:
321
+ raise ValueError(f"Unknown config: {config}")
322
+
323
+
324
+ def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
325
+ # categorize features
326
+ data.loc[:, "race"] = data.race.apply(self.encode_race(race))
327
+
328
+ return data
329
+
330
+ def two_years_recidividity_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
331
+ # categorize features
332
+ data.drop("race", axis="columns", inplace=True)
333
+
334
+ return data
335
+
336
+ def priors_prediction_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
337
+ # categorize features
338
+ data.loc[:, "race"] = data.race.apply(self.encode_race(race))
339
+
340
+ return data
341
+
342
+ def priors_prediction_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
343
+ # categorize features
344
+ data.drop("race", axis="columns", inplace=True)
345
+
346
+ return data
347
+
348
+ def encode_race(self, race):
349
+ return self.race_encoding_dic()[race]
350
+
351
+ def decode_race(self, code):
352
+ return self.race_decoding_dic()[code]
353
+
354
+ def race_decoding_dic(self):
355
+ return {
356
+ 0: "Caucasian",
357
+ 1: "African-American",
358
+ 2: "Hispanic",
359
+ 3: "Asian",
360
+ 4: "Other",
361
+ 5: "Native American",
362
+ }
363
+
364
+ def race_encoding_dic(self):
365
+ return {
366
+ "Caucasian": 0,
367
+ "African-American": 1,
368
+ "Hispanic": 2,
369
+ "Asian": 3,
370
+ "Other": 4,
371
+ "Native American": 5,
372
+ }
373
+
374
+ def encode_sex(self, sex):
375
+ return self.sex_encoding_dic()[sex]
376
+
377
+ def decode_sex(self, code):
378
+ return self.sex_decoding_dic()[code]
379
+
380
+ def sex_encoding_dic(self):
381
+ return {
382
+ "Male": 0,
383
+ "Female": 1
384
+ }
385
+
386
+ def sex_decoding_dic(self):
387
+ return {
388
+ 0: "Male",
389
+ 1: "Female"
390
+ }