File size: 10,389 Bytes
3939c72
1c63a76
 
 
 
 
 
e6e4128
 
 
 
 
6a44f38
e6e4128
 
 
 
 
 
6a44f38
e6e4128
 
cf44fb9
d1546f7
cf44fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3c7b8
 
 
 
 
d1546f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fde5f4
 
 
 
 
406ad98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ee138
 
 
 
 
cf44fb9
 
 
 
 
3b3c7b8
 
d1546f7
 
 
 
1fde5f4
 
406ad98
 
 
 
e8ee138
 
3939c72
1c63a76
6a44f38
1c63a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a44f38
 
 
1c63a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a44f38
1c63a76
 
 
 
 
6a44f38
1c63a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a44f38
1c63a76
 
 
 
 
 
 
 
 
 
6a44f38
1c63a76
 
 
6a44f38
1c63a76
6a44f38
1c63a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
---
license: cc-by-4.0
task_categories:
- feature-extraction
- image-to-image
language:
- en
tags:
- remote-sensing
- aerial-imagery
- orthomosaic
- lighting-invariance
- representation-stability
- vision-encoder
- time-series
- dinov2
- dinov3
- embeddings
- multi-config
pretty_name: Light Stable Representations
size_categories:
- n<1K
dataset_info:
- config_name: default
  features:
  - name: idx
    dtype: string
  - name: image_t0
    dtype: image
  - name: image_t1
    dtype: image
  - name: image_t2
    dtype: image
  - name: canopy_height
    dtype:
      array2_d:
        shape:
        - 1024
        - 1024
        dtype: int32
  splits:
  - name: train
    num_bytes: 4905235380
    num_examples: 487
  - name: test
    num_bytes: 1221459061
    num_examples: 122
  download_size: 3688072446
  dataset_size: 6126694441
- config_name: dinov2_base
  features:
  - name: idx
    dtype: string
  - name: cls_t0
    list: float32
    length: 768
  - name: cls_t1
    list: float32
    length: 768
  - name: cls_t2
    list: float32
    length: 768
  - name: patch_t0
    dtype:
      array2_d:
        shape:
        - 256
        - 768
        dtype: float32
  - name: patch_t1
    dtype:
      array2_d:
        shape:
        - 256
        - 768
        dtype: float32
  - name: patch_t2
    dtype:
      array2_d:
        shape:
        - 256
        - 768
        dtype: float32
  splits:
  - name: train
    num_bytes: 1154971327
    num_examples: 487
  - name: test
    num_bytes: 289335733
    num_examples: 122
  download_size: 1487171455
  dataset_size: 1444307060
- config_name: dinov3_sat
  features:
  - name: idx
    dtype: string
  - name: cls_t0
    list: float32
    length: 1024
  - name: cls_t1
    list: float32
    length: 1024
  - name: cls_t2
    list: float32
    length: 1024
  - name: patch_t0
    dtype:
      array2_d:
        shape:
        - 196
        - 1024
        dtype: float32
  - name: patch_t1
    dtype:
      array2_d:
        shape:
        - 196
        - 1024
        dtype: float32
  - name: patch_t2
    dtype:
      array2_d:
        shape:
        - 196
        - 1024
        dtype: float32
  splits:
  - name: train
    num_bytes: 1180053775
    num_examples: 487
  - name: test
    num_bytes: 295619221
    num_examples: 122
  download_size: 1520934285
  dataset_size: 1475672996
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: dinov2_base
  data_files:
  - split: train
    path: dinov2_base/train-*
  - split: test
    path: dinov2_base/test-*
- config_name: dinov3_sat
  data_files:
  - split: train
    path: dinov3_sat/train-*
  - split: test
    path: dinov3_sat/test-*
---

# Light Stable Representations Dataset

## Dataset Description

This dataset contains aerial orthomosaic tiles captured at three different times of day (10:00, 12:00, and 15:00). The dataset is organized into three configurations: `default` (raw images + canopy height), `dinov2_base` (DINOv2 embeddings), and `dinov3_sat` (DINOv3 embeddings). All configurations share consistent train/test splits with matching tile identifiers for cross-referencing. The dataset is designed for training vision encoders that maintain consistent feature representations despite changes in illumination, with applications in remote sensing and environmental monitoring.

## Dataset Configurations

The dataset is organized into three configurations, each serving different research needs:

### Configuration: `default`
Raw imagery and environmental data for direct analysis:

| Feature | Type | Shape | Description |
|---------|------|--------|-------------|
| `idx` | string | - | Tile identifier in format `{ROW}_{COL}` for geographic referencing |
| `image_t0` | Image | 1024×1024×3 | Morning capture at 10:00 AM (time=1000) |
| `image_t1` | Image | 1024×1024×3 | Noon capture at 12:00 PM (time=1200) |
| `image_t2` | Image | 1024×1024×3 | Afternoon capture at 3:00 PM (time=1500) |
| `canopy_height` | int32 | [1024, 1024] | Canopy height grid in centimeters from canopy height model |

### Configuration: `dinov2_base`
Pre-computed DINOv2 Base (ViT-B/14) embeddings:

| Feature | Type | Shape | Description |
|---------|------|--------|-------------|
| `idx` | string | - | Tile identifier matching other configurations |
| `cls_t0` | float32 | [768] | DINOv2 CLS token (global features) for morning image |
| `cls_t1` | float32 | [768] | DINOv2 CLS token (global features) for noon image |
| `cls_t2` | float32 | [768] | DINOv2 CLS token (global features) for afternoon image |
| `patch_t0` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for morning image |
| `patch_t1` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for noon image |
| `patch_t2` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for afternoon image |

### Configuration: `dinov3_sat`
Pre-computed DINOv3 Large (ViT-L/16) embeddings with satellite pretraining:

| Feature | Type | Shape | Description |
|---------|------|--------|-------------|
| `idx` | string | - | Tile identifier matching other configurations |
| `cls_t0` | float32 | [1024] | DINOv3 CLS token (global features) for morning image |
| `cls_t1` | float32 | [1024] | DINOv3 CLS token (global features) for noon image |
| `cls_t2` | float32 | [1024] | DINOv3 CLS token (global features) for afternoon image |
| `patch_t0` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for morning image |
| `patch_t1` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for noon image |
| `patch_t2` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for afternoon image |

**Notes:**
- Canopy height values represent centimeters above ground; missing data is encoded as `-2147483648`
- All configurations use consistent 80%/20% train/test splits with matching `idx` values
- Patch tokens represent spatial features in different grid resolutions: 16×16 (DINOv2) vs 14×14 (DINOv3)

## Usage Example

```python
from datasets import load_dataset

# Load specific configurations
dataset_default = load_dataset("mpg-ranch/drone-lsr", "default")
dataset_dinov2 = load_dataset("mpg-ranch/drone-lsr", "dinov2_base")
dataset_dinov3 = load_dataset("mpg-ranch/drone-lsr", "dinov3_sat")

# Access raw imagery and canopy height
sample_default = dataset_default['train'][0]
morning_image = sample_default['image_t0']      # RGB image
noon_image = sample_default['image_t1']         # RGB image
afternoon_image = sample_default['image_t2']    # RGB image
canopy_height = sample_default['canopy_height'] # Height grid in cm
tile_id = sample_default['idx']                 # Geographic identifier

# Access DINOv2 embeddings (same tile via matching idx)
sample_dinov2 = dataset_dinov2['train'][0]
dinov2_cls_morning = sample_dinov2['cls_t0']     # Global features (768-dim)
dinov2_patches_morning = sample_dinov2['patch_t0'] # Spatial features (256×768)

# Access DINOv3 embeddings (same tile via matching idx)
sample_dinov3 = dataset_dinov3['train'][0]
dinov3_cls_morning = sample_dinov3['cls_t0']     # Global features (1024-dim)
dinov3_patches_morning = sample_dinov3['patch_t0'] # Spatial features (196×1024)

# Verify consistent tile identifiers across configurations
assert sample_default['idx'] == sample_dinov2['idx'] == sample_dinov3['idx']

# Access test sets for evaluation
test_default = dataset_default['test'][0]
test_dinov2 = dataset_dinov2['test'][0]
test_dinov3 = dataset_dinov3['test'][0]
```

## Pre-computed Embeddings

The dataset includes pre-computed embeddings from two state-of-the-art vision transformers:

### DINOv2 Base (`facebook/dinov2-base`)
- **Architecture**: Vision Transformer Base with 14×14 patch size
- **CLS Tokens**: 768-dimensional global feature vectors capturing scene-level representations
- **Patch Tokens**: 256×768 arrays (16×16 spatial grid) encoding local features
- **Training**: Self-supervised learning on natural images

### DINOv3 Large (`facebook/dinov3-vitl16-pretrain-sat493m`)
- **Architecture**: Vision Transformer Large with 16×16 patch size
- **CLS Tokens**: 1024-dimensional global feature vectors capturing scene-level representations
- **Patch Tokens**: 196×1024 arrays (14×14 spatial grid) encoding local features
- **Training**: Self-supervised learning with satellite imagery pretraining

**Purpose**: Enable efficient training and analysis without requiring on-the-fly feature extraction, while providing comparison between natural image and satellite-pretrained models.

## Dataset Information

- **Location**: Lower Partridge Alley, MPG Ranch, Montana, USA
- **Survey Date**: November 7, 2024
- **Coverage**: 620 complete tile sets (80% train / 20% test split via seeded random sampling)
- **Resolution**: 1024×1024 pixels at 1.2cm ground resolution
- **Total Size**: ~6.4GB of image data plus embeddings
- **Quality Control**: Tiles with transient objects, such as vehicles, were excluded from the dataset. RGB imagery and canopy rasters are removed together to keep modalities aligned.

## Use Cases

This dataset is intended for:
- Developing vision encoders robust to lighting variations
- Representation stability research in computer vision
- Time-invariant feature learning
- Remote sensing applications requiring lighting robustness
- Comparative analysis of illumination effects on vision model features

## Citation

If you use this dataset in your research, please cite:

```bibtex
@dataset{mpg_ranch_light_stable_semantics_2024,
  title={Light Stable Representations Dataset},
  author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
  year={2024},
  month={November},
  url={https://huggingface.co/datasets/mpg-ranch/drone-lsr},
  publisher={Hugging Face},
  note={Aerial orthomosaic tiles with DINOv2 and DINOv3 embeddings for light-stable representation vision encoder training},
  location={MPG Ranch, Montana, USA},
  survey_date={2024-11-07},
  organization={MPG Ranch}
}
```

## License

This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license.

**Attribution Requirements:**
- You must give appropriate credit to MPG Ranch
- Provide a link to the license
- Indicate if changes were made to the dataset