kdoherty commited on
Commit
6a44f38
·
verified ·
1 Parent(s): 9d8c6ae

Update dataset card metadata - 2025-09-24T10:13:04.819790

Browse files
Files changed (1) hide show
  1. README.md +12 -144
README.md CHANGED
@@ -10,151 +10,19 @@ tags:
10
  - aerial-imagery
11
  - orthomosaic
12
  - lighting-invariance
13
- - semantic-stability
14
  - vision-encoder
15
  - time-series
16
  - dinov2
17
  - dinov3
18
  - embeddings
19
  - multi-config
20
- pretty_name: Light Stable Semantics
21
  size_categories:
22
  - n<1K
23
- dataset_info:
24
- - config_name: default
25
- features:
26
- - name: idx
27
- dtype: string
28
- - name: image_t0
29
- dtype: image
30
- - name: image_t1
31
- dtype: image
32
- - name: image_t2
33
- dtype: image
34
- - name: canopy_height
35
- dtype:
36
- array2_d:
37
- shape:
38
- - 1024
39
- - 1024
40
- dtype: int32
41
- splits:
42
- - name: train
43
- num_bytes: 4905235380
44
- num_examples: 487
45
- - name: test
46
- num_bytes: 1221459061
47
- num_examples: 122
48
- download_size: 3688072446
49
- dataset_size: 6126694441
50
- - config_name: dinov2_base
51
- features:
52
- - name: idx
53
- dtype: string
54
- - name: cls_t0
55
- list: float32
56
- length: 768
57
- - name: cls_t1
58
- list: float32
59
- length: 768
60
- - name: cls_t2
61
- list: float32
62
- length: 768
63
- - name: patch_t0
64
- dtype:
65
- array2_d:
66
- shape:
67
- - 256
68
- - 768
69
- dtype: float32
70
- - name: patch_t1
71
- dtype:
72
- array2_d:
73
- shape:
74
- - 256
75
- - 768
76
- dtype: float32
77
- - name: patch_t2
78
- dtype:
79
- array2_d:
80
- shape:
81
- - 256
82
- - 768
83
- dtype: float32
84
- splits:
85
- - name: train
86
- num_bytes: 1154971327
87
- num_examples: 487
88
- - name: test
89
- num_bytes: 289335733
90
- num_examples: 122
91
- download_size: 1487171455
92
- dataset_size: 1444307060
93
- - config_name: dinov3_sat
94
- features:
95
- - name: idx
96
- dtype: string
97
- - name: cls_t0
98
- list: float32
99
- length: 1024
100
- - name: cls_t1
101
- list: float32
102
- length: 1024
103
- - name: cls_t2
104
- list: float32
105
- length: 1024
106
- - name: patch_t0
107
- dtype:
108
- array2_d:
109
- shape:
110
- - 196
111
- - 1024
112
- dtype: float32
113
- - name: patch_t1
114
- dtype:
115
- array2_d:
116
- shape:
117
- - 196
118
- - 1024
119
- dtype: float32
120
- - name: patch_t2
121
- dtype:
122
- array2_d:
123
- shape:
124
- - 196
125
- - 1024
126
- dtype: float32
127
- splits:
128
- - name: train
129
- num_bytes: 1180053775
130
- num_examples: 487
131
- - name: test
132
- num_bytes: 295619221
133
- num_examples: 122
134
- download_size: 1520934285
135
- dataset_size: 1475672996
136
- configs:
137
- - config_name: default
138
- data_files:
139
- - split: train
140
- path: data/train-*
141
- - split: test
142
- path: data/test-*
143
- - config_name: dinov2_base
144
- data_files:
145
- - split: train
146
- path: dinov2_base/train-*
147
- - split: test
148
- path: dinov2_base/test-*
149
- - config_name: dinov3_sat
150
- data_files:
151
- - split: train
152
- path: dinov3_sat/train-*
153
- - split: test
154
- path: dinov3_sat/test-*
155
  ---
156
 
157
- # Light Stable Semantics Dataset
158
 
159
  ## Dataset Description
160
 
@@ -212,9 +80,9 @@ Pre-computed DINOv3 Large (ViT-L/16) embeddings with satellite pretraining:
212
  from datasets import load_dataset
213
 
214
  # Load specific configurations
215
- dataset_default = load_dataset("mpg-ranch/light-stable-semantics", "default")
216
- dataset_dinov2 = load_dataset("mpg-ranch/light-stable-semantics", "dinov2_base")
217
- dataset_dinov3 = load_dataset("mpg-ranch/light-stable-semantics", "dinov3_sat")
218
 
219
  # Access raw imagery and canopy height
220
  sample_default = dataset_default['train'][0]
@@ -249,13 +117,13 @@ The dataset includes pre-computed embeddings from two state-of-the-art vision tr
249
 
250
  ### DINOv2 Base (`facebook/dinov2-base`)
251
  - **Architecture**: Vision Transformer Base with 14×14 patch size
252
- - **CLS Tokens**: 768-dimensional global feature vectors capturing scene-level semantics
253
  - **Patch Tokens**: 256×768 arrays (16×16 spatial grid) encoding local features
254
  - **Training**: Self-supervised learning on natural images
255
 
256
  ### DINOv3 Large (`facebook/dinov3-vitl16-pretrain-sat493m`)
257
  - **Architecture**: Vision Transformer Large with 16×16 patch size
258
- - **CLS Tokens**: 1024-dimensional global feature vectors capturing scene-level semantics
259
  - **Patch Tokens**: 196×1024 arrays (14×14 spatial grid) encoding local features
260
  - **Training**: Self-supervised learning with satellite imagery pretraining
261
 
@@ -274,7 +142,7 @@ The dataset includes pre-computed embeddings from two state-of-the-art vision tr
274
 
275
  This dataset is intended for:
276
  - Developing vision encoders robust to lighting variations
277
- - Semantic stability research in computer vision
278
  - Time-invariant feature learning
279
  - Remote sensing applications requiring lighting robustness
280
  - Comparative analysis of illumination effects on vision model features
@@ -285,13 +153,13 @@ If you use this dataset in your research, please cite:
285
 
286
  ```bibtex
287
  @dataset{mpg_ranch_light_stable_semantics_2024,
288
- title={Light Stable Semantics Dataset},
289
  author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
290
  year={2024},
291
  month={November},
292
- url={https://huggingface.co/datasets/mpg-ranch/light-stable-semantics},
293
  publisher={Hugging Face},
294
- note={Aerial orthomosaic tiles with DINOv2 and DINOv3 embeddings for light-stable semantic vision encoder training},
295
  location={MPG Ranch, Montana, USA},
296
  survey_date={2024-11-07},
297
  organization={MPG Ranch}
 
10
  - aerial-imagery
11
  - orthomosaic
12
  - lighting-invariance
13
+ - representation-stability
14
  - vision-encoder
15
  - time-series
16
  - dinov2
17
  - dinov3
18
  - embeddings
19
  - multi-config
20
+ pretty_name: Light Stable Representations
21
  size_categories:
22
  - n<1K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ---
24
 
25
+ # Light Stable Representations Dataset
26
 
27
  ## Dataset Description
28
 
 
80
  from datasets import load_dataset
81
 
82
  # Load specific configurations
83
+ dataset_default = load_dataset("mpg-ranch/drone-lsr", "default")
84
+ dataset_dinov2 = load_dataset("mpg-ranch/drone-lsr", "dinov2_base")
85
+ dataset_dinov3 = load_dataset("mpg-ranch/drone-lsr", "dinov3_sat")
86
 
87
  # Access raw imagery and canopy height
88
  sample_default = dataset_default['train'][0]
 
117
 
118
  ### DINOv2 Base (`facebook/dinov2-base`)
119
  - **Architecture**: Vision Transformer Base with 14×14 patch size
120
+ - **CLS Tokens**: 768-dimensional global feature vectors capturing scene-level representations
121
  - **Patch Tokens**: 256×768 arrays (16×16 spatial grid) encoding local features
122
  - **Training**: Self-supervised learning on natural images
123
 
124
  ### DINOv3 Large (`facebook/dinov3-vitl16-pretrain-sat493m`)
125
  - **Architecture**: Vision Transformer Large with 16×16 patch size
126
+ - **CLS Tokens**: 1024-dimensional global feature vectors capturing scene-level representations
127
  - **Patch Tokens**: 196×1024 arrays (14×14 spatial grid) encoding local features
128
  - **Training**: Self-supervised learning with satellite imagery pretraining
129
 
 
142
 
143
  This dataset is intended for:
144
  - Developing vision encoders robust to lighting variations
145
+ - Representation stability research in computer vision
146
  - Time-invariant feature learning
147
  - Remote sensing applications requiring lighting robustness
148
  - Comparative analysis of illumination effects on vision model features
 
153
 
154
  ```bibtex
155
  @dataset{mpg_ranch_light_stable_semantics_2024,
156
+ title={Light Stable Representations Dataset},
157
  author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
158
  year={2024},
159
  month={November},
160
+ url={https://huggingface.co/datasets/mpg-ranch/drone-lsr},
161
  publisher={Hugging Face},
162
+ note={Aerial orthomosaic tiles with DINOv2 and DINOv3 embeddings for light-stable representation vision encoder training},
163
  location={MPG Ranch, Montana, USA},
164
  survey_date={2024-11-07},
165
  organization={MPG Ranch}