protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
H37_HUMAN | Homo sapiens | MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQEFKTDLRFQSSAVMALQEAREAYLVGLFEDTNLCAIHAKRVTIMPKDIQLVSRIRGERA | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
HACD2_PONAB | Pongo abelii | MAAAAAATAAAKGNGGGGGRAGAGDASGTRKKKGPGPLATAYLVIYNVVMTAGWLVIAVGLVRAYLAKGSYHSLYYSIEKPLKFFQTGALLEILHCAIGIVPSSVVLTSFQVMSRVFLIWAVTHSVKEVQSEDSVLLFVIAWTITEIIRYSFYTFSLLNHLPYLIKWARYTLFIVLYPMGVSGELLTIYAALPFVRQAGLYSISLPNKYNFSFDYYAFLILIMISYIPIFPQLYFHMIHQRRKILSHTEEHKKFE | Catalyzes the third of the very long-chain fatty acids (VLCFA) elongation four-step cycle (condensation, reduction, dehydration, and reduction). This endoplasmic reticulum-elongation process is characterized by the addition of two carbons to the lipid chain through each cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of elongation. Therefore, it participates in the production of various VLCFAs involved in multiple biological processes as precursors of membrane lipids and lipid mediators.
Subcellular locations: Endoplasmic reticulum membrane |
HACD3_HUMAN | Homo sapiens | MENQVLTPHVYWAQRHRELYLRVELSDVQNPAISITENVLHFKAQGHGAKGDNVYEFHLEFLDLVKPEPVYKLTQRQVNITVQKKVSQWWERLTKQEKRPLFLAPDFDRWLDESDAEMELRAKEEERLNKLRLESEGSPETLTNLRKGYLFMYNLVQFLGFSWIFVNLTVRFCILGKESFYDTFHTVADMMYFCQMLAVVETINAAIGVTTSPVLPSLIQLLGRNFILFIIFGTMEEMQNKAVVFFVFYLWSAIEIFRYSFYMLTCIDMDWKVLTWLRYTLWIPLYPLGCLAEAVSVIQSIPIFNETGRFSFTLPYPVKIKVRFSFFLQIYLIMIFLGLYINFRHLYKQRRRRYGQKKKKIH | Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. May be involved in Rac1-signaling pathways leading to the modulation of gene expression. Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization .
Subcellular locations: Endoplasmic reticulum membrane
Highly expressed in testis, kidney, brain, liver and weakly in skeletal muscle, spleen and heart. No expression detected in leukocytes. |
HACD3_PONAB | Pongo abelii | MAMENQVLTPHVYWAQRHRELYLRVELSDVQNPAISTTENVLHFKAQGHGAKGDNVYEFHLEFLDLVKPEPVYKLTQRQVNITVQKKVSQWWERLTKQEKRPLFLAPDFDRWLDESDAEMELRAKEEERLNKLRLESEGSPETLTNLRKGYLFMYNLVQFLGFSWIFVNLTVRFCILGKESFYDTFHTVADMMYFCQMLAVVETINAAIGVTTSPVLPSLIQLLGRNFILFIIFGTMEEMQNKAVVFFVFYLWSAIEIFRYSFYMLTCIDMDWEVLTWLRYTLWIPLYPLGCLAEAVSVVQSIPIFNETGRFSFTLPYPVKIKVRFSFFLQIYLIMIFLGLYINFRHLYKQRRRRYGQKKKKIH | Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. Involved in Rac1-signaling pathways leading to the modulation of gene expression.
Subcellular locations: Endoplasmic reticulum membrane |
HACD4_HUMAN | Homo sapiens | MGPLALPAWLQPRYRKNAYLFIYYLIQFCGHSWIFTNMTVRFFSFGKDSMVDTFYAIGLVMRLCQSVSLLELLHIYVGIESNHLLPRFLQLTERIIILFVVITSQEEVQEKYVVCVLFVFWNLLDMVRYTYSMLSVIGISYAVLTWLSQTLWMPIYPLCVLAEAFAIYQSLPYFESFGTYSTKLPFDLSIYFPYVLKIYLMMLFIGMYFTYSHLYSERRDILGIFPIKKKKM | Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators.
Subcellular locations: Endoplasmic reticulum membrane
Highly expressed in leukocytes, and low expression in heart, spleen, kidney, and placenta. |
HAP40_HUMAN | Homo sapiens | MAAAAAGLGGGGAGPGPEAGDFLARYRLVSNKLKKRFLRKPNVAEAGEQFGQLGRELRAQECLPYAAWCQLAVARCQQALFHGPGEALALTEAARLFLRQERDARQRLVCPAAYGEPLQAAASALGAAVRLHLELGQPAAAAALCLELAAALRDLGQPAAAAGHFQRAAQLQLPQLPLAALQALGEAASCQLLARDYTGALAVFTRMQRLAREHGSHPVQSLPPPPPPAPQPGPGATPALPAALLPPNSGSAAPSPAALGAFSDVLVRCEVSRVLLLLLLQPPPAKLLPEHAQTLEKYSWEAFDSHGQESSGQLPEELFLLLQSLVMATHEKDTEAIKSLQVEMWPLLTAEQNHLLHLVLQETISPSGQGV | RAB5A effector molecule that is involved in vesicular trafficking of early endosomes . Mediates the recruitment of HTT by RAB5A onto early endosomes. The HTT-F8A1/F8A2/F8A3-RAB5A complex stimulates early endosomal interaction with actin filaments and inhibits interaction with microtubules, leading to the reduction of endosome motility .
Subcellular locations: Cytoplasm, Nucleus, Early endosome, Nucleus, Nuclear body
Diffuse presence in the cytoplasm and accumulation in the nucleus . In absence of HTT, F8A1/F8A2/F8A3 is concentred in cytoplasm (By similarity). Colocalized with HTT in endosomes . In neuron found in intranuclear structures, the intranuclear rodlets (INRs), also known as rodlets of Roncoroni, in association with ubiquitin (By similarity).
Produced abundantly in a wide variety of cell types. |
HAPR1_HUMAN | Homo sapiens | MEERKEEGEAEIQEHGPEHWFSKWERQCLAEAEQDEQLPPELQEEAAAAAQPEHKQQKLWHLFQNSATAVAQLYKDRVCQQPGLSLWVPFQNAATAVTNLYKESVDTHQRSFDIGIQIGYQRRNKDVLAWVKKRRRTIRREDLISFLCGKVPPPRNSRAPPRLTVVSPNRATSTETSSSVETDLQPFREAIALHGLSGAMASISVRSSTPGSPTHVSSGSNASRRRNGLHDVDLNTFISEEMALHLDNGGTRKRTSAQCGDVITDSPTHKRNRMI | Acts as a central player within a network of stress response pathways promoting cellular adaptability. The E3 ligase HUWE1 assists HAPSTR1 in controlling stress signaling and in turn, HUWE1 feeds back to promote the degradation of HAPSTR1. HAPSTR1 represents a central coordination mechanism for stress response programs . Functions as a negative regulator of TP53/P53 in the cellular response to telomere erosion and probably also DNA damage . May attenuate p53/TP53 activation through the E3 ubiquitin ligase HUWE1 .
Subcellular locations: Nucleus, Cytoplasm |
HAPR2_HUMAN | Homo sapiens | MEEQQKEGEAEVAEHWFSKWERQCLAEAEQEEQLPPELQEEAAAELAGLKSEKQKLWHLFQISATAVAQLYKDSGCQQQGLSMWDPFQNAAMAVTSLYKESGDAHQRSFDLGVQVGHQRRIKDVLEWVKKGRSTIRREDLISFLCGKVPPAPPPPRTPRTPPKPPTGVTSQAVATESSSSVDVDLQPFQEAIALHGLSGAMAGISMRSGDSPQDSGVASSGRRKTSFLEDDLNPFDSEELALHLDSGGIRKRTSAQCSDGITDSPIQKRNRMV | Together with HAPSTR1 plays a central regulatory role in the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding . Regulates these multiple stress response signaling pathways by stabilizing HAPSTR1, but also independently of HAPSTR1 .
Subcellular locations: Nucleus
Expressed in a tissue-restricted manner compared to HAPSTR1. |
HBA_CHLAE | Chlorocebus aethiops | MVLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTLAVGHVDDMPHALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBA_PONPY | Pongo pygmaeus | MVLSPADKTNVKTAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKDHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBA_SAGMY | Saguinus mystax | VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVALVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPADFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBA_SAGOE | Saguinus oedipus | VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPADFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBA_SAPAP | Sapajus apella | MVLSPADKTNVKTAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALSNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHHPADFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBB_EULFU | Eulemur fulvus fulvus | MTLLSAEENAHVTSLWGKVDVEKVGGEALGRLLVVYPWTQRFFESFGDLSSPSAVMGNPKVKAHGKKVLSAFSEGLHHLDNLKGTFAQLSELHCDKLHVDPQNFTLLGNVLVVVLAEHFGNAFSPAVQAAFQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_GORGO | Gorilla gorilla gorilla | MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_HAPGR | Hapalemur griseus | TFLTPEENGHVTSLWGKVDVEKVGGEALGRLLVVYPWTQRFFESFGDLSTPSAIMGNPKVKAHGKKVLSAFSEGLHHLDNLKGTFAQLSELHCDKLHVDPQNFTLLGNVLVIVLAEHFGNAFSPPVQAAFQKVVTGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_HUMAN | Homo sapiens | MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.
Functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation.
Red blood cells. |
HCFC1_HUMAN | Homo sapiens | MASAVSPANLPAVLLQPRWKRVVGWSGPVPRPRHGHRAVAIKELIVVFGGGNEGIVDELHVYNTATNQWFIPAVRGDIPPGCAAYGFVCDGTRLLVFGGMVEYGKYSNDLYELQASRWEWKRLKAKTPKNGPPPCPRLGHSFSLVGNKCYLFGGLANDSEDPKNNIPRYLNDLYILELRPGSGVVAWDIPITYGVLPPPRESHTAVVYTEKDNKKSKLVIYGGMSGCRLGDLWTLDIDTLTWNKPSLSGVAPLPRSLHSATTIGNKMYVFGGWVPLVMDDVKVATHEKEWKCTNTLACLNLDTMAWETILMDTLEDNIPRARAGHCAVAINTRLYIWSGRDGYRKAWNNQVCCKDLWYLETEKPPPPARVQLVRANTNSLEVSWGAVATADSYLLQLQKYDIPATAATATSPTPNPVPSVPANPPKSPAPAAAAPAVQPLTQVGITLLPQAAPAPPTTTTIQVLPTVPGSSISVPTAARTQGVPAVLKVTGPQATTGTPLVTMRPASQAGKAPVTVTSLPAGVRMVVPTQSAQGTVIGSSPQMSGMAALAAAAAATQKIPPSSAPTVLSVPAGTTIVKTMAVTPGTTTLPATVKVASSPVMVSNPATRMLKTAAAQVGTSVSSATNTSTRPIITVHKSGTVTVAQQAQVVTTVVGGVTKTITLVKSPISVPGGSALISNLGKVMSVVQTKPVQTSAVTGQASTGPVTQIIQTKGPLPAGTILKLVTSADGKPTTIITTTQASGAGTKPTILGISSVSPSTTKPGTTTIIKTIPMSAIITQAGATGVTSSPGIKSPITIITTKVMTSGTGAPAKIITAVPKIATGHGQQGVTQVVLKGAPGQPGTILRTVPMGGVRLVTPVTVSAVKPAVTTLVVKGTTGVTTLGTVTGTVSTSLAGAGGHSTSASLATPITTLGTIATLSSQVINPTAITVSAAQTTLTAAGGLTTPTITMQPVSQPTQVTLITAPSGVEAQPVHDLPVSILASPTTEQPTATVTIADSGQGDVQPGTVTLVCSNPPCETHETGTTNTATTTVVANLGGHPQPTQVQFVCDRQEAAASLVTSTVGQQNGSVVRVCSNPPCETHETGTTNTATTATSNMAGQHGCSNPPCETHETGTTNTATTAMSSVGANHQRDARRACAAGTPAVIRISVATGALEAAQGSKSQCQTRQTSATSTTMTVMATGAPCSAGPLLGPSMAREPGGRSPAFVQLAPLSSKVRLSSPSIKDLPAGRHSHAVSTAAMTRSSVGAGEPRMAPVCESLQGGSPSTTVTVTALEALLCPSATVTQVCSNPPCETHETGTTNTATTSNAGSAQRVCSNPPCETHETGTTHTATTATSNGGTGQPEGGQQPPAGRPCETHQTTSTGTTMSVSVGALLPDATSSHRTVESGLEVAAAPSVTPQAGTALLAPFPTQRVCSNPPCETHETGTTHTATTVTSNMSSNQDPPPAASDQGEVESTQGDSVNITSSSAITTTVSSTLTRAVTTVTQSTPVPGPSVPPPEELQVSPGPRQQLPPRQLLQSASTALMGESAEVLSASQTPELPAAVDLSSTGEPSSGQESAGSAVVATVVVQPPPPTQSEVDQLSLPQELMAEAQAGTTTLMVTGLTPEELAVTAAAEAAAQAAATEEAQALAIQAVLQAAQQAVMGTGEPMDTSEAAATVTQAELGHLSAEGQEGQATTIPIVLTQQELAALVQQQQLQEAQAQQQHHHLPTEALAPADSLNDPAIESNCLNELAGTVPSTVALLPSTATESLAPSNTFVAPQPVVVASPAKLQAAATLTEVANGIESLGVKPDLPPPPSKAPMKKENQWFDVGVIKGTNVMVTHYFLPPDDAVPSDDDLGTVPDYNQLKKQELQPGTAYKFRVAGINACGRGPFSEISAFKTCLPGFPGAPCAIKISKSPDGAHLTWEPPSVTSGKIIEYSVYLAIQSSQAGGELKSSTPAQLAFMRVYCGPSPSCLVQSSSLSNAHIDYTTKPAIIFRIAARNEKGYGPATQVRWLQETSKDSSGTKPANKRPMSSPEMKSAPKKSKADGQ | Transcriptional coregulator (By similarity). Involved in control of the cell cycle ( ). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (, ). Coactivator for EGR2 and GABP2 (, ). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together . Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 . As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues . Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition . Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity).
(Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes.
Subcellular locations: Cytoplasm, Nucleus
HCFC1R1 modulates its subcellular localization and overexpression of HCFC1R1 leads to accumulation of HCFC1 in the cytoplasm . Non-processed HCFC1 associates with chromatin. Colocalizes with CREB3 and CANX in the ER.
Highly expressed in fetal tissues and the adult kidney. Present in all tissues tested. |
HCFC2_HUMAN | Homo sapiens | MAAPSLLNWRRVSSFTGPVPRARHGHRAVAIRELMIIFGGGNEGIADELHVYNTATNQWFLPAVRGDIPPGCAAHGFVCDGTRILVFGGMVEYGRYSNELYELQASRWLWKKVKPHPPPSGLPPCPRLGHSFSLYGNKCYLFGGLANESEDSNNNVPRYLNDFYELELQHGSGVVGWSIPVTKGVVPSPRESHTAVIYCKKDSGSPKMYVFGGMCGARLDDLWQLDLETMSWSKPETKGTVPLPRSLHTASVIGNKMYIFGGWVPHKGENTETSPHDCEWRCTSSFSYLNLDTTEWTTLVSDSQEDKKNSRPRPRAGHCAVAIGTRLYFWSGRDGYKKALNSQVCCKDLWYLDTEKPPAPSQVQLIKATTNSFHVKWDEVSTVEGYLLQLSTDLPYQAASSDSSAAPNMQGVRMDPHRQGSNNIVPNSINDTINSTKTEQPATKETSMKNKPDFKALTDSNAILYPSLASNASNHNSHVVDMLRKNEGPHTSANVGVLSSCLDVRTVIPETSVSSTVSSTQTMVTQQTIKTESSSTNGAVVKDETSLTTFSTKSEVDETYALPATKISRVETHATATPFSKETPSNPVATVKAGERQWCDVGIFKNNTALVSQFYLLPKGKQSISKVGNADVPDYSLLKKQDLVPGTGYRFRVAAINGCGIGPFSKISEFKTCIPGFPGAPSAVRISKNVEGIHLSWEPPTSPSGNILEYSAYLAIRTAQIQDNPSQLVFMRIYCGLKTSCIVTAGQLANAHIDYTSRPAIVFRISAKNEKGYGPATQVRWLQGNNKKAPLN | Subcellular locations: Cytoplasm, Nucleus
Highly expressed in testis. Detected at lower levels in spleen, thymus, prostate, ovary, small intestine and colon. |
HD101_HUMAN | Homo sapiens | GTTGT | D region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ).
Subcellular locations: Secreted, Cell membrane |
HDHD3_HUMAN | Homo sapiens | MAHRLQIRLLTWDVKDTLLRLRHPLGEAYATKARAHGLEVEPSALEQGFRQAYRAQSHSFPNYGLSHGLTSRQWWLDVVLQTFHLAGVQDAQAVAPIAEQLYKDFSHPCTWQVLDGAEDTLRECRTRGLRLAVISNFDRRLEGILGGLGLREHFDFVLTSEAAGWPKPDPRIFQEALRLAHMEPVVAAHVGDNYLCDYQGPRAVGMHSFLVVGPQALDPVVRDSVPKEHILPSLAHLLPALDCLEGSTPGL | null |
HDHD5_HUMAN | Homo sapiens | MAAWGCVAALGAARGLCWRAARAAAGLQGRPARRCYAVGPAQSPPTFGFLLDIDGVLVRGHRVIPAALKAFRRLVNSQGQLRVPVVFVTNAGNILQHSKAQELSALLGCEVDADQVILSHSPMKLFSEYHEKRMLVSGQGPVMENAQGLGFRNVVTVDELRMAFPLLDMVDLERRLKTTPLPRNDFPRIEGVLLLGEPVRWETSLQLIMDVLLSNGSPGAGLATPPYPHLPVLASNMDLLWMAEAKMPRFGHGTFLLCLETIYQKVTGKELRYEGLMGKPSILTYQYAEDLIRRQAERRGWAAPIRKLYAVGDNPMSDVYGANLFHQYLQKATHDGAPELGAGGTRQQQPSASQSCISILVCTGVYNPRNPQSTEPVLGGGEPPFHGHRDLCFSPGLMEASHVVNDVNEAVQLVFRKEGWALE | Widely expressed. |
HEG1_HUMAN | Homo sapiens | MASPRASRWPPPLLLLLLPLLLLPPAAPGTRDPPPSPARRALSLAPLAGAGLELQLERRPEREPPPTPPRERRGPATPGPSYRAPEPGAATQRGPSGRAPRGGSADAAWKHWPESNTEAHVENITFYQNQEDFSTVSSKEGVMVQTSGKSHAASDAPENLTLLAETADARGRSGSSSRTNFTILPVGYSLEIATALTSQSGNLASESLHLPSSSSEFDERIAAFQTKSGTASEMGTERAMGLSEEWTVHSQEATTSAWSPSFLPALEMGELTTPSRKRNSSGPDLSWLHFYRTAASSPLLDLSSSSESTEKLNNSTGLQSSSVSQTKTMHVATVFTDGGPRTLRSLTVSLGPVSKTEGFPKDSRIATTSSSVLLSPSAVESRRNSRVTGNPGDEEFIEPSTENEFGLTSLRWQNDSPTFGEHQLASSSEVQNGSPMSQTETVSRSVAPMRGGEITAHWLLTNSTTSADVTGSSASYPEGVNASVLTQFSDSTVQSGGSHTALGDRSYSESSSTSSSESLNSSAPRGERSIAGISYGQVRGTAIEQRTSSDHTDHTYLSSTFTKGERALLSITDNSSSSDIVESSTSYIKISNSSHSEYSSFFHAQTERSNISSYDGEYAQPSTESPVLHTSNLPSYTPTINMPNTSVVLDTDAEFVSDSSSSSSSSSSSSSSGPPLPLPSVSQSHHLFSSILPSTRASVHLLKSTSDASTPWSSSPSPLPVSLTTSTSAPLSVSQTTLPQSSSTPVLPRARETPVTSFQTSTMTSFMTMLHSSQTADLKSQSTPHQEKVITESKSPSLVSLPTESTKAVTTNSPLPPSLTESSTEQTLPATSTNLAQMSPTFTTTILKTSQPLMTTPGTLSSTASLVTGPIAVQTTAGKQLSLTHPEILVPQISTEGGISTERNRVIVDATTGLIPLTSVPTSAKEMTTKLGVTAEYSPASRSLGTSPSPQTTVVSTAEDLAPKSATFAVQSSTQSPTTVSSSASVNSCAVNPCLHNGECVADNTSRGYHCRCPPSWQGDDCSVDVNECLSNPCPSTAMCNNTQGSFICKCPVGYQLEKGICNLVRTFVTEFKLKRTFLNTTVEKHSDLQEVENEITKTLNMCFSALPSYIRSTVHASRESNAVVISLQTTFSLASNVTLFDLADRMQKCVNSCKSSAEVCQLLGSQRRIFRAGSLCKRKSPECDKDTSICTDLDGVALCQCKSGYFQFNKMDHSCRACEDGYRLENETCMSCPFGLGGLNCGNPYQLITVVIAAAGGGLLLILGIALIVTCCRKNKNDISKLIFKSGDFQMSPYAEYPKNPRSQEWGREAIEMHENGSTKNLLQMTDVYYSPTSVRNPELERNGLYPAYTGLPGSRHSCIFPGQYNPSFISDESRRRDYF | Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions.
Subcellular locations: Cell membrane, Cell junction
Subcellular locations: Secreted |
HEM2_HUMAN | Homo sapiens | MQPQSVLHSGYFHPLLRAWQTATTTLNASNLIYPIFVTDVPDDIQPITSLPGVARYGVKRLEEMLRPLVEEGLRCVLIFGVPSRVPKDERGSAADSEESPAIEAIHLLRKTFPNLLVACDVCLCPYTSHGHCGLLSENGAFRAEESRQRLAEVALAYAKAGCQVVAPSDMMDGRVEAIKEALMAHGLGNRVSVMSYSAKFASCFYGPFRDAAKSSPAFGDRRCYQLPPGARGLALRAVDRDVREGADMLMVKPGMPYLDIVREVKDKHPDLPLAVYHVSGEFAMLWHGAQAGAFDLKAAVLEAMTAFRRAGADIIITYYTPQLLQWLKEE | Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen. |
HEM2_MACFA | Macaca fascicularis | MQPQSVLHSGYFHPLLRAWQTATTTLNASNLIYPIFVTDVPDDIQPIASLPGVARYGVNRLEEMLRPLVEEGLRCVLIFGIPSRVPKDERGSAADSEESPAIEAIHLLRKTFPNLLVACDICLCPYTSHGHCGLLSENGAFRAEESRQRLAEVALAYAKAGCQVVAPSDMMDGRVEAIKEALMAHGLGNRVSVMSYSAKFASCFYGPFRDAAQSSPAFGDRRCYQLPPGARGLALRAVDRDVREGADVLMVKPGMPYLDIVREVKDKHPDLPLAVYHVSGEFAMLWHGAQAGAFDLKAAVLEAMTAFRRAGADIIITYYTPQLLQWLKKE | Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen (By similarity). |
HEM2_PONAB | Pongo abelii | MQPQSVLHSGYFHPLLRAWQTATTTLNASNLIYPIFVTDVPDDIQPIASLPGVARYGVNRLEEMLRPLVEEGLRCVLIFGVPSRVPKDERGSAADSEESPAIEAIHLLRKTFPNLLVACDVCLCPYTSHGHCGLLSENGAFQAEESRQRLAEVALAYAKAGCQVVAPSDMMDGRVEAIKETLMAHGLGSRVSVMSYSAKFASCFYGPFRDAAKSSPAFGDRRCYQLPPGARGLALRAVDRDVREGADMLMVKPGMPYLDIVREVKDKHPDLPLAVYHVSGEFAMLWHGAQAGAFDLKAAVLEAMTAFRRAGADIIITHYTPQLLQWLKEE | Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen (By similarity). |
HEM6_HUMAN | Homo sapiens | MALQLGRLSSGPCWLVARGGCGGPRAWSQCGGGGLRAWSQRSAAGRVCRPPGPAGTEQSRGLGHGSTSRGGPWVGTGLAAALAGLVGLATAAFGHVQRAEMLPKTSGTRATSLGRPEEEEDELAHRCSSFMAPPVTDLGELRRRPGDMKTKMELLILETQAQVCQALAQVDGGANFSVDRWERKEGGGGISCVLQDGCVFEKAGVSISVVHGNLSEEAAKQMRSRGKVLKTKDGKLPFCAMGVSSVIHPKNPHAPTIHFNYRYFEVEEADGNKQWWFGGGCDLTPTYLNQEDAVHFHRTLKEACDQHGPDLYPKFKKWCDDYFFIAHRGERRGIGGIFFDDLDSPSKEEVFRFVQSCARAVVPSYIPLVKKHCDDSFTPQEKLWQQLRRGRYVEFNLLYDRGTKFGLFTPGSRIESILMSLPLTARWEYMHSPSENSKEAEILEVLRHPRDWVR | Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen-IX and participates to the sixth step in the heme biosynthetic pathway.
Subcellular locations: Mitochondrion intermembrane space |
HEMK1_HUMAN | Homo sapiens | MELWGRMLWALLSGPGRRGSTRGWAFSSWQPQPPLAGLSSAIELVSHWTGVFEKRGIPEARESSEYIVAHVLGAKTFQSLRPALWTQPLTSQQLQCIRELSSRRLQRMPVQYILGEWDFQGLSLRMVPPVFIPRPETEELVEWVLEEVAQRSHAVGSPGSPLILEVGCGSGAISLSLLSQLPQSRVIAVDKREAAISLTHENAQRLRLQDRIWIIHLDMTSERSWTHLPWGPMDLIVSNPPYVFHQDMEQLAPEIRSYEDPAALDGGEEGMDIITHILALAPRLLKDSGSIFLEVDPRHPELVSSWLQSRPDLYLNLVAVRRDFCGRPRFLHIRRSGP | N5-glutamine methyltransferase responsible for the methylation of the glutamine residue in the universally conserved GGQ motif of the mitochondrial translation release factors MTRF1, MTRF1L, MRPL58/ICT1 and MTRFR.
Subcellular locations: Mitochondrion |
HES4_HUMAN | Homo sapiens | MAADTPGKPSASPMAGAPASASRTPDKPRSAAEHRKSSKPVMEKRRRARINESLAQLKTLILDALRKESSRHSKLEKADILEMTVRHLRSLRRVQVTAALSADPAVLGKYRAGFHECLAEVNRFLAGCEGVPADVRSRLLGHLAACLRQLGPSRRPASLSPAAPAEAPAPEVYAGRPLLPSLGGPFPLLAPPLLPGLTRALPAAPRAGPQGPGGPWRPWLR | Transcriptional repressor. Binds DNA on N-box motifs: 5'-CACNAG-3' (By similarity).
Subcellular locations: Nucleus |
HES5_HUMAN | Homo sapiens | MAPSTVAVELLSPKEKNRLRKPVVEKMRRDRINSSIEQLKLLLEQEFARHQPNSKLEKADILEMAVSYLKHSKAFVAAAGPKSLHQDYSEGYSWCLQEAVQFLTLHAASDTQMKLLYHFQRPPAAPAAPAKEPKAPGAAPPPALSAKATAAAAAAHQPACGLWRPW | Transcriptional repressor of genes that require a bHLH protein for their transcription. Plays an important role as neurogenesis negative regulator (By similarity).
Subcellular locations: Nucleus
Expressed in fetal heart and brain tumors. |
HES6_HUMAN | Homo sapiens | MAPPAAPGRDRVGREDEDGWETRGDRKARKPLVEKKRRARINESLQELRLLLAGAEVQAKLENAEVLELTVRRVQGVLRGRAREREQLQAEASERFAAGYIQCMHEVHTFVSTCQAIDATVAAELLNHLLESMPLREGSSFQDLLGDALAGPPRAPGRSGWPAGGAPGSPIPSPPGPGDDLCSDLEEAPEAELSQAPAEGPDLVPAALGSLTTAQIARSVWRPW | Does not bind DNA itself but suppresses both HES1-mediated N box-dependent transcriptional repression and binding of HES1 to E box sequences. Also suppresses HES1-mediated inhibition of the heterodimer formed by ASCL1/MASH1 and TCF3/E47, allowing ASCL1 and TCF3 to up-regulate transcription in its presence. Promotes cell differentiation (By similarity).
Subcellular locations: Nucleus |
HES7_HUMAN | Homo sapiens | MVTRDRAENRDGPKMLKPLVEKRRRDRINRSLEELRLLLLERTRDQNLRNPKLEKAEILEFAVGYLRERSRVEPPGVPRSPVQDAEALASCYLSGFRECLLRLAAFAHDASPAARAQLFSALHGYLRPKPPRPKPVDPRPPAPRPSLDPAAPALGPALHQRPPVHQGHPSPRCAWSPSLCSPRAGDSGAPAPLTGLLPPPPPPHRQDGAPKAPLPPPPAFWRPWP | Transcriptional repressor. Represses transcription from both N box- and E box-containing promoters. May with HES1, cooperatively regulate somite formation in the presomitic mesoderm (PSM). May function as a segmentation clock, which is essential for coordinated somite segmentation (By similarity).
Subcellular locations: Nucleus |
HGS_HUMAN | Homo sapiens | MGRGSGTFERLLDKATSQLLLETDWESILQICDLIRQGDTQAKYAVNSIKKKVNDKNPHVALYALEVMESVVKNCGQTVHDEVANKQTMEELKDLLKRQVEVNVRNKILYLIQAWAHAFRNEPKYKVVQDTYQIMKVEGHVFPEFKESDAMFAAERAPDWVDAEECHRCRVQFGVMTRKHHCRACGQIFCGKCSSKYSTIPKFGIEKEVRVCEPCYEQLNRKAEGKATSTTELPPEYLTSPLSQQSQLPPKRDETALQEEEELQLALALSQSEAEEKERLRQKSTYTSYPKAEPMPSASSAPPASSLYSSPVNSSAPLAEDIDPELARYLNRNYWEKKQEEARKSPTPSAPVPLTEPAAQPGEGHAAPTNVVENPLPETDSQPIPPSGGPFSEPQFHNGESEESHEQFLKALQNAVTTFVNRMKSNHMRGRSITNDSAVLSLFQSINGMHPQLLELLNQLDERRLYYEGLQDKLAQIRDARGALSALREEHREKLRRAAEEAERQRQIQLAQKLEIMRQKKQEYLEVQRQLAIQRLQEQEKERQMRLEQQKQTVQMRAQMPAFPLPYAQLQAMPAAGGVLYQPSGPASFPSTFSPAGSVEGSPMHGVYMSQPAPAAGPYPSMPSTAADPSMVSAYMYPAGATGAQAAPQAQAGPTASPAYSSYQPTPTAGYQNVASQAPQSLPAISQPPQSSTMGYMGSQSVSMGYQPYNMQNLMTTLPSQDASLPPQQPYIAGQQPMYQQMAPSGGPPQQQPPVAQQPQAQGPPAQGSEAQLISFD | Involved in intracellular signal transduction mediated by cytokines and growth factors. When associated with STAM, it suppresses DNA signaling upon stimulation by IL-2 and GM-CSF. Could be a direct effector of PI3-kinase in vesicular pathway via early endosomes and may regulate trafficking to early and late endosomes by recruiting clathrin. May concentrate ubiquitinated receptors within clathrin-coated regions. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with STAM (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes. May contribute to the efficient recruitment of SMADs to the activin receptor complex. Involved in receptor recycling via its association with the CART complex, a multiprotein complex required for efficient transferrin receptor recycling but not for EGFR degradation.
Subcellular locations: Cytoplasm, Early endosome membrane, Endosome, Multivesicular body membrane
Colocalizes with UBQLN1 in ubiquitin-rich cytoplasmic aggregates that are not endocytic compartments.
Ubiquitous expression in adult and fetal tissues with higher expression in testis and peripheral blood leukocytes. |
HHATL_HUMAN | Homo sapiens | MGIKTALPAAELGLYSLVLSGALAYAGRGLLEASQDGAHRKAFRESVRPGWEYIGRKMDVADFEWVMWFTSFRNVIIFALSGHVLFAKLCTMVAPKLRSWMYAVYGALAVMGTMGPWYLLLLLGHCVGLYVASLLGQPWLCLGLGLASLASFKMDPLISWQSGFVTGTFDLQEVLFHGGSSFTVLRCTSFALESCAHPDRHYSLADLLKYNFYLPFFFFGPIMTFDRFHAQVSQVEPVRREGELWHIRAQAGLSVVAIMAVDIFFHFFYILTIPSDLKFANRLPDSALAGLAYSNLVYDWVKAAVLFGVVNTVACLDHLDPPQPPKCITALYVFAETHFDRGINDWLCKYVYNHIGGEHSAVIPELAATVATFAITTLWLGPCDIVYLWSFLNCFGLNFELWMQKLAEWGPLARIEASLSVQMSRRVRALFGAMNFWAIIMYNLVSLNSLKFTELVARRLLLTGFPQTTLSILFVTYCGVQLVKERERTLALEEEQKQDKEKPE | Negatively regulates N-terminal palmitoylation of SHH by HHAT/SKN.
Subcellular locations: Endoplasmic reticulum membrane
Heart-specific. |
HHAT_HUMAN | Homo sapiens | MLPRWELALYLLASLGFHFYSFYEVYKVSREHEEELDQEFELETDTLFGGLKKDATDFEWSFWMEWGKQWLVWLLLGHMVVSQMATLLARKHRPWILMLYGMWACWCVLGTPGVAMVLLHTTISFCVAQFRSQLLTWLCSLLLLSTLRLQGVEEVKRRWYKTENEYYLLQFTLTVRCLYYTSFSLELCWQQLPAASTSYSFPWMLAYVFYYPVLHNGPILSFSEFIKQMQQQEHDSLKASLCVLALGLGRLLCWWWLAELMAHLMYMHAIYSSIPLLETVSCWTLGGLALAQVLFFYVKYLVLFGVPALLMRLDGLTPPALPRCVSTMFSFTGMWRYFDVGLHNFLIRYVYIPVGGSQHGLLGTLFSTAMTFAFVSYWHGGYDYLWCWAALNWLGVTVENGVRRLVETPCIQDSLARYFSPQARRRFHAALASCSTSMLILSNLVFLGGNEVGKTYWNRIFIQGWPWVTLSVLGFLYCYSHVGIAWAQTYATD | Palmitoyl acyltransferase that catalyzes N-terminal palmitoylation of SHH; which is required for SHH signaling ( ). It also catalyzes N-terminal palmitoylation of DHH . Promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where SHH palmitoylation occurs . It is an essential factor for proper embryonic development and testicular organogenesis .
Subcellular locations: Endoplasmic reticulum membrane, Golgi apparatus membrane
Co-localizes with SHH in the ER and Golgi membrane.
Widely expressed. Expressed in fetal ovary and testis, with high levels of expression observed in Sertoli cells . |
HIRA_HUMAN | Homo sapiens | MKLLKPTWVNHNGKPIFSVDIHPDGTKFATGGQGQDSGKVVIWNMSPVLQEDDEKDENIPKMLCQMDNHLACVNCVRWSNSGMYLASGGDDKLIMVWKRATYIGPSTVFGSSGKLANVEQWRCVSILRNHSGDVMDVAWSPHDAWLASCSVDNTVVIWNAVKFPEILATLRGHSGLVKGLTWDPVGKYIASQADDRSLKVWRTLDWQLETSITKPFDECGGTTHVLRLSWSPDGHYLVSAHAMNNSGPTAQIIEREGWKTNMDFVGHRKAVTVVKFNPKIFKKKQKNGSSAKPSCPYCCCAVGSKDRSLSVWLTCLKRPLVVIHELFDKSIMDISWTLNGLGILVCSMDGSVAFLDFSQDELGDPLSEEEKSRIHQSTYGKSLAIMTEAQLSTAVIENPEMLKYQRRQQQQQLDQKSAATREMGSATSVAGVVNGESLEDIRKNLLKKQVETRTADGRRRITPLCIAQLDTGDFSTAFFNSIPLSGSLAGTMLSSHSSPQLLPLDSSTPNSFGASKPCTEPVVAASARPAGDSVNKDSMNATSTPAALSPSVLTTPSKIEPMKAFDSRFTERSKATPGAPALTSMTPTAVERLKEQNLVKELRPRDLLESSSDSDEKVPLAKASSLSKRKLELEVETVEKKKKGRPRKDSRLMPVSLSVQSPAALTAEKEAMCLSAPALALKLPIPSPQRAFTLQVSSDPSMYIEVENEVTVVGGVKLSRLKCNREGKEWETVLTSRILTAAGSCDVVCVACEKRMLSVFSTCGRRLLSPILLPSPISTLHCTGSYVMALTAAATLSVWDVHRQVVVVKEESLHSILAGSDMTVSQILLTQHGIPVMNLSDGKAYCFNPSLSTWNLVSDKQDSLAQCADFRSSLPSQDAMLCSGPLAIIQGRTSNSGRQAARLFSVPHVVQQETTLAYLENQVAAALTLQSSHEYRHWLLVYARYLVNEGFEYRLREICKDLLGPVHYSTGSQWESTVVGLRKRELLKELLPVIGQNLRFQRLFTECQEQLDILRDK | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit.
Subcellular locations: Nucleus, Nucleus, PML body
Primarily, though not exclusively, localized to the nucleus. Localizes to PML bodies immediately prior to onset of senescence.
Expressed at high levels in kidney, pancreas and skeletal muscle and at lower levels in brain, heart, liver, lung, and placenta. |
HIRP3_HUMAN | Homo sapiens | MAREKEMQEFTRSFFRGRPDLSTLTHSIVRRRYLAHSGRSHLEPEEKQALKRLVEEELLKMQVDEAASREDKLDLTKKGKRPPTPCSDPERKRFRFNSESESGSEASSPDYFGPPAKNGVAAEVSPAKEENPRRASKAVEESSDEERQRDLPAQRGEESSEEEEKGYKGKTRKKPVVKKQAPGKASVSRKQAREESEESEAEPVQRTAKKVEGNKGTKSLKESEQESEEEILAQKKEQREEEVEEEEKEEDEEKGDWKPRTRSNGRRKSAREERSCKQKSQAKRLLGDSDSEEEQKEAASSGDDSGRDREPPVQRKSEDRTQLKGGKRLSGSSEDEEDSGKGEPTAKGSRKMARLGSTSGEESDLEREVSDSEAGGGPQGERKNRSSKKSSRKGRTRSSSSSSDGSPEAKGGKAGSGRRGEDHPAVMRLKRYIRACGAHRNYKKLLGSCCSHKERLSILRAELEALGMKGTPSLGKCRALKEQREEAAEVASLDVANIISGSGRPRRRTAWNPLGEAAPPGELYRRTLDSDEERPRPAPPDWSHMRGIISSDGESN | May play a role in chromatin function and histone metabolism via its interaction with HIRA and histones.
Subcellular locations: Nucleus
Nuclear throughout the cell cycle and is excluded from condensed chromatin during mitosis.
Widely expressed. Isoform 1 is predominant in skeletal muscle. Isoform 2 is predominant in liver and heart. |
HIS1_MACFA | Macaca fascicularis | DSHEERHHGRHGHHKYGRKFHEKHHSHRGYRSNYLYDN | Histatins (Hsts) are cationic and histidine-rich secreted peptides mainly synthesized by saliva glands of humans and higher primates (By similarity). Hsts are considered to be major precursors of the protective proteinaceous structure on tooth surfaces (enamel pellicle).
Subcellular locations: Secreted |
HMDH_HUMAN | Homo sapiens | MLSRLFRMHGLFVASHPWEVIVGTVTLTICMMSMNMFTGNNKICGWNYECPKFEEDVLSSDIIILTITRCIAILYIYFQFQNLRQLGSKYILGIAGLFTIFSSFVFSTVVIHFLDKELTGLNEALPFFLLLIDLSRASTLAKFALSSNSQDEVRENIARGMAILGPTFTLDALVECLVIGVGTMSGVRQLEIMCCFGCMSVLANYFVFMTFFPACVSLVLELSRESREGRPIWQLSHFARVLEEEENKPNPVTQRVKMIMSLGLVLVHAHSRWIADPSPQNSTADTSKVSLGLDENVSKRIEPSVSLWQFYLSKMISMDIEQVITLSLALLLAVKYIFFEQTETESTLSLKNPITSPVVTQKKVPDNCCRREPMLVRNNQKCDSVEEETGINRERKVEVIKPLVAETDTPNRATFVVGNSSLLDTSSVLVTQEPEIELPREPRPNEECLQILGNAEKGAKFLSDAEIIQLVNAKHIPAYKLETLMETHERGVSIRRQLLSKKLSEPSSLQYLPYRDYNYSLVMGACCENVIGYMPIPVGVAGPLCLDEKEFQVPMATTEGCLVASTNRGCRAIGLGGGASSRVLADGMTRGPVVRLPRACDSAEVKAWLETSEGFAVIKEAFDSTSRFARLQKLHTSIAGRNLYIRFQSRSGDAMGMNMISKGTEKALSKLHEYFPEMQILAVSGNYCTDKKPAAINWIEGRGKSVVCEAVIPAKVVREVLKTTTEAMIEVNINKNLVGSAMAGSIGGYNAHAANIVTAIYIACGQDAAQNVGSSNCITLMEASGPTNEDLYISCTMPSIEIGTVGGGTNLLPQQACLQMLGVQGACKDNPGENARQLARIVCGTVMAGELSLMAALAAGHLVKSHMIHNRSKINLQDLQGACTKKTA | Catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, the rate-limiting step in the synthesis of cholesterol and other isoprenoids, thus plays a critical role in cellular cholesterol homeostasis ( , ). HMGCR is the main target of statins, a class of cholesterol-lowering drugs ( ).
Subcellular locations: Endoplasmic reticulum membrane, Peroxisome membrane
Ubiquitously expressed with the highest levels in the cerebellum, fetal brain, testis, skin and adrenal gland.
Detected in the cerebellum, fetal brain, testis and adrenal gland.
Low abundance except in skin, esophagus, and uterine cervix. |
HMOX1_HUMAN | Homo sapiens | MERPQPDSMPQDLSEALKEATKEVHTQAENAEFMRNFQKGQVTRDGFKLVMASLYHIYVALEEEIERNKESPVFAPVYFPEELHRKAALEQDLAFWYGPRWQEVIPYTPAMQRYVKRLHEVGRTEPELLVAHAYTRYLGDLSGGQVLKKIAQKALDLPSSGEGLAFFTFPNIASATKFKQLYRSRMNSLEMTPAVRQRVIEEAKTAFLLNIQLFEELQELLTHDTKDQSPSRAPGLRQRASNKVQDSAPVETPRGKPPLNTRSQAPLLRWVLTLSFLVATVAVGLYAM | Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron ( ). Affords protection against programmed cell death and this cytoprotective effect relies on its ability to catabolize free heme and prevent it from sensitizing cells to undergo apoptosis .
(Microbial infection) During SARS-COV-2 infection, promotes SARS-CoV-2 ORF3A-mediated autophagy but is unlikely to be required for ORF3A-mediated induction of reticulophagy.
Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron.
Subcellular locations: Endoplasmic reticulum membrane
Expressed at higher levels in renal cancer tissue than in normal tissue (at protein level). |
HMOX1_PONAB | Pongo abelii | MERPQPDSMPQDLSEALKEATKEVHTQAENAEFMRNFQKGQVTREGFKLVMASLYHIYVALEEEIEHNKESPVFAPVYFPEELHRKAALEQDLAFWYGPRWQEVIPYTPAMQRYVKRLHEVGRTEPELLVAHAYTRYLGDLSGGQVLKKIAQKALGLPSSGEGLAFFTFPNIASATKFKQLYRSRMNSLEMTPAVRQRVIEEAKTAFLLNIQLFEELQELLTHDTKDQSPSRAPGLRQRASNKAQDSAPVETPRGKTPLNTHSQAPLLRWVLTLSFLVATVAVGLYAM | Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron (By similarity). Affords protection against programmed cell death and this cytoprotective effect relies on its ability to catabolize free heme and prevent it from sensitizing cells to undergo apoptosis (By similarity).
Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron.
Subcellular locations: Endoplasmic reticulum membrane |
HMOX2_HUMAN | Homo sapiens | MSAEVETSEGVDESEKKNSGALEKENQMRMADLSELLKEGTKEAHDRAENTQFVKDFLKGNIKKELFKLATTALYFTYSALEEEMERNKDHPAFAPLYFPMELHRKEALTKDMEYFFGENWEEQVQCPKAAQKYVERIHYIGQNEPELLVAHAYTRYMGDLSGGQVLKKVAQRALKLPSTGEGTQFYLFENVDNAQQFKQLYRARMNALDLNMKTKERIVEEANKAFEYNMQIFNELDQAGSTLARETLEDGFPVHDGKGDMRKCPFYAAEQDKGALEGSSCPFRTAMAVLRKPSLQFILAAGVALAAGLLAWYYM | Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron.
Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron.
Subcellular locations: Microsome membrane, Endoplasmic reticulum membrane |
HMOX2_MACFA | Macaca fascicularis | MSAEVETSEGVDESEKKNSGALEKENQMRMADLSELLKEGTKEAHDRAENTQFVKDFLKGNIKKELFKLATTALYFTYSALEEEMERNKDHPTFAPLYFPMELHRKEALTKDMEYFFGENWEEQVQCPKAAKKYVERIHYIGQNEPELLVAHAYTRYMGDLSGGQVLKKVAQRALKLPSTGEGTQFYLFENVDNAQQFKQLYRARMNALDLNMKTKERIVEEANKAFEYNMQIFNELDQAGSTLARETLEDGFPVHDGKGDMRKCPFYAGEQDKGALEGSSCPFRTAMAVLRKPSLQFILAAGMALAAGLLAWYYM | Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed. Heme oxygenase 2 could be implicated in the production of carbon monoxide in brain where it could act as a neurotransmitter.
Subcellular locations: Microsome, Endoplasmic reticulum |
HMX1_HUMAN | Homo sapiens | MPDELTEPGRATPARASSFLIENLLAAEAKGAGRATQGDGSREDEEEDDDDPEDEDAEQARRRRLQRRRQLLAGTGPGGEARARALLGPGALGLGPRPPPGPGPPFALGCGGAARWYPRAHGGYGGGLSPDTSDRDSPETGEEMGRAEGAWPRGPGPGAVQREAAELAARGPAAGTEEASELAEVPAAAGETRGGVGVGGGRKKKTRTVFSRSQVFQLESTFDLKRYLSSAERAGLAASLQLTETQVKIWFQNRRNKWKRQLAAELEAASLSPPGAQRLVRVPVLYHESPPAAAAAGPPATLPFPLAPAAPAPPPPLLGFSGALAYPLAAFPAAASVPFLRAQMPGLV | DNA-binding protein that binds to the 5'-CAAG-3' core sequence. May function as a transcriptional repressor. Seems to act as a transcriptional antagonist of NKX2-5. May play an important role in the development of craniofacial structures such as the eye and ear.
Subcellular locations: Nucleus |
HOATZ_HUMAN | Homo sapiens | METGPSEEPSGRKESQEMCPPGLLVFAGSSEQDANLAKQFWISASMYPPSESQLVLRRDSSQRLPVARPRRSRGSENSHSSQSFHLASNKNRDIFAEALKIQESEEKVKYLQKAKTREEILQLLRKQREERISKELISLPYKPKAKEHKAKKVVSESDKEDQEEVKTLD | Required for motile ciliogenesis and flagellar genesis by mediating the maturation of the glycolytic enzyme ENO4.
Subcellular locations: Cytoplasm, Cell projection, Cilium |
HPCL1_PONAB | Pongo abelii | MGKQNSKLRPEVLQDLRENTEFTDHELQEWCKGFLKDCPTGHLTVDEFKKIYANFFPYGDASKFAEHVFRTFDTNGDGTIDFREFIIALSVTSRGKLEQKLKWAFSMYDLDGNGYISRSEMLEIVQAIYKMVSSVMKMPEDESTPEKRTDKIFRQMDTNNDGKLSLEEFIKGAKSDPSIVRLLQCDPSSASQF | May be involved in the calcium-dependent regulation of rhodopsin phosphorylation.
Subcellular locations: Membrane |
HPCL4_HUMAN | Homo sapiens | MGKTNSKLAPEVLEDLVQNTEFSEQELKQWYKGFLKDCPSGILNLEEFQQLYIKFFPYGDASKFAQHAFRTFDKNGDGTIDFREFICALSVTSRGSFEQKLNWAFEMYDLDGDGRITRLEMLEIIEAIYKMVGTVIMMRMNQDGLTPQQRVDKIFKKMDQDKDDQITLEEFKEAAKSDPSIVLLLQCDMQK | May be involved in the calcium-dependent regulation of rhodopsin phosphorylation. |
HPCL4_PONAB | Pongo abelii | MGKTNSKLAPEVLEDLVQNTEFSEQELKQWYKGFLKDCPSGILNLEEFQQLYIKFFPYGDASKFAQHAFRTFDKNGDGTIDFREFICALSVTSRGSFEQKLNWAFEMYDLDGDGRITRLEMLEIIEAIYKMVGTVIMMRMNQDGLTPQQRVDKIFKKMDQDKDDQITLEEFKEAAKSDPSIVLLLQCDMQK | May be involved in the calcium-dependent regulation of rhodopsin phosphorylation. |
HPRT_MACFA | Macaca fascicularis | MATRSPGVVISDDEPGYDLDLFCIPNHYAEDLERVFIPHGLIMDRTERLARDVMKEMGGHHIVALCVLKGGYKFFADLLDYIKALNRNSDRSIPMTVDFIRLKSYCNDQSTGDIKVIGGDDLSTLTGKNVLIVEDIIDTGKTMQTLLSLVRQYNPKMVKVASLLVKRTPRSVGYKPDFVGFEIPDKFVVGYALDYNEYFRDLNHVCVISETGKAKYKA | Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway (By similarity).
Subcellular locations: Cytoplasm |
HS902_HUMAN | Homo sapiens | MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIWYESLTDPSKLDSGKELHINLIPNKQDQTLTIVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVSFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGERMGRGTKVILHLKEDQTEYLEEQRIKEIVKKHSQLIGYPITLFVEKECDKEVSDDETEEKEDKEEEKEKEEKESKDKPEIEDVGSDEEEEKKDGDKKKKKTKEKYIDQEELNKTKPIWTRNPDDITNEEYGEFCKNLTNDWEDHLAVKHFSVEGQLEFRALLFVP | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins.
Subcellular locations: Cytoplasm |
HS904_HUMAN | Homo sapiens | MESLTDPSKLDSGKEPHISLIPNKQDRTLTIVDTGIGMTKADLINNLGTITKSETKVFMEVLQAGADISMIGQFSVGFYSAYSVAEKVTVITKHNNDEQYAWESSLRGSFTEYREFYKSLTINWEDYLAVKHFSVEGQLEFRAFLFVPRLAPFELLETRKKKNKIKLSARRDLIMDNCEELIPEYLNFIRGVVDSEDLPLNIFRETKDQVANSTIVQRLWKHGLEVIYTIEPIDEYCVQQLKEFEGKTLVSVTKEDLELPEDEEEKKKQEEGKQKTKQKKNQSLRTSAKSTYGWTANMERIMKAQALRDNSTTGYMAAKKHLEINPDHSFIDTLRQKAETDKNDKSVKDLVILLYETALLSSDFGLEGPQTHANRIYRMNKLGLGTDEDDPTADDTSAAVTEEMPPLEGDDDTSRMEK | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins.
Subcellular locations: Cytoplasm |
HS905_HUMAN | Homo sapiens | MGFHHVGQAGLELLTSGHPALERRPEYLEERRIKEIVKKHSQFIGYPITLFVEKKRNKQVSDAEAEKKEDKRKKKKESNDKPEIEDVGSDEEEEKKDADKKKKKSKEKYIDQELNKTKPIWTRNPDAITNEEYGEFHQSLTNNWEDHLAVKHFSVEGQLEELKDSRRVMKANQKHIYYITGETKDQVANSAFVECLQKHGLEVIYMIELIDKYCVQQLKELESKTVVSVAKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDMLEKKVKKVVVSNCMEDPQRHTNKIYRMIKLGLGVDEYDPTANDINAAITKEMPPLRGGDDTSRMEEVGGSG | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins.
Subcellular locations: Cytoplasm |
HS90A_HUMAN | Homo sapiens | MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPMGRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKEDKEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRNPDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNNIKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKCLELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDYCTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKTLVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVKDLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLEGDDDTSRMEEVD | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function ( , ). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself . Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (, ). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 . Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels . In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment . Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression . Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes . Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation . Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (, ).
(Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion.
Subcellular locations: Nucleus, Cytoplasm, Melanosome, Cell membrane, Mitochondrion
Identified by mass spectrometry in melanosome fractions from stage I to stage IV. |
HS90A_MACFA | Macaca fascicularis | MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPMGRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKEDKEEEKEKEEKESEDKPEIEDVGSDEEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRNPDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNNIKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKCLELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDYCTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKTLVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVKDLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLEGDDDTSRMEEVD | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response.
Subcellular locations: Nucleus, Cytoplasm, Melanosome, Cell membrane, Mitochondrion |
HS90A_PANTR | Pan troglodytes | MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPMGRGTKVIPHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKEDKEEEKEKEEKESEDKPEIEDVGSDEEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRNPDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNNIKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKCLELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDYCTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKTLVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVKDLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLEGDDDTSRMEEVD | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes.
Subcellular locations: Nucleus, Cytoplasm, Melanosome, Cell membrane |
HSFX1_HUMAN | Homo sapiens | MEDKRSLSMARCEERNSRGQDHGLERVPFPPQLQSETYLHPADPSPAWDDPGSTGSPNLRLLTEEIAFQPLAEEASFRRPHPDGDVPPQGEDNLLSLPFPQKLWRLVSSNQFSSIWWDDSGACRVINQKLFEKEILKRDVAHKVFATTSIKSFFRQLNLYGFRKRRQCTFRTFTRIFSAKRLVSILNKLEFYCHPYFQRDSPHLLVRMKRRVGVKSAPRHQEEDKPEAAGSCLAPADTEQQDHTSPNENDQVTPQHREPAGPNTQIRSGSAPPATPVMVPDSAVASDNSPVTQPAGEWSEGSQAHVTPVAAVPGPAALPFLYVPGSPTQMNSYGPVVALPTASRSTLAMDTTGLPAPGMLPFCHLWVPVTLVAAGAAQPAASMVMFPHLPALHHHCPHSHRTSQYMPASDGPQAYPDYADQST | Subcellular locations: Nucleus, Cytoplasm
Testis-specific. |
HSFX3_HUMAN | Homo sapiens | MASQNTEQEYEAKLAPSVGGEPTSGGPSGSSPDPNPDSSEVLDRHEDQAMSQDPGSQDNSPPEDRNQRVVNVEDNHNLFRLSFPRKLWTIVEEDTFKSVSWNDDGDAVIIDKDLFQREVLQRKGAERIFKTDSLTSFIRQLNLYGFCKTRPSNSPGNKKMMIYCNSNFQRDKPRLLENIQRKDALRNTAQQATRVPTPKRKNLVATRRSLRIYHINARKEAIKMCQQGAPSVQGPSGTQSFRRSGMWSKKSATRHPLGNGPPQEPNGPSWEGTSGNVTFTSSATTWMEGTGILSSLVYSDNGSVMSLYNICYYALLASLSVMSPNEPSDDEEE | Subcellular locations: Nucleus |
HSFX4_HUMAN | Homo sapiens | MASQNTEQEYEAKLAPSVGGEPTSGGPSGSSPDPNPDSSEVLDRHEDQAMSQDPGSQDNSPPEDRNQRVVNVEDNHNLFRLSFPRKLWTIVEEDTFKSVSWNDDGDAVIIDKDLFQREVLQRKGAERIFKTDNLTSFIRQLNLYGFCKTRPSNSPGNKKMMIYCNSNFQRDKPRLLENIQRKDALRNTAQQATRVPTPKRKNLVATRRSLRIYHINARKEAIKMCQQGAPSVQGPSGTQSFRRSGMWSKKSATRHPLGNGPPQEPNGPSWEGTSGNVTFTSSATTWMEGTGILSSLVYSDNGSVMSLYNICYYALLASLSVMSPNEPSDDEEE | Subcellular locations: Nucleus |
HSFY1_HUMAN | Homo sapiens | MAHVSSETQDVSPKDELTASEASTRSPLCEHTFPGDSDLRSMIEEHAFQVLSQGSLLESPSYTVCVSEPDKDDDFLSLNFPRKLWKIVESDQFKSISWDENGTCIVINEELFKKEILETKAPYRIFQTDAIKSFVRQLNLYGFSKIQQNFQRSAFLATFLSEEKESSVLSKLKFYYNPNFKRGYPQLLVRVKRRIGVKNASPISTLFNEDFNKKHFRAGANMENHNSALAAEASEESLFSASKNLNMPLTRESSVRQIIANSSVPIRSGFPPPSPSTSVGPSEQIATDQHAILNQLTTIHMHSHSTYMQARGHIVNFITTTTSQYHIISPLQNGYFGLTVEPSAVPTRYPLVSVNEAPYRNMLPAGNPWLQMPTIADRSAAPHSRLALQPSPLDKYHPNYN | Subcellular locations: Nucleus, Cytoplasm
Testis-specific. Present in Sertoli cells and spermatogenic cells (at protein level). |
HSP1_ALOSE | Alouatta seniculus | MARYRCCRSRSLSRSRCYRQRPRCRRRRRRSCRRPRASRCCRRRYRLRRRRY | Protamines substitute for histones in the chromatin of sperm during the haploid phase of spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive complex.
Subcellular locations: Nucleus, Chromosome
Testis. |
HXB13_HUMAN | Homo sapiens | MEPGNYATLDGAKDIEGLLGAGGGRNLVAHSPLTSHPAAPTLMPAVNYAPLDLPGSAEPPKQCHPCPGVPQGTSPAPVPYGYFGGGYYSCRVSRSSLKPCAQAATLAAYPAETPTAGEEYPSRPTEFAFYPGYPGTYQPMASYLDVSVVQTLGAPGEPRHDSLLPVDSYQSWALAGGWNSQMCCQGEQNPPGPFWKAAFADSSGQHPPDACAFRRGRKKRIPYSKGQLRELEREYAANKFITKDKRRKISAATSLSERQITIWFQNRRVKEKKVLAKVKNSATP | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds preferentially to methylated DNA .
Subcellular locations: Nucleus |
HXB1_ATEGE | Ateles geoffroyi | MDYNRMNSFLEYPLCNRGPSAYSAHSAHSAPTSFPPSSTQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSALGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPTSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKEAPCPSEPNTPTARTFDWMKVKRNPPKTGKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity).
Subcellular locations: Nucleus |
HXD9_HUMAN | Homo sapiens | MLGGSAGRLKMSSSGTLSNYYVDSLIGHEGDEVFAARFGPPGPGAQGRPAGVADGPAATAAEFASCSFAPRSAVFSASWSAVPSQPPAAAAMSGLYHPYVPPPPLAASASEPGRYVRSWMEPLPGFPGGAGGGGGGGGGGPGRGPSPGPSGPANGRHYGIKPETRAAPAPATAASTTSSSSTSLSSSSKRTECSVARESQGSSGPEFSCNSFLQEKAAAATGGTGPGAGIGAATGTGGSSEPSACSDHPIPGCSLKEEEKQHSQPQQQQLDPNNPAANWIHARSTRKKRCPYTKYQTLELEKEFLFNMYLTRDRRYEVARILNLTERQVKIWFQNRRMKMKKMSKEKCPKGD | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
Subcellular locations: Nucleus |
HYCC2_HUMAN | Homo sapiens | MLGTDRCVVEEWLSEFKALPDTQITSYAATLHRKKTLVPALYKVIQDSNNELLEPVCHQLFELYRSSEVRLKRFTLQFLPELMWVYLRLTVSRDRQSNGCIEALLLGIYNLEIADKDGNNKVLSFTIPSLSKPSIYHEPSTIGSMALTEGALCQHDLIRVVYSDLHPQRETFTAQNRFEVLSFLMLCYNSAIVYMPASSYQSLCRMGSRVCVSGFPRQHEKHWKELCGRIVLDPEFMVQLLTGVYYAMYNGQWDLGQEVLDDIIYRAQLELFSQPLLVANAMKNSLPFDAPDSTQEGQKVLKVEVTPTVPRISRTAITTASIRRHRWRREGAEGVNGGEESVNLNDADEGFSSGASLSSQPIGTKPSSSSQRGSLRKVATGRSAKDKETASAIKSSESPRDSVVRKQYVQQPTDLSVDSVELTPMKKHLSLPAGQVVPKINSLSLIRTASASSSKSFDYVNGSQASTSIGVGTEGGTNLAANNANRYSTVSLQEDRLGQAGEGKELLSPGAPLTKQSRSPSFNMQLISQV | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane.
Subcellular locations: Cytoplasm, Cytosol, Cell membrane |
HYCC2_PONAB | Pongo abelii | MLGTDRCVVEEWLSEFKALPDTQITSYAATLHRKKTLVPALYKVIQDSNNELLEPVCHQLFELYRSSEVRLKRFTLQFLPELMWVYLRLTVSRDRQSNGCIEALLLGIYNLEIADKDGNNKVLSFTIPSLSKPSIYHEPSTIGSMALTEGALCQHDLIRVVYSDLHPQRETFTAQNRFEVLSFLMLCYNSAIVYMPASSYQSLCRMGSRVCVSGFPRQHEKHWKELCGRIVLDPEFMVQLLTGVYYAMYNGQWDLGQEVLDDIIYRAQLELFSQPLLVANAMKNSLPFDAPDSTQEGQKVLKVEVTPTVPRISRTAITTASIRRHRWRREGAEGVNGGEESVNLNDADEGFSSGASLSSQPIGTKPSSSSQRGSLRKVATGRSAKDKETASAIKSSESPRDSVVRKQYVQQPTDLSVDSVELTPMKKHLSLPAGQVVPKTNSLSLIRTASASSSKSFDYVNGSQASTSIGVGTEGGTNLAANNANRYSTVSLQEDRLGQAGEGKELLSPGAPLTKQSRSPSFNMQLISQV | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane.
Subcellular locations: Cytoplasm, Cytosol, Cell membrane |
HYCCI_HUMAN | Homo sapiens | MFTSEKGVVEEWLSEFKTLPETSLPNYATNLKDKSSLVSSLYKVIQEPQSELLEPVCHQLFEFYRSGEEQLLQFTLQFLPELIWCYLAVSASRNVHSSGCIEALLLGVYNLEIVDKQGHTKVLSFTIPSLSKPSVYHEPSSIGSMALTESALSQHGLSKVVYSGPHPQREMLTAQNRFEVLTFLLLCYNAALTYMPSVSLQSLCQICSRICVCGYPRQHVRKYKGISSRIPVSSGFMVQMLTGIYFAFYNGEWDLAQKALDDIIYRAQLELYPEPLLVANAIKASLPHGPMKSNKEGTRCIQVEITPTSSRISRNAVTSMSIRGHRWKRHGNTELTGQEELMEISEVDEGFYSRAASSTSQSGLSNSSHNCSNKPSIGKNHRRSGGSKTGGKEKETTGESCKDHFARKQTQRAQSENLELLSLKRLTLTTSQSLPKPSSHGLAKTAATVFSKSFEQVSGVTVPHNPSSAVGCGAGTDANRFSACSLQEEKLIYVSERTELPMKHQSGQQRPPSISITLSTD | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane . The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis . HYCC1 plays a key role in oligodendrocytes formation, a cell type with expanded plasma membrane that requires generation of PtdIns(4)P . Its role in oligodendrocytes formation probably explains its importance in myelination of the central and peripheral nervous system (, ). May also have a role in the beta-catenin/Lef signaling pathway (Probable).
Subcellular locations: Cytoplasm, Cytosol, Cell membrane
Localizes to the cytosol and is recruited to the plasma membrane following interaction with other components of the phosphatidylinositol 4-kinase (PI4K) complex.
Widely expressed. Highest levels in heart, brain, placenta, spleen and testis. |
I4E1B_HUMAN | Homo sapiens | MLAVEVSEAEGGIREWEEEEKEEEAAERTPTGEKSPNSPRTLLSLRGKARTGGPMEVKLELHPLQNRWALWFFKNDRSRAWQDNLHLVTKVDTVEDFWALYSHIQLASKLSSGCDYALFKDGIQPMWEDSRNKRGGRWLVSLAKQQRHIELDRLWLETLLCLIGESFEEHSREVCGAVVNIRTKGDKIAVWTREAENQAGVLHVGRVYKERLGLSPKTIIGYQAHADTATKSNSLAKNKFVV | Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structure. |
I5P1_HUMAN | Homo sapiens | MAGKAAAPGTAVLLVTANVGSLFDDPENLQKNWLREFYQVVHTHKPHFMALHCQEFGGKNYEASMSHVDKFVKELLSSDAMKEYNRARVYLDENYKSQEHFTALGSFYFLHESLKNIYQFDFKAKKYRKVAGKEIYSDTLESTPMLEKEKFPQDYFPECKWSRKGFIRTRWCIADCAFDLVNIHLFHDASNLVAWETSPSVYSGIRHKALGYVLDRIIDQRFEKVSYFVFGDFNFRLDSKSVVETLCTKATMQTVRAADTNEVVKLIFRESDNDRKVMLQLEKKLFDYFNQEVFRDNNGTALLEFDKELSVFKDRLYELDISFPPSYPYSEDARQGEQYMNTRCPAWCDRILMSPSAKELVLRSESEEKVVTYDHIGPNVCMGDHKPVFLAFRIMPGAGKPHAHVHKCCVVQ | Phosphatase that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and inositol 1,3,4,5-tetrasphosphate to inositol 1,3,4-trisphosphate ( ). Plays a crucial role in the survival of cerebellar Purkinje cells (By similarity).
Subcellular locations: Cell membrane, Cell projection, Dendrite
Predominantly expressed in heart, brain, and skeletal muscle . In brain; high level in Purkinje cells . |
IBPL1_HUMAN | Homo sapiens | MPRLSLLLPLLLLLLLPLLPPLSPSLGIRDVGGRRPKCGPCRPEGCPAPAPCPAPGISALDECGCCARCLGAEGASCGGRAGGRCGPGLVCASQAAGAAPEGTGLCVCAQRGTVCGSDGRSYPSVCALRLRARHTPRAHPGHLHKARDGPCEFAPVVVVPPRSVHNVTGAQVGLSCEVRAVPTPVITWRKVTKSPEGTQALEELPGDHVNIAVQVRGGPSDHEATAWILINPLRKEDEGVYQCHAANMVGEAESHSTVTVLDLSKYRSFHFPAPDDRM | IGF-binding proteins prolong the half-life of IGFs and have been shown to either inhibit or stimulate the growth promoting effects of the IGFs in cell culture. They alter the interaction of IGFs with their cell surface receptors (By similarity). May be a putative tumor suppressor protein.
Subcellular locations: Secreted
Expressed at the highest level in both brain and testis, with lower levels in the prostate, bladder and lung. |
IDHC_HUMAN | Homo sapiens | MSKKISGGSVVEMQGDEMTRIIWELIKEKLIFPYVELDLHSYDLGIENRDATNDQVTKDAAEAIKKHNVGVKCATITPDEKRVEEFKLKQMWKSPNGTIRNILGGTVFREAIICKNIPRLVSGWVKPIIIGRHAYGDQYRATDFVVPGPGKVEITYTPSDGTQKVTYLVHNFEEGGGVAMGMYNQDKSIEDFAHSSFQMALSKGWPLYLSTKNTILKKYDGRFKDIFQEIYDKQYKSQFEAQKIWYEHRLIDDMVAQAMKSEGGFIWACKNYDGDVQSDSVAQGYGSLGMMTSVLVCPDGKTVEAEAAHGTVTRHYRMYQKGQETSTNPIASIFAWTRGLAHRAKLDNNKELAFFANALEEVSIETIEAGFMTKDLAACIKGLPNVQRSDYLNTFEFMDKLGENLKIKLAQAKL | Catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (D-threo-isocitrate) to 2-ketoglutarate (2-oxoglutarate), which is required by other enzymes such as the phytanoyl-CoA dioxygenase (, ). Plays a critical role in the generation of NADPH, an important cofactor in many biosynthesis pathways . May act as a corneal epithelial crystallin and may be involved in maintaining corneal epithelial transparency (By similarity).
Subcellular locations: Cytoplasm, Cytosol, Peroxisome |
IDHC_PONAB | Pongo abelii | MSKKISGGSVVEMQGDEMTRIIWELIKEKLIFPYVELDLHSYDLGIENRDATNDQVTKDAAEAIKKYNVGVKCATITPDEKRVEEFKLKQMWKSPNGTIRNILGGTVFREAIICKNIPRLVSGWVKPIIIGRHAYGDQYRATDFVVPGPGKVEITYTPSDGTQKVTYLVHNFEEGGGVAMGMYNQDKSIEDFAHSSFQMALSKGWPLYLSTKNTILKKYDGRFKDIFQEIYDKQYKSQFEARKIWYEHRLIDDMVAQAMKSEGGFIWACKNYDGDVQSDSVAQGYGSLGMMTSVLVCPDGKTVEAEAAHGTVTRHYRMYQKGQETSTNPIASIFAWTRGLAHRAKLDNNKELAFFANALEEVSVETIEAGFMTKDLAACIKGLPNVQRSDYLNTFEFMDKLGENLKIKLAQAKL | Catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (D-threo-isocitrate) to 2-ketoglutarate (2-oxoglutarate), which is required by other enzymes such as the phytanoyl-CoA dioxygenase (By similarity). Plays a critical role in the generation of NADPH, an important cofactor in many biosynthesis pathways (By similarity). May act as a corneal epithelial crystallin and may be involved in maintaining corneal epithelial transparency (By similarity).
Subcellular locations: Cytoplasm, Cytosol |
IF172_HUMAN | Homo sapiens | MHLKHLRTLLSPQDGAAKVTCMAWSQNNAKFAVCTVDRVVLLYDEHGERRDKFSTKPADMKYGRKSYMVKGMAFSPDSTKIAIGQTDNIIYVYKIGEDWGDKKVICNKFIQTSAVTCLQWPAEYIIVFGLAEGKVRLANTKTNKSSTIYGTESYVVSLTTNCSGKGILSGHADGTIVRYFFDDEGSGESQGKLVNHPCPPYALAWATNSIVAAGCDRKIVAYGKEGHMLQTFDYSRDPQEREFTTAVSSPGGQSVVLGSYDRLRVFNWIPRRSIWEEAKPKEITNLYTITALAWKRDGSRLCVGTLCGGVEQFDCCLRRSIYKNKFELTYVGPSQVIVKNLSSGTRVVLKSHYGYEVEEVKILGKERYLVAHTSETLLLGDLNTNRLSEIAWQGSGGNEKYFFENENVCMIFNAGELTLVEYGNNDTLGSVRTEFMNPHLISVRINERCQRGTEDNKKLAYLIDIKTIAIVDLIGGYNIGTVSHESRVDWLELNETGHKLLFRDRKLRLHLYDIESCSKTMILNFCSYMQWVPGSDVLVAQNRNSLCVWYNIEAPERVTMFTIRGDVIGLERGGGKTEVMVMEGVTTVAYTLDEGLIEFGTAIDDGNYIRATAFLETLEMTPETEAMWKTLSKLALEARQLHIAERCFSALGQVAKARFLHETNEIADQVSREYGGEGTDFYQVRARLAMLEKNYKLAEMIFLEQNAVEEAMGMYQELHRWDECIAVAEAKGHPALEKLRRSYYQWLMDTQQEERAGELQESQGDGLAAISLYLKAGLPAKAARLVLTREELLANTELVEHITAALIKGELYERAGDLFEKIHNPQKALECYRKGNAFMKAVELARLAFPVEVVKLEEAWGDHLVQQKQLDAAINHYIEARCSIKAIEAALGARQWKKAIYILDLQDRNTASKYYPLVAQHYASLQEYEIAEELYTKGDRTKDAIDMYTQAGRWEQAHKLAMKCMRPEDVSVLYITQAQEMEKQGKYREAERLYVTVQEPDLAITMYKKHKLYDDMIRLVGKHHPDLLSDTHLHLGKELEAEGRLQEAEYHYLEAQEWKATVNMYRASGLWEEAYRVARTQGGANAHKHVAYLWAKSLGGEAAVRLLNKLGLLEAAVDHAADNCSFEFAFELSRLALKHKTPEVHLKYAMFLEDEGKFEEAEAEFIRAGKPKEAVLMFVHNQDWEAAQRVAEAHDPDSVAEVLVGQARGALEEKDFQKAEGLLLRAQRPGLALNYYKEAGLWSDALRICKDYVPSQLEALQEEYEREATKKGARGVEGFVEQARHWEQAGEYSRAVDCYLKVRDSGNSGLAEKCWMKAAELSIKFLPPQRNMEVVLAVGPQLIGIGKHSAAAELYLNLDLVKEAIDAFIEGEEWNKAKRVAKELDPRYEDYVDQHYKEFLKNQGKVDSLVGVDVIAALDLYVEQGQWDKCIETATKQNYKILHKYVALYATHLIREGSSAQALALYVQHGAPANPQNFNIYKRIFTDMVSSPGTNCAEAYHSWADLRDVLFNLCENLVKSSEANSPAHEEFKTMLLIAHYYATRSAAQSVKQLETVAARLSVSLLRHTQLLPVDKAFYEAGIAAKAVGWDNMAFIFLNRFLDLTDAIEEGTLDGLDHSDFQDTDIPFEVPLPAKQHVPEAEREEVRDWVLTVSMDQRLEQVLPRDERGAYEASLVAASTGVRALPCLITGYPILRNKIEFKRPGKAANKDNWNKFLMAIKTSHSPVCQDVLKFISQWCGGLPSTSFSFQ | Required for the maintenance and formation of cilia. Plays an indirect role in hedgehog (Hh) signaling, cilia being required for all activity of the hedgehog pathway (By similarity).
Subcellular locations: Cell projection, Cilium
Localized to the axoneme and around the base of the cilium. |
IF1AX_HUMAN | Homo sapiens | MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVIKMLGNGRLEAMCFDGVKRLCHIRGKLRKKVWINTSDIILVGLRDYQDNKADVILKYNADEARSLKAYGELPEHAKINETDTFGPGDDDEIQFDDIGDDDEDIDDI | Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon . This protein enhances formation of the cap-proximal complex . Together with EIF1, facilitates scanning, start codon recognition, promotion of the assembly of 48S complex at the initiation codon (43S PIC becomes 48S PIC after the start codon is reached), and dissociation of aberrant complexes . After start codon location, together with EIF5B orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex . Is released after 80S initiation complex formation, just after GTP hydrolysis by EIF5B, and before release of EIF5B . Its globular part is located in the A site of the 40S ribosomal subunit . Its interaction with EIF5 during scanning contribute to the maintenance of EIF1 within the open 43S PIC . In contrast to yeast orthologs, does not bind EIF1 .
Subcellular locations: Cytoplasm |
IF1AX_PONAB | Pongo abelii | MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVIKMLGNGRLEAMCFDGVKRLCHIRGKLRKKVWINTSDIILVGLRDYQDNKADVILKYNADEARSLKAYGELPEHAKINETDTFGPGDDDEIQFDDIGDDDEDIDDI | Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon. This protein enhances formation of the cap-proximal complex. Together with EIF1, facilitates scanning, start codon recognition, promotion of the assembly of 48S complex at the initiation codon (43S PIC becomes 48S PIC after the start codon is reached), and dissociation of aberrant complexes. After start codon location, together with EIF5B orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex. Is released after 80S initiation complex formation, just after GTP hydrolysis by EIF5B, and before release of EIF5B. Its globular part is located in the A site of the 40S ribosomal subunit. Its interaction with EIF5 during scanning contribute to the maintenance of EIF1 within the open 43S PIC. In contrast to yeast orthologs, does not bind EIF1.
Subcellular locations: Cytoplasm |
IF1AY_HUMAN | Homo sapiens | MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVIKMLGNGRLEALCFDGVKRLCHIRGKLRKKVWINTSDIILVGLRDYQDNKADVILKYNADEARSLKAYGELPEHAKINETDTFGPGDDDEIQFDDIGDDDEDIDDI | Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon. This protein enhances formation of the cap-proximal complex. Together with EIF1, facilitates scanning, start codon recognition, promotion of the assembly of 48S complex at the initiation codon (43S PIC becomes 48S PIC after the start codon is reached), and dissociation of aberrant complexes. After start codon location, together with EIF5B orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex. Is released after 80S initiation complex formation, just after GTP hydrolysis by EIF5B, and before release of EIF5B. Its globular part is located in the A site of the 40S ribosomal subunit. Its interaction with EIF5 during scanning contribute to the maintenance of EIF1 within the open 43S PIC. In contrast to yeast orthologs, does not bind EIF1.
Subcellular locations: Cytoplasm
Ubiquitous. |
IF1AY_PANTR | Pan troglodytes | MPKNKGKGGKNRRRGKNENESEKRELVFKEDGQEYAQVIKMLGNGRLEALCFDGVKRLCHIRGKLRKKVWINTSDIILVGLRDYQDNKADVILKYNADEARSLKAYGELPEHAKINETDTFGPGDDDEVQFDDIGDDDEDIDDI | Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon. This protein enhances formation of the cap-proximal complex. Together with EIF1, facilitates scanning, start codon recognition, promotion of the assembly of 48S complex at the initiation codon (43S PIC becomes 48S PIC after the start codon is reached), and dissociation of aberrant complexes. After start codon location, together with EIF5B orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex. Is released after 80S initiation complex formation, just after GTP hydrolysis by EIF5B, and before release of EIF5B. Its globular part is located in the A site of the 40S ribosomal subunit. Its interaction with EIF5 during scanning contribute to the maintenance of EIF1 within the open 43S PIC. In contrast to yeast orthologs, does not bind EIF1.
Subcellular locations: Cytoplasm
Ubiquitous. |
IF44L_HUMAN | Homo sapiens | MEVTTRLTWNDENHLRKLLGNVSLSLLYKSSVHGGSIEDMVERCSRQGCTITMAYIDYNMIVAFMLGNYINLHESSTEPNDSLWFSLQKKNDTTEIETLLLNTAPKIIDEQLVCRLSKTDIFIICRDNKIYLDKMITRNLKLRFYGHRQYLECEVFRVEGIKDNLDDIKRIIKAREHRNRLLADIRDYRPYADLVSEIRILLVGPVGSGKSSFFNSVKSIFHGHVTGQAVVGSDITSITERYRIYSVKDGKNGKSLPFMLCDTMGLDGAEGAGLCMDDIPHILKGCMPDRYQFNSRKPITPEHSTFITSPSLKDRIHCVAYVLDINSIDNLYSKMLAKVKQVHKEVLNCGIAYVALLTKVDDCSEVLQDNFLNMSRSMTSQSRVMNVHKMLGIPISNILMVGNYASDLELDPMKDILILSALRQMLRAADDFLEDLPLEETGAIERALQPCI | Type I interferon-stimulated gene (ISG) that plays a critical role in antiviral and antibacterial activity . During bacterial infection, promotes macrophage differentiation and facilitates inflammatory cytokine secretion . Plays a role in the control of respiratory syncytial virus/RSV infection, reducing the ability of the virus to replicate . Exhibits a low antiviral activity against hepatitis C virus . Acts also as a feedback regulator of IFN responses by negatively regulating IKBKB and IKBKE kinase activities through interaction with FKBP5 .
Subcellular locations: Cytoplasm |
IF4H_PONAB | Pongo abelii | MADFDTYDDRAYNSFGGGRGSRGSAGGHGSRSQKELPTEPPYTAYVGNLPFNTVQGDIDAIFKDLSIRSVRLVRDKDTDKFKGFCYVEFDEVDSLKEALTYDGALLGDRSLRVDIAEGRKQDKGGFGFRKGGPDDRGFRDDFLGGRGGSRPGDRRTGPAMGSRFRDGPPLRGSNMDFREPTEEERAQRPRLQLKPRTVATPLNQVANPNSAIFGGARPREEVVQKEQE | Stimulates the RNA helicase activity of EIF4A in the translation initiation complex. Binds weakly mRNA (By similarity).
Subcellular locations: Cytoplasm, Perinuclear region |
IF5A1_HUMAN | Homo sapiens | MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVGIDIFTGKKYEDICPSTHNMDVPNIKRNDFQLIGIQDGYLSLLQDSGEVREDLRLPEGDLGKEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK | Translation factor that promotes translation elongation and termination, particularly upon ribosome stalling at specific amino acid sequence contexts . Binds between the exit (E) and peptidyl (P) site of the ribosome and promotes rescue of stalled ribosome: specifically required for efficient translation of polyproline-containing peptides as well as other motifs that stall the ribosome (By similarity). Acts as a ribosome quality control (RQC) cofactor by joining the RQC complex to facilitate peptidyl transfer during CAT tailing step (By similarity). Also involved in actin dynamics and cell cycle progression, mRNA decay and probably in a pathway involved in stress response and maintenance of cell wall integrity . With syntenin SDCBP, functions as a regulator of p53/TP53 and p53/TP53-dependent apoptosis . Regulates also TNF-alpha-mediated apoptosis (, ). Mediates effects of polyamines on neuronal process extension and survival .
(Microbial infection) Cellular cofactor of human T-cell leukemia virus type I (HTLV-1) Rex protein and of human immunodeficiency virus type 1 (HIV-1) Rev protein, essential for mRNA export of retroviral transcripts.
Subcellular locations: Cytoplasm, Nucleus, Endoplasmic reticulum membrane
Hypusine modification promotes the nuclear export and cytoplasmic localization and there was a dynamic shift in the localization from predominantly cytoplasmic to primarily nuclear under apoptotic inducing conditions (, ). Nuclear export of hypusinated protein is mediated by XPO4 (, ).
Expressed in umbilical vein endothelial cells and several cancer cell lines (at protein level). |
IFG15_HUMAN | Homo sapiens | MFSDNSHCPDCGQQWFPSLELGHWLYQTELVENECYQVFLDRINRADYCPECYPDNPANRSLVLPWSFPLEWAPQNLTRWTFEKACHPFLLGPPLVRKRIHDSRVAGFNPALQLILTRTDKTLNKKLGQNK | null |
IFI27_HUMAN | Homo sapiens | MEASALTSSAVTSVAKVVRVASGSAVVLPLARIATVVIGGVVAMAAVPMVLSAMGFTAAGIASSSIAAKMMSAAAIANGGGVASGSLVATLQSLGATGLSGLTKFILGSIGSAIAAVIARFY | Probable adapter protein involved in different biological processes (, ). Part of the signaling pathways that lead to apoptosis ( ). Involved in type-I interferon-induced apoptosis characterized by a rapid and robust release of cytochrome C from the mitochondria and activation of BAX and caspases 2, 3, 6, 8 and 9 (, ). Also functions in TNFSF10-induced apoptosis . May also have a function in the nucleus, where it may be involved in the interferon-induced negative regulation of the transcriptional activity of NR4A1, NR4A2 and NR4A3 through the enhancement of XPO1-mediated nuclear export of these nuclear receptors . May thereby play a role in the vascular response to injury (By similarity). In the innate immune response, has an antiviral activity towards hepatitis C virus/HCV (, ). May prevent the replication of the virus by recruiting both the hepatitis C virus non-structural protein 5A/NS5A and the ubiquitination machinery via SKP2, promoting the ubiquitin-mediated proteasomal degradation of NS5A (, ). Promotes also virus-induced pyroptosis by activating CASP3 in the mitochondria after 'Lys-6'-linked ubiquitination by TRIM21 .
Subcellular locations: Mitochondrion membrane, Nucleus inner membrane, Endoplasmic reticulum membrane
Exclusive localizations in either the nucleus or the mitochondrion have been reported. |
IFI44_HUMAN | Homo sapiens | MAVTTRLTWLHEKILQNHFGGKRLSLLYKGSVHGFRNGVLLDRCCNQGPTLTVIYSEDHIIGAYAEESYQEGKYASIILFALQDTKISEWKLGLCTPETLFCCDVTKYNSPTNFQIDGRNRKVIMDLKTMENLGLAQNCTISIQDYEVFRCEDSLDERKIKGVIELRKSLLSALRTYEPYGSLVQQIRILLLGPIGAGKSSFFNSVRSVFQGHVTHQALVGTNTTGISEKYRTYSIRDGKDGKYLPFILCDSLGLSEKEGGLCRDDIFYILNGNIRDRYQFNPMESIKLNHHDYIDSPSLKDRIHCVAFVFDASSIQYFSSQMIVKIKRIRRELVNAGVVHVALLTHVDSMDLITKGDLIEIERCEPVRSKLEEVQRKLGFALSDISVVSNYSSEWELDPVKDVLILSALRRMLWAADDFLEDLPFEQIGNLREEIINCAQGKK | This protein aggregates to form microtubular structures.
Subcellular locations: Cytoplasm |
IFRD1_HUMAN | Homo sapiens | MPKNKKRNTPHRGSSAGGGGSGAAAATAATAGGQHRNVQPFSDEDASIETMSHCSGYSDPSSFAEDGPEVLDEEGTQEDLEYKLKGLIDLTLDKSAKTRQAALEGIKNALASKMLYEFILERRMTLTDSIERCLKKGKSDEQRAAAALASVLCIQLGPGIESEEILKTLGPILKKIICDGSASMQARQTCATCFGVCCFIATDDITELYSTLECLENIFTKSYLKEKDTTVICSTPNTVLHISSLLAWTLLLTICPINEVKKKLEMHFHKLPSLLSCDDVNMRIAAGESLALLFELARGIESDFFYEDMESLTQMLRALATDGNKHRAKVDKRKQRSVFRDVLRAVEERDFPTETIKFGPERMYIDCWVKKHTYDTFKEVLGSGMQYHLQSNEFLRNVFELGPPVMLDAATLKTMKISRFERHLYNSAAFKARTKARSKCRDKRADVGEFF | Could play a role in regulating gene activity in the proliferative and/or differentiative pathways induced by NGF. May be an autocrine factor that attenuates or amplifies the initial ligand-induced signal (By similarity).
Expressed in a variety of tissues. |
IFRD2_HUMAN | Homo sapiens | MPRARKGNTLRKGGQRRGGGARSSAQADSGSSDDEAASEARSTASECPSLLSTTAEDSLGGDVVDEQGQQEDLEEKLKEYVDCLTDKSAKTRQGALESLRLALASRLLPDFLLERRLTLADALEKCLKKGKGEEQALAAAVLGLLCVQLGPGPKGEELFHSLQPLLVSVLSDSTASPAARLHCASALGLGCYVAAADIQDLVSCLACLESVFSRFYGLGGSSTSPVVPASLHGLLSAALQAWALLLTICPSTQISHILDRQLPRLPQLLSSESVNLRIAAGETIALLFELARDLEEEFVYEDMEALCSVLRTLATDSNKYRAKADRRRQRSTFRAVLHSVEGGECEEEIVRFGFEVLYMDSWARHRIYAAFKEVLGSGMHHHLQNNELLRDIFGLGPVLLLDATALKACKVPRFEKHLYNAAAFKARTKARSRVRDKRADIL | Ribosome-binding protein that acts as an inhibitor of mRNA translation by promoting ribosome inactivation . Associates with the P- and E-sites of the ribosome and inserts a C-terminal helix into the mRNA exit channel to preclude translation (By similarity).
Expressed in many tissues including heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. |
IGDC3_HUMAN | Homo sapiens | MAVQRAASPRRPPAPLWPRLLLPLLLLLLPAPSEGLGHSAELAFAVEPSDDVAVPGQPIVLDCRVEGTPPVRITWRKNGVELPESTHSTLLANGSLMIRHFRLEPGGSPSDEGDYECVAQNRFGLVVSRKARIQAATMSDFHVHPQATVGEEGGVARFQCQIHGLPKPLITWEKNRVPIDTDNERYTLLPKGVLQITGLRAEDGGIFHCVASNIASIRISHGARLTVSGSGSGAYKEPAILVGPENLTLTVHQTAVLECVATGNPRPIVSWSRLDGRPIGVEGIQVLGTGNLIISDVTVQHSGVYVCAANRPGTRVRRTAQGRLVVQAPAEFVQHPQSISRPAGTTAMFTCQAQGEPPPHVTWLKNGQVLGPGGHVRLKNNNSTLTISGIGPEDEAIYQCVAENSAGSSQASARLTVLWAEGLPGPPRNVRAVSVSSTEVRVSWSEPLANTKEIIGYVLHIRKAADPPELEYQEAVSKSTFQHLVSDLEPSTAYSFYIKAYTPRGASSASVPTLASTLGEAPAPPPLSVRVLGSSSLQLLWEPWPRLAQHEGGFKLFYRPASKTSFTGPILLPGTVSSYNLSQLDPTAVYEVKLLAYNQHGDGNATVRFVSLRGASERTALSPPCDCRKEEAANQTSTTGIVIGIHIGVTCIIFCVLFLLFGQRGRVLLCKDVENQLSPPQGPRSQRDPGILALNGARRGQRGQLGRDEKRVDMKELEQLFPPASAAGQPDPRPTQDPAAPAPCEETQLSVLPLQGCGLMEGKTTEAKTTEATAPCAGLAAAPPPPDGGPGLLSEGQASRPAAARVTQPAHSEQ | Subcellular locations: Membrane |
IGDC4_HUMAN | Homo sapiens | MARGDAGRGRGLLALTFCLLAARGELLLPQETTVELSCGVGPLQVILGPEQAAVLNCSLGAAAAGPPTRVTWSKDGDTLLEHDHLHLLPNGSLWLSQPLAPNGSDESVPEAVGVIEGNYSCLAHGPLGVLASQTAVVKLATLADFSLHPESQTVEENGTARFECHIEGLPAPIITWEKDQVTLPEEPRLIVLPNGVLQILDVQESDAGPYRCVATNSARQHFSQEALLSVAHRGSLASTRGQDVVIVAAPENTTVVSGQSVVMECVASADPTPFVSWVRQDGKPISTDVIVLGRTNLLIANAQPWHSGVYVCRANKPRTRDFATAAAELRVLAAPAITQAPEALSRTRASTARFVCRASGEPRPALRWLHNGAPLRPNGRVKVQGGGGSLVITQIGLQDAGYYQCVAENSAGMACAAASLAVVVREGLPSAPTRVTATPLSSSAVLVAWERPEMHSEQIIGFSLHYQKARGMDNVEYQFAVNNDTTELQVRDLEPNTDYEFYVVAYSQLGASRTSTPALVHTLDDVPSAAPQLSLSSPNPSDIRVAWLPLPPSLSNGQVVKYKIEYGLGKEDQIFSTEVRGNETQLMLNSLQPNKVYRVRISAGTAAGFGAPSQWMHHRTPSMHNQSHVPFAPAELKVQAKMESLVVSWQPPPHPTQISGYKLYWREVGAEEEANGDRLPGGRGDQAWDVGPVRLKKKVKQYELTQLVPGRLYEVKLVAFNKHEDGYAAVWKGKTEKAPAPDMPIQRGPPLPPAHVHAESNSSTSIWLRWKKPDFTTVKIVNYTVRFSPWGLRNASLVTYYTSSGEDILIGGLKPFTKYEFAVQSHGVDMDGPFGSVVERSTLPDRPSTPPSDLRLSPLTPSTVRLHWCPPTEPNGEIVEYLILYSSNHTQPEHQWTLLTTQGNIFSAEVHGLESDTRYFFKMGARTEVGPGPFSRLQDVITLQEKLSDSLDMHSVTGIIVGVCLGLLCLLACMCAGLRRSPHRESLPGLSSTATPGNPALYSRARLGPPSPPAAHELESLVHPHPQDWSPPPSDVEDRAEVHSLMGGGVSEGRSHSKRKISWAQPSGLSWAGSWAGCELPQAGPRPALTRALLPPAGTGQTLLLQALVYDAIKGNGRKKSPPACRNQVEAEVIVHSDFSASNGNPDLHLQDLEPEDPLPPEAPDLISGVGDPGQGAAWLDRELGGCELAAPGPDRLTCLPEAASASCSYPDLQPGEVLEETPGDSCQLKSPCPLGASPGLPRSPVSSSA | Subcellular locations: Cell membrane |
IGD_HUMAN | Homo sapiens | RLQLQESGPGLVKPSETLSLTCIVSGGPIRRTGYYWGWIRQPPGKGLEWIGGVYYTGSIYYNPSLRGRVTISVDTSRNQFSLNLRSMSAADTAMYYCARGNPPPYYDIGTGSDDGIDVWGQGTTVHVSSAPTKAPDVFPIISGCRHPKDNSPVVLACLITGYHPTSVTVTWYMGTQSQPQRTFPEIQRRDSYYMTSSQLSTPLQQWRQGEYKCVVQHTASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVYLLTPAVQDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTGGVEEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPSLPPQRLMALREPAAQAPVKLSLNLLASSDPPEAASWLLCEVSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPGSTTFWAWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSYVTDHGPM | Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). IgD is the major antigen receptor isotype on the surface of most peripheral B cells, where it is coexpressed with IgM. The membrane-bound IgD (mIgD) induces the phosphorylation of CD79A and CD79B by the Src family of protein tyrosine kinases. Soluble IgD (sIgD) concentration in serum is below those of IgG, IgA, and IgM but much higher than that of IgE. IgM and IgD molecules present on B cells have identical V regions and antigen-binding sites. After the antigen binds to the B cell receptor, the secreted form sIgD is shut off. IgD is a potent inducer of TNF, IL1B, and IL1RN. IgD also induces release of IL6, IL10, and LIF from peripheral blood mononuclear cells. Monocytes seem to be the main producers of cytokines in vitro in the presence of IgD ( , ).
Subcellular locations: Secreted, Cell membrane |
IGE_HUMAN | Homo sapiens | QVQLVQSGAEVRKPGASVRVSCKASGYTFIDSYVGWIRQAPGHGLEWIHWINPNSGGTNYAPRFQGRVTMTRDASFSTAYMDLRSLRSDDSAVFYCAKSDPFWSDYNFDYSSSEEGTEVTYTVSGAWTLPSVFPLTRCCKNIPSNATSVTLGCLATGYFPEPVMVTWDTGSLNGTTLPATTLTLSGHYATISLLTVSGAWAKQMFTCRVAHTPSSTVDNKTFSVCSRDFTPPTVKILQSSCDGLGHFPPTIQLCLVSGYTPGTINITWLEDGQVMDVDLSTASTESQGELASTESQLTLSQKHWLSDRTYTCQVTYQGHTFQDSTKKCADSNPRGVSAYLSRPSPFDLFIRKSPTITCLVVDLAPSKGTVNLTWSRASGKPVNHSTRKEEKQRNGTLTVTSTLPVGTRDWIEGETYQCRVTHPHLPRALMRSTTKTSGPRAAPEVYAFATPEWPGSRDKRTLACLIQNFMPEDISVQWLHNEVQLPDARHSTTQPRKTKGSGFFVFSRLEVTRAEWQEKDEFICRAVHEAASPSQTVQRAVSVNPGK | Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ).
Subcellular locations: Secreted, Cell membrane |
IGF1R_HUMAN | Homo sapiens | MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYQQLKRLENCTVIEGYLHILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIFEMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFKNVTEYDGQDACGSNSWNMVDVDLPPNKDVEPGILLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRHNYCSKDKIPIRKYADGTIDIEEVTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRKVFENFLHNSIFVPRPERKRRDVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFESRVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVQAKTGYENFIHLIIALPVAVLLIVGGLVIMLYVFHRKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKGVVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQPTLVIMELMTRGDLKSYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARNCMVAEDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVFTTYSDVWSFGVVLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFELMRMCWQYNPKMRPSFLEIISSIKEEMEPGFREVSFYYSEENKLPEPEELDLEPENMESVPLDPSASSSSLPLPDRHSGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC | Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.
When present in a hybrid receptor with INSR, binds IGF1. shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.
Subcellular locations: Cell membrane
Found as a hybrid receptor with INSR in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Expressed in a variety of tissues. Overexpressed in tumors, including melanomas, cancers of the colon, pancreas prostate and kidney. |
IKBL1_HUMAN | Homo sapiens | MSNPSPQVPEEEASTSVCRPKSSMASTSRRQRRERRFRRYLSAGRLVRAQALLQRHPGLDVDAGQPPPLHRACARHDAPALCLLLRLGADPAHQDRHGDTALHAAARQGPDAYTDFFLPLLSRCPSAMGIKNKDGETPGQILGWGPPWDSAEEEEEDDASKEREWRQKLQGELEDEWQEVMGRFEGDASHETQEPESFSAWSDRLAREHAQKCQQQQREAEGSRRPPRAEGSSQSWRQQEEEQRLFRERARAKEEELRESRARRAQEALGDREPKPTRAGPREEHPRGAGRGSLWRFGDVPWPCPGGGDPEAMAAALVARGPPLEEQGALRRYLRVQQVRWHPDRFLQRFRSQIETWELGRVMGAVTALSQALNRHAEALK | Involved in the regulation of innate immune response. Acts as negative regulator of Toll-like receptor and interferon-regulatory factor (IRF) signaling pathways. Contributes to the negative regulation of transcriptional activation of NF-kappa-B target genes in response to endogenous proinflammatory stimuli.
Subcellular locations: Nucleus
Nuclear localization with a speckled expression pattern in some cells. Colocalizes with CACTIN in the nucleus.
Detected in different cell types including monocytes, T-cells, B-cells and hepatocytes. |
IKBL1_MACMU | Macaca mulatta | MSNPSPQVPEEEASTSVCRPKSSMASTSRRQRRERRFRRYLSAGRLVRAQALLQRHPGLDVDAGQPPPLHRACARHDAPALCLLLRLGADPAHQDRHGDTALHAAARQGPDAYTDFFLPLLSRCPSAMGIKNKDGETPGQILGWGPPWDSAEEEEEDDASKEREWRQKLQGELEDEWQEVMGRFEGDASHETQEPESFSAWSDRLAREHAQKCQQQQREAEGSCRPPRAEGSSQSWRQQEEEQRLFRERARVKEEELRESRARRAQEALGDREPKPARAGPRAEHPRGAGRGSLWRFGDVPWPCPGGGDPEAMAAALVARGPPLEEQGALRRYLRVQQVRWHPDRFLQRFRSQIETWELGRVMGAVTALSQALNRHAEALK | Involved in the regulation of innate immune response. Acts as negative regulator of Toll-like receptor and interferon-regulatory factor (IRF) signaling pathways. Contributes to the negative regulation of transcriptional activation of NF-kappa-B target genes in response to endogenous pro-inflammatory stimuli (By similarity).
Subcellular locations: Nucleus
Nuclear localization with a speckled expression pattern in some cells. Colocalizes with CACTIN in the nucleus (By similarity). |
IKBL1_PANTR | Pan troglodytes | MSNPSPQVPEEEASTSVCRPKSSMASTSRRQRRERRFRRYLSAGRLVRAQALLQRHPGLDVDAGQPPPLHRACARHDAPALCLLLRLGADPAHQDRHGDTALHAAARQGPDAYTDFFLPLLSRCPSAMGIKNKDGETPGQILGWGPPWDSAEEEEDDASKEREWRQKLQGELEDEWQEVMGRFEGDASHETQEPESFSAWSDRLAREHAQKYQQQQREAEGSCRPPRAEGSSQSWRQQEEEQRLFRERARAKEEELRESRARRAQEALGDREPKPTRAGPREEHPRGAGRGSLWRFGDVPWPCPGGGDPEAMAAALVARGPPLEEQGALRRYLRVQQVRWHPDRFLQRFRSQIETWELGRVMGAVTALSQALNRHAEALK | Involved in the regulation of innate immune response. Acts as negative regulator of Toll-like receptor and interferon-regulatory factor (IRF) signaling pathways. Contributes to the negative regulation of transcriptional activation of NF-kappa-B target genes in response to endogenous pro-inflammatory stimuli (By similarity).
Subcellular locations: Nucleus
Nuclear localization with a speckled expression pattern in some cells. Colocalizes with CACTIN in the nucleus (By similarity). |
IL12B_HUMAN | Homo sapiens | MCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTLTIQVKEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDILKDQKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLSAERVRGDNKEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPDPPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGKSKREKKDRVFTDKTSATVICRKNASISVRAQDRYYSSSWSEWASVPCS | Cytokine that can act as a growth factor for activated T and NK cells, enhance the lytic activity of NK/lymphokine-activated killer cells, and stimulate the production of IFN-gamma by resting PBMC.
Associates with IL23A to form the IL-23 interleukin, a heterodimeric cytokine which functions in innate and adaptive immunity. IL-23 may constitute with IL-17 an acute response to infection in peripheral tissues. IL-23 binds to a heterodimeric receptor complex composed of IL12RB1 and IL23R, activates the Jak-Stat signaling cascade, stimulates memory rather than naive T-cells and promotes production of pro-inflammatory cytokines. IL-23 induces autoimmune inflammation and thus may be responsible for autoimmune inflammatory diseases and may be important for tumorigenesis.
Subcellular locations: Secreted |
IL12B_MACMU | Macaca mulatta | MCHQQLVISWFSLVFLASPLMAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGITWTLDQSGEVLGSGKTLTIQVKEFGDAGQYTCHKGGEALSHSLLLLHKKEDGIWSTDVLKDQKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSNPQGVTCGAVTLSAERVRGDNKEYEYSVECQEDSACPAAEERLPIEVMVDAIHKLKYENYTSSFFIRDIIKPDPPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCIQVQGKSKREKKDRIFTDKTSATVICRKNASFSVQAQDRYYSSSWSEWASVPCS | Cytokine that can act as a growth factor for activated T and NK cells, enhance the lytic activity of NK/lymphokine-activated killer cells, and stimulate the production of IFN-gamma by resting PBMC.
Associates with IL23A to form the IL-23 interleukin, a heterodimeric cytokine which functions in innate and adaptive immunity. IL-23 may constitute with IL-17 an acute response to infection in peripheral tissues. IL-23 binds to a heterodimeric receptor complex composed of IL12RB1 and IL23R, activates the Jak-Stat signaling cascade, stimulates memory rather than naive T-cells and promotes production of pro-inflammatory cytokines. IL-23 induces autoimmune inflammation and thus may be responsible for autoimmune inflammatory diseases and may be important for tumorigenesis (By similarity).
Subcellular locations: Secreted |
IL12B_PAPAN | Papio anubis | MCHQQLVISWFSLVFLASPLMAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGITWTLDQSGEVLGSGKTLTIQVKEFGDAGQYTCHKGGEALSHSLLLLHKKEDGIWSTDVLKDQKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSNPQGVTCGAVTLSAERVRGDNKEYEYSVECQEDSACPAAEERLPIEVMVDAIHKLKYENYTSSFFIRDIIKPDPPKNLQLKPLKNSRQAEVSWEYPDTWSTPHSYFSLTFCIQVQGKSKREKKDRIFTDKTSATVICRKNASFSVQAQDRYYSSSWSEWASVPCS | Cytokine that can act as a growth factor for activated T and NK cells, enhance the lytic activity of NK/lymphokine-activated killer cells, and stimulate the production of IFN-gamma by resting PBMC.
Associates with IL23A to form the IL-23 interleukin, a heterodimeric cytokine which functions in innate and adaptive immunity. IL-23 may constitute with IL-17 an acute response to infection in peripheral tissues. IL-23 binds to a heterodimeric receptor complex composed of IL12RB1 and IL23R, activates the Jak-Stat signaling cascade, stimulates memory rather than naive T-cells and promotes production of pro-inflammatory cytokines. IL-23 induces autoimmune inflammation and thus may be responsible for autoimmune inflammatory diseases and may be important for tumorigenesis (By similarity).
Subcellular locations: Secreted |
IL13_HUMAN | Homo sapiens | MHPLLNPLLLALGLMALLLTTVIALTCLGGFASPGPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGQFN | Cytokine that plays important roles in allergic inflammation and immune response to parasite infection (, ). Synergizes with IL2 in regulating interferon-gamma synthesis . Stimulates B-cell proliferation, and activation of eosinophils, basophils, and mast cells (, ). Plays an important role in controlling IL33 activity by modulating the production of transmembrane and soluble forms of interleukin-1 receptor-like 1/IL1RL1 (By similarity). Displays the capacity to antagonize Th1-driven proinflammatory immune response and downregulates synthesis of many proinflammatory cytokines including IL1, IL6, IL10, IL12 and TNF-alpha through a mechanism that partially involves suppression of NF-kappa-B (By similarity). Functions also on nonhematopoietic cells, including endothelial cells where it induces vascular cell adhesion protein 1/VCAM1, which is important in the recruitment of eosinophils . Exerts its biological effects through its receptors which comprises the IL4R chain and the IL13RA1 chain, to activate JAK1 and TYK2, leading to the activation of STAT6 . Aside from IL13RA1, another receptor IL13RA2 acts as a high affinity decoy for IL13 and mediates internalization and depletion of extracellular IL13 .
Subcellular locations: Secreted |
IL13_MACMU | Macaca mulatta | MALLLTTVIALTCLGGFASPSPVPRSTALKELIEELVNITQNQKAPLCNGSMVWSINLTAGVYCAALESLINVSGCSAIEKTQRMLNGFCPHKVSAGQFSSLRVRDTKIEVAQFVKDLLVHLKKLFREGRFN | Cytokine that plays important roles in allergic inflammation and immune response to parasite infection. Synergizes with IL2 in regulating interferon-gamma synthesis. Stimulates B-cell proliferation, and activation of eosinophils, basophils, and mast cells (By similarity). Plays an important role in controlling IL33 activity by modulating the production of transmembrane and soluble forms of interleukin-1 receptor-like 1/IL1RL1 (By similarity). Displays the capacity to antagonize Th1-driven proinflammatory immune response and downregulates synthesis of many proinflammatory cytokines including IL1, IL6, IL10, IL12 and TNF-alpha through a mechanism that partially involves suppression of NF-kappa-B (By similarity). Functions also on nonhematopoietic cells, including endothelial cells where it induces vascular cell adhesion protein 1/VCAM1, which is important in the recruitment of eosinophils. Exerts its biological effects through its receptors which comprises the IL4R chain and the IL13RA1 chain, to activate JAK1 and TYK2, leading to the activation of STAT6. Aside from IL13RA1, another receptor IL13RA2 acts as a high affinity decoy for IL13 and mediates internalization and depletion of extracellular IL13 (By similarity).
Subcellular locations: Secreted |
IL13_MACTH | Macaca thibetana | MALLLTMVIALTCLGGFASPSPVPPSTALKELIEELVNITQNQKAPLCNGSMVWSINLTAGVYCAALESLINVSGCSAIEKTQRMLNGFCPHKVSAGQFSSLRVRDTKIEVAQFVKDLLLHLKKLFREGQFN | Cytokine that plays important roles in allergic inflammation and immune response to parasite infection. Synergizes with IL2 in regulating interferon-gamma synthesis. Stimulates B-cell proliferation, and activation of eosinophils, basophils, and mast cells (By similarity). Plays an important role in controlling IL33 activity by modulating the production of transmembrane and soluble forms of interleukin-1 receptor-like 1/IL1RL1 (By similarity). Displays the capacity to antagonize Th1-driven proinflammatory immune response and downregulates synthesis of many proinflammatory cytokines including IL1, IL6, IL10, IL12 and TNF-alpha through a mechanism that partially involves suppression of NF-kappa-B (By similarity). Functions also on nonhematopoietic cells, including endothelial cells where it induces vascular cell adhesion protein 1/VCAM1, which is important in the recruitment of eosinophils. Exerts its biological effects through its receptors which comprises the IL4R chain and the IL13RA1 chain, to activate JAK1 and TYK2, leading to the activation of STAT6. Aside from IL13RA1, another receptor IL13RA2 acts as a high affinity decoy for IL13 and mediates internalization and depletion of extracellular IL13 (By similarity).
Subcellular locations: Secreted |
IL25_HUMAN | Homo sapiens | MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLEPARPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNSELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG | Cytokine produced by various cells such as eosinophils, T-helper type 2 (Th2) cells or epithelial cells that plays a role in internal safety of adaptive immune responses by regulating cytokine production (, ). Promotes and augments T-helper type 2 responses locally or systemically . Exerts its activity via its receptor composed of IL17RA and IL17RB for signal transduction (By similarity). In turn, stimulates the JAK2-STAT5A pathway and promotes the secretion of type-2 associated cytokines including IL4, IL9 and IL13 . Induces also the release of IL8, and IL6 from eosinophils through the combined activation of MAPK and NF-kappa-B pathways . Inhibits the differentiation of T-helper (Th17) cells via the production of IL4, IL5 and IL13 .
Subcellular locations: Secreted
Expressed at low levels in several tissues, including brain, kidney, lung, prostate, testis, spinal cord, adrenal gland, and trachea. |
IL26_HUMAN | Homo sapiens | MLVNFILRCGLLLVTLSLAIAKHKQSSFTKSCYPRGTLSQAVDALYIKAAWLKATIPEDRIKNIRLLKKKTKKQFMKNCQFQEQLLSFFMEDVFGQLQLQGCKKIRFVEDFHSLRQKLSHCISCASSAREMKSITRMKRIFYRIGNKGIYKAISELDILLSWIKKLLESSQ | May play a role in local mechanisms of mucosal immunity and seems to have a pro-inflammatory function. May play a role in inflammatory bowel disease. Activates STAT1 and STAT3, MAPK1/3 (ERK1/2), JUN and AKT. Induces expression of SOCS3, TNF-alpha and IL-8, secretion of IL-8 and IL-10 and surface expression of ICAM1. Decreases proliferation of intestinal epithelial cells. Is inhibited by heparin.
Subcellular locations: Secreted
Expressed in HVS transformed T-cells but not other T-cell lines or primary stimulated T-cells. Expressed in colonic T-cells including Th17 inflammatory T-cells; the expression is significantly increased in serum of patients with Crohn's disease (at protein level). |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.