protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
ILEU_HUMAN
Homo sapiens
MEQLSSANTRFALDLFLALSENNPAGNIFISPFSISSAMAMVFLGTRGNTAAQLSKTFHFNTVEEVHSRFQSLNADINKRGASYILKLANRLYGEKTYNFLPEFLVSTQKTYGADLASVDFQHASEDARKTINQWVKGQTEGKIPELLASGMVDNMTKLVLVNAIYFKGNWKDKFMKEATTNAPFRLNKKDRKTVKMMYQKKKFAYGYIEDLKCRVLELPYQGEELSMVILLPDDIEDESTGLKKIEEQLTLEKLHEWTKPENLDFIEVNVSLPRFKLEESYTLNSDLARLGVQDLFNSSKADLSGMSGARDIFISKIVHKSFVEVNEEGTEAAAATAGIATFCMLMPEENFTADHPFLFFIRHNSSGSILFLGRFSSP
Neutrophil serine protease inhibitor that plays an essential role in the regulation of the innate immune response, inflammation and cellular homeostasis . Acts primarily to protect the cell from proteases released in the cytoplasm during stress or infection. These proteases are important in killing microbes but when released from granules, these potent enzymes also destroy host proteins and contribute to mortality. Regulates the activity of the neutrophil proteases elastase, cathepsin G, proteinase-3, chymase, chymotrypsin, and kallikrein-3 (, ). Acts also as a potent intracellular inhibitor of GZMH by directly blocking its proteolytic activity . During inflammation, limits the activity of inflammatory caspases CASP1, CASP4 and CASP5 by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation . When secreted, promotes the proliferation of beta-cells via its protease inhibitory function . Subcellular locations: Secreted, Cytoplasm, Cytolytic granule, Early endosome In human bone marrow, present in all CD45+ populations. Expression levels are highest in the neutrophil lineage, intermediate in monocytic, and lowest in lymphocytic lineage. Within the neutrophil lineage, expression is highest in promyelocytes.
ILF2_HUMAN
Homo sapiens
MRGDRGRGRGGRFGSRGGPGGGFRPFVPHIPFDFYLCEMAFPRVKPAPDETSFSEALLKRNQDLAPNSAEQASILSLVTKINNVIDNLIVAPGTFEVQIEEVRQVGSYKKGTMTTGHNVADLVVILKILPTLEAVAALGNKVVESLRAQDPSEVLTMLTNETGFEISSSDATVKILITTVPPNLRKLDPELHLDIKVLQSALAAIRHARWFEENASQSTVKVLIRLLKDLRIRFPGFEPLTPWILDLLGHYAVMNNPTRQPLALNVAYRRCLQILAAGLFLPGSVGITDPCESGNFRVHTVMTLEQQDMVCYTAQTLVRILSHGGFRKILGQEGDASYLASEISTWDGVIVTPSEKAYEKPPEKKEGEEEEENTEEPPQGEEEESMETQE
Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth (, ). Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay . Also plays a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. Subcellular locations: Nucleus, Nucleolus, Cytoplasm, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ILF2_PONAB
Pongo abelii
MRGDRGRGRGGRFGSRGGPGGGFRPFVPHIPFDFYLCEMAFPRVKPAPDETSFSEALLKRNQDLAPNSAEQASILSLVTKINNVIDNLIVAPGTFEVQIEEVRQVGSYKKGTMTTGHNVADLVVILKILPTLEAVAALGNKVVESLRAQDPSEVLTMLTNETGFEISSSDATVKILITTVPPNLRKLDPELHLDIKVLQSALAAIRHARWFEENASQSTVKVLIRLLKDLRIRFPGFEPLTPWILDLLGHYAVMNNPTRQPLALNVAYRRCLQILAAGLFLPGSVGITDPCESGNFRVHTVMTLEQQDMVCYTAQTLVRILSHGGFRKILGQEGDASYLASEISTWDGVIVTPSEKAYEKPPEKKEGEEEEENTEEPPQGEEEESMETQE
Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth. Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay. Plays also a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. Subcellular locations: Nucleus, Nucleolus, Cytoplasm, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
IMA3_HUMAN
Homo sapiens
MADNEKLDNQRLKNFKNKGRDLETMRRQRNEVVVELRKNKRDEHLLKRRNVPHEDICEDSDIDGDYRVQNTSLEAIVQNASSDNQGIQLSAVQAARKLLSSDRNPPIDDLIKSGILPILVHCLERDDNPSLQFEAAWALTNIASGTSEQTQAVVQSNAVPLFLRLLHSPHQNVCEQAVWALGNIIGDGPQCRDYVISLGVVKPLLSFISPSIPITFLRNVTWVMVNLCRHKDPPPPMETIQEILPALCVLIHHTDVNILVDTVWALSYLTDAGNEQIQMVIDSGIVPHLVPLLSHQEVKVQTAALRAVGNIVTGTDEQTQVVLNCDALSHFPALLTHPKEKINKEAVWFLSNITAGNQQQVQAVIDANLVPMIIHLLDKGDFGTQKEAAWAISNLTISGRKDQVAYLIQQNVIPPFCNLLTVKDAQVVQVVLDGLSNILKMAEDEAETIGNLIEECGGLEKIEQLQNHENEDIYKLAYEIIDQFFSSDDIDEDPSLVPEAIQGGTFGFNSSANVPTEGFQF
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. Subcellular locations: Cytoplasm, Nucleus Highly expressed in testis, ovary, small intestine, heart, skeletal muscle, lung and pancreas, but barely detectable in kidney, thymus, colon and peripheral blood leukocytes.
IMA4_HUMAN
Homo sapiens
MAENPSLENHRIKSFKNKGRDVETMRRHRNEVTVELRKNKRDEHLLKKRNVPQEESLEDSDVDADFKAQNVTLEAILQNATSDNPVVQLSAVQAARKLLSSDRNPPIDDLIKSGILPILVKCLERDDNPSLQFEAAWALTNIASGTSAQTQAVVQSNAVPLFLRLLRSPHQNVCEQAVWALGNIIGDGPQCRDYVISLGVVKPLLSFISPSIPITFLRNVTWVIVNLCRNKDPPPPMETVQEILPALCVLIYHTDINILVDTVWALSYLTDGGNEQIQMVIDSGVVPFLVPLLSHQEVKVQTAALRAVGNIVTGTDEQTQVVLNCDVLSHFPNLLSHPKEKINKEAVWFLSNITAGNQQQVQAVIDAGLIPMIIHQLAKGDFGTQKEAAWAISNLTISGRKDQVEYLVQQNVIPPFCNLLSVKDSQVVQVVLDGLKNILIMAGDEASTIAEIIEECGGLEKIEVLQQHENEDIYKLAFEIIDQYFSGDDIDEDPCLIPEATQGGTYNFDPTANLQTKEFNF
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. Recognizes NLSs of influenza A virus nucleoprotein probably through ARM repeats 7-9. Subcellular locations: Cytoplasm, Nucleus Ubiquitous. Highest levels in heart and skeletal muscle.
IMA5_HUMAN
Homo sapiens
MTTPGKENFRLKSYKNKSLNPDEMRRRREEEGLQLRKQKREEQLFKRRNVATAEEETEEEVMSDGGFHEAQISNMEMAPGGVITSDMIEMIFSKSPEQQLSATQKFRKLLSKEPNPPIDEVISTPGVVARFVEFLKRKENCTLQFESAWVLTNIASGNSLQTRIVIQAGAVPIFIELLSSEFEDVQEQAVWALGNIAGDSTMCRDYVLDCNILPPLLQLFSKQNRLTMTRNAVWALSNLCRGKSPPPEFAKVSPCLNVLSWLLFVSDTDVLADACWALSYLSDGPNDKIQAVIDAGVCRRLVELLMHNDYKVVSPALRAVGNIVTGDDIQTQVILNCSALQSLLHLLSSPKESIKKEACWTISNITAGNRAQIQTVIDANIFPALISILQTAEFRTRKEAAWAITNATSGGSAEQIKYLVELGCIKPLCDLLTVMDSKIVQVALNGLENILRLGEQEAKRNGTGINPYCALIEEAYGLDKIEFLQSHENQEIYQKAFDLIEHYFGTEDEDSSIAPQVDLNQQQYIFQQCEAPMEGFQL
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 ( ). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif ( ). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (, ). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin . The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus . (Microbial infection) In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. Subcellular locations: Cytoplasm, Nucleus Expressed ubiquitously.
IMA5_PONAB
Pongo abelii
MTTPGKENFRLKSYKNKSLNPDEMRRRREEEGLQLRKQKREEQLFKRRNVATAEEETEEEVMSDGGFHEAQINNMEMAPGGVITSDMIEMIFSKSPEQQLSATQKFRKLLSKEPNPPIDEVISTPGVVARFVEFLKRKENCTLQFESAWVLTNIASGNSLQTRIVIQAGAVPIFIELLSSEFEDVQEQAVWALGNIAGDSTMCRDYVLDCNILPPLLQLFSKQNRLTMTRNAVWALSNLCRGKSPPPEFAKVSPCLNVLSWLLFVSDTDVLADACWALSYLSDGPNDKIQAVIDAGVCRRLVELLMHNDYKVVSPALRAVGNIVTGDDIQTQVILNCSALQSLLHLLSSPKESIKKEACWTISNITAGNRAQIQTVIDANIFPALISILQTAEFRTRKEAAWAITNATSGGSAEQIKYLVELGCIKPLCDLLTVMDSKIVQVALNGLENILRLGEQEAKRNGTGINPYCALIEEAYGLDKIEFLQSHENQEIYQKAFDLIEHYFGTEDEDSSIAPQVDLNQQQYIFQQCEAPMEGFQL
Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Subcellular locations: Cytoplasm, Nucleus
IMP1L_HUMAN
Homo sapiens
MLRGVLGKTFRLVGYTIQYGCIAHCAFEYVGGVVMCSGPSMEPTIQNSDIVFAENLSRHFYGIQRGDIVIAKSPSDPKSNICKRVIGLEGDKILTTSPSDFFKSHSYVPMGHVWLEGDNLQNSTDSRCYGPIPYGLIRGRIFFKIWPLSDFGFLRASPNGHRFSDD
Catalyzes the removal of transit peptides required for the targeting of proteins from the mitochondrial matrix, across the inner membrane, into the inter-membrane space. Known to process the nuclear encoded protein DIABLO. Subcellular locations: Mitochondrion inner membrane
IMP2L_HUMAN
Homo sapiens
MAQSQGWVKRYIKAFCKGFFVAVPVAVTFLDRVACVARVEGASMQPSLNPGGSQSSDVVLLNHWKVRNFEVHRGDIVSLVSPKNPEQKIIKRVIALEGDIVRTIGHKNRYVKVPRGHIWVEGDHHGHSFDSNSFGPVSLGLLHAHATHILWPPERWQKLESVLPPERLPVQREEE
Catalyzes the removal of transit peptides required for the targeting of proteins from the mitochondrial matrix, across the inner membrane, into the inter-membrane space. Known to process the nuclear encoded protein DIABLO. Subcellular locations: Mitochondrion inner membrane Expressed in all tissues tested except adult liver and lung.
INE1_HUMAN
Homo sapiens
MSGPLSPVCSCPQLPFMLSPCHMHHHPGHVALSQTVSPASLLTQGLGLPQH
Highly expressed in pancreas, heart and liver followed by brain, placenta, lung, skeletal muscle and kidney. Mostly expressed in females.
INO1_HUMAN
Homo sapiens
MEAAAQFFVESPDVVYGPEAIEAQYEYRTTRVSREGGVLKVHPTSTRFTFRTARQVPRLGVMLVGWGGNNGSTLTAAVLANRLRLSWPTRSGRKEANYYGSLTQAGTVSLGLDAEGQEVFVPFSAVLPMVAPNDLVFDGWDISSLNLAEAMRRAKVLDWGLQEQLWPHMEALRPRPSVYIPEFIAANQSARADNLIPGSRAQQLEQIRRDIRDFRSSAGLDKVIVLWTANTERFCEVIPGLNDTAENLLRTIELGLEVSPSTLFAVASILEGCAFLNGSPQNTLVPGALELAWQHRVFVGGDDFKSGQTKVKSVLVDFLIGSGLKTMSIVSYNHLGNNDGENLSAPLQFRSKEVSKSNVVDDMVQSNPVLYTPGEEPDHCVVIKYVPYVGDSKRALDEYTSELMLGGTNTLVLHNTCEDSLLAAPIMLDLALLTELCQRVSFCTDMDPEPQTFHPVLSLLSFLFKAPLVPPGSPVVNALFRQRSCIENILRACVGLPPQNHMLLEHKMERPGPSLKRVGPVAATYPMLNKKGPVPAATNGCTGDANGHLQEEPPMPTT
Key enzyme in myo-inositol biosynthesis pathway that catalyzes the conversion of glucose 6-phosphate to 1-myo-inositol 1-phosphate in a NAD-dependent manner (, ). Rate-limiting enzyme in the synthesis of all inositol-containing compounds . Subcellular locations: Cytoplasm Highly expressed in testis, ovary, heart, placenta and pancreas. Weakly expressed in blood leukocyte, thymus, skeletal muscle and colon.
INO1_MACFA
Macaca fascicularis
MEAAAQFFVESPDVVYGPEAIEAQYEYRTTRVSREGGVLKVHPTSTRFTFRTARQVPRLGVMLVGWGGNNGSTLTAAVLANRLRLSWPTRSGRKEANYYGSLTQAGTVSLGLDAEGQEVFVPFSALLPMVAPNDLVFDGWDISSLNLAEAMRRAKVLDWGLQEQLWPHMEALRPRPSVYIPEFIAANQSARADNLIPGSRAQQLEQIRRDIRDFRSSAGLDKIIVLWTANTERFCEVIPGLNDTAENLLRTIELGLEVSPSTLFAVASILEGCAFLNGSPQNTLVPGALELAWQRRVFVGGDDFKSGQTKVKSVLVDFLIGSGLKTMSIVSYNHLGNNDGENLSAPLQFRSKEVSKSNVVDDMVQSNPVLYAPGEEPDHCVVIKYVPYVGDSKRALDEYTSELMLGGTNTLVLHNTCEDSLLAAPIMLDLALLTELCQRVSFCTDADPEPQTFHPVLSLLSFLFKAPLVPPGSPVVNALFRQRSCIENILRACLGLPPQNHMLLEHKMERPGPVLKRVGPVAAACPVLNKKGPVPAATNGCTGDANGHLQVEEPQMPTT
Key enzyme in myo-inositol biosynthesis pathway that catalyzes the conversion of glucose 6-phosphate to 1-myo-inositol 1-phosphate in a NAD-dependent manner. Rate-limiting enzyme in the synthesis of all inositol-containing compounds (By similarity). Subcellular locations: Cytoplasm
INSC_HUMAN
Homo sapiens
MRRPPGNGEAASEGPGGWGLWGVQESRRLCCAGHDRCKQALLQIGINMMALPGGRHLDSVTLPGQRLHLMQVDSVQRWMEDLKLMTECECMCVLQAKPISLEEDAQGDLILAGGPGPGDPLQLLLKRGWVISTELRRIGQKLAQDRWARVHSMSVRLTCHARSMVSEYSAVSRNSLKEMGEIEKLLMEKCSELSAVTERCLQVENEHVLKSMKACVSETLSMLGQHFGQLLELALTREVQALVRKIDASDNIYTTESTTGNLFSLTQEGAPLCRIIAKEGGVVALFKVCRQDSFRCLYPQALRTLASICCVEEGVHQLEKVDGVLCLADILTDNSHSEATRAEAAAVVAQVTSPHLPVTQHLSSFLESMEEIVTALVKLCQEASSGEVFLLASAALANITFFDTMACEMLLQLNAIRVLLEACSDKQRVDTPYTRDQIVTILANMSVLEQCASDIIQENGVQLIMGMLSEKPRSGTPAEVAACERVQQKAAVTLARLSRDPDVAREAVRLSCMSRLIELCRSPSERNSSDAVLVACLAALRRLAGVCPEGLQDSDFQQLVQPRLVDSFLLCSNMEESFV
May function as an adapter linking the Par3 complex to the GPSM1/GPSM2 complex . Involved in spindle orientation during mitosis. May regulate cell proliferation and differentiation in the developing nervous system. May play a role in the asymmetric division of fibroblasts and participate in the process of stratification of the squamous epithelium (By similarity). Subcellular locations: Cytoplasm, Cytoplasm, Cell cortex Uniformly distributed in the cytoplasm during interphase. During metaphase, detected in the cell cortex, adjacent to the mitotic spindle poles. Isoform 1 is expressed in various tissues with stronger expression in liver, kidney and small intestine. Isoform 2 is abundantly expressed in small intestine and to a lower extent in lung and pancreas.
INS_HUMAN
Homo sapiens
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. Subcellular locations: Secreted
INS_MACFA
Macaca fascicularis
MALWMRLLPLLALLALWGPDPAPAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDPQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. Subcellular locations: Secreted
INTU_HUMAN
Homo sapiens
MASVASCDSRPSSDELPGDPSSQEEDEDYDFEDRVSDSGSYSSASSDYDDLEPEWLDSVQKNGELFYLELSEDEEESLLPETPTVNHVRFSENEIIIEDDYKERKKYEPKLKQFTKILRRKRLLPKRCNKKNSNDNGPVSILKHQSNQKTGVIVQQRYKDVNVYVNPKKLTVIKAKEQLKLLEVLVGIIHQTKWSWRRTGKQGDGERLVVHGLLPGGSAMKSGQVLIGDVLVAVNDVDVTTENIERVLSCIPGPMQVKLTFENAYDVKRETSHPRQKKTQSNTSDLVKLLWGEEVEGIQQSGLNTPHIIMYLTLQLDSETSKEEQEILYHYPMSEASQKLKSVRGIFLTLCDMLENVTGTQVTSSSLLLNGKQIHVAYWKESDKLLLIGLPAEEVPLPRLRNMIENVIQTLKFMYGSLDSAFCQIENVPRLDHFFNLFFQRALQPAKLHSSASPSAQQYDASSAVLLDNLPGVRWLTLPLEIKMELDMALSDLEAADFAELSEDYYDMRRLYTILGSSLFYKGYLICSHLPKDDLIDIAVYCRHYCLLPLAAKQRIGQLIIWREVFPQHHLRPLADSSTEVFPEPEGRYFLLVVGLKHYMLCVLLEAGGCASKAIGSPGPDCVYVDQVKTTLHQLDGVDSRIDERLASSPVPCLSCADWFLTGSREKTDSLTTSPILSRLQGTSKVATSPTCRRTLFGDYSLKTRKPSPSCSSGGSDNGCEGGEDDGFSPHTTPDAVRKQRESQGSDGLEESGTLLKVTKKKSTLPNPFHLGNLKKDLPEKELEIYNTVKLTSGPENTLFHYVALETVQGIFITPTLEEVAQLSGSIHPQLIKNFHQCCLSIRAVFQQTLVEEKKKGLNSGDHSDSAKSVSSLNPVKEHGVLFECSPGNWTDQKKAPPVMAYWVVGRLFLHPKPQELYVCFHDSVTEIAIEIAFKLFFGLTL
Plays a key role in ciliogenesis and embryonic development. Regulator of cilia formation by controlling the organization of the apical actin cytoskeleton and the positioning of the basal bodies at the apical cell surface, which in turn is essential for the normal orientation of elongating ciliary microtubules. Plays a key role in definition of cell polarity via its role in ciliogenesis but not via conversion extension. Has an indirect effect on hedgehog signaling (By similarity). Proposed to function as core component of the CPLANE (ciliogenesis and planar polarity effectors) complex involved in the recruitment of peripheral IFT-A proteins to basal bodies . Subcellular locations: Cytoplasm, Cell surface, Cytoplasm, Cytoskeleton, Cilium basal body Enriched at the apical surface in ciliated cells.
IP3KA_HUMAN
Homo sapiens
MTLPGGPTGMARPGGARPCSPGLERAPRRSVGELRLLFEARCAAVAAAAAAGEPRARGAKRRGGQVPNGLPRAPPAPVIPQLTVTAEEPDVPPTSPGPPERERDCLPAAGSSHLQQPRRLSTSSVSSTGSSSLLEDSEDDLLSDSESRSRGNVQLEAGEDVGQKNHWQKIRTMVNLPVISPFKKRYAWVQLAGHTGSFKAAGTSGLILKRCSEPERYCLARLMADALRGCVPAFHGVVERDGESYLQLQDLLDGFDGPCVLDCKMGVRTYLEEELTKARERPKLRKDMYKKMLAVDPEAPTEEEHAQRAVTKPRYMQWREGISSSTTLGFRIEGIKKADGSCSTDFKTTRSREQVLRVFEEFVQGDEEVLRRYLNRLQQIRDTLEVSEFFRRHEVIGSSLLFVHDHCHRAGVWLIDFGKTTPLPDGQILDHRRPWEEGNREDGYLLGLDNLIGILASLAER
Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. Subcellular locations: Cytoplasm, Cytoskeleton Expressed in brain.
IPO11_HUMAN
Homo sapiens
MDLNSASTVVLQVLTQATSQDTAVLKPAEEQLKQWETQPGFYSVLLNIFTNHTLDINVRWLAVLYFKHGIDRYWRRVAPHALSEEEKTTLRAGLITNFNEPINQIATQIAVLIAKVARLDCPRQWPELIPTLIESVKVQDDLRQHRALLTFYHVTKTLASKRLAADRKLFYDLASGIYNFACSLWNHHTDTFLQEVSSGNEAAILSSLERTLLSLKVLRKLTVNGFVEPHKNMEVMGFLHGIFERLKQFLECSRSIGTDNVCRDRLEKTIILFTKVLLDFLDQHPFSFTPLIQRSLEFSVSYVFTEVGEGVTFERFIVQCMNLIKMIVKNYAYKPSKNFEDSSPETLEAHKIKMAFFTYPTLTEICRRLVSHYFLLTEEELTMWEEDPEGFTVEETGGDSWKYSLRPCTEVLFIDIFHEYNQTLTPVLLEMMQTLQGPTNVEDMNALLIKDAVYNAVGLAAYELFDSVDFDQWFKNQLLPELQVIHNRYKPLRRRVIWLIGQWISVKFKSDLRPMLYEAICNLLQDQDLVVRIETATTLKLTVDDFEFRTDQFLPYLETMFTLLFQLLQQVTECDTKMHVLHVLSCVIERVNMQIRPYVGCLVQYLPLLWKQSEEHNMLRCAILTTLIHLVQGLGADSKNLYPFLLPVIQLSTDVSQPPHVYLLEDGLELWLVTLENSPCITPELLRIFQNMSPLLELSSENLRTCFKIINGYIFLSSTEFLQTYAVGLCQSFCELLKEITTEGQVQVLKVVENALKVNPILGPQMFQPILPYVFKGIIEGERYPVVMSTYLGVMGRVLLQNTSFFSSLLNEMAHKFNQEMDQLLGNMIEMWVDRMDNITQPERRKLSALALLSLLPSDNSVIQDKFCGIINISVEGLHDVMTEDPETGTYKDCMLMSHLEEPKVTEDEEPPTEQDKRKKMLALKDPVHTVSLQQFIYEKLKAQQEMLGEQGFQSLMETVDTEIVTQLQEFLQGF
Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of UBE2E3, and of RPL12 (By similarity). Subcellular locations: Cytoplasm, Nucleus
IPO13_HUMAN
Homo sapiens
MERREEQPGAAGAGAAPALDFTVENVEKALHQLYYDPNIENKNLAQKWLMQAQVSPQAWHFSWQLLQPDKVPEIQYFGASALHIKISRYWSDIPTDQYESLKAQLFTQITRFASGSKIVLTRLCVALASLALSMMPDAWPCAVADMVRLFQAEDSPVDGQGRCLALLELLTVLPEEFQTSRLPQYRKGLVRTSLAVECGAVFPLLEQLLQQPSSPSCVRQKVLKCFSSWVQLEVPLQDCEALIQAAFAALQDSELFDSSVEAIVNAISQPDAQRYVNTLLKLIPLVLGLQEQLRQAVQNGDMETSHGICRIAVALGENHSRALLDQVEHWQSFLALVNMIMFCTGIPGHYPVNETTSSLTLTFWYTLQDDILSFEAEKQAVYQQVYRPVYFQLVDVLLHKAQFPSDEEYGFWSSDEKEQFRIYRVDISDTLMYVYEMLGAELLSNLYDKLGRLLTSSEEPYSWQHTEALLYGFQSIAETIDVNYSDVVPGLIGLIPRISISNVQLADTVMFTIGALSEWLADHPVMINSVLPLVLHALGNPELSVSSVSTLKKICRECKYDLPPYAANIVAVSQDVLMKQIHKTSQCMWLMQALGFLLSALQVEEILKNLHSLISPYIQQLEKLAEEIPNPSNKLAIVHILGLLSNLFTTLDISHHEDDHEGPELRKLPVPQGPNPVVVVLQQVFQLIQKVLSKWLNDAQVVEAVCAIFEKSVKTLLDDFAPMVPQLCEMLGRMYSTIPQASALDLTRQLVHIFAHEPAHFPPIEALFLLVTSVTLTLFQQGPRDHPDIVDSFMQLLAQALKRKPDLFLCERLDVKAVFQCAVLALKFPEAPTVKASCGFFTELLPRCGEVESVGKVVQEDGRMLLIAVLEAIGGQASRSLMDCFADILFALNKHCFSLLSMWIKEALQPPGFPSARLSPEQKDTFSQQILRERVNKRRVKEMVKEFTLLCRGLHGTDYTADY
Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of UBC9, the RBM8A/MAGOH complex, PAX6 and probably other members of the paired homeobox family. Also mediates nuclear export of eIF-1A, and the cytoplasmic release of eIF-1A is triggered by the loading of import substrates onto IPO13. Subcellular locations: Cytoplasm, Nucleus Expressed in fetal brain, heart, intestine and kidney.
IQCAL_HUMAN
Homo sapiens
MSEGAYQRLWESSHATLQELLDQEQLLLEPAPDRERQSFQYRLASLYLHYLGLLRRFDTVYDQMVQPQKRRLLRRLLDGVAGRVLELKDELVRADLCENHCLDRVLQDFKLTPADLEVPIPKYFLLEQSTTVRERGLILAEILSRLEPVSSQKSFTGMHRTEAIILVQKAERARQGRLRATFMREIRRDEEQDGRIREDGWHKFSQGQAAVTIQKVWKGYLQRKRTQQDRRMEMEFIGMLPSPNQVEHLSIISQPCLVEDVQRLRQMEKEEEFRAAMVKAHDSLVETEGPDMKEKMKEQIRQWFIECHDLTGRFPDYPDASSGGSYSIFADKTPEQVRMELEMQMQENRKKEQEKSKEKGKDEKEKKKGKEEKAKKGEVDAVLQVLPSKCIPMICAGHEEYLNTWKNRCESIHPSQNYDSETLREEKRKEVELEIRIQVDELMRQELRKLRLAVDKEEERPLRAPKKTPGKKTGKKKEKDLTSDRSVESLYEELVISGLLRKSESVALKDYIGDFLYLGSTLSLVKKLPMPSLFDIRQNVALYAVLRLGSPDIHIMAPLIRSILLVGPSGMGKKMLVKAVCTETGANLFDLSPENLLGKYPGRNGAQMMVHIVFKVARLLQPSVIWIGNAEKNFYKKTPKEDKEMDPKRIKKDLTKALRLLTPGDRVMLIGTTSRPQLAEMRGLCRVYERILFMPRPDYASRYVLWKRMIEARGIQPTQHLDISALAKVSDGYTPGHILQAIQSVLSERRFLQLSKRPLVASEFLGQLVKLDPVYREEEESLKDWYFKTPLGKKSMKHRMDQLEAEEAKLDKEKKKRK
null
IQCB1_HUMAN
Homo sapiens
MKPTGTDPRILSIAAEVAKSPEQNVPVILLKLKEIINITPLGSSELKKIKQDIYCYDLIQYCLLVLSQDYSRIQGGWTTISQLTQILSHCCVGLEPGEDAEEFYNELLPSAAENFLVLGRQLQTCFINAAKAEEKDELLHFFQIVTDSLFWLLGGHVELIQNVLQSDHFLHLLQADNVQIGSAVMMMLQNILQINSGDLLRIGRKALYSILDEVIFKLFSTPSPVIRSTATKLLLLMAESHQEILILLRQSTCYKGLRRLLSKQETGTEFSQELRQLVGLLSPMVYQEVEEQKLHQAACLIQAYWKGFQTRKRLKKLPSAVIALQRSFRSKRSKMLLEINRQKEEEDLKLQLQLQRQRAMRLSRELQLSMLEIVHPGQVEKHYREMEEKSALIIQKHWRGYRERKNFHQQRQSLIEYKAAVTLQRAALKFLAKCRKKKKLFAPWRGLQELTDARRVELKKRVDDYVRRHLGSPMSDVVSRELHAQAQERLQHYFMGRALEERAQQHREALIAQISTNVEQLMKAPSLKEAEGKEPELFLSRSRPVAAKAKQAHLTTLKHIQAPWWKKLGEESGDEIDVPKDELSIELENLFIGGTKPP
Involved in ciliogenesis. The function in an early step in cilia formation depends on its association with CEP290/NPHP6 (, ). Involved in regulation of the BBSome complex integrity, specifically for presence of BBS2 and BBS5 in the complex, and in ciliary targeting of selected BBSome cargos. May play a role in controlling entry of the BBSome complex to cilia possibly implicating CEP290/NPHP6 . Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole Localization to the centrosome depends on the interaction with CEP290/NPHP6. Ubiquitously expressed in fetal and adult tissues. Localized to the outer segments and connecting cilia of photoreceptor cells. Up-regulated in a number of primary colorectal and gastric tumors.
IQCC_HUMAN
Homo sapiens
MEPELLVRKVSALQACVRGFLVRRQFQSLRAEYEAIVREVEGDLGTLQWTEGRIPRPRFLPEKAKSHQTWKAGDRVANPEQGLWNHFPCEESEGEATWEEMVLKKSGESSANQGSLCRDHSSWLQMKQNRKPSQEKTRDTTRMENPEATDQRLPHSQPQLQELQYHRSHLAMELLWLQQAINSRKEYLLLKQTLRSPEAGPIREEPRVFLEHGEQACERDQSQPSAPLEDQSYRDRTTGELEQEDDSCHRVKSPHRSPGSLATTQKNIAGAKCREPCYSKSGPPSSIPSNSQALGDRLTKGPDDGRQTFGGTCLLQMKILEDQTPRGLKPRNHCPRKSRTQLSALYEDSNIKEMSPRKLDHKEPDCRTVRTQELGLSEDHIIWDGTLGGPEHSVLDLWRTKPPKGQAPTDRSSRDGTSNEPSHEGQKKQRTIPWRSKSPEILSSTKAGCTGEEQWRGRPWKTEPPG
null
IQCE_HUMAN
Homo sapiens
MFLGTGEPALDTGDDSLSAVTFDSDVETKAKRKAFHKPPPTSPKSPYLSKPRKVASWRSLRTAGSMPLGGRASLTPQKLWLGTAKPGSLTQALNSPLTWEHAWTGVPGGTPDCLTDTFRVKRPHLRRSASNGHVPGTPVYREKEDMYDEIIELKKSLHVQKSDVDLMRTKLRRLEEENSRKDRQIEQLLDPSRGTDFVRTLAEKRPDASWVINGLKQRILKLEQQCKEKDGTISKLQTDMKTTNLEEMRIAMETYYEEVHRLQTLLASSETTGKKPLGEKKTGAKRQKKMGSALLSLSRSVQELTEENQSLKEDLDRVLSTSPTISKTQGYVEWSKPRLLRRIVELEKKLSVMESSKSHAAEPVRSHPPACLASSSALHRQPRGDRNKDHERLRGAVRDLKEERTALQEQLLQRDLEVKQLLQAKADLEKELECAREGEEERREREEVLREEIQTLTSKLQELQEMKKEEKEDCPEVPHKAQELPAPTPSSRHCEQDWPPDSSEEGLPRPRSPCSDGRRDAAARVLQAQWKVYKHKKKKAVLDEAAVVLQAAFRGHLTRTKLLASKAHGSEPPSVPGLPDQSSPVPRVPSPIAQATGSPVQEEAIVIIQSALRAHLARARHSATGKRTTTAASTRRRSASATHGDASSPPFLAALPDPSPSGPQALAPLPGDDVNSDDSDDIVIAPSLPTKNFPV
Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling (By similarity). Required for proper limb morphogenesis . Subcellular locations: Cell projection, Cilium membrane The EvC complex localizes at the base of cilia in the EvC zone of primary cilia in a EFCAB7-dependent manner.
IQCF1_HUMAN
Homo sapiens
MEEKQPQKTKEPSKEDEPQQKEMPTHLSLGAESKAEAKTPVLVETQTVDNANEKSEKPPENQKKLSDKDTVATKIQAWWRGTLVRRALLHAALSACIIQCWWRLILSKILKKRRQAALEAFSRKEWAAVTLQSQARMWRIRRRYCQVLNAVRIIQAYWRCRSCASRGFIKGQYRVTANQLHLQLEILLDSGPCIVTECIPFSIKE
Involved in sperm capacitation and acrosome reaction. Subcellular locations: Cytoplasmic vesicle, Secretory vesicle, Acrosome
IQCF2_HUMAN
Homo sapiens
MRVRFCTKGNLILVIIEDVEESIEWKTLQKKKQQKIKEKLRIRTKAAVKIQAWWRGTLVRRTLLHAALRAWIIQCWWRMTLSRVLEKKRQAALIAYATRERAVIKLQSLVRMWRVRWRYCQVLNAIYIIQGHWQCHNCQTCALLQGHCVVTATHLQFHIEIINS
null
IQCF3_HUMAN
Homo sapiens
MGSKCCKGGPDEDAVERQRRQKLLLAQLHHRKRVKAAGQIQAWWRGVLVRRTLLVAALRAWMIQCWWRTLVQRRIRQRRQALLRVYVIQEQATVKLQSCIRMWQCRQCYRQMCNALCLFQVPESSLAFQTDGFLQVQYAIPSKQPEFHIEILSI
null
IRPL1_HUMAN
Homo sapiens
MKAPIPHLILLYATFTQSLKVVTKRGSADGCTDWSIDIKKYQVLVGEPVRIKCALFYGYIRTNYSLAQSAGLSLMWYKSSGPGDFEEPIAFDGSRMSKEEDSIWFRPTLLQDSGLYACVIRNSTYCMKVSISLTVGENDTGLCYNSKMKYFEKAELSKSKEISCRDIEDFLLPTREPEILWYKECRTKTWRPSIVFKRDTLLIREVREDDIGNYTCELKYGGFVVRRTTELTVTAPLTDKPPKLLYPMESKLTIQETQLGDSANLTCRAFFGYSGDVSPLIYWMKGEKFIEDLDENRVWESDIRILKEHLGEQEVSISLIVDSVEEGDLGNYSCYVENGNGRRHASVLLHKRELMYTVELAGGLGAILLLLVCLVTIYKCYKIEIMLFYRNHFGAEELDGDNKDYDAYLSYTKVDPDQWNQETGEEERFALEILPDMLEKHYGYKLFIPDRDLIPTGTYIEDVARCVDQSKRLIIVMTPNYVVRRGWSIFELETRLRNMLVTGEIKVILIECSELRGIMNYQEVEALKHTIKLLTVIKWHGPKCNKLNSKFWKRLQYEMPFKRIEPITHEQALDVSEQGPFGELQTVSAISMAAATSTALATAHPDLRSTFHNTYHSQMRQKHYYRSYEYDVPPTGTLPLTSIGNQHTYCNIPMTLINGQRPQTKSSREQNPDEAHTNSAILPLLPRETSISSVIW
May regulate secretion and presynaptic differentiation through inhibition of the activity of N-type voltage-gated calcium channel . May activate the MAP kinase JNK . Plays a role in neurite outgrowth (By similarity). During dendritic spine formation can bidirectionally induce pre- and post-synaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). Subcellular locations: Cell membrane, Cytoplasm, Cell projection, Axon, Cell projection, Dendrite May localize to the cell body and growth cones of dendrite-like processes. Detected at low levels in heart, skeletal muscle, ovary, skin, amygdala, caudate nucleus, corpus callosum, hippocampus, substantia nigra and thalamus. Detected at very low levels in tonsil, prostate, testis, small intestine, placenta, colon and fetal liver.
IRPL1_PANTR
Pan troglodytes
MKAPIPHLILLYATFTQSLKVVTKRGSADGCTDWSIDIKKYQVLVGEPVRIKCALFYGYIRTNYSLAQSAGLSLMWYKSSGPGDFEEPIAFDGSRMSKEEDSIWFRPTLLQDSGLYACVIRNSTYCMKVSISLTVGENDTGLCYNSKMKYFEKAELSKSKEISCRDIEDFLLPTREPEILWYKECRTKTWRPSIVFKRDTLLIREVREDDIGNYTCELKYGGFVVRRTTELTVTAPLTDKPPKLLYPMESKLTIQETQLGDSANLTCRAFFGYSGDVSPLIYWMKGEKFIEDLDENRVWESDIRILKEHLGEQEVSISLIVDSVEEGDLGNYSCYVENGNGRRHASVLLHKRELMYTVELAGGLGAILLLLVCLVTIYKCYKIEIMLFYRNHFGAEELDGDNKDYDAYLSYTKVDPDQWNQETGEEERFALEILPDMLEKHYGYKLFIPDRDLIPTGTYIEDVARCVDQSKRLIIVMTPNYVVRRGWSIFELETRLRNMLVTGEIKVILIECSELRGIMNYQEVEALKHTIKLLTVIKWHGPKCNKLNSKFWKRLQYEMPFKRIEPITHEQALDVSEQGPFGELQTVSAISMAAATSTALATAHPDLRSTFHNTYHSQMRQKHYYRSYEYDVPPTGTLPLTSIGNQHTYCNIPMTLINGQRPQTKSSREQNPDEAHTNSAILPLLPRETSISSVIW
May regulate secretion and presynaptic differentiation through inhibition of the activity of N-type voltage-gated calcium channel. May activate the MAP kinase JNK (By similarity). Plays a role in neurite outgrowth (By similarity). During dendritic spine formation can bidirectionally induce pre- and post-synaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). Subcellular locations: Cell membrane, Cytoplasm, Cell projection, Axon, Cell projection, Dendrite May localize to the cell body and growth cones of dendrite-like processes.
IRPL1_PONPY
Pongo pygmaeus
MKAPIPHLILLYATFTQSLKVVTKRGSADGCTDWSIDIKKYQVLVGEPVRIKCALFYGYIRTNYSLAQSAGLSLMWYKSSGPGDFEEPIAFDGSRMSKEEDSIWFRPTLLQDSGLYACVIRNSTYCMKVSISLTVGENDTGLCYNSKMKYFEKAELSKSKEISCRDIEDFLLPTREPEILWYKECRTKTWRPSIVFKRDTLLIREVREDDIGNYTCELKYGGFVVRRTTELTVTAPLTDKPPKLLYPVESKLTIQETQLGDSANLTCRAFFGYSGDVSPLIYWMKGEKFIEDLDENRVWESDIRILKEHLGEQEVSISLIVDSVEEGDLGNYSCYVENGNGRRHASVLLHKRELMYTVELAGGLGAILLLLVCLVTIYKCYKIEIMLFYRNHFGAEELDGDNKDYDAYLSYTKVDPDQWNQETGEEERFALEILPDMLEKHYGYKLFIPDRDLIPTGTYIEDVARCVDQSKRLIIVMTPNYVVRRGWSIFELETRLRNMLVTGEIKVILIECSELRGIMNYQEVEALKHTIKLLTVIKWHGPKCNKLNSKFWKRLQYEMPFKRIEPITHEQALDVSEQGPFGELQTVSAISMAAATSTALATAHPDLRSTFHNTYHSQMRQKHYYRSYEYDVPPTGTLPLTSIGNQHTYCNIPMTLINGQRPQTKSSREQNPDEAHTNSAILPLLPRETSISSVIW
May regulate secretion and presynaptic differentiation through inhibition of the activity of N-type voltage-gated calcium channel. May activate the MAP kinase JNK (By similarity). Plays a role in neurite outgrowth (By similarity). During dendritic spine formation can bidirectionally induce pre- and post-synaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). Subcellular locations: Cell membrane, Cytoplasm, Cell projection, Axon, Cell projection, Dendrite May localize to the cell body and growth cones of dendrite-like processes.
IRPL2_HUMAN
Homo sapiens
MKPPFLLALVVCSVVSTNLKMVSKRNSVDGCIDWSVDLKTYMALAGEPVRVKCALFYSYIRTNYSTAQSTGLRLMWYKNKGDLEEPIIFSEVRMSKEEDSIWFHSAEAQDSGFYTCVLRNSTYCMKVSMSLTVAENESGLCYNSRIRYLEKSEVTKRKEISCPDMDDFKKSDQEPDVVWYKECKPKMWRSIIIQKGNALLIQEVQEEDGGNYTCELKYEGKLVRRTTELKVTALLTDKPPKPLFPMENQPSVIDVQLGKPLNIPCKAFFGFSGESGPMIYWMKGEKFIEELAGHIREGEIRLLKEHLGEKEVELALIFDSVVEADLANYTCHVENRNGRKHASVLLRKKDLIYKIELAGGLGAIFLLLVLLVVIYKCYNIELMLFYRQHFGADETNDDNKEYDAYLSYTKVDQDTLDCDNPEEEQFALEVLPDVLEKHYGYKLFIPERDLIPSGTYMEDLTRYVEQSRRLIIVLTPDYILRRGWSIFELESRLHNMLVSGEIKVILIECTELKGKVNCQEVESLKRSIKLLSLIKWKGSKSSKLNSKFWKHLVYEMPIKKKEMLPRCHVLDSAEQGLFGELQPIPSIAMTSTSATLVSSQADLPEFHPSDSMQIRHCCRGYKHEIPATTLPVPSLGNHHTYCNLPLTLLNGQLPLNNTLKDTQEFHRNSSLLPLSSKELSFTSDIW
Subcellular locations: Membrane Detected at low levels in fetal and adult brain, in particular in the frontal lobe, temporal lobe and cerebellum. Detected at very low levels in skin, liver, fetal ovary and in placenta.
ISCA1_HUMAN
Homo sapiens
MSASLVRATVRAVSKRKLQPTRAALTLTPSAVNKIKQLLKDKPEHVGVKVGVRTRGCNGLSYTLEYTKTKGDSDEEVIQDGVRVFIEKKAQLTLLGTEMDYVEDKLSSEFVFNNPNIKGTCGCGESFNI
Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. Probably involved in the binding of an intermediate of Fe/S cluster assembly. Subcellular locations: Mitochondrion Detected in cerebellum, kidney and heart.
ISCA1_MACFA
Macaca fascicularis
MSASLVRATVRAVSKRKLQPTRAALTLTPSAVNKIKQLLKDKPEHVGVKVGVRTRGCNGLSYTLEYTKTKGDSDEEVIQDGVRVFIEKKAQLTLLGTEMDYVEDKLSSEFVFNNPNIKGTCGCGESFNI
Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. Probably involved in the binding of an intermediate of Fe/S cluster assembly. Subcellular locations: Mitochondrion
ISCA2_HUMAN
Homo sapiens
MAAAWGSSLTAATQRAVTPWPRGRLLTASLGPQARREASSSSPEAGEGQIRLTDSCVQRLLEITEGSEFLRLQVEGGGCSGFQYKFSLDTVINPDDRVFEQGGARVVVDSDSLAFVKGAQVDFSQELIRSSFQVLNNPQAQQGCSCGSSFSIKL
Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. May be involved in the binding of an intermediate of Fe/S cluster assembly. Subcellular locations: Mitochondrion
ISCA2_PONAB
Pongo abelii
MAAARGLSLTAATQKAVTPWPRGRLLAASLGPQARREASSSSPEAGEGQIRLTDSCVQRLLEITEGSEFLRLQVEGGGCSGFQYKFSLDTVINPDDRVFEQGGARVVVDSDSLAFVKGAQVDFSQELIRSSFQVLNNPQAQQGCSCGSSFSIKL
Involved in the maturation of mitochondrial 4Fe-4S proteins functioning late in the iron-sulfur cluster assembly pathway. May be involved in the binding of an intermediate of Fe/S cluster assembly. Subcellular locations: Mitochondrion
ISY1_HUMAN
Homo sapiens
MARNAEKAMTALARFRQAQLEEGKVKERRPFLASECTELPKAEKWRRQIIGEISKKVAQIQNAGLGEFRIRDLNDEINKLLREKGHWEVRIKELGGPDYGKVGPKMLDHEGKEVPGNRGYKYFGAAKDLPGVRELFEKEPLPPPRKTRAELMKAIDFEYYGYLDEDDGVIVPLEQEYEKKLRAELVEKWKAEREARLARGEKEEEEEEEEEINIYAVTEEESDEEGSQEKGGDDSQQKFIAHVPVPSQQEIEEALVRRKKMELLQKYASETLQAQSEEARRLLGY
Component of the spliceosome C complex required for the selective processing of microRNAs during embryonic stem cell differentiation (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). Required during the transition of embryonic stem cells (ESCs) from the naive to primed state (By similarity). By enhancing miRNA biogenesis, promotes exit of ESCs from the naive state to an intermediate state of poised pluripotency, which precedes transition to the primed state (By similarity). Involved in pre-mRNA splicing as component of the spliceosome. Subcellular locations: Nucleus
ITIH1_HUMAN
Homo sapiens
MDGAMGPRGLLLCMYLVSLLILQAMPALGSATGRSKSSEKRQAVDTAVDGVFIRSLKVNCKVTSRFAHYVVTSQVVNTANEAREVAFDLEIPKTAFISDFAVTADGNAFIGDIKDKVTAWKQYRKAAISGENAGLVRASGRTMEQFTIHLTVNPQSKVTFQLTYEEVLKRNHMQYEIVIKVKPKQLVHHFEIDVDIFEPQGISKLDAQASFLPKELAAQTIKKSFSGKKGHVLFRPTVSQQQSCPTCSTSLLNGHFKVTYDVSRDKICDLLVANNHFAHFFAPQNLTNMNKNVVFVIDISGSMRGQKVKQTKEALLKILGDMQPGDYFDLVLFGTRVQSWKGSLVQASEANLQAAQDFVRGFSLDEATNLNGGLLRGIEILNQVQESLPELSNHASILIMLTDGDPTEGVTDRSQILKNVRNAIRGRFPLYNLGFGHNVDFNFLEVMSMENNGRAQRIYEDHDATQQLQGFYSQVAKPLLVDVDLQYPQDAVLALTQNHHKQYYEGSEIVVAGRIADNKQSSFKADVQAHGEGQEFSITCLVDEEEMKKLLRERGHMLENHVERLWAYLTIQELLAKRMKVDREERANLSSQALQMSLDYGFVTPLTSMSIRGMADQDGLKPTIDKPSEDSPPLEMLGPRRTFVLSALQPSPTHSSSNTQRLPDRVTGVDTDPHFIIHVPQKEDTLCFNINEEPGVILSLVQDPNTGFSVNGQLIGNKARSPGQHDGTYFGRLGIANPATDFQLEVTPQNITLNPGFGGPVFSWRDQAVLRQDGVVVTINKKRNLVVSVDDGGTFEVVLHRVWKGSSVHQDFLGFYVLDSHRMSARTHGLLGQFFHPIGFEVSDIHPGSDPTKPDATMVVRNRRLTVTRGLQKDYSKDPWHGAEVSCWFIHNNGAGLIDGAYTDYIVPDIF
May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes. Contains a potential peptide which could stimulate a broad spectrum of phagocytotic cells. Subcellular locations: Secreted
ITIH2_HUMAN
Homo sapiens
MKRLTCFFICFFLSEVSGFEIPINGLSEFVDYEDLVELAPGKFQLVAENRRYQRSLPGESEEMMEEVDQVTLYSYKVQSTITSRMATTMIQSKVVNNSPQPQNVVFDVQIPKGAFISNFSMTVDGKTFRSSIKEKTVGRALYAQARAKGKTAGLVRSSALDMENFRTEVNVLPGAKVQFELHYQEVKWRKLGSYEHRIYLQPGRLAKHLEVDVWVIEPQGLRFLHVPDTFEGHFDGVPVISKGQQKAHVSFKPTVAQQRICPNCRETAVDGELVVLYDVKREEKAGELEVFNGYFVHFFAPDNLDPIPKNILFVIDVSGSMWGVKMKQTVEAMKTILDDLRAEDHFSVIDFNQNIRTWRNDLISATKTQVADAKRYIEKIQPSGGTNINEALLRAIFILNEANNLGLLDPNSVSLIILVSDGDPTVGELKLSKIQKNVKENIQDNISLFSLGMGFDVDYDFLKRLSNENHGIAQRIYGNQDTSSQLKKFYNQVSTPLLRNVQFNYPHTSVTDVTQNNFHNYFGGSEIVVAGKFDPAKLDQIESVITATSANTQLVLETLAQMDDLQDFLSKDKHADPDFTRKLWAYLTINQLLAERSLAPTAAAKRRITRSILQMSLDHHIVTPLTSLVIENEAGDERMLADAPPQDPSCCSGALYYGSKVVPDSTPSWANPSPTPVISMLAQGSQVLESTPPPHVMRVENDPHFIIYLPKSQKNICFNIDSEPGKILNLVSDPESGIVVNGQLVGAKKPNNGKLSTYFGKLGFYFQSEDIKIEISTETITLSHGSSTFSLSWSDTAQVTNQRVQISVKKEKVVTITLDKEMSFSVLLHRVWKKHPVNVDFLGIYIPPTNKFSPKAHGLIGQFMQEPKIHIFNERPGKDPEKPEASMEVKGQKLIITRGLQKDYRTDLVFGTDVTCWFVHNSGKGFIDGHYKDYFVPQLYSFLKRP
May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes. Subcellular locations: Secreted Plasma.
ITIH3_HUMAN
Homo sapiens
MAFAWWPCLILALLSSLAASGFPRSPFRLLGKRSLPEGVANGIEVYSTKINSKVTSRFAHNVVTMRAVNRADTAKEVSFDVELPKTAFITNFTLTIDGVTYPGNVKEKEVAKKQYEKAVSQGKTAGLVKASGRKLEKFTVSVNVAAGSKVTFELTYEELLKRHKGKYEMYLKVQPKQLVKHFEIEVDIFEPQGISMLDAEASFITNDLLGSALTKSFSGKKGHVSFKPSLDQQRSCPTCTDSLLNGDFTITYDVNRESPGNVQIVNGYFVHFFAPQGLPVVPKNVAFVIDISGSMAGRKLEQTKEALLRILEDMQEEDYLNFILFSGDVSTWKEHLVQATPENLQEARTFVKSMEDKGMTNINDGLLRGISMLNKAREEHRIPERSTSIVIMLTDGDANVGESRPEKIQENVRNAIGGKFPLYNLGFGNNLNYNFLENMALENHGFARRIYEDSDADLQLQGFYEEVANPLLTGVEMEYPENAILDLTQNTYQHFYDGSEIVVAGRLVDEDMNSFKADVKGHGATNDLTFTEEVDMKEMEKALQERDYIFGNYIERLWAYLTIEQLLEKRKNAHGEEKENLTARALDLSLKYHFVTPLTSMVVTKPEDNEDERAIADKPGEDAEATPVSPAMSYLTSYQPPQNPYYYVDGDPHFIIQIPEKDDALCFNIDEAPGTVLRLIQDAVTGLTVNGQITGDKRGSPDSKTRKTYFGKLGIANAQMDFQVEVTTEKITLWNRAVPSTFSWLDTVTVTQDGLSMMINRKNMVVSFGDGVTFVVVLHQVWKKHPVHRDFLGFYVVDSHRMSAQTHGLLGQFFQPFDFKVSDIRPGSDPTKPDATLVVKNHQLIVTRGSQKDYRKDASIGTKVVCWFVHNNGEGLIDGVHTDYIVPNLF
May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes. Subcellular locations: Secreted
ITPA_HUMAN
Homo sapiens
MAASLVGKKIVFVTGNAKKLEEVVQILGDKFPCTLVAQKIDLPEYQGEPDEISIQKCQEAVRQVQGPVLVEDTCLCFNALGGLPGPYIKWFLEKLKPEGLHQLLAGFEDKSAYALCTFALSTGDPSQPVRLFRGRTSGRIVAPRGCQDFGWDPCFQPDGYEQTYAEMPKAEKNAVSHRFRALLELQEYFGSLAA
Pyrophosphatase that hydrolyzes the non-canonical purine nucleotides inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) as well as 2'-deoxy-N-6-hydroxylaminopurine triphosphate (dHAPTP) and xanthosine 5'-triphosphate (XTP) to their respective monophosphate derivatives. The enzyme does not distinguish between the deoxy- and ribose forms. Probably excludes non-canonical purines from RNA and DNA precursor pools, thus preventing their incorporation into RNA and DNA and avoiding chromosomal lesions. Subcellular locations: Cytoplasm Ubiquitous. Highly expressed in heart, liver, sex glands, thyroid and adrenal gland.
JHD2C_HUMAN
Homo sapiens
MAVETRAELVGKRFLCVAVGDEARSERWESGRGWRSWRAGVIRAVSHRDSRNPDLAVYVEFDDLEWDKREWVKVYEDFSTFLVEYHLIWAKRNDPSQTQGSKSKQIQWPALTFKPLVERNIPSSVTAVEFLVDKQLDFLTEDSAFQPYQDDIDSLNPVLRDNPQLHEEVKVWVKEQKVQEIFMQGPYSLNGYRVRVYRQDSATQWFTGIITHHDLFTRTMIVMNDQVLEPQNVDPSMVQMTFLDDVVHSLLKGENIGITSRRRSRANQNVNAVHSHYTRAQANSPRPAMNSQAAVPKQNTHQQQQQRSIRPNKRKGSDSSIPDEEKMKEEKYDYISRGENPKGKNKHLMNKRRKPEEDEKKLNMKRLRTDNVSDFSESSDSENSNKRIIDNSSEQKPENELKNKNTSKINGEEGKPHNNEKAGEETLKNSQPPWDQIQEDKKHEEAEKRKSVDTQLQEDMIIHSSEQSTVSDHNSNDLLPQECNMDKTHTMELLPKEKFVSRPPTPKCVIDITNDTNLEKVAQENSSTFGLQTLQKMDPNVSDSKHSIANAKFLETAKKDSDQSWVSDVVKVDLTQSSVTNASSGNDHLNMEKEKYVSYISPLSAVSVMEDKLHKRSPPPETIKSKLNTSVDTHKIKSSPSPEVVKPKITHSPDSVKSKATYVNSQATGERRLANKIEHELSRCSFHPIPTRSSTLETTKSPLIIDKNEHFTVYRDPALIGSETGANHISPFLSQHPFPLHSSSHRTCLNPGTHHPALTPAPHLLAGSSSQTPLPTINTHPLTSGPHHAVHHPHLLPTVLPGVPTASLLGGHPRLESAHASSLSHLALAHQQQQQLLQHQSPHLLGQAHPSASYNQLGLYPIIWQYPNGTHAYSGLGLPSSKWVHPENAVNAEASLRRNSPSPWLHQPTPVTSADGIGLLSHIPVRPSSAEPHRPLKITAHSSPPLTKTLVDHHKEELERKAFMEPLRSVASTSAKNDLDLNRSQTGKDCHLHRHFVDPVLNQLQRPPQETGERLNKYKEEHRRILQESIDVAPFTTKIKGLEGERENYSRVASSSSSPKSHIIKQDMDVERSVSDLYKMKHSVPQSLPQSNYFTTLSNSVVNEPPRSYPSKEVSNIYGDKQSNALAAAAANPQTLTSFITSLSKPPPLIKHQPESEGLVGKIPEHLPHQIASHSVTTFRNDCRSPTHLTVSSTNTLRSMPALHRAPVFHPPIHHSLERKEGSYSSLSPPTLTPVMPVNAGGKVQESQKPPTLIPEPKDSQANFKSSSEQSLTEMWRPNNNLSKEKTEWHVEKSSGKLQAAMASVIVRPSSSTKTDSMPAMQLASKDRVSERSSAGAHKTDCLKLAEAGETGRIILPNVNSDSVHTKSEKNFQAVSQGSVPSSVMSAVNTMCNTKTDVITSAADTTSVSSWGGSEVISSLSNTILASTSSECVSSKSVSQPVAQKQECKVSTTAPVTLASSKTGSVVQPSSGFSGTTDFIHLKKHKAALAAAQYKSSNASETEPNAIKNQTLSASLPLDSTVICSTINKANSVGNGQASQTSQPNYHTKLKKAWLTRHSEEDKNTNKMENSGNSVSEIIKPCSVNLIASTSSDIQNSVDSKIIVDKYVKDDKVNRRKAKRTYESGSESGDSDESESKSEQRTKRQPKPTYKKKQNDLQKRKGEIEEDLKPNGVLSRSAKERSKLKLQSNSNTGIPRSVLKDWRKVKKLKQTGESFLQDDSCCEIGPNLQKCRECRLIRSKKGEEPAHSPVFCRFYYFRRLSFSKNGVVRIDGFSSPDQYDDEAMSLWTHENFEDDELDIETSKYILDIIGDKFCQLVTSEKTALSWVKKDAKIAWKRAVRGVREMCDACEATLFNIHWVCQKCGFVVCLDCYKAKERKSSRDKELYAWMKCVKGQPHDHKHLMPTQIIPGSVLTDLLDAMHTLREKYGIKSHCHCTNKQNLQVGNFPTMNGVSQVLQNVLNHSNKISLCMPESQQQNTPPKSEKNGGSSPESDVGTDNKLTPPESQSPLHWLADLAEQKAREEKKENKELTLENQIKEEREQDNSESPNGRTSPLVSQNNEQGSTLRDLLTTTAGKLRVGSTDAGIAFAPVYSMGAPSSKSGRTMPNILDDIIASVVENKIPPSKTSKINVKPELKEEPEESIISAVDENNKLYSDIPHSWICEKHILWLKDYKNSSNWKLFKECWKQGQPAVVSGVHKKMNISLWKAESISLDFGDHQADLLNCKDSIISNANVKEFWDGFEEVSKRQKNKSGETVVLKLKDWPSGEDFKTMMPARYEDLLKSLPLPEYCNPEGKFNLASHLPGFFVRPDLGPRLCSAYGVVAAKDHDIGTTNLHIEVSDVVNILVYVGIAKGNGILSKAGILKKFEEEDLDDILRKRLKDSSEIPGALWHIYAGKDVDKIREFLQKISKEQGLEVLPEHDPIRDQSWYVNKKLRQRLLEEYGVRTCTLIQFLGDAIVLPAGALHQVQNFHSCIQVTEDFVSPEHLVESFHLTQELRLLKEEINYDDKLQVKNILYHAVKEMVRALKIHEDEVEDMEEN
Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). Subcellular locations: Nucleus
JOS1_HUMAN
Homo sapiens
MSCVPWKGDKAKSESLELPQAAPPQIYHEKQRRELCALHALNNVFQDSNAFTRDTLQEIFQRLSPNTMVTPHKKSMLGNGNYDVNVIMAALQTKGYEAVWWDKRRDVGVIALTNVMGFIMNLPSSLCWGPLKLPLKRQHWICVREVGGAYYNLDSKLKMPEWIGGESELRKFLKHHLRGKNCELLLVVPEEVEAHQSWRTDV
Deubiquitinates monoubiquitinated probes (in vitro). When ubiquitinated, cleaves 'Lys-63'-linked and 'Lys-48'-linked poly-ubiquitin chains (in vitro), hence may act as a deubiquitinating enzyme. May increase macropinocytosis and suppress clathrin- and caveolae-mediated endocytosis. May enhance membrane dynamics and cell motility independently of its catalytic activity. Subcellular locations: Cell membrane, Cytoplasm Ubiquitination increases localization the plasma membrane. In the cytosol, the unubiquitinated form may be associated with the cytoskeleton via ACTB-binding.
JOS1_PONAB
Pongo abelii
MSCVPWKGDKAKSESLELPQAAPPQIYHEKQRRELCALHALNNVFQDSNAFTRDTLQEIFQRLSPNTMVTPHKKSMLGNGNYDVNVIMAALQTKGYEAVWWDKRRDVGVIALTNVMGFIMNLPSSLCWGPLKLPLKRQHWICVREVGGAYYNLDSKLKMPEWIGGESELRKFLKHHLRGKNCELLLVVPEEVEAHQSWRTDV
Deubiquitinates monoubiquitinated probes (in vitro). When ubiquitinated, cleaves 'Lys-63'-linked and 'Lys-48'-linked poly-ubiquitin chains (in vitro), hence may act as a deubiquitinating enzyme. May increase macropinocytosis and suppress clathrin- and caveolae-mediated endocytosis. May enhance membrane dynamics and cell motility independently of its catalytic activity (By similarity). Subcellular locations: Cell membrane, Cytoplasm Ubiquitination increases localization the plasma membrane. In the cytosol, the unubiquitinated form may be associated with the cytoskeleton via ACTB-binding.
JOS2_HUMAN
Homo sapiens
MSQAPGAQPSPPTVYHERQRLELCAVHALNNVLQQQLFSQEAADEICKRLAPDSRLNPHRSLLGTGNYDVNVIMAALQGLGLAAVWWDRRRPLSQLALPQVLGLILNLPSPVSLGLLSLPLRRRHWVALRQVDGVYYNLDSKLRAPEALGDEDGVRAFLAAALAQGLCEVLLVVTKEVEEKGSWLRTD
Cleaves 'Lys-63'-linked poly-ubiquitin chains, and with lesser efficiency 'Lys-48'-linked poly-ubiquitin chains (in vitro). May act as a deubiquitinating enzyme. Subcellular locations: Cytoplasm, Cytosol
JPH1_HUMAN
Homo sapiens
MTGGRFDFDDGGTYCGGWEEGKAHGHGICTGPKGQGEYSGSWSHGFEVVGGYTWPSGNTYQGYWAQGKRHGLGVETKGKWMYRGEWSHGFKGRYGVRQSLCTPARYEGTWSNGLQDGYGVETYGDGGTYQGQWAGGMRHGYGVRQSVPYGMATVIRSPLRTSLASLRSEQSNGSVLHDAAAAADSPAGTRGGFVLNFHADAELAGKKKGGLFRRGSLLGSMKLRKSESKSSISSKRSSVRSDAAMSRISSSDANSTISFGDVDCDFCPVEDHVDATTTETYMGEWKNDKRNGFGVSERSNGMKYEGEWANNKRHGYGCTVFPDGSKEEGKYKNNILVRGIRKQLIPIRHTKTREKVDRAIEGAQRAAAMARTKVEIANSRTAHARAKADAADQAALAARQECDIARAVARELSPDFYQPGPDYVKQRFQEGVDAKENPEEKVPEKPPTPKESPHFYRKGTTPPRSPEASPKHSHSPASSPKPLKKQNPSSGARLNQDKRSVADEQVTAIVNKPLMSKAPTKEAGAVVPQSKYSGRHHIPNPSNGELHSQYHGYYVKLNAPQHPPVDVEDGDGSSQSSSALVHKPSANKWSPSKSVTKPVAKESKAEPKAKKSELAIPKNPASNDSCPALEKEANSGPNSIMIVLVMLLNIGLAILFVHFLT
Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. Subcellular locations: Cell membrane, Endoplasmic reticulum membrane, Sarcoplasmic reticulum membrane Localized predominantly on the plasma membrane. The transmembrane domain is anchored in endoplasmic/sarcoplasmic reticulum membrane, while the N-terminal part associates with the plasma membrane. In skeletal muscle cells, it is predominantly localized at the junction of the A and I bands (By similarity). Abundantly expressed in skeletal muscle. Very low levels in heart.
JPH2_HUMAN
Homo sapiens
MSGGRFDFDDGGAYCGGWEGGKAHGHGLCTGPKGQGEYSGSWNFGFEVAGVYTWPSGNTFEGYWSQGKRHGLGIETKGRWLYKGEWTHGFKGRYGIRQSSSSGAKYEGTWNNGLQDGYGTETYADGGTYQGQFTNGMRHGYGVRQSVPYGMAVVVRSPLRTSLSSLRSEHSNGTVAPDSPASPASDGPALPSPAIPRGGFALSLLANAEAAARAPKGGGLFQRGALLGKLRRAESRTSVGSQRSRVSFLKSDLSSGASDAASTASLGEAAEGADEAAPFEADIDATTTETYMGEWKNDKRSGFGVSERSSGLRYEGEWLDNLRHGYGCTTLPDGHREEGKYRHNVLVKDTKRRMLQLKSNKVRQKVEHSVEGAQRAAAIARQKAEIAASRTSHAKAKAEAAEQAALAANQESNIARTLARELAPDFYQPGPEYQKRRLLQEILENSESLLEPPDRGAGAAGLPQPPRESPQLHERETPRPEGGSPSPAGTPPQPKRPRPGVSKDGLLSPGAWNGEPSGEGSRSVTPSEGAGRRSPARPATERMAIEALQAPPAPSREPEVALYQGYHSYAVRTTPPEPPPFEDQPEPEVSGSESAPSSPATAPLQAPTLRGPEPARETPAKLEPKPIIPKAEPRAKARKTEARGLTKAGAKKKARKEAALAAEAEVEVEEVPNTILICMVILLNIGLAILFVHLLT
Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes . Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in ryanodine receptor-mediated calcium ion release (By similarity). Contributes to the construction of skeletal muscle triad junctions (By similarity). Transcription repressor required to safeguard against the deleterious effects of cardiac stress. Generated following cleavage of the Junctophilin-2 chain by calpain in response to cardiac stress in cardiomyocytes. Following cleavage and release from the membrane, translocates to the nucleus, binds DNA and represses expression of genes implicated in cell growth and differentiation, hypertrophy, inflammation and fibrosis. Modifies the transcription profile and thereby attenuates pathological remodeling in response to cardiac stress. Probably acts by competing with MEF2 transcription factors and TATA-binding proteins. Subcellular locations: Cell membrane, Sarcoplasmic reticulum membrane, Endoplasmic reticulum membrane The transmembrane domain is anchored in sarcoplasmic reticulum membrane, while the N-terminal part associates with the plasma membrane. In heart cells, it predominantly associates along Z lines within myocytes. In skeletal muscle, it is specifically localized at the junction of A and I bands. Subcellular locations: Nucleus Accumulates in the nucleus of stressed hearts. Specifically expressed in skeletal muscle and heart.
JPH3_HUMAN
Homo sapiens
MSSGGRFNFDDGGSYCGGWEDGKAHGHGVCTGPKGQGEYTGSWSHGFEVLGVYTWPSGNTYQGTWAQGKRHGIGLESKGKWVYKGEWTHGFKGRYGVRECAGNGAKYEGTWSNGLQDGYGTETYSDGGTYQGQWVGGMRQGYGVRQSVPYGMAAVIRSPLRTSINSLRSEHTNGTALHPDASPAVAGSPAVSRGGFVLVAHSDSEILKSKKKGLFRRSLLSGLKLRKSESKSSLASQRSKQSSFRSEAGMSTVSSTASDIHSTISLGEAEAELAVIEDDIDATTTETYVGEWKNDKRSGFGVSQRSDGLKYEGEWASNRRHGYGCMTFPDGTKEEGKYKQNILVGGKRKNLIPLRASKIREKVDRAVEAAERAATIAKQKAEIAASRTSHSRAKAEAALTAAQKAQEEARIARITAKEFSPSFQHRENGLEYQRPKRQTSCDDIEVLSTGTPLQQESPELYRKGTTPSDLTPDDSPLQSFPTSPAATPPPAPAARNKVAHFSRQVSVDEERGGDIQMLLEGRAGDCARSSWGEEQAGGSRGVRSGALRGGLLVDDFRTRGSGRKQPGNPKPRERRTESPPVFTWTSHHRASNHSPGGSRLLELQEEKLSNYRMEMKPLLRMETHPQKRRYSKGGACRGLGDDHRPEDRGFGVQRLRSKAQNKENFRPASSAEPAVQKLASLRLGGAEPRLLRWDLTFSPPQKSLPVALESDEENGDELKSSTGSAPILVVMVILLNIGVAILFINFFI
Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain-specific and appears to have an active role in certain neurons involved in motor coordination and memory. Subcellular locations: Cell membrane, Endoplasmic reticulum membrane Localized predominantly on the plasma membrane. The transmembrane domain is anchored in endoplasmic reticulum membrane, while the N-terminal part associates with the plasma membrane (By similarity). Specifically expressed in brain.
K1C28_HUMAN
Homo sapiens
MSLQFSNGSRHVCLRSGAGSVRPLNGGAGFAGSSACGGSVAGSEFSCALGGGLGSVPGGSHAGGALGNAACIGFAGSEGGLLSGNEKVTMQNLNDRLASYLDNVRALEEANAELERKIKGWYEKYGPGSCRGLDHDYSRYHLTIEDLKNKIISSTTTNANVILQIDNARLAADDFRLKYENELTLHQNVEADINGLRRVLDELTLCRTDQELQYESLSEEMTYLKKNHEEEMKALQCAAGGNVNVEMNAAPGVDLAVLLNNMRAEYEALAEQNRKDAEAWFNEKSASLQQQISHDSGAATFARSQLTEMRRTLQTLEIQLQSLMATKHSLECSLTETESNYCTQLAQIQAQIGALEEQLHQVRTETEGQKLEYEHLLDVKVHLEKEIETYCRLIDGDGNSCSKSKGFGSGSPGNSSKDLSKTTLVKTVVEELDQRGKVLSSRIHSIEEKTSKMTNGKTEQRVPF
Essential for the proper assembly of types I and II keratin protein complexes and the formation of keratin intermediate filaments in the inner root sheath (irs). Subcellular locations: Cytoplasm Strongly expressed in skin and scalp, and weak expression observed in thymus. In the hair follicle, expressed in Henle layer, Huxley layer and in the irs cuticle. Expression extends from the bulb region up to the point of differentiation into the three layers. Also present in the medulla of beard hair (at protein level).
K1C39_HUMAN
Homo sapiens
MDTKGCTTTNSPSTPCQNCSRITNVSTISSNNGCHPGGLTVNNCQPAGHVLRIPWDQGCQPTPRFCRKPIYLMNNFNARFSLDDCSWYGEGINSNEKETMQILNERLANYLQKVRMLERENAELESKIQEESNKELPVLCPDYLSYYTTIEELQQKILCTKAENSRLVSQIDNTKLTADDLRAKYEAEVSLRQLVESDANGLKQILNVLTLGKADLEAQVQSLKEELLCLKNNHKEEINSLQCQLGERLDIEVTAAPSADLNQVLQEMRCQYEPIMETNRKDVEQWFNTQIEELNQQVVTSSQQQQCCQKEIIELRRSVNTLEVELQAQHRMRDSQECILTETEARYTALLTQIQSLIDNLEAQLAEIRCALERQNQEYEILLDVKSRLECEITTYRSLLESSDGKRPCYPRATKCEPSPWTSCKSGAIESTAPACTSSSPCSLKEHCSACGPLSRILVKICTITKEIKDGKVISSYEHVQPCFIIRPAKV
May play a role in late hair differentiation. Expressed in skin and scalp. In the hair follicle, it is present in the upper hair cuticle and the upper cortex. Also present in the in the upper portion of beard hairs (at protein level).
K1C40_HUMAN
Homo sapiens
MTSDCSSTHCSPESCGTASGCAPASSCSVETACLPGTCATSRCQTPSFLSRSRGLTGCLLPCYFTGSCNSPCLVGNCAWCEDGVFTSNEKETMQFLNDRLASYLEKVRSLEETNAELESRIQEQCEQDIPMVCPDYQRYFNTIEDLQQKILCTKAENSRLAVQLDNCKLATDDFKSKYESELSLRQLLEADISSLHGILEELTLCKSDLEAHVESLKEDLLCLKKNHEEEVNLLREQLGDRLSVELDTAPTLDLNRVLDEMRCQCETVLANNRREAEEWLAVQTEELNQQQLSSAEQLQGCQMEILELKRTASALEIELQAQQSLTESLECTVAETEAQYSSQLAQIQCLIDNLENQLAEIRCDLERQNQEYQVLLDVKARLEGEINTYWGLLDSEDSRLSCSPCSTTCTSSNTCEPCSAYVICTVENCCL
May play a role in late hair differentiation. Expressed in skin and scalp. Also very weakly expressed in tongue, breast, colon and small intestine. In the hair follicle, it is specifically present in the upper hair cuticle. Not present in the upper cortex (at protein level).
K1C9_HUMAN
Homo sapiens
MSCRQFSSSYLSRSGGGGGGGLGSGGSIRSSYSRFSSSGGGGGGGRFSSSSGYGGGSSRVCGRGGGGSFGYSYGGGSGGGFSASSLGGGFGGGSRGFGGASGGGYSSSGGFGGGFGGGSGGGFGGGYGSGFGGFGGFGGGAGGGDGGILTANEKSTMQELNSRLASYLDKVQALEEANNDLENKIQDWYDKKGPAAIQKNYSPYYNTIDDLKDQIVDLTVGNNKTLLDIDNTRMTLDDFRIKFEMEQNLRQGVDADINGLRQVLDNLTMEKSDLEMQYETLQEELMALKKNHKEEMSQLTGQNSGDVNVEINVAPGKDLTKTLNDMRQEYEQLIAKNRKDIENQYETQITQIEHEVSSSGQEVQSSAKEVTQLRHGVQELEIELQSQLSKKAALEKSLEDTKNRYCGQLQMIQEQISNLEAQITDVRQEIECQNQEYSLLLSIKMRLEKEIETYHNLLEGGQEDFESSGAGKIGLGGRGGSGGSYGRGSRGGSGGSYGGGGSGGGYGGGSGSRGGSGGSYGGGSGSGGGSGGGYGGGSGGGHSGGSGGGHSGGSGGNYGGGSGSGGGSGGGYGGGSGSRGGSGGSHGGGSGFGGESGGSYGGGEEASGSGGGYGGGSGKSSHS
May serve an important special function either in the mature palmar and plantar skin tissue or in the morphogenetic program of the formation of these tissues. Plays a role in keratin filament assembly. Expressed in the terminally differentiated epidermis of palms and soles.
KAD7_MACFA
Macaca fascicularis
INAEKMVLKFGRKTRKFATYVVAAGLQYGAEGGMLHTFFKMAWLGEIPALPVFGDGTNVIPTIHVLDLAGVIQNVIDHTPKPHYLVAVDESVHTLEDIVKCISKNTGPGKIQKIPRENAYLTKDLTQDCLDHLLVNLRMEALFVKENFNIRWVAQTGFVENINSILKEYKQSRGLMPVKICILGPPAVGKSSIAEELAKYYKLHHIQLKDVISEAIAKLETIVAPKDIGEGKEEVEEEEEEENVEDAQELLDGIKESMEQNAGQLDDQYIIRFMKEKLKSMPCRNQGYILDGFPKTYDQAKDLFNQEDEEEEDEVRGRMFPFDKLIIPEFVCALDASDEFLKERVINLPERIVAGTHYSQDRFLRALSNYRDINIEDETVFNYFDEIEIHPIHIDVGKLEDAQNRLAIKQLIKEIGEPRNYGLTDEEKAEEERKAAEERLAREAAEEAEREHQEAVEMAEKIARWEEWNKRLEEVKREERELLEAQSIPLRNYLMTYVMPTLIQGLNECCNVRPEDPVDFLAEYLFKNNPEAQ
Nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP. Also displays broad nucleoside diphosphate kinase activity. Involved in maintaining ciliary structure and function. Subcellular locations: Cytoplasm, Cytosol, Cell projection, Cilium, Flagellum Detected along the full length of sperm flagellum, where it colocalizes with alpha-tubulin.
KAD8_HUMAN
Homo sapiens
MDATIAPHRIPPEMPQYGEENHIFELMQNMLEQLLIHQPEDPIPFMIQHLHRDNDNVPRIVILGPPASGKTTIAMWLCKHLNSSLLTLENLILNEFSYTATEARRLYLQRKTVPSALLVQLIQERLAEEDCIKQGWILDGIPETREQALRIQTLGITPRHVIVLSAPDTVLIERNLGKRIDPQTGEIYHTTFDWPPESEIQNRLMVPEDISELETAQKLLEYHRNIVRVIPSYPKILKVISADQPCVDVFYQALTYVQSNHRTNAPFTPRVLLLGPVGSGKSLQAALLAQKYRLVNVCCGQLLKEAVADRTTFGELIQPFFEKEMAVPDSLLMKVLSQRLDQQDCIQKGWVLHGVPRDLDQAHLLNRLGYNPNRVFFLNVPFDSIMERLTLRRIDPVTGERYHLMYKPPPTMEIQARLLQNPKDAEEQVKLKMDLFYRNSADLEQLYGSAITLNGDQDPYTVFEYIESGIINPLPKKIP
Nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP. Also displays broad nucleoside diphosphate kinase activity. Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Cytoskeleton, Cilium axoneme Located in the proximal region of respiratory cilia. Expressed in respiratory cells (at protein level).
KAD8_MACFA
Macaca fascicularis
MDSASVPHRIPPEMPQYGEENHIFELMQNMLEQLLIHQPEDPIPFMIQHLHKDNDNVPRIVILGPPASGKTTIAMWLCKHLNSSLLTLENLVLNEFSLTATKAKRLYLQRKTIPSALLVQLIQERLAEEDCVKRGWILDGIPETREQALRIQTLGITPRHVIVLSAPDTVLIERNLGKRIDPQTGEIYHTTFDWPPESEIQNRLMVPEDISELETAQKLLEYHRNIVRVIPSYPKILKVISADQPCVDVFYQALTYVQSNHRTNAPFTPRVLLLGPVGSGKSLQAALLAQKYRLVNVCCGQLLKEAMADRTTFGELIQPFFEKEMAVLDSLLMKVLSQRLDQQDCIQKGWVLHGVPRDLDQAHLLNSLGYNPNRVFFLNVPFDSIMERLTLRRIDPVTGERYHLMYKPPPTMEILARLLQNPKDAEEQVKLKMDLSYRNSADLEQLYGSAITVNGDQDPYTVFEYIESGIINPLPKKIP
Nucleoside monophosphate (NMP) kinase that catalyzes the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. Has highest activity toward AMP, and weaker activity toward dAMP, CMP and dCMP. Also displays broad nucleoside diphosphate kinase activity. Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Cytoskeleton, Cilium axoneme Located in the proximal region of respiratory cilia.
KAD9_HUMAN
Homo sapiens
MTSQEKTEEYPFADIFDEDETERNFLLSKPVCFVVFGKPGVGKTTLARYITQAWKCIRVEALPILEEQIAAETESGVMLQSMLISGQSIPDELVIKLMLEKLNSPEVCHFGYIITEIPSLSQDAMTTLQQIELIKNLNLKPDVIINIKCPDYDLCQRISGQRQHNNTGYIYSRDQWDPEVIENHRKKKKEAQKDGKGEEEEEEEEQEEEEAFIAEMQMVAEILHHLVQRPEDYLENVENIVKLYKETILQTLEEVMAEHNPQYLIELNGNKPAEELFMIVMDRLKYLNLKRAAILTKLQGAEEEINDTMENDELFRTLASYKLIAPRYRWQRSKWGRTCPVNLKDGNIYSGLPDYSVSFLGKIYCLSSEEALKPFLLNPRPYLLPPMPGPPCKVFILGPQYSGKTTLCNMLAENYKGKVVDYAQLVQPRFDKARETLVENTIAEATAAAIKVVKEKLLRELQARKQAETALREFQRQYEKMEFGVFPMEATHSSIDEEGYIQGSQRDRGSSLVDTEEAKTKSENVLHDQAAKVDKDDGKETGETFTFKRHSQDASQDVKLYSDTAPTEDLIEEVTADHPEVVTMIEETIKMSQDINFEQPYEKHAEILQEVLGEVMEENKDRFPGAPKYGGWIVDNCPIVKELWMALIKKGIIPDLVIYLSDTENNGKCLFNRIYLQKKSEIDSKILERLLEELQKKKKEEEEARKATEEELRLEEENRRLLELMKVKAKEAEETDNEDEEEIEGDELEVHEEPEASHDTRGSWLPEEFEASEVPETEPEAVSEPIEETTVETEIPKGSKEGLEIEKLSETVVLPEFPEDSYPDVPEMEPFKEKIGSFIILWKQLEATISEAYIKILNLEIADRTPQELLQKVVETMEKPFQYTAWELTGEDYEEETEDYQTEAEVDEELEEEEEEEGEDKMKERKRHLGDTKHFCPVVLKENFILQPGNTEEAAKYREKIYYFSSAEAKEKFLEHPEDYVAHEEPLKAPPLRICLVGPQGSGKTMCGRQLAEKLNIFHIQFEEVLQEKLLLKTEKKVGPEFEEDSENEQAAKQELEELAIQANVKVEEENTKKQLPEVQLTEEEEVIKSSLMENEPLPPEILEVILSEWWLKEPIRSTGFILDGFPRYPEEAQFLGDRGFFPDAAVFIQVDDQDIFDRLLPAQIEKWKLKQKKKLERKKLIKDMKAKIRVDTIAKRRAELILERDKKRRENVVRDDEEISEEELEEDNDDIENILEDEFPKDEEEMSGEEDEEQETDAIERLRGELGEKFEADTHNLQIIQDELERYLIPIISINGARRNHIVQYTLNMKLKPLVENRASIFEKCHPIPAPLAQKMLTFTYKYISSFGYWDPVKLSEGETIKPVENAENPIYPVIHRQYIYFLSSKETKEKFMKNPIKYIRQPKPKPTVPIRIIIVGPPKSGKTTVAKKITSEYGLKHLSIGGALRYVLNNHPETELALMLNWHLHKGMTAPDELAIQALELSLMESVCNTAGVVIDGYPVTKHQMNLLEARSIIPMVIFELSVPSKEIFKRLLLEKENEQRLPYPLHNSAQIVAVNNVKYRKNIGEIRQYYQEQHQNWYVIDGFHSKWWVWNEVIKNVQMVNKYMQTYLERIKAGKAACIDKLCITPQELLSRLGEFEQFCPVSLAESQELFDCSATDSLEFAAEFRGHYYKMSSQEKLNKFLENPELYVPPLAPHPLPSADMIPKRLTLSELKSRFPKCAELQGYCPVTYKDGNQRYEALVPGSINYALEYHNRIYICENKEKLQKFLRSPLKYWEQKLPHKLPPLREPILLTSLPLPGYLEQGIATSLIKAMNAAGCLKPKFPFLSIRRSALLYIALHLKAFNPKGSEYTRKKYKKKMEQFMESCELITYLGAKMTRKYKEPQFRAIDFDHKLKTFLSLRNIDPING
Involved in maintaining the homeostasis of cellular nucleotides by catalyzing the interconversion of nucleoside phosphates. Has both nucleoside monophosphate and diphosphate kinase activities. Catalyzes the phosphorylation of AMP, dAMP, CMP and dCMP with ATP as phosphate donor and of CMP with GTP as phosphate donor. Also catalyzes the production of ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and TTP from the corresponding diphosphate substrates with either ATP or GTP as phosphate donor. Shows substrate preference of CDP > UDP > ADP > GDP > TDP. Subcellular locations: Cytoplasm, Nucleus
KAP0_HUMAN
Homo sapiens
MESGSTAASEEARSLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKEEAKQIQNLQKAGTRTDSREDEISPPPPNPVVKGRRRRGAISAEVYTEEDAASYVRKVIPKDYKTMAALAKAIEKNVLFSHLDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQGETDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWGIDRDSYRRILMGSTLRKRKMYEEFLSKVSILESLDKWERLTVADALEPVQFEDGQKIVVQGEPGDEFFIILEGSAAVLQRRSENEEFVEVGRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLGPCSDILKRNIQQYNSFVSLSV
Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Subcellular locations: Cell membrane Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible.
KAP0_PONAB
Pongo abelii
MESGSTAASEEARSLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKEEAKQIQNLQKAGTRTDSREDEISPPPPNPVVKGRRRRGAISAEVYTEEDAASYVRKVIPKDYKTMAALAKAIEKNVLFSHLDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQGETDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWGIDRDSYRRILMGSTLRKRKMYEEFLSKVSILESLDKWERLTVADALEPVQFEDGQKIVVQGEPGDEFFIILEGSAAVLQRRSENEEFVEVGRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLGPCSDILKRNIQQYNSFVSLSV
Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Subcellular locations: Cell membrane
KAP1_HUMAN
Homo sapiens
MASPPACPSEEDESLKGCELYVQLHGIQQVLKDCIVHLCISKPERPMKFLREHFEKLEKEENRQILARQKSNSQSDSHDEEVSPTPPNPVVKARRRRGGVSAEVYTEEDAVSYVRKVIPKDYKTMTALAKAISKNVLFAHLDDNERSDIFDAMFPVTHIAGETVIQQGNEGDNFYVVDQGEVDVYVNGEWVTNISEGGSFGELALIYGTPRAATVKAKTDLKLWGIDRDSYRRILMGSTLRKRKMYEEFLSKVSILESLEKWERLTVADALEPVQFEDGEKIVVQGEPGDDFYIITEGTASVLQRRSPNEEYVEVGRLGPSDYFGEIALLLNRPRAATVVARGPLKCVKLDRPRFERVLGPCSEILKRNIQRYNSFISLTV
Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Subcellular locations: Cell membrane Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible.
KC1G1_HUMAN
Homo sapiens
MDHPSREKDERQRTTKPMAQRSAHCSRPSGSSSSSGVLMVGPNFRVGKKIGCGNFGELRLGKNLYTNEYVAIKLEPIKSRAPQLHLEYRFYKQLGSAGEGLPQVYYFGPCGKYNAMVLELLGPSLEDLFDLCDRTFTLKTVLMIAIQLLSRMEYVHSKNLIYRDVKPENFLIGRQGNKKEHVIHIIDFGLAKEYIDPETKKHIPYREHKSLTGTARYMSINTHLGKEQSRRDDLEALGHMFMYFLRGSLPWQGLKADTLKERYQKIGDTKRNTPIEALCENFPEEMATYLRYVRRLDFFEKPDYEYLRTLFTDLFEKKGYTFDYAYDWVGRPIPTPVGSVHVDSGASAITRESHTHRDRPSQQQPLRNQVVSSTNGELNVDDPTGAHSNAPITAHAEVEVVEEAKCCCFFKRKRKKTAQRHK
Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). Phosphorylates CLSPN. Subcellular locations: Cytoplasm
KC1G1_MACFA
Macaca fascicularis
MDHPSREKDERQRTTKPMAQRSAHCSRPSGSSSSSGVLMVGPNFRVGKKIGCGNFGELRLGKNLYTNEYVAIKLEPIKSRAPQLHLEYRFYKQLGSAGEGLPQVYYFGPCGKYNAMVLELLGPSLEDLFDLCDRTFTLKTVLMIAIQLLSRMEYVHSKNLIYRDVKPENFLIGRQGNKKEHVIHIIDFGLAKEYIDPETKKHIPYREHKSLTGTARYMSINTHLGKEQSRRDDLEALGHMFMYFLRGSLPWQGLKADTLKERYQKIGDTKRNTPIEALCENFPEEMATYLRYVRRLDFFEKPDYEYLRTLFTDLFEKKGYTFDYAYDWVGRPIPTPVGSVHVDSGASAITRESHTHRDRPSQQQPLRNQFSSSTNQTSNLK
Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate. Phosphorylates CLSPN (By similarity). Subcellular locations: Cytoplasm
KC1G2_HUMAN
Homo sapiens
MDFDKKGGKGETEEGRRMSKAGGGRSSHGIRSSGTSSGVLMVGPNFRVGKKIGCGNFGELRLGKNLYTNEYVAIKLEPIKSRAPQLHLEYRFYKQLSATEGVPQVYYFGPCGKYNAMVLELLGPSLEDLFDLCDRTFTLKTVLMIAIQLITRMEYVHTKSLIYRDVKPENFLVGRPGTKRQHAIHIIDFGLAKEYIDPETKKHIPYREHKSLTGTARYMSINTHLGKEQSRRDDLEALGHMFMYFLRGSLPWQGLKADTLKERYQKIGDTKRATPIEVLCENFPEEMATYLRYVRRLDFFEKPDYDYLRKLFTDLFDRSGFVFDYEYDWAGKPLPTPIGTVHTDLPSQPQLRDKTQPHSKNQALNSTNGELNADDPTAGHSNAPITAPAEVEVADETKCCCFFKRRKRKSLQRHK
Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation ( , ). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels . Subcellular locations: Cytoplasm, Cell cortex, Cytoplasm Testis.
KC1G3_HUMAN
Homo sapiens
MENKKKDKDKSDDRMARPSGRSGHNTRGTGSSSSGVLMVGPNFRVGKKIGCGNFGELRLGKNLYTNEYVAIKLEPMKSRAPQLHLEYRFYKQLGSGDGIPQVYYFGPCGKYNAMVLELLGPSLEDLFDLCDRTFSLKTVLMIAIQLISRMEYVHSKNLIYRDVKPENFLIGRPGNKTQQVIHIIDFGLAKEYIDPETKKHIPYREHKSLTGTARYMSINTHLGKEQSRRDDLEALGHMFMYFLRGSLPWQGLKADTLKERYQKIGDTKRATPIEVLCENFPEMATYLRYVRRLDFFEKPDYDYLRKLFTDLFDRKGYMFDYEYDWIGKQLPTPVGAVQQDPALSSNREAHQHRDKMQQSKNQSADHRAAWDSQQANPHHLRAHLAADRHGGSVQVVSSTNGELNTDDPTAGRSNAPITAPTEVEVMDETKCCCFFKRRKRKTIQRHK
Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). Subcellular locations: Cytoplasm
KC1G3_PONAB
Pongo abelii
MENKKKDKDKSDDRMARPSGRSGHNTRGTGSSSSGVLMVGPNFRVGKKIGCGNFGELRLGKNLYTNEYVAIKLEPMKSRAPQLHLEYRFYKQLGSGDGIPQVYYFGPCGKYNAMVLELLGPSLEDLFDLCDRTFSLKTVLMIAIQLISRMEYVHSKNLIYRDVKPENFLIGRPGNKTQQVIHIIDFGLAKEYIDPETKKHIPYREHKSLTGTARHMSINTHLGKEQSRRDDLEALGHMFMYFLRGSLPWQGLKADTLKERYQKIGDTKRATPIEVLCENFPEEMATYLRYVRRLDFFEKPDYDYLRKLFTDLFDRKGYMFDYEYDWIGKQLPTPVGAVQQDPALSSNREAHQHRDKMQQSKNQSADHRAAWDSQQANPHHLRAHLAADRHGGSVQVVSSTNGELNTDDPTAGRSNAPITAPTEVEVMDETNCQKVLNMWCCCFFKRRKRKTIQRHK
Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). Subcellular locations: Cytoplasm
KCMB2_HUMAN
Homo sapiens
MFIWTSGRTSSSYRHDEKRNIYQKIRDHDLLDKRKTVTALKAGEDRAILLGLAMMVCSIMMYFLLGITLLRSYMQSVWTEESQCTLLNASITETFNCSFSCGPDCWKLSQYPCLQVYVNLTSSGEKLLLYHTEETIKINQKCSYIPKCGKNFEESMSLVNVVMENFRKYQHFSCYSDPEGNQKSVILTKLYSSNVLFHSLFWPTCMMAGGVAIVAMVKLTQYLSLLCERIQRINR
Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Acts as a negative regulator that confers rapid and complete inactivation of KCNMA1 channel complex. May participate in KCNMA1 inactivation in chromaffin cells of the adrenal gland or in hippocampal CA1 neurons. Subcellular locations: Membrane Expressed in kidney, heart and brain. Highly expressed in ovary. Expressed at low level in other tissues.
KCMB3_HUMAN
Homo sapiens
MDFSPSSELGFHFVAFILLTRHRTAFPASGKKRETDYSDGDPLDVHKRLPSSAGEDRAVMLGFAMMGFSVLMFFLLGTTILKPFMLSIQREESTCTAIHTDIMDDWLDCAFTCGVHCHGQGKYPCLQVFVNLSHPGQKALLHYNEEAVQINPKCFYTPKCHQDRNDLLNSALDIKEFFDHKNGTPFSCFYSPASQSEDVILIKKYDQMAIFHCLFWPSLTLLGGALIVGMVRLTQHLSLLCEKYSTVVRDEVGGKVPYIEQHQFKLCIMRRSKGRAEKS
Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Alters the functional properties of the current expressed by the KCNMA1 channel. Isoform 2, isoform 3 and isoform 4 partially inactivate the current of KCNBMA. Isoform 4 induces a fast and incomplete inactivation of KCNMA1 channel that is detectable only at large depolarizations. In contrast, isoform 1 does not induce detectable inactivation of KCNMA1. Two or more subunits of KCNMB3 are required to block the KCNMA1 tetramer. Subcellular locations: Membrane Isoform 1, isoform 3 and isoform 4 are widely expressed. Isoform 2 is expressed placenta, pancreas, kidney and heart. Isoform 1 and isoform 3 are highly expressed in pancreas and testis.
KCMB4_HUMAN
Homo sapiens
MAKLRVAYEYTEAEDKSIRLGLFLIISGVVSLFIFGFCWLSPALQDLQATEANCTVLSVQQIGEVFECTFTCGADCRGTSQYPCVQVYVNNSESNSRALLHSDEHQLLTNPKCSYIPPCKRENQKNLESVMNWQQYWKDEIGSQPFTCYFNQHQRPDDVLLHRTHDEIVLLHCFLWPLVTFVVGVLIVVLTICAKSLAVKAEAMKKRKFS
Regulatory subunit of the calcium activated potassium KCNMA1 (maxiK) channel. Modulates the calcium sensitivity and gating kinetics of KCNMA1, thereby contributing to KCNMA1 channel diversity. Decreases the gating kinetics and calcium sensitivity of the KCNMA1 channel, but with fast deactivation kinetics. May decrease KCNMA1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. Makes KCNMA1 channel resistant to 100 nM charybdotoxin (CTX) toxin concentrations. Subcellular locations: Membrane Predominantly expressed in brain. In brain, it is expressed in the cerebellum, cerebral cortex, medulla, spinal cord, occipital pole, frontal lobe, temporal lobe, putamen, amygdala, caudate nucleus, corpus callosum, hippocampus, substantia nigra and thalamus. Weakly or not expressed in other tissues.
KCMF1_HUMAN
Homo sapiens
MSRHEGVSCDACLKGNFRGRRYKCLICYDYDLCASCYESGATTTRHTTDHPMQCILTRVDFDLYYGGEAFSVEQPQSFTCPYCGKMGYTETSLQEHVTSEHAETSTEVICPICAALPGGDPNHVTDDFAAHLTLEHRAPRDLDESSGVRHVRRMFHPGRGLGGPRARRSNMHFTSSSTGGLSSSQSSYSPSNREAMDPIAELLSQLSGVRRSAGGQLNSSGPSASQLQQLQMQLQLERQHAQAARQQLETARNATRRTNTSSVTTTITQSTATTNIANTESSQQTLQNSQFLLTRLNDPKMSETERQSMESERADRSLFVQELLLSTLVREESSSSDEDDRGEMADFGAMGCVDIMPLDVALENLNLKESNKGNEPPPPPL
Has intrinsic E3 ubiquitin ligase activity and promotes ubiquitination. Spleen, small intestine, ovary, peripheral blood, lung, kidney and pancreas. Expressed at low levels in the thymus, prostate, testis, colon, heart, brain, placenta and liver.
KCNA1_HUMAN
Homo sapiens
MTVMSGENVDEASAAPGHPQDGSYPRQADHDDHECCERVVINISGLRFETQLKTLAQFPNTLLGNPKKRMRYFDPLRNEYFFDRNRPSFDAILYYYQSGGRLRRPVNVPLDMFSEEIKFYELGEEAMEKFREDEGFIKEEERPLPEKEYQRQVWLLFEYPESSGPARVIAIVSVMVILISIVIFCLETLPELKDDKDFTGTVHRIDNTTVIYNSNIFTDPFFIVETLCIIWFSFELVVRFFACPSKTDFFKNIMNFIDIVAIIPYFITLGTEIAEQEGNQKGEQATSLAILRVIRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVILFSSAVYFAEAEEAESHFSSIPDAFWWAVVSMTTVGYGDMYPVTIGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQAQLLHVSSPNLASDSDLSRRSSSTMSKSEYMEIEEDMNNSIAHYRQVNIRTANCTTANQNCVNKSKLLTDV
Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney (, ). Contributes to the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability . Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane . Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (, ). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels (, ). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA1 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure ( , ). In contrast, a heterotetrameric channel formed by KCNA1 and KCNA4 shows rapid inactivation . Regulates neuronal excitability in hippocampus, especially in mossy fibers and medial perforant path axons, preventing neuronal hyperexcitability. Response to toxins that are selective for KCNA1, respectively for KCNA2, suggests that heteromeric potassium channels composed of both KCNA1 and KCNA2 play a role in pacemaking and regulate the output of deep cerebellar nuclear neurons (By similarity). May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) release (By similarity). Plays a role in regulating the generation of action potentials and preventing hyperexcitability in myelinated axons of the vagus nerve, and thereby contributes to the regulation of heart contraction (By similarity). Required for normal neuromuscular responses (, ). Regulates the frequency of neuronal action potential firing in response to mechanical stimuli, and plays a role in the perception of pain caused by mechanical stimuli, but does not play a role in the perception of pain due to heat stimuli (By similarity). Required for normal responses to auditory stimuli and precise location of sound sources, but not for sound perception (By similarity). The use of toxins that block specific channels suggest that it contributes to the regulation of the axonal release of the neurotransmitter dopamine (By similarity). Required for normal postnatal brain development and normal proliferation of neuronal precursor cells in the brain (By similarity). Plays a role in the reabsorption of Mg(2+) in the distal convoluted tubules in the kidney and in magnesium ion homeostasis, probably via its effect on the membrane potential (, ). Subcellular locations: Cell membrane, Membrane, Cell projection, Axon, Cytoplasmic vesicle, Perikaryon, Endoplasmic reticulum, Cell projection, Dendrite, Cell junction, Synapse, Presynaptic cell membrane, Presynapse Homotetrameric KCNA1 is primarily located in the endoplasmic reticulum. Interaction with KCNA2 and KCNAB2 or with KCNA4 and KCNAB2 promotes expression at the cell membrane (By similarity). Detected adjacent to nodes of Ranvier in juxtaparanodal zones in spinal cord nerve fibers, but also in paranodal regions in some myelinated spinal cord axons (at protein level) . Detected in the islet of Langerhans .
KCNJ3_HUMAN
Homo sapiens
MSALRRKFGDDYQVVTTSSSGSGLQPQGPGQDPQQQLVPKKKRQRFVDKNGRCNVQHGNLGSETSRYLSDLFTTLVDLKWRWNLFIFILTYTVAWLFMASMWWVIAYTRGDLNKAHVGNYTPCVANVYNFPSAFLFFIETEATIGYGYRYITDKCPEGIILFLFQSILGSIVDAFLIGCMFIKMSQPKKRAETLMFSEHAVISMRDGKLTLMFRVGNLRNSHMVSAQIRCKLLKSRQTPEGEFLPLDQLELDVGFSTGADQLFLVSPLTICHVIDAKSPFYDLSQRSMQTEQFEIVVILEGIVETTGMTCQARTSYTEDEVLWGHRFFPVISLEEGFFKVDYSQFHATFEVPTPPYSVKEQEEMLLMSSPLIAPAITNSKERHNSVECLDGLDDITTKLPSKLQKITGREDFPKKLLRMSSTTSEKAYSLGDLPMKLQRISSVPGNSEEKLVSKTTKMLSDPMSQSVADLPPKLQKMAGGAARMEGNLPAKLRKMNSDRFT
This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulating the heartbeat. Subcellular locations: Membrane
KCNJ4_HUMAN
Homo sapiens
MHGHSRNGQAHVPRRKRRNRFVKKNGQCNVYFANLSNKSQRYMADIFTTCVDTRWRYMLMIFSAAFLVSWLFFGLLFWCIAFFHGDLEASPGVPAAGGPAAGGGGAAPVAPKPCIMHVNGFLGAFLFSVETQTTIGYGFRCVTEECPLAVIAVVVQSIVGCVIDSFMIGTIMAKMARPKKRAQTLLFSHHAVISVRDGKLCLMWRVGNLRKSHIVEAHVRAQLIKPYMTQEGEYLPLDQRDLNVGYDIGLDRIFLVSPIIIVHEIDEDSPLYGMGKEELESEDFEIVVILEGMVEATAMTTQARSSYLASEILWGHRFEPVVFEEKSHYKVDYSRFHKTYEVAGTPCCSARELQESKITVLPAPPPPPSAFCYENELALMSQEEEEMEEEAAAAAAVAAGLGLEAGSKEEAGIIRMLEFGSHLDLERMQASLPLDNISYRRESAI
Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity). Subcellular locations: Cell membrane, Postsynaptic cell membrane, Cytoplasmic vesicle membrane TAX1BP3 binding promotes dissociation of KCNJ4 from LIN7 famaly members and KCNJ4 internalization. Heart, skeletal muscle, and several different brain regions including the hippocampus.
KCNJ5_HUMAN
Homo sapiens
MAGDSRNAMNQDMEIGVTPWDPKKIPKQARDYVPIATDRTRLLAEGKKPRQRYMEKSGKCNVHHGNVQETYRYLSDLFTTLVDLKWRFNLLVFTMVYTVTWLFFGFIWWLIAYIRGDLDHVGDQEWIPCVENLSGFVSAFLFSIETETTIGYGFRVITEKCPEGIILLLVQAILGSIVNAFMVGCMFVKISQPKKRAETLMFSNNAVISMRDEKLCLMFRVGDLRNSHIVEASIRAKLIKSRQTKEGEFIPLNQTDINVGFDTGDDRLFLVSPLIISHEINQKSPFWEMSQAQLHQEEFEVVVILEGMVEATGMTCQARSSYMDTEVLWGHRFTPVLTLEKGFYEVDYNTFHDTYETNTPSCCAKELAEMKREGRLLQYLPSPPLLGGCAEAGLDAEAEQNEEDEPKGLGGSREARGSV
This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium. Subcellular locations: Membrane Islets, exocrine pancreas and heart. Expressed in the adrenal cortex, particularly the zona glomerulosa.
KCNJ6_HUMAN
Homo sapiens
MAKLTESMTNVLEGDSMDQDVESPVAIHQPKLPKQARDDLPRHISRDRTKRKIQRYVRKDGKCNVHHGNVRETYRYLTDIFTTLVDLKWRFNLLIFVMVYTVTWLFFGMIWWLIAYIRGDMDHIEDPSWTPCVTNLNGFVSAFLFSIETETTIGYGYRVITDKCPEGIILLLIQSVLGSIVNAFMVGCMFVKISQPKKRAETLVFSTHAVISMRDGKLCLMFRVGDLRNSHIVEASIRAKLIKSKQTSEGEFIPLNQTDINVGYYTGDDRLFLVSPLIISHEINQQSPFWEISKAQLPKEELEIVVILEGMVEATGMTCQARSSYITSEILWGYRFTPVLTLEDGFYEVDYNSFHETYETSTPSLSAKELAELASRAELPLSWSVSSKLNQHAELETEEEEKNLEEQTERNGDVANLENESKV
This potassium channel may be involved in the regulation of insulin secretion by glucose and/or neurotransmitters acting through G-protein-coupled receptors. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Subcellular locations: Membrane Most abundant in cerebellum, and to a lesser degree in islets and exocrine pancreas.
KCNJ6_PONAB
Pongo abelii
MAKLTESMTNVLEGDSMDQDVESPVAIHQPKLPKQARDDLPRHISRDRTKRKIQRYVRKDGKCNVHHGNVRETYRYLTDIFTTLVDLKWRFNLLIFVMVYTVTWLFFGMIWWLIAYIRGDMDHIEDPSWTPCVTNLNGFVSAFLFSIETETTIGYGYRVITDKCPEGIILLLIQSVLGSIVNAFMVGCMFVKISQPKKRAETLVFSTHAVISMRDGKLCLMFRVGDLRNSHIVEASIRAKLIKSKQTSEGEFIPLNQTDINVGYYTGDDRLSLVSPLIISHEINQQSPFWEISKAQLPKEELEIVVILEGMVEATGMTCQARSSYITSEILWGYRFTPVLTLEDGFYEVDYNSFHETYETSTPSLSAKELAELASRAELPLSWSVSSKLNQHAELETEEEEKNLEEQTERNGDVANLENESKV
This potassium channel may be involved in the regulation of insulin secretion by glucose and/or neurotransmitters acting through G-protein-coupled receptors. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium (By similarity). Subcellular locations: Membrane
KCP3_HUMAN
Homo sapiens
MRRCSLCAFDAARGPRRLMRVGLALILVGHVNLLLGAVLHGTVLRHVANPRGAVTPEYTVANVISVGSGLLSVSVGLVALLASRNLLRPPLHWVLLALALVNLLLSVACSLGLLLAVSLTVANGGRRLIADCHPGLLDPLVPLDEGPGHTDCPFDPTRIYDTALALWIPSLLMSAGEAALSGYCCVAALTLRGVGPCRKDGLQGQLEEMTELESPKCKRQENEQLLDQNQEIRASQRSWV
Subcellular locations: Membrane Expressed in skin, pancreas and keratinocytes.
KCP_HUMAN
Homo sapiens
MAGVGAAALSLLLHLGALALAAGAEGGAVPREPPGQQTTAHSSVLAGNSQEQWHPLREWLGRLEAAVMELREQNKDLQTRVRQLESCECHPASPQCWGLGRAWPEGARWEPDACTACVCQDGAAHCGPQAHLPHCRGCSQNGQTYGNGETFSPDACTTCRCLTGAVQCQGPSCSELNCLESCTPPGECCPICRPGCDYEGQLYEEGVTFLSSSNPCLQCTCLRSRVRCMALKCPPSPCPEPVLRPGHCCPTCQGCTEGGSHWEHGQEWTTPGDPCRICRCLEGHIQCRQRECASLCPYPARPLPGTCCPVCDGCFLNGREHRSGEPVGSGDPCSHCRCANGSVQCEPLPCPPVPCRHPGKIPGQCCPVCDGCEYQGHQYQSQETFRLQERGLCVRCSCQAGEVSCEEQECPVTPCALPASGRQLCPACELDGEEFAEGVQWEPDGRPCTACVCQDGVPKCGAVLCPPAPCQHPTQPPGACCPSCDSCTYHSQVYANGQNFTDADSPCHACHCQDGTVTCSLVDCPPTTCARPQSGPGQCCPRCPDCILEEEVFVDGESFSHPRDPCQECRCQEGHAHCQPRPCPRAPCAHPLPGTCCPNDCSGCAFGGKEYPSGADFPHPSDPCRLCRCLSGNVQCLARRCVPLPCPEPVLLPGECCPQCPAAPAPAGCPRPGAAHARHQEYFSPPGDPCRRCLCLDGSVSCQRLPCPPAPCAHPRQGPCCPSCDGCLYQGKEFASGERFPSPTAACHLCLCWEGSVSCEPKACAPALCPFPARGDCCPDCDGCEYLGESYLSNQEFPDPREPCNLCTCLGGFVTCGRRPCEPPGCSHPLIPSGHCCPTCQGCRYHGVTTASGETLPDPLDPTCSLCTCQEGSMRCQKKPCPPALCPHPSPGPCFCPVCHSCLSQGREHQDGEEFEGPAGSCEWCRCQAGQVSCVRLQCPPLPCKLQVTERGSCCPRCRGCLAHGEEHPEGSRWVPPDSACSSCVCHEGVVTCARIQCISSCAQPRQGPHDCCPQCSDCEHEGRKYEPGESFQPGADPCEVCICEPQPEGPPSLRCHRRQCPSLVGCPPSQLLPPGPQHCCPTCAEALSNCSEGLLGSELAPPDPCYTCQCQDLTWLCIHQACPELSCPLSERHTPPGSCCPVCRAPTQSCVHQGREVASGERWTVDTCTSCSCMAGTVRCQSQRCSPLSCGPDKAPALSPGSCCPRCLPRPASCMAFGDPHYRTFDGRLLHFQGSCSYVLAKDCHSGDFSVHVTNDDRGRSGVAWTQEVAVLLGDMAVRLLQDGAVTVDGHPVALPFLQEPLLYVELRGHTVILHAQPGLQVLWDGQSQVEVSVPGSYQGRTCGLCGNFNGFAQDDLQGPEGLLLPSEAAFGNSWQVSEGLWPGRPCSAGREVDPCRAAGYRARREANARCGVLKSSPFSRCHAVVPPEPFFAACVYDLCACGPGSSADACLCDALEAYASHCRQAGVTPTWRGPTLCVVGCPLERGFVFDECGPPCPRTCFNQHIPLGELAAHCVRPCVPGCQCPAGLVEHEAHCIPPEACPQVLLTGDQPLGARPSPSREPQETP
Enhances bone morphogenetic protein (BMP) signaling in a paracrine manner. In contrast, it inhibits both the activin-A and TGFB1-mediated signaling pathways (By similarity). Subcellular locations: Secreted
KCQ1D_HUMAN
Homo sapiens
MGRKWSGPTAEHQLPMPPPGVRLDSWKGVASGCSPSKASQEARGKEKCPTLNGQPQWSALFTLPPQRE
Shows reduced expression in Wilms' tumor samples.
KCRB_HUMAN
Homo sapiens
MPFSNSHNALKLRFPAEDEFPDLSAHNNHMAKVLTPELYAELRAKSTPSGFTLDDVIQTGVDNPGHPYIMTVGCVAGDEESYEVFKDLFDPIIEDRHGGYKPSDEHKTDLNPDNLQGGDDLDPNYVLSSRVRTGRSIRGFCLPPHCSRGERRAIEKLAVEALSSLDGDLAGRYYALKSMTEAEQQQLIDDHFLFDKPVSPLLLASGMARDWPDARGIWHNDNKTFLVWVNEEDHLRVISMQKGGNMKEVFTRFCTGLTQIETLFKSKDYEFMWNPHLGYILTCPSNLGTGLRAGVHIKLPNLGKHEKFSEVLKRLRLQKRGTGGVDTAAVGGVFDVSNADRLGFSEVELVQMVVDGVKLLIEMEQRLEQGQAIDDLMPAQK
Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate) . Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (Probable). Acts as a key regulator of adaptive thermogenesis as part of the futile creatine cycle: localizes to the mitochondria of thermogenic fat cells and acts by mediating phosphorylation of creatine to initiate a futile cycle of creatine phosphorylation and dephosphorylation (By similarity). During the futile creatine cycle, creatine and N-phosphocreatine are in a futile cycle, which dissipates the high energy charge of N-phosphocreatine as heat without performing any mechanical or chemical work (By similarity). Subcellular locations: Cytoplasm, Cytosol, Mitochondrion, Cell membrane Localizes to the mitochondria of thermogenic fat cells via the internal MTS-like signal (iMTS-L) region.
KDM7A_HUMAN
Homo sapiens
MAGAAAAVAAGAAAGAAAAAVSVAAPGRASAPPPPPPVYCVCRQPYDVNRFMIECDICKDWFHGSCVGVEEHHAVDIDLYHCPNCAVLHGSSLMKKRRNWHRHDYTEIDDGSKPVQAGTRTFIKELRSRVFPSADEIIIKMHGSQLTQRYLEKHGFDVPIMVPKLDDLGLRLPSPTFSVMDVERYVGGDKVIDVIDVARQADSKMTLHNYVKYFMNPNRPKVLNVISLEFSDTKMSELVEVPDIAKKLSWVENYWPDDSVFPKPFVQKYCLMGVQDSYTDFHIDFGGTSVWYHVLWGEKIFYLIKPTDENLARYESWSSSVTQSEVFFGDKVDKCYKCVVKQGHTLFVPTGWIHAVLTSQDCMAFGGNFLHNLNIGMQLRCYEMEKRLKTPDLFKFPFFEAICWFVAKNLLETLKELREDGFQPQTYLVQGVKALHTALKLWMKKELVSEHAFEIPDNVRPGHLIKELSKVIRAIEEENGKPVKSQGIPIVCPVSRSSNEATSPYHSRRKMRKLRDHNVRTPSNLDILELHTREVLKRLEMCPWEEDILSSKLNGKFNKHLQPSSTVPEWRAKDNDLRLLLTNGRIIKDERQPFADQSLYTADSENEEDKRRTKKAKMKIEESSGVEGVEHEESQKPLNGFFTRVKSELRSRSSGYSDISESEDSGPECTALKSIFTTEESESSGDEKKQEITSNFKEESNVMRNFLQKSQKPSRSEIPIKRECPTSTSTEEEAIQGMLSMAGLHYSTCLQRQIQSTDCSGERNSLQDPSSCHGSNHEVRQLYRYDKPVECGYHVKTEDPDLRTSSWIKQFDTSRFHPQDLSRSQKCIRKEGSSEISQRVQSRNYVDSSGSSLQNGKYMQNSNLTSGACQISNGSLSPERPVGETSFSVPLHPTKRPASNPPPISNQATKGKRPKKGMATAKQRLGKILKLNRNGHARFFV
Histone demethylase required for brain development. Specifically demethylates dimethylated 'Lys-9', 'Lys-27' and 'Lys-36' (H3K9me2, H3K27me2, H3K36me2, respectively) of histone H3 and monomethylated histone H4 'Lys-20' residue (H4K20Me1), thereby playing a central role in histone code (, ). Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: in presence of H3K4me3, it has no demethylase activity toward H3K9me2, while it has high activity toward H3K27me2. Demethylates H3K9me2 in absence of H3K4me3 . Has activity toward H4K20Me1 only when nucleosome is used as a substrate and when not histone octamer is used as substrate . Subcellular locations: Nucleus
KDM8_HUMAN
Homo sapiens
MAGDTHCPAEPLAREGTLWEALRALLPHSKEDLKLDLGEKVERSVVTLLQRATELFYEGRRDECLQSSEVILDYSWEKLNTGTWQDVDKDWRRVYAIGCLLKALCLCQAPEDANTVAAALRVCDMGLLMGAAILGDILLKVAAILQTHLPGKRPARGSLPEQPCTKKARADHGLIPDVKLEKTVPRLHRPSLQHFREQFLVPGRPVILKGVADHWPCMQKWSLEYIQEIAGCRTVPVEVGSRYTDEEWSQTLMTVNEFISKYIVNEPRDVGYLAQHQLFDQIPELKQDISIPDYCSLGDGEEEEITINAWFGPQGTISPLHQDPQQNFLVQVMGRKYIRLYSPQESGALYPHDTHLLHNTSQVDVENPDLEKFPKFAKAPFLSCILSPGEILFIPVKYWHYVRALDLSFSVSFWWS
Bifunctional enzyme that acts both as an endopeptidase and 2-oxoglutarate-dependent monooxygenase ( , ). Endopeptidase that cleaves histones N-terminal tails at the carboxyl side of methylated arginine or lysine residues, to generate 'tailless nucleosomes', which may trigger transcription elongation ( ). Preferentially recognizes and cleaves monomethylated and dimethylated arginine residues of histones H2, H3 and H4. After initial cleavage, continues to digest histones tails via its aminopeptidase activity (, ). Upon DNA damage, cleaves the N-terminal tail of histone H3 at monomethylated lysine residues, preferably at monomethylated 'Lys-9' (H3K9me1). The histone variant H3F3A is the major target for cleavage . Additionally, acts as a Fe(2+) and 2-oxoglutarate-dependent monooxygenase, catalyzing (R)-stereospecific hydroxylation at C-3 of 'Arg-137' of RPS6 and 'Arg-141' of RCCD1, but the biological significance of this activity remains to be established . Regulates mitosis through different mechanisms: Plays a role in transcriptional repression of satellite repeats, possibly by regulating H3K36 methylation levels in centromeric regions together with RCCD1. Possibly together with RCCD1, is involved in proper mitotic spindle organization and chromosome segregation . Negatively regulates cell cycle repressor CDKN1A/p21, which controls G1/S phase transition . Required for G2/M phase cell cycle progression. Regulates expression of CCNA1/cyclin-A1, leading to cancer cell proliferation . Also, plays a role in regulating alpha-tubulin acetylation and cytoskeletal microtubule stability involved in epithelial to mesenchymal transition . Regulates the circadian gene expression in the liver (By similarity). Represses the transcriptional activator activity of the CLOCK-BMAL1 heterodimer in a catalytically-independent manner . Negatively regulates the protein stability and function of CRY1; required for AMPK-FBXL3-induced CRY1 degradation . Subcellular locations: Nucleus, Chromosome Colocalizes with trimethylated 'Lys-9' of histone H3 (H3K9me3). Weakly expressed in most cells. Highly expressed in breast cancer cells . Expressed in embryonic stem cells .
KDSR_HUMAN
Homo sapiens
MLLLAAAFLVAFVLLLYMVSPLISPKPLALPGAHVVVTGGSSGIGKCIAIECYKQGAFITLVARNEDKLLQAKKEIEMHSINDKQVVLCISVDVSQDYNQVENVIKQAQEKLGPVDMLVNCAGMAVSGKFEDLEVSTFERLMSINYLGSVYPSRAVITTMKERRVGRIVFVSSQAGQLGLFGFTAYSASKFAIRGLAEALQMEVKPYNVYITVAYPPDTDTPGFAEENRTKPLETRLISETTSVCKPEQVAKQIVKDAIQGNFNSSLGSDGYMLSALTCGMAPVTSITEGLQQVVTMGLFRTIALFYLGSFDSIVRRCMMQREKSENADKTA
Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS). Subcellular locations: Endoplasmic reticulum membrane Expressed in all tissues examined. Highest expression in placenta. High expression in lung, kidney, stomach and small intestine, low expression in heart, spleen and skeletal muscle. Weakly expressed in normal hematopoietic tissues. Higher expression in some T-cell malignancies and PHA-stimulated lymphocytes.
KFA_HUMAN
Homo sapiens
MMDVSGVGFPSKVPWKKMSAEELENQYCPSRWVVRLGAEEALRTYSQIGIEATTRARATRKSLLHVPYGDGEGEKVDIYFPDESSEALPFFLFFHGGYWQSGSKDESAFMVHPLTAQGVAVVIVAYGIAPKGTLDHMVDQVTRSVAFVQKRYPSNKGIYLCGHSAGAHLAAMMLLADWTKHGVTPNLRGFFLVSGVFDLEPIVYTSQNVALQLTLEDAQRNSPQLKVAQAQPVDPTCRVLVVVGQFDSPEFHRQSWEFYQTLCQGEWKASFEELHDVDHFEIVENLTQKDNVLTQIILKTIFQ
Catalyzes the hydrolysis of N-formyl-L-kynurenine to L-kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. Subcellular locations: Cytoplasm, Cytosol, Nucleus Predominantly cytosolic. Some fraction is nuclear.
KIF2B_HUMAN
Homo sapiens
MASQFCLPESPCLSPLKPLKPHFGDIQEGIYVAIQRSDKRIHLAVVTEINRENYWVTVEWVEKAVKKGKKIDLETILLLNPALDSAEHPMPPPPLSPLALAPSSAIRDQRTATKWVAMIPQKNQTASGDSLDVRVPSKPCLMKQKKSPCLWEIQKLQEQREKRRRLQQEIRARRALDVNTRNPNYEIMHMIEEYRRHLDSSKISVLEPPQEHRICVCVRKRPLNQRETTLKDLDIITVPSDNVVMVHESKQKVDLTRYLQNQTFCFDHAFDDKASNELVYQFTAQPLVESIFRKGMATCFAYGQTGSGKTYTMGGDFSGTAQDCSKGIYALVAQDVFLLLRNSTYEKLDLKVYGTFFEIYGGKVYDLLNWKKKLQVLEDGNQQIQVVGLQEKEVCCVEEVLNLVEIGNSCRTSRQTPVNAHSSRSHAVFQIILKSGRIMHGKFSLVDLAGNERGADTTKASRKRQLEGAEINKSLLALKECILALGQNKPHTPFRASKLTLVLRDSFIGQNSSTCMIATISPGMTSCENTLNTLRYANRVKKLNVDVRPYHRGHYPIGHEAPRMLKSHIGNSEMSLQRDEFIKIPYVQSEEQKEIEEVETLPTLLGKDTTISGKGSSQWLENIQERAGGVHHDIDFCIARSLSILEQKIDALTEIQKKLKLLLADLHVKSKVE
Plus end-directed microtubule-dependent motor required for spindle assembly and chromosome movement. Has microtubule depolymerization activity . Plays a role in chromosome congression . Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Spindle, Chromosome, Centromere, Kinetochore Association with kinetochore is transient. Highest level in lung. High level in ovary, moderate levels in heart, kidney, placenta, skeletal muscle and spleen (at protein level). Pancreas and spleen express a shorter isoform (at protein level).
KIF2B_MACFA
Macaca fascicularis
MAGQFCLPVSPRLSPLKPLKPHFGDIQVGIYVAIQRSDKRMHLAVVTEINRENSWVTVEWVEKAVKKGKKIDLETILLLNPSLDSAEDPMPVSPLAPAPSSAIGDQSTTTKRVVMIPQKNKTASGDSLDVRVPSKPCLMKQKKSPCLQEIEKVQKQREKRRRLQQEIRARRALDVNTRNPNYEIMHMIEEYRRHLDSSKISVLEPRQEHRICVCVRKRPLNQRETTLKDLDIITVPSDNVVMVHESKQKVDLTRYLENQTFCFDHAFDDKASNELVYQFTAQPLVESIFRKGMATCFAYGQTGSGKTYTMGGDFAGRAQDHSKGIYALVAQDVFLLLRNSIYEKLDLKVYGTFFEIYGGKVYDLLNWKKKLQVLEDGNQQIQVVGLQEQEVCCVEEVLNLVELGNSCRTSRQTSVNAHSSRSHAVFQIILKSGGKLHGKFSLVDLAGNERGADTTKASRKRQLEGAEINKSLLALKECILALGQNKPHTPFRASKLTQVLRDSFIGRNSSTCMIATISPGMTSCENTLNTLRYANRVKELNADGRPYHRGLYPNGHEASRMLKSHIGNSEMSLQRDEFIKIPCVQSEEQQKEIEDVERATLLGKDTTTSRKGSSQWLENIQERTGGVNHDVDFCIAQSLSILEQKIGVLTEIQKKLKLLRADLHVKSKVE
Plus end-directed microtubule-dependent motor required for spindle assembly and chromosome movement during mitosis. Has microtubule depolymerization activity. Plays a role in chromosome congression. Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Spindle, Chromosome, Centromere, Kinetochore Association with kinetochore is transient.
KIF2C_HUMAN
Homo sapiens
MAMDSSLQARLFPGLAIKIQRSNGLIHSANVRTVNLEKSCVSVEWAEGGATKGKEIDFDDVAAINPELLQLLPLHPKDNLPLQENVTIQKQKRRSVNSKIPAPKESLRSRSTRMSTVSELRITAQENDMEVELPAAANSRKQFSVPPAPTRPSCPAVAEIPLRMVSEEMEEQVHSIRGSSSANPVNSVRRKSCLVKEVEKMKNKREEKKAQNSEMRMKRAQEYDSSFPNWEFARMIKEFRATLECHPLTMTDPIEEHRICVCVRKRPLNKQELAKKEIDVISIPSKCLLLVHEPKLKVDLTKYLENQAFCFDFAFDETASNEVVYRFTARPLVQTIFEGGKATCFAYGQTGSGKTHTMGGDLSGKAQNASKGIYAMASRDVFLLKNQPCYRKLGLEVYVTFFEIYNGKLFDLLNKKAKLRVLEDGKQQVQVVGLQEHLVNSADDVIKMIDMGSACRTSGQTFANSNSSRSHACFQIILRAKGRMHGKFSLVDLAGNERGADTSSADRQTRMEGAEINKSLLALKECIRALGQNKAHTPFRESKLTQVLRDSFIGENSRTCMIATISPGISSCEYTLNTLRYADRVKELSPHSGPSGEQLIQMETEEMEACSNGALIPGNLSKEEEELSSQMSSFNEAMTQIRELEEKAMEELKEIIQQGPDWLELSEMTEQPDYDLETFVNKAESALAQQAKHFSALRDVIKALRLAMQLEEQASRQISSKKRPQ
In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells . Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis . Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment . Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus, Chromosome, Centromere, Chromosome, Centromere, Kinetochore Associates with the microtubule network at the growing distal tip (the plus-end) of microtubules, probably through interaction with MTUS2/TIP150 and MAPRE1 (By similarity). Association with microtubule plus ends is also mediated by interaction with KIF18B. Centromeric localization requires the presence of BUB1 and SGO2. Expressed at high levels in thymus and testis, at low levels in small intestine, the mucosal lining of colon, and placenta, and at very low levels in spleen and ovary; expression is not detected in prostate, peripheral blood Leukocytes, heart, brain, lung, liver, skeletal muscle, kidney or pancreas. Isoform 2 is testis-specific.
KIF2C_MACFA
Macaca fascicularis
MIDFDDVAAINPELLQLLPLHPKDNLPLQENVTIQKQKRRSVNSKIPAPKESLRTRSTRMSTVSELRVTAQENDMEVELPAAANTRKQFSVPPTHPRPSCPAVAEIPSRMVSEEVEEQVHSIRGSSSANPVNSVRRKSCIVKEVEKMKNKREEKKAQNSEMRMKRAQEYDSSFPNWEFARMIKEFRATLECHPLTMTDPIEEHRICVCVRKRPLNKQELAKKEIDVISIPSKCLLLVHEPKLKVDLTKYLENQAFCFDFAFDETASNEVVYRFTARPLVQTIFEGGKATCFAYGQTGSGKTHTMGGDLSGKAQNASKGIYAMASRDVFLLKNQPCYRKLGLEVYVTFFEIYNGKLFDLLNKKAKLRVLEDGKQQVQVVGLQEHLVNSADDVIKMIDMGSACRTSGQTFANSNSSRSHACFQILLRAKGRMHGKFSLVDLAGNERGADTSSADRQTRMEGAEINKSLLALKECIRALGQNKAHTPFRESKLTQVLRDSFIGENSRTCMIATISPGISSCEYTLNTLRYADRVKELSPHSGPSGEQLIQMETEEMEACSNGALIPGNLSKEEEELSSQMSSFNEAMTQIRELEERAVEELKEIIQQGPDWLELSEMTEQPDYDLETFVNKAEFALAQQAKHFSALRDVIKALRLAMQLEEQASRQISSKKRPQ
In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells. Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis. Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment. Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus, Chromosome, Centromere, Chromosome, Centromere, Kinetochore Associates with the microtubule network at the growing distal tip (the plus-end) of microtubules, probably through interaction with MTUS2/TIP150 and MAPRE1. Association with microtubule plus ends is also mediated by interaction with KIF18B. Centromeric localization requires the presence of BUB1 and SGO2.
KIF3A_HUMAN
Homo sapiens
MPINKSEKPESCDNVKVVVRCRPLNEREKSMCYKQAVSVDEMRGTITVHKTDSSNEPPKTFTFDTVFGPESKQLDVYNLTARPIIDSVLEGYNGTIFAYGQTGTGKTFTMEGVRAIPELRGIIPNSFAHIFGHIAKAEGDTRFLVRVSYLEIYNEEVRDLLGKDQTQRLEVKERPDVGVYIKDLSAYVVNNADDMDRIMTLGHKNRSVGATNMNEHSSRSHAIFTITIECSEKGIDGNMHVRMGKLHLVDLAGSERQAKTGATGQRLKEATKINLSLSTLGNVISALVDGKSTHVPYRNSKLTRLLQDSLGGNSKTMMCANIGPADYNYDETISTLRYANRAKNIKNKARINEDPKDALLRQFQKEIEELKKKLEEGEEISGSDISGSEEDDDEEGEVGEDGEKRKKRRGKKKVSPDKMIEMQAKIDEERKALETKLDMEEEERNKARAELEKREKDLLKAQQEHQSLLEKLSALEKKVIVGGVDLLAKAEEQEKLLEESNMELEERRKRAEQLRRELEEKEQERLDIEEKYTSLQEEAQGKTKKLKKVWTMLMAAKSEMADLQQEHQREIEGLLENIRQLSRELRLQMLIIDNFIPRDYQEMIENYVHWNEDIGEWQLKCVAYTGNNMRKQTPVPDKKEKDPFEVDLSHVYLAYTEESLRQSLMKLERPRTSKGKARPKTGRRKRSAKPETVIDSLLQ
Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Cilium, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole Localizes to the subdistal appendage region of the centriole.
KIF3A_MACFA
Macaca fascicularis
MPINKSEKPESCDNVKVVVRCRPLNEREKSMCYKQAVSVDEMRGTITVHKTDSSNEPPKTFTFDTVFGPESKQLDVYNLTARPIIDSVLEGYNGTIFAYGQTGTGKTFTMEGVRAVPELRGIIPNSFAHIFGHIAKAEGDTRFLVRVSYLEIYNEEVRDLLGKDQTQRLEVKERPDVGVYIKDLSAYVVNNADDMDRIMTLGHKNRSVGATNMNEHSSRSHAIFTITIECSEKGIDGNMHVRMGKLHLVDLAGSERQAKTGATGQRLKEATKINLSLSTLGNVISALVDGKSTHVPYRNSKLTRLLQDSLGGNSKTMMCANIGPADYNYDETISTLRYANRAKNIKNKARINEDPKDALLRQFQKEIEELKKKLEEGEEISGSDISGSEEDDDEEGEVGEDGEKRKKRRDQAGKKKVSPDKMIEMQAKIDEERKALETKLDMEEEERNKARAELEKREKDLLKAQQEHQSLLEKLSALEKKVIVGGVDLLAKAEEQEKLLEESNMELEERRKRAEQLRRELEEKEQERLDIEEKYTSLQEEAQGKTKKLKKVWTMLMAAKSEMADLQQEHQREIEGLLENIRQLSRELRLQMLIIDNFIPRDYQEMIENYVHWNEDIGEWQLKCVAYTGNNMRKQTPVPDKKEKDPFEVDLSHVYLAYTEESLRQSLMKLERPRTSKGKARPKTGRRKRSAKPETVIDSLLQ
Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Cilium, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole Localizes to the subdistal appendage region of the centriole.
KIF3A_PONAB
Pongo abelii
MPINKSEKPESCDNVKVVVRCRPLNEREKSMCYKQAVSVDEMRGTITVHKTDSSNEPPKTFTFDTVFGPESKQLDVYNLTARPIIDSVLEGYNGTIFAYGQTGTGKTFTMEGVRAIPELRGIIPNSFAHIFGHIAKAEGDTRFLVRVSYLEIYNEEVRDLLGKDQTQRLEVKERPDVGVYIKDLSAYVVNNADDMDRIMTLGHKNRSVGATNMNEHSSRSHAIFTITIECSEKGIDGNMHVRMGKLHLVDLAGSERQAKTGATGQRLKEATKINLSLSTLGNVISALVDGKSTHVPYRNSKLTRLLQDSLGGNSKTMMCANIGPADYNYDETISTLRYANRAKNIKNKARINEDPKDALLRQFQKEIEELKKKLEEGEEISGSDISGSEEDDDEEGEIGEDGEKRKKRRDQAGKKKVSPDKMIEMQAKIDEERKALETKLDMEEEERNKARAELEKREKDLLKAQQEHQSLLEKLSALEKKVIVGGVDLLAKAEEQEKLLEESNMELEERRKRAEQLRRELEEKEQERLDIEEKYTSLQEEAQGKTKKLKKVWTMLMAAKSEMADLQQEHQGEIEGLLENIRQLSRELRLQMLIIDNFIPRDYQEMIENYVHWNEDIGEWQLKCVAYTGNNMRKQTPVPDKKEKDPFEVDLSHVYLAYTEESLRQSLMKLERPRTSKGKARPKTGRRKRSAKPETVIDSLLQ
Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Cilium, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole Localizes to the subdistal appendage region of the centriole.
KIF3B_HUMAN
Homo sapiens
MSKLKSSESVRVVVRCRPMNGKEKAASYDKVVDVDVKLGQVSVKNPKGTAHEMPKTFTFDAVYDWNAKQFELYDETFRPLVDSVLQGFNGTIFAYGQTGTGKTYTMEGIRGDPEKRGVIPNSFDHIFTHISRSQNQQYLVRASYLEIYQEEIRDLLSKDQTKRLELKERPDTGVYVKDLSSFVTKSVKEIEHVMNVGNQNRSVGATNMNEHSSRSHAIFVITIECSEVGLDGENHIRVGKLNLVDLAGSERQAKTGAQGERLKEATKINLSLSALGNVISALVDGKSTHIPYRDSKLTRLLQDSLGGNAKTVMVANVGPASYNVEETLTTLRYANRAKNIKNKPRVNEDPKDALLREFQEEIARLKAQLEKRSIGRRKRREKRREGGGSGGGGEEEEEEGEEGEEEGDDKDDYWREQQEKLEIEKRAIVEDHSLVAEEKMRLLKEKEKKMEDLRREKDAAEMLGAKIKAMESKLLVGGKNIVDHTNEQQKILEQKRQEIAEQKRREREIQQQMESRDEETLELKETYSSLQQEVDIKTKKLKKLFSKLQAVKAEIHDLQEEHIKERQELEQTQNELTRELKLKHLIIENFIPLEEKSKIMNRAFFDEEEDHWKLHPITRLENQQMMKRPVSAVGYKRPLSQHARMSMMIRPEARYRAENIVLLELDMPSRTTRDYEGPAIAPKVQAALDAALQDEDEIQVDASSFESTANKKSKARPKSGRKSGSSSSSSGTPASQLYPQSRGLVPK
Microtubule-based molecular motor that transport intracellular cargos, such as vesicles, organelles and protein complexes. Uses ATP hydrolysis to generate force to bind and move along the microtubule (By similarity). Plays a role in cilia formation . Involved in photoreceptor integrity and opsin trafficking in rod photoreceptors . Transports vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit GRIN2A into neuronal dendrites (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Cilium, Cell projection, Dendritic spine
KINH_HUMAN
Homo sapiens
MADLAECNIKVMCRFRPLNESEVNRGDKYIAKFQGEDTVVIASKPYAFDRVFQSSTSQEQVYNDCAKKIVKDVLEGYNGTIFAYGQTSSGKTHTMEGKLHDPEGMGIIPRIVQDIFNYIYSMDENLEFHIKVSYFEIYLDKIRDLLDVSKTNLSVHEDKNRVPYVKGCTERFVCSPDEVMDTIDEGKSNRHVAVTNMNEHSSRSHSIFLINVKQENTQTEQKLSGKLYLVDLAGSEKVSKTGAEGAVLDEAKNINKSLSALGNVISALAEGSTYVPYRDSKMTRILQDSLGGNCRTTIVICCSPSSYNESETKSTLLFGQRAKTIKNTVCVNVELTAEQWKKKYEKEKEKNKILRNTIQWLENELNRWRNGETVPIDEQFDKEKANLEAFTVDKDITLTNDKPATAIGVIGNFTDAERRKCEEEIAKLYKQLDDKDEEINQQSQLVEKLKTQMLDQEELLASTRRDQDNMQAELNRLQAENDASKEEVKEVLQALEELAVNYDQKSQEVEDKTKEYELLSDELNQKSATLASIDAELQKLKEMTNHQKKRAAEMMASLLKDLAEIGIAVGNNDVKQPEGTGMIDEEFTVARLYISKMKSEVKTMVKRCKQLESTQTESNKKMEENEKELAACQLRISQHEAKIKSLTEYLQNVEQKKRQLEESVDALSEELVQLRAQEKVHEMEKEHLNKVQTANEVKQAVEQQIQSHRETHQKQISSLRDEVEAKAKLITDLQDQNQKMMLEQERLRVEHEKLKATDQEKSRKLHELTVMQDRREQARQDLKGLEETVAKELQTLHNLRKLFVQDLATRVKKSAEIDSDDTGGSAAQKQKISFLENNLEQLTKVHKQLVRDNADLRCELPKLEKRLRATAERVKALESALKEAKENASRDRKRYQQEVDRIKEAVRSKNMARRGHSAQIAKPIRPGQHPAASPTHPSAIRGGGAFVQNSQPVAVRGGGGKQV
Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes . Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells . Subcellular locations: Cytoplasm, Cytoskeleton, Cytolytic granule membrane, Lysosome membrane Uniformly distributed between soma and neurites in hippocampal neurons.
KLH21_HUMAN
Homo sapiens
MERPAPLAVLPFSDPAHALSLLRGLSQLRAERKFLDVTLEAAGGRDFPAHRAVLAAASPYFRAMFAGQLRESRAERVRLHGVPPDMLQLLLDFSYTGRVAVSGDNAEPLLRAADLLQFPAVKEACGAFLQQQLDLANCLDMQDFAEAFSCSGLASAAQRFILRHVGELGAEQLERLPLARLLRYLRDDGLCVPKEEAAYQLALRWVRADPPRRAAHWPQLLEAVRLPFVRRFYLLAHVEAEPLVARCPPCLRLLREARDFQAARYDRHDRGPCPRMRPRPSTGLAEILVLVGGCDQDCDELVTVDCYNPQTGQWRYLAEFPDHLGGGYSIVALGNDIYVTGGSDGSRLYDCVWRYNSSVNEWAEVAPMLKAREYHSSSVLDGLLYVVAADSTERYDHTTDSWEALQPMTYPMDNCSTTACRGRLYAIGSLAGKETMVMQCYDPDTDLWSLVDCGQLPPWSFAPKTATLNGLMYFVRDDSAEVDVYNPTRNEWDKIPSMNQVHVGGSLAVLGGKLYVSGGYDNTFELSDVVEAYDPETRAWSVVGRLPEPTFWHGSVSIFRQFMPQTFSGGRGFELDSGSDDMDPGRPRPPRDPDELH
Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for efficient chromosome alignment and cytokinesis. The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of AURKB. Ubiquitination of AURKB by BCR(KLHL21) E3 ubiquitin ligase complex may not lead to its degradation by the proteasome. Subcellular locations: Cytoplasm, Cytoskeleton, Spindle Localizes to the spindle midzone and targets CUL3 to this region.
KLH22_HUMAN
Homo sapiens
MAEEQEFTQLCKLPAQPSHPHCVNNTYRSAQHSQALLRGLLALRDSGILFDVVLVVEGRHIEAHRILLAASCDYFRGMFAGGLKEMEQEEVLIHGVSYNAMCQILHFIYTSELELSLSNVQETLVAACQLQIPEIIHFCCDFLMSWVDEENILDVYRLAELFDLSRLTEQLDTYILKNFVAFSRTDKYRQLPLEKVYSLLSSNRLEVSCETEVYEGALLYHYSLEQVQADQISLHEPPKLLETVRFPLMEAEVLQRLHDKLDPSPLRDTVASALMYHRNESLQPSLQSPQTELRSDFQCVVGFGGIHSTPSTVLSDQAKYLNPLLGEWKHFTASLAPRMSNQGIAVLNNFVYLIGGDNNVQGFRAESRCWRYDPRHNRWFQIQSLQQEHADLSVCVVGRYIYAVAGRDYHNDLNAVERYDPATNSWAYVAPLKREVYAHAGATLEGKMYITCGRRGEDYLKETHCYDPGSNTWHTLADGPVRRAWHGMATLLNKLYVIGGSNNDAGYRRDVHQVACYSCTSGQWSSVCPLPAGHGEPGIAVLDNRIYVLGGRSHNRGSRTGYVHIYDVEKDCWEEGPQLDNSISGLAACVLTLPRSLLLEPPRGTPDRSQADPDFASEVMSVSDWEEFDNSSED
Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex required for chromosome alignment and localization of PLK1 at kinetochores. The BCR(KLHL22) ubiquitin ligase complex mediates monoubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation. Monoubiquitination of PLK1 does not lead to PLK1 degradation (, ). The BCR(KLHL22) ubiquitin ligase complex is also responsible for the amino acid-stimulated 'Lys-48' polyubiquitination and proteasomal degradation of DEPDC5. Through the degradation of DEPDC5, releases the GATOR1 complex-mediated inhibition of the TORC1 pathway. It is therefore an amino acid-dependent activator within the amino acid-sensing branch of the TORC1 pathway, indirectly regulating different cellular processes including cell growth and autophagy . Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Spindle, Nucleus, Lysosome Mainly cytoplasmic in prophase and prometaphase. Associates with the mitotic spindle as the cells reach chromosome bi-orientation. Localizes to the centrosomes shortly before cells enter anaphase After anaphase onset, predominantly associates with the polar microtubules connecting the 2 opposing centrosomes and gradually diffuses into the cytoplasm during telophase . Localizes to the nucleus upon amino acid starvation . Relocalizes to the cytosol and associates with lysosomes when amino acids are available .
KLH23_HUMAN
Homo sapiens
MALKGQEDYIYLFKDSTHPVDFLDAFRTFYLDGLFTDITLQCPSGIIFHCHRAVLAACSNYFKAMFTADMKEKFKNKIKLSGIHHDILEGLVNYAYTSQIEITKRNVQSLLEAADLLQFLSVKKACERFLVRHLDIDNCIGMHSFAEFHVCPELEKESRRILCSKFKEVWQQEEFLEISLEKFLFILSRKNLSVWKEEAIIEPVIKWTAHDVENRIECLYNLLSYINIDIDPVYLKTALGLQRSCLLTENKIRSLIYNALNPMHKEISQRSTATMYIIGGYYWHPLSEVHIWDPLTNVWIQGAEIPDYTRESYGVTCLGPNIYVTGGYRTDNIEALDTVWIYNSESDEWTEGLPMLNARYYHCAVTLGGCVYALGGYRKGAPAEEAEFYDPLKEKWIPIANMIKGVGNATACVLHDVIYVIGGHCGYRGSCTYDKVQSYNSDINEWSLITSSPHPEYGLCSVPFENKLYLVGGQTTITECYDPEQNEWREIAPMMERRMECGAVIMNGCIYVTGGYSYSKGTYLQSIEKYDPDLNKWEIVGNLPSAMRSHGCVCVYNV
null
KLH23_PONAB
Pongo abelii
MALKGQEDYIYLFKDSTHPVDFLDAFRTFYLDGLFTDITLQCPSGIIFHCHRAVLAACSNYFKAMFTADMKEKFKNKIKLSGIHHDILEGLVNYAYTSQIEITERNVQSLLEAADLLQFLSVKKACERFLVRHLDIDNCIGMHSFAEFHVCPELEKESRRILCSKFKEVWQQEEFLEISLEKFLFILSRKNLSVWKEEAIIEPVIKWTAHDVENRIECLCNLLSYINIDVDPVYLKTALGLQRSCLFTENKIRSLIYNALNPMHKEISQRSTATMYIIGGYYWHPLSEVHIWDPLTNVWIQGAEIPDYTRESYGVTCLGPNIYVTGGYRTDNIEALDTVWIYNSESDEWTEGLPTLNARYYHCAVTLGGCVYALGGYRKGAPAEEAEFYDPLKEKWIPIANMIKGVGNATACVLHDVIYVIGGHCGYRGSCTYDKVQSYNSDINEWSLITSSPHPEYGLCSVPLENKLYLVGGQTTITECYDPEQNEWREIAPMMERRMECGAVIMNGCIYVTGGYPYSKGTYLQSIEKYDPDLNKWEIVGNLPSAMRSHGCVCVYNV
null
KLH24_HUMAN
Homo sapiens
MVLILGRRLNREDLGVRDSPATKRKVFEMDPKSLTGHEFFDFSSGSSHAENILQIFNEFRDSRLFTDVIICVEGKEFPCHRAVLSACSSYFRAMFCNDHRESREMLVEINGILAEAMECFLQYVYTGKVKITTENVQYLFETSSLFQISVLRDACAKFLEEQLDPCNCLGIQRFADTHSLKTLFTKCKNFALQTFEDVSQHEEFLELDKDELIDYICSDELVIGKEEMVFEAVMRWVYRAVDLRRPLLHELLTHVRLPLLHPNYFVQTVEVDQLIQNSPECYQLLHEARRYHILGNEMMSPRTRPRRSTGYSEVIVVVGGCERVGGFNLPYTECYDPVTGEWKSLAKLPEFTKSEYAVCALRNDILVSGGRINSRDVWIYNSQLNIWIRVASLNKGRWRHKMAVLLGKVYVVGGYDGQNRLSSVECYDSFSNRWTEVAPLKEAVSSPAVTSCVGKLFVIGGGPDDNTCSDKVQSYDPETNSWLLRAAIPIAKRCITAVSLNNLIYVAGGLTKAIYCYDPVEDYWMHVQNTFSRQENCGMSVCNGKIYILGGRRENGEATDTILCYDPATSIITGVAAMPRPVSYHGCVTIHRYNEKCFKL
Necessary to maintain the balance between intermediate filament stability and degradation, a process that is essential for skin integrity . As part of the BCR(KLHL24) E3 ubiquitin ligase complex, mediates ubiquitination of KRT14 and controls its levels during keratinocytes differentiation . Specifically reduces kainate receptor-mediated currents in hippocampal neurons, most probably by modulating channel properties (By similarity). Has a crucial role in cardiac development and function . Subcellular locations: Perikaryon, Cell projection, Axon, Cytoplasm, Cell junction, Desmosome, Cell junction, Adherens junction Expressed in the skin (, ). Found in keratinocytes, dermal fibroblasts, and melanocytes . Basal-layer keratinocytes have lower KLHL24 expression than suprabasal keratinocytes . Expressed in the brain, spinal cord, liver, testis, heart and at higher levels in the skeletal muscle .
KLH25_HUMAN
Homo sapiens
MSVSVHETRKSRSSTGSMNVTLFHKASHPDCVLAHLNTLRKHCMFTDVTLWAGDRAFPCHRAVLAASSRYFEAMFSHGLRESRDDTVNFQDNLHPEVLELLLDFAYSSRIAINEENAESLLEAGDMLQFHDVRDAAAEFLEKNLFPSNCLGMMLLSDAHQCRRLYEFSWRMCLVHFETVRQSEDFNSLSKDTLLDLISSDELETEDERVVFEAILQWVKHDLEPRKVHLPELLRSVRLALLPSDCLQEAVSSEALLMADERTKLIMDEALRCKTRILQNDGVVTSPCARPRKAGHTLLILGGQTFMCDKIYQVDHKAKEIIPKADLPSPRKEFSASAIGCKVYVTGGRGSENGVSKDVWVYDTVHEEWSKAAPMLIARFGHGSAELENCLYVVGGHTSLAGVFPASPSVSLKQVEKYDPGANKWMMVAPLRDGVSNAAVVSAKLKLFVFGGTSIHRDMVSKVQCYDPSENRWTIKAECPQPWRYTAAAVLGSQIFIMGGDTEFTAASAYRFDCETNQWTRIGDMTAKRMSCHALASGNKLYVVGGYFGTQRCKTLDCYDPTSDTWNCITTVPYSLIPTAFVSTWKHLPA
Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex involved in various processes, such as translation homeostasis and lipid synthesis ( ). The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1): ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) probably serves as a homeostatic mechanism to maintain translation and prevent eIF4E inhibition when eIF4E levels are low . The BCR(KLHL25) complex does not target EIF4EBP1 (4E-BP1) when it is hyperphosphorylated or associated with eIF4E . The BCR(KLHL25) complex also acts as a regulator of lipid synthesis by mediating ubiquitination and degradation of ACLY, thereby inhibiting lipid synthesis (, ). BCR(KLHL25)-mediated degradation of ACLY promotes fatty acid oxidation and is required for differentiation of inducible regulatory T (iTreg) cells .
KMT5C_HUMAN
Homo sapiens
MGPDRVTARELCENDDLATSLVLDPYLGFRTHKMNVSPVPPLRRQQHLRSALETFLRQRDLEAAYRALTLGGWTARYFQSRGPRQEAALKTHVYRYLRAFLPESGFTILPCTRYSMETNGAKIVSTRAWKKNEKLELLVGCIAELREADEGLLRAGENDFSIMYSTRKRSAQLWLGPAAFINHDCKPNCKFVPADGNAACVKVLRDIEPGDEVTCFYGEGFFGEKNEHCECHTCERKGEGAFRTRPREPALPPRPLDKYQLRETKRRLQQGLDSGSRQGLLGPRACVHPSPLRRDPFCAACQPLRLPACSARPDTSPLWLQWLPQPQPRVRPRKRRRPRPRRAPVLSTHHAARVSLHRWGGCGPHCRLRGEALVALGQPPHARWAPQQDWHWARRYGLPYVVRVDLRRLAPAPPATPAPAGTPGPILIPKQALAFAPFSPPKRLRLVVSHGSIDLDVGGEEL
Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (, ). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes . H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions. KMT5C is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (By similarity). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 . May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). Subcellular locations: Nucleus, Chromosome Associated with pericentric heterochromatin. CBX1 and CBX5 are required for the localization to pericentric heterochromatin (By similarity).
KR151_HUMAN
Homo sapiens
MSYNCSSGNFSSCCFGSYLRYPVSTYNLFYPSNAIYSPNTCQLGSSLYNGCQETYCEPTSCQTSCTLARSYQTSCYCPKNSIFCSPRQTNYIRSLGCGNTGLGSLGCGSTGFQSLDCGSSFYHPTTFSSRNFQATCY
In the hair cortex, hair keratin intermediate filaments are embedded in an interfilamentous matrix, consisting of hair keratin-associated proteins (KRTAP), which are essential for the formation of a rigid and resistant hair shaft through their extensive disulfide bond cross-linking with abundant cysteine residues of hair keratins. The matrix proteins include the high-sulfur and high-glycine-tyrosine keratins.
KR161_HUMAN
Homo sapiens
MSGSCSSRKCFSVPATSLCSTEVSCGGPICLPSSCQSQTWQLVTCQDSCGSSSCGPQCRQPSCPVSSCAQPLCCDPVICEPSCSVSSGCQPVCCEATTCEPSCSVSNCYQPVCFEATICEPSCSVSNCCQPVCFEATVCEPSCSVSSCAQPVCCEPAICEPSCSVSSCCQPVGSEATSCQPVLCVPTSCQPVLCKSSCCQPVVCEPSCCSAVCTLPSSCQPVVCEPSCCQPVCPTPTCSVTSSCQAVCCDPSPCEPSCSESSICQPATCVALVCEPVCLRPVCCVQSSCEPPSVPSTCQEPSCCVSSICQPICSEPSPCSPAVCVSSPCQPTCYVVKRCPSVCPEPVSCPSTSCRPLSCSPGSSASAICRPTCPRTFYIPSSSKRPCSATISYRPVSRPICRPICSGLLTYRQPYMTSISYRPACYRPCYSILRRPACVTSYSCRPVYFRPSCTESDSCKRDCKKSTSSQLDCVDTTPCKVDVSEEAPCQPTEAKPISPTTREAAAAQPAASKPANC
null
KR171_HUMAN
Homo sapiens
MGCCPGDCFTCCTQEQNCCEECCCQPGCCGCCGSCCGCGGSGCGGSGCGGSCCGSSCCGSGCGGCGGCGGCGGGCCGSSCCGSSCCGSGCCGPVCCQPTPICDTK
In the hair cortex, hair keratin intermediate filaments are embedded in an interfilamentous matrix, consisting of hair keratin-associated proteins (KRTAP), which are essential for the formation of a rigid and resistant hair shaft through their extensive disulfide bond cross-linking with abundant cysteine residues of hair keratins. The matrix proteins include the high-sulfur and high-glycine-tyrosine keratins.
KR191_HUMAN
Homo sapiens
MSHYGSYYGGLGYSCGGFGGLGYGYGCGCGSFCRRGSGCGYGGYGYGSGFGSYGYGSGFGGYGYGSGFGGYGYGCCRPSYNGGYGFSGFY
In the hair cortex, hair keratin intermediate filaments are embedded in an interfilamentous matrix, consisting of hair keratin-associated proteins (KRTAP), which are essential for the formation of a rigid and resistant hair shaft through their extensive disulfide bond cross-linking with abundant cysteine residues of hair keratins. The matrix proteins include the high-sulfur and high-glycine-tyrosine keratins. Detected in the upper portion of the hair cortex.