protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
GPX3_HUMAN | Homo sapiens | MARLLQASCLLSLLLAGFVSQSRGQEKSKMDCHGGISGTIYEYGALTIDGEEYIPFKQYAGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVILGFPCNQFGKQEPGENSEILPTLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGIPIMRWHHRTTVSNVKMDILSYMRRQAALGVKRK | Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
Subcellular locations: Secreted
Secreted in plasma. |
GPX3_HYLLA | Hylobates lar | MARLLQASCLLSLLLAGFVPQSRGQEKSKMDCHGGMSSTIYEYGALTIDGEEYIPFKQYAGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVILGFPCNQFGKQEPGENSEILPTLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGTPIMRWHHRTTVSNVKMDILSYMRRQAALGVKRK | Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
Subcellular locations: Secreted
Secreted in plasma. |
GPX3_MACFU | Macaca fuscata fuscata | MARLLQASCLLSLLLAGFLPQSRGQDKSKMDCHGGVSGTIYEYGALTIDGEEYIPFKQYIGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVLLGFPCNQFGKQEPGENSEILPSLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGIPVMRWHHRTTISNVKMDILSYMRRQAALGVKRK | Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
Subcellular locations: Secreted
Expressed intensively in the kidney and adrenal gland, and weakly in the cerebellum, heart, and lung. Secreted in plasma. |
GRB7_HUMAN | Homo sapiens | MELDLSPPHLSSSPEDLCPAPGTPPGTPRPPDTPLPEEVKRSQPLLIPTTGRKLREEERRATSLPSIPNPFPELCSPPSQSPILGGPSSARGLLPRDASRPHVVKVYSEDGACRSVEVAAGATARHVCEMLVQRAHALSDETWGLVECHPHLALERGLEDHESVVEVQAAWPVGGDSRFVFRKNFAKYELFKSSPHSLFPEKMVSSCLDAHTGISHEDLIQNFLNAGSFPEIQGFLQLRGSGRKLWKRFFCFLRRSGLYYSTKGTSKDPRHLQYVADVNESNVYVVTQGRKLYGMPTDFGFCVKPNKLRNGHKGLRIFCSEDEQSRTCWLAAFRLFKYGVQLYKNYQQAQSRHLHPSCLGSPPLRSASDNTLVAMDFSGHAGRVIENPREALSVALEEAQAWRKKTNHRLSLPMPASGTSLSAAIHRTQLWFHGRISREESQRLIGQQGLVDGLFLVRESQRNPQGFVLSLCHLQKVKHYLILPSEEEGRLYFSMDDGQTRFTDLLQLVEFHQLNRGILPCLLRHCCTRVAL | Adapter protein that interacts with the cytoplasmic domain of numerous receptor kinases and modulates down-stream signaling. Promotes activation of down-stream protein kinases, including STAT3, AKT1, MAPK1 and/or MAPK3. Promotes activation of HRAS. Plays a role in signal transduction in response to EGF. Plays a role in the regulation of cell proliferation and cell migration. Plays a role in the assembly and stability of RNA stress granules. Binds to the 5'UTR of target mRNA molecules and represses translation of target mRNA species, when not phosphorylated. Phosphorylation impairs RNA binding and promotes stress granule disassembly during recovery after cellular stress (By similarity).
Subcellular locations: Cytoplasm, Cell junction, Focal adhesion, Cell membrane, Cytoplasmic granule, Cell projection
Predominantly cytoplasmic. Detected in stress granules, where mRNA is stored under stress conditions. |
GREM1_HUMAN | Homo sapiens | MSRTAYTVGALLLLLGTLLPAAEGKKKGSQGAIPPPDKAQHNDSEQTQSPQQPGSRNRGRGQGRGTAMPGEEVLESSQEALHVTERKYLKRDWCKTQPLKQTIHEEGCNSRTIINRFCYGQCNSFYIPRHIRKEEGSFQSCSFCKPKKFTTMMVTLNCPELQPPTKKKRVTRVKQCRCISIDLD | Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) . Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity).
Subcellular locations: Secreted
Highly expressed in small intestine, fetal brain and colon. Expression is restricted to intestinal subepithelial myofibroblasts (ISEMFs) at the crypt base. In subjects with HMPS1, by contrast, GREM1 is expressed, not only in basal ISEMFs, but also at very high levels in epithelial cells (predominantly colonocytes), with expression extending most of the way up the sides of the crypt. Weakly expressed in brain, ovary, prostate, pancreas and skeletal muscle. In brain found in the region localized around the internal capsule in the large subcortical nuclei, including caudate, putamen, substantia nigra, thalamus and subthalamus. Predominantly expressed in normal cells including neurons, astrocytes and fibroblasts. |
GREM1_MACMU | Macaca mulatta | MSRTAYTVGALLLLLGTLLPAAEGKKKGSQGAIPPPDKAQHNDSEQTQSPQQPGSRNRGRGQGRGTAMPGEEVLESSQEALHVTERKYLKRDWCKTQPLKQTIHEEGCNSRTIINRFCYGQCNSFYIPRHIRKEEGSFQSCSFCKPKKFTTMMVTLNCPELQPPTKKKRVTRVKQCRCISIDLD | Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) (By similarity). Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity).
Subcellular locations: Secreted |
GREM2_HUMAN | Homo sapiens | MFWKLSLSLFLVAVLVKVAEARKNRPAGAIPSPYKDGSSNNSERWQHQIKEVLASSQEALVVTERKYLKSDWCKTQPLRQTVSEEGCRSRTILNRFCYGQCNSFYIPRHVKKEEESFQSCAFCKPQRVTSVLVELECPGLDPPFRLKKIQKVKQCRCMSVNLSDSDKQ | Cytokine that inhibits the activity of BMP2 and BMP4 in a dose-dependent manner, and thereby modulates signaling by BMP family members. Contributes to the regulation of embryonic morphogenesis via BMP family members. Antagonizes BMP4-induced suppression of progesterone production in granulosa cells.
Subcellular locations: Secreted |
GREP1_HUMAN | Homo sapiens | MGAWAFPAALFLLCLTSESLQGGLPLLPPGLGKVYGPHSGLGAGYDGGVKPQKPGFVVRHGLGTQPDTEGGMKPQNLGFRTFAGAAAQPGYGNGLGAAAFPVAGAQSGPAAQNGFGPGFGGGGKPQKPGPTTQNGYRPGYVGAVKPQKPGFQYRIGLGAQPGFRGDMKAQEPGLGNGNGLSAQPVLTAQNRFGFGAGLGGNVKPLKPGYGKRLRAGAFPGAGTQPEYGHGNGPGVQPGLGAGMKPQMPGLGAPNGYGPGRGRAGVPGGPERRPWVPHLLPFSSPGYLGVMKAQKPGPLAQNGYRAGAGEGMKPQKPGLRGTLKPQKSGHGHENGPWPGPCNARVAPMLLPRLPTPGVPSDKEGGWGLKSQPPSAVQNGKLPAPMPAIQWGLKPQKAGHQPPNGYGPGAEPGFNGGLEPQKIGLGYGNGVLGARVFPEAHPQPGFHGANGFRNRDGVEALVYPKAAALAPEGNGQAGVLWNSRWPTLQAWGAGLKPGYQAGDEYAEARSQPGGPDVKRGSNGQLGNGYGGRCPLGKC | null |
GRN_HUMAN | Homo sapiens | MWTLVSWVALTAGLVAGTRCPDGQFCPVACCLDPGGASYSCCRPLLDKWPTTLSRHLGGPCQVDAHCSAGHSCIFTVSGTSSCCPFPEAVACGDGHHCCPRGFHCSADGRSCFQRSGNNSVGAIQCPDSQFECPDFSTCCVMVDGSWGCCPMPQASCCEDRVHCCPHGAFCDLVHTRCITPTGTHPLAKKLPAQRTNRAVALSSSVMCPDARSRCPDGSTCCELPSGKYGCCPMPNATCCSDHLHCCPQDTVCDLIQSKCLSKENATTDLLTKLPAHTVGDVKCDMEVSCPDGYTCCRLQSGAWGCCPFTQAVCCEDHIHCCPAGFTCDTQKGTCEQGPHQVPWMEKAPAHLSLPDPQALKRDVPCDNVSSCPSSDTCCQLTSGEWGCCPIPEAVCCSDHQHCCPQGYTCVAEGQCQRGSEIVAGLEKMPARRASLSHPRDIGCDQHTSCPVGQTCCPSLGGSWACCQLPHAVCCEDRQHCCPAGYTCNVKARSCEKEVVSAQPATFLARSPHVGVKDVECGEGHFCHDNQTCCRDNRQGWACCPYRQGVCCADRRHCCPAGFRCAARGTKCLRREAPRWDAPLRDPALRQLL | Secreted protein that acts as a key regulator of lysosomal function and as a growth factor involved in inflammation, wound healing and cell proliferation ( ). Regulates protein trafficking to lysosomes and, also the activity of lysosomal enzymes (, ). Facilitates also the acidification of lysosomes, causing degradation of mature CTSD by CTSB . In addition, functions as a wound-related growth factor that acts directly on dermal fibroblasts and endothelial cells to promote division, migration and the formation of capillary-like tubule structures (By similarity). Also promotes epithelial cell proliferation by blocking TNF-mediated neutrophil activation preventing release of oxidants and proteases . Moreover, modulates inflammation in neurons by preserving neurons survival, axonal outgrowth and neuronal integrity .
Promotes proliferation of the epithelial cell line A431 in culture.
Inhibits epithelial cell proliferation and induces epithelial cells to secrete IL-8.
Stabilizes CTSD through interaction with CTSD leading to maintain its aspartic-type peptidase activity.
Subcellular locations: Secreted, Lysosome
Endocytosed by SORT1 and delivred to lysosomes (, ). Targeted to lysosome by PSAP via M6PR and LRP1, in both biosynthetic and endocytic pathways (, ). Co-localized with GBA1 in the intracellular trafficking compartments until to lysosome (By similarity).
In myelogenous leukemic cell lines of promonocytic, promyelocytic, and proerythroid lineage, in fibroblasts, and very strongly in epithelial cell lines. Present in inflammatory cells and bone marrow. Highest levels in kidney. |
GSHR_HUMAN | Homo sapiens | MALLPRALSAGAGPSWRRAARAFRGFLLLLPEPAALTRALSRAMACRQEPQPQGPPPAAGAVASYDYLVIGGGSGGLASARRAAELGARAAVVESHKLGGTCVNVGCVPKKVMWNTAVHSEFMHDHADYGFPSCEGKFNWRVIKEKRDAYVSRLNAIYQNNLTKSHIEIIRGHAAFTSDPKPTIEVSGKKYTAPHILIATGGMPSTPHESQIPGASLGITSDGFFQLEELPGRSVIVGAGYIAVEMAGILSALGSKTSLMIRHDKVLRSFDSMISTNCTEELENAGVEVLKFSQVKEVKKTLSGLEVSMVTAVPGRLPVMTMIPDVDCLLWAIGRVPNTKDLSLNKLGIQTDDKGHIIVDEFQNTNVKGIYAVGDVCGKALLTPVAIAAGRKLAHRLFEYKEDSKLDYNNIPTVVFSHPPIGTVGLTEDEAIHKYGIENVKTYSTSFTPMYHAVTKRKTKCVMKMVCANKEEKVVGIHMQGLGCDEMLQGFAVAVKMGATKADFDNTVAIHPTSSEELVTLR | Maintains high levels of reduced glutathione in the cytosol.
Subcellular locations: Mitochondrion
Subcellular locations: Cytoplasm |
GT251_HUMAN | Homo sapiens | MAAAPRAGRRRGQPLLALLLLLLAPLPPGAPPGADAYFPEERWSPESPLQAPRVLIALLARNAAHALPTTLGALERLRHPRERTALWVATDHNMDNTSTVLREWLVAVKSLYHSVEWRPAEEPRSYPDEEGPKHWSDSRYEHVMKLRQAALKSARDMWADYILFVDADNLILNPDTLSLLIAENKTVVAPMLDSRAAYSNFWCGMTSQGYYKRTPAYIPIRKRDRRGCFAVPMVHSTFLIDLRKAASRNLAFYPPHPDYTWSFDDIIVFAFSCKQAEVQMYVCNKEEYGFLPVPLRAHSTLQDEAESFMHVQLEVMVKHPPAEPSRFISAPTKTPDKMGFDEVFMINLRRRQDRRERMLRALQAQEIECRLVEAVDGKAMNTSQVEALGIQMLPGYRDPYHGRPLTKGELGCFLSHYNIWKEVVDRGLQKSLVFEDDLRFEIFFKRRLMNLMRDVEREGLDWDLIYVGRKRMQVEHPEKAVPRVRNLVEADYSYWTLAYVISLQGARKLLAAEPLSKMLPVDEFLPVMFDKHPVSEYKAHFSLRNLHAFSVEPLLIYPTHYTGDDGYVSDTETSVVWNNEHVKTDWDRAKSQKMREQQALSREAKNSDVLQSPLDSAARDEL | Beta-galactosyltransferase that transfers beta-galactose to hydroxylysine residues of type I collagen ( ). By acting on collagen glycosylation, facilitates the formation of collagen triple helix . Also involved in the biosynthesis of collagen type IV .
Subcellular locations: Endoplasmic reticulum lumen
Colocalized with PLOD3 and mannose binding lectin/MBL2.
Ubiquitous with higher levels in placenta, heart, lung and spleen. |
GT252_HUMAN | Homo sapiens | MAARPAATLAWSLLLLSSALLREGCRARFVAERDSEDDGEEPVVFPESPLQSPTVLVAVLARNAAHTLPHFLGCLERLDYPKSRMAIWAATDHNVDNTTEIFREWLKNVQRLYHYVEWRPMDEPESYPDEIGPKHWPTSRFAHVMKLRQAALRTAREKWSDYILFIDVDNFLTNPQTLNLLIAENKTIVAPMLESRGLYSNFWCGITPKGFYKRTPDYVQIREWKRTGCFPVPMVHSTFLIDLRKEASDKLTFYPPHQDYTWTFDDIIVFAFSSRQAGIQMYLCNREHYGYLPIPLKPHQTLQEDIENLIHVQIEAMIDRPPMEPSQYVSVVPKYPDKMGFDEIFMINLKRRKDRRDRMLRTLYEQEIEVKIVEAVDGKALNTSQLKALNIEMLPGYRDPYSSRPLTRGEIGCFLSHYSVWKEVIDRELEKTLVIEDDVRFEHQFKKKLMKLMDNIDQAQLDWELIYIGRKRMQVKEPEKAVPNVANLVEADYSYWTLGYVISLEGAQKLVGANPFGKMLPVDEFLPVMYNKHPVAEYKEYYESRDLKAFSAEPLLIYPTHYTGQPGYLSDTETSTIWDNETVATDWDRTHAWKSRKQSRIYSNAKNTEALPPPTSLDTVPSRDEL | Beta-galactosyltransferase that transfers beta-galactose to hydroxylysine residues of collagen.
Subcellular locations: Endoplasmic reticulum lumen
Expressed in brain and skeletal muscle. |
GTPB3_HUMAN | Homo sapiens | MWRGLWTLAAQAARGPRRLCTRRSSGAPAPGSGATIFALSSGQGRCGIAVIRTSGPASGHALRILTAPRDLPLARHASLRLLSDPRSGEPLDRALVLWFPGPQSFTGEDCVEFHVHGGPAVVSGVLQALGSVPGLRPAEAGEFTRRAFANGKLNLTEVEGLADLIHAETEAQRRQALRQLDGELGHLCRGWAETLTKALAHVEAYIDFGEDDNLEEGVLEQADIEVRALQVALGAHLRDARRGQRLRSGVHVVVTGPPNAGKSSLVNLLSRKPVSIVSPEPGTTRDVLETPVDLAGFPVLLSDTAGLREGVGPVEQEGVRRARERLEQADLILAMLDASDLASPSSCNFLATVVASVGAQSPSDSSQRLLLVLNKSDLLSPEGPGPGPDLPPHLLLSCLTGEGLDGLLEALRKELAAVCGDPSTDPPLLTRARHQHHLQGCLDALGHYKQSKDLALAAEALRVARGHLTRLTGGGGTEEILDIIFQDFCVGK | GTPase involved in the 5-carboxymethylaminomethyl modification (mnm(5)s(2)U34) of the wobble uridine base in mitochondrial tRNAs.
Subcellular locations: Mitochondrion
Ubiquitously expressed. |
GTPB4_HUMAN | Homo sapiens | MAHYNFKKITVVPSAKDFIDLTLSKTQRKTPTVIHKHYQIHRIRHFYMRKVKFTQQNYHDRLSQILTDFPKLDDIHPFYADLMNILYDKDHYKLALGQINIAKNLVDNVAKDYVRLMKYGDSLYRCKQLKRAALGRMCTVIKRQKQSLEYLEQVRQHLSRLPTIDPNTRTLLLCGYPNVGKSSFINKVTRADVDVQPYAFTTKSLFVGHMDYKYLRWQVVDTPGILDHPLEDRNTIEMQAITALAHLRAAVLYVMDLSEQCGHGLREQLELFQNIRPLFINKPLIVVANKCDVKRIAELSEDDQKIFTDLQSEGFPVIETSTLTEEGVIKVKTEACDRLLAHRVETKMKGNKVNEVLNRLHLAIPTRRDDKERPPFIPEGVVARRKRMETEESRKKRERDLELEMGDDYILDLQKYWDLMNLSEKHDKIPEIWEGHNIADYIDPAIMKKLEELEKEEELRTAAGEYDSVSESEDEEMLEIRQLAKQIREKKKLKILESKEKNTQGPRMPRTAKKVQRTVLEKEMRSLGVDMDDKDDAHYAVQARRSRSITRKRKREDSAPPSSVARSGSCSRTPRDVSGLRDVKMVKKAKTMMKNAQKKMNRLGKKGEADRHVFDMKPKHLLSGKRKAGKKDRR | Involved in the biogenesis of the 60S ribosomal subunit . Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest .
Subcellular locations: Nucleus, Nucleolus |
GTPB6_HUMAN | Homo sapiens | MWALRAAVRPGLRLSRVGRGRSAPRAAAPSCPARALAAVGRRSPGNLEGPWGGGRGLRADGGRSRTGDDEEEPEDADENAEEELLRGEPLLPAGTQRVCLVHPDVKWGPGKSQMTRAEWQVAEATALVHTLDGWSVVQTMVVSTKTPDRKLIFGKGNFEHLTEKIRGSPDITCVFLNVERMAAPTKKELEAAWGVEVFDRFTVVLHIFRCNARTKEARLQVALAEMPLHRSNLKRDVAHLYRGVGSRYIMGSGESFMQLQQRLLREKEAKIRKALDRLRKKRHLLRRQRTRREFPVISVVGYTNCGKTTLIKALTGDAAIQPRDQLFATLDVTAHAGTLPSRMTVLYVDTIGFLSQLPHGLIESFSATLEDVAHSDLILHVRDVSHPEAELQKCSVLSTLRGLQLPAPLLDSMVEVHNKVDLVPGYSPTEPNVVPVSALRGHGLQELKAELDAAVLKATGRQILTLRVRLAGAQLSWLYKEATVQEVDVIPEDGAADVRVIISNSAYGKFRKLFPG | Ubiquitously expressed. |
GTPB8_HUMAN | Homo sapiens | MAAPGLRLGAGRLFEMPAVLERLSRYNSTSQAFAEVLRLPKQQLRKLLYPLQEVERFLAPYGRQDLHLRIFDPSPEDIARADNIFTATERNRIDYVSSAVRIDHAPDLPRPEVCFIGRSNVGKSSLIKALFSLAPEVEVRVSKKPGHTKKMNFFKVGKHFTVVDMPGYGFRAPEDFVDMVETYLKERRNLKRTFLLVDSVVGIQKTDNIAIEMCEEFALPYVIVLTKIDKSSKGHLLKQVLQIQKFVNMKTQGCFPQLFPVSAVTFSGIHLLRCFIASVTGSLD | null |
GULP1_HUMAN | Homo sapiens | MNRAFSRKKDKTWMHTPEALSKHFIPYNAKFLGSTEVEQPKGTEVVRDAVRKLKFARHIKKSEGQKIPKVELQISIYGVKILEPKTKEVQHNCQLHRISFCADDKTDKRIFTFICKDSESNKHLCYVFDSEKCAEEITLTIGQAFDLAYRKFLESGGKDVETRKQIAGLQKRIQDLETENMELKNKVQDLENQLRITQVSAPPAGSMTPKSPSTDIFDMIPFSPISHQSSMPTRNGTQPPPVPSRSTEIKRDLFGAEPFDPFNCGAADFPPDIQSKLDEMQEGFKMGLTLEGTVFCLDPLDSRC | May function as an adapter protein. Required for efficient phagocytosis of apoptotic cells. Modulates cellular glycosphingolipid and cholesterol transport. May play a role in the internalization and endosomal trafficking of various LRP1 ligands, such as PSAP. Increases cellular levels of GTP-bound ARF6.
Subcellular locations: Cytoplasm
May associate with the cytoplasmic side of the plasma membrane and early endosomes.
Widely expressed. Detected in macrophages, pancreas, kidney, skeletal muscle, heart, colon, intestine, lung, placenta and ovary. |
GUSP1_HUMAN | Homo sapiens | MDRSNPVKPALDYFSNRLVNYQISVKCSNQFKLEVCLLNAENKVVDNQAGTQGQLKVLGANLWWPYLMHEHPASLYSWEDGDCSHQSLGPLPACDLCDQLHLRSRQGGSVCGCDPCEQLLLLVSQLRAPGVDSAAAGRPV | Ubiquitous. |
GYS1_HUMAN | Homo sapiens | MPLNRTLSMSSLPGLEDWEDEFDLENAVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGDNYFLVGPYTEQGVRTQVELLEAPTPALKRTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKPHVVAHFHEWLAGVGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQHLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVAFFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPNEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDGERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan.
Expressed in skeletal muscle and most other cell types where glycogen is present. |
GYS1_MACMU | Macaca mulatta | MPLNRTLSMSSLPGLEDWEDEFDLENTVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGDNYYLVGPYTEQGVRTQVELLEAPTPALKKTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKPHVVAHFHEWLAGIGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQHLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVALFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPSEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDSERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. |
GYS1_PONAB | Pongo abelii | MPLNRTLSMSSLPGLEDWEDEFDLENAVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGANYFLVGPYTEQGVRTQVELLEAPTPALKRTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKLHVVAHFHEWLAGIGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQYLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVAFFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPNEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDGERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. |
GYS2_HUMAN | Homo sapiens | MLRGRSLSVTSLGGLPQWEVEELPVEELLLFEVAWEVTNKVGGIYTVIQTKAKTTADEWGENYFLIGPYFEHNMKTQVEQCEPVNDAVRRAVDAMNKHGCQVHFGRWLIEGSPYVVLFDIGYSAWNLDRWKGDLWEACSVGIPYHDREANDMLIFGSLTAWFLKEVTDHADGKYVVAQFHEWQAGIGLILSRARKLPIATIFTTHATLLGRYLCAANIDFYNHLDKFNIDKEAGERQIYHRYCMERASVHCAHVFTTVSEITAIEAEHMLKRKPDVVTPNGLNVKKFSAVHEFQNLHAMYKARIQDFVRGHFYGHLDFDLEKTLFLFIAGRYEFSNKGADIFLESLSRLNFLLRMHKSDITVMVFFIMPAKTNNFNVETLKGQAVRKQLWDVAHSVKEKFGKKLYDALLRGEIPDLNDILDRDDLTIMKRAIFSTQRQSLPPVTTHNMIDDSTDPILSTIRRIGLFNNRTDRVKVILHPEFLSSTSPLLPMDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSVTTNLSGFGCFMQEHVADPTAYGIYIVDRRFRSPDDSCNQLTKFLYGFCKQSRRQRIIQRNRTERLSDLLDWRYLGRYYQHARHLTLSRAFPDKFHVELTSPPTTEGFKYPRPSSVPPSPSGSQASSPQSSDVEDEVEDERYDEEEEAERDRLNIKSPFSLSHVPHGKKKLHGEYKN | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan.
Specifically expressed in liver (at protein level). |
H2AV_HUMAN | Homo sapiens | MAGGKAGKDSGKAKAKAVSRSQRAGLQFPVGRIHRHLKTRTTSHGRVGATAAVYSAAILEYLTAEVLELAGNASKDLKVKRITPRHLQLAIRGDEELDSLIKATIAGGGVIPHIHKSLIGKKGQQKTA | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division (By similarity).
Subcellular locations: Nucleus, Chromosome |
H2AW_HUMAN | Homo sapiens | MSGRSGKKKMSKLSRSARAGVIFPVGRLMRYLKKGTFKYRISVGAPVYMAAVIEYLAAEILELAGNAARDNKKARIAPRHILLAVANDEELNQLLKGVTIASGGVLPRIHPELLAKKRGTKGKSETILSPPPEKRGRKATSGKKGGKKSKAAKPRTSKKSKPKDSDKEGTSNSTSEDGPGDGFTILSSKSLVLGQKLSLTQSDISHIGSMRVEGIVHPTTAEIDLKEDIGKALEKAGGKEFLETVKELRKSQGPLEVAEAAVSQSSGLAAKFVIHCHIPQWGSDKCEEQLEETIKNCLSAAEDKKLKSVAFPPFPSGRNCFPKQTAAQVTLKAISAHFDDSSASSLKNVYFLLFDSESIGIYVQEMAKLDAK | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation.
Subcellular locations: Nucleus, Chromosome
Enriched in inactive X chromosome chromatin (, ) and in senescence-associated heterochromatin . |
H2B1D_HUMAN | Homo sapiens | MPEPTKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1H_HUMAN | Homo sapiens | MPDPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1J_HUMAN | Homo sapiens | MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Subcellular locations: Nucleus, Chromosome |
H2B1K_HUMAN | Homo sapiens | MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Subcellular locations: Nucleus, Chromosome |
H2B1K_MACFA | Macaca fascicularis | MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKRVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1L_HUMAN | Homo sapiens | MPELAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIASEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1M_HUMAN | Homo sapiens | MPEPVKSAPVPKKGSKKAINKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1N_HUMAN | Homo sapiens | MPEPSKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H2B1O_HUMAN | Homo sapiens | MPDPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H4_HUMAN | Homo sapiens | MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Subcellular locations: Nucleus, Chromosome |
H4_MACFA | Macaca fascicularis | MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity).
Subcellular locations: Nucleus, Chromosome |
HAT1_HUMAN | Homo sapiens | MAGFGAMEKFLVEYKSAVEKKLAEYKCNTNTAIELKLVRFPEDLENDIRTFFPEYTHQLFGDDETAFGYKGLKILLYYIAGSLSTMFRVEYASKVDENFDCVEADDVEGKIRQIIPPGFCTNTNDFLSLLEKEVDFKPFGTLLHTYSVLSPTGGENFTFQIYKADMTCRGFREYHERLQTFLMWFIETASFIDVDDERWHYFLVFEKYNKDGATLFATVGYMTVYNYYVYPDKTRPRVSQMLILTPFQGQGHGAQLLETVHRYYTEFPTVLDITAEDPSKSYVKLRDFVLVKLCQDLPCFSREKLMQGFNEDMVIEAQQKFKINKQHARRVYEILRLLVTDMSDAEQYRSYRLDIKRRLISPYKKKQRDLAKMRKCLRPEELTNQMNQIEISMQHEQLEESFQELVEDYRRVIERLAQE | Histone acetyltransferase that plays a role in different biological processes including cell cycle progression, glucose metabolism, histone production or DNA damage repair ( , ). Coordinates histone production and acetylation via H4 promoter binding . Acetylates histone H4 at 'Lys-5' (H4K5ac) and 'Lys-12' (H4K12ac) and, to a lesser extent, histone H2A at 'Lys-5' (H2AK5ac) (, ). Drives H4 production by chromatin binding to support chromatin replication and acetylation. Since transcription of H4 genes is tightly coupled to S-phase, plays an important role in S-phase entry and progression . Promotes homologous recombination in DNA repair by facilitating histone turnover and incorporation of acetylated H3.3 at sites of double-strand breaks . In addition, acetylates other substrates such as chromatin-related proteins . Acetylates also RSAD2 which mediates the interaction of ubiquitin ligase UBE4A with RSAD2 leading to RSAD2 ubiquitination and subsequent degradation .
(Microbial infection) Contributes to hepatitis B virus (HBV) replication by acetylating histone H4 at the sites of 'Lys-5' and 'Lys-12' on the covalently closed circular DNA (cccDNA) minichromosome leading to its accumulation within the host cell.
Subcellular locations: Nucleus matrix, Mitochondrion
Subcellular locations: Cytoplasm, Nucleus, Nucleus matrix, Nucleus, Nucleoplasm
Localization is predominantly nuclear in normal cells. Treatment with hydrogen peroxide or ionizing radiation enhances nuclear localization through redistribution of existing protein. |
HBA_NYCCO | Nycticebus coucang | VLSPADKTNVKAAWEKVGSHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKAHGKKVADALTNAVSHVDDMPSALSALSDLHAHKLRVDPVNFKLLSHCLLVTLACHHPADFTPAVHASLDKFLASVSTVLTSKYR | Involved in oxygen transport from the lung to the various peripheral tissues.
Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling.
Red blood cells. |
HBB_PONPY | Pongo pygmaeus | VCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_SAGMY | Saguinus mystax | VHLTGEEKSAVTTLWGKVNVEEVGGEALGRLLVVYPWTQRFFDSFGDLSSPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_SAGOE | Saguinus oedipus | VHLTGEEKSAVTTLWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBB_SAISC | Saimiri sciureus | MVHLTGDEKAAVTALWGKVNVEDVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH | Involved in oxygen transport from the lung to the various peripheral tissues.
Red blood cells. |
HBE_LAGLA | Lagothrix lagotricha | MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFEDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_LEORO | Leontopithecus rosalia | MVHFTAEEKAAITSLWGKMNVEEAGGESLGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_MACMU | Macaca mulatta | MVHFTAEEKAAVTSLWSKMNVEETGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKITFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_MICMU | Microcebus murinus | MVHFTAEEKSTILSLWGKVNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSASAIMGNPKVKAHGKKVLTSFGEAVKNLDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_OTOCR | Otolemur crassicaudatus | MVHFTAEEKAIIMSLWGKVNIEEAGGEALGRLLVVYPWTQRFFETFGNLSSASAIMGNPKVKAHGKKVLTSFGEAVKNMDNLKGAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PANPA | Pan paniscus | MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLIVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PANTR | Pan troglodytes | MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PITIR | Pithecia irrorata | MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNLKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PLEMO | Plecturocebus moloch | MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PONPY | Pongo pygmaeus | MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_PROVE | Propithecus verreauxi | MVHFTAEEKSTILSVWGKVNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAIMGNPKVKAHGKKVLTSFGEAVKNMDNLKGAFAKLSELHCDKLHVDPENFKLLGNAMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_SAGMI | Saguinus midas | MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSFPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVLVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_SAIBB | Saimiri boliviensis boliviensis | MVHFTAEEKAAITSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_SAISC | Saimiri sciureus | MVHFTAEEKAAITSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HBE_SYMSY | Symphalangus syndactylus | MVHFTAEEKAAVTSLWNKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH | The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Red blood cells. |
HCP5_HUMAN | Homo sapiens | MLLRMSEHRNEALGNYLEMRLKSSFLRGLGSWKSNPLRLGGWTILLTLTMGQGEPGGPQGDPWVPHELLLPSLCDSSHASSWGSGSITCAWRGGDSSSHPLVSGHILSNSPVAAVMCSSMGTHLSPFKGTLL | Expressed in lymphoid tissues; Detected in spleen as well as in B-cell lines, NK cell lines and activated lymphocytes. |
HDA10_HUMAN | Homo sapiens | MGTALVYHEDMTATRLLWDDPECEIERPERLTAALDRLRQRGLEQRCLRLSAREASEEELGLVHSPEYVSLVRETQVLGKEELQALSGQFDAIYFHPSTFHCARLAAGAGLQLVDAVLTGAVQNGLALVRPPGHHGQRAAANGFCVFNNVAIAAAHAKQKHGLHRILVVDWDVHHGQGIQYLFEDDPSVLYFSWHRYEHGRFWPFLRESDADAVGRGQGLGFTVNLPWNQVGMGNADYVAAFLHLLLPLAFEFDPELVLVSAGFDSAIGDPEGQMQATPECFAHLTQLLQVLAGGRVCAVLEGGYHLESLAESVCMTVQTLLGDPAPPLSGPMAPCQSALESIQSARAAQAPHWKSLQQQDVTAVPMSPSSHSPEGRPPPLLPGGPVCKAAASAPSSLLDQPCLCPAPSVRTAVALTTPDITLVLPPDVIQQEASALREETEAWARPHESLAREEALTALGKLLYLLDGMLDGQVNSGIAATPASAAAATLDVAVRRGLSHGAQRLLCVALGQLDRPPDLAHDGRSLWLNIRGKEAAALSMFHVSTPLPVMTGGFLSCILGLVLPLAYGFQPDLVLVALGPGHGLQGPHAALLAAMLRGLAGGRVLALLEENSTPQLAGILARVLNGEAPPSLGPSSVASPEDVQALMYLRGQLEPQWKMLQCHPHLVA | Polyamine deacetylase (PDAC), which acts preferentially on N(8)-acetylspermidine, and also on acetylcadaverine and acetylputrescine . Exhibits attenuated catalytic activity toward N(1),N(8)-diacetylspermidine and very low activity, if any, toward N(1)-acetylspermidine . Histone deacetylase activity has been observed in vitro ( , ). Has also been shown to be involved in MSH2 deacetylation . The physiological relevance of protein/histone deacetylase activity is unclear and could be very weak . May play a role in the promotion of late stages of autophagy, possibly autophagosome-lysosome fusion and/or lysosomal exocytosis in neuroblastoma cells (, ). May play a role in homologous recombination . May promote DNA mismatch repair .
Subcellular locations: Cytoplasm, Nucleus
Excluded from nucleoli.
Widely expressed with high levels in liver and kidney. |
HDA11_HUMAN | Homo sapiens | MLHTTQLYQHVPETRWPIVYSPRYNITFMGLEKLHPFDAGKWGKVINFLKEEKLLSDSMLVEAREASEEDLLVVHTRRYLNELKWSFAVATITEIPPVIFLPNFLVQRKVLRPLRTQTGGTIMAGKLAVERGWAINVGGGFHHCSSDRGGGFCAYADITLAIKFLFERVEGISRATIIDLDAHQGNGHERDFMDDKRVYIMDVYNRHIYPGDRFAKQAIRRKVELEWGTEDDEYLDKVERNIKKSLQEHLPDVVVYNAGTDILEGDRLGGLSISPAGIVKRDELVFRMVRGRRVPILMVTSGGYQKRTARIIADSILNLFGLGLIGPESPSVSAQNSDTPLLPPAVP | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes.
Subcellular locations: Nucleus
Weakly expressed in most tissues. Strongly expressed in brain, heart, skeletal muscle, kidney and testis. |
HDA11_MACFA | Macaca fascicularis | MLHTTQLYQHVPETRWPIVYSPRYNITFMGLEKLHPFDAGKWGKVINFLKEEKLLSDSMLVEAREASEEDLLVVHTRRYLNELKWSFAVATITEIPPVIFLPNFLVQRKVLRPLRTQTGGTIMAGKLAVERGWAINVGGGFHHCSSDRGGGFCAYADITLAIKFLFERVEGISRATIIDLDAHQGNGHERDFMDDKRVYIMDVYNRHIYPGDRFAKQAIRRKVELEWGTEDDEYLDKVERNIEKSLQEHLPDVVVYNAGTDILEGDRLGGLSISPAGIVKRDELVFRMVRGRHVPILMVTSGGYQKRTARIIADSILNLFGLGLIGPESPSISAQNSDTPLLPPAVP | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity).
Subcellular locations: Nucleus |
HDGR3_HUMAN | Homo sapiens | MARPRPREYKAGDLVFAKMKGYPHWPARIDELPEGAVKPPANKYPIFFFGTHETAFLGPKDLFPYKEYKDKFGKSNKRKGFNEGLWEIENNPGVKFTGYQAIQQQSSSETEGEGGNTADASSEEEGDRVEEDGKGKRKNEKAGSKRKKSYTSKKSSKQSRKSPGDEDDKDCKEEENKSSSEGGDAGNDTRNTTSDLQKTSEGT | Enhances DNA synthesis and may play a role in cell proliferation.
Subcellular locations: Nucleus
Detected in testis, heart, spinal cord and brain. |
HDHD1_HUMAN | Homo sapiens | MAAPPQPVTHLIFDMDGLLLDTERLYSVVFQEICNRYDKKYSWDVKSLVMGKKALEAAQIIIDVLQLPMSKEELVEESQTKLKEVFPTAALMPGAEKLIIHLRKHGIPFALATSSGSASFDMKTSRHKEFFSLFSHIVLGDDPEVQHGKPDPDIFLACAKRFSPPPAMEKCLVFEDAPNGVEAALAAGMQVVMVPDGNLSRDLTTKATLVLNSLQDFQPELFGLPSYE | Dephosphorylates pseudouridine 5'-phosphate, a potential intermediate in rRNA degradation. Pseudouridine is then excreted intact in urine. |
HDHD2_HUMAN | Homo sapiens | MAACRALKAVLVDLSGTLHIEDAAVPGAQEALKRLRGASVIIRFVTNTTKESKQDLLERLRKLEFDISEDEIFTSLTAARSLLERKQVRPMLLVDDRALPDFKGIQTSDPNAVVMGLAPEHFHYQILNQAFRLLLDGAPLIAIHKARYYKRKDGLALGPGPFVTALEYATDTKATVVGKPEKTFFLEALRGTGCEPEEAVMIGDDCRDDVGGAQDVGMLGILVKTGKYRASDEEKINPPPYLTCESFPHAVDHILQHLL | null |
HDHD2_PONAB | Pongo abelii | MAACRALKAVLVDLSGTLHIEDAAVPGAQEALKRLRGTSVIVRFVTNTTKESKQDLLERLRKLEFDISEDEIFTSLTAARSLLEQKQVRPMLLVDDRALPDFKGIQTTDPNAVVMGLAPEHFHYQILNQAFRLLLDGAPLIAIHKARYYKRKDGLALGPGPFVTALEYATDTKATVVGKPEKTFFLEALRGTGCEPEEAVMIGDDCRDDVGGAQDVGMLGILVKTGKYRASDEEKINPPPYLTCESFPHAVDHILQHLL | null |
HEM1_PONAB | Pongo abelii | METVVRSCPFLSRVPQAFLQKAGKSLLFYAQNCPKMMEVGAKPAPRALSTAAVHYQQIKETPPASEKDKTAKAKVQQTPDGSQQSPDGTQLPSGHPLPATSQGTASKCPFLAAQMNQRGSSVFCKASLELQEDVQEMNAVRKEVAETSGGPSVVSVKTDGGDPSGLLKNFQDIMQKQRPERVSHLLQDDLPKSVSTFQYDRFFEKKIDEKKNDHTYRVFKTVNRRAHIFPMADDYSDSLITKKQVSVWCSNDYLGMSRHPRVCGAVMDTLKQHGAGAGGTRNISGTSKFHVDLERELADLHGKDAALLFSSCFVANDSTLFTLAKMMPGCEIYSDSGNHASMIQGIRNSRVPKYIFRHNDVSHLRELLQRSDPSVPKIVAFETVHSMDGAVCPLEELCDVAHEFGAITFVDEVHAVGLYGARGGGIGDRDGVMPKMDIISGTLGKAFGCVGGYIASTSSLIDTVRSYAAGFIFTTSLPPMLLAGALESVRILKSAEGRVLRRQHQRNVKLMRQMLMDAGLPVVHCPSHIIPVRVADAAKNTEVCDELMSRHNIYVQAINYPTVPRGEELLRIAPTPHHTPQMMNYFLENLLVTWKQVGLELEPHSSAECNFCRRPLHFEVMSEREKSYFSGLSKLVSAQA | Catalyzes the pyridoxal 5'-phosphate (PLP)-dependent condensation of succinyl-CoA and glycine to form aminolevulinic acid (ALA), with CoA and CO2 as by-products.
Subcellular locations: Mitochondrion inner membrane
Localizes to the matrix side of the mitochondrion inner membrane. |
HEMH_HUMAN | Homo sapiens | MRSLGANMAAALRAAGVLLRDPLASSSWRVCQPWRWKSGAAAAAVTTETAQHAQGAKPQVQPQKRKPKTGILMLNMGGPETLGDVHDFLLRLFLDRDLMTLPIQNKLAPFIAKRRTPKIQEQYRRIGGGSPIKIWTSKQGEGMVKLLDELSPNTAPHKYYIGFRYVHPLTEEAIEEMERDGLERAIAFTQYPQYSCSTTGSSLNAIYRYYNQVGRKPTMKWSTIDRWPTHHLLIQCFADHILKELDHFPLEKRSEVVILFSAHSLPMSVVNRGDPYPQEVSATVQKVMERLEYCNPYRLVWQSKVGPMPWLGPQTDESIKGLCERGRKNILLVPIAFTSDHIETLYELDIEYSQVLAKECGVENIRRAESLNGNPLFSKALADLVHSHIQSNELCSKQLTLSCPLCVNPVCRETKSFFTSQQL | Catalyzes the ferrous insertion into protoporphyrin IX.
Subcellular locations: Mitochondrion inner membrane |
HEP2_HUMAN | Homo sapiens | MKHSLNALLIFLIITSAWGGSKGPLDQLEKGGETAQSADPQWEQLNNKNLSMPLLPADFHKENTVTNDWIPEGEEDDDYLDLEKIFSEDDDYIDIVDSLSVSPTDSDVSAGNILQLFHGKSRIQRLNILNAKFAFNLYRVLKDQVNTFDNIFIAPVGISTAMGMISLGLKGETHEQVHSILHFKDFVNASSKYEITTIHNLFRKLTHRLFRRNFGYTLRSVNDLYIQKQFPILLDFKTKVREYYFAEAQIADFSDPAFISKTNNHIMKLTKGLIKDALENIDPATQMMILNCIYFKGSWVNKFPVEMTHNHNFRLNEREVVKVSMMQTKGNFLAANDQELDCDILQLEYVGGISMLIVVPHKMSGMKTLEAQLTPRVVERWQKSMTNRTREVLLPKFKLEKNYNLVESLKLMGIRMLFDKNGNMAGISDQRIAIDLFKHQGTITVNEEGTQATTVTTVGFMPLSTQVRFTVDRPFLFLIYEHRTSCLLFMGRVANPSRS | Thrombin inhibitor activated by the glycosaminoglycans, heparin or dermatan sulfate. In the presence of the latter, HC-II becomes the predominant thrombin inhibitor in place of antithrombin III (AT-III). Also inhibits chymotrypsin, but in a glycosaminoglycan-independent manner.
Peptides at the N-terminal of HC-II have chemotactic activity for both monocytes and neutrophils.
Expressed predominantly in liver. Also present in plasma. |
HFM1_HUMAN | Homo sapiens | MLKSNDCLFSLENLFFEKPDEVENHPDNEKSLDWFLPPAPLISEIPDTQELEEELESHKLLGQEKRPKMLTSNLKITNEDTNYISLTQKFQFAFPSDKYEQDDLNLEGVGNNDLSHIAGKLTYASQKYKNHIGTEIAPEKSVPDDTKLVNFAEDKGESTSVFRKRLFKISDNIHGSAYSNDNELDSHIGSVKIVQTEMNKGKSRNYSNSKQKFQYSANVFTANNAFSASEIGEGMFKAPSFSVAFQPHDIQEVTENGLGSLKAVTEIPAKFRSIFKEFPYFNYIQSKAFDDLLYTDRNFVICAPTGSGKTVVFELAITRLLMEVPLPWLNIKIVYMAPIKALCSQRFDDWKEKFGPIGLNCKELTGDTVMDDLFEIQHAHIIMTTPEKWDSMTRKWRDNSLVQLVRLFLIDEVHIVKDENRGPTLEVVVSRMKTVQSVSQTLKNTSTAIPMRFVAVSATIPNAEDIAEWLSDGERPAVCLKMDESHRPVKLQKVVLGFPCSSNQTEFKFDLTLNYKIASVIQMYSDQKPTLVFCATRKGVQQAASVLVKDAKFIMTVEQKQRLQKYAYSVRDSKLRDILKDGAAYHHAGMELSDRKVVEGAFTVGDLPVLFTTSTLAMGVNLPAHLVVIKSTMHYAGGLFEEYSETDILQMIGRAGRPQFDTTATAVIMTRLSTRDKYIQMLACRDTVESSLHRHLIEHLNAEIVLHTITDVNIAVEWIRSTLLYIRALKNPSHYGFASGLNKDGIEAKLQELCLKNLNDLSSLDLIKMDEGVNFKPTEAGRLMAWYYITFETVKKFYTISGKETLSDLVTLIAGCKEFLDIQLRINEKKTLNTLNKDPNRITIRFPMEGRIKTREMKVNCLIQAQLGCIPIQDFALTQDTAKIFRHGSRITRWLSDFVAAQEKKFAVLLNSLILAKCFRCKLWENSLHVSKQLEKIGITLSNAIVNAGLTSFKKIEETDARELELILNRHPPFGTQIKETVMYLPKYELKVEQITRYSDTTAEILVTVILRNFEQLQTKRTASDSHYVTLIIGDADNQVVYLHKITDSVLLKAGSWAKKIAVKRALKSEDLSINLISSEFVGLDIQQKLTVFYLEPKRFGNQITMQRKSETQISHSKHSDISTIAGPNKGTTASKKPGNRECNHLCKSKHTCGHDCCKIGVAQKSEIKESTISSYLSDLRNRNAVSSVPPVKRLKIQMNKSQSVDLKEFGFTPKPSLPSISRSEYLNISELPIMEQWDQPEIYGKVRQEPSEYQDKEVLNVNFELGNEVWDDFDDENLEVTSFSTDTEKTKISGFGNTLSSSTRGSKLPLQESKSKFQREMSNSFVSSHEMSDISLSNSAMPKFSASSMTKLPQQAGNAVIVHFQERKPQNLSPEIEKQCFTFSEKNPNSSNYKKVDFFIRNSECKKEVDFSMYHPDDEADEMKSLLGIFDGIF | Required for crossover formation and complete synapsis of homologous chromosomes during meiosis.
Preferentially expressed in testis and ovary. |
HGH1_HUMAN | Homo sapiens | MGEAGAGAGASGGPEASPEAEVVKLLPFLAPGARADLQAAAVRHVLALTGCGPGRALLAGQAALLQALMELAPASAPARDAARALVNLAADPGLHETLLAADPGLPARLMGRALDPQWPWAEEAAAALANLSREPAPCAALMAALAAAEPADSGLERLVRALCTPGYNARAPLHYLAPLLSNLSQRPAARAFLLDPDRCVVQRLLPLTQYPDSSVRRGGVVGTLRNCCFEHRHHEWLLGPEVDILPFLLLPLAGPEDFSEEEMERLPVDLQYLPPDKQREPDADIRKMLVEAIMLLTATAPGRQQVRDQGAYLILRELHSWEPEPDVRTACEKLIQVLIGDEPERGMENLLEVQVPEDVEQQLQQLDCREQEQLERELAPEPWVERATPT | null |
HIG1A_HUMAN | Homo sapiens | MSTDTGVSLPSYEEDQGSKLIRKAKEAPFVPVGIAGFAAIVAYGLYKLKSRGNTKMSIHLIHMRVAAQGFVVGAMTVGMGYSMYREFWAKPKP | Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May play a role in the assembly of respiratory supercomplexes.
Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane |
HIG1A_PONAB | Pongo abelii | MSTDTGVSLPSYEEDQGSKLIRKAKEAPFVPVGIAGFAAIVAYGLYKLKSRGNTKMSIHLIHMRVAAQGFVVGAMTVGMGYSMYREFWAKPKP | Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May play a role in the assembly of respiratory supercomplexes (By similarity).
Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane |
HIG1B_HUMAN | Homo sapiens | MSANRRWWVPPDDEDCVSEKLLRKTRESPLVPIGLGGCLVVAAYRIYRLRSRGSTKMSIHLIHTRVAAQACAVGAIMLGAVYTMYSDYVKRMAQDAGEK | Subcellular locations: Membrane |
HIG1C_HUMAN | Homo sapiens | MSSDNQWSADEDEGQLSRLIRKSRDSPFVPIGIAGFVTVVSCGLYKLKYRRDQKMSIHLIHMRVAAQGFVVGAVTLGVLYSMYKDYIRPRFFSESKK | Subcellular locations: Membrane |
HIG2A_HUMAN | Homo sapiens | MATPGPVIPEVPFEPSKPPVIEGLSPTVYRNPESFKEKFVRKTRENPVVPIGCLATAAALTYGLYSFHRGNSQRSQLMMRTRIAAQGFTVAAILLGLAVTAMKSRP | Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May be involved in cytochrome c oxidase activity. May play a role in the assembly of respiratory supercomplexes.
Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane |
HINFP_HUMAN | Homo sapiens | MPPPGKVPRKENLWLQCEWGSCSFVCSTMEKFFEHVTQHLQQHLHGSGEEEEEEEEDDPLEEEFSCLWQECGFCSLDSSADLIRHVYFHCYHTKLKQWGLQALQSQADLGPCILDFQSRNVIPDIPDHFLCLWEHCENSFDNPEWFYRHVEAHSLCCEYEAVGKDNPVVLCGWKGCTCTFKDRSKLREHLRSHTQEKVVACPTCGGMFANNTKFLDHIRRQTSLDQQHFQCSHCSKRFATERLLRDHMRNHVNHYKCPLCDMTCPLPSSLRNHMRFRHSEDRPFKCDCCDYSCKNLIDLQKHLDTHSEEPAYRCDFENCTFSARSLCSIKSHYRKVHEGDSEPRYKCHVCDKCFTRGNNLTVHLRKKHQFKWPSGHPRFRYKEHEDGYMRLQLVRYESVELTQQLLRQPQEGSGLGTSLNESSLQGIILETVPGEPGRKEEEEEGKGSEGTALSASQDNPSSVIHVVNQTNAQGQQEIVYYVLSEAPGEPPPAPEPPSGGIMEKLQGIAEEPEIQMV | Transcriptional repressor that binds to the consensus sequence 5'-CGGACGTT-3' and to the RB1 promoter. Transcriptional activator that promotes histone H4 gene transcription at the G1/S phase transition in conjunction with NPAT. Also activates transcription of the ATM and PRKDC genes. Autoregulates its expression by associating with its own promoter.
Subcellular locations: Nucleus
Associated with discrete nuclear foci.
Ubiquitous. Highly expressed in brain, heart, skeletal muscle, spleen, kidney, small intestine, placenta and liver. |
HINT1_HUMAN | Homo sapiens | MADEIAKAQVARPGGDTIFGKIIRKEIPAKIIFEDDRCLAFHDISPQAPTHFLVIPKKHISQISVAEDDDESLLGHLMIVGKKCAADLGLNKGYRMVVNEGSDGGQSVYHVHLHVLGGRQMHWPPG | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 ( ). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (, ). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester ( ). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro ( , ). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide . In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (, ). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis . Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex . Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 . Deconjugates SUMO1 from RANGAP1 (By similarity).
Subcellular locations: Cytoplasm, Nucleus
Interaction with CDK7 leads to a more nuclear localization.
Widely expressed. |
HINT1_PONAB | Pongo abelii | MADEIAKAQVARPGGDTIFGKIIRKEIPAKIIFEDDRCLAFHDISPQAPTHFLVIPKKHISQISVAEDDNESLLGHLMIVGKKCAADLGLNKGYRMVVNEGSDGGQSVYHVHLHVLGGRQMHWPPG | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (By similarity). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (By similarity). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (By similarity). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (By similarity). In addition, functions as a scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (By similarity). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis. Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (By similarity). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RANGAP1 and RGS17 (By similarity).
Subcellular locations: Cytoplasm, Nucleus |
HINT2_HUMAN | Homo sapiens | MAAAVVLAAGLRAARRAVAATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILDKSLPADILYEDQQCLVFRDVAPQAPVHFLVIPKKPIPRISQAEEEDQQLLGHLLLVAKQTAKAEGLGDGYRLVINDGKLGAQSVYHLHIHVLGGRQLQWPPG | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (, ). Hydrolyzes adenosine 5'-O-p-nitrophenylphosphoramidate (AMP-pNA) . Hydrolyzes fluorogenic purine nucleoside tryptamine phosphoramidates in vitro . May be involved in steroid biosynthesis . May play a role in apoptosis .
Subcellular locations: Mitochondrion
High expression in liver and pancreas. Expression is significantly down-regulated in hepatocellular carcinoma (HCC) patients. |
HINT3_HUMAN | Homo sapiens | MAEEQVNRSAGLAPDCEASATAETTVSSVGTCEAAGKSPEPKDYDSTCVFCRIAGRQDPGTELLHCENEDLICFKDIKPAATHHYLVVPKKHIGNCRTLRKDQVELVENMVTVGKTILERNNFTDFTNVRMGFHMPPFCSISHLHLHVLAPVDQLGFLSKLVYRVNSYWFITADHLIEKLRT | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 . Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase . Hydrolyzes 3-indolepropionic acyl-adenylate and fluorogenic purine nucleoside tryptamine phosphoramidates in vitro .
Subcellular locations: Cytoplasm, Nucleus
Localized as aggregates in the cytoplasm and the nucleus. |
HINT3_PONAB | Pongo abelii | MAEEQVNLSAGLAPDCEASATAESTVSLVGTCEAAAKSPEPKDSDSTCVFCRIAGRQDPGTELLHCENEDLICFKDIKPAATHHYLVVPKKHIGNCRTLRKDQVELVENMVTVGKTILERNNFTDFTNVRMGFHMPPFCSISHLHLHVLAPVDQLGFLSKLVYRVNSYWFITADHLIEKLRT | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (By similarity). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase (By similarity).
Subcellular locations: Cytoplasm, Nucleus |
HMHA1_HUMAN | Homo sapiens | MFSRKKRELMKTPSISKKNRAGSPSPQPSGELPRKDGADAVFPGPSLEPPAGSSGVKATGTLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSPLTAASPGELPTEGAGPDVVEDISHLLADVARFAEGLEKLKECVLRDDLLEARRPRAHECLGEALRVMHQIISKYPLLNTVETLTAAGTLIAKVKAFHYESNNDLEKQEFEKALETIAVAFSSTVSEFLMGEVDSSTLLAVPPGDSSQSMESLYGPGSEGTPPSLEDCDAGCLPAEEVDVLLQRCEGGVDAALLYAKNMAKYMKDLISYLEKRTTLEMEFAKGLQKIAHNCRQSVMQEPHMPLLSIYSLALEQDLEFGHSMVQAVGTLQTQTFMQPLTLRRLEHEKRRKEIKEAWHRAQRKLQEAESNLRKAKQGYVQRCEDHDKARFLVAKAEEEQAGSAPGAGSTATKTLDKRRRLEEEAKNKAEEAMATYRTCVADAKTQKQELEDTKVTALRQIQEVIRQSDQTIKSATISYYQMMHMQTAPLPVHFQMLCESSKLYDPGQQYASHVRQLQRDQEPDVHYDFEPHVSANAWSPVMRARKSSFNVSDVARPEAAGSPPEEGGCTEGTPAKDHRAGRGHQVHKSWPLSISDSDSGLDPGPGAGDFKKFERTSSSGTMSSTEELVDPDGGAGASAFEQADLNGMTPELPVAVPSGPFRHEGLSKAARTHRLRKLRTPAKCRECNSYVYFQGAECEECCLACHKKCLETLAIQCGHKKLQGRLQLFGQDFSHAARSAPDGVPFIVKKCVCEIERRALRTKGIYRVNGVKTRVEKLCQAFENGKELVELSQASPHDISNVLKLYLRQLPEPLISFRLYHELVGLAKDSLKAEAEAKAASRGRQDGSESEAVAVALAGRLRELLRDLPPENRASLQYLLRHLRRIVEVEQDNKMTPGNLGIVFGPTLLRPRPTEATVSLSSLVDYPHQARVIETLIVHYGLVFEEEPEETPGGQDESSNQRAEVVVQVPYLEAGEAVVYPLQEAAADGCRESRVVSNDSDSDLEEASELLSSSEASALGHLSFLEQQQSEASLEVASGSHSGSEEQLEATAREDGDGDEDGPAQQLSGFNTNQSNNVLQAPLPPMRLRGGRMTLGSCRERQPEFV | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity.
Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL.
Subcellular locations: Cytoplasm, Cell projection, Ruffle membrane
Expressed on cells of the hematopoietic lineage. Detected in dendritic cells and epidermal Langerhans cells. Expressed in peripheral blood mononuclear cells, in all leukemia/lymphoma cell lines. Detected also in some solid tumors and tissues such as cancerous and non-cancerous tissue. |
HMHA1_PONAB | Pongo abelii | MFSRKKRELMKTPSISKKNRAGSPSPQPSGPHFISGETEAVSRPENPFNELPSDLPKELPRKDGADAVFPGTSLELPAGSSGVKATGTLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSPLTAASPGELPTEGTGPDVVEDISHLLADVARFAEGLEKLKECVLRDDLLEARRPLAHECLGEALRVMRQIISKYPLLNTVETLTAAGTLIAKVKAFHYESNNDLEKQEFEKALETIAVAFSSAVSEFLMGEVDSSTLLAVPPGDSSQSMESLYGSGSEGTPPSLDDCDAGCLPAEEVDVLLQRCEGGVDAALLYAKNMAKYMKDLISYLEKRTTLEMEFAKGLQKMAHNCRQSVTQEPHMPLLSIYSLALEQDLEFGHGMVQAVGTLQTQTFMQPLTLRRLEHEKRRKEIKEAWHRAQRKLQEAESNLRKAKQGYTQRCEDHDKARFLVAKAEEEQAGTAPGAGSTATKTLDKRRRLEEEAKNKAEEAMATYRTCVADAKTQKQELEDTKVTALRQIQEVIRQSDQTIKSATISYYQMMHMQTAPLPVHFQMLCESSKLYDPGQQYASHVRQLQRDQEPDVHYDFEPHVSANAWSPVMRARKSSFNVSDVAGPEAAGSPPEEGGCIEGTPVKGHRAGRGHQVHKSWPLSISDSASGLDPGPGAGDFKKFERTSSSGTMSSTEELVDPEGGAGASAFEQADLNGMTPELPVAVPSGPFRHEGLSKAARTHRLRKLRTPAKCRECNSYVYFQGAECEECCLACHKKCLETLAIQCGHKKLQGRLQLFGQDFSHAARSAPDGVPFIVKKCVCEIERRALRTKGIYRVNGVKTRVEKLCQAFENGKELVELSQASPHDISNVLKLYLRQLPEPLISFRLYHELVGLAKDSLKAEAEAKAASRGRQDSSESEAVAVAMAGRLRELLRDLPPENRASLQYLLRHLRRIVEVEQDNKMTPGNLGIVFGPTLLRPRPTEATVSLSSLVDYPHQARVIETLIVHYGLVFEEEPEEIPGGQDESSNQRAEVVVQVPYLEAGEGVVYPLQEAAEDGCRESRVVSNDSDSDLEEASELLSSSEASALCRLSFLEQQQSEASLEEASGSHSGSEEQLETTAREDGDGDEDSPAQRLSGFNTNQSNNVLQTPLPPMRLRGGRITLGSCRERQPEFV | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity.
Subcellular locations: Cytoplasm, Cell projection, Ruffle membrane |
HMHB1_HUMAN | Homo sapiens | MEEQPECREEKRGSLHVWKSELVEVEDDVYLRHSSSLTYRL | Precursor of the histocomplatibility antigen HB-1. More generally, minor histocomplatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocomplatibility antigen in HLA-matched sibling marrow transplants. HB-1 is presented on the cell surface by MHC class I HLA-B44. This complex specifically elicits donor-cytotoxic T lymphocyte (CTL) reactivity in B-cell acute lymphoblastic leukemia (B-ALL) after treatment by HLA-identical allogenic bone marrow transplantation (BMT). It induces cell recognition and lysis by CTL. However, HB-1 restricted expression in B-ALL cells and not in normal tissues may allow a specific CTL reactivity against B-ALL without the risk of evoking graft-versus-host disease.
Expressed in acute lymphoblastic leukemia B-cells and Epstein-Barr virus-transformed B-cells. |
HMMR_HUMAN | Homo sapiens | MSFPKAPLKRFNDPSGCAPSPGAYDVKTLEVLKGPVSFQKSQRFKQQKESKQNLNVDKDTTLPASARKVKSSESKESQKNDKDLKILEKEIRVLLQERGAQDRRIQDLETELEKMEARLNAALREKTSLSANNATLEKQLIELTRTNELLKSKFSENGNQKNLRILSLELMKLRNKRETKMRGMMAKQEGMEMKLQVTQRSLEESQGKIAQLEGKLVSIEKEKIDEKSETEKLLEYIEEISCASDQVEKYKLDIAQLEENLKEKNDEILSLKQSLEENIVILSKQVEDLNVKCQLLEKEKEDHVNRNREHNENLNAEMQNLKQKFILEQQEREKLQQKELQIDSLLQQEKELSSSLHQKLCSFQEEMVKEKNLFEEELKQTLDELDKLQQKEEQAERLVKQLEEEAKSRAEELKLLEEKLKGKEAELEKSSAAHTQATLLLQEKYDSMVQSLEDVTAQFESYKALTASEIEDLKLENSSLQEKAAKAGKNAEDVQHQILATESSNQEYVRMLLDLQTKSALKETEIKEITVSFLQKITDLQNQLKQQEEDFRKQLEDEEGRKAEKENTTAELTEEINKWRLLYEELYNKTKPFQLQLDAFEVEKQALLNEHGAAQEQLNKIRDSYAKLLGHQNLKQKIKHVVKLKDENSQLKSEVSKLRCQLAKKKQSETKLQEELNKVLGIKHFDPSKAFHHESKENFALKTPLKEGNTNCYRAPMECQESWK | Receptor for hyaluronic acid (HA) (By similarity). Involved in cell motility (By similarity). When hyaluronan binds to HMMR, the phosphorylation of a number of proteins, including PTK2/FAK1 occurs. May also be involved in cellular transformation and metastasis formation, and in regulating extracellular-regulated kinase (ERK) activity. May act as a regulator of adipogenisis (By similarity).
Subcellular locations: Cell surface, Cytoplasm, Cytoplasm, Cytoskeleton, Spindle
Expressed in testis . Expressed in the breast . |
HNF1A_HUMAN | Homo sapiens | MVSKLSQLQTELLAALLESGLSKEALIQALGEPGPYLLAGEGPLDKGESCGGGRGELAELPNGLGETRGSEDETDDDGEDFTPPILKELENLSPEEAAHQKAVVETLLQEDPWRVAKMVKSYLQQHNIPQREVVDTTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREVAQQFTHAGQGGLIEEPTGDELPTKKGRRNRFKWGPASQQILFQAYERQKNPSKEERETLVEECNRAECIQRGVSPSQAQGLGSNLVTEVRVYNWFANRRKEEAFRHKLAMDTYSGPPPGPGPGPALPAHSSPGLPPPALSPSKVHGVRYGQPATSETAEVPSSSGGPLVTVSTPLHQVSPTGLEPSHSLLSTEAKLVSAAGGPLPPVSTLTALHSLEQTSPGLNQQPQNLIMASLPGVMTIGPGEPASLGPTFTNTGASTLVIGLASTQAQSVPVINSMGSSLTTLQPVQFSQPLHPSYQQPLMPPVQSHVTQSPFMATMAQLQSPHALYSHKPEVAQYTHTGLLPQTMLITDTTNLSALASLTPTKQVFTSDTEASSESGLHTPASQATTLHVPSQDPAGIQHLQPAHRLSASPTVSSSSLVLYQSSDSSNGQSHLLPSNHSVIETFISTQMASSSQ | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (, ). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity).
Subcellular locations: Nucleus
Liver. |
HNF1B_HUMAN | Homo sapiens | MVSKLTSLQQELLSALLSSGVTKEVLVQALEELLPSPNFGVKLETLPLSPGSGAEPDTKPVFHTLTNGHAKGRLSGDEGSEDGDDYDTPPILKELQALNTEEAAEQRAEVDRMLSEDPWRAAKMIKGYMQQHNIPQREVVDVTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREILRQFNQTVQSSGNMTDKSSQDQLLFLFPEFSQQSHGPGQSDDACSEPTNKKMRRNRFKWGPASQQILYQAYDRQKNPSKEEREALVEECNRAECLQRGVSPSKAHGLGSNLVTEVRVYNWFANRRKEEAFRQKLAMDAYSSNQTHSLNPLLSHGSPHHQPSSSPPNKLSGVRYSQQGNNEITSSSTISHHGNSAMVTSQSVLQQVSPASLDPGHNLLSPDGKMISVSGGGLPPVSTLTNIHSLSHHNPQQSQNLIMTPLSGVMAIAQSLNTSQAQSVPVINSVAGSLAALQPVQFSQQLHSPHQQPLMQQSPGSHMAQQPFMAAVTQLQNSHMYAHKQEPPQYSHTSRFPSAMVVTDTSSISTLTNMSSSKQCPLQAW | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (, ). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 .
Subcellular locations: Nucleus |
HNF1B_PONAB | Pongo abelii | MVSKLTSLQQELLSALLSSGVTKEVLVQALEELLPSPNFGVKLETLPLSPGSGAEPDTKPVFHTLTNGHAKGRLSGDEGSEDGDDYDTPPILKELQALNTEEAAEQRAEVDRMLSEDPWRAAKMIKGYMQQHNIPQREVVDVTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREILRQFNQTVQSSGNMTDKSSQDQLLFLFPEFSQQSQGPGQSDDACSEPTNKKMRRNRFKWGPASQQILYQAYDRQKNPSKEEREALVEECNRAECLQRGVSPSKAHGLGSNLVTEVRVYNWFANRRKEEAFRQKLAMDAYSSNQTHSLNPLLSHGSPHHQPSSSPPNKLSGVRYSQQGNNEVTSSSTISHHGNSAMVTSQSVLQQVSPASLDPGHNLLSPDGKMISVSGGGLPPVSTLTNIHSLSHHNPQQSQNLIMTPLSGVMAIAQSLNTSQAQSVPVINSVAGSLAALQPVQFSQQLHSPHQQPLMQQSPGSHMAQQPFMAAVTQLQNSHMYAHKQEPPQYSHTSRFPSAMVVTDTSSISTLTNMSSSKQCPLQAW | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (By similarity). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (By similarity).
Subcellular locations: Nucleus |
HOME1_HUMAN | Homo sapiens | MGEQPIFSTRAHVFQIDPNTKKNWVPTSKHAVTVSYFYDSTRNVYRIISLDGSKAIINSTITPNMTFTKTSQKFGQWADSRANTVYGLGFSSEHHLSKFAEKFQEFKEAARLAKEKSQEKMELTSTPSQESAGGDLQSPLTPESINGTDDERTPDVTQNSEPRAEPTQNALPFSHSSAISKHWEAELATLKGNNAKLTAALLESTANVKQWKQQLAAYQEEAERLHKRVTELECVSSQANAVHTHKTELNQTIQELEETLKLKEEEIERLKQEIDNARELQEQRDSLTQKLQEVEIRNKDLEGQLSDLEQRLEKSQNEQEAFRNNLKTLLEILDGKIFELTELRDNLAKLLECS | Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Isoform 3 acts as a natural dominant negative, in dynamic competition with constitutively expressed isoform 1 to regulate synaptic metabotropic glutamate function. Isoform 3, may be involved in the structural changes that occur at synapses during long-lasting neuronal plasticity and development. Forms a high-order complex with SHANK1, which in turn is necessary for the structural and functional integrity of dendritic spines (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFAT protein binding, hence preventing NFAT activation by PPP3CA .
Subcellular locations: Cytoplasm, Postsynaptic density, Synapse, Cell projection, Dendritic spine
Isoform 1 inhibits surface expression of GRM5 causing it to be retained in the endoplasmic reticulum. |
HPDL_HUMAN | Homo sapiens | MAAPALRLCHIAFHVPAGQPLARNLQRLFGFQPLASREVDGWRQLALRSGDAVFLVNEGAGSGEPLYGLDPRHAVPSATNLCFDVADAGAATRELAALGCSVPVPPVRVRDAQGAATYAVVSSPAGILSLTLLERAGYRGPFLPGFRPVSSAPGPGWVSRVDHLTLACTPGSSPTLLRWFHDCLGFCHLPLSPGEDPELGLEMTAGFGLGGLRLTALQAQPGSIVPTLVLAESLPGATTRQDQVEQFLARHKGPGLQHVGLYTPNIVEATEGVATAGGQFLAPPGAYYQQPGKERQIRAAGHEPHLLARQGILLDGDKGKFLLQVFTKSLFTEDTFFLELIQRQGATGFGQGNIRALWQSVQEQSARSQEA | May have dioxygenase activity.
Subcellular locations: Mitochondrion |
HPF1L_HUMAN | Homo sapiens | MVGGGWKRRPGAGAGPQCEKTVDVKKSKFCEADVSSDLRKEVENHYTLSLPEDFYHFWKFCEELDSEKPADPLSASLGLQLVDPYNILAGKHKMKKKSTVPNFNLHWRFYYDPPEFQTIIIRDKLSATWGISDRDSPDELPVYVGINEAKKNCIIVPNGDNVFAAVKLYLMKKLKEVTDKKKTNLFKNVDEKLTETARELGYSLEQRTMKMKQRDKKVVTKTFHGTGLVPPVDKNVVGYRELPETDADLKRICKTIVEAASDDERRKAFAPIQEMMTFVQFANDECDYGMGLELGMDLFCYGSHYFHKVAGQLLPLAYNLLKRNLFAEIMKDHLANRRKENIDQFAA | null |
HPF1_HUMAN | Homo sapiens | MVGGGGKRRPGGEGPQCEKTTDVKKSKFCEADVSSDLRKEVENHYKLSLPEDFYHFWKFCEELDPEKPSDSLSASLGLQLVGPYDILAGKHKTKKKSTGLNFNLHWRFYYDPPEFQTIIIGDNKTQYHMGYFRDSPDEFPVYVGINEAKKNCIIVPNGDNVFAAVKLFLTKKLREITDKKKINLLKNIDEKLTEAARELGYSLEQRTVKMKQRDKKVVTKTFHGAGLVVPVDKNDVGYRELPETDADLKRICKTIVEAASDEERLKAFAPIQEMMTFVQFANDECDYGMGLELGMDLFCYGSHYFHKVAGQLLPLAYNLLKRNLFAEIIEEHLANRSQENIDQLAA | Cofactor for serine ADP-ribosylation that confers serine specificity on PARP1 and PARP2 and plays a key role in DNA damage response ( ). Initiates the repair of double-strand DNA breaks: recruited to DNA damage sites by PARP1 and PARP2 and switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine residues, licensing serine ADP-ribosylation of target proteins ( , ). Serine ADP-ribosylation of target proteins, such as histones, promotes decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks ( , ). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage . HPF1 acts by completing the active site of PARP1 and PARP2: forms a composite active site composed of residues from HPF1 and PARP1 or PARP2 (, ). While HPF1 promotes the initiation of serine ADP-ribosylation, it restricts the polymerase activity of PARP1 and PARP2 in order to limit the length of poly-ADP-ribose chains ( ). HPF1 also promotes tyrosine ADP-ribosylation, probably by conferring tyrosine specificity on PARP1 (, ).
Subcellular locations: Chromosome, Nucleus
Localizes to DNA damage sites; chromatin localization is dependent on PARP1 and PARP2. |
HRC23_HUMAN | Homo sapiens | MHAFCVGQYLEPDQEGVTIPDLGSLSSPLIDTERNLGLLLGLHASYLAMSTPLSPVEIECAKWLQSSIFSGGLQTSQIHYSYNEEKDEDHCSSPGGTPASKSRLCSHRRALGDHSQAFLQAIADNNIQDHNVKDFLCQIERYCRQCHLTTPIMFPPEHPVEEVGRLLLCCLLKHEDLGHVALSLVHAGALGIEQVKHRTLPKSVVDVCRVVYQAKCSLIKTHQEQGRSYKEVCAPVIERLRFLFNELRPAVCNDLSIMSKFKLLSSLPHWRRIAQKIIREPRKKRVPKKPESTDDEEKIGNEESDLEEACILPHSPINVDKRPIAIKSPKDKWQPLLSTVTGVHKYKWLKQNVQGLYPQSPLLSTIAEFALKEEPVDVEKRKCLLKQLERAEVRLEGIDTILKLYLVSKNFLLPSVPYAMFCGWQRLIPEGIDIGEPLTDCLKDVDLIPPFNRMLLEVTFGKLYAWAVQNIRNVLVDASAKFKELGIQPVPLQTITNENPSGPSLGTIPQAHFLLVMLSMLTLQHSANNLDLLLNSGTLALAQTALRLIGPSCDSVEEDMNASAQGASATVLEETRKETAPVQLPVSGPELAAMMKIGTRVMRGVDWKWGDQDRPPPGLGRVIGELGEDGWIRVQWDTGSTNSYRMGKEGNYDLKLAELPAPAQPSAEDSDTEDDSEAEQTERNIHPTAMMFTSTINLLQTLCLSAGVHAEIMQSEATKTLCGLLQMLVYREQHRSWCTLGFVQSIALTLQVCGTLSSLQWITLLMKVVEGHAPFTATSLQRQILAVHLLQAVLPSWDKTERARDMKCLMEKLFDFLGSLLTMCSSDVPLLRESTLRRRRVCPQASLTATHSSTLAEEVVALLHTLHSLTQWNGLINKYINSQLRSITHSFAGRPSKGAQLEDYFPDSENPEVGGLMAVLAVVGGIDGRLCLGGQVVHDDFGEVTMTRITLKGKITVQFSDMRTCHVCPLNQLKPLPAVAFNVNNLPFTEPMLSVWAQLVNLAGSKLEKHKIKKSTKQAFAGQVDLDLLRCQQLKLYILKAGRALFSHQDKLRQILSQPAVQETGTVHTDDGAVVSPDLGDMSPEGPQPPMILLQQLLASATQPSPVKAIFDKQELEERMSRCCFWRRRTTKLEQILLFIRRMNSVCEKENTNATASN | null |
HRH3_HUMAN | Homo sapiens | MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFVADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTSSAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGGSSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAAGPEPPPEAQPSPPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGSVASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSLAVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFRRAFTKLLCPQKLKIQPHSSLEHCWK | The H3 subclass of histamine receptors could mediate the histamine signals in CNS and peripheral nervous system. Signals through the inhibition of adenylate cyclase and displays high constitutive activity (spontaneous activity in the absence of agonist). Agonist stimulation of isoform 3 neither modified adenylate cyclase activity nor induced intracellular calcium mobilization.
Subcellular locations: Cell membrane
Expressed predominantly in the CNS, with the greatest expression in the thalamus and caudate nucleus. The various isoforms are mainly coexpressed in brain, but their relative expression level varies in a region-specific manner. Isoform 3 and isoform 7 are highly expressed in the thalamus, caudate nucleus and cerebellum while isoform 5 and isoform 6 show a poor expression. Isoform 5 and isoform 6 show a high expression in the amygdala, substantia nigra, cerebral cortex and hypothalamus. Isoform 7 is not found in hypothalamus or substantia nigra. |
HRH4_HUMAN | Homo sapiens | MPDTNSTINLSLSTRVTLAFFMSLVAFAIMLGNALVILAFVVDKNLRHRSSYFFLNLAISDFFVGVISIPLYIPHTLFEWDFGKEICVFWLTTDYLLCTASVYNIVLISYDRYLSVSNAVSYRTQHTGVLKIVTLMVAVWVLAFLVNGPMILVSESWKDEGSECEPGFFSEWYILAITSFLEFVIPVILVAYFNMNIYWSLWKRDHLSRCQSHPGLTAVSSNICGHSFRGRLSSRRSLSASTEVPASFHSERQRRKSSLMFSSRTKMNSNTIASKMGSFSQSDSVALHQREHVELLRARRLAKSLAILLGVFAVCWAPYSLFTIVLSFYSSATGPKSVWYRIAFWLQWFNSFVNPLLYPLCHKRFQKAFLKIFCIKKQPLPSQHSRSVSS | The H4 subclass of histamine receptors could mediate the histamine signals in peripheral tissues. Displays a significant level of constitutive activity (spontaneous activity in the absence of agonist).
Subcellular locations: Cell membrane
Expressed primarily in the bone marrow and eosinophils. Shows preferential distribution in cells of immunological relevance such as T-cells, dendritic cells, monocytes, mast cells, neutrophils. Also expressed in a wide variety of peripheral tissues, including the heart, kidney, liver, lung, pancreas, skeletal muscle, prostate, small intestine, spleen, testis, colon, fetal liver and lymph node. |
HSP74_HUMAN | Homo sapiens | MSVVGIDLGFQSCYVAVARAGGIETIANEYSDRCTPACISFGPKNRSIGAAAKSQVISNAKNTVQGFKRFHGRAFSDPFVEAEKSNLAYDIVQLPTGLTGIKVTYMEEERNFTTEQVTAMLLSKLKETAESVLKKPVVDCVVSVPCFYTDAERRSVMDATQIAGLNCLRLMNETTAVALAYGIYKQDLPALEEKPRNVVFVDMGHSAYQVSVCAFNRGKLKVLATAFDTTLGGRKFDEVLVNHFCEEFGKKYKLDIKSKIRALLRLSQECEKLKKLMSANASDLPLSIECFMNDVDVSGTMNRGKFLEMCNDLLARVEPPLRSVLEQTKLKKEDIYAVEIVGGATRIPAVKEKISKFFGKELSTTLNADEAVTRGCALQCAILSPAFKVREFSITDVVPYPISLRWNSPAEEGSSDCEVFSKNHAAPFSKVLTFYRKEPFTLEAYYSSPQDLPYPDPAIAQFSVQKVTPQSDGSSSKVKVKVRVNVHGIFSVSSASLVEVHKSEENEEPMETDQNAKEEEKMQVDQEEPHVEEQQQQTPAENKAESEEMETSQAGSKDKKMDQPPQAKKAKVKTSTVDLPIENQLLWQIDREMLNLYIENEGKMIMQDKLEKERNDAKNAVEEYVYEMRDKLSGEYEKFVSEDDRNSFTLKLEDTENWLYEDGEDQPKQVYVDKLAELKNLGQPIKIRFQESEERPKLFEELGKQIQQYMKIISSFKNKEDQYDHLDAADMTKVEKSTNEAMEWMNNKLNLQNKQSLTMDPVVKSKEIEAKIKELTSTCSPIISKPKPKVEPPKEEQKNAEQNGPVDGQGDNPGPQAAEQGTDTAVPSDSDKKLPEMDID | Subcellular locations: Cytoplasm |
HSP74_PONAB | Pongo abelii | MSVVGIDLGFQSCYVAVARAGGIETIANEYSDRCTPACISFGPKNRSIGAAAKSQVISNAKNTVQGFKRFHGRAFSDPFVEAEKSNLAYDVVQLPTGLTGIKVTYMEEERNFTTEQVTAMLLSKLKETAESVLKKPVVDCVVSVPCFYTDAERRSVMDATQIAGLNCLRLMNETTAVALAYGIYKQDLPALEEKPRNVVFVDMGHSAYQVSVCAFNRGKLKVLATAFDTTLGGRKFDEVLVNHFCEEFGKKYKLDIKSKIRALLRLSQECEKLKKLMSANASDLPLSIECFMNDVDVSGTMNRGKFLEMCNDLLARVEPPLRSVLEQTKLKKEDIYAVEIVGGATRIPAVKEKISKFFGKELSTTLNADEAVTRGCALQCAILSPAFKVREFSITDVVPYPISLRWNSPAEEGSSDCEVFSKNHAAPFSKVLTFYRKEPFTLEAYYSSPQDLPYPDPAIAQFSVQKVTPQSDGSSSKVKVKVRVNVHGIFSVSSASLVEVHKSEENEEPMETDQNAKEEEKMQVDQEEPHVEEQQQQTPAENKAESEEMETSQAGSKDKKMDQPPQAKKAKVKTSTVDLPIENQLLWQIDREMLNLYIENEGKMIMQDKLEKERNDAKNAVEEYVYEMRDKLSGEYEKFVSEDDRNSFTLKLEDTENWLYEDGEDQPKQVYVDKLAELKNLGQPIKIRFQESEERPKLFEELGKQIQQYMKIISSFKNKEDQYDHLDAADMTKVEKSTNEAMEWMNNKLNLQNKQSLTMDPVVKSKEIEAKIKELTSICSPIISKPKPKVEPPKEEQKNAEQNGPVDGQGDNPGPQAAEQGTDAAVPSDSDKKLPEMDID | Subcellular locations: Cytoplasm |
HUTU_HUMAN | Homo sapiens | MSSLQALCSGLPLRPLPENRGRQAGVPHAPVRTPSLSPVEKQLALRNALRYFPPDVQELLAPEFAQELQLYGHIYMYRFCPDIEMRAYPIEQYPCQTKVAAAIMHMIMNNLDPAVAQFPQELVTYGGNGQVFSNWAQFWLTMFYLSKMTEEQTLVMYSGHPLGLFPSSRSAPRLVITNGMVIPNYSSRTEYEKLFALGVTMYGQMTAGSYCYIGPQGIVHGTVLTVLNAARRYLGIEDLAGKVFVTSGLGGMSGAQAKAAVIVGCIGVIAEVDKAALEKRHRQGWLMEVTDSLDRCIQRLREARKKKEVLSLGYHGNVVALWERLVHELDTTGECLVDLGSDQTSCHNPFNGGYYPVQLSFTEAQSLMASNPAVFKDLVQESLRRQVSAINRLAEEKFFFWDYGNAFLLEAQRAGADVEKKGAGRTEFRYPSYVQHIMGDIFSQGFGPFRWVCTSGDPQDLAVTDELATSVLEEAIADGVKVSVKLQYMDNIRWIREAARHRLVVGSQARILYSDQKGRVAIAVAINQAIACRRIKAPVVLSRDHHDVSGTDSPFRETSNIYDGSAFCADMAVQNFVGDACRGATWVALHNGGGVGWGEVINGGFGLVLDGTPEAEGRARLMLSWDVSNGVARRCWSGNQKAYEIICQTMQENSTLVVTLPHKVEDERVLQQALQL | null |
HV372_HUMAN | Homo sapiens | MEFGLSWVFLVVILQGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFSDHYMDWVRQAPGKGLEWVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCAR | V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ).
Subcellular locations: Secreted, Cell membrane |
HV373_HUMAN | Homo sapiens | MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAMHWVRQASGKGLEWVGRIRSKANSYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTR | V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ).
Subcellular locations: Secreted, Cell membrane |
HV374_HUMAN | Homo sapiens | MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAR | V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ).
Subcellular locations: Secreted, Cell membrane |
Subsets and Splits