protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
GPX3_HUMAN
Homo sapiens
MARLLQASCLLSLLLAGFVSQSRGQEKSKMDCHGGISGTIYEYGALTIDGEEYIPFKQYAGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVILGFPCNQFGKQEPGENSEILPTLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGIPIMRWHHRTTVSNVKMDILSYMRRQAALGVKRK
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. Subcellular locations: Secreted Secreted in plasma.
GPX3_HYLLA
Hylobates lar
MARLLQASCLLSLLLAGFVPQSRGQEKSKMDCHGGMSSTIYEYGALTIDGEEYIPFKQYAGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVILGFPCNQFGKQEPGENSEILPTLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGTPIMRWHHRTTVSNVKMDILSYMRRQAALGVKRK
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. Subcellular locations: Secreted Secreted in plasma.
GPX3_MACFU
Macaca fuscata fuscata
MARLLQASCLLSLLLAGFLPQSRGQDKSKMDCHGGVSGTIYEYGALTIDGEEYIPFKQYIGKYVLFVNVASYUGLTGQYIELNALQEELAPFGLVLLGFPCNQFGKQEPGENSEILPSLKYVRPGGGFVPNFQLFEKGDVNGEKEQKFYTFLKNSCPPTSELLGTSDRLFWEPMKVHDIRWNFEKFLVGPDGIPVMRWHHRTTISNVKMDILSYMRRQAALGVKRK
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. Subcellular locations: Secreted Expressed intensively in the kidney and adrenal gland, and weakly in the cerebellum, heart, and lung. Secreted in plasma.
GRB7_HUMAN
Homo sapiens
MELDLSPPHLSSSPEDLCPAPGTPPGTPRPPDTPLPEEVKRSQPLLIPTTGRKLREEERRATSLPSIPNPFPELCSPPSQSPILGGPSSARGLLPRDASRPHVVKVYSEDGACRSVEVAAGATARHVCEMLVQRAHALSDETWGLVECHPHLALERGLEDHESVVEVQAAWPVGGDSRFVFRKNFAKYELFKSSPHSLFPEKMVSSCLDAHTGISHEDLIQNFLNAGSFPEIQGFLQLRGSGRKLWKRFFCFLRRSGLYYSTKGTSKDPRHLQYVADVNESNVYVVTQGRKLYGMPTDFGFCVKPNKLRNGHKGLRIFCSEDEQSRTCWLAAFRLFKYGVQLYKNYQQAQSRHLHPSCLGSPPLRSASDNTLVAMDFSGHAGRVIENPREALSVALEEAQAWRKKTNHRLSLPMPASGTSLSAAIHRTQLWFHGRISREESQRLIGQQGLVDGLFLVRESQRNPQGFVLSLCHLQKVKHYLILPSEEEGRLYFSMDDGQTRFTDLLQLVEFHQLNRGILPCLLRHCCTRVAL
Adapter protein that interacts with the cytoplasmic domain of numerous receptor kinases and modulates down-stream signaling. Promotes activation of down-stream protein kinases, including STAT3, AKT1, MAPK1 and/or MAPK3. Promotes activation of HRAS. Plays a role in signal transduction in response to EGF. Plays a role in the regulation of cell proliferation and cell migration. Plays a role in the assembly and stability of RNA stress granules. Binds to the 5'UTR of target mRNA molecules and represses translation of target mRNA species, when not phosphorylated. Phosphorylation impairs RNA binding and promotes stress granule disassembly during recovery after cellular stress (By similarity). Subcellular locations: Cytoplasm, Cell junction, Focal adhesion, Cell membrane, Cytoplasmic granule, Cell projection Predominantly cytoplasmic. Detected in stress granules, where mRNA is stored under stress conditions.
GREM1_HUMAN
Homo sapiens
MSRTAYTVGALLLLLGTLLPAAEGKKKGSQGAIPPPDKAQHNDSEQTQSPQQPGSRNRGRGQGRGTAMPGEEVLESSQEALHVTERKYLKRDWCKTQPLKQTIHEEGCNSRTIINRFCYGQCNSFYIPRHIRKEEGSFQSCSFCKPKKFTTMMVTLNCPELQPPTKKKRVTRVKQCRCISIDLD
Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) . Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity). Subcellular locations: Secreted Highly expressed in small intestine, fetal brain and colon. Expression is restricted to intestinal subepithelial myofibroblasts (ISEMFs) at the crypt base. In subjects with HMPS1, by contrast, GREM1 is expressed, not only in basal ISEMFs, but also at very high levels in epithelial cells (predominantly colonocytes), with expression extending most of the way up the sides of the crypt. Weakly expressed in brain, ovary, prostate, pancreas and skeletal muscle. In brain found in the region localized around the internal capsule in the large subcortical nuclei, including caudate, putamen, substantia nigra, thalamus and subthalamus. Predominantly expressed in normal cells including neurons, astrocytes and fibroblasts.
GREM1_MACMU
Macaca mulatta
MSRTAYTVGALLLLLGTLLPAAEGKKKGSQGAIPPPDKAQHNDSEQTQSPQQPGSRNRGRGQGRGTAMPGEEVLESSQEALHVTERKYLKRDWCKTQPLKQTIHEEGCNSRTIINRFCYGQCNSFYIPRHIRKEEGSFQSCSFCKPKKFTTMMVTLNCPELQPPTKKKRVTRVKQCRCISIDLD
Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) (By similarity). Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity). Subcellular locations: Secreted
GREM2_HUMAN
Homo sapiens
MFWKLSLSLFLVAVLVKVAEARKNRPAGAIPSPYKDGSSNNSERWQHQIKEVLASSQEALVVTERKYLKSDWCKTQPLRQTVSEEGCRSRTILNRFCYGQCNSFYIPRHVKKEEESFQSCAFCKPQRVTSVLVELECPGLDPPFRLKKIQKVKQCRCMSVNLSDSDKQ
Cytokine that inhibits the activity of BMP2 and BMP4 in a dose-dependent manner, and thereby modulates signaling by BMP family members. Contributes to the regulation of embryonic morphogenesis via BMP family members. Antagonizes BMP4-induced suppression of progesterone production in granulosa cells. Subcellular locations: Secreted
GREP1_HUMAN
Homo sapiens
MGAWAFPAALFLLCLTSESLQGGLPLLPPGLGKVYGPHSGLGAGYDGGVKPQKPGFVVRHGLGTQPDTEGGMKPQNLGFRTFAGAAAQPGYGNGLGAAAFPVAGAQSGPAAQNGFGPGFGGGGKPQKPGPTTQNGYRPGYVGAVKPQKPGFQYRIGLGAQPGFRGDMKAQEPGLGNGNGLSAQPVLTAQNRFGFGAGLGGNVKPLKPGYGKRLRAGAFPGAGTQPEYGHGNGPGVQPGLGAGMKPQMPGLGAPNGYGPGRGRAGVPGGPERRPWVPHLLPFSSPGYLGVMKAQKPGPLAQNGYRAGAGEGMKPQKPGLRGTLKPQKSGHGHENGPWPGPCNARVAPMLLPRLPTPGVPSDKEGGWGLKSQPPSAVQNGKLPAPMPAIQWGLKPQKAGHQPPNGYGPGAEPGFNGGLEPQKIGLGYGNGVLGARVFPEAHPQPGFHGANGFRNRDGVEALVYPKAAALAPEGNGQAGVLWNSRWPTLQAWGAGLKPGYQAGDEYAEARSQPGGPDVKRGSNGQLGNGYGGRCPLGKC
null
GRN_HUMAN
Homo sapiens
MWTLVSWVALTAGLVAGTRCPDGQFCPVACCLDPGGASYSCCRPLLDKWPTTLSRHLGGPCQVDAHCSAGHSCIFTVSGTSSCCPFPEAVACGDGHHCCPRGFHCSADGRSCFQRSGNNSVGAIQCPDSQFECPDFSTCCVMVDGSWGCCPMPQASCCEDRVHCCPHGAFCDLVHTRCITPTGTHPLAKKLPAQRTNRAVALSSSVMCPDARSRCPDGSTCCELPSGKYGCCPMPNATCCSDHLHCCPQDTVCDLIQSKCLSKENATTDLLTKLPAHTVGDVKCDMEVSCPDGYTCCRLQSGAWGCCPFTQAVCCEDHIHCCPAGFTCDTQKGTCEQGPHQVPWMEKAPAHLSLPDPQALKRDVPCDNVSSCPSSDTCCQLTSGEWGCCPIPEAVCCSDHQHCCPQGYTCVAEGQCQRGSEIVAGLEKMPARRASLSHPRDIGCDQHTSCPVGQTCCPSLGGSWACCQLPHAVCCEDRQHCCPAGYTCNVKARSCEKEVVSAQPATFLARSPHVGVKDVECGEGHFCHDNQTCCRDNRQGWACCPYRQGVCCADRRHCCPAGFRCAARGTKCLRREAPRWDAPLRDPALRQLL
Secreted protein that acts as a key regulator of lysosomal function and as a growth factor involved in inflammation, wound healing and cell proliferation ( ). Regulates protein trafficking to lysosomes and, also the activity of lysosomal enzymes (, ). Facilitates also the acidification of lysosomes, causing degradation of mature CTSD by CTSB . In addition, functions as a wound-related growth factor that acts directly on dermal fibroblasts and endothelial cells to promote division, migration and the formation of capillary-like tubule structures (By similarity). Also promotes epithelial cell proliferation by blocking TNF-mediated neutrophil activation preventing release of oxidants and proteases . Moreover, modulates inflammation in neurons by preserving neurons survival, axonal outgrowth and neuronal integrity . Promotes proliferation of the epithelial cell line A431 in culture. Inhibits epithelial cell proliferation and induces epithelial cells to secrete IL-8. Stabilizes CTSD through interaction with CTSD leading to maintain its aspartic-type peptidase activity. Subcellular locations: Secreted, Lysosome Endocytosed by SORT1 and delivred to lysosomes (, ). Targeted to lysosome by PSAP via M6PR and LRP1, in both biosynthetic and endocytic pathways (, ). Co-localized with GBA1 in the intracellular trafficking compartments until to lysosome (By similarity). In myelogenous leukemic cell lines of promonocytic, promyelocytic, and proerythroid lineage, in fibroblasts, and very strongly in epithelial cell lines. Present in inflammatory cells and bone marrow. Highest levels in kidney.
GSHR_HUMAN
Homo sapiens
MALLPRALSAGAGPSWRRAARAFRGFLLLLPEPAALTRALSRAMACRQEPQPQGPPPAAGAVASYDYLVIGGGSGGLASARRAAELGARAAVVESHKLGGTCVNVGCVPKKVMWNTAVHSEFMHDHADYGFPSCEGKFNWRVIKEKRDAYVSRLNAIYQNNLTKSHIEIIRGHAAFTSDPKPTIEVSGKKYTAPHILIATGGMPSTPHESQIPGASLGITSDGFFQLEELPGRSVIVGAGYIAVEMAGILSALGSKTSLMIRHDKVLRSFDSMISTNCTEELENAGVEVLKFSQVKEVKKTLSGLEVSMVTAVPGRLPVMTMIPDVDCLLWAIGRVPNTKDLSLNKLGIQTDDKGHIIVDEFQNTNVKGIYAVGDVCGKALLTPVAIAAGRKLAHRLFEYKEDSKLDYNNIPTVVFSHPPIGTVGLTEDEAIHKYGIENVKTYSTSFTPMYHAVTKRKTKCVMKMVCANKEEKVVGIHMQGLGCDEMLQGFAVAVKMGATKADFDNTVAIHPTSSEELVTLR
Maintains high levels of reduced glutathione in the cytosol. Subcellular locations: Mitochondrion Subcellular locations: Cytoplasm
GT251_HUMAN
Homo sapiens
MAAAPRAGRRRGQPLLALLLLLLAPLPPGAPPGADAYFPEERWSPESPLQAPRVLIALLARNAAHALPTTLGALERLRHPRERTALWVATDHNMDNTSTVLREWLVAVKSLYHSVEWRPAEEPRSYPDEEGPKHWSDSRYEHVMKLRQAALKSARDMWADYILFVDADNLILNPDTLSLLIAENKTVVAPMLDSRAAYSNFWCGMTSQGYYKRTPAYIPIRKRDRRGCFAVPMVHSTFLIDLRKAASRNLAFYPPHPDYTWSFDDIIVFAFSCKQAEVQMYVCNKEEYGFLPVPLRAHSTLQDEAESFMHVQLEVMVKHPPAEPSRFISAPTKTPDKMGFDEVFMINLRRRQDRRERMLRALQAQEIECRLVEAVDGKAMNTSQVEALGIQMLPGYRDPYHGRPLTKGELGCFLSHYNIWKEVVDRGLQKSLVFEDDLRFEIFFKRRLMNLMRDVEREGLDWDLIYVGRKRMQVEHPEKAVPRVRNLVEADYSYWTLAYVISLQGARKLLAAEPLSKMLPVDEFLPVMFDKHPVSEYKAHFSLRNLHAFSVEPLLIYPTHYTGDDGYVSDTETSVVWNNEHVKTDWDRAKSQKMREQQALSREAKNSDVLQSPLDSAARDEL
Beta-galactosyltransferase that transfers beta-galactose to hydroxylysine residues of type I collagen ( ). By acting on collagen glycosylation, facilitates the formation of collagen triple helix . Also involved in the biosynthesis of collagen type IV . Subcellular locations: Endoplasmic reticulum lumen Colocalized with PLOD3 and mannose binding lectin/MBL2. Ubiquitous with higher levels in placenta, heart, lung and spleen.
GT252_HUMAN
Homo sapiens
MAARPAATLAWSLLLLSSALLREGCRARFVAERDSEDDGEEPVVFPESPLQSPTVLVAVLARNAAHTLPHFLGCLERLDYPKSRMAIWAATDHNVDNTTEIFREWLKNVQRLYHYVEWRPMDEPESYPDEIGPKHWPTSRFAHVMKLRQAALRTAREKWSDYILFIDVDNFLTNPQTLNLLIAENKTIVAPMLESRGLYSNFWCGITPKGFYKRTPDYVQIREWKRTGCFPVPMVHSTFLIDLRKEASDKLTFYPPHQDYTWTFDDIIVFAFSSRQAGIQMYLCNREHYGYLPIPLKPHQTLQEDIENLIHVQIEAMIDRPPMEPSQYVSVVPKYPDKMGFDEIFMINLKRRKDRRDRMLRTLYEQEIEVKIVEAVDGKALNTSQLKALNIEMLPGYRDPYSSRPLTRGEIGCFLSHYSVWKEVIDRELEKTLVIEDDVRFEHQFKKKLMKLMDNIDQAQLDWELIYIGRKRMQVKEPEKAVPNVANLVEADYSYWTLGYVISLEGAQKLVGANPFGKMLPVDEFLPVMYNKHPVAEYKEYYESRDLKAFSAEPLLIYPTHYTGQPGYLSDTETSTIWDNETVATDWDRTHAWKSRKQSRIYSNAKNTEALPPPTSLDTVPSRDEL
Beta-galactosyltransferase that transfers beta-galactose to hydroxylysine residues of collagen. Subcellular locations: Endoplasmic reticulum lumen Expressed in brain and skeletal muscle.
GTPB3_HUMAN
Homo sapiens
MWRGLWTLAAQAARGPRRLCTRRSSGAPAPGSGATIFALSSGQGRCGIAVIRTSGPASGHALRILTAPRDLPLARHASLRLLSDPRSGEPLDRALVLWFPGPQSFTGEDCVEFHVHGGPAVVSGVLQALGSVPGLRPAEAGEFTRRAFANGKLNLTEVEGLADLIHAETEAQRRQALRQLDGELGHLCRGWAETLTKALAHVEAYIDFGEDDNLEEGVLEQADIEVRALQVALGAHLRDARRGQRLRSGVHVVVTGPPNAGKSSLVNLLSRKPVSIVSPEPGTTRDVLETPVDLAGFPVLLSDTAGLREGVGPVEQEGVRRARERLEQADLILAMLDASDLASPSSCNFLATVVASVGAQSPSDSSQRLLLVLNKSDLLSPEGPGPGPDLPPHLLLSCLTGEGLDGLLEALRKELAAVCGDPSTDPPLLTRARHQHHLQGCLDALGHYKQSKDLALAAEALRVARGHLTRLTGGGGTEEILDIIFQDFCVGK
GTPase involved in the 5-carboxymethylaminomethyl modification (mnm(5)s(2)U34) of the wobble uridine base in mitochondrial tRNAs. Subcellular locations: Mitochondrion Ubiquitously expressed.
GTPB4_HUMAN
Homo sapiens
MAHYNFKKITVVPSAKDFIDLTLSKTQRKTPTVIHKHYQIHRIRHFYMRKVKFTQQNYHDRLSQILTDFPKLDDIHPFYADLMNILYDKDHYKLALGQINIAKNLVDNVAKDYVRLMKYGDSLYRCKQLKRAALGRMCTVIKRQKQSLEYLEQVRQHLSRLPTIDPNTRTLLLCGYPNVGKSSFINKVTRADVDVQPYAFTTKSLFVGHMDYKYLRWQVVDTPGILDHPLEDRNTIEMQAITALAHLRAAVLYVMDLSEQCGHGLREQLELFQNIRPLFINKPLIVVANKCDVKRIAELSEDDQKIFTDLQSEGFPVIETSTLTEEGVIKVKTEACDRLLAHRVETKMKGNKVNEVLNRLHLAIPTRRDDKERPPFIPEGVVARRKRMETEESRKKRERDLELEMGDDYILDLQKYWDLMNLSEKHDKIPEIWEGHNIADYIDPAIMKKLEELEKEEELRTAAGEYDSVSESEDEEMLEIRQLAKQIREKKKLKILESKEKNTQGPRMPRTAKKVQRTVLEKEMRSLGVDMDDKDDAHYAVQARRSRSITRKRKREDSAPPSSVARSGSCSRTPRDVSGLRDVKMVKKAKTMMKNAQKKMNRLGKKGEADRHVFDMKPKHLLSGKRKAGKKDRR
Involved in the biogenesis of the 60S ribosomal subunit . Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest . Subcellular locations: Nucleus, Nucleolus
GTPB6_HUMAN
Homo sapiens
MWALRAAVRPGLRLSRVGRGRSAPRAAAPSCPARALAAVGRRSPGNLEGPWGGGRGLRADGGRSRTGDDEEEPEDADENAEEELLRGEPLLPAGTQRVCLVHPDVKWGPGKSQMTRAEWQVAEATALVHTLDGWSVVQTMVVSTKTPDRKLIFGKGNFEHLTEKIRGSPDITCVFLNVERMAAPTKKELEAAWGVEVFDRFTVVLHIFRCNARTKEARLQVALAEMPLHRSNLKRDVAHLYRGVGSRYIMGSGESFMQLQQRLLREKEAKIRKALDRLRKKRHLLRRQRTRREFPVISVVGYTNCGKTTLIKALTGDAAIQPRDQLFATLDVTAHAGTLPSRMTVLYVDTIGFLSQLPHGLIESFSATLEDVAHSDLILHVRDVSHPEAELQKCSVLSTLRGLQLPAPLLDSMVEVHNKVDLVPGYSPTEPNVVPVSALRGHGLQELKAELDAAVLKATGRQILTLRVRLAGAQLSWLYKEATVQEVDVIPEDGAADVRVIISNSAYGKFRKLFPG
Ubiquitously expressed.
GTPB8_HUMAN
Homo sapiens
MAAPGLRLGAGRLFEMPAVLERLSRYNSTSQAFAEVLRLPKQQLRKLLYPLQEVERFLAPYGRQDLHLRIFDPSPEDIARADNIFTATERNRIDYVSSAVRIDHAPDLPRPEVCFIGRSNVGKSSLIKALFSLAPEVEVRVSKKPGHTKKMNFFKVGKHFTVVDMPGYGFRAPEDFVDMVETYLKERRNLKRTFLLVDSVVGIQKTDNIAIEMCEEFALPYVIVLTKIDKSSKGHLLKQVLQIQKFVNMKTQGCFPQLFPVSAVTFSGIHLLRCFIASVTGSLD
null
GULP1_HUMAN
Homo sapiens
MNRAFSRKKDKTWMHTPEALSKHFIPYNAKFLGSTEVEQPKGTEVVRDAVRKLKFARHIKKSEGQKIPKVELQISIYGVKILEPKTKEVQHNCQLHRISFCADDKTDKRIFTFICKDSESNKHLCYVFDSEKCAEEITLTIGQAFDLAYRKFLESGGKDVETRKQIAGLQKRIQDLETENMELKNKVQDLENQLRITQVSAPPAGSMTPKSPSTDIFDMIPFSPISHQSSMPTRNGTQPPPVPSRSTEIKRDLFGAEPFDPFNCGAADFPPDIQSKLDEMQEGFKMGLTLEGTVFCLDPLDSRC
May function as an adapter protein. Required for efficient phagocytosis of apoptotic cells. Modulates cellular glycosphingolipid and cholesterol transport. May play a role in the internalization and endosomal trafficking of various LRP1 ligands, such as PSAP. Increases cellular levels of GTP-bound ARF6. Subcellular locations: Cytoplasm May associate with the cytoplasmic side of the plasma membrane and early endosomes. Widely expressed. Detected in macrophages, pancreas, kidney, skeletal muscle, heart, colon, intestine, lung, placenta and ovary.
GUSP1_HUMAN
Homo sapiens
MDRSNPVKPALDYFSNRLVNYQISVKCSNQFKLEVCLLNAENKVVDNQAGTQGQLKVLGANLWWPYLMHEHPASLYSWEDGDCSHQSLGPLPACDLCDQLHLRSRQGGSVCGCDPCEQLLLLVSQLRAPGVDSAAAGRPV
Ubiquitous.
GYS1_HUMAN
Homo sapiens
MPLNRTLSMSSLPGLEDWEDEFDLENAVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGDNYFLVGPYTEQGVRTQVELLEAPTPALKRTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKPHVVAHFHEWLAGVGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQHLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVAFFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPNEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDGERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN
Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. Expressed in skeletal muscle and most other cell types where glycogen is present.
GYS1_MACMU
Macaca mulatta
MPLNRTLSMSSLPGLEDWEDEFDLENTVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGDNYYLVGPYTEQGVRTQVELLEAPTPALKKTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKPHVVAHFHEWLAGIGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQHLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVALFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPSEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDSERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN
Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan.
GYS1_PONAB
Pongo abelii
MPLNRTLSMSSLPGLEDWEDEFDLENAVLFEVAWEVANKVGGIYTVLQTKAKVTGDEWGANYFLVGPYTEQGVRTQVELLEAPTPALKRTLDSMNSKGCKVYFGRWLIEGGPLVVLLDVGASAWALERWKGELWDTCNIGVPWYDREANDAVLFGFLTTWFLGEFLAQSEEKLHVVAHFHEWLAGIGLCLCRARRLPVATIFTTHATLLGRYLCAGAVDFYNNLENFNVDKEAGERQIYHRYCMERAAAHCAHVFTTVSQITAIEAQYLLKRKPDIVTPNGLNVKKFSAMHEFQNLHAQSKARIQEFVRGHFYGHLDFNLDKTLYFFIAGRYEFSNKGADVFLEALARLNYLLRVNGSEQTVVAFFIMPARTNNFNVETLKGQAVRKQLWDTANTVKEKFGRKLYESLLVGSLPDMNKMLDKEDFTMMKRAIFATQRQSFPPVCTHNMLDDSSDPILTTIRRIGLFNSSADRVKVIFHPEFLSSTSPLLPVDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSISTNLSGFGCFMEEHIADPSAYGIYILDRRFRSLDDSCSQLTSFLYSFCQQSRRQRIIQRNRTERLSDLLDWKYLGRYYMSARHMALSKAFPEHFTYEPNEADAAQGYRYPRPASVPPSPSLSRHSSPHQSEDEEDPRNGPLEEDGERYDEDEEAAKDRRNIRAPEWPRRASCTSSTSGSKRNSVDTATSSSLSTPSEPLSPTSSLGEERN
Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan.
GYS2_HUMAN
Homo sapiens
MLRGRSLSVTSLGGLPQWEVEELPVEELLLFEVAWEVTNKVGGIYTVIQTKAKTTADEWGENYFLIGPYFEHNMKTQVEQCEPVNDAVRRAVDAMNKHGCQVHFGRWLIEGSPYVVLFDIGYSAWNLDRWKGDLWEACSVGIPYHDREANDMLIFGSLTAWFLKEVTDHADGKYVVAQFHEWQAGIGLILSRARKLPIATIFTTHATLLGRYLCAANIDFYNHLDKFNIDKEAGERQIYHRYCMERASVHCAHVFTTVSEITAIEAEHMLKRKPDVVTPNGLNVKKFSAVHEFQNLHAMYKARIQDFVRGHFYGHLDFDLEKTLFLFIAGRYEFSNKGADIFLESLSRLNFLLRMHKSDITVMVFFIMPAKTNNFNVETLKGQAVRKQLWDVAHSVKEKFGKKLYDALLRGEIPDLNDILDRDDLTIMKRAIFSTQRQSLPPVTTHNMIDDSTDPILSTIRRIGLFNNRTDRVKVILHPEFLSSTSPLLPMDYEEFVRGCHLGVFPSYYEPWGYTPAECTVMGIPSVTTNLSGFGCFMQEHVADPTAYGIYIVDRRFRSPDDSCNQLTKFLYGFCKQSRRQRIIQRNRTERLSDLLDWRYLGRYYQHARHLTLSRAFPDKFHVELTSPPTTEGFKYPRPSSVPPSPSGSQASSPQSSDVEDEVEDERYDEEEEAERDRLNIKSPFSLSHVPHGKKKLHGEYKN
Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. Specifically expressed in liver (at protein level).
H2AV_HUMAN
Homo sapiens
MAGGKAGKDSGKAKAKAVSRSQRAGLQFPVGRIHRHLKTRTTSHGRVGATAAVYSAAILEYLTAEVLELAGNASKDLKVKRITPRHLQLAIRGDEELDSLIKATIAGGGVIPHIHKSLIGKKGQQKTA
Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division (By similarity). Subcellular locations: Nucleus, Chromosome
H2AW_HUMAN
Homo sapiens
MSGRSGKKKMSKLSRSARAGVIFPVGRLMRYLKKGTFKYRISVGAPVYMAAVIEYLAAEILELAGNAARDNKKARIAPRHILLAVANDEELNQLLKGVTIASGGVLPRIHPELLAKKRGTKGKSETILSPPPEKRGRKATSGKKGGKKSKAAKPRTSKKSKPKDSDKEGTSNSTSEDGPGDGFTILSSKSLVLGQKLSLTQSDISHIGSMRVEGIVHPTTAEIDLKEDIGKALEKAGGKEFLETVKELRKSQGPLEVAEAAVSQSSGLAAKFVIHCHIPQWGSDKCEEQLEETIKNCLSAAEDKKLKSVAFPPFPSGRNCFPKQTAAQVTLKAISAHFDDSSASSLKNVYFLLFDSESIGIYVQEMAKLDAK
Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. Subcellular locations: Nucleus, Chromosome Enriched in inactive X chromosome chromatin (, ) and in senescence-associated heterochromatin .
H2B1D_HUMAN
Homo sapiens
MPEPTKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1H_HUMAN
Homo sapiens
MPDPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1J_HUMAN
Homo sapiens
MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. Subcellular locations: Nucleus, Chromosome
H2B1K_HUMAN
Homo sapiens
MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. Subcellular locations: Nucleus, Chromosome
H2B1K_MACFA
Macaca fascicularis
MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKRVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSAK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1L_HUMAN
Homo sapiens
MPELAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIASEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1M_HUMAN
Homo sapiens
MPEPVKSAPVPKKGSKKAINKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1N_HUMAN
Homo sapiens
MPEPSKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H2B1O_HUMAN
Homo sapiens
MPDPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H4_HUMAN
Homo sapiens
MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Subcellular locations: Nucleus, Chromosome
H4_MACFA
Macaca fascicularis
MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). Subcellular locations: Nucleus, Chromosome
HAT1_HUMAN
Homo sapiens
MAGFGAMEKFLVEYKSAVEKKLAEYKCNTNTAIELKLVRFPEDLENDIRTFFPEYTHQLFGDDETAFGYKGLKILLYYIAGSLSTMFRVEYASKVDENFDCVEADDVEGKIRQIIPPGFCTNTNDFLSLLEKEVDFKPFGTLLHTYSVLSPTGGENFTFQIYKADMTCRGFREYHERLQTFLMWFIETASFIDVDDERWHYFLVFEKYNKDGATLFATVGYMTVYNYYVYPDKTRPRVSQMLILTPFQGQGHGAQLLETVHRYYTEFPTVLDITAEDPSKSYVKLRDFVLVKLCQDLPCFSREKLMQGFNEDMVIEAQQKFKINKQHARRVYEILRLLVTDMSDAEQYRSYRLDIKRRLISPYKKKQRDLAKMRKCLRPEELTNQMNQIEISMQHEQLEESFQELVEDYRRVIERLAQE
Histone acetyltransferase that plays a role in different biological processes including cell cycle progression, glucose metabolism, histone production or DNA damage repair ( , ). Coordinates histone production and acetylation via H4 promoter binding . Acetylates histone H4 at 'Lys-5' (H4K5ac) and 'Lys-12' (H4K12ac) and, to a lesser extent, histone H2A at 'Lys-5' (H2AK5ac) (, ). Drives H4 production by chromatin binding to support chromatin replication and acetylation. Since transcription of H4 genes is tightly coupled to S-phase, plays an important role in S-phase entry and progression . Promotes homologous recombination in DNA repair by facilitating histone turnover and incorporation of acetylated H3.3 at sites of double-strand breaks . In addition, acetylates other substrates such as chromatin-related proteins . Acetylates also RSAD2 which mediates the interaction of ubiquitin ligase UBE4A with RSAD2 leading to RSAD2 ubiquitination and subsequent degradation . (Microbial infection) Contributes to hepatitis B virus (HBV) replication by acetylating histone H4 at the sites of 'Lys-5' and 'Lys-12' on the covalently closed circular DNA (cccDNA) minichromosome leading to its accumulation within the host cell. Subcellular locations: Nucleus matrix, Mitochondrion Subcellular locations: Cytoplasm, Nucleus, Nucleus matrix, Nucleus, Nucleoplasm Localization is predominantly nuclear in normal cells. Treatment with hydrogen peroxide or ionizing radiation enhances nuclear localization through redistribution of existing protein.
HBA_NYCCO
Nycticebus coucang
VLSPADKTNVKAAWEKVGSHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKAHGKKVADALTNAVSHVDDMPSALSALSDLHAHKLRVDPVNFKLLSHCLLVTLACHHPADFTPAVHASLDKFLASVSTVLTSKYR
Involved in oxygen transport from the lung to the various peripheral tissues. Hemopressin acts as an antagonist peptide of the cannabinoid receptor CNR1. Hemopressin-binding efficiently blocks cannabinoid receptor CNR1 and subsequent signaling. Red blood cells.
HBB_PONPY
Pongo pygmaeus
VCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH
Involved in oxygen transport from the lung to the various peripheral tissues. Red blood cells.
HBB_SAGMY
Saguinus mystax
VHLTGEEKSAVTTLWGKVNVEEVGGEALGRLLVVYPWTQRFFDSFGDLSSPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH
Involved in oxygen transport from the lung to the various peripheral tissues. Red blood cells.
HBB_SAGOE
Saguinus oedipus
VHLTGEEKSAVTTLWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH
Involved in oxygen transport from the lung to the various peripheral tissues. Red blood cells.
HBB_SAISC
Saimiri sciureus
MVHLTGDEKAAVTALWGKVNVEDVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMNNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH
Involved in oxygen transport from the lung to the various peripheral tissues. Red blood cells.
HBE_LAGLA
Lagothrix lagotricha
MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFEDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_LEORO
Leontopithecus rosalia
MVHFTAEEKAAITSLWGKMNVEEAGGESLGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_MACMU
Macaca mulatta
MVHFTAEEKAAVTSLWSKMNVEETGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKITFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_MICMU
Microcebus murinus
MVHFTAEEKSTILSLWGKVNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSASAIMGNPKVKAHGKKVLTSFGEAVKNLDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_OTOCR
Otolemur crassicaudatus
MVHFTAEEKAIIMSLWGKVNIEEAGGEALGRLLVVYPWTQRFFETFGNLSSASAIMGNPKVKAHGKKVLTSFGEAVKNMDNLKGAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PANPA
Pan paniscus
MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLIVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PANTR
Pan troglodytes
MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PITIR
Pithecia irrorata
MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNLKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PLEMO
Plecturocebus moloch
MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PONPY
Pongo pygmaeus
MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_PROVE
Propithecus verreauxi
MVHFTAEEKSTILSVWGKVNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAIMGNPKVKAHGKKVLTSFGEAVKNMDNLKGAFAKLSELHCDKLHVDPENFKLLGNAMVIILATHFGKEFTPDVQAAWQKLVSGVATALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_SAGMI
Saguinus midas
MVHFTAEEKAAITSLWGKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSFPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVLVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_SAIBB
Saimiri boliviensis boliviensis
MVHFTAEEKAAITSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_SAISC
Saimiri sciureus
MVHFTAEEKAAITSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDNFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFRLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALGHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HBE_SYMSY
Symphalangus syndactylus
MVHFTAEEKAAVTSLWNKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKNMDNLKTTFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin. Red blood cells.
HCP5_HUMAN
Homo sapiens
MLLRMSEHRNEALGNYLEMRLKSSFLRGLGSWKSNPLRLGGWTILLTLTMGQGEPGGPQGDPWVPHELLLPSLCDSSHASSWGSGSITCAWRGGDSSSHPLVSGHILSNSPVAAVMCSSMGTHLSPFKGTLL
Expressed in lymphoid tissues; Detected in spleen as well as in B-cell lines, NK cell lines and activated lymphocytes.
HDA10_HUMAN
Homo sapiens
MGTALVYHEDMTATRLLWDDPECEIERPERLTAALDRLRQRGLEQRCLRLSAREASEEELGLVHSPEYVSLVRETQVLGKEELQALSGQFDAIYFHPSTFHCARLAAGAGLQLVDAVLTGAVQNGLALVRPPGHHGQRAAANGFCVFNNVAIAAAHAKQKHGLHRILVVDWDVHHGQGIQYLFEDDPSVLYFSWHRYEHGRFWPFLRESDADAVGRGQGLGFTVNLPWNQVGMGNADYVAAFLHLLLPLAFEFDPELVLVSAGFDSAIGDPEGQMQATPECFAHLTQLLQVLAGGRVCAVLEGGYHLESLAESVCMTVQTLLGDPAPPLSGPMAPCQSALESIQSARAAQAPHWKSLQQQDVTAVPMSPSSHSPEGRPPPLLPGGPVCKAAASAPSSLLDQPCLCPAPSVRTAVALTTPDITLVLPPDVIQQEASALREETEAWARPHESLAREEALTALGKLLYLLDGMLDGQVNSGIAATPASAAAATLDVAVRRGLSHGAQRLLCVALGQLDRPPDLAHDGRSLWLNIRGKEAAALSMFHVSTPLPVMTGGFLSCILGLVLPLAYGFQPDLVLVALGPGHGLQGPHAALLAAMLRGLAGGRVLALLEENSTPQLAGILARVLNGEAPPSLGPSSVASPEDVQALMYLRGQLEPQWKMLQCHPHLVA
Polyamine deacetylase (PDAC), which acts preferentially on N(8)-acetylspermidine, and also on acetylcadaverine and acetylputrescine . Exhibits attenuated catalytic activity toward N(1),N(8)-diacetylspermidine and very low activity, if any, toward N(1)-acetylspermidine . Histone deacetylase activity has been observed in vitro ( , ). Has also been shown to be involved in MSH2 deacetylation . The physiological relevance of protein/histone deacetylase activity is unclear and could be very weak . May play a role in the promotion of late stages of autophagy, possibly autophagosome-lysosome fusion and/or lysosomal exocytosis in neuroblastoma cells (, ). May play a role in homologous recombination . May promote DNA mismatch repair . Subcellular locations: Cytoplasm, Nucleus Excluded from nucleoli. Widely expressed with high levels in liver and kidney.
HDA11_HUMAN
Homo sapiens
MLHTTQLYQHVPETRWPIVYSPRYNITFMGLEKLHPFDAGKWGKVINFLKEEKLLSDSMLVEAREASEEDLLVVHTRRYLNELKWSFAVATITEIPPVIFLPNFLVQRKVLRPLRTQTGGTIMAGKLAVERGWAINVGGGFHHCSSDRGGGFCAYADITLAIKFLFERVEGISRATIIDLDAHQGNGHERDFMDDKRVYIMDVYNRHIYPGDRFAKQAIRRKVELEWGTEDDEYLDKVERNIKKSLQEHLPDVVVYNAGTDILEGDRLGGLSISPAGIVKRDELVFRMVRGRRVPILMVTSGGYQKRTARIIADSILNLFGLGLIGPESPSVSAQNSDTPLLPPAVP
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Subcellular locations: Nucleus Weakly expressed in most tissues. Strongly expressed in brain, heart, skeletal muscle, kidney and testis.
HDA11_MACFA
Macaca fascicularis
MLHTTQLYQHVPETRWPIVYSPRYNITFMGLEKLHPFDAGKWGKVINFLKEEKLLSDSMLVEAREASEEDLLVVHTRRYLNELKWSFAVATITEIPPVIFLPNFLVQRKVLRPLRTQTGGTIMAGKLAVERGWAINVGGGFHHCSSDRGGGFCAYADITLAIKFLFERVEGISRATIIDLDAHQGNGHERDFMDDKRVYIMDVYNRHIYPGDRFAKQAIRRKVELEWGTEDDEYLDKVERNIEKSLQEHLPDVVVYNAGTDILEGDRLGGLSISPAGIVKRDELVFRMVRGRHVPILMVTSGGYQKRTARIIADSILNLFGLGLIGPESPSISAQNSDTPLLPPAVP
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Subcellular locations: Nucleus
HDGR3_HUMAN
Homo sapiens
MARPRPREYKAGDLVFAKMKGYPHWPARIDELPEGAVKPPANKYPIFFFGTHETAFLGPKDLFPYKEYKDKFGKSNKRKGFNEGLWEIENNPGVKFTGYQAIQQQSSSETEGEGGNTADASSEEEGDRVEEDGKGKRKNEKAGSKRKKSYTSKKSSKQSRKSPGDEDDKDCKEEENKSSSEGGDAGNDTRNTTSDLQKTSEGT
Enhances DNA synthesis and may play a role in cell proliferation. Subcellular locations: Nucleus Detected in testis, heart, spinal cord and brain.
HDHD1_HUMAN
Homo sapiens
MAAPPQPVTHLIFDMDGLLLDTERLYSVVFQEICNRYDKKYSWDVKSLVMGKKALEAAQIIIDVLQLPMSKEELVEESQTKLKEVFPTAALMPGAEKLIIHLRKHGIPFALATSSGSASFDMKTSRHKEFFSLFSHIVLGDDPEVQHGKPDPDIFLACAKRFSPPPAMEKCLVFEDAPNGVEAALAAGMQVVMVPDGNLSRDLTTKATLVLNSLQDFQPELFGLPSYE
Dephosphorylates pseudouridine 5'-phosphate, a potential intermediate in rRNA degradation. Pseudouridine is then excreted intact in urine.
HDHD2_HUMAN
Homo sapiens
MAACRALKAVLVDLSGTLHIEDAAVPGAQEALKRLRGASVIIRFVTNTTKESKQDLLERLRKLEFDISEDEIFTSLTAARSLLERKQVRPMLLVDDRALPDFKGIQTSDPNAVVMGLAPEHFHYQILNQAFRLLLDGAPLIAIHKARYYKRKDGLALGPGPFVTALEYATDTKATVVGKPEKTFFLEALRGTGCEPEEAVMIGDDCRDDVGGAQDVGMLGILVKTGKYRASDEEKINPPPYLTCESFPHAVDHILQHLL
null
HDHD2_PONAB
Pongo abelii
MAACRALKAVLVDLSGTLHIEDAAVPGAQEALKRLRGTSVIVRFVTNTTKESKQDLLERLRKLEFDISEDEIFTSLTAARSLLEQKQVRPMLLVDDRALPDFKGIQTTDPNAVVMGLAPEHFHYQILNQAFRLLLDGAPLIAIHKARYYKRKDGLALGPGPFVTALEYATDTKATVVGKPEKTFFLEALRGTGCEPEEAVMIGDDCRDDVGGAQDVGMLGILVKTGKYRASDEEKINPPPYLTCESFPHAVDHILQHLL
null
HEM1_PONAB
Pongo abelii
METVVRSCPFLSRVPQAFLQKAGKSLLFYAQNCPKMMEVGAKPAPRALSTAAVHYQQIKETPPASEKDKTAKAKVQQTPDGSQQSPDGTQLPSGHPLPATSQGTASKCPFLAAQMNQRGSSVFCKASLELQEDVQEMNAVRKEVAETSGGPSVVSVKTDGGDPSGLLKNFQDIMQKQRPERVSHLLQDDLPKSVSTFQYDRFFEKKIDEKKNDHTYRVFKTVNRRAHIFPMADDYSDSLITKKQVSVWCSNDYLGMSRHPRVCGAVMDTLKQHGAGAGGTRNISGTSKFHVDLERELADLHGKDAALLFSSCFVANDSTLFTLAKMMPGCEIYSDSGNHASMIQGIRNSRVPKYIFRHNDVSHLRELLQRSDPSVPKIVAFETVHSMDGAVCPLEELCDVAHEFGAITFVDEVHAVGLYGARGGGIGDRDGVMPKMDIISGTLGKAFGCVGGYIASTSSLIDTVRSYAAGFIFTTSLPPMLLAGALESVRILKSAEGRVLRRQHQRNVKLMRQMLMDAGLPVVHCPSHIIPVRVADAAKNTEVCDELMSRHNIYVQAINYPTVPRGEELLRIAPTPHHTPQMMNYFLENLLVTWKQVGLELEPHSSAECNFCRRPLHFEVMSEREKSYFSGLSKLVSAQA
Catalyzes the pyridoxal 5'-phosphate (PLP)-dependent condensation of succinyl-CoA and glycine to form aminolevulinic acid (ALA), with CoA and CO2 as by-products. Subcellular locations: Mitochondrion inner membrane Localizes to the matrix side of the mitochondrion inner membrane.
HEMH_HUMAN
Homo sapiens
MRSLGANMAAALRAAGVLLRDPLASSSWRVCQPWRWKSGAAAAAVTTETAQHAQGAKPQVQPQKRKPKTGILMLNMGGPETLGDVHDFLLRLFLDRDLMTLPIQNKLAPFIAKRRTPKIQEQYRRIGGGSPIKIWTSKQGEGMVKLLDELSPNTAPHKYYIGFRYVHPLTEEAIEEMERDGLERAIAFTQYPQYSCSTTGSSLNAIYRYYNQVGRKPTMKWSTIDRWPTHHLLIQCFADHILKELDHFPLEKRSEVVILFSAHSLPMSVVNRGDPYPQEVSATVQKVMERLEYCNPYRLVWQSKVGPMPWLGPQTDESIKGLCERGRKNILLVPIAFTSDHIETLYELDIEYSQVLAKECGVENIRRAESLNGNPLFSKALADLVHSHIQSNELCSKQLTLSCPLCVNPVCRETKSFFTSQQL
Catalyzes the ferrous insertion into protoporphyrin IX. Subcellular locations: Mitochondrion inner membrane
HEP2_HUMAN
Homo sapiens
MKHSLNALLIFLIITSAWGGSKGPLDQLEKGGETAQSADPQWEQLNNKNLSMPLLPADFHKENTVTNDWIPEGEEDDDYLDLEKIFSEDDDYIDIVDSLSVSPTDSDVSAGNILQLFHGKSRIQRLNILNAKFAFNLYRVLKDQVNTFDNIFIAPVGISTAMGMISLGLKGETHEQVHSILHFKDFVNASSKYEITTIHNLFRKLTHRLFRRNFGYTLRSVNDLYIQKQFPILLDFKTKVREYYFAEAQIADFSDPAFISKTNNHIMKLTKGLIKDALENIDPATQMMILNCIYFKGSWVNKFPVEMTHNHNFRLNEREVVKVSMMQTKGNFLAANDQELDCDILQLEYVGGISMLIVVPHKMSGMKTLEAQLTPRVVERWQKSMTNRTREVLLPKFKLEKNYNLVESLKLMGIRMLFDKNGNMAGISDQRIAIDLFKHQGTITVNEEGTQATTVTTVGFMPLSTQVRFTVDRPFLFLIYEHRTSCLLFMGRVANPSRS
Thrombin inhibitor activated by the glycosaminoglycans, heparin or dermatan sulfate. In the presence of the latter, HC-II becomes the predominant thrombin inhibitor in place of antithrombin III (AT-III). Also inhibits chymotrypsin, but in a glycosaminoglycan-independent manner. Peptides at the N-terminal of HC-II have chemotactic activity for both monocytes and neutrophils. Expressed predominantly in liver. Also present in plasma.
HFM1_HUMAN
Homo sapiens
MLKSNDCLFSLENLFFEKPDEVENHPDNEKSLDWFLPPAPLISEIPDTQELEEELESHKLLGQEKRPKMLTSNLKITNEDTNYISLTQKFQFAFPSDKYEQDDLNLEGVGNNDLSHIAGKLTYASQKYKNHIGTEIAPEKSVPDDTKLVNFAEDKGESTSVFRKRLFKISDNIHGSAYSNDNELDSHIGSVKIVQTEMNKGKSRNYSNSKQKFQYSANVFTANNAFSASEIGEGMFKAPSFSVAFQPHDIQEVTENGLGSLKAVTEIPAKFRSIFKEFPYFNYIQSKAFDDLLYTDRNFVICAPTGSGKTVVFELAITRLLMEVPLPWLNIKIVYMAPIKALCSQRFDDWKEKFGPIGLNCKELTGDTVMDDLFEIQHAHIIMTTPEKWDSMTRKWRDNSLVQLVRLFLIDEVHIVKDENRGPTLEVVVSRMKTVQSVSQTLKNTSTAIPMRFVAVSATIPNAEDIAEWLSDGERPAVCLKMDESHRPVKLQKVVLGFPCSSNQTEFKFDLTLNYKIASVIQMYSDQKPTLVFCATRKGVQQAASVLVKDAKFIMTVEQKQRLQKYAYSVRDSKLRDILKDGAAYHHAGMELSDRKVVEGAFTVGDLPVLFTTSTLAMGVNLPAHLVVIKSTMHYAGGLFEEYSETDILQMIGRAGRPQFDTTATAVIMTRLSTRDKYIQMLACRDTVESSLHRHLIEHLNAEIVLHTITDVNIAVEWIRSTLLYIRALKNPSHYGFASGLNKDGIEAKLQELCLKNLNDLSSLDLIKMDEGVNFKPTEAGRLMAWYYITFETVKKFYTISGKETLSDLVTLIAGCKEFLDIQLRINEKKTLNTLNKDPNRITIRFPMEGRIKTREMKVNCLIQAQLGCIPIQDFALTQDTAKIFRHGSRITRWLSDFVAAQEKKFAVLLNSLILAKCFRCKLWENSLHVSKQLEKIGITLSNAIVNAGLTSFKKIEETDARELELILNRHPPFGTQIKETVMYLPKYELKVEQITRYSDTTAEILVTVILRNFEQLQTKRTASDSHYVTLIIGDADNQVVYLHKITDSVLLKAGSWAKKIAVKRALKSEDLSINLISSEFVGLDIQQKLTVFYLEPKRFGNQITMQRKSETQISHSKHSDISTIAGPNKGTTASKKPGNRECNHLCKSKHTCGHDCCKIGVAQKSEIKESTISSYLSDLRNRNAVSSVPPVKRLKIQMNKSQSVDLKEFGFTPKPSLPSISRSEYLNISELPIMEQWDQPEIYGKVRQEPSEYQDKEVLNVNFELGNEVWDDFDDENLEVTSFSTDTEKTKISGFGNTLSSSTRGSKLPLQESKSKFQREMSNSFVSSHEMSDISLSNSAMPKFSASSMTKLPQQAGNAVIVHFQERKPQNLSPEIEKQCFTFSEKNPNSSNYKKVDFFIRNSECKKEVDFSMYHPDDEADEMKSLLGIFDGIF
Required for crossover formation and complete synapsis of homologous chromosomes during meiosis. Preferentially expressed in testis and ovary.
HGH1_HUMAN
Homo sapiens
MGEAGAGAGASGGPEASPEAEVVKLLPFLAPGARADLQAAAVRHVLALTGCGPGRALLAGQAALLQALMELAPASAPARDAARALVNLAADPGLHETLLAADPGLPARLMGRALDPQWPWAEEAAAALANLSREPAPCAALMAALAAAEPADSGLERLVRALCTPGYNARAPLHYLAPLLSNLSQRPAARAFLLDPDRCVVQRLLPLTQYPDSSVRRGGVVGTLRNCCFEHRHHEWLLGPEVDILPFLLLPLAGPEDFSEEEMERLPVDLQYLPPDKQREPDADIRKMLVEAIMLLTATAPGRQQVRDQGAYLILRELHSWEPEPDVRTACEKLIQVLIGDEPERGMENLLEVQVPEDVEQQLQQLDCREQEQLERELAPEPWVERATPT
null
HIG1A_HUMAN
Homo sapiens
MSTDTGVSLPSYEEDQGSKLIRKAKEAPFVPVGIAGFAAIVAYGLYKLKSRGNTKMSIHLIHMRVAAQGFVVGAMTVGMGYSMYREFWAKPKP
Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May play a role in the assembly of respiratory supercomplexes. Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane
HIG1A_PONAB
Pongo abelii
MSTDTGVSLPSYEEDQGSKLIRKAKEAPFVPVGIAGFAAIVAYGLYKLKSRGNTKMSIHLIHMRVAAQGFVVGAMTVGMGYSMYREFWAKPKP
Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May play a role in the assembly of respiratory supercomplexes (By similarity). Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane
HIG1B_HUMAN
Homo sapiens
MSANRRWWVPPDDEDCVSEKLLRKTRESPLVPIGLGGCLVVAAYRIYRLRSRGSTKMSIHLIHTRVAAQACAVGAIMLGAVYTMYSDYVKRMAQDAGEK
Subcellular locations: Membrane
HIG1C_HUMAN
Homo sapiens
MSSDNQWSADEDEGQLSRLIRKSRDSPFVPIGIAGFVTVVSCGLYKLKYRRDQKMSIHLIHMRVAAQGFVVGAVTLGVLYSMYKDYIRPRFFSESKK
Subcellular locations: Membrane
HIG2A_HUMAN
Homo sapiens
MATPGPVIPEVPFEPSKPPVIEGLSPTVYRNPESFKEKFVRKTRENPVVPIGCLATAAALTYGLYSFHRGNSQRSQLMMRTRIAAQGFTVAAILLGLAVTAMKSRP
Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May be involved in cytochrome c oxidase activity. May play a role in the assembly of respiratory supercomplexes. Subcellular locations: Mitochondrion membrane, Mitochondrion inner membrane
HINFP_HUMAN
Homo sapiens
MPPPGKVPRKENLWLQCEWGSCSFVCSTMEKFFEHVTQHLQQHLHGSGEEEEEEEEDDPLEEEFSCLWQECGFCSLDSSADLIRHVYFHCYHTKLKQWGLQALQSQADLGPCILDFQSRNVIPDIPDHFLCLWEHCENSFDNPEWFYRHVEAHSLCCEYEAVGKDNPVVLCGWKGCTCTFKDRSKLREHLRSHTQEKVVACPTCGGMFANNTKFLDHIRRQTSLDQQHFQCSHCSKRFATERLLRDHMRNHVNHYKCPLCDMTCPLPSSLRNHMRFRHSEDRPFKCDCCDYSCKNLIDLQKHLDTHSEEPAYRCDFENCTFSARSLCSIKSHYRKVHEGDSEPRYKCHVCDKCFTRGNNLTVHLRKKHQFKWPSGHPRFRYKEHEDGYMRLQLVRYESVELTQQLLRQPQEGSGLGTSLNESSLQGIILETVPGEPGRKEEEEEGKGSEGTALSASQDNPSSVIHVVNQTNAQGQQEIVYYVLSEAPGEPPPAPEPPSGGIMEKLQGIAEEPEIQMV
Transcriptional repressor that binds to the consensus sequence 5'-CGGACGTT-3' and to the RB1 promoter. Transcriptional activator that promotes histone H4 gene transcription at the G1/S phase transition in conjunction with NPAT. Also activates transcription of the ATM and PRKDC genes. Autoregulates its expression by associating with its own promoter. Subcellular locations: Nucleus Associated with discrete nuclear foci. Ubiquitous. Highly expressed in brain, heart, skeletal muscle, spleen, kidney, small intestine, placenta and liver.
HINT1_HUMAN
Homo sapiens
MADEIAKAQVARPGGDTIFGKIIRKEIPAKIIFEDDRCLAFHDISPQAPTHFLVIPKKHISQISVAEDDDESLLGHLMIVGKKCAADLGLNKGYRMVVNEGSDGGQSVYHVHLHVLGGRQMHWPPG
Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 ( ). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (, ). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester ( ). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro ( , ). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide . In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (, ). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis . Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex . Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 . Deconjugates SUMO1 from RANGAP1 (By similarity). Subcellular locations: Cytoplasm, Nucleus Interaction with CDK7 leads to a more nuclear localization. Widely expressed.
HINT1_PONAB
Pongo abelii
MADEIAKAQVARPGGDTIFGKIIRKEIPAKIIFEDDRCLAFHDISPQAPTHFLVIPKKHISQISVAEDDNESLLGHLMIVGKKCAADLGLNKGYRMVVNEGSDGGQSVYHVHLHVLGGRQMHWPPG
Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (By similarity). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (By similarity). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (By similarity). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (By similarity). In addition, functions as a scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (By similarity). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis. Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (By similarity). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RANGAP1 and RGS17 (By similarity). Subcellular locations: Cytoplasm, Nucleus
HINT2_HUMAN
Homo sapiens
MAAAVVLAAGLRAARRAVAATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILDKSLPADILYEDQQCLVFRDVAPQAPVHFLVIPKKPIPRISQAEEEDQQLLGHLLLVAKQTAKAEGLGDGYRLVINDGKLGAQSVYHLHIHVLGGRQLQWPPG
Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (, ). Hydrolyzes adenosine 5'-O-p-nitrophenylphosphoramidate (AMP-pNA) . Hydrolyzes fluorogenic purine nucleoside tryptamine phosphoramidates in vitro . May be involved in steroid biosynthesis . May play a role in apoptosis . Subcellular locations: Mitochondrion High expression in liver and pancreas. Expression is significantly down-regulated in hepatocellular carcinoma (HCC) patients.
HINT3_HUMAN
Homo sapiens
MAEEQVNRSAGLAPDCEASATAETTVSSVGTCEAAGKSPEPKDYDSTCVFCRIAGRQDPGTELLHCENEDLICFKDIKPAATHHYLVVPKKHIGNCRTLRKDQVELVENMVTVGKTILERNNFTDFTNVRMGFHMPPFCSISHLHLHVLAPVDQLGFLSKLVYRVNSYWFITADHLIEKLRT
Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 . Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase . Hydrolyzes 3-indolepropionic acyl-adenylate and fluorogenic purine nucleoside tryptamine phosphoramidates in vitro . Subcellular locations: Cytoplasm, Nucleus Localized as aggregates in the cytoplasm and the nucleus.
HINT3_PONAB
Pongo abelii
MAEEQVNLSAGLAPDCEASATAESTVSLVGTCEAAAKSPEPKDSDSTCVFCRIAGRQDPGTELLHCENEDLICFKDIKPAATHHYLVVPKKHIGNCRTLRKDQVELVENMVTVGKTILERNNFTDFTNVRMGFHMPPFCSISHLHLHVLAPVDQLGFLSKLVYRVNSYWFITADHLIEKLRT
Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (By similarity). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase (By similarity). Subcellular locations: Cytoplasm, Nucleus
HMHA1_HUMAN
Homo sapiens
MFSRKKRELMKTPSISKKNRAGSPSPQPSGELPRKDGADAVFPGPSLEPPAGSSGVKATGTLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSPLTAASPGELPTEGAGPDVVEDISHLLADVARFAEGLEKLKECVLRDDLLEARRPRAHECLGEALRVMHQIISKYPLLNTVETLTAAGTLIAKVKAFHYESNNDLEKQEFEKALETIAVAFSSTVSEFLMGEVDSSTLLAVPPGDSSQSMESLYGPGSEGTPPSLEDCDAGCLPAEEVDVLLQRCEGGVDAALLYAKNMAKYMKDLISYLEKRTTLEMEFAKGLQKIAHNCRQSVMQEPHMPLLSIYSLALEQDLEFGHSMVQAVGTLQTQTFMQPLTLRRLEHEKRRKEIKEAWHRAQRKLQEAESNLRKAKQGYVQRCEDHDKARFLVAKAEEEQAGSAPGAGSTATKTLDKRRRLEEEAKNKAEEAMATYRTCVADAKTQKQELEDTKVTALRQIQEVIRQSDQTIKSATISYYQMMHMQTAPLPVHFQMLCESSKLYDPGQQYASHVRQLQRDQEPDVHYDFEPHVSANAWSPVMRARKSSFNVSDVARPEAAGSPPEEGGCTEGTPAKDHRAGRGHQVHKSWPLSISDSDSGLDPGPGAGDFKKFERTSSSGTMSSTEELVDPDGGAGASAFEQADLNGMTPELPVAVPSGPFRHEGLSKAARTHRLRKLRTPAKCRECNSYVYFQGAECEECCLACHKKCLETLAIQCGHKKLQGRLQLFGQDFSHAARSAPDGVPFIVKKCVCEIERRALRTKGIYRVNGVKTRVEKLCQAFENGKELVELSQASPHDISNVLKLYLRQLPEPLISFRLYHELVGLAKDSLKAEAEAKAASRGRQDGSESEAVAVALAGRLRELLRDLPPENRASLQYLLRHLRRIVEVEQDNKMTPGNLGIVFGPTLLRPRPTEATVSLSSLVDYPHQARVIETLIVHYGLVFEEEPEETPGGQDESSNQRAEVVVQVPYLEAGEAVVYPLQEAAADGCRESRVVSNDSDSDLEEASELLSSSEASALGHLSFLEQQQSEASLEVASGSHSGSEEQLEATAREDGDGDEDGPAQQLSGFNTNQSNNVLQAPLPPMRLRGGRMTLGSCRERQPEFV
Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. Subcellular locations: Cytoplasm, Cell projection, Ruffle membrane Expressed on cells of the hematopoietic lineage. Detected in dendritic cells and epidermal Langerhans cells. Expressed in peripheral blood mononuclear cells, in all leukemia/lymphoma cell lines. Detected also in some solid tumors and tissues such as cancerous and non-cancerous tissue.
HMHA1_PONAB
Pongo abelii
MFSRKKRELMKTPSISKKNRAGSPSPQPSGPHFISGETEAVSRPENPFNELPSDLPKELPRKDGADAVFPGTSLELPAGSSGVKATGTLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSPLTAASPGELPTEGTGPDVVEDISHLLADVARFAEGLEKLKECVLRDDLLEARRPLAHECLGEALRVMRQIISKYPLLNTVETLTAAGTLIAKVKAFHYESNNDLEKQEFEKALETIAVAFSSAVSEFLMGEVDSSTLLAVPPGDSSQSMESLYGSGSEGTPPSLDDCDAGCLPAEEVDVLLQRCEGGVDAALLYAKNMAKYMKDLISYLEKRTTLEMEFAKGLQKMAHNCRQSVTQEPHMPLLSIYSLALEQDLEFGHGMVQAVGTLQTQTFMQPLTLRRLEHEKRRKEIKEAWHRAQRKLQEAESNLRKAKQGYTQRCEDHDKARFLVAKAEEEQAGTAPGAGSTATKTLDKRRRLEEEAKNKAEEAMATYRTCVADAKTQKQELEDTKVTALRQIQEVIRQSDQTIKSATISYYQMMHMQTAPLPVHFQMLCESSKLYDPGQQYASHVRQLQRDQEPDVHYDFEPHVSANAWSPVMRARKSSFNVSDVAGPEAAGSPPEEGGCIEGTPVKGHRAGRGHQVHKSWPLSISDSASGLDPGPGAGDFKKFERTSSSGTMSSTEELVDPEGGAGASAFEQADLNGMTPELPVAVPSGPFRHEGLSKAARTHRLRKLRTPAKCRECNSYVYFQGAECEECCLACHKKCLETLAIQCGHKKLQGRLQLFGQDFSHAARSAPDGVPFIVKKCVCEIERRALRTKGIYRVNGVKTRVEKLCQAFENGKELVELSQASPHDISNVLKLYLRQLPEPLISFRLYHELVGLAKDSLKAEAEAKAASRGRQDSSESEAVAVAMAGRLRELLRDLPPENRASLQYLLRHLRRIVEVEQDNKMTPGNLGIVFGPTLLRPRPTEATVSLSSLVDYPHQARVIETLIVHYGLVFEEEPEEIPGGQDESSNQRAEVVVQVPYLEAGEGVVYPLQEAAEDGCRESRVVSNDSDSDLEEASELLSSSEASALCRLSFLEQQQSEASLEEASGSHSGSEEQLETTAREDGDGDEDSPAQRLSGFNTNQSNNVLQTPLPPMRLRGGRITLGSCRERQPEFV
Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. Subcellular locations: Cytoplasm, Cell projection, Ruffle membrane
HMHB1_HUMAN
Homo sapiens
MEEQPECREEKRGSLHVWKSELVEVEDDVYLRHSSSLTYRL
Precursor of the histocomplatibility antigen HB-1. More generally, minor histocomplatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocomplatibility antigen in HLA-matched sibling marrow transplants. HB-1 is presented on the cell surface by MHC class I HLA-B44. This complex specifically elicits donor-cytotoxic T lymphocyte (CTL) reactivity in B-cell acute lymphoblastic leukemia (B-ALL) after treatment by HLA-identical allogenic bone marrow transplantation (BMT). It induces cell recognition and lysis by CTL. However, HB-1 restricted expression in B-ALL cells and not in normal tissues may allow a specific CTL reactivity against B-ALL without the risk of evoking graft-versus-host disease. Expressed in acute lymphoblastic leukemia B-cells and Epstein-Barr virus-transformed B-cells.
HMMR_HUMAN
Homo sapiens
MSFPKAPLKRFNDPSGCAPSPGAYDVKTLEVLKGPVSFQKSQRFKQQKESKQNLNVDKDTTLPASARKVKSSESKESQKNDKDLKILEKEIRVLLQERGAQDRRIQDLETELEKMEARLNAALREKTSLSANNATLEKQLIELTRTNELLKSKFSENGNQKNLRILSLELMKLRNKRETKMRGMMAKQEGMEMKLQVTQRSLEESQGKIAQLEGKLVSIEKEKIDEKSETEKLLEYIEEISCASDQVEKYKLDIAQLEENLKEKNDEILSLKQSLEENIVILSKQVEDLNVKCQLLEKEKEDHVNRNREHNENLNAEMQNLKQKFILEQQEREKLQQKELQIDSLLQQEKELSSSLHQKLCSFQEEMVKEKNLFEEELKQTLDELDKLQQKEEQAERLVKQLEEEAKSRAEELKLLEEKLKGKEAELEKSSAAHTQATLLLQEKYDSMVQSLEDVTAQFESYKALTASEIEDLKLENSSLQEKAAKAGKNAEDVQHQILATESSNQEYVRMLLDLQTKSALKETEIKEITVSFLQKITDLQNQLKQQEEDFRKQLEDEEGRKAEKENTTAELTEEINKWRLLYEELYNKTKPFQLQLDAFEVEKQALLNEHGAAQEQLNKIRDSYAKLLGHQNLKQKIKHVVKLKDENSQLKSEVSKLRCQLAKKKQSETKLQEELNKVLGIKHFDPSKAFHHESKENFALKTPLKEGNTNCYRAPMECQESWK
Receptor for hyaluronic acid (HA) (By similarity). Involved in cell motility (By similarity). When hyaluronan binds to HMMR, the phosphorylation of a number of proteins, including PTK2/FAK1 occurs. May also be involved in cellular transformation and metastasis formation, and in regulating extracellular-regulated kinase (ERK) activity. May act as a regulator of adipogenisis (By similarity). Subcellular locations: Cell surface, Cytoplasm, Cytoplasm, Cytoskeleton, Spindle Expressed in testis . Expressed in the breast .
HNF1A_HUMAN
Homo sapiens
MVSKLSQLQTELLAALLESGLSKEALIQALGEPGPYLLAGEGPLDKGESCGGGRGELAELPNGLGETRGSEDETDDDGEDFTPPILKELENLSPEEAAHQKAVVETLLQEDPWRVAKMVKSYLQQHNIPQREVVDTTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREVAQQFTHAGQGGLIEEPTGDELPTKKGRRNRFKWGPASQQILFQAYERQKNPSKEERETLVEECNRAECIQRGVSPSQAQGLGSNLVTEVRVYNWFANRRKEEAFRHKLAMDTYSGPPPGPGPGPALPAHSSPGLPPPALSPSKVHGVRYGQPATSETAEVPSSSGGPLVTVSTPLHQVSPTGLEPSHSLLSTEAKLVSAAGGPLPPVSTLTALHSLEQTSPGLNQQPQNLIMASLPGVMTIGPGEPASLGPTFTNTGASTLVIGLASTQAQSVPVINSMGSSLTTLQPVQFSQPLHPSYQQPLMPPVQSHVTQSPFMATMAQLQSPHALYSHKPEVAQYTHTGLLPQTMLITDTTNLSALASLTPTKQVFTSDTEASSESGLHTPASQATTLHVPSQDPAGIQHLQPAHRLSASPTVSSSSLVLYQSSDSSNGQSHLLPSNHSVIETFISTQMASSSQ
Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (, ). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). Subcellular locations: Nucleus Liver.
HNF1B_HUMAN
Homo sapiens
MVSKLTSLQQELLSALLSSGVTKEVLVQALEELLPSPNFGVKLETLPLSPGSGAEPDTKPVFHTLTNGHAKGRLSGDEGSEDGDDYDTPPILKELQALNTEEAAEQRAEVDRMLSEDPWRAAKMIKGYMQQHNIPQREVVDVTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREILRQFNQTVQSSGNMTDKSSQDQLLFLFPEFSQQSHGPGQSDDACSEPTNKKMRRNRFKWGPASQQILYQAYDRQKNPSKEEREALVEECNRAECLQRGVSPSKAHGLGSNLVTEVRVYNWFANRRKEEAFRQKLAMDAYSSNQTHSLNPLLSHGSPHHQPSSSPPNKLSGVRYSQQGNNEITSSSTISHHGNSAMVTSQSVLQQVSPASLDPGHNLLSPDGKMISVSGGGLPPVSTLTNIHSLSHHNPQQSQNLIMTPLSGVMAIAQSLNTSQAQSVPVINSVAGSLAALQPVQFSQQLHSPHQQPLMQQSPGSHMAQQPFMAAVTQLQNSHMYAHKQEPPQYSHTSRFPSAMVVTDTSSISTLTNMSSSKQCPLQAW
Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (, ). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 . Subcellular locations: Nucleus
HNF1B_PONAB
Pongo abelii
MVSKLTSLQQELLSALLSSGVTKEVLVQALEELLPSPNFGVKLETLPLSPGSGAEPDTKPVFHTLTNGHAKGRLSGDEGSEDGDDYDTPPILKELQALNTEEAAEQRAEVDRMLSEDPWRAAKMIKGYMQQHNIPQREVVDVTGLNQSHLSQHLNKGTPMKTQKRAALYTWYVRKQREILRQFNQTVQSSGNMTDKSSQDQLLFLFPEFSQQSQGPGQSDDACSEPTNKKMRRNRFKWGPASQQILYQAYDRQKNPSKEEREALVEECNRAECLQRGVSPSKAHGLGSNLVTEVRVYNWFANRRKEEAFRQKLAMDAYSSNQTHSLNPLLSHGSPHHQPSSSPPNKLSGVRYSQQGNNEVTSSSTISHHGNSAMVTSQSVLQQVSPASLDPGHNLLSPDGKMISVSGGGLPPVSTLTNIHSLSHHNPQQSQNLIMTPLSGVMAIAQSLNTSQAQSVPVINSVAGSLAALQPVQFSQQLHSPHQQPLMQQSPGSHMAQQPFMAAVTQLQNSHMYAHKQEPPQYSHTSRFPSAMVVTDTSSISTLTNMSSSKQCPLQAW
Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (By similarity). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (By similarity). Subcellular locations: Nucleus
HOME1_HUMAN
Homo sapiens
MGEQPIFSTRAHVFQIDPNTKKNWVPTSKHAVTVSYFYDSTRNVYRIISLDGSKAIINSTITPNMTFTKTSQKFGQWADSRANTVYGLGFSSEHHLSKFAEKFQEFKEAARLAKEKSQEKMELTSTPSQESAGGDLQSPLTPESINGTDDERTPDVTQNSEPRAEPTQNALPFSHSSAISKHWEAELATLKGNNAKLTAALLESTANVKQWKQQLAAYQEEAERLHKRVTELECVSSQANAVHTHKTELNQTIQELEETLKLKEEEIERLKQEIDNARELQEQRDSLTQKLQEVEIRNKDLEGQLSDLEQRLEKSQNEQEAFRNNLKTLLEILDGKIFELTELRDNLAKLLECS
Postsynaptic density scaffolding protein. Binds and cross-links cytoplasmic regions of GRM1, GRM5, ITPR1, DNM3, RYR1, RYR2, SHANK1 and SHANK3. By physically linking GRM1 and GRM5 with ER-associated ITPR1 receptors, it aids the coupling of surface receptors to intracellular calcium release. May also couple GRM1 to PI3 kinase through its interaction with AGAP2. Isoform 1 regulates the trafficking and surface expression of GRM5. Isoform 3 acts as a natural dominant negative, in dynamic competition with constitutively expressed isoform 1 to regulate synaptic metabotropic glutamate function. Isoform 3, may be involved in the structural changes that occur at synapses during long-lasting neuronal plasticity and development. Forms a high-order complex with SHANK1, which in turn is necessary for the structural and functional integrity of dendritic spines (By similarity). Negatively regulates T cell activation by inhibiting the calcineurin-NFAT pathway. Acts by competing with calcineurin/PPP3CA for NFAT protein binding, hence preventing NFAT activation by PPP3CA . Subcellular locations: Cytoplasm, Postsynaptic density, Synapse, Cell projection, Dendritic spine Isoform 1 inhibits surface expression of GRM5 causing it to be retained in the endoplasmic reticulum.
HPDL_HUMAN
Homo sapiens
MAAPALRLCHIAFHVPAGQPLARNLQRLFGFQPLASREVDGWRQLALRSGDAVFLVNEGAGSGEPLYGLDPRHAVPSATNLCFDVADAGAATRELAALGCSVPVPPVRVRDAQGAATYAVVSSPAGILSLTLLERAGYRGPFLPGFRPVSSAPGPGWVSRVDHLTLACTPGSSPTLLRWFHDCLGFCHLPLSPGEDPELGLEMTAGFGLGGLRLTALQAQPGSIVPTLVLAESLPGATTRQDQVEQFLARHKGPGLQHVGLYTPNIVEATEGVATAGGQFLAPPGAYYQQPGKERQIRAAGHEPHLLARQGILLDGDKGKFLLQVFTKSLFTEDTFFLELIQRQGATGFGQGNIRALWQSVQEQSARSQEA
May have dioxygenase activity. Subcellular locations: Mitochondrion
HPF1L_HUMAN
Homo sapiens
MVGGGWKRRPGAGAGPQCEKTVDVKKSKFCEADVSSDLRKEVENHYTLSLPEDFYHFWKFCEELDSEKPADPLSASLGLQLVDPYNILAGKHKMKKKSTVPNFNLHWRFYYDPPEFQTIIIRDKLSATWGISDRDSPDELPVYVGINEAKKNCIIVPNGDNVFAAVKLYLMKKLKEVTDKKKTNLFKNVDEKLTETARELGYSLEQRTMKMKQRDKKVVTKTFHGTGLVPPVDKNVVGYRELPETDADLKRICKTIVEAASDDERRKAFAPIQEMMTFVQFANDECDYGMGLELGMDLFCYGSHYFHKVAGQLLPLAYNLLKRNLFAEIMKDHLANRRKENIDQFAA
null
HPF1_HUMAN
Homo sapiens
MVGGGGKRRPGGEGPQCEKTTDVKKSKFCEADVSSDLRKEVENHYKLSLPEDFYHFWKFCEELDPEKPSDSLSASLGLQLVGPYDILAGKHKTKKKSTGLNFNLHWRFYYDPPEFQTIIIGDNKTQYHMGYFRDSPDEFPVYVGINEAKKNCIIVPNGDNVFAAVKLFLTKKLREITDKKKINLLKNIDEKLTEAARELGYSLEQRTVKMKQRDKKVVTKTFHGAGLVVPVDKNDVGYRELPETDADLKRICKTIVEAASDEERLKAFAPIQEMMTFVQFANDECDYGMGLELGMDLFCYGSHYFHKVAGQLLPLAYNLLKRNLFAEIIEEHLANRSQENIDQLAA
Cofactor for serine ADP-ribosylation that confers serine specificity on PARP1 and PARP2 and plays a key role in DNA damage response ( ). Initiates the repair of double-strand DNA breaks: recruited to DNA damage sites by PARP1 and PARP2 and switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine residues, licensing serine ADP-ribosylation of target proteins ( , ). Serine ADP-ribosylation of target proteins, such as histones, promotes decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks ( , ). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage . HPF1 acts by completing the active site of PARP1 and PARP2: forms a composite active site composed of residues from HPF1 and PARP1 or PARP2 (, ). While HPF1 promotes the initiation of serine ADP-ribosylation, it restricts the polymerase activity of PARP1 and PARP2 in order to limit the length of poly-ADP-ribose chains ( ). HPF1 also promotes tyrosine ADP-ribosylation, probably by conferring tyrosine specificity on PARP1 (, ). Subcellular locations: Chromosome, Nucleus Localizes to DNA damage sites; chromatin localization is dependent on PARP1 and PARP2.
HRC23_HUMAN
Homo sapiens
MHAFCVGQYLEPDQEGVTIPDLGSLSSPLIDTERNLGLLLGLHASYLAMSTPLSPVEIECAKWLQSSIFSGGLQTSQIHYSYNEEKDEDHCSSPGGTPASKSRLCSHRRALGDHSQAFLQAIADNNIQDHNVKDFLCQIERYCRQCHLTTPIMFPPEHPVEEVGRLLLCCLLKHEDLGHVALSLVHAGALGIEQVKHRTLPKSVVDVCRVVYQAKCSLIKTHQEQGRSYKEVCAPVIERLRFLFNELRPAVCNDLSIMSKFKLLSSLPHWRRIAQKIIREPRKKRVPKKPESTDDEEKIGNEESDLEEACILPHSPINVDKRPIAIKSPKDKWQPLLSTVTGVHKYKWLKQNVQGLYPQSPLLSTIAEFALKEEPVDVEKRKCLLKQLERAEVRLEGIDTILKLYLVSKNFLLPSVPYAMFCGWQRLIPEGIDIGEPLTDCLKDVDLIPPFNRMLLEVTFGKLYAWAVQNIRNVLVDASAKFKELGIQPVPLQTITNENPSGPSLGTIPQAHFLLVMLSMLTLQHSANNLDLLLNSGTLALAQTALRLIGPSCDSVEEDMNASAQGASATVLEETRKETAPVQLPVSGPELAAMMKIGTRVMRGVDWKWGDQDRPPPGLGRVIGELGEDGWIRVQWDTGSTNSYRMGKEGNYDLKLAELPAPAQPSAEDSDTEDDSEAEQTERNIHPTAMMFTSTINLLQTLCLSAGVHAEIMQSEATKTLCGLLQMLVYREQHRSWCTLGFVQSIALTLQVCGTLSSLQWITLLMKVVEGHAPFTATSLQRQILAVHLLQAVLPSWDKTERARDMKCLMEKLFDFLGSLLTMCSSDVPLLRESTLRRRRVCPQASLTATHSSTLAEEVVALLHTLHSLTQWNGLINKYINSQLRSITHSFAGRPSKGAQLEDYFPDSENPEVGGLMAVLAVVGGIDGRLCLGGQVVHDDFGEVTMTRITLKGKITVQFSDMRTCHVCPLNQLKPLPAVAFNVNNLPFTEPMLSVWAQLVNLAGSKLEKHKIKKSTKQAFAGQVDLDLLRCQQLKLYILKAGRALFSHQDKLRQILSQPAVQETGTVHTDDGAVVSPDLGDMSPEGPQPPMILLQQLLASATQPSPVKAIFDKQELEERMSRCCFWRRRTTKLEQILLFIRRMNSVCEKENTNATASN
null
HRH3_HUMAN
Homo sapiens
MERAPPDGPLNASGALAGEAAAAGGARGFSAAWTAVLAALMALLIVATVLGNALVMLAFVADSSLRTQNNFFLLNLAISDFLVGAFCIPLYVPYVLTGRWTFGRGLCKLWLVVDYLLCTSSAFNIVLISYDRFLSVTRAVSYRAQQGDTRRAVRKMLLVWVLAFLLYGPAILSWEYLSGGSSIPEGHCYAEFFYNWYFLITASTLEFFTPFLSVTFFNLSIYLNIQRRTRLRLDGAREAAGPEPPPEAQPSPPPPPGCWGCWQKGHGEAMPLHRYGVGEAAVGAEAGEATLGGGGGGGSVASPTSSSGSSSRGTERPRSLKRGSKPSASSASLEKRMKMVSQSFTQRFRLSRDRKVAKSLAVIVSIFGLCWAPYTLLMIIRAACHGHCVPDYWYETSFWLLWANSAVNPVLYPLCHHSFRRAFTKLLCPQKLKIQPHSSLEHCWK
The H3 subclass of histamine receptors could mediate the histamine signals in CNS and peripheral nervous system. Signals through the inhibition of adenylate cyclase and displays high constitutive activity (spontaneous activity in the absence of agonist). Agonist stimulation of isoform 3 neither modified adenylate cyclase activity nor induced intracellular calcium mobilization. Subcellular locations: Cell membrane Expressed predominantly in the CNS, with the greatest expression in the thalamus and caudate nucleus. The various isoforms are mainly coexpressed in brain, but their relative expression level varies in a region-specific manner. Isoform 3 and isoform 7 are highly expressed in the thalamus, caudate nucleus and cerebellum while isoform 5 and isoform 6 show a poor expression. Isoform 5 and isoform 6 show a high expression in the amygdala, substantia nigra, cerebral cortex and hypothalamus. Isoform 7 is not found in hypothalamus or substantia nigra.
HRH4_HUMAN
Homo sapiens
MPDTNSTINLSLSTRVTLAFFMSLVAFAIMLGNALVILAFVVDKNLRHRSSYFFLNLAISDFFVGVISIPLYIPHTLFEWDFGKEICVFWLTTDYLLCTASVYNIVLISYDRYLSVSNAVSYRTQHTGVLKIVTLMVAVWVLAFLVNGPMILVSESWKDEGSECEPGFFSEWYILAITSFLEFVIPVILVAYFNMNIYWSLWKRDHLSRCQSHPGLTAVSSNICGHSFRGRLSSRRSLSASTEVPASFHSERQRRKSSLMFSSRTKMNSNTIASKMGSFSQSDSVALHQREHVELLRARRLAKSLAILLGVFAVCWAPYSLFTIVLSFYSSATGPKSVWYRIAFWLQWFNSFVNPLLYPLCHKRFQKAFLKIFCIKKQPLPSQHSRSVSS
The H4 subclass of histamine receptors could mediate the histamine signals in peripheral tissues. Displays a significant level of constitutive activity (spontaneous activity in the absence of agonist). Subcellular locations: Cell membrane Expressed primarily in the bone marrow and eosinophils. Shows preferential distribution in cells of immunological relevance such as T-cells, dendritic cells, monocytes, mast cells, neutrophils. Also expressed in a wide variety of peripheral tissues, including the heart, kidney, liver, lung, pancreas, skeletal muscle, prostate, small intestine, spleen, testis, colon, fetal liver and lymph node.
HSP74_HUMAN
Homo sapiens
MSVVGIDLGFQSCYVAVARAGGIETIANEYSDRCTPACISFGPKNRSIGAAAKSQVISNAKNTVQGFKRFHGRAFSDPFVEAEKSNLAYDIVQLPTGLTGIKVTYMEEERNFTTEQVTAMLLSKLKETAESVLKKPVVDCVVSVPCFYTDAERRSVMDATQIAGLNCLRLMNETTAVALAYGIYKQDLPALEEKPRNVVFVDMGHSAYQVSVCAFNRGKLKVLATAFDTTLGGRKFDEVLVNHFCEEFGKKYKLDIKSKIRALLRLSQECEKLKKLMSANASDLPLSIECFMNDVDVSGTMNRGKFLEMCNDLLARVEPPLRSVLEQTKLKKEDIYAVEIVGGATRIPAVKEKISKFFGKELSTTLNADEAVTRGCALQCAILSPAFKVREFSITDVVPYPISLRWNSPAEEGSSDCEVFSKNHAAPFSKVLTFYRKEPFTLEAYYSSPQDLPYPDPAIAQFSVQKVTPQSDGSSSKVKVKVRVNVHGIFSVSSASLVEVHKSEENEEPMETDQNAKEEEKMQVDQEEPHVEEQQQQTPAENKAESEEMETSQAGSKDKKMDQPPQAKKAKVKTSTVDLPIENQLLWQIDREMLNLYIENEGKMIMQDKLEKERNDAKNAVEEYVYEMRDKLSGEYEKFVSEDDRNSFTLKLEDTENWLYEDGEDQPKQVYVDKLAELKNLGQPIKIRFQESEERPKLFEELGKQIQQYMKIISSFKNKEDQYDHLDAADMTKVEKSTNEAMEWMNNKLNLQNKQSLTMDPVVKSKEIEAKIKELTSTCSPIISKPKPKVEPPKEEQKNAEQNGPVDGQGDNPGPQAAEQGTDTAVPSDSDKKLPEMDID
Subcellular locations: Cytoplasm
HSP74_PONAB
Pongo abelii
MSVVGIDLGFQSCYVAVARAGGIETIANEYSDRCTPACISFGPKNRSIGAAAKSQVISNAKNTVQGFKRFHGRAFSDPFVEAEKSNLAYDVVQLPTGLTGIKVTYMEEERNFTTEQVTAMLLSKLKETAESVLKKPVVDCVVSVPCFYTDAERRSVMDATQIAGLNCLRLMNETTAVALAYGIYKQDLPALEEKPRNVVFVDMGHSAYQVSVCAFNRGKLKVLATAFDTTLGGRKFDEVLVNHFCEEFGKKYKLDIKSKIRALLRLSQECEKLKKLMSANASDLPLSIECFMNDVDVSGTMNRGKFLEMCNDLLARVEPPLRSVLEQTKLKKEDIYAVEIVGGATRIPAVKEKISKFFGKELSTTLNADEAVTRGCALQCAILSPAFKVREFSITDVVPYPISLRWNSPAEEGSSDCEVFSKNHAAPFSKVLTFYRKEPFTLEAYYSSPQDLPYPDPAIAQFSVQKVTPQSDGSSSKVKVKVRVNVHGIFSVSSASLVEVHKSEENEEPMETDQNAKEEEKMQVDQEEPHVEEQQQQTPAENKAESEEMETSQAGSKDKKMDQPPQAKKAKVKTSTVDLPIENQLLWQIDREMLNLYIENEGKMIMQDKLEKERNDAKNAVEEYVYEMRDKLSGEYEKFVSEDDRNSFTLKLEDTENWLYEDGEDQPKQVYVDKLAELKNLGQPIKIRFQESEERPKLFEELGKQIQQYMKIISSFKNKEDQYDHLDAADMTKVEKSTNEAMEWMNNKLNLQNKQSLTMDPVVKSKEIEAKIKELTSICSPIISKPKPKVEPPKEEQKNAEQNGPVDGQGDNPGPQAAEQGTDAAVPSDSDKKLPEMDID
Subcellular locations: Cytoplasm
HUTU_HUMAN
Homo sapiens
MSSLQALCSGLPLRPLPENRGRQAGVPHAPVRTPSLSPVEKQLALRNALRYFPPDVQELLAPEFAQELQLYGHIYMYRFCPDIEMRAYPIEQYPCQTKVAAAIMHMIMNNLDPAVAQFPQELVTYGGNGQVFSNWAQFWLTMFYLSKMTEEQTLVMYSGHPLGLFPSSRSAPRLVITNGMVIPNYSSRTEYEKLFALGVTMYGQMTAGSYCYIGPQGIVHGTVLTVLNAARRYLGIEDLAGKVFVTSGLGGMSGAQAKAAVIVGCIGVIAEVDKAALEKRHRQGWLMEVTDSLDRCIQRLREARKKKEVLSLGYHGNVVALWERLVHELDTTGECLVDLGSDQTSCHNPFNGGYYPVQLSFTEAQSLMASNPAVFKDLVQESLRRQVSAINRLAEEKFFFWDYGNAFLLEAQRAGADVEKKGAGRTEFRYPSYVQHIMGDIFSQGFGPFRWVCTSGDPQDLAVTDELATSVLEEAIADGVKVSVKLQYMDNIRWIREAARHRLVVGSQARILYSDQKGRVAIAVAINQAIACRRIKAPVVLSRDHHDVSGTDSPFRETSNIYDGSAFCADMAVQNFVGDACRGATWVALHNGGGVGWGEVINGGFGLVLDGTPEAEGRARLMLSWDVSNGVARRCWSGNQKAYEIICQTMQENSTLVVTLPHKVEDERVLQQALQL
null
HV372_HUMAN
Homo sapiens
MEFGLSWVFLVVILQGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFSDHYMDWVRQAPGKGLEWVGRTRNKANSYTTEYAASVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HV373_HUMAN
Homo sapiens
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAMHWVRQASGKGLEWVGRIRSKANSYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HV374_HUMAN
Homo sapiens
MEFGLSWVFLVAILKGVQCEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLVWVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane