text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
import abc from dataclasses import dataclass import draccus @dataclass class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC): @property def type(self) -> str: return self.get_choice_name(self.__class__) @MotorsBusConfig.register_subclass("dynamixel") @dataclass class DynamixelMotorsBusConfig(MotorsBusConfig): port: str motors: dict[str, tuple[int, str]] mock: bool = False @MotorsBusConfig.register_subclass("feetech") @dataclass class FeetechMotorsBusConfig(MotorsBusConfig): port: str motors: dict[str, tuple[int, str]] mock: bool = False
lerobot/lerobot/common/robot_devices/motors/configs.py/0
{ "file_path": "lerobot/lerobot/common/robot_devices/motors/configs.py", "repo_id": "lerobot", "token_count": 220 }
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from lerobot.common import ( policies, # noqa: F401 ) from lerobot.common.datasets.transforms import ImageTransformsConfig @dataclass class DatasetConfig: # You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data # keys common between the datasets are kept. Each dataset gets and additional transform that inserts the # "dataset_index" into the returned item. The index mapping is made according to the order in which the # datsets are provided. repo_id: str episodes: list[int] | None = None image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig) local_files_only: bool = False use_imagenet_stats: bool = True video_backend: str = "pyav" @dataclass class WandBConfig: enable: bool = False # Set to true to disable saving an artifact despite training.save_checkpoint=True disable_artifact: bool = False project: str = "lerobot" entity: str | None = None notes: str | None = None @dataclass class EvalConfig: n_episodes: int = 50 # `batch_size` specifies the number of environments to use in a gym.vector.VectorEnv. batch_size: int = 50 # `use_async_envs` specifies whether to use asynchronous environments (multiprocessing). use_async_envs: bool = False def __post_init__(self): if self.batch_size > self.n_episodes: raise ValueError( "The eval batch size is greater than the number of eval episodes " f"({self.batch_size} > {self.n_episodes}). As a result, {self.batch_size} " f"eval environments will be instantiated, but only {self.n_episodes} will be used. " "This might significantly slow down evaluation. To fix this, you should update your command " f"to increase the number of episodes to match the batch size (e.g. `eval.n_episodes={self.batch_size}`), " f"or lower the batch size (e.g. `eval.batch_size={self.n_episodes}`)." )
lerobot/lerobot/configs/default.py/0
{ "file_path": "lerobot/lerobot/configs/default.py", "repo_id": "lerobot", "token_count": 929 }
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset. Note: The last frame of the episode doesnt always correspond to a final state. That's because our datasets are composed of transition from state to state up to the antepenultimate state associated to the ultimate action to arrive in the final state. However, there might not be a transition from a final state to another state. Note: This script aims to visualize the data used to train the neural networks. ~What you see is what you get~. When visualizing image modality, it is often expected to observe lossly compression artifacts since these images have been decoded from compressed mp4 videos to save disk space. The compression factor applied has been tuned to not affect success rate. Example of usage: - Visualize data stored on a local machine: ```bash local$ python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht local$ open http://localhost:9090 ``` - Visualize data stored on a distant machine with a local viewer: ```bash distant$ python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht local$ ssh -L 9090:localhost:9090 distant # create a ssh tunnel local$ open http://localhost:9090 ``` - Select episodes to visualize: ```bash python lerobot/scripts/visualize_dataset_html.py \ --repo-id lerobot/pusht \ --episodes 7 3 5 1 4 ``` """ import argparse import csv import json import logging import re import shutil import tempfile from io import StringIO from pathlib import Path import numpy as np import pandas as pd import requests from flask import Flask, redirect, render_template, request, url_for from lerobot import available_datasets from lerobot.common.datasets.lerobot_dataset import LeRobotDataset from lerobot.common.datasets.utils import IterableNamespace from lerobot.common.utils.utils import init_logging def run_server( dataset: LeRobotDataset | IterableNamespace | None, episodes: list[int] | None, host: str, port: str, static_folder: Path, template_folder: Path, ): app = Flask(__name__, static_folder=static_folder.resolve(), template_folder=template_folder.resolve()) app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache @app.route("/") def hommepage(dataset=dataset): if dataset: dataset_namespace, dataset_name = dataset.repo_id.split("/") return redirect( url_for( "show_episode", dataset_namespace=dataset_namespace, dataset_name=dataset_name, episode_id=0, ) ) dataset_param, episode_param = None, None all_params = request.args if "dataset" in all_params: dataset_param = all_params["dataset"] if "episode" in all_params: episode_param = int(all_params["episode"]) if dataset_param: dataset_namespace, dataset_name = dataset_param.split("/") return redirect( url_for( "show_episode", dataset_namespace=dataset_namespace, dataset_name=dataset_name, episode_id=episode_param if episode_param is not None else 0, ) ) featured_datasets = [ "lerobot/aloha_static_cups_open", "lerobot/columbia_cairlab_pusht_real", "lerobot/taco_play", ] return render_template( "visualize_dataset_homepage.html", featured_datasets=featured_datasets, lerobot_datasets=available_datasets, ) @app.route("/<string:dataset_namespace>/<string:dataset_name>") def show_first_episode(dataset_namespace, dataset_name): first_episode_id = 0 return redirect( url_for( "show_episode", dataset_namespace=dataset_namespace, dataset_name=dataset_name, episode_id=first_episode_id, ) ) @app.route("/<string:dataset_namespace>/<string:dataset_name>/episode_<int:episode_id>") def show_episode(dataset_namespace, dataset_name, episode_id, dataset=dataset, episodes=episodes): repo_id = f"{dataset_namespace}/{dataset_name}" try: if dataset is None: dataset = get_dataset_info(repo_id) except FileNotFoundError: return ( "Make sure to convert your LeRobotDataset to v2 & above. See how to convert your dataset at https://github.com/huggingface/lerobot/pull/461", 400, ) dataset_version = ( dataset.meta._version if isinstance(dataset, LeRobotDataset) else dataset.codebase_version ) match = re.search(r"v(\d+)\.", dataset_version) if match: major_version = int(match.group(1)) if major_version < 2: return "Make sure to convert your LeRobotDataset to v2 & above." episode_data_csv_str, columns = get_episode_data(dataset, episode_id) dataset_info = { "repo_id": f"{dataset_namespace}/{dataset_name}", "num_samples": dataset.num_frames if isinstance(dataset, LeRobotDataset) else dataset.total_frames, "num_episodes": dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes, "fps": dataset.fps, } if isinstance(dataset, LeRobotDataset): video_paths = [ dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys ] videos_info = [ {"url": url_for("static", filename=video_path), "filename": video_path.parent.name} for video_path in video_paths ] tasks = dataset.meta.episodes[episode_id]["tasks"] else: video_keys = [key for key, ft in dataset.features.items() if ft["dtype"] == "video"] videos_info = [ { "url": f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.video_path.format( episode_chunk=int(episode_id) // dataset.chunks_size, video_key=video_key, episode_index=episode_id, ), "filename": video_key, } for video_key in video_keys ] response = requests.get( f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl" ) response.raise_for_status() # Split into lines and parse each line as JSON tasks_jsonl = [json.loads(line) for line in response.text.splitlines() if line.strip()] filtered_tasks_jsonl = [row for row in tasks_jsonl if row["episode_index"] == episode_id] tasks = filtered_tasks_jsonl[0]["tasks"] videos_info[0]["language_instruction"] = tasks if episodes is None: episodes = list( range(dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes) ) return render_template( "visualize_dataset_template.html", episode_id=episode_id, episodes=episodes, dataset_info=dataset_info, videos_info=videos_info, episode_data_csv_str=episode_data_csv_str, columns=columns, ) app.run(host=host, port=port) def get_ep_csv_fname(episode_id: int): ep_csv_fname = f"episode_{episode_id}.csv" return ep_csv_fname def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index): """Get a csv str containing timeseries data of an episode (e.g. state and action). This file will be loaded by Dygraph javascript to plot data in real time.""" columns = [] selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"] selected_columns.remove("timestamp") # init header of csv with state and action names header = ["timestamp"] for column_name in selected_columns: dim_state = ( dataset.meta.shapes[column_name][0] if isinstance(dataset, LeRobotDataset) else dataset.features[column_name].shape[0] ) header += [f"{column_name}_{i}" for i in range(dim_state)] if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]: column_names = dataset.features[column_name]["names"] while not isinstance(column_names, list): column_names = list(column_names.values())[0] else: column_names = [f"motor_{i}" for i in range(dim_state)] columns.append({"key": column_name, "value": column_names}) selected_columns.insert(0, "timestamp") if isinstance(dataset, LeRobotDataset): from_idx = dataset.episode_data_index["from"][episode_index] to_idx = dataset.episode_data_index["to"][episode_index] data = ( dataset.hf_dataset.select(range(from_idx, to_idx)) .select_columns(selected_columns) .with_format("pandas") ) else: repo_id = dataset.repo_id url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format( episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index ) df = pd.read_parquet(url) data = df[selected_columns] # Select specific columns rows = np.hstack( ( np.expand_dims(data["timestamp"], axis=1), *[np.vstack(data[col]) for col in selected_columns[1:]], ) ).tolist() # Convert data to CSV string csv_buffer = StringIO() csv_writer = csv.writer(csv_buffer) # Write header csv_writer.writerow(header) # Write data rows csv_writer.writerows(rows) csv_string = csv_buffer.getvalue() return csv_string, columns def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]: # get first frame of episode (hack to get video_path of the episode) first_frame_idx = dataset.episode_data_index["from"][ep_index].item() return [ dataset.hf_dataset.select_columns(key)[first_frame_idx][key]["path"] for key in dataset.meta.video_keys ] def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]: # check if the dataset has language instructions if "language_instruction" not in dataset.features: return None # get first frame index first_frame_idx = dataset.episode_data_index["from"][ep_index].item() language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"] # TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored # with the tf.tensor appearing in the string return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)") def get_dataset_info(repo_id: str) -> IterableNamespace: response = requests.get(f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json") response.raise_for_status() # Raises an HTTPError for bad responses dataset_info = response.json() dataset_info["repo_id"] = repo_id return IterableNamespace(dataset_info) def visualize_dataset_html( dataset: LeRobotDataset | None, episodes: list[int] | None = None, output_dir: Path | None = None, serve: bool = True, host: str = "127.0.0.1", port: int = 9090, force_override: bool = False, ) -> Path | None: init_logging() template_dir = Path(__file__).resolve().parent.parent / "templates" if output_dir is None: # Create a temporary directory that will be automatically cleaned up output_dir = tempfile.mkdtemp(prefix="lerobot_visualize_dataset_") output_dir = Path(output_dir) if output_dir.exists(): if force_override: shutil.rmtree(output_dir) else: logging.info(f"Output directory already exists. Loading from it: '{output_dir}'") output_dir.mkdir(parents=True, exist_ok=True) static_dir = output_dir / "static" static_dir.mkdir(parents=True, exist_ok=True) if dataset is None: if serve: run_server( dataset=None, episodes=None, host=host, port=port, static_folder=static_dir, template_folder=template_dir, ) else: # Create a simlink from the dataset video folder containg mp4 files to the output directory # so that the http server can get access to the mp4 files. if isinstance(dataset, LeRobotDataset): ln_videos_dir = static_dir / "videos" if not ln_videos_dir.exists(): ln_videos_dir.symlink_to((dataset.root / "videos").resolve()) if serve: run_server(dataset, episodes, host, port, static_dir, template_dir) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--repo-id", type=str, default=None, help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).", ) parser.add_argument( "--local-files-only", type=int, default=0, help="Use local files only. By default, this script will try to fetch the dataset from the hub if it exists.", ) parser.add_argument( "--root", type=Path, default=None, help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.", ) parser.add_argument( "--load-from-hf-hub", type=int, default=0, help="Load videos and parquet files from HF Hub rather than local system.", ) parser.add_argument( "--episodes", type=int, nargs="*", default=None, help="Episode indices to visualize (e.g. `0 1 5 6` to load episodes of index 0, 1, 5 and 6). By default loads all episodes.", ) parser.add_argument( "--output-dir", type=Path, default=None, help="Directory path to write html files and kickoff a web server. By default write them to 'outputs/visualize_dataset/REPO_ID'.", ) parser.add_argument( "--serve", type=int, default=1, help="Launch web server.", ) parser.add_argument( "--host", type=str, default="127.0.0.1", help="Web host used by the http server.", ) parser.add_argument( "--port", type=int, default=9090, help="Web port used by the http server.", ) parser.add_argument( "--force-override", type=int, default=0, help="Delete the output directory if it exists already.", ) args = parser.parse_args() kwargs = vars(args) repo_id = kwargs.pop("repo_id") load_from_hf_hub = kwargs.pop("load_from_hf_hub") root = kwargs.pop("root") local_files_only = kwargs.pop("local_files_only") dataset = None if repo_id: dataset = ( LeRobotDataset(repo_id, root=root, local_files_only=local_files_only) if not load_from_hf_hub else get_dataset_info(repo_id) ) visualize_dataset_html(dataset, **vars(args)) if __name__ == "__main__": main()
lerobot/lerobot/scripts/visualize_dataset_html.py/0
{ "file_path": "lerobot/lerobot/scripts/visualize_dataset_html.py", "repo_id": "lerobot", "token_count": 7248 }
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script provides a utility for saving a dataset as safetensors files for the purpose of testing backward compatibility when updating the data format. It uses the `PushtDataset` to create a DataLoader and saves selected frame from the dataset into a corresponding safetensors file in a specified output directory. If you know that your change will break backward compatibility, you should write a shortlived test by modifying `tests/test_datasets.py::test_backward_compatibility` accordingly, and make sure this custom test pass. Your custom test doesnt need to be merged into the `main` branch. Then you need to run this script and update the tests artifacts. Example usage: `python tests/scripts/save_dataset_to_safetensors.py` """ import shutil from pathlib import Path from safetensors.torch import save_file from lerobot.common.datasets.lerobot_dataset import LeRobotDataset def save_dataset_to_safetensors(output_dir, repo_id="lerobot/pusht"): repo_dir = Path(output_dir) / repo_id if repo_dir.exists(): shutil.rmtree(repo_dir) repo_dir.mkdir(parents=True, exist_ok=True) dataset = LeRobotDataset( repo_id=repo_id, episodes=[0], ) # save 2 first frames of first episode i = dataset.episode_data_index["from"][0].item() save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # save 2 frames at the middle of first episode i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2) save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # save 2 last frames of first episode i = dataset.episode_data_index["to"][0].item() save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") # TODO(rcadene): Enable testing on second and last episode # We currently cant because our test dataset only contains the first episode # # save 2 first frames of second episode # i = dataset.episode_data_index["from"][1].item() # save_file(dataset[i], repo_dir / f"frame_{i}.safetensors") # save_file(dataset[i + 1], repo_dir / f"frame_{i+1}.safetensors") # # save 2 last frames of second episode # i = dataset.episode_data_index["to"][1].item() # save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") # save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") # # save 2 last frames of last episode # i = dataset.episode_data_index["to"][-1].item() # save_file(dataset[i - 2], repo_dir / f"frame_{i-2}.safetensors") # save_file(dataset[i - 1], repo_dir / f"frame_{i-1}.safetensors") if __name__ == "__main__": for dataset in [ "lerobot/pusht", "lerobot/aloha_sim_insertion_human", "lerobot/xarm_lift_medium", "lerobot/nyu_franka_play_dataset", "lerobot/cmu_stretch", ]: save_dataset_to_safetensors("tests/data/save_dataset_to_safetensors", repo_id=dataset)
lerobot/tests/scripts/save_dataset_to_safetensors.py/0
{ "file_path": "lerobot/tests/scripts/save_dataset_to_safetensors.py", "repo_id": "lerobot", "token_count": 1387 }
""" Tests for physical robots and their mocked versions. If the physical robots are not connected to the computer, or not working, the test will be skipped. Example of running a specific test: ```bash pytest -sx tests/test_robots.py::test_robot ``` Example of running test on real robots connected to the computer: ```bash pytest -sx 'tests/test_robots.py::test_robot[koch-False]' pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-False]' pytest -sx 'tests/test_robots.py::test_robot[aloha-False]' ``` Example of running test on a mocked version of robots: ```bash pytest -sx 'tests/test_robots.py::test_robot[koch-True]' pytest -sx 'tests/test_robots.py::test_robot[koch_bimanual-True]' pytest -sx 'tests/test_robots.py::test_robot[aloha-True]' ``` """ from pathlib import Path import pytest import torch from lerobot.common.robot_devices.robots.utils import make_robot from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError from tests.utils import TEST_ROBOT_TYPES, mock_calibration_dir, require_robot @pytest.mark.parametrize("robot_type, mock", TEST_ROBOT_TYPES) @require_robot def test_robot(tmpdir, request, robot_type, mock): # TODO(rcadene): measure fps in nightly? # TODO(rcadene): test logs # TODO(rcadene): add compatibility with other robots robot_kwargs = {"robot_type": robot_type, "mock": mock} if robot_type == "aloha" and mock: # To simplify unit test, we do not rerun manual calibration for Aloha mock=True. # Instead, we use the files from '.cache/calibration/aloha_default' pass else: if mock: request.getfixturevalue("patch_builtins_input") # Create an empty calibration directory to trigger manual calibration tmpdir = Path(tmpdir) calibration_dir = tmpdir / robot_type mock_calibration_dir(calibration_dir) robot_kwargs["calibration_dir"] = calibration_dir # Test using robot before connecting raises an error robot = make_robot(**robot_kwargs) with pytest.raises(RobotDeviceNotConnectedError): robot.teleop_step() with pytest.raises(RobotDeviceNotConnectedError): robot.teleop_step(record_data=True) with pytest.raises(RobotDeviceNotConnectedError): robot.capture_observation() with pytest.raises(RobotDeviceNotConnectedError): robot.send_action(None) with pytest.raises(RobotDeviceNotConnectedError): robot.disconnect() # Test deleting the object without connecting first del robot # Test connecting (triggers manual calibration) robot = make_robot(**robot_kwargs) robot.connect() assert robot.is_connected # Test connecting twice raises an error with pytest.raises(RobotDeviceAlreadyConnectedError): robot.connect() # TODO(rcadene, aliberts): Test disconnecting with `__del__` instead of `disconnect` # del robot robot.disconnect() # Test teleop can run robot = make_robot(**robot_kwargs) robot.connect() robot.teleop_step() # Test data recorded during teleop are well formated observation, action = robot.teleop_step(record_data=True) # State assert "observation.state" in observation assert isinstance(observation["observation.state"], torch.Tensor) assert observation["observation.state"].ndim == 1 dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms) assert observation["observation.state"].shape[0] == dim_state # Cameras for name in robot.cameras: assert f"observation.images.{name}" in observation assert isinstance(observation[f"observation.images.{name}"], torch.Tensor) assert observation[f"observation.images.{name}"].ndim == 3 # Action assert "action" in action assert isinstance(action["action"], torch.Tensor) assert action["action"].ndim == 1 dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms) assert action["action"].shape[0] == dim_action # TODO(rcadene): test if observation and action data are returned as expected # Test capture_observation can run and observation returned are the same (since the arm didnt move) captured_observation = robot.capture_observation() assert set(captured_observation.keys()) == set(observation.keys()) for name in captured_observation: if "image" in name: # TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames continue assert torch.allclose(captured_observation[name], observation[name], atol=1) assert captured_observation[name].shape == observation[name].shape # Test send_action can run robot.send_action(action["action"]) # Test disconnecting robot.disconnect() assert not robot.is_connected for name in robot.follower_arms: assert not robot.follower_arms[name].is_connected for name in robot.leader_arms: assert not robot.leader_arms[name].is_connected for name in robot.cameras: assert not robot.cameras[name].is_connected
lerobot/tests/test_robots.py/0
{ "file_path": "lerobot/tests/test_robots.py", "repo_id": "lerobot", "token_count": 1872 }
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import List, Optional from open_r1.utils.evaluation import SUPPORTED_BENCHMARKS, run_benchmark_jobs from open_r1.configs import SFTConfig from trl import ModelConfig, TrlParser @dataclass class ScriptArguments: model_id: str = field( default="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", metadata={"help": "The Hub model id to push the model to."}, ) model_revision: str = field(default="main", metadata={"help": "The Hub model branch to push the model to."}) trust_remote_code: bool = field(default=False, metadata={"help": "Trust the remote code."}) benchmarks: List[str] = field( default_factory=lambda: [], metadata={"help": "The benchmarks to run after training."} ) list_benchmarks: bool = field(default=False, metadata={"help": "List all supported benchmarks."}) system_prompt: Optional[str] = field( default=None, metadata={"help": "The system prompt to use for the benchmark."} ) def main(): parser = TrlParser(ScriptArguments) args = parser.parse_args_and_config()[0] if args.list_benchmarks: print("Supported benchmarks:") for benchmark in SUPPORTED_BENCHMARKS: print(f" - {benchmark}") return benchmark_args = SFTConfig( output_dir="", hub_model_id=args.model_id, hub_model_revision=args.model_revision, benchmarks=args.benchmarks, system_prompt=args.system_prompt, ) run_benchmark_jobs( benchmark_args, ModelConfig(model_name_or_path="", model_revision="", trust_remote_code=args.trust_remote_code), ) if __name__ == "__main__": main()
open-r1/scripts/run_benchmarks.py/0
{ "file_path": "open-r1/scripts/run_benchmarks.py", "repo_id": "open-r1", "token_count": 815 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from concurrent.futures import Future from transformers import AutoConfig from huggingface_hub import ( create_branch, create_repo, get_safetensors_metadata, list_repo_commits, list_repo_files, list_repo_refs, repo_exists, upload_folder, ) from trl import GRPOConfig, SFTConfig logger = logging.getLogger(__name__) def push_to_hub_revision(training_args: SFTConfig | GRPOConfig, extra_ignore_patterns=[]) -> Future: """Pushes the model to branch on a Hub repo.""" # Create a repo if it doesn't exist yet repo_url = create_repo(repo_id=training_args.hub_model_id, private=True, exist_ok=True) # Get initial commit to branch from initial_commit = list_repo_commits(training_args.hub_model_id)[-1] # Now create the branch we'll be pushing to create_branch( repo_id=training_args.hub_model_id, branch=training_args.hub_model_revision, revision=initial_commit.commit_id, exist_ok=True, ) logger.info(f"Created target repo at {repo_url}") logger.info(f"Pushing to the Hub revision {training_args.hub_model_revision}...") ignore_patterns = ["checkpoint-*", "*.pth"] ignore_patterns.extend(extra_ignore_patterns) future = upload_folder( repo_id=training_args.hub_model_id, folder_path=training_args.output_dir, revision=training_args.hub_model_revision, commit_message=f"Add {training_args.hub_model_revision} checkpoint", ignore_patterns=ignore_patterns, run_as_future=True, ) logger.info(f"Pushed to {repo_url} revision {training_args.hub_model_revision} successfully!") return future def check_hub_revision_exists(training_args: SFTConfig | GRPOConfig): """Checks if a given Hub revision exists.""" if repo_exists(training_args.hub_model_id): if training_args.push_to_hub_revision is True: # First check if the revision exists revisions = [rev.name for rev in list_repo_refs(training_args.hub_model_id).branches] # If the revision exists, we next check it has a README file if training_args.hub_model_revision in revisions: repo_files = list_repo_files( repo_id=training_args.hub_model_id, revision=training_args.hub_model_revision ) if "README.md" in repo_files and training_args.overwrite_hub_revision is False: raise ValueError( f"Revision {training_args.hub_model_revision} already exists. " "Use --overwrite_hub_revision to overwrite it." ) def get_param_count_from_repo_id(repo_id: str) -> int: """Function to get model param counts from safetensors metadata or find patterns like 42m, 1.5b, 0.5m or products like 8x7b in a repo ID.""" try: metadata = get_safetensors_metadata(repo_id) return list(metadata.parameter_count.values())[0] except Exception: # Pattern to match products (like 8x7b) and single values (like 42m) pattern = r"((\d+(\.\d+)?)(x(\d+(\.\d+)?))?)([bm])" matches = re.findall(pattern, repo_id.lower()) param_counts = [] for full_match, number1, _, _, number2, _, unit in matches: if number2: # If there's a second number, it's a product number = float(number1) * float(number2) else: # Otherwise, it's a single value number = float(number1) if unit == "b": number *= 1_000_000_000 # Convert to billion elif unit == "m": number *= 1_000_000 # Convert to million param_counts.append(number) if len(param_counts) > 0: # Return the largest number return int(max(param_counts)) else: # Return -1 if no match found return -1 def get_gpu_count_for_vllm(model_name: str, revision: str = "main", num_gpus: int = 8) -> int: """vLLM enforces a constraint that the number of attention heads must be divisible by the number of GPUs and 64 must be divisible by the number of GPUs. This function calculates the number of GPUs to use for decoding based on the number of attention heads in the model. """ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=True) # Get number of attention heads num_heads = config.num_attention_heads # Reduce num_gpus so that num_heads is divisible by num_gpus and 64 is divisible by num_gpus while num_heads % num_gpus != 0 or 64 % num_gpus != 0: logger.info(f"Reducing num_gpus from {num_gpus} to {num_gpus - 1} to make num_heads divisible by num_gpus") num_gpus -= 1 return num_gpus
open-r1/src/open_r1/utils/hub.py/0
{ "file_path": "open-r1/src/open_r1/utils/hub.py", "repo_id": "open-r1", "token_count": 2180 }
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Fully Sharded Data Parallel [Fully sharded data parallel](https://pytorch.org/docs/stable/fsdp.html) (FSDP) is developed for distributed training of large pretrained models up to 1T parameters. FSDP achieves this by sharding the model parameters, gradients, and optimizer states across data parallel processes and it can also offload sharded model parameters to a CPU. The memory efficiency afforded by FSDP allows you to scale training to larger batch or model sizes. Both of these features are supported in 🤗 Accelerate, and you can use them with 🤗 PEFT. # Use PEFT and FSDP This section of guide will help you learn how to use our DeepSpeed [training script](https://github.com/huggingface/peft/blob/main/examples/sft/train.py) for performing SFT. You'll configure the script to do SFT (supervised fine-tuning) of Llama-70B model with LoRA and FSDP on 8xH100 80GB GPUs on a single machine. You can configure it to scale to multiple machines by changing the accelerate config. ## Configuration Start by running the following command to [create a FSDP configuration file](https://huggingface.co/docs/accelerate/quicktour#launching-your-distributed-script) with 🤗 Accelerate. The `--config_file` flag allows you to save the configuration file to a specific location, otherwise it is saved as a `default_config.yaml` file in the 🤗 Accelerate cache. The configuration file is used to set the default options when you launch the training script. ```bash accelerate config --config_file fsdp_config.yaml ``` You'll be asked a few questions about your setup, and configure the following arguments. In this example, you'll answer the questionnaire as shown in the image below. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/fsdp-peft-config.png"/> </div> <small>Creating Accelerate's config to use FSDP</small> Once this is done, the corresponding config should look like below and you can find it in config folder at [fsdp_config.yaml](https://github.com/huggingface/peft/blob/main/examples/sft/configs/fsdp_config.yaml): ```yml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: false fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_use_orig_params: false machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ## Launch command The launch command is available at [run_peft_fsdp.sh](https://github.com/huggingface/peft/blob/main/examples/sft/run_peft_fsdp.sh) and it is also shown below: ```bash accelerate launch --config_file "configs/fsdp_config.yaml" train.py \ --seed 100 \ --model_name_or_path "meta-llama/Llama-2-70b-hf" \ --dataset_name "smangrul/ultrachat-10k-chatml" \ --chat_template_format "chatml" \ --add_special_tokens False \ --append_concat_token False \ --splits "train,test" \ --max_seq_len 2048 \ --num_train_epochs 1 \ --logging_steps 5 \ --log_level "info" \ --logging_strategy "steps" \ --eval_strategy "epoch" \ --save_strategy "epoch" \ --push_to_hub \ --hub_private_repo True \ --hub_strategy "every_save" \ --bf16 True \ --packing True \ --learning_rate 1e-4 \ --lr_scheduler_type "cosine" \ --weight_decay 1e-4 \ --warmup_ratio 0.0 \ --max_grad_norm 1.0 \ --output_dir "llama-sft-lora-fsdp" \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --gradient_accumulation_steps 4 \ --gradient_checkpointing True \ --use_reentrant False \ --dataset_text_field "content" \ --use_flash_attn True \ --use_peft_lora True \ --lora_r 8 \ --lora_alpha 16 \ --lora_dropout 0.1 \ --lora_target_modules "all-linear" \ --use_4bit_quantization False ``` Notice that we are using LoRA with rank=8, alpha=16 and targeting all linear layers. We are passing the FSDP config file and finetuning the 70B Llama model on a subset of the [ultrachat dataset](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k). ## The important parts Let's dive a little deeper into the script so you can see what's going on, and understand how it works. The first thing to know is that the script uses FSDP for distributed training as the FSDP config has been passed. The [`~trl.SFTTrainer`] class handles all the heavy lifting of creating PEFT model using the peft config that is passed. After that when you call `trainer.train()`, Trainer internally uses 🤗 Accelerate to prepare model, optimizer and trainer using the FSDP config to create FSDP wrapped model which is then trained. The main code snippet is below: ```python # trainer trainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=peft_config, ) trainer.accelerator.print(f"{trainer.model}") if model_args.use_peft_lora: # handle PEFT+FSDP case trainer.model.print_trainable_parameters() if getattr(trainer.accelerator.state, "fsdp_plugin", None): from peft.utils.other import fsdp_auto_wrap_policy fsdp_plugin = trainer.accelerator.state.fsdp_plugin fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(trainer.model) # train checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint trainer.train(resume_from_checkpoint=checkpoint) # saving final model if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model() ``` Here, one main thing to note currently when using FSDP with PEFT is that `use_orig_params` needs to be `False` to realize GPU memory savings. Due to `use_orig_params=False`, the auto wrap policy for FSDP needs to change so that trainable and non-trainable parameters are wrapped separately. This is done by the code snippt below which uses the util function `fsdp_auto_wrap_policy` from PEFT: ``` if getattr(trainer.accelerator.state, "fsdp_plugin", None): from peft.utils.other import fsdp_auto_wrap_policy fsdp_plugin = trainer.accelerator.state.fsdp_plugin fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(trainer.model) ``` ## Memory usage In the above example, the memory consumed per GPU is 72-80 GB (90-98%) as seen in the screenshot below. The slight increase in GPU memory at the end is when saving the model using `FULL_STATE_DICT` state dict type instead of the `SHARDED_STATE_DICT` so that the model has adapter weights that can be loaded normally with `from_pretrained` method during inference: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/peft_fsdp_mem_usage.png"/> </div> <small>GPU memory usage for the training run</small> # Use PEFT QLoRA and FSDP for finetuning large models on multiple GPUs In this section, we will look at how to use QLoRA and FSDP for finetuning 70B llama model on 2X24GB GPUs. [Answer.AI](https://www.answer.ai/) in collaboration with bitsandbytes and Hugging Face 🤗 open sourced code enabling the usage of FSDP+QLoRA and explained the whole process in their insightful blogpost [You can now train a 70b language model at home](https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html). This is now integrated in Hugging Face ecosystem. For this, we first need `bitsandbytes>=0.43.3`, `accelerate>=1.0.1`, `transformers>4.44.2`, `trl>0.11.4` and `peft>0.13.0`. We need to set `fsdp_cpu_ram_efficient_loading=true`, `fsdp_use_orig_params=false` and `fsdp_offload_params=true`(cpu offloading) when using Accelerate config. When not using accelerate launcher, you can alternately set the environment variable `export FSDP_CPU_RAM_EFFICIENT_LOADING=true`. Here, we will be using accelerate config and below is the config which can be found at [fsdp_config_qlora.yaml](https://github.com/huggingface/peft/blob/main/examples/sft/configs/fsdp_config_qlora.yaml): ```yml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: true fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_use_orig_params: false machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` Launch command is given below which is available at [run_peft_qlora_fsdp.sh](https://github.com/huggingface/peft/blob/main/examples/sft/run_peft_qlora_fsdp.sh): ``` accelerate launch --config_file "configs/fsdp_config_qlora.yaml" train.py \ --seed 100 \ --model_name_or_path "meta-llama/Llama-2-70b-hf" \ --dataset_name "smangrul/ultrachat-10k-chatml" \ --chat_template_format "chatml" \ --add_special_tokens False \ --append_concat_token False \ --splits "train,test" \ --max_seq_len 2048 \ --num_train_epochs 1 \ --logging_steps 5 \ --log_level "info" \ --logging_strategy "steps" \ --eval_strategy "epoch" \ --save_strategy "epoch" \ --push_to_hub \ --hub_private_repo True \ --hub_strategy "every_save" \ --bf16 True \ --packing True \ --learning_rate 1e-4 \ --lr_scheduler_type "cosine" \ --weight_decay 1e-4 \ --warmup_ratio 0.0 \ --max_grad_norm 1.0 \ --output_dir "llama-sft-qlora-fsdp" \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 2 \ --gradient_checkpointing True \ --use_reentrant True \ --dataset_text_field "content" \ --use_flash_attn True \ --use_peft_lora True \ --lora_r 8 \ --lora_alpha 16 \ --lora_dropout 0.1 \ --lora_target_modules "all-linear" \ --use_4bit_quantization True \ --use_nested_quant True \ --bnb_4bit_compute_dtype "bfloat16" \ --bnb_4bit_quant_storage_dtype "bfloat16" ``` Notice the new argument being passed, `bnb_4bit_quant_storage_dtype`, which denotes the data type for packing the 4-bit parameters. For example, when it is set to `bfloat16`, **16/4 = 4** 4-bit params are packed together post quantization. When using mixed precision training with `bfloat16`, `bnb_4bit_quant_storage_dtype` can be either `bfloat16` for pure `bfloat16` finetuning, or `float32` for automatic mixed precision (this consumes more GPU memory). When using mixed precision training with `float16`, `bnb_4bit_quant_storage_dtype` should be set to `float32` for stable automatic mixed precision training. In terms of training code, the important code changes are: ```diff ... bnb_config = BitsAndBytesConfig( load_in_4bit=args.use_4bit_quantization, bnb_4bit_quant_type=args.bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=args.use_nested_quant, + bnb_4bit_quant_storage=quant_storage_dtype, ) ... model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, quantization_config=bnb_config, trust_remote_code=True, attn_implementation="flash_attention_2" if args.use_flash_attn else "eager", + torch_dtype=quant_storage_dtype or torch.float32, ) ``` Notice that `torch_dtype` for `AutoModelForCausalLM` is same as the `bnb_4bit_quant_storage` data type. That's it. Everything else is handled by Trainer and TRL. ## Memory usage In the above example, the memory consumed per GPU is **19.6 GB** while CPU RAM usage is around **107 GB**. When disabling CPU offloading, the GPU memory usage is **35.6 GB/ GPU**. Therefore, what took 16X80GB GPUs for full finetuning, 8X80GB GPUs with FSDP+LoRA, and a couple of 80GB GPUs with DDP+QLoRA, now requires 2X24GB GPUs. This makes finetuning of large models more accessible. ## More resources You can also refer the [llama-recipes](https://github.com/facebookresearch/llama-recipes/?tab=readme-ov-file#fine-tuning) repo and [Getting started with Llama](https://llama.meta.com/get-started/#fine-tuning) guide on how to finetune using FSDP and PEFT. ## Caveats 1. Merging when using PEFT and FSDP is currently unsupported and will raise error. 2. Passing `modules_to_save` config parameter to is untested at present. 3. GPU Memory saving when using CPU Offloading is untested at present. 4. When using FSDP+QLoRA, `paged_adamw_8bit` currently results in an error when saving a checkpoint. 5. DoRA training with FSDP should work (albeit at lower speed than LoRA). If combined with bitsandbytes (QDoRA), 4-bit quantization should also work, but 8-bit quantization has known issues and is not recommended.
peft/docs/source/accelerate/fsdp.md/0
{ "file_path": "peft/docs/source/accelerate/fsdp.md", "repo_id": "peft", "token_count": 4780 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Installation Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on **Python 3.9+**. 🤗 PEFT is available on PyPI, as well as GitHub: ## PyPI To install 🤗 PEFT from PyPI: ```bash pip install peft ``` ## Source New features that haven't been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository: ```bash pip install git+https://github.com/huggingface/peft ``` If you're working on contributing to the library or wish to play with the source code and see live results as you run the code, an editable version can be installed from a locally-cloned version of the repository: ```bash git clone https://github.com/huggingface/peft cd peft pip install -e .[test] ```
peft/docs/source/install.md/0
{ "file_path": "peft/docs/source/install.md", "repo_id": "peft", "token_count": 439 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # IA3 [IA3](../conceptual_guides/ia3) multiplies the model's activations (the keys and values in the self-attention and encoder-decoder attention blocks, and the intermediate activation of the position-wise feedforward network) by three learned vectors. This PEFT method introduces an even smaller number of trainable parameters than LoRA which introduces weight matrices instead of vectors. The original model's parameters are kept frozen and only these vectors are updated. As a result, it is faster, cheaper and more efficient to finetune for a new downstream task. This guide will show you how to train a sequence-to-sequence model with IA3 to *generate a sentiment* given some financial news. <Tip> Some familiarity with the general process of training a sequence-to-sequence would be really helpful and allow you to focus on how to apply IA3. If you’re new, we recommend taking a look at the [Translation](https://huggingface.co/docs/transformers/tasks/translation) and [Summarization](https://huggingface.co/docs/transformers/tasks/summarization) guides first from the Transformers documentation. When you’re ready, come back and see how easy it is to drop PEFT in to your training! </Tip> ## Dataset You'll use the sentences_allagree subset of the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) dataset. This subset contains financial news with 100% annotator agreement on the sentiment label. Take a look at the [dataset viewer](https://huggingface.co/datasets/financial_phrasebank/viewer/sentences_allagree) for a better idea of the data and sentences you'll be working with. Load the dataset with the [`~datasets.load_dataset`] function. This subset of the dataset only contains a train split, so use the [`~datasets.train_test_split`] function to create a train and validation split. Create a new `text_label` column so it is easier to understand what the `label` values `0`, `1`, and `2` mean. ```py from datasets import load_dataset ds = load_dataset("financial_phrasebank", "sentences_allagree") ds = ds["train"].train_test_split(test_size=0.1) ds["validation"] = ds["test"] del ds["test"] classes = ds["train"].features["label"].names ds = ds.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) ds["train"][0] {'sentence': 'It will be operated by Nokia , and supported by its Nokia NetAct network and service management system .', 'label': 1, 'text_label': 'neutral'} ``` Load a tokenizer and create a preprocessing function that: 1. tokenizes the inputs, pads and truncates the sequence to the `max_length` 2. apply the same tokenizer to the labels but with a shorter `max_length` that corresponds to the label 3. mask the padding tokens ```py from transformers import AutoTokenizer text_column = "sentence" label_column = "text_label" max_length = 128 tokenizer = AutoTokenizer.from_pretrained("bigscience/mt0-large") def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs ``` Use the [`~datasets.Dataset.map`] function to apply the preprocessing function to the entire dataset. ```py processed_ds = ds.map( preprocess_function, batched=True, num_proc=1, remove_columns=ds["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) ``` Create a training and evaluation [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader), and set `pin_memory=True` to speed up data transfer to the GPU during training if your dataset samples are on a CPU. ```py from torch.utils.data import DataLoader from transformers import default_data_collator train_ds = processed_ds["train"] eval_ds = processed_ds["validation"] batch_size = 8 train_dataloader = DataLoader( train_ds, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_ds, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) ``` ## Model Now you can load a pretrained model to use as the base model for IA3. This guide uses the [bigscience/mt0-large](https://huggingface.co/bigscience/mt0-large) model, but you can use any sequence-to-sequence model you like. ```py from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large") ``` ### PEFT configuration and model All PEFT methods need a configuration that contains and specifies all the parameters for how the PEFT method should be applied. Create an [`IA3Config`] with the task type and set the inference mode to `False`. You can find additional parameters for this configuration in the [API reference](../package_reference/ia3#ia3config). <Tip> Call the [`~PeftModel.print_trainable_parameters`] method to compare the number of trainable parameters of [`PeftModel`] versus the number of parameters in the base model! </Tip> Once the configuration is setup, pass it to the [`get_peft_model`] function along with the base model to create a trainable [`PeftModel`]. ```py from peft import IA3Config, get_peft_model peft_config = IA3Config(task_type="SEQ_2_SEQ_LM") model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 282,624 || all params: 1,229,863,936 || trainable%: 0.022980103060766553" ``` ### Training Set up an optimizer and learning rate scheduler. ```py import torch from transformers import get_linear_schedule_with_warmup lr = 8e-3 num_epochs = 3 optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) ``` Move the model to the GPU and create a training loop that reports the loss and perplexity for each epoch. ```py from tqdm import tqdm device = "cuda" model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") ``` ## Share your model After training is complete, you can upload your model to the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method. You'll need to login to your Hugging Face account first and enter your token when prompted. ```py from huggingface_hub import notebook_login account = <your-hf-account-name> peft_model_id = f"{account}/mt0-large-ia3" model.push_to_hub(peft_model_id) ``` ## Inference To load the model for inference, use the [`~AutoPeftModelForSeq2SeqLM.from_pretrained`] method. Let's also load a sentence of financial news from the dataset to generate a sentiment for. ```py from peft import AutoPeftModelForSeq2SeqLM model = AutoPeftModelForSeq2SeqLM.from_pretrained("<your-hf-account-name>/mt0-large-ia3").to("cuda") tokenizer = AutoTokenizer.from_pretrained("bigscience/mt0-large") i = 15 inputs = tokenizer(ds["validation"][text_column][i], return_tensors="pt") print(ds["validation"][text_column][i]) "The robust growth was the result of the inclusion of clothing chain Lindex in the Group in December 2007 ." ``` Call the [`~transformers.GenerationMixin.generate`] method to generate the predicted sentiment label. ```py with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) ['positive'] ```
peft/docs/source/task_guides/ia3.md/0
{ "file_path": "peft/docs/source/task_guides/ia3.md", "repo_id": "peft", "token_count": 3197 }
import random import numpy as np import torch import wandb from datasets import load_dataset from diffusers import DDIMScheduler from PIL import Image from torchvision import transforms from utils.pipeline_controlnet import LightControlNetPipeline def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def log_validation(val_dataset, text_encoder, unet, controlnet, args, accelerator): pipeline = LightControlNetPipeline.from_pretrained( args.pretrained_model_name_or_path, controlnet=accelerator.unwrap_model(controlnet, keep_fp32_wrapper=True), unet=accelerator.unwrap_model(unet, keep_fp32_wrapper=True).model, text_encoder=accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True), safety_checker=None, revision=args.revision, ) pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) image_logs = [] for idx in range(args.num_validation_images): data = val_dataset[idx] validation_prompt = data["text"] validation_image = data["conditioning_pixel_values"] image = pipeline( validation_prompt, [validation_image], num_inference_steps=50, generator=generator, )[0][0] image_logs.append( { "validation_image": validation_image, "image": image, "validation_prompt": validation_prompt, } ) for tracker in accelerator.trackers: formatted_images = [] for log in image_logs: image = log["image"] validation_prompt = log["validation_prompt"] validation_image = log["validation_image"] formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) image = wandb.Image(image, caption=validation_prompt) formatted_images.append(image) tracker.log({"validation": formatted_images}) del pipeline torch.cuda.empty_cache() def make_dataset(args, tokenizer, accelerator, split="train"): # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: if args.train_data_dir is not None: dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset[split].column_names # Get the column names for input/target. if args.image_column is None: image_column = column_names[0] else: image_column = args.image_column if image_column not in column_names: raise ValueError( f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) if args.caption_column is None: caption_column = column_names[1] else: caption_column = args.caption_column if caption_column not in column_names: raise ValueError( f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) if args.conditioning_image_column is None: conditioning_image_column = column_names[2] else: conditioning_image_column = args.conditioning_image_column if conditioning_image_column not in column_names: raise ValueError( f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) def tokenize_captions(examples, is_train=True): captions = [] for caption in examples[caption_column]: if random.random() < args.proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) else: raise ValueError( f"Caption column `{caption_column}` should contain either strings or lists of strings." ) inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids image_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) conditioning_image_transforms = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution), transforms.ToTensor(), ] ) def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] images = [image_transforms(image) for image in images] conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] examples["pixel_values"] = images examples["conditioning_pixel_values"] = conditioning_images examples["input_ids"] = tokenize_captions(examples) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset[split] = dataset[split].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms split_dataset = dataset[split].with_transform(preprocess_train) return split_dataset def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return { "pixel_values": pixel_values, "conditioning_pixel_values": conditioning_pixel_values, "input_ids": input_ids, }
peft/examples/boft_controlnet/utils/dataset.py/0
{ "file_path": "peft/examples/boft_controlnet/utils/dataset.py", "repo_id": "peft", "token_count": 3160 }
import gc import os import sys import threading import psutil import torch from accelerate import Accelerator from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from peft import LoraConfig, TaskType, get_peft_model def levenshtein_distance(str1, str2): # TC: O(N^2) # SC: O(N) if str1 == str2: return 0 num_rows = len(str1) + 1 num_cols = len(str2) + 1 dp_matrix = list(range(num_cols)) for i in range(1, num_rows): prev = dp_matrix[0] dp_matrix[0] = i for j in range(1, num_cols): temp = dp_matrix[j] if str1[i - 1] == str2[j - 1]: dp_matrix[j] = prev else: dp_matrix[j] = min(prev, dp_matrix[j], dp_matrix[j - 1]) + 1 prev = temp return dp_matrix[num_cols - 1] def get_closest_label(eval_pred, classes): min_id = sys.maxsize min_edit_distance = sys.maxsize for i, class_label in enumerate(classes): edit_distance = levenshtein_distance(eval_pred.strip(), class_label) if edit_distance < min_edit_distance: min_id = i min_edit_distance = edit_distance return classes[min_id] # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() self.process = psutil.Process() self.cpu_begin = self.cpu_mem_used() self.peak_monitoring = True peak_monitor_thread = threading.Thread(target=self.peak_monitor_func) peak_monitor_thread.daemon = True peak_monitor_thread.start() return self def cpu_mem_used(self): """get resident set size memory for the current process""" return self.process.memory_info().rss def peak_monitor_func(self): self.cpu_peak = -1 while True: self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) # time.sleep(0.001) # 1msec if not self.peak_monitoring: break def __exit__(self, *exc): self.peak_monitoring = False gc.collect() torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) self.cpu_end = self.cpu_mem_used() self.cpu_used = b2mb(self.cpu_end - self.cpu_begin) self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def main(): accelerator = Accelerator() # model_name_or_path = "bigscience/T0_3B" model_name_or_path = "facebook/bart-large" dataset_name = "twitter_complaints" peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) text_column = "Tweet text" label_column = "text_label" lr = 3e-3 num_epochs = 5 batch_size = 8 seed = 42 do_test = False set_seed(seed) dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) target_max_length = max(len(tokenizer(class_label)["input_ids"]) for class_label in classes) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, truncation=True) labels = tokenizer( targets, max_length=target_max_length, padding="max_length", truncation=True, return_tensors="pt" ) labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs with accelerator.main_process_first(): processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=True, desc="Running tokenizer on dataset", ) accelerator.wait_for_everyone() train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] test_dataset = processed_datasets["test"] def collate_fn(examples): return tokenizer.pad(examples, padding="longest", return_tensors="pt") train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True) # creating model model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=lr) # lr scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler ) accelerator.print(model) is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None): is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc: model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}") accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}") accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") accelerator.print( f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") accelerator.print( f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" ) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) accelerator.print(f"{epoch=}: {train_ppl=} {train_epoch_loss=}") model.eval() eval_preds = [] with TorchTracemalloc() as tracemalloc: for _, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather_for_metrics(outputs).detach().cpu().numpy() eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print(f"GPU Memory before entering the eval : {b2mb(tracemalloc.begin)}") accelerator.print(f"GPU Memory consumed at the end of the eval (end-begin): {tracemalloc.used}") accelerator.print(f"GPU Peak Memory consumed during the eval (max-begin): {tracemalloc.peaked}") accelerator.print( f"GPU Total Peak Memory consumed during the eval (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) accelerator.print(f"CPU Memory before entering the eval : {b2mb(tracemalloc.cpu_begin)}") accelerator.print(f"CPU Memory consumed at the end of the eval (end-begin): {tracemalloc.cpu_used}") accelerator.print(f"CPU Peak Memory consumed during the eval (max-begin): {tracemalloc.cpu_peaked}") accelerator.print( f"CPU Total Peak Memory consumed during the eval (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" ) correct = 0 total = 0 assert len(eval_preds) == len(dataset["train"][label_column]), ( f"{len(eval_preds)} != {len(dataset['train'][label_column])}" ) for pred, true in zip(eval_preds, dataset["train"][label_column]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 accelerator.print(f"{accuracy=}") accelerator.print(f"{eval_preds[:10]=}") accelerator.print(f"{dataset['train'][label_column][:10]=}") if do_test: model.eval() test_preds = [] for _, batch in enumerate(tqdm(test_dataloader)): batch = {k: v for k, v in batch.items() if k != "labels"} with torch.no_grad(): outputs = accelerator.unwrap_model(model).generate( **batch, synced_gpus=is_ds_zero_3 ) # synced_gpus=True for DS-stage 3 outputs = accelerator.pad_across_processes(outputs, dim=1, pad_index=tokenizer.pad_token_id) preds = accelerator.gather(outputs).detach().cpu().numpy() test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True)) test_preds_cleaned = [] for _, pred in enumerate(test_preds): test_preds_cleaned.append(get_closest_label(pred, classes)) test_df = dataset["test"].to_pandas() assert len(test_preds_cleaned) == len(test_df), f"{len(test_preds_cleaned)} != {len(test_df)}" test_df[label_column] = test_preds_cleaned test_df["text_labels_orig"] = test_preds accelerator.print(test_df[[text_column, label_column]].sample(20)) pred_df = test_df[["ID", label_column]] pred_df.columns = ["ID", "Label"] os.makedirs(f"data/{dataset_name}", exist_ok=True) pred_df.to_csv(f"data/{dataset_name}/predictions.csv", index=False) accelerator.wait_for_everyone() # Option1: Pushing the model to Hugging Face Hub # model.push_to_hub( # f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_"), # token = "hf_..." # ) # token (`bool` or `str`, *optional*): # `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated # when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` # is not specified. # Or you can get your token from https://huggingface.co/settings/token # Option2: Saving the model locally peft_model_id = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace( "/", "_" ) model.save_pretrained(peft_model_id) accelerator.wait_for_everyone() if __name__ == "__main__": main()
peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py/0
{ "file_path": "peft/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py", "repo_id": "peft", "token_count": 5610 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example script demonstrating the time difference loading a model with a DoRA using ephemeral GPU offloading vs doing it purely on the CPU. Example outputs: $ python load_with_dora.py --- Loading model --- Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:04<00:00, 1.03s/it] --- Loading PeftModel --- --- Done --- Model loading time: 4.83s PeftModel loading time: 28.14s Use ephemeral GPU offloading: False (Note: if this was the first time you ran the script, or if your cache was cleared, the times shown above are invalid, due to the time taken to download the model and DoRA files. Just re-run the script in this case.) $ python load_with_dora.py --ephemeral_gpu_offload --- Loading model --- Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:03<00:00, 1.11it/s] --- Loading PeftModel --- --- Done --- Model loading time: 4.28s PeftModel loading time: 16.59s Use ephemeral GPU offloading: True (Note: if this was the first time you ran the script, or if your cache was cleared, the times shown above are invalid, due to the time taken to download the model and DoRA files. Just re-run the script in this case.) """ import argparse import time from huggingface_hub import snapshot_download from transformers import AutoModelForCausalLM from peft import PeftModel def main(): parser = argparse.ArgumentParser(description="Load a model with DoRA using ephemeral GPU offloading") parser.add_argument("--model", type=str, default="NousResearch/Hermes-2-Pro-Mistral-7B", help="Model to load") parser.add_argument( "--dora", type=str, default="peft-internal-testing/DoRA-Hermes-2-Pro-Mistral-7B", help="DoRA to use", ) parser.add_argument("--ephemeral_gpu_offload", action="store_true", help="Use ephemeral GPU offloading") parser.add_argument( "--merge_model_path", type="str", help="Merge the model with the DoRA model and save to the given path" ) args = parser.parse_args() peft_model_kwargs = { "ephemeral_gpu_offload": args.ephemeral_gpu_offload, "max_memory": {"cpu": "256GiB"}, "device_map": {"": "cpu"}, } # Predownload try: snapshot_download(repo_id=args.model) except Exception as e: print(f"Failed to download model: {e}") # We continue anyway as this might be e.g. a local directory or something try: snapshot_download(repo_id=args.dora) except Exception as e: print(f"Failed to download DoRA: {e}") # We continue anyway as this might be e.g. a local directory or something start = time.perf_counter() print("--- Loading model ---") model = AutoModelForCausalLM.from_pretrained(args.model) model_time = time.perf_counter() - start print("--- Loading PeftModel ---") peft_model = PeftModel.from_pretrained(model, args.dora, **peft_model_kwargs) print("--- Done ---") peft_model_time = time.perf_counter() - start print(f"Model loading time: {model_time:.2f}s") print(f"PeftModel loading time: {peft_model_time:.2f}s") print(f"Use ephemeral GPU offloading: {args.ephemeral_gpu_offload}") if args.merge_model_path is not None: merged_model = peft_model.merge_and_unload(progressbar=True) merged_model.save_pretrained(args.merge_model_path) if __name__ == "__main__": main()
peft/examples/ephemeral_gpu_offloading/load_with_dora.py/0
{ "file_path": "peft/examples/ephemeral_gpu_offloading/load_with_dora.py", "repo_id": "peft", "token_count": 1389 }
# PiSSA: Principal Singular values and Singular vectors Adaptation ## Introduction ([Paper](https://arxiv.org/abs/2404.02948), [code](https://github.com/GraphPKU/PiSSA)) PiSSA represents a matrix $W\in\mathbb{R}^{m\times n}$ within the model by the product of two trainable matrices $A \in \mathbb{R}^{m\times r}$ and $B \in \mathbb{R}^{r\times n}$, where $r \ll \min(m, n)$, plus a residual matrix $W^{res}\in\mathbb{R}^{m\times n}$ for error correction. Singular value decomposition (SVD) is employed to factorize $W$, and the principal singular values and vectors of $W$ are utilized to initialize $A$ and $B$. The residual singular values and vectors initialize the residual matrix $W^{res}$, which keeps frozen during fine-tuning. This straightforward modification allows PiSSA to converge more rapidly than LoRA and ultimately attain superior performance. Moreover, PiSSA reduces the quantization error compared to QLoRA, leading to further enhancements. ## Quick Start ```python import torch from peft import LoraConfig, get_peft_model from transformers import AutoTokenizer, AutoModelForCausalLMfrom trl import SFTConfig, SFTTrainer from datasets import load_dataset model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") tokenizer.pad_token_id = tokenizer.eos_token_id lora_config = LoraConfig( # init_lora_weights="pissa", # Configure the initialization method to "pissa", which may take several minutes to execute SVD on the pre-trained model. init_lora_weights="pissa_niter_4", # Initialize the PiSSA with fast SVD, which completes in just a few seconds. ) peft_model = get_peft_model(model, lora_config) peft_model.print_trainable_parameters() dataset = load_dataset("imdb", split="train[:1%]") training_args = SFTConfig(dataset_text_field="text", max_seq_length=128) trainer = SFTTrainer( model=peft_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, ) trainer.train() peft_model.save_pretrained("pissa-llama-2-7b") ``` When utilizing fast SVD, reducing the rank and the number of iterations decreases the time required. However, this approach leads to higher errors in the computed matrices $A$ and $B$. To preserve the model's initial capabilities, we calculate the residual matrix by $W^{res} = W - BA$. Even with potential errors in $A$ and $B$, the sum of $W^{res}$ and $BA$ accurately equals $W$. To utilize the fine-tuned PiSSA modules, simply run the following command: ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto" ) # Performs SVD again to initialize the residual model and loads the state_dict of the fine-tuned PiSSA modules. peft_model = PeftModel.from_pretrained(model, "pissa-llama-2-7b") ``` ## Advanced Usage ### Access the preprocessed models We recommend downloading decomposed models directly from the [Hugging Face Collections](https://huggingface.co/collections/fxmeng/pissa-661ce700721235e542a5d7a8) instead of performing SVD every time. If the existing models do not meet your needs, apply PiSSA initialization to a pre-trained model and store the decomposed model locally: ```bash python preprocess.py \ --base_model_name_or_path meta-llama/Llama-2-7b-hf \ --init_lora_weights pissa \ --output_dir pissa-llama-2-7b-r32-alpha-32 \ --lora_r 32 \ --lora_alpha 32 \ --lora_dropout 0 \ --bits bf16 ``` ### Convert PiSSA to LoRA The main advantage of PiSSA is concentrated during the training phase. For a trained PiSSA adapter, we recommend converting it equivalently to the LoRA adapter for using and sharing. ```python # The fine-tuned matrices $A$ and $B$ in PiSSA adapter is saved and should be combined with the residual model. peft_model.save_pretrained(output_dir) # Given the matrices $A_0$ and $B_0$, initialized by PiSSA and untrained, and the trained matrices $A$ and $B$, # we can convert these to LoRA by setting $\Delta W = A \times B - A_0 \times B_0 = [A \mid A_0] \times [B \mid -B_0]^T = A'B'$. peft_model.save_pretrained(output_dir, path_initial_model_for_weight_conversion="pissa_init") ``` This conversion enables the loading of LoRA on top of a standard base model: ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto" ) # No SVD is performed during this step, and the base model remains unaltered. peft_model = PeftModel.from_pretrained(model, "pissa-llama-2-7b-lora") ``` Utilizing the converted LoRA does not require modifying the parameters of the base model. When multiple converted LoRAs are needed simultaneously, each adapter operates independently without interference, allowing for the adapters to be freely deleted or added. Note that this conversion is not supported if `rslora` is used in combination with `rank_pattern` or `alpha_pattern`. ### Fine-tune in 4-bit or 8-bit If quantization fine-tuning is desired, it is necessary to first decompose the original model at full precision and then reload the residual model in either 4-bit or 8-bit configurations. ```shell python pissa_finetuning.py \ --residual_model_name_or_path fxmeng/pissa-llama-2-7b-r16-alpha-16 \ --output_dir output/pissa-llama-2-7b-r16-alpha-16-metamath-10k \ --bits nf4 \ --data_path meta-math/MetaMathQA \ --dataset_split train[:100000] \ --dataset_field query response \ --bf16 True \ --num_train_epochs 1 \ --per_device_train_batch_size 32 \ --gradient_accumulation_steps 4 \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 1 \ --logging_steps 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --tf32 True \ --report_to none \ --convert_pissa_to_lora ``` This approach ensures the preservation of high-frequency, out-of-distribution parameters in the low-rank PiSSA modules, resulting in reduced quantization errors during the quantization of the residual model. ## Citation ``` @article{meng2024pissa, title={PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models}, author={Meng, Fanxu and Wang, Zhaohui and Zhang, Muhan}, journal={arXiv preprint arXiv:2404.02948}, year={2024} } ```
peft/examples/pissa_finetuning/README.md/0
{ "file_path": "peft/examples/pissa_finetuning/README.md", "repo_id": "peft", "token_count": 2177 }
import os import sys from dataclasses import dataclass, field from typing import Optional from transformers import HfArgumentParser, set_seed from trl import SFTConfig, SFTTrainer from utils import create_and_prepare_model, create_datasets # Define and parse arguments. @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) chat_template_format: Optional[str] = field( default="none", metadata={ "help": "chatml|zephyr|none. Pass `none` if the dataset is already formatted with the chat template." }, ) lora_alpha: Optional[int] = field(default=16) lora_dropout: Optional[float] = field(default=0.1) lora_r: Optional[int] = field(default=64) lora_target_modules: Optional[str] = field( default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj", metadata={"help": "comma separated list of target modules to apply LoRA layers to"}, ) use_nested_quant: Optional[bool] = field( default=False, metadata={"help": "Activate nested quantization for 4bit base models"}, ) bnb_4bit_compute_dtype: Optional[str] = field( default="float16", metadata={"help": "Compute dtype for 4bit base models"}, ) bnb_4bit_quant_storage_dtype: Optional[str] = field( default="uint8", metadata={"help": "Quantization storage dtype for 4bit base models"}, ) bnb_4bit_quant_type: Optional[str] = field( default="nf4", metadata={"help": "Quantization type fp4 or nf4"}, ) use_flash_attn: Optional[bool] = field( default=False, metadata={"help": "Enables Flash attention for training."}, ) use_peft_lora: Optional[bool] = field( default=False, metadata={"help": "Enables PEFT LoRA for training."}, ) use_8bit_quantization: Optional[bool] = field( default=False, metadata={"help": "Enables loading model in 8bit."}, ) use_4bit_quantization: Optional[bool] = field( default=False, metadata={"help": "Enables loading model in 4bit."}, ) use_reentrant: Optional[bool] = field( default=False, metadata={"help": "Gradient Checkpointing param. Refer the related docs"}, ) use_unsloth: Optional[bool] = field( default=False, metadata={"help": "Enables UnSloth for training."}, ) @dataclass class DataTrainingArguments: dataset_name: Optional[str] = field( default="timdettmers/openassistant-guanaco", metadata={"help": "The preference dataset to use."}, ) append_concat_token: Optional[bool] = field( default=False, metadata={"help": "If True, appends `eos_token_id` at the end of each sample being packed."}, ) add_special_tokens: Optional[bool] = field( default=False, metadata={"help": "If True, tokenizers adds special tokens to each sample being packed."}, ) splits: Optional[str] = field( default="train,test", metadata={"help": "Comma separate list of the splits to use from the dataset."}, ) def main(model_args, data_args, training_args): # Set seed for reproducibility set_seed(training_args.seed) # model model, peft_config, tokenizer = create_and_prepare_model(model_args, data_args, training_args) # gradient ckpt model.config.use_cache = not training_args.gradient_checkpointing training_args.gradient_checkpointing = training_args.gradient_checkpointing and not model_args.use_unsloth if training_args.gradient_checkpointing: training_args.gradient_checkpointing_kwargs = {"use_reentrant": model_args.use_reentrant} training_args.dataset_kwargs = { "append_concat_token": data_args.append_concat_token, "add_special_tokens": data_args.add_special_tokens, } # datasets train_dataset, eval_dataset = create_datasets( tokenizer, data_args, training_args, apply_chat_template=model_args.chat_template_format != "none", ) # trainer trainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=peft_config, ) trainer.accelerator.print(f"{trainer.model}") if hasattr(trainer.model, "print_trainable_parameters"): trainer.model.print_trainable_parameters() # train checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint trainer.train(resume_from_checkpoint=checkpoint) # saving final model if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model() if __name__ == "__main__": parser = HfArgumentParser((ModelArguments, DataTrainingArguments, SFTConfig)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() main(model_args, data_args, training_args)
peft/examples/sft/train.py/0
{ "file_path": "peft/examples/sft/train.py", "repo_id": "peft", "token_count": 2226 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "0.14.1.dev0" from .auto import ( MODEL_TYPE_TO_PEFT_MODEL_MAPPING, AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForFeatureExtraction, AutoPeftModelForQuestionAnswering, AutoPeftModelForSeq2SeqLM, AutoPeftModelForSequenceClassification, AutoPeftModelForTokenClassification, ) from .config import PeftConfig, PromptLearningConfig from .mapping import ( PEFT_TYPE_TO_CONFIG_MAPPING, PEFT_TYPE_TO_MIXED_MODEL_MAPPING, PEFT_TYPE_TO_TUNER_MAPPING, get_peft_config, inject_adapter_in_model, ) from .mapping_func import get_peft_model from .mixed_model import PeftMixedModel from .peft_model import ( PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, get_layer_status, get_model_status, ) from .tuners import ( AdaLoraConfig, AdaLoraModel, AdaptionPromptConfig, AdaptionPromptModel, BOFTConfig, BOFTModel, BoneConfig, BoneModel, CPTConfig, CPTEmbedding, EvaConfig, FourierFTConfig, FourierFTModel, HRAConfig, HRAModel, IA3Config, IA3Model, LNTuningConfig, LNTuningModel, LoftQConfig, LoHaConfig, LoHaModel, LoKrConfig, LoKrModel, LoraConfig, LoraModel, LoraRuntimeConfig, MultitaskPromptTuningConfig, MultitaskPromptTuningInit, OFTConfig, OFTModel, PolyConfig, PolyModel, PrefixEncoder, PrefixTuningConfig, PromptEmbedding, PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType, PromptTuningConfig, PromptTuningInit, VBLoRAConfig, VBLoRAModel, VeraConfig, VeraModel, XLoraConfig, XLoraModel, get_eva_state_dict, initialize_lora_eva_weights, ) from .utils import ( TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, PeftType, TaskType, bloom_model_postprocess_past_key_value, cast_mixed_precision_params, get_peft_model_state_dict, load_peft_weights, prepare_model_for_kbit_training, replace_lora_weights_loftq, set_peft_model_state_dict, shift_tokens_right, ) __all__ = [ "MODEL_TYPE_TO_PEFT_MODEL_MAPPING", "PEFT_TYPE_TO_CONFIG_MAPPING", "PEFT_TYPE_TO_MIXED_MODEL_MAPPING", "PEFT_TYPE_TO_TUNER_MAPPING", "TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING", "AdaLoraConfig", "AdaLoraModel", "AdaptionPromptConfig", "AdaptionPromptModel", "AutoPeftModel", "AutoPeftModelForCausalLM", "AutoPeftModelForFeatureExtraction", "AutoPeftModelForQuestionAnswering", "AutoPeftModelForSeq2SeqLM", "AutoPeftModelForSequenceClassification", "AutoPeftModelForTokenClassification", "BOFTConfig", "BOFTModel", "BoneConfig", "BoneModel", "CPTConfig", "CPTEmbedding", "EvaConfig", "FourierFTConfig", "FourierFTModel", "HRAConfig", "HRAModel", "IA3Config", "IA3Model", "LNTuningConfig", "LNTuningModel", "LoHaConfig", "LoHaModel", "LoKrConfig", "LoKrModel", "LoftQConfig", "LoraConfig", "LoraModel", "LoraRuntimeConfig", "MultitaskPromptTuningConfig", "MultitaskPromptTuningInit", "OFTConfig", "OFTModel", "PeftConfig", "PeftMixedModel", "PeftModel", "PeftModelForCausalLM", "PeftModelForFeatureExtraction", "PeftModelForQuestionAnswering", "PeftModelForSeq2SeqLM", "PeftModelForSequenceClassification", "PeftModelForTokenClassification", "PeftType", "PolyConfig", "PolyModel", "PrefixEncoder", "PrefixTuningConfig", "PromptEmbedding", "PromptEncoder", "PromptEncoderConfig", "PromptEncoderReparameterizationType", "PromptLearningConfig", "PromptTuningConfig", "PromptTuningInit", "TaskType", "VBLoRAConfig", "VBLoRAConfig", "VBLoRAModel", "VeraConfig", "VeraModel", "XLoraConfig", "XLoraModel", "bloom_model_postprocess_past_key_value", "cast_mixed_precision_params", "get_eva_state_dict", "get_layer_status", "get_model_status", "get_peft_config", "get_peft_model", "get_peft_model_state_dict", "initialize_lora_eva_weights", "inject_adapter_in_model", "load_peft_weights", "prepare_model_for_kbit_training", "replace_lora_weights_loftq", "set_peft_model_state_dict", "shift_tokens_right", ]
peft/src/peft/__init__.py/0
{ "file_path": "peft/src/peft/__init__.py", "repo_id": "peft", "token_count": 2224 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from dataclasses import dataclass, field from typing import Optional from peft.tuners.lora import LoraConfig from peft.utils import PeftType @dataclass class AdaLoraConfig(LoraConfig): """ This is the configuration class to store the configuration of a [`~peft.AdaLora`]. AdaLoRA has three phases defined by `tinit`, `tfinal` and `total_step`. The initial phase can be understood as a step for pre-training the adapters so that when reducing their rank, there is already some information encoded that can be reduced instead of random matrices. This phase is defined by supplying `tinit`. After the initial phase is over (`tinit` steps have passed) and the final phase has not begun, AdaLoRA reduces the budget of how much rank each layer is allowed to have with each step. This is where the reduction of rank is happening. This goes on until `total_step - tfinal` steps are reached. The last phase, beginning once `total_step - tfinal` steps are reached, does not change the layer ranks anymore but fine-tunes the reduced-rank layers that resulted from the previous phase. A practical example: `tinit` is 10, `tfinal` is 20, `total_step` is 100. We spend 10 steps doing pre-training without rank reduction because our budget is constant (init phase), then we spend 80 (100-20) steps in the reduction phase where our budget decreases step-wise and, finally, 20 steps in the final fine-tuning stage without reduction. Args: target_r (`int`): The target average rank of incremental matrix. init_r (`int`): The initial rank for each incremental matrix. tinit (`int`): The steps of initial fine-tuning warmup. tfinal (`int`): The number of steps of final fine-tuning. deltaT (`int`): The time internval between two budget allocations. beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing. beta2 (`float`): The hyperparameter of EMA for undertainty quantification. orth_reg_weight (`float`): The coefficient of orthogonal regularization. total_step (`int`): The total training steps that should be specified before training. rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator. """ target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."}) init_r: int = field(default=12, metadata={"help": "Initial Lora matrix dimension."}) tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."}) tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."}) deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."}) beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."}) total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."}) rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."}) def __post_init__(self): super().__post_init__() self.peft_type = PeftType.ADALORA if self.use_dora: raise ValueError(f"{self.peft_type} does not support DoRA.") if self.loftq_config: raise ValueError(f"{self.peft_type} does not support LOFTQ.") self.target_modules = ( set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules ) self.exclude_modules = ( set(self.exclude_modules) if isinstance(self.exclude_modules, list) else self.exclude_modules ) # if target_modules is a regex expression, then layers_to_transform should be None if isinstance(self.target_modules, str) and self.layers_to_transform is not None: raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.") # check for layers_to_transform and layers_pattern if self.layers_pattern and not self.layers_to_transform: raise ValueError("When `layers_pattern` is specified, `layers_to_transform` must also be specified. ") # Check if 'r' has been set to a non-default value if self.r != 8: # 8 is the default value for 'r' in LoraConfig warnings.warn( "Note that `r` is not used in AdaLora and will be ignored." "If you intended to set the initial rank, use `init_r` instead." ) if self.total_step is None or self.total_step <= 0: raise ValueError("AdaLoRA does not work when `total_step` is None, supply a value > 0.") if self.tinit >= (self.total_step - self.tfinal): raise ValueError( "The supplied schedule values don't allow for a budgeting phase. Decrease `tfinal`/`tinit` or " "increase `total_step`." )
peft/src/peft/tuners/adalora/config.py/0
{ "file_path": "peft/src/peft/tuners/adalora/config.py", "repo_id": "peft", "token_count": 1944 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any import torch from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .layer import IA3Layer if is_bnb_available(): class Linear8bitLt(torch.nn.Module, IA3Layer): # (IA)^3 implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool = True, **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: # note: no check for self.merged because merging is not supported (yet) if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "ia3." + rep if is_bnb_4bit_available(): class Linear4bit(torch.nn.Module, IA3Layer): # IA3 implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, is_feedforward: bool, init_ia3_weights: bool = True, **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) # Freezing the pre-trained weight matrix self.get_base_layer().weight.requires_grad = False self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: # note: no check for self.merged because merging is not supported (yet) if self.disable_adapters: return self.base_layer(x) ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue ia3_scaling *= self.ia3_l[active_adapter].flatten() requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) if requires_conversion: x = x.float() if self.is_feedforward: result = self.base_layer(x * ia3_scaling) expected_dtype = result.dtype else: result = self.base_layer(x) expected_dtype = result.dtype result = result * ia3_scaling result = result.clone() # adalora.py and lora.py both suggest that this is necessary for 4-bit training on older versions of Pytorch. # This has been duplicated here. if requires_conversion: result = result.to(expected_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "ia3." + rep
peft/src/peft/tuners/ia3/bnb.py/0
{ "file_path": "peft/src/peft/tuners/ia3/bnb.py", "repo_id": "peft", "token_count": 2193 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import torch from torch import nn from torch.distributions.relaxed_bernoulli import RelaxedBernoulli from .config import PolyConfig EPS = 1e-12 def get_router(poly_config: PolyConfig) -> nn.Module: if poly_config.poly_type == "poly": return PolyRouter(poly_config) else: raise ValueError( f"Unsupported poly_type: {poly_config.poly_type}. " "Currently, only the following types are supported: " "`poly`." ) class Router(nn.Module, ABC): @abstractmethod def reset(self): ... @abstractmethod def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor): ... class PolyRouter(Router): # It's a simplified implementation of # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L138 def __init__(self, poly_config: PolyConfig): super().__init__() self.poly_type = poly_config.poly_type self.n_tasks = poly_config.n_tasks self.n_skills = poly_config.n_skills self.n_splits = poly_config.n_splits self.module_logits = nn.Parameter(torch.empty((self.n_tasks, self.n_splits * self.n_skills))) def reset(self): torch.nn.init.uniform_(self.module_logits, -1e-3, 1e-3) def forward(self, task_ids: torch.Tensor, input_ids: torch.Tensor): if task_ids is None: raise ValueError("task_ids should not be None.") if task_ids.max().item() >= self.n_tasks: raise ValueError(f"Only {self.n_tasks} tasks available. Found task id = {task_ids.max().item()}") # move task id to input's device task_ids = task_ids.to(self.module_logits.device) module_logits = self.module_logits[task_ids] module_logits = module_logits.view(-1, self.n_splits, self.n_skills) if self.training: module_logits = RelaxedBernoulli(temperature=1.0, logits=module_logits).rsample() else: module_logits = torch.sigmoid(module_logits) module_weights = module_logits / (module_logits.sum(dim=-1, keepdim=True) + EPS) return module_weights
peft/src/peft/tuners/poly/router.py/0
{ "file_path": "peft/src/peft/tuners/poly/router.py", "repo_id": "peft", "token_count": 1101 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math import warnings from dataclasses import asdict from enum import Enum from typing import Optional, Union import torch import torch.nn as nn from torch.nn.init import _calculate_correct_fan from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import ( TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules, ) from .._buffer_dict import BufferDict from ..tuners_utils import _maybe_include_all_linear_layers from .config import VeraConfig from .layer import Linear, VeraLayer def _kaiming_init( tensor_or_shape: Union[torch.Tensor, tuple[int, ...]], generator: torch.Generator, ) -> torch.Tensor: """ Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG. Args: tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`): Tensor to initialise, or shape of new tensor to create and then initialise. generator: (`torch.Generator`): Generator object that manages the state of the PRNG algorithm in use. Returns: `torch.Tensor`: The initialised tensor. """ if isinstance(tensor_or_shape, tuple): tensor = torch.empty(tensor_or_shape) else: tensor = tensor_or_shape fan = _calculate_correct_fan(tensor, "fan_in") gain = math.sqrt(2) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std with torch.no_grad(): return tensor.uniform_(-bound, bound, generator=generator) class VeraModel(BaseTuner): """ Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model. Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. config ([`VeraConfig`]): The configuration of the Vera model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device. Useful to speed up the loading process. Returns: `torch.nn.Module`: The Vera model. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import VeraConfig, get_peft_model >>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") >>> config = VeraConfig(r=128) >>> model = get_peft_model(base_model, config) ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`VeraConfig`]): The configuration of the Vera model. """ prefix: str = "vera_lambda_" def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False) -> None: super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) def _find_dim(self, config) -> tuple[int, int]: """ Finds the largest input and output dimensions across linear layers that have been wrapped with VeRA. This will be used for determining the size of the shared vera_A and vera_B matrices. """ model_config = self.get_model_config(self.model) peft_config = self._prepare_adapter_config(config, model_config) peft_config = _maybe_include_all_linear_layers(peft_config, self.model) largest_shape = None for key, module in self.model.named_modules(): if not self._check_target_module_exists(peft_config, key): continue if isinstance(module, nn.Linear): module_shape = module.out_features, module.in_features elif isinstance(module, Conv1D): module_shape = module.weight.ds_shape if hasattr(module.weight, "ds_shape") else module.weight.shape module_shape = module_shape[::-1] else: continue if largest_shape is None: largest_shape = module_shape continue if module_shape != largest_shape: largest_shape = tuple(max(a, b) for a, b in zip(largest_shape, module_shape)) if largest_shape is None: msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`." raise ValueError(msg) return largest_shape def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None: linear_out_dim, linear_in_dim = self._find_dim(config) # use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them. self.vera_A = BufferDict({}, persistent=config.save_projection) self.vera_B = BufferDict({}, persistent=config.save_projection) # deterministic init of vera_A and vera_B if we know the key generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key) vera_A = _kaiming_init((config.r, linear_in_dim), generator=generator) vera_B = _kaiming_init((linear_out_dim, config.r), generator=generator) self.vera_A[adapter_name] = vera_A self.vera_B[adapter_name] = vera_B def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None: self._init_vera_A_vera_B(config, adapter_name) def _check_new_adapter_config(self, config: VeraConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ # the below todo is copied from LoRA # TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check # does not fully correspond to the error message. if (len(self.peft_config) > 1) and (config.bias != "none"): raise ValueError( f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " "set bias to 'none' for all adapters." ) for existing_config in self.peft_config.values(): if existing_config is config: # skip the current config continue if existing_config.projection_prng_key != config.projection_prng_key: raise ValueError( f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but " f"previous config had {existing_config.projection_prng_key}." ) save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()}) if len(save_project_unique_values) > 1: raise ValueError( "VeRA projection weights must be saved for all adapters or none, but got multiple different values: " f"{save_project_unique_values}" ) @staticmethod def _check_target_module_exists(vera_config, key): return check_target_module_exists(vera_config, key) def _create_and_replace( self, vera_config, adapter_name, target, target_name, parent, current_key, **optional_kwargs, ): if current_key is None: raise ValueError("Current Key shouldn't be `None`") r = vera_config.r bias = hasattr(target, "bias") and target.bias is not None kwargs = { "r": r, "vera_dropout": vera_config.vera_dropout, "fan_in_fan_out": vera_config.fan_in_fan_out, "init_weights": vera_config.init_weights, "loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False), "loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False), } kwargs["bias"] = bias if isinstance(target, Linear): target.update_layer( adapter_name, self.vera_A, self.vera_B, r, vera_config.vera_dropout, vera_config.init_weights, d_initial=vera_config.d_initial, ) else: new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs) if adapter_name not in self.active_adapter: # adding an additional adapter: it is not automatically trainable new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _replace_module(parent, child_name, new_module, child): setattr(parent, child_name, new_module) # It's not necessary to set requires_grad here, as that is handled by # _mark_only_adapters_as_trainable # child layer wraps the original module, unpack it if hasattr(child, "base_layer"): child = child.base_layer if not hasattr(new_module, "base_layer"): new_module.weight = child.weight if hasattr(child, "bias"): new_module.bias = child.bias if getattr(child, "state", None) is not None: if hasattr(new_module, "base_layer"): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) meta = torch.device("meta") # dispatch to correct device for name, module in new_module.named_modules(): if "vera_" in name: if not any(p.device == meta for p in module.parameters()): module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for n, p in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == "none": continue if bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "vera_only": for m in model.modules(): if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") @staticmethod def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs): # avoid eager bnb import if is_bnb_available(): import bitsandbytes as bnb from .bnb import Linear8bitLt if is_bnb_4bit_available(): from .bnb import Linear4bit bias = kwargs.pop("bias", False) loaded_in_8bit = kwargs.get("loaded_in_8bit", False) loaded_in_4bit = kwargs.get("loaded_in_4bit", False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): eightbit_kwargs = kwargs.copy() eightbit_kwargs.update( { "has_fp16_weights": target_base_layer.state.has_fp16_weights, "threshold": target_base_layer.state.threshold, "index": target_base_layer.index, } ) return Linear8bitLt(target, adapter_name, vera_A, vera_B, **eightbit_kwargs) elif loaded_in_4bit and isinstance(target_base_layer, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update( { "compute_dtype": target_base_layer.compute_dtype, "compress_statistics": target_base_layer.weight.compress_statistics, "quant_type": target_base_layer.weight.quant_type, } ) return Linear4bit(target, adapter_name, vera_A, vera_B, **fourbit_kwargs) elif isinstance(target_base_layer, torch.nn.Linear): if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs["is_target_conv_1d_layer"] = True if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. Currently, only the following modules are supported: " "`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`." ) new_module = Linear( target, vera_A, vera_B, adapter_name, bias=bias, d_initial=vera_config.d_initial, **kwargs, ) return new_module def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: if name == "model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool = False): config_dict = {} for key, value in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} if inference: config["inference_mode"] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled=True): for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self): self._set_adapter_layers(enabled=True) def disable_adapter_layers(self): for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != "none": msg = ( f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " "output as the the base model would without adaption." ) warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name): for module in self.model.modules(): if isinstance(module, VeraLayer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = set( TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]] ) return peft_config def _unload_and_optionally_merge( self, merge=True, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, ): # we cannot use self.prefix as we want to include non-trainable vera parameters key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] desc = "Unloading " + ("and merging " if merge else "") + "model" for key in tqdm(key_list, disable=not progressbar, desc=desc): try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, "base_layer"): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): # save any additional trainable modules part of `modules_to_save` setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str): """ Deletes an existing adapter. Args: adapter_name (str): Name of the adapter to be deleted. """ if adapter_name not in list(self.peft_config.keys()): raise ValueError(f"Adapter {adapter_name} does not exist") del self.peft_config[adapter_name] # we cannot use self.prefix as we want to include non-trainable vera parameters key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] new_adapter = None for key in key_list: _, target, _ = _get_submodules(self.model, key) if isinstance(target, VeraLayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload( self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None ): r""" This method merges the Vera layers into the base model. This is needed if someone wants to use the base model as a standalone model. Args: progressbar (`bool`): whether to show a progressbar indicating the unload and merge process safe_merge (`bool`): whether to activate the safe merging check to check if there is any potential Nan in the adapter weights adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() ``` """ return self._unload_and_optionally_merge( progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names ) def unload(self): """ Gets back the base model by removing all the Vera modules without merging. This gives back the original base model. """ return self._unload_and_optionally_merge(merge=False)
peft/src/peft/tuners/vera/model.py/0
{ "file_path": "peft/src/peft/tuners/vera/model.py", "repo_id": "peft", "token_count": 9226 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from diffusers import StableDiffusionPipeline from torch import nn from transformers import AutoModelForCausalLM, AutoTokenizer from peft import LoraConfig, get_peft_model from peft.helpers import check_if_peft_model, disable_input_dtype_casting, rescale_adapter_scale from peft.tuners.lora.layer import LoraLayer from peft.utils import infer_device class TestCheckIsPeftModel: def test_valid_hub_model(self): result = check_if_peft_model("peft-internal-testing/gpt2-lora-random") assert result is True def test_invalid_hub_model(self): result = check_if_peft_model("gpt2") assert result is False def test_nonexisting_hub_model(self): result = check_if_peft_model("peft-internal-testing/non-existing-model") assert result is False def test_local_model_valid(self, tmp_path): model = AutoModelForCausalLM.from_pretrained("gpt2") config = LoraConfig() model = get_peft_model(model, config) model.save_pretrained(tmp_path / "peft-gpt2-valid") result = check_if_peft_model(tmp_path / "peft-gpt2-valid") assert result is True def test_local_model_invalid(self, tmp_path): model = AutoModelForCausalLM.from_pretrained("gpt2") model.save_pretrained(tmp_path / "peft-gpt2-invalid") result = check_if_peft_model(tmp_path / "peft-gpt2-invalid") assert result is False def test_local_model_broken_config(self, tmp_path): with open(tmp_path / "adapter_config.json", "w") as f: f.write('{"foo": "bar"}') result = check_if_peft_model(tmp_path) assert result is False def test_local_model_non_default_name(self, tmp_path): model = AutoModelForCausalLM.from_pretrained("gpt2") config = LoraConfig() model = get_peft_model(model, config, adapter_name="other") model.save_pretrained(tmp_path / "peft-gpt2-other") # no default adapter here result = check_if_peft_model(tmp_path / "peft-gpt2-other") assert result is False # with adapter name result = check_if_peft_model(tmp_path / "peft-gpt2-other" / "other") assert result is True class TestScalingAdapters: @pytest.fixture(scope="class") def tokenizer(self): return AutoTokenizer.from_pretrained("facebook/opt-125m") def get_scale_from_modules(self, model): layer_to_scale_map = {} for name, module in model.named_modules(): if isinstance(module, LoraLayer): layer_to_scale_map[name] = module.scaling return layer_to_scale_map def test_rescale_adapter_scale(self, tokenizer): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, ) model = get_peft_model(model, lora_config) model.eval() inputs = tokenizer("hello world", return_tensors="pt") with torch.no_grad(): logits_before_scaling = model(**inputs).logits scales_before_scaling = self.get_scale_from_modules(model) with rescale_adapter_scale(model=model, multiplier=0.5): scales_during_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] != scales_during_scaling[key] with torch.no_grad(): logits_during_scaling = model(**inputs).logits assert not torch.allclose(logits_before_scaling, logits_during_scaling) scales_after_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] == scales_after_scaling[key] with torch.no_grad(): logits_after_scaling = model(**inputs).logits assert torch.allclose(logits_before_scaling, logits_after_scaling) def test_wrong_scaling_datatype(self): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, ) model = get_peft_model(model, lora_config) # we expect a type error here becuase of wrong datatpye of multiplier multiplier = "a" with pytest.raises(TypeError, match=f"Argument multiplier should be of type float, got {type(multiplier)}"): with rescale_adapter_scale(model=model, multiplier=multiplier): pass def test_not_lora_model(self): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") # we expect a value error here because the model # does not have lora layers with pytest.raises(ValueError, match="scaling is only supported for models with `LoraLayer`s"): with rescale_adapter_scale(model=model, multiplier=0.5): pass def test_scaling_set_to_zero(self, tokenizer): base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") inputs = tokenizer("hello world", return_tensors="pt") base_model.eval() with torch.no_grad(): logits_base_model = base_model(**inputs).logits lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, ) lora_model = get_peft_model(base_model, lora_config) lora_model.eval() with rescale_adapter_scale(model=lora_model, multiplier=0.0): with torch.no_grad(): logits_lora_model = lora_model(**inputs).logits assert torch.allclose(logits_base_model, logits_lora_model) def test_diffusers_pipeline(self): model_id = "hf-internal-testing/tiny-sd-pipe" pipeline = StableDiffusionPipeline.from_pretrained(model_id) text_encoder_kwargs = { "r": 8, "lora_alpha": 32, "target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"], "lora_dropout": 0.0, "bias": "none", } unet_kwargs = { "r": 8, "lora_alpha": 32, "target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"], "lora_dropout": 0.0, "bias": "none", } # Instantiate text_encoder adapter config_text_encoder = LoraConfig(**text_encoder_kwargs) pipeline.text_encoder = get_peft_model(pipeline.text_encoder, config_text_encoder) # Instantiate unet adapter config_unet = LoraConfig(**unet_kwargs) pipeline.unet = get_peft_model(pipeline.unet, config_unet) text_scales_before_scaling = self.get_scale_from_modules(pipeline.text_encoder) unet_scales_before_scaling = self.get_scale_from_modules(pipeline.unet) with rescale_adapter_scale(model=pipeline.text_encoder, multiplier=0.5), rescale_adapter_scale( model=pipeline.unet, multiplier=0.5 ): text_scales_during_scaling = self.get_scale_from_modules(pipeline.text_encoder) unet_scales_during_scaling = self.get_scale_from_modules(pipeline.unet) for key in text_scales_before_scaling.keys(): assert text_scales_before_scaling[key] != text_scales_during_scaling[key] for key in unet_scales_before_scaling.keys(): assert unet_scales_before_scaling[key] != unet_scales_during_scaling[key] text_scales_fter_scaling = self.get_scale_from_modules(pipeline.text_encoder) unet_scales_after_scaling = self.get_scale_from_modules(pipeline.unet) for key in text_scales_before_scaling.keys(): assert text_scales_before_scaling[key] == text_scales_fter_scaling[key] for key in unet_scales_before_scaling.keys(): assert unet_scales_before_scaling[key] == unet_scales_after_scaling[key] def test_transformers_pipeline(self, tmp_path, tokenizer): # this uses a transformers model that loads the adapter directly model_id = "facebook/opt-125m" model = AutoModelForCausalLM.from_pretrained(model_id) config = LoraConfig(init_lora_weights=False) model = get_peft_model(model, config) model.save_pretrained(tmp_path / "opt-lora") del model # load directly into transformers model model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(tmp_path / "opt-lora") inputs = tokenizer("hello world", return_tensors="pt") model = model.eval() with torch.no_grad(): logits_before_scaling = model(**inputs).logits scales_before_scaling = self.get_scale_from_modules(model) with rescale_adapter_scale(model=model, multiplier=0.5): scales_during_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] != scales_during_scaling[key] with torch.no_grad(): logits_during_scaling = model(**inputs).logits assert not torch.allclose(logits_before_scaling, logits_during_scaling) scales_after_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] == scales_after_scaling[key] with torch.no_grad(): logits_after_scaling = model(**inputs).logits assert torch.allclose(logits_before_scaling, logits_after_scaling) def test_multi_adapters(self, tokenizer): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, ) model = get_peft_model(model, lora_config) inputs = tokenizer("hello world", return_tensors="pt") # add another adaper and activate it model.add_adapter("other", lora_config) model.set_adapter("other") scales_before_scaling = self.get_scale_from_modules(model) model.eval() with torch.no_grad(): logits_before = model(**inputs).logits with rescale_adapter_scale(model=model, multiplier=0.5): scales_during_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] != scales_during_scaling[key] with torch.no_grad(): logits_during = model(**inputs).logits assert not torch.allclose(logits_before, logits_during) scales_after_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] == scales_after_scaling[key] with torch.no_grad(): logits_after = model(**inputs).logits assert torch.allclose(logits_before, logits_after) def test_rank_alpha_pattern(self, tokenizer): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, rank_pattern={"k_proj": 2}, alpha_pattern={"k_proj": 8}, ) model = get_peft_model(model, lora_config) model.eval() inputs = tokenizer("hello world", return_tensors="pt") with torch.no_grad(): logits_before_scaling = model(**inputs).logits scales_before_scaling = self.get_scale_from_modules(model) with rescale_adapter_scale(model=model, multiplier=0.5): scales_during_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] != scales_during_scaling[key] with torch.no_grad(): logits_during_scaling = model(**inputs).logits assert not torch.allclose(logits_before_scaling, logits_during_scaling) scales_after_scaling = self.get_scale_from_modules(model) for key in scales_before_scaling.keys(): assert scales_before_scaling[key] == scales_after_scaling[key] with torch.no_grad(): logits_after_scaling = model(**inputs).logits assert torch.allclose(logits_before_scaling, logits_after_scaling) def test_merging_adapter(self, tokenizer): model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") lora_config = LoraConfig( r=4, lora_alpha=4, target_modules=["k_proj", "v_proj"], lora_dropout=0.1, bias="none", init_lora_weights=False, ) model = get_peft_model(model, lora_config) model.eval() inputs = tokenizer("hello world", return_tensors="pt") with rescale_adapter_scale(model=model, multiplier=0.5): with torch.no_grad(): logits_unmerged_scaling = model(**inputs).logits model = model.merge_and_unload() with torch.no_grad(): logits_merged_scaling = model(**inputs).logits assert torch.allclose(logits_merged_scaling, logits_unmerged_scaling, atol=1e-4, rtol=1e-4) class TestDisableInputDtypeCasting: """Test the context manager `disable_input_dtype_casting` that temporarily disables input dtype casting in the model. The test works as follows: We create a simple MLP and convert it to a PeftModel. The model dtype is set to float16. Then a pre-foward hook is added that casts the model parameters to float32. Moreover, a post-forward hook is added that casts the weights back to float16. The input dtype is float32. Without the disable_input_dtype_casting context, what would happen is that PEFT detects that the input dtype is float32 but the weight dtype is float16, so it casts the input to float16. Then the pre-forward hook casts the weight to float32, which results in a RuntimeError. With the disable_input_dtype_casting context, the input dtype is left as float32 and there is no error. We also add a hook to record the dtype of the result from the LoraLayer to ensure that it is indeed float32. """ device = infer_device() dtype_record = [] @torch.no_grad() def cast_params_to_fp32_pre_hook(self, module, input): for param in module.parameters(recurse=False): param.data = param.data.float() return input @torch.no_grad() def cast_params_to_fp16_hook(self, module, input, output): for param in module.parameters(recurse=False): param.data = param.data.half() return output def record_dtype_hook(self, module, input, output): self.dtype_record.append(output[0].dtype) @pytest.fixture def inputs(self): return torch.randn(4, 10, device=self.device, dtype=torch.float32) @pytest.fixture def base_model(self): class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.lin0 = nn.Linear(10, 20, bias=bias) self.lin1 = nn.Linear(20, 2, bias=bias) self.sm = nn.LogSoftmax(dim=-1) def forward(self, X): X = self.lin0(X) X = self.lin1(X) X = self.sm(X) return X return MLP() @pytest.fixture def model(self, base_model): config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"]) model = get_peft_model(base_model, config).to(device=self.device, dtype=torch.float16) # Register hooks on the submodule that holds parameters for module in model.modules(): if sum(p.numel() for p in module.parameters()) > 0: module.register_forward_pre_hook(self.cast_params_to_fp32_pre_hook) module.register_forward_hook(self.cast_params_to_fp16_hook) if isinstance(module, LoraLayer): module.register_forward_hook(self.record_dtype_hook) return model def test_disable_input_dtype_casting_active(self, model, inputs): self.dtype_record.clear() with disable_input_dtype_casting(model, active=True): model(inputs) assert self.dtype_record == [torch.float32] def test_no_disable_input_dtype_casting(self, model, inputs): msg = r"expected m.*1 and m.*2 to have the same dtype" with pytest.raises(RuntimeError, match=msg): model(inputs) def test_disable_input_dtype_casting_inactive(self, model, inputs): msg = r"expected m.*1 and m.*2 to have the same dtype" with pytest.raises(RuntimeError, match=msg): with disable_input_dtype_casting(model, active=False): model(inputs) def test_disable_input_dtype_casting_inactive_after_existing_context(self, model, inputs): # this is to ensure that when the context is left, we return to the previous behavior with disable_input_dtype_casting(model, active=True): model(inputs) # after the context exited, we're back to the error msg = r"expected m.*1 and m.*2 to have the same dtype" with pytest.raises(RuntimeError, match=msg): model(inputs)
peft/tests/test_helpers.py/0
{ "file_path": "peft/tests/test_helpers.py", "repo_id": "peft", "token_count": 8287 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest import torch from safetensors import safe_open from torch import nn from peft import PeftModel, VBLoRAConfig, get_peft_model class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.relu = nn.ReLU() self.lin0 = nn.Linear(10, 20, bias=bias) self.lin1 = nn.Linear(20, 20, bias=bias) # lin1 and lin2 have same shape self.lin2 = nn.Linear(20, 20, bias=bias) self.lin3 = nn.Linear(20, 2, bias=bias) self.sm = nn.LogSoftmax(dim=-1) def forward(self, X): X = self.lin0(X) X = self.relu(X) X = self.lin1(X) X = self.relu(X) X = self.lin2(X) X = self.relu(X) X = self.lin3(X) X = self.sm(X) return X class TestVBLoRA: def get_mlp(self): model = MLP() return model def test_vblora_parameters(self): mlp = self.get_mlp() vector_length = 2 num_vectors = 10 config = VBLoRAConfig( target_modules=["lin0", "lin1", "lin3"], vector_length=vector_length, num_vectors=num_vectors ) mlp_vblora = get_peft_model(mlp, config) vector_bank = mlp_vblora.vblora_vector_bank["default"] vblora_lin0_logits_B = mlp_vblora.lin0.vblora_logits_B["default"] assert vblora_lin0_logits_B.shape == (mlp.lin0.out_features // vector_length, config.r, num_vectors) vblora_lin1_logits_A = mlp_vblora.lin1.vblora_logits_A["default"] assert vblora_lin1_logits_A.shape == (config.r, mlp.lin1.in_features // vector_length, num_vectors) vblora_lin3_logits_A = mlp_vblora.lin3.vblora_logits_A["default"] assert vblora_lin3_logits_A.shape == (config.r, mlp.lin3.in_features // vector_length, num_vectors) assert vector_bank.shape == (num_vectors, vector_length) # test if the vector bank is shared across the layers assert ( mlp_vblora.lin0.vblora_vector_bank["default"].data_ptr() == mlp_vblora.lin3.vblora_vector_bank["default"].data_ptr() ) assert mlp_vblora.lin1.vblora_vector_bank["default"].data_ptr() == vector_bank.data_ptr() # should not raise input = torch.randn(5, 10) mlp_vblora(input) def test_save_with_topk_weights(self, tmp_path): torch.manual_seed(0) mlp = self.get_mlp() vector_length = 2 num_vectors = 10 topk = 2 config = VBLoRAConfig( target_modules=["lin0", "lin3"], topk=topk, vector_length=vector_length, num_vectors=num_vectors, save_only_topk_weights=True, ) mlp_vblora = get_peft_model(mlp, config) save_path = tmp_path / "vblora" mlp_vblora.save_pretrained(save_path) assert os.path.exists(save_path / "adapter_model.safetensors") adapter_model_dict = {} with safe_open(save_path / "adapter_model.safetensors", framework="pt") as f: for k in f.keys(): adapter_model_dict[k] = f.get_tensor(k) assert "base_model.model.lin0.vblora_logits_A_topk_indices" in adapter_model_dict assert "base_model.model.lin0.vblora_logits_A_topk_weights" in adapter_model_dict assert "base_model.model.lin3.vblora_logits_B_topk_indices" in adapter_model_dict assert "base_model.model.lin3.vblora_logits_B_topk_weights" in adapter_model_dict assert "base_model.model.lin0.vblora_logits_A" not in adapter_model_dict assert "base_model.model.lin3.vblora_logits_B" not in adapter_model_dict assert adapter_model_dict["base_model.model.lin0.vblora_logits_B_topk_indices"].shape == ( mlp.lin0.out_features // vector_length, config.r, topk, ) assert adapter_model_dict["base_model.model.lin0.vblora_logits_B_topk_weights"].shape == ( mlp.lin0.out_features // vector_length, config.r, topk - 1, ) assert adapter_model_dict["base_model.model.lin3.vblora_logits_A_topk_indices"].shape == ( config.r, mlp.lin3.in_features // vector_length, topk, ) assert adapter_model_dict["base_model.model.lin3.vblora_logits_A_topk_weights"].shape == ( config.r, mlp.lin3.in_features // vector_length, topk - 1, ) @pytest.mark.parametrize("save_only_topk_weights", [True, False]) def test_save_load(self, save_only_topk_weights, tmp_path): torch.manual_seed(0) mlp = self.get_mlp() config = VBLoRAConfig( target_modules=["lin0", "lin1", "lin3"], topk=2, vector_length=2, num_vectors=10, save_only_topk_weights=save_only_topk_weights, ) mlp_vblora = get_peft_model(mlp, config) save_path = tmp_path / "vblora" mlp_vblora.save_pretrained(save_path) assert os.path.exists(save_path / "adapter_config.json") del mlp torch.manual_seed(0) # make sure the base model has the same weights mlp = self.get_mlp() mlp_vblora_loaded = PeftModel.from_pretrained(mlp, save_path) input = torch.randn(5, 10) output = mlp_vblora(input) output_loaded = mlp_vblora_loaded(input) assert torch.allclose(output, output_loaded, atol=1e-8, rtol=1e-5) def test_resume_training_model_with_topk_weights(self, tmp_path): torch.manual_seed(1) mlp = self.get_mlp() config = VBLoRAConfig( target_modules=["lin0", "lin1", "lin3"], topk=2, vector_length=2, num_vectors=10, save_only_topk_weights=True, ) mlp_vblora = get_peft_model(mlp, config) save_path = tmp_path / "vblora" mlp_vblora.save_pretrained(save_path) input = torch.randn(5, 10) mlp_vblora.train() # should not raise mlp_vblora(input) del mlp torch.manual_seed(1) mlp = self.get_mlp() mlp_vblora_loaded = PeftModel.from_pretrained(mlp, save_path) mlp_vblora_loaded.train() msg = "Found infinity values in VB-LoRA logits. Ensure training was not resumed from a `save_only_topk_weights` model." with pytest.raises(RuntimeError, match=msg): mlp_vblora_loaded(input) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) def test_vblora_dtypes(self, dtype): mlp = self.get_mlp() if (dtype == torch.bfloat16) and not (torch.cuda.is_available() and torch.cuda.is_bf16_supported()): pytest.skip("bfloat16 not supported on this system, skipping the test") config = VBLoRAConfig( target_modules=["lin0", "lin1", "lin3"], vector_length=2, num_vectors=10, save_only_topk_weights=False ) mlp_vblora = get_peft_model(mlp.to(dtype), config) inputs = torch.randn(5, 10).to(dtype) output = mlp_vblora(inputs) # should not raise assert output.dtype == dtype def test_vblora_nb_savable_params_only_topk_weights(self): mlp = self.get_mlp() vector_length = 2 num_vectors = 10 topk = 2 r = 4 config = VBLoRAConfig( target_modules=["lin0", "lin1"], vector_length=vector_length, num_vectors=num_vectors, topk=topk, r=r, save_only_topk_weights=True, ) mlp_vblora = get_peft_model(mlp, config) mlp_vblora.lin3.requires_grad_(True) # set lin3 to trainable adapter_params, other_params = mlp_vblora.get_nb_savable_parameters() factor = 0.25 # dtype of index is uint8 topk_indices_parameter = int( (mlp.lin0.out_features + mlp.lin0.in_features + mlp.lin1.out_features + mlp.lin1.in_features) / vector_length * r * topk * factor ) topk_weights_parameter = int( (mlp.lin0.out_features + mlp.lin0.in_features + mlp.lin1.out_features + mlp.lin1.in_features) / vector_length * r * (topk - 1) ) vector_bank_parameter = num_vectors * vector_length assert adapter_params == topk_indices_parameter + topk_weights_parameter + vector_bank_parameter assert other_params == (mlp.lin3.in_features + 1) * mlp.lin3.out_features def test_vblora_nb_savable_params_all_logits(self): mlp = self.get_mlp() vector_length = 2 num_vectors = 10 topk = 2 r = 4 config = VBLoRAConfig( target_modules=["lin0", "lin1"], vector_length=vector_length, num_vectors=num_vectors, topk=topk, r=r, save_only_topk_weights=False, ) mlp_vblora = get_peft_model(mlp, config) mlp_vblora.lin3.requires_grad_(True) # set lin3 to trainable adapter_params, other_params = mlp_vblora.get_nb_savable_parameters() logits_parameter = int( (mlp.lin0.out_features + mlp.lin0.in_features + mlp.lin1.out_features + mlp.lin1.in_features) / vector_length * r * num_vectors ) vector_bank_parameter = num_vectors * vector_length assert adapter_params == logits_parameter + vector_bank_parameter assert other_params == (mlp.lin3.in_features + 1) * mlp.lin3.out_features
peft/tests/test_vblora.py/0
{ "file_path": "peft/tests/test_vblora.py", "repo_id": "peft", "token_count": 5019 }
# Installation Before you start, you'll need to setup your environment and install the appropriate packages. `timm` is tested on **Python 3+**. ## Virtual Environment You should install `timm` in a [virtual environment](https://docs.python.org/3/library/venv.html) to keep things tidy and avoid dependency conflicts. 1. Create and navigate to your project directory: ```bash mkdir ~/my-project cd ~/my-project ``` 2. Start a virtual environment inside your directory: ```bash python -m venv .env ``` 3. Activate and deactivate the virtual environment with the following commands: ```bash # Activate the virtual environment source .env/bin/activate # Deactivate the virtual environment source .env/bin/deactivate ``` Once you've created your virtual environment, you can install `timm` in it. ## Using pip The most straightforward way to install `timm` is with pip: ```bash pip install timm ``` Alternatively, you can install `timm` from GitHub directly to get the latest, bleeding-edge version: ```bash pip install git+https://github.com/rwightman/pytorch-image-models.git ``` Run the following command to check if `timm` has been properly installed: ```bash python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" ``` This command lists the first five pretrained models available in `timm` (which are sorted alphebetically). You should see the following output: ```python ['adv_inception_v3', 'bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_224_in22k', 'beit_base_patch16_384'] ``` ## From Source Building `timm` from source lets you make changes to the code base. To install from the source, clone the repository and install with the following commands: ```bash git clone https://github.com/rwightman/pytorch-image-models.git cd pytorch-image-models pip install -e . ``` Again, you can check if `timm` was properly installed with the following command: ```bash python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" ```
pytorch-image-models/hfdocs/source/installation.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/installation.mdx", "repo_id": "pytorch-image-models", "token_count": 623 }
# MnasNet **MnasNet** is a type of convolutional neural network optimized for mobile devices that is discovered through mobile neural architecture search, which explicitly incorporates model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. The main building block is an [inverted residual block](https://paperswithcode.com/method/inverted-residual-block) (from [MobileNetV2](https://paperswithcode.com/method/mobilenetv2)). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mnasnet_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mnasnet, title={MnasNet: Platform-Aware Neural Architecture Search for Mobile}, author={Mingxing Tan and Bo Chen and Ruoming Pang and Vijay Vasudevan and Mark Sandler and Andrew Howard and Quoc V. Le}, year={2019}, eprint={1807.11626}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: MNASNet Paper: Title: 'MnasNet: Platform-Aware Neural Architecture Search for Mobile' URL: https://paperswithcode.com/paper/mnasnet-platform-aware-neural-architecture Models: - Name: mnasnet_100 In Collection: MNASNet Metadata: FLOPs: 416415488 Parameters: 4380000 File Size: 17731774 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet ID: mnasnet_100 Layers: 100 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4000 Image Size: '224' Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L894 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.67% Top 5 Accuracy: 92.1% - Name: semnasnet_100 In Collection: MNASNet Metadata: FLOPs: 414570766 Parameters: 3890000 File Size: 15731489 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: semnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L928 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.45% Top 5 Accuracy: 92.61% -->
pytorch-image-models/hfdocs/source/models/mnasnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/mnasnet.mdx", "repo_id": "pytorch-image-models", "token_count": 2103 }
# SelecSLS **SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('selecsls42b', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `selecsls42b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('selecsls42b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{Mehta_2020, title={XNect}, volume={39}, ISSN={1557-7368}, url={http://dx.doi.org/10.1145/3386569.3392410}, DOI={10.1145/3386569.3392410}, number={4}, journal={ACM Transactions on Graphics}, publisher={Association for Computing Machinery (ACM)}, author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian}, year={2020}, month={Jul} } ``` <!-- Type: model-index Collections: - Name: SelecSLS Paper: Title: 'XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera' URL: https://paperswithcode.com/paper/xnect-real-time-multi-person-3d-human-pose Models: - Name: selecsls42b In Collection: SelecSLS Metadata: FLOPs: 3824022528 Parameters: 32460000 File Size: 129948954 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls42b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L335 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.18% Top 5 Accuracy: 93.39% - Name: selecsls60 In Collection: SelecSLS Metadata: FLOPs: 4610472600 Parameters: 30670000 File Size: 122839714 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L342 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.83% - Name: selecsls60b In Collection: SelecSLS Metadata: FLOPs: 4657653144 Parameters: 32770000 File Size: 131252898 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.41% Top 5 Accuracy: 94.18% -->
pytorch-image-models/hfdocs/source/models/selecsls.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/selecsls.mdx", "repo_id": "pytorch-image-models", "token_count": 2422 }
# Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution layers](https://paperswithcode.com/method/depthwise-separable-convolution). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('xception', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `xception`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('xception', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/ZagoruykoK16, @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: xception In Collection: Xception Metadata: FLOPs: 10600506792 Parameters: 22860000 File Size: 91675053 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception Crop Pct: '0.897' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception.py#L229 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.05% Top 5 Accuracy: 94.4% - Name: xception41 In Collection: Xception Metadata: FLOPs: 11681983232 Parameters: 26970000 File Size: 108422028 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception41 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L181 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_41-e6439c97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.54% Top 5 Accuracy: 94.28% - Name: xception65 In Collection: Xception Metadata: FLOPs: 17585702144 Parameters: 39920000 File Size: 160536780 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L200 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_65-c9ae96e8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.55% Top 5 Accuracy: 94.66% - Name: xception71 In Collection: Xception Metadata: FLOPs: 22817346560 Parameters: 42340000 File Size: 170295556 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception71 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L219 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_71-8eec7df1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.88% Top 5 Accuracy: 94.93% -->
pytorch-image-models/hfdocs/source/models/xception.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/xception.mdx", "repo_id": "pytorch-image-models", "token_count": 2676 }
""" Transforms Factory Factory methods for building image transforms for use with TIMM (PyTorch Image Models) Hacked together by / Copyright 2019, Ross Wightman """ import math from typing import Optional, Tuple, Union import torch from torchvision import transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, DEFAULT_CROP_PCT from timm.data.auto_augment import rand_augment_transform, augment_and_mix_transform, auto_augment_transform from timm.data.transforms import str_to_interp_mode, str_to_pil_interp, RandomResizedCropAndInterpolation, \ ResizeKeepRatio, CenterCropOrPad, RandomCropOrPad, TrimBorder, ToNumpy, MaybeToTensor, MaybePILToTensor from timm.data.random_erasing import RandomErasing def transforms_noaug_train( img_size: Union[int, Tuple[int, int]] = 224, interpolation: str = 'bilinear', mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, use_prefetcher: bool = False, normalize: bool = True, ): """ No-augmentation image transforms for training. Args: img_size: Target image size. interpolation: Image interpolation mode. mean: Image normalization mean. std: Image normalization standard deviation. use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). Returns: """ if interpolation == 'random': # random interpolation not supported with no-aug interpolation = 'bilinear' tfl = [ transforms.Resize(img_size, interpolation=str_to_interp_mode(interpolation)), transforms.CenterCrop(img_size) ] if use_prefetcher: # prefetcher and collate will handle tensor conversion and norm tfl += [ToNumpy()] elif not normalize: # when normalize disabled, converted to tensor without scaling, keep original dtype tfl += [MaybePILToTensor()] else: tfl += [ MaybeToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std) ) ] return transforms.Compose(tfl) def transforms_imagenet_train( img_size: Union[int, Tuple[int, int]] = 224, scale: Optional[Tuple[float, float]] = None, ratio: Optional[Tuple[float, float]] = None, train_crop_mode: Optional[str] = None, hflip: float = 0.5, vflip: float = 0., color_jitter: Union[float, Tuple[float, ...]] = 0.4, color_jitter_prob: Optional[float] = None, force_color_jitter: bool = False, grayscale_prob: float = 0., gaussian_blur_prob: float = 0., auto_augment: Optional[str] = None, interpolation: str = 'random', mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, re_prob: float = 0., re_mode: str = 'const', re_count: int = 1, re_num_splits: int = 0, use_prefetcher: bool = False, normalize: bool = True, separate: bool = False, ): """ ImageNet-oriented image transforms for training. Args: img_size: Target image size. train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). scale: Random resize scale range (crop area, < 1.0 => zoom in). ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). hflip: Horizontal flip probability. vflip: Vertical flip probability. color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). Scalar is applied as (scalar,) * 3 (no hue). color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). force_color_jitter: Force color jitter where it is normally disabled (ie with RandAugment on). grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). auto_augment: Auto augment configuration string (see auto_augment.py). interpolation: Image interpolation mode. mean: Image normalization mean. std: Image normalization standard deviation. re_prob: Random erasing probability. re_mode: Random erasing fill mode. re_count: Number of random erasing regions. re_num_splits: Control split of random erasing across batch size. use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). separate: Output transforms in 3-stage tuple. Returns: If separate==True, the transforms are returned as a tuple of 3 separate transforms for use in a mixing dataset that passes * all data through the first (primary) transform, called the 'clean' data * a portion of the data through the secondary transform * normalizes and converts the branches above with the third, final transform """ train_crop_mode = train_crop_mode or 'rrc' assert train_crop_mode in {'rrc', 'rkrc', 'rkrr'} if train_crop_mode in ('rkrc', 'rkrr'): # FIXME integration of RKR is a WIP scale = tuple(scale or (0.8, 1.00)) ratio = tuple(ratio or (0.9, 1/.9)) primary_tfl = [ ResizeKeepRatio( img_size, interpolation=interpolation, random_scale_prob=0.5, random_scale_range=scale, random_scale_area=True, # scale compatible with RRC random_aspect_prob=0.5, random_aspect_range=ratio, ), CenterCropOrPad(img_size, padding_mode='reflect') if train_crop_mode == 'rkrc' else RandomCropOrPad(img_size, padding_mode='reflect') ] else: scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range ratio = tuple(ratio or (3. / 4., 4. / 3.)) # default imagenet ratio range primary_tfl = [ RandomResizedCropAndInterpolation( img_size, scale=scale, ratio=ratio, interpolation=interpolation, ) ] if hflip > 0.: primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] if vflip > 0.: primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] secondary_tfl = [] disable_color_jitter = False if auto_augment: assert isinstance(auto_augment, str) # color jitter is typically disabled if AA/RA on, # this allows override without breaking old hparm cfgs disable_color_jitter = not (force_color_jitter or '3a' in auto_augment) if isinstance(img_size, (tuple, list)): img_size_min = min(img_size) else: img_size_min = img_size aa_params = dict( translate_const=int(img_size_min * 0.45), img_mean=tuple([min(255, round(255 * x)) for x in mean]), ) if interpolation and interpolation != 'random': aa_params['interpolation'] = str_to_pil_interp(interpolation) if auto_augment.startswith('rand'): secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] elif auto_augment.startswith('augmix'): aa_params['translate_pct'] = 0.3 secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)] else: secondary_tfl += [auto_augment_transform(auto_augment, aa_params)] if color_jitter is not None and not disable_color_jitter: # color jitter is enabled when not using AA or when forced if isinstance(color_jitter, (list, tuple)): # color jitter should be a 3-tuple/list if spec brightness/contrast/saturation # or 4 if also augmenting hue assert len(color_jitter) in (3, 4) else: # if it's a scalar, duplicate for brightness, contrast, and saturation, no hue color_jitter = (float(color_jitter),) * 3 if color_jitter_prob is not None: secondary_tfl += [ transforms.RandomApply([ transforms.ColorJitter(*color_jitter), ], p=color_jitter_prob ) ] else: secondary_tfl += [transforms.ColorJitter(*color_jitter)] if grayscale_prob: secondary_tfl += [transforms.RandomGrayscale(p=grayscale_prob)] if gaussian_blur_prob: secondary_tfl += [ transforms.RandomApply([ transforms.GaussianBlur(kernel_size=23), # hardcoded for now ], p=gaussian_blur_prob, ) ] final_tfl = [] if use_prefetcher: # prefetcher and collate will handle tensor conversion and norm final_tfl += [ToNumpy()] elif not normalize: # when normalize disable, converted to tensor without scaling, keeps original dtype final_tfl += [MaybePILToTensor()] else: final_tfl += [ MaybeToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std), ), ] if re_prob > 0.: final_tfl += [ RandomErasing( re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device='cpu', ) ] if separate: return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl) else: return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) def transforms_imagenet_eval( img_size: Union[int, Tuple[int, int]] = 224, crop_pct: Optional[float] = None, crop_mode: Optional[str] = None, crop_border_pixels: Optional[int] = None, interpolation: str = 'bilinear', mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, use_prefetcher: bool = False, normalize: bool = True, ): """ ImageNet-oriented image transform for evaluation and inference. Args: img_size: Target image size. crop_pct: Crop percentage. Defaults to 0.875 when None. crop_mode: Crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. crop_border_pixels: Trim a border of specified # pixels around edge of original image. interpolation: Image interpolation mode. mean: Image normalization mean. std: Image normalization standard deviation. use_prefetcher: Prefetcher enabled. Do not convert image to tensor or normalize. normalize: Normalize tensor output w/ provided mean/std (if prefetcher not used). Returns: Composed transform pipeline """ crop_pct = crop_pct or DEFAULT_CROP_PCT if isinstance(img_size, (tuple, list)): assert len(img_size) == 2 scale_size = tuple([math.floor(x / crop_pct) for x in img_size]) else: scale_size = math.floor(img_size / crop_pct) scale_size = (scale_size, scale_size) tfl = [] if crop_border_pixels: tfl += [TrimBorder(crop_border_pixels)] if crop_mode == 'squash': # squash mode scales each edge to 1/pct of target, then crops # aspect ratio is not preserved, no img lost if crop_pct == 1.0 tfl += [ transforms.Resize(scale_size, interpolation=str_to_interp_mode(interpolation)), transforms.CenterCrop(img_size), ] elif crop_mode == 'border': # scale the longest edge of image to 1/pct of target edge, add borders to pad, then crop # no image lost if crop_pct == 1.0 fill = [round(255 * v) for v in mean] tfl += [ ResizeKeepRatio(scale_size, interpolation=interpolation, longest=1.0), CenterCropOrPad(img_size, fill=fill), ] else: # default crop model is center # aspect ratio is preserved, crops center within image, no borders are added, image is lost if scale_size[0] == scale_size[1]: # simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg) tfl += [ transforms.Resize(scale_size[0], interpolation=str_to_interp_mode(interpolation)) ] else: # resize the shortest edge to matching target dim for non-square target tfl += [ResizeKeepRatio(scale_size)] tfl += [transforms.CenterCrop(img_size)] if use_prefetcher: # prefetcher and collate will handle tensor conversion and norm tfl += [ToNumpy()] elif not normalize: # when normalize disabled, converted to tensor without scaling, keeps original dtype tfl += [MaybePILToTensor()] else: tfl += [ MaybeToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std), ), ] return transforms.Compose(tfl) def create_transform( input_size: Union[int, Tuple[int, int], Tuple[int, int, int]] = 224, is_training: bool = False, no_aug: bool = False, train_crop_mode: Optional[str] = None, scale: Optional[Tuple[float, float]] = None, ratio: Optional[Tuple[float, float]] = None, hflip: float = 0.5, vflip: float = 0., color_jitter: Union[float, Tuple[float, ...]] = 0.4, color_jitter_prob: Optional[float] = None, grayscale_prob: float = 0., gaussian_blur_prob: float = 0., auto_augment: Optional[str] = None, interpolation: str = 'bilinear', mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, re_prob: float = 0., re_mode: str = 'const', re_count: int = 1, re_num_splits: int = 0, crop_pct: Optional[float] = None, crop_mode: Optional[str] = None, crop_border_pixels: Optional[int] = None, tf_preprocessing: bool = False, use_prefetcher: bool = False, normalize: bool = True, separate: bool = False, ): """ Args: input_size: Target input size (channels, height, width) tuple or size scalar. is_training: Return training (random) transforms. no_aug: Disable augmentation for training (useful for debug). train_crop_mode: Training random crop mode ('rrc', 'rkrc', 'rkrr'). scale: Random resize scale range (crop area, < 1.0 => zoom in). ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). hflip: Horizontal flip probability. vflip: Vertical flip probability. color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). Scalar is applied as (scalar,) * 3 (no hue). color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug). grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). auto_augment: Auto augment configuration string (see auto_augment.py). interpolation: Image interpolation mode. mean: Image normalization mean. std: Image normalization standard deviation. re_prob: Random erasing probability. re_mode: Random erasing fill mode. re_count: Number of random erasing regions. re_num_splits: Control split of random erasing across batch size. crop_pct: Inference crop percentage (output size / resize size). crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. crop_border_pixels: Inference crop border of specified # pixels around edge of original image. tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports use_prefetcher: Pre-fetcher enabled. Do not convert image to tensor or normalize. normalize: Normalization tensor output w/ provided mean/std (if prefetcher not used). separate: Output transforms in 3-stage tuple. Returns: Composed transforms or tuple thereof """ if isinstance(input_size, (tuple, list)): img_size = input_size[-2:] else: img_size = input_size if tf_preprocessing and use_prefetcher: assert not separate, "Separate transforms not supported for TF preprocessing" from timm.data.tf_preprocessing import TfPreprocessTransform transform = TfPreprocessTransform( is_training=is_training, size=img_size, interpolation=interpolation, ) else: if is_training and no_aug: assert not separate, "Cannot perform split augmentation with no_aug" transform = transforms_noaug_train( img_size, interpolation=interpolation, mean=mean, std=std, use_prefetcher=use_prefetcher, normalize=normalize, ) elif is_training: transform = transforms_imagenet_train( img_size, train_crop_mode=train_crop_mode, scale=scale, ratio=ratio, hflip=hflip, vflip=vflip, color_jitter=color_jitter, color_jitter_prob=color_jitter_prob, grayscale_prob=grayscale_prob, gaussian_blur_prob=gaussian_blur_prob, auto_augment=auto_augment, interpolation=interpolation, mean=mean, std=std, re_prob=re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits, use_prefetcher=use_prefetcher, normalize=normalize, separate=separate, ) else: assert not separate, "Separate transforms not supported for validation preprocessing" transform = transforms_imagenet_eval( img_size, interpolation=interpolation, mean=mean, std=std, crop_pct=crop_pct, crop_mode=crop_mode, crop_border_pixels=crop_border_pixels, use_prefetcher=use_prefetcher, normalize=normalize, ) return transform
pytorch-image-models/timm/data/transforms_factory.py/0
{ "file_path": "pytorch-image-models/timm/data/transforms_factory.py", "repo_id": "pytorch-image-models", "token_count": 8545 }
""" Activation Factory Hacked together by / Copyright 2020 Ross Wightman """ from typing import Union, Callable, Type from .activations import * from .activations_me import * from .config import is_exportable, is_scriptable # PyTorch has an optimized, native 'silu' (aka 'swish') operator as of PyTorch 1.7. # Also hardsigmoid, hardswish, and soon mish. This code will use native version if present. # Eventually, the custom SiLU, Mish, Hard*, layers will be removed and only native variants will be used. _has_silu = 'silu' in dir(torch.nn.functional) _has_hardswish = 'hardswish' in dir(torch.nn.functional) _has_hardsigmoid = 'hardsigmoid' in dir(torch.nn.functional) _has_mish = 'mish' in dir(torch.nn.functional) _ACT_FN_DEFAULT = dict( silu=F.silu if _has_silu else swish, swish=F.silu if _has_silu else swish, mish=F.mish if _has_mish else mish, relu=F.relu, relu6=F.relu6, leaky_relu=F.leaky_relu, elu=F.elu, celu=F.celu, selu=F.selu, gelu=gelu, gelu_tanh=gelu_tanh, quick_gelu=quick_gelu, sigmoid=sigmoid, tanh=tanh, hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid, hard_swish=F.hardswish if _has_hardswish else hard_swish, hard_mish=hard_mish, ) _ACT_FN_ME = dict( silu=F.silu if _has_silu else swish_me, swish=F.silu if _has_silu else swish_me, mish=F.mish if _has_mish else mish_me, hard_sigmoid=F.hardsigmoid if _has_hardsigmoid else hard_sigmoid_me, hard_swish=F.hardswish if _has_hardswish else hard_swish_me, hard_mish=hard_mish_me, ) _ACT_FNS = (_ACT_FN_ME, _ACT_FN_DEFAULT) for a in _ACT_FNS: a.setdefault('hardsigmoid', a.get('hard_sigmoid')) a.setdefault('hardswish', a.get('hard_swish')) _ACT_LAYER_DEFAULT = dict( silu=nn.SiLU if _has_silu else Swish, swish=nn.SiLU if _has_silu else Swish, mish=nn.Mish if _has_mish else Mish, relu=nn.ReLU, relu6=nn.ReLU6, leaky_relu=nn.LeakyReLU, elu=nn.ELU, prelu=PReLU, celu=nn.CELU, selu=nn.SELU, gelu=GELU, gelu_tanh=GELUTanh, quick_gelu=QuickGELU, sigmoid=Sigmoid, tanh=Tanh, hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoid, hard_swish=nn.Hardswish if _has_hardswish else HardSwish, hard_mish=HardMish, identity=nn.Identity, ) _ACT_LAYER_ME = dict( silu=nn.SiLU if _has_silu else SwishMe, swish=nn.SiLU if _has_silu else SwishMe, mish=nn.Mish if _has_mish else MishMe, hard_sigmoid=nn.Hardsigmoid if _has_hardsigmoid else HardSigmoidMe, hard_swish=nn.Hardswish if _has_hardswish else HardSwishMe, hard_mish=HardMishMe, ) _ACT_LAYERS = (_ACT_LAYER_ME, _ACT_LAYER_DEFAULT) for a in _ACT_LAYERS: a.setdefault('hardsigmoid', a.get('hard_sigmoid')) a.setdefault('hardswish', a.get('hard_swish')) def get_act_fn(name: Union[Callable, str] = 'relu'): """ Activation Function Factory Fetching activation fns by name with this function allows export or torch script friendly functions to be returned dynamically based on current config. """ if not name: return None if isinstance(name, Callable): return name name = name.lower() if not (is_exportable() or is_scriptable()): # If not exporting or scripting the model, first look for a memory-efficient version with # custom autograd, then fallback if name in _ACT_FN_ME: return _ACT_FN_ME[name] return _ACT_FN_DEFAULT[name] def get_act_layer(name: Union[Type[nn.Module], str] = 'relu'): """ Activation Layer Factory Fetching activation layers by name with this function allows export or torch script friendly functions to be returned dynamically based on current config. """ if name is None: return None if not isinstance(name, str): # callable, module, etc return name if not name: return None name = name.lower() if not (is_exportable() or is_scriptable()): if name in _ACT_LAYER_ME: return _ACT_LAYER_ME[name] return _ACT_LAYER_DEFAULT[name] def create_act_layer(name: Union[Type[nn.Module], str], inplace=None, **kwargs): act_layer = get_act_layer(name) if act_layer is None: return None if inplace is None: return act_layer(**kwargs) try: return act_layer(inplace=inplace, **kwargs) except TypeError: # recover if act layer doesn't have inplace arg return act_layer(**kwargs)
pytorch-image-models/timm/layers/create_act.py/0
{ "file_path": "pytorch-image-models/timm/layers/create_act.py", "repo_id": "pytorch-image-models", "token_count": 1969 }
""" Layer/Module Helpers Hacked together by / Copyright 2020 Ross Wightman """ from itertools import repeat import collections.abc # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): return tuple(x) return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple def make_divisible(v, divisor=8, min_value=None, round_limit=.9): min_value = min_value or divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < round_limit * v: new_v += divisor return new_v def extend_tuple(x, n): # pads a tuple to specified n by padding with last value if not isinstance(x, (tuple, list)): x = (x,) else: x = tuple(x) pad_n = n - len(x) if pad_n <= 0: return x[:n] return x + (x[-1],) * pad_n
pytorch-image-models/timm/layers/helpers.py/0
{ "file_path": "pytorch-image-models/timm/layers/helpers.py", "repo_id": "pytorch-image-models", "token_count": 462 }
""" Image to Patch Embedding using Conv2d A convolution based approach to patchifying a 2D image w/ embedding projection. Based on code in: * https://github.com/google-research/vision_transformer * https://github.com/google-research/big_vision/tree/main/big_vision Hacked together by / Copyright 2020 Ross Wightman """ import logging import math from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn as nn import torch.nn.functional as F from .format import Format, nchw_to from .helpers import to_2tuple from .trace_utils import _assert _logger = logging.getLogger(__name__) class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ output_fmt: Format dynamic_img_pad: torch.jit.Final[bool] def __init__( self, img_size: Optional[int] = 224, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer: Optional[Callable] = None, flatten: bool = True, output_fmt: Optional[str] = None, bias: bool = True, strict_img_size: bool = True, dynamic_img_pad: bool = False, ): super().__init__() self.patch_size = to_2tuple(patch_size) self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size) if output_fmt is not None: self.flatten = False self.output_fmt = Format(output_fmt) else: # flatten spatial dim and transpose to channels last, kept for bwd compat self.flatten = flatten self.output_fmt = Format.NCHW self.strict_img_size = strict_img_size self.dynamic_img_pad = dynamic_img_pad self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def _init_img_size(self, img_size: Union[int, Tuple[int, int]]): assert self.patch_size if img_size is None: return None, None, None img_size = to_2tuple(img_size) grid_size = tuple([s // p for s, p in zip(img_size, self.patch_size)]) num_patches = grid_size[0] * grid_size[1] return img_size, grid_size, num_patches def set_input_size( self, img_size: Optional[Union[int, Tuple[int, int]]] = None, patch_size: Optional[Union[int, Tuple[int, int]]] = None, ): new_patch_size = None if patch_size is not None: new_patch_size = to_2tuple(patch_size) if new_patch_size is not None and new_patch_size != self.patch_size: with torch.no_grad(): new_proj = nn.Conv2d( self.proj.in_channels, self.proj.out_channels, kernel_size=new_patch_size, stride=new_patch_size, bias=self.proj.bias is not None, ) new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True)) if self.proj.bias is not None: new_proj.bias.copy_(self.proj.bias) self.proj = new_proj self.patch_size = new_patch_size img_size = img_size or self.img_size if img_size != self.img_size or new_patch_size is not None: self.img_size, self.grid_size, self.num_patches = self._init_img_size(img_size) def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]: if as_scalar: return max(self.patch_size) else: return self.patch_size def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]: """ Get grid (feature) size for given image size taking account of dynamic padding. NOTE: must be torchscript compatible so using fixed tuple indexing """ if self.dynamic_img_pad: return math.ceil(img_size[0] / self.patch_size[0]), math.ceil(img_size[1] / self.patch_size[1]) else: return img_size[0] // self.patch_size[0], img_size[1] // self.patch_size[1] def forward(self, x): B, C, H, W = x.shape if self.img_size is not None: if self.strict_img_size: _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") elif not self.dynamic_img_pad: _assert( H % self.patch_size[0] == 0, f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." ) _assert( W % self.patch_size[1] == 0, f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." ) if self.dynamic_img_pad: pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0] pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1] x = F.pad(x, (0, pad_w, 0, pad_h)) x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC elif self.output_fmt != Format.NCHW: x = nchw_to(x, self.output_fmt) x = self.norm(x) return x class PatchEmbedWithSize(PatchEmbed): """ 2D Image to Patch Embedding """ output_fmt: Format def __init__( self, img_size: Optional[int] = 224, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer: Optional[Callable] = None, flatten: bool = True, output_fmt: Optional[str] = None, bias: bool = True, ): super().__init__( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer, flatten=flatten, output_fmt=output_fmt, bias=bias, ) def forward(self, x) -> Tuple[torch.Tensor, List[int]]: B, C, H, W = x.shape if self.img_size is not None: _assert(H % self.patch_size[0] == 0, f"Input image height ({H}) must be divisible by patch size ({self.patch_size[0]}).") _assert(W % self.patch_size[1] == 0, f"Input image width ({W}) must be divisible by patch size ({self.patch_size[1]}).") x = self.proj(x) feat_size = x.shape[-2:] if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC elif self.output_fmt != Format.NCHW: x = nchw_to(x, self.output_fmt) x = self.norm(x) return x, feat_size def resample_patch_embed( patch_embed, new_size: List[int], interpolation: str = 'bicubic', antialias: bool = True, verbose: bool = False, ): """Resample the weights of the patch embedding kernel to target resolution. We resample the patch embedding kernel by approximately inverting the effect of patch resizing. Code based on: https://github.com/google-research/big_vision/blob/b00544b81f8694488d5f36295aeb7972f3755ffe/big_vision/models/proj/flexi/vit.py With this resizing, we can for example load a B/8 filter into a B/16 model and, on 2x larger input image, the result will match. Args: patch_embed: original parameter to be resized. new_size (tuple(int, int): target shape (height, width)-only. interpolation (str): interpolation for resize antialias (bool): use anti-aliasing filter in resize verbose (bool): log operation Returns: Resized patch embedding kernel. """ import numpy as np try: from torch import vmap except ImportError: from functorch import vmap assert len(patch_embed.shape) == 4, "Four dimensions expected" assert len(new_size) == 2, "New shape should only be hw" old_size = patch_embed.shape[-2:] if tuple(old_size) == tuple(new_size): return patch_embed if verbose: _logger.info(f"Resize patch embedding {patch_embed.shape} to {new_size}, w/ {interpolation} interpolation.") def resize(x_np, _new_size): x_tf = torch.Tensor(x_np)[None, None, ...] x_upsampled = F.interpolate( x_tf, size=_new_size, mode=interpolation, antialias=antialias)[0, 0, ...].numpy() return x_upsampled def get_resize_mat(_old_size, _new_size): mat = [] for i in range(np.prod(_old_size)): basis_vec = np.zeros(_old_size) basis_vec[np.unravel_index(i, _old_size)] = 1. mat.append(resize(basis_vec, _new_size).reshape(-1)) return np.stack(mat).T resize_mat = get_resize_mat(old_size, new_size) resize_mat_pinv = torch.tensor(np.linalg.pinv(resize_mat.T), device=patch_embed.device) def resample_kernel(kernel): resampled_kernel = resize_mat_pinv @ kernel.reshape(-1) return resampled_kernel.reshape(new_size) v_resample_kernel = vmap(vmap(resample_kernel, 0, 0), 1, 1) orig_dtype = patch_embed.dtype patch_embed = patch_embed.float() patch_embed = v_resample_kernel(patch_embed) patch_embed = patch_embed.to(orig_dtype) return patch_embed # def divs(n, m=None): # m = m or n // 2 # if m == 1: # return [1] # if n % m == 0: # return [m] + divs(n, m - 1) # return divs(n, m - 1) # # # class FlexiPatchEmbed(nn.Module): # """ 2D Image to Patch Embedding w/ Flexible Patch sizes (FlexiViT) # FIXME WIP # """ # def __init__( # self, # img_size=240, # patch_size=16, # in_chans=3, # embed_dim=768, # base_img_size=240, # base_patch_size=32, # norm_layer=None, # flatten=True, # bias=True, # ): # super().__init__() # self.img_size = to_2tuple(img_size) # self.patch_size = to_2tuple(patch_size) # self.num_patches = 0 # # # full range for 240 = (5, 6, 8, 10, 12, 14, 15, 16, 20, 24, 30, 40, 48) # self.seqhw = (6, 8, 10, 12, 14, 15, 16, 20, 24, 30) # # self.base_img_size = to_2tuple(base_img_size) # self.base_patch_size = to_2tuple(base_patch_size) # self.base_grid_size = tuple([i // p for i, p in zip(self.base_img_size, self.base_patch_size)]) # self.base_num_patches = self.base_grid_size[0] * self.base_grid_size[1] # # self.flatten = flatten # self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=bias) # self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() # # def forward(self, x): # B, C, H, W = x.shape # # if self.patch_size == self.base_patch_size: # weight = self.proj.weight # else: # weight = resample_patch_embed(self.proj.weight, self.patch_size) # patch_size = self.patch_size # x = F.conv2d(x, weight, bias=self.proj.bias, stride=patch_size) # if self.flatten: # x = x.flatten(2).transpose(1, 2) # BCHW -> BNC # x = self.norm(x) # return x
pytorch-image-models/timm/layers/patch_embed.py/0
{ "file_path": "pytorch-image-models/timm/layers/patch_embed.py", "repo_id": "pytorch-image-models", "token_count": 5614 }
import os import pkgutil from copy import deepcopy from torch import nn as nn from timm.layers import Conv2dSame, BatchNormAct2d, Linear __all__ = ['extract_layer', 'set_layer', 'adapt_model_from_string', 'adapt_model_from_file'] def extract_layer(model, layer): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module if not hasattr(model, 'module') and layer[0] == 'module': layer = layer[1:] for l in layer: if hasattr(module, l): if not l.isdigit(): module = getattr(module, l) else: module = module[int(l)] else: return module return module def set_layer(model, layer, val): layer = layer.split('.') module = model if hasattr(model, 'module') and layer[0] != 'module': module = model.module lst_index = 0 module2 = module for l in layer: if hasattr(module2, l): if not l.isdigit(): module2 = getattr(module2, l) else: module2 = module2[int(l)] lst_index += 1 lst_index -= 1 for l in layer[:lst_index]: if not l.isdigit(): module = getattr(module, l) else: module = module[int(l)] l = layer[lst_index] setattr(module, l, val) def adapt_model_from_string(parent_module, model_string): separator = '***' state_dict = {} lst_shape = model_string.split(separator) for k in lst_shape: k = k.split(':') key = k[0] shape = k[1][1:-1].split(',') if shape[0] != '': state_dict[key] = [int(i) for i in shape] new_module = deepcopy(parent_module) for n, m in parent_module.named_modules(): old_module = extract_layer(parent_module, n) if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): if isinstance(old_module, Conv2dSame): conv = Conv2dSame else: conv = nn.Conv2d s = state_dict[n + '.weight'] in_channels = s[1] out_channels = s[0] g = 1 if old_module.groups > 1: in_channels = out_channels g = in_channels new_conv = conv( in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, groups=g, stride=old_module.stride) set_layer(new_module, n, new_conv) elif isinstance(old_module, BatchNormAct2d): new_bn = BatchNormAct2d( state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, affine=old_module.affine, track_running_stats=True) new_bn.drop = old_module.drop new_bn.act = old_module.act set_layer(new_module, n, new_bn) elif isinstance(old_module, nn.BatchNorm2d): new_bn = nn.BatchNorm2d( num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, affine=old_module.affine, track_running_stats=True) set_layer(new_module, n, new_bn) elif isinstance(old_module, nn.Linear): # FIXME extra checks to ensure this is actually the FC classifier layer and not a diff Linear layer? num_features = state_dict[n + '.weight'][1] new_fc = Linear( in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) set_layer(new_module, n, new_fc) if hasattr(new_module, 'num_features'): if getattr(new_module, 'head_hidden_size', 0) == new_module.num_features: new_module.head_hidden_size = num_features new_module.num_features = num_features new_module.eval() parent_module.eval() return new_module def adapt_model_from_file(parent_module, model_variant): adapt_data = pkgutil.get_data(__name__, os.path.join('_pruned', model_variant + '.txt')) return adapt_model_from_string(parent_module, adapt_data.decode('utf-8').strip())
pytorch-image-models/timm/models/_prune.py/0
{ "file_path": "pytorch-image-models/timm/models/_prune.py", "repo_id": "pytorch-image-models", "token_count": 2096 }
"""PyTorch CspNet A PyTorch implementation of Cross Stage Partial Networks including: * CSPResNet50 * CSPResNeXt50 * CSPDarkNet53 * and DarkNet53 for good measure Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks Hacked together by / Copyright 2020 Ross Wightman """ from dataclasses import dataclass, asdict, replace from functools import partial from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import ClassifierHead, ConvNormAct, DropPath, get_attn, create_act_layer, make_divisible from ._builder import build_model_with_cfg from ._manipulate import named_apply, MATCH_PREV_GROUP from ._registry import register_model, generate_default_cfgs __all__ = ['CspNet'] # model_registry will add each entrypoint fn to this @dataclass class CspStemCfg: out_chs: Union[int, Tuple[int, ...]] = 32 stride: Union[int, Tuple[int, ...]] = 2 kernel_size: int = 3 padding: Union[int, str] = '' pool: Optional[str] = '' def _pad_arg(x, n): # pads an argument tuple to specified n by padding with last value if not isinstance(x, (tuple, list)): x = (x,) curr_n = len(x) pad_n = n - curr_n if pad_n <= 0: return x[:n] return tuple(x + (x[-1],) * pad_n) @dataclass class CspStagesCfg: depth: Tuple[int, ...] = (3, 3, 5, 2) # block depth (number of block repeats in stages) out_chs: Tuple[int, ...] = (128, 256, 512, 1024) # number of output channels for blocks in stage stride: Union[int, Tuple[int, ...]] = 2 # stride of stage groups: Union[int, Tuple[int, ...]] = 1 # num kxk conv groups block_ratio: Union[float, Tuple[float, ...]] = 1.0 bottle_ratio: Union[float, Tuple[float, ...]] = 1. # bottleneck-ratio of blocks in stage avg_down: Union[bool, Tuple[bool, ...]] = False attn_layer: Optional[Union[str, Tuple[str, ...]]] = None attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None stage_type: Union[str, Tuple[str]] = 'csp' # stage type ('csp', 'cs2', 'dark') block_type: Union[str, Tuple[str]] = 'bottle' # blocks type for stages ('bottle', 'dark') # cross-stage only expand_ratio: Union[float, Tuple[float, ...]] = 1.0 cross_linear: Union[bool, Tuple[bool, ...]] = False down_growth: Union[bool, Tuple[bool, ...]] = False def __post_init__(self): n = len(self.depth) assert len(self.out_chs) == n self.stride = _pad_arg(self.stride, n) self.groups = _pad_arg(self.groups, n) self.block_ratio = _pad_arg(self.block_ratio, n) self.bottle_ratio = _pad_arg(self.bottle_ratio, n) self.avg_down = _pad_arg(self.avg_down, n) self.attn_layer = _pad_arg(self.attn_layer, n) self.attn_kwargs = _pad_arg(self.attn_kwargs, n) self.stage_type = _pad_arg(self.stage_type, n) self.block_type = _pad_arg(self.block_type, n) self.expand_ratio = _pad_arg(self.expand_ratio, n) self.cross_linear = _pad_arg(self.cross_linear, n) self.down_growth = _pad_arg(self.down_growth, n) @dataclass class CspModelCfg: stem: CspStemCfg stages: CspStagesCfg zero_init_last: bool = True # zero init last weight (usually bn) in residual path act_layer: str = 'leaky_relu' norm_layer: str = 'batchnorm' aa_layer: Optional[str] = None # FIXME support string factory for this def _cs3_cfg( width_multiplier=1.0, depth_multiplier=1.0, avg_down=False, act_layer='silu', focus=False, attn_layer=None, attn_kwargs=None, bottle_ratio=1.0, block_type='dark', ): if focus: stem_cfg = CspStemCfg( out_chs=make_divisible(64 * width_multiplier), kernel_size=6, stride=2, padding=2, pool='') else: stem_cfg = CspStemCfg( out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]), kernel_size=3, stride=2, pool='') return CspModelCfg( stem=stem_cfg, stages=CspStagesCfg( out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]), depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]), stride=2, bottle_ratio=bottle_ratio, block_ratio=0.5, avg_down=avg_down, attn_layer=attn_layer, attn_kwargs=attn_kwargs, stage_type='cs3', block_type=block_type, ), act_layer=act_layer, ) class BottleneckBlock(nn.Module): """ ResNe(X)t Bottleneck Block """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False, attn_layer=None, drop_block=None, drop_path=0. ): super(BottleneckBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) attn_last = attn_layer is not None and attn_last attn_first = attn_layer is not None and not attn_last self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) self.conv2 = ConvNormAct( mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity() self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity() self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() self.act3 = create_act_layer(act_layer) def zero_init_last(self): nn.init.zeros_(self.conv3.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.conv2(x) x = self.attn2(x) x = self.conv3(x) x = self.attn3(x) x = self.drop_path(x) + shortcut # FIXME partial shortcut needed if first block handled as per original, not used for my current impl #x[:, :shortcut.size(1)] += shortcut x = self.act3(x) return x class DarkBlock(nn.Module): """ DarkNet Block """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0. ): super(DarkBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() self.conv2 = ConvNormAct( mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv2.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.attn(x) x = self.conv2(x) x = self.drop_path(x) + shortcut return x class EdgeBlock(nn.Module): """ EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output) """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0. ): super(EdgeBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) self.conv1 = ConvNormAct( in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv2.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.attn(x) x = self.conv2(x) x = self.drop_path(x) + shortcut return x class CrossStage(nn.Module): """Cross Stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., expand_ratio=1., groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs, ): super(CrossStage, self).__init__() first_dilation = first_dilation or dilation down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) block_out_chs = int(round(out_chs * block_ratio)) conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if stride != 1 or first_dilation != dilation: if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormAct( in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = down_chs else: self.conv_down = nn.Identity() prev_chs = in_chs # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also, # there is also special case for the first stage for some of the model that results in uneven split # across the two paths. I did it this way for simplicity for now. self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) prev_chs = exp_chs // 2 # output of conv_exp is always split in two self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs, )) prev_chs = block_out_chs # transition convs self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) def forward(self, x): x = self.conv_down(x) x = self.conv_exp(x) xs, xb = x.split(self.expand_chs // 2, dim=1) xb = self.blocks(xb) xb = self.conv_transition_b(xb).contiguous() out = self.conv_transition(torch.cat([xs, xb], dim=1)) return out class CrossStage3(nn.Module): """Cross Stage 3. Similar to CrossStage, but with only one transition conv for the output. """ def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., expand_ratio=1., groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs, ): super(CrossStage3, self).__init__() first_dilation = first_dilation or dilation down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) block_out_chs = int(round(out_chs * block_ratio)) conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if stride != 1 or first_dilation != dilation: if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormAct( in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = down_chs else: self.conv_down = None prev_chs = in_chs # expansion conv self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs, )) prev_chs = block_out_chs # transition convs self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) def forward(self, x): x = self.conv_down(x) x = self.conv_exp(x) x1, x2 = x.split(self.expand_chs // 2, dim=1) x1 = self.blocks(x1) out = self.conv_transition(torch.cat([x1, x2], dim=1)) return out class DarkStage(nn.Module): """DarkNet stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1, first_dilation=None, avg_down=False, block_fn=BottleneckBlock, block_dpr=None, **block_kwargs, ): super(DarkStage, self).__init__() first_dilation = first_dilation or dilation conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormAct(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormAct( in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = out_chs block_out_chs = int(round(out_chs * block_ratio)) self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs )) prev_chs = block_out_chs def forward(self, x): x = self.conv_down(x) x = self.blocks(x) return x def create_csp_stem( in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='', padding='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, ): stem = nn.Sequential() feature_info = [] if not isinstance(out_chs, (tuple, list)): out_chs = [out_chs] stem_depth = len(out_chs) assert stem_depth assert stride in (1, 2, 4) prev_feat = None prev_chs = in_chans last_idx = stem_depth - 1 stem_stride = 1 for i, chs in enumerate(out_chs): conv_name = f'conv{i + 1}' conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1 if conv_stride > 1 and prev_feat is not None: feature_info.append(prev_feat) stem.add_module(conv_name, ConvNormAct( prev_chs, chs, kernel_size, stride=conv_stride, padding=padding if i == 0 else '', act_layer=act_layer, norm_layer=norm_layer, )) stem_stride *= conv_stride prev_chs = chs prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name])) if pool: assert stride > 2 if prev_feat is not None: feature_info.append(prev_feat) if aa_layer is not None: stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) stem.add_module('aa', aa_layer(channels=prev_chs, stride=2)) pool_name = 'aa' else: stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) pool_name = 'pool' stem_stride *= 2 prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name])) feature_info.append(prev_feat) return stem, feature_info def _get_stage_fn(stage_args): stage_type = stage_args.pop('stage_type') assert stage_type in ('dark', 'csp', 'cs3') if stage_type == 'dark': stage_args.pop('expand_ratio', None) stage_args.pop('cross_linear', None) stage_args.pop('down_growth', None) stage_fn = DarkStage elif stage_type == 'csp': stage_fn = CrossStage else: stage_fn = CrossStage3 return stage_fn, stage_args def _get_block_fn(stage_args): block_type = stage_args.pop('block_type') assert block_type in ('dark', 'edge', 'bottle') if block_type == 'dark': return DarkBlock, stage_args elif block_type == 'edge': return EdgeBlock, stage_args else: return BottleneckBlock, stage_args def _get_attn_fn(stage_args): attn_layer = stage_args.pop('attn_layer') attn_kwargs = stage_args.pop('attn_kwargs', None) or {} if attn_layer is not None: attn_layer = get_attn(attn_layer) if attn_kwargs: attn_layer = partial(attn_layer, **attn_kwargs) return attn_layer, stage_args def create_csp_stages( cfg: CspModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], ): cfg_dict = asdict(cfg.stages) num_stages = len(cfg.stages.depth) cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \ [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)] stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())] block_kwargs = dict( act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, ) dilation = 1 net_stride = stem_feat['reduction'] prev_chs = stem_feat['num_chs'] prev_feat = stem_feat feature_info = [] stages = [] for stage_idx, stage_args in enumerate(stage_args): stage_fn, stage_args = _get_stage_fn(stage_args) block_fn, stage_args = _get_block_fn(stage_args) attn_fn, stage_args = _get_attn_fn(stage_args) stride = stage_args.pop('stride') if stride != 1 and prev_feat: feature_info.append(prev_feat) if net_stride >= output_stride and stride > 1: dilation *= stride stride = 1 net_stride *= stride first_dilation = 1 if dilation in (1, 2) else 2 stages += [stage_fn( prev_chs, **stage_args, stride=stride, first_dilation=first_dilation, dilation=dilation, block_fn=block_fn, aa_layer=cfg.aa_layer, attn_layer=attn_fn, # will be passed through stage as block_kwargs **block_kwargs, )] prev_chs = stage_args['out_chs'] prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') feature_info.append(prev_feat) return nn.Sequential(*stages), feature_info class CspNet(nn.Module): """Cross Stage Partial base model. Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the darknet impl. I did it this way for simplicity and less special cases. """ def __init__( self, cfg: CspModelCfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., drop_path_rate=0., zero_init_last=True, **kwargs, ): """ Args: cfg (CspModelCfg): Model architecture configuration in_chans (int): Number of input channels (default: 3) num_classes (int): Number of classifier classes (default: 1000) output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) global_pool (str): Global pooling type (default: 'avg') drop_rate (float): Dropout rate (default: 0.) drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) zero_init_last (bool): Zero-init last weight of residual path kwargs (dict): Extra kwargs overlayed onto cfg """ super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate assert output_stride in (8, 16, 32) cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg layer_args = dict( act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, aa_layer=cfg.aa_layer ) self.feature_info = [] # Construct the stem self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args) self.feature_info.extend(stem_feat_info[:-1]) # Construct the stages self.stages, stage_feat_info = create_csp_stages( cfg, drop_path_rate=drop_path_rate, output_stride=output_stride, stem_feat=stem_feat_info[-1], ) prev_chs = stage_feat_info[-1]['num_chs'] self.feature_info.extend(stage_feat_info) # Construct the head self.num_features = self.head_hidden_size = prev_chs self.head = ClassifierHead( in_features=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate, ) named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), # map to last block in stage (r'^stages\.(\d+)', (0,)), ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name, zero_init_last=False): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.01) if module.bias is not None: nn.init.zeros_(module.bias) elif zero_init_last and hasattr(module, 'zero_init_last'): module.zero_init_last() model_cfgs = dict( cspresnet50=CspModelCfg( stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1, 2), expand_ratio=2., bottle_ratio=0.5, cross_linear=True, ), ), cspresnet50d=CspModelCfg( stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1,) + (2,), expand_ratio=2., bottle_ratio=0.5, block_ratio=1., cross_linear=True, ), ), cspresnet50w=CspModelCfg( stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), expand_ratio=1., bottle_ratio=0.25, block_ratio=0.5, cross_linear=True, ), ), cspresnext50=CspModelCfg( stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), groups=32, expand_ratio=1., bottle_ratio=1., block_ratio=0.5, cross_linear=True, ), ), cspdarknet53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, expand_ratio=(2.,) + (1.,), bottle_ratio=(0.5,) + (1.,), block_ratio=(1.,) + (0.5,), down_growth=True, block_type='dark', ), ), darknet17=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1,) * 5, out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.,), stage_type='dark', block_type='dark', ), ), darknet21=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.,), stage_type='dark', block_type='dark', ), ), sedarknet21=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., attn_layer='se', stage_type='dark', block_type='dark', ), ), darknet53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., stage_type='dark', block_type='dark', ), ), darknetaa53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., avg_down=True, stage_type='dark', block_type='dark', ), ), cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5), cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67), cs3darknet_l=_cs3_cfg(), cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33), cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True), cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True), cs3darknet_focus_l=_cs3_cfg(focus=True), cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True), cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33), cs3sedarknet_xdw=CspModelCfg( stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''), stages=CspStagesCfg( depth=(3, 6, 12, 4), out_chs=(256, 512, 1024, 2048), stride=2, groups=(1, 1, 256, 512), bottle_ratio=0.5, block_ratio=0.5, attn_layer='se', ), act_layer='silu', ), cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'), cs3se_edgenet_x=_cs3_cfg( width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge', attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), ) def _create_cspnet(variant, pretrained=False, **kwargs): if variant.startswith('darknet') or variant.startswith('cspdarknet'): # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5] default_out_indices = (0, 1, 2, 3, 4, 5) else: default_out_indices = (0, 1, 2, 3, 4) out_indices = kwargs.pop('out_indices', default_out_indices) return build_model_with_cfg( CspNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.887, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'cspresnet50.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), 'cspresnet50d.untrained': _cfg(), 'cspresnet50w.untrained': _cfg(), 'cspresnext50.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', ), 'cspdarknet53.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), 'darknet17.untrained': _cfg(), 'darknet21.untrained': _cfg(), 'sedarknet21.untrained': _cfg(), 'darknet53.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'darknetaa53.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_s.untrained': _cfg(interpolation='bicubic'), 'cs3darknet_m.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95, ), 'cs3darknet_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_focus_s.ra4_e3600_r256_in1k': _cfg( hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), interpolation='bicubic', test_input_size=(3, 320, 320), test_crop_pct=1.0), 'cs3darknet_focus_m.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'), 'cs3sedarknet_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3sedarknet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'), 'cs3edgenet_x.c2_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3se_edgenet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), }) @register_model def cspresnet50(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) @register_model def cspresnet50d(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) @register_model def cspresnet50w(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) @register_model def cspresnext50(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) @register_model def cspdarknet53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs) @register_model def darknet17(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet17', pretrained=pretrained, **kwargs) @register_model def darknet21(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet21', pretrained=pretrained, **kwargs) @register_model def sedarknet21(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs) @register_model def darknet53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet53', pretrained=pretrained, **kwargs) @register_model def darknetaa53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs) @register_model def cs3darknet_s(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs) @register_model def cs3darknet_m(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs) @register_model def cs3darknet_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs) @register_model def cs3darknet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs) @register_model def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs) @register_model def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/cspnet.py/0
{ "file_path": "pytorch-image-models/timm/models/cspnet.py", "repo_id": "pytorch-image-models", "token_count": 20103 }
""" FocalNet As described in `Focal Modulation Networks` - https://arxiv.org/abs/2203.11926 Significant modifications and refactoring from the original impl at https://github.com/microsoft/FocalNet This impl is/has: * fully convolutional, NCHW tensor layout throughout, seemed to have minimal performance impact but more flexible * re-ordered downsample / layer so that striding always at beginning of layer (stage) * no input size constraints or input resolution/H/W tracking through the model * torchscript fixed and a number of quirks cleaned up * feature extraction support via `features_only=True` """ # -------------------------------------------------------- # FocalNets -- Focal Modulation Networks # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Jianwei Yang ([email protected]) # -------------------------------------------------------- from functools import partial from typing import Callable, Optional, Tuple import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import Mlp, DropPath, LayerNorm2d, trunc_normal_, ClassifierHead, NormMlpClassifierHead from ._builder import build_model_with_cfg from ._manipulate import named_apply, checkpoint from ._registry import generate_default_cfgs, register_model __all__ = ['FocalNet'] class FocalModulation(nn.Module): def __init__( self, dim: int, focal_window, focal_level: int, focal_factor: int = 2, bias: bool = True, use_post_norm: bool = False, normalize_modulator: bool = False, proj_drop: float = 0., norm_layer: Callable = LayerNorm2d, ): super().__init__() self.dim = dim self.focal_window = focal_window self.focal_level = focal_level self.focal_factor = focal_factor self.use_post_norm = use_post_norm self.normalize_modulator = normalize_modulator self.input_split = [dim, dim, self.focal_level + 1] self.f = nn.Conv2d(dim, 2 * dim + (self.focal_level + 1), kernel_size=1, bias=bias) self.h = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) self.act = nn.GELU() self.proj = nn.Conv2d(dim, dim, kernel_size=1) self.proj_drop = nn.Dropout(proj_drop) self.focal_layers = nn.ModuleList() self.kernel_sizes = [] for k in range(self.focal_level): kernel_size = self.focal_factor * k + self.focal_window self.focal_layers.append(nn.Sequential( nn.Conv2d(dim, dim, kernel_size=kernel_size, groups=dim, padding=kernel_size // 2, bias=False), nn.GELU(), )) self.kernel_sizes.append(kernel_size) self.norm = norm_layer(dim) if self.use_post_norm else nn.Identity() def forward(self, x): # pre linear projection x = self.f(x) q, ctx, gates = torch.split(x, self.input_split, 1) # context aggregation ctx_all = 0 for l, focal_layer in enumerate(self.focal_layers): ctx = focal_layer(ctx) ctx_all = ctx_all + ctx * gates[:, l:l + 1] ctx_global = self.act(ctx.mean((2, 3), keepdim=True)) ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:] # normalize context if self.normalize_modulator: ctx_all = ctx_all / (self.focal_level + 1) # focal modulation x_out = q * self.h(ctx_all) x_out = self.norm(x_out) # post linear projection x_out = self.proj(x_out) x_out = self.proj_drop(x_out) return x_out class LayerScale2d(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma.view(1, -1, 1, 1) return x.mul_(gamma) if self.inplace else x * gamma class FocalNetBlock(nn.Module): """ Focal Modulation Network Block. """ def __init__( self, dim: int, mlp_ratio: float = 4., focal_level: int = 1, focal_window: int = 3, use_post_norm: bool = False, use_post_norm_in_modulation: bool = False, normalize_modulator: bool = False, layerscale_value: float = 1e-4, proj_drop: float = 0., drop_path: float = 0., act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm2d, ): """ Args: dim: Number of input channels. mlp_ratio: Ratio of mlp hidden dim to embedding dim. focal_level: Number of focal levels. focal_window: Focal window size at first focal level. use_post_norm: Whether to use layer norm after modulation. use_post_norm_in_modulation: Whether to use layer norm in modulation. layerscale_value: Initial layerscale value. proj_drop: Dropout rate. drop_path: Stochastic depth rate. act_layer: Activation layer. norm_layer: Normalization layer. """ super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.focal_window = focal_window self.focal_level = focal_level self.use_post_norm = use_post_norm self.norm1 = norm_layer(dim) if not use_post_norm else nn.Identity() self.modulation = FocalModulation( dim, focal_window=focal_window, focal_level=self.focal_level, use_post_norm=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, proj_drop=proj_drop, norm_layer=norm_layer, ) self.norm1_post = norm_layer(dim) if use_post_norm else nn.Identity() self.ls1 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) if not use_post_norm else nn.Identity() self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, use_conv=True, ) self.norm2_post = norm_layer(dim) if use_post_norm else nn.Identity() self.ls2 = LayerScale2d(dim, layerscale_value) if layerscale_value is not None else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x # Focal Modulation x = self.norm1(x) x = self.modulation(x) x = self.norm1_post(x) x = shortcut + self.drop_path1(self.ls1(x)) # FFN x = x + self.drop_path2(self.ls2(self.norm2_post(self.mlp(self.norm2(x))))) return x class FocalNetStage(nn.Module): """ A basic Focal Transformer layer for one stage. """ def __init__( self, dim: int, out_dim: int, depth: int, mlp_ratio: float = 4., downsample: bool = True, focal_level: int = 1, focal_window: int = 1, use_overlap_down: bool = False, use_post_norm: bool = False, use_post_norm_in_modulation: bool = False, normalize_modulator: bool = False, layerscale_value: float = 1e-4, proj_drop: float = 0., drop_path: float = 0., norm_layer: Callable = LayerNorm2d, ): """ Args: dim: Number of input channels. out_dim: Number of output channels. depth: Number of blocks. mlp_ratio: Ratio of mlp hidden dim to embedding dim. downsample: Downsample layer at start of the layer. focal_level: Number of focal levels focal_window: Focal window size at first focal level use_overlap_down: User overlapped convolution in downsample layer. use_post_norm: Whether to use layer norm after modulation. use_post_norm_in_modulation: Whether to use layer norm in modulation. layerscale_value: Initial layerscale value proj_drop: Dropout rate for projections. drop_path: Stochastic depth rate. norm_layer: Normalization layer. """ super().__init__() self.dim = dim self.depth = depth self.grad_checkpointing = False if downsample: self.downsample = Downsample( in_chs=dim, out_chs=out_dim, stride=2, overlap=use_overlap_down, norm_layer=norm_layer, ) else: self.downsample = nn.Identity() # build blocks self.blocks = nn.ModuleList([ FocalNetBlock( dim=out_dim, mlp_ratio=mlp_ratio, focal_level=focal_level, focal_window=focal_window, use_post_norm=use_post_norm, use_post_norm_in_modulation=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, layerscale_value=layerscale_value, proj_drop=proj_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth)]) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable def forward(self, x): x = self.downsample(x) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x) else: x = blk(x) return x class Downsample(nn.Module): def __init__( self, in_chs: int, out_chs: int, stride: int = 4, overlap: bool = False, norm_layer: Optional[Callable] = None, ): """ Args: in_chs: Number of input image channels. out_chs: Number of linear projection output channels. stride: Downsample stride. overlap: Use overlapping convolutions if True. norm_layer: Normalization layer. """ super().__init__() self.stride = stride padding = 0 kernel_size = stride if overlap: assert stride in (2, 4) if stride == 4: kernel_size, padding = 7, 2 elif stride == 2: kernel_size, padding = 3, 1 self.proj = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding) self.norm = norm_layer(out_chs) if norm_layer is not None else nn.Identity() def forward(self, x): x = self.proj(x) x = self.norm(x) return x class FocalNet(nn.Module): """" Focal Modulation Networks (FocalNets) """ def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 96, depths: Tuple[int, ...] = (2, 2, 6, 2), mlp_ratio: float = 4., focal_levels: Tuple[int, ...] = (2, 2, 2, 2), focal_windows: Tuple[int, ...] = (3, 3, 3, 3), use_overlap_down: bool = False, use_post_norm: bool = False, use_post_norm_in_modulation: bool = False, normalize_modulator: bool = False, head_hidden_size: Optional[int] = None, head_init_scale: float = 1.0, layerscale_value: Optional[float] = None, drop_rate: bool = 0., proj_drop_rate: bool = 0., drop_path_rate: bool = 0.1, norm_layer: Callable = partial(LayerNorm2d, eps=1e-5), ): """ Args: in_chans: Number of input image channels. num_classes: Number of classes for classification head. embed_dim: Patch embedding dimension. depths: Depth of each Focal Transformer layer. mlp_ratio: Ratio of mlp hidden dim to embedding dim. focal_levels: How many focal levels at all stages. Note that this excludes the finest-grain level. focal_windows: The focal window size at all stages. use_overlap_down: Whether to use convolutional embedding. use_post_norm: Whether to use layernorm after modulation (it helps stabilize training of large models) layerscale_value: Value for layer scale. drop_rate: Dropout rate. drop_path_rate: Stochastic depth rate. norm_layer: Normalization layer. """ super().__init__() self.num_layers = len(depths) embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)] self.num_classes = num_classes self.embed_dim = embed_dim self.num_features = self.head_hidden_size = embed_dim[-1] self.feature_info = [] self.stem = Downsample( in_chs=in_chans, out_chs=embed_dim[0], overlap=use_overlap_down, norm_layer=norm_layer, ) in_dim = embed_dim[0] dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule layers = [] for i_layer in range(self.num_layers): out_dim = embed_dim[i_layer] layer = FocalNetStage( dim=in_dim, out_dim=out_dim, depth=depths[i_layer], mlp_ratio=mlp_ratio, downsample=i_layer > 0, focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], use_overlap_down=use_overlap_down, use_post_norm=use_post_norm, use_post_norm_in_modulation=use_post_norm_in_modulation, normalize_modulator=normalize_modulator, layerscale_value=layerscale_value, proj_drop=proj_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, ) in_dim = out_dim layers += [layer] self.feature_info += [dict(num_chs=out_dim, reduction=4 * 2 ** i_layer, module=f'layers.{i_layer}')] self.layers = nn.Sequential(*layers) if head_hidden_size: self.norm = nn.Identity() self.head_hidden_size = head_hidden_size self.head = NormMlpClassifierHead( self.num_features, num_classes, hidden_size=head_hidden_size, pool_type=global_pool, drop_rate=drop_rate, norm_layer=norm_layer, ) else: self.norm = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate ) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) @torch.jit.ignore def no_weight_decay(self): return {''} @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=[ (r'^layers\.(\d+)', None), (r'^norm', (99999,)) ] if coarse else [ (r'^layers\.(\d+).downsample', (0,)), (r'^layers\.(\d+)\.\w+\.(\d+)', None), (r'^norm', (99999,)), ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable for l in self.layers: l.set_grad_checkpointing(enable=enable) @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool) def forward_features(self, x): x = self.stem(x) x = self.layers(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name=None, head_init_scale=1.0): if isinstance(module, nn.Conv2d): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) if name and 'head.fc' in name: module.weight.data.mul_(head_init_scale) module.bias.data.mul_(head_init_scale) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.proj', 'classifier': 'head.fc', 'license': 'mit', **kwargs } default_cfgs = generate_default_cfgs({ "focalnet_tiny_srf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_small_srf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_base_srf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_tiny_lrf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_small_lrf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_base_lrf.ms_in1k": _cfg( hf_hub_id='timm/'), "focalnet_large_fl3.ms_in22k": _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), "focalnet_large_fl4.ms_in22k": _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), "focalnet_xlarge_fl3.ms_in22k": _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), "focalnet_xlarge_fl4.ms_in22k": _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, num_classes=21842), "focalnet_huge_fl3.ms_in22k": _cfg( hf_hub_id='timm/', num_classes=21842), "focalnet_huge_fl4.ms_in22k": _cfg( hf_hub_id='timm/', num_classes=0), }) def checkpoint_filter_fn(state_dict, model: FocalNet): state_dict = state_dict.get('model', state_dict) if 'stem.proj.weight' in state_dict: return state_dict import re out_dict = {} dest_dict = model.state_dict() for k, v in state_dict.items(): k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) k = k.replace('patch_embed', 'stem') k = re.sub(r'layers.(\d+).downsample', lambda x: f'layers.{int(x.group(1)) + 1}.downsample', k) if 'norm' in k and k not in dest_dict: k = re.sub(r'norm([0-9])', r'norm\1_post', k) k = k.replace('ln.', 'norm.') k = k.replace('head', 'head.fc') if k in dest_dict and dest_dict[k].numel() == v.numel() and dest_dict[k].shape != v.shape: v = v.reshape(dest_dict[k].shape) out_dict[k] = v return out_dict def _create_focalnet(variant, pretrained=False, **kwargs): default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (1, 1, 3, 1)))) out_indices = kwargs.pop('out_indices', default_out_indices) model = build_model_with_cfg( FocalNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) return model @register_model def focalnet_tiny_srf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, **kwargs) return _create_focalnet('focalnet_tiny_srf', pretrained=pretrained, **model_kwargs) @register_model def focalnet_small_srf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, **kwargs) return _create_focalnet('focalnet_small_srf', pretrained=pretrained, **model_kwargs) @register_model def focalnet_base_srf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, **kwargs) return _create_focalnet('focalnet_base_srf', pretrained=pretrained, **model_kwargs) @register_model def focalnet_tiny_lrf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) return _create_focalnet('focalnet_tiny_lrf', pretrained=pretrained, **model_kwargs) @register_model def focalnet_small_lrf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) return _create_focalnet('focalnet_small_lrf', pretrained=pretrained, **model_kwargs) @register_model def focalnet_base_lrf(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs) return _create_focalnet('focalnet_base_lrf', pretrained=pretrained, **model_kwargs) # FocalNet large+ models @register_model def focalnet_large_fl3(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_large_fl3', pretrained=pretrained, **model_kwargs) @register_model def focalnet_large_fl4(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=192, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_large_fl4', pretrained=pretrained, **model_kwargs) @register_model def focalnet_xlarge_fl3(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[3, 3, 3, 3], focal_windows=[5] * 4, use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_xlarge_fl3', pretrained=pretrained, **model_kwargs) @register_model def focalnet_xlarge_fl4(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=256, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_xlarge_fl4', pretrained=pretrained, **model_kwargs) @register_model def focalnet_huge_fl3(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[3, 3, 3, 3], focal_windows=[3] * 4, use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_huge_fl3', pretrained=pretrained, **model_kwargs) @register_model def focalnet_huge_fl4(pretrained=False, **kwargs) -> FocalNet: model_kwargs = dict( depths=[2, 2, 18, 2], embed_dim=352, focal_levels=[4, 4, 4, 4], use_post_norm=True, use_post_norm_in_modulation=True, use_overlap_down=True, layerscale_value=1e-4, **kwargs) return _create_focalnet('focalnet_huge_fl4', pretrained=pretrained, **model_kwargs)
pytorch-image-models/timm/models/focalnet.py/0
{ "file_path": "pytorch-image-models/timm/models/focalnet.py", "repo_id": "pytorch-image-models", "token_count": 11648 }
""" LeViT Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference` - https://arxiv.org/abs/2104.01136 @article{graham2021levit, title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference}, author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze}, journal={arXiv preprint arXiv:22104.01136}, year={2021} } Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow. This version combines both conv/linear models and fixes torchscript compatibility. Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # Modified from # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # Copyright 2020 Ross Wightman, Apache-2.0 License from collections import OrderedDict from functools import partial from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN from timm.layers import to_ntuple, to_2tuple, get_act_layer, DropPath, trunc_normal_, ndgrid from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['Levit'] class ConvNorm(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1): super().__init__() self.linear = nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, dilation, groups, bias=False) self.bn = nn.BatchNorm2d(out_chs) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): c, bn = self.linear, self.bn w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Conv2d( w.size(1), w.size(0), w.shape[2:], stride=self.linear.stride, padding=self.linear.padding, dilation=self.linear.dilation, groups=self.linear.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): return self.bn(self.linear(x)) class LinearNorm(nn.Module): def __init__(self, in_features, out_features, bn_weight_init=1): super().__init__() self.linear = nn.Linear(in_features, out_features, bias=False) self.bn = nn.BatchNorm1d(out_features) nn.init.constant_(self.bn.weight, bn_weight_init) @torch.no_grad() def fuse(self): l, bn = self.linear, self.bn w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[:, None] b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): x = self.linear(x) return self.bn(x.flatten(0, 1)).reshape_as(x) class NormLinear(nn.Module): def __init__(self, in_features, out_features, bias=True, std=0.02, drop=0.): super().__init__() self.bn = nn.BatchNorm1d(in_features) self.drop = nn.Dropout(drop) self.linear = nn.Linear(in_features, out_features, bias=bias) trunc_normal_(self.linear.weight, std=std) if self.linear.bias is not None: nn.init.constant_(self.linear.bias, 0) @torch.no_grad() def fuse(self): bn, l = self.bn, self.linear w = bn.weight / (bn.running_var + bn.eps) ** 0.5 b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[None, :] if l.bias is None: b = b @ self.linear.weight.T else: b = (l.weight @ b[:, None]).view(-1) + self.linear.bias m = nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): return self.linear(self.drop(self.bn(x))) class Stem8(nn.Sequential): def __init__(self, in_chs, out_chs, act_layer): super().__init__() self.stride = 8 self.add_module('conv1', ConvNorm(in_chs, out_chs // 4, 3, stride=2, padding=1)) self.add_module('act1', act_layer()) self.add_module('conv2', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) self.add_module('act2', act_layer()) self.add_module('conv3', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) class Stem16(nn.Sequential): def __init__(self, in_chs, out_chs, act_layer): super().__init__() self.stride = 16 self.add_module('conv1', ConvNorm(in_chs, out_chs // 8, 3, stride=2, padding=1)) self.add_module('act1', act_layer()) self.add_module('conv2', ConvNorm(out_chs // 8, out_chs // 4, 3, stride=2, padding=1)) self.add_module('act2', act_layer()) self.add_module('conv3', ConvNorm(out_chs // 4, out_chs // 2, 3, stride=2, padding=1)) self.add_module('act3', act_layer()) self.add_module('conv4', ConvNorm(out_chs // 2, out_chs, 3, stride=2, padding=1)) class Downsample(nn.Module): def __init__(self, stride, resolution, use_pool=False): super().__init__() self.stride = stride self.resolution = to_2tuple(resolution) self.pool = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) if use_pool else None def forward(self, x): B, N, C = x.shape x = x.view(B, self.resolution[0], self.resolution[1], C) if self.pool is not None: x = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) else: x = x[:, ::self.stride, ::self.stride] return x.reshape(B, -1, C) class Attention(nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4., resolution=14, use_conv=False, act_layer=nn.SiLU, ): super().__init__() ln_layer = ConvNorm if use_conv else LinearNorm resolution = to_2tuple(resolution) self.use_conv = use_conv self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = int(attn_ratio * key_dim) * num_heads self.qkv = ln_layer(dim, self.val_attn_dim + self.key_attn_dim * 2) self.proj = nn.Sequential(OrderedDict([ ('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, dim, bn_weight_init=0)) ])) self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) rel_pos = (pos[..., :, None] - pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) self.attention_bias_cache = {} @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): # x (B,C,H,W) if self.use_conv: B, C, H, W = x.shape q, k, v = self.qkv(x).view( B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.val_dim], dim=2) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) else: B, N, C = x.shape q, k, v = self.qkv(x).view( B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim) x = self.proj(x) return x class AttentionDownsample(nn.Module): attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2.0, stride=2, resolution=14, use_conv=False, use_pool=False, act_layer=nn.SiLU, ): super().__init__() resolution = to_2tuple(resolution) self.stride = stride self.resolution = resolution self.num_heads = num_heads self.key_dim = key_dim self.key_attn_dim = key_dim * num_heads self.val_dim = int(attn_ratio * key_dim) self.val_attn_dim = self.val_dim * self.num_heads self.scale = key_dim ** -0.5 self.use_conv = use_conv if self.use_conv: ln_layer = ConvNorm sub_layer = partial( nn.AvgPool2d, kernel_size=3 if use_pool else 1, padding=1 if use_pool else 0, count_include_pad=False) else: ln_layer = LinearNorm sub_layer = partial(Downsample, resolution=resolution, use_pool=use_pool) self.kv = ln_layer(in_dim, self.val_attn_dim + self.key_attn_dim) self.q = nn.Sequential(OrderedDict([ ('down', sub_layer(stride=stride)), ('ln', ln_layer(in_dim, self.key_attn_dim)) ])) self.proj = nn.Sequential(OrderedDict([ ('act', act_layer()), ('ln', ln_layer(self.val_attn_dim, out_dim)) ])) self.attention_biases = nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1])) k_pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1) q_pos = torch.stack(ndgrid( torch.arange(0, resolution[0], step=stride), torch.arange(0, resolution[1], step=stride) )).flatten(1) rel_pos = (q_pos[..., :, None] - k_pos[..., None, :]).abs() rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1] self.register_buffer('attention_bias_idxs', rel_pos, persistent=False) self.attention_bias_cache = {} # per-device attention_biases cache @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): if self.use_conv: B, C, H, W = x.shape HH, WW = (H - 1) // self.stride + 1, (W - 1) // self.stride + 1 k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.val_dim], dim=2) q = self.q(x).view(B, self.num_heads, self.key_dim, -1) attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).reshape(B, self.val_attn_dim, HH, WW) else: B, N, C = x.shape k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.val_dim], dim=3) k = k.permute(0, 2, 3, 1) # BHCN v = v.permute(0, 2, 1, 3) # BHNC q = self.q(x).view(B, -1, self.num_heads, self.key_dim).permute(0, 2, 1, 3) attn = q @ k * self.scale + self.get_attention_biases(x.device) attn = attn.softmax(dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, -1, self.val_attn_dim) x = self.proj(x) return x class LevitMlp(nn.Module): """ MLP for Levit w/ normalization + ability to switch btw conv and linear """ def __init__( self, in_features, hidden_features=None, out_features=None, use_conv=False, act_layer=nn.SiLU, drop=0. ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features ln_layer = ConvNorm if use_conv else LinearNorm self.ln1 = ln_layer(in_features, hidden_features) self.act = act_layer() self.drop = nn.Dropout(drop) self.ln2 = ln_layer(hidden_features, out_features, bn_weight_init=0) def forward(self, x): x = self.ln1(x) x = self.act(x) x = self.drop(x) x = self.ln2(x) return x class LevitDownsample(nn.Module): def __init__( self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=4., mlp_ratio=2., act_layer=nn.SiLU, attn_act_layer=None, resolution=14, use_conv=False, use_pool=False, drop_path=0., ): super().__init__() attn_act_layer = attn_act_layer or act_layer self.attn_downsample = AttentionDownsample( in_dim=in_dim, out_dim=out_dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, use_pool=use_pool, ) self.mlp = LevitMlp( out_dim, int(out_dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = self.attn_downsample(x) x = x + self.drop_path(self.mlp(x)) return x class LevitBlock(nn.Module): def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4., mlp_ratio=2., resolution=14, use_conv=False, act_layer=nn.SiLU, attn_act_layer=None, drop_path=0., ): super().__init__() attn_act_layer = attn_act_layer or act_layer self.attn = Attention( dim=dim, key_dim=key_dim, num_heads=num_heads, attn_ratio=attn_ratio, resolution=resolution, use_conv=use_conv, act_layer=attn_act_layer, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = LevitMlp( dim, int(dim * mlp_ratio), use_conv=use_conv, act_layer=act_layer ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = x + self.drop_path1(self.attn(x)) x = x + self.drop_path2(self.mlp(x)) return x class LevitStage(nn.Module): def __init__( self, in_dim, out_dim, key_dim, depth=4, num_heads=8, attn_ratio=4.0, mlp_ratio=4.0, act_layer=nn.SiLU, attn_act_layer=None, resolution=14, downsample='', use_conv=False, drop_path=0., ): super().__init__() resolution = to_2tuple(resolution) if downsample: self.downsample = LevitDownsample( in_dim, out_dim, key_dim=key_dim, num_heads=in_dim // key_dim, attn_ratio=4., mlp_ratio=2., act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path, ) resolution = [(r - 1) // 2 + 1 for r in resolution] else: assert in_dim == out_dim self.downsample = nn.Identity() blocks = [] for _ in range(depth): blocks += [LevitBlock( out_dim, key_dim, num_heads=num_heads, attn_ratio=attn_ratio, mlp_ratio=mlp_ratio, act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, drop_path=drop_path, )] self.blocks = nn.Sequential(*blocks) def forward(self, x): x = self.downsample(x) x = self.blocks(x) return x class Levit(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems w/ train scripts that don't take tuple outputs, """ def __init__( self, img_size=224, in_chans=3, num_classes=1000, embed_dim=(192,), key_dim=64, depth=(12,), num_heads=(3,), attn_ratio=2., mlp_ratio=2., stem_backbone=None, stem_stride=None, stem_type='s16', down_op='subsample', act_layer='hard_swish', attn_act_layer=None, use_conv=False, global_pool='avg', drop_rate=0., drop_path_rate=0.): super().__init__() act_layer = get_act_layer(act_layer) attn_act_layer = get_act_layer(attn_act_layer or act_layer) self.use_conv = use_conv self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.head_hidden_size = embed_dim[-1] self.embed_dim = embed_dim self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] num_stages = len(embed_dim) assert len(depth) == num_stages num_heads = to_ntuple(num_stages)(num_heads) attn_ratio = to_ntuple(num_stages)(attn_ratio) mlp_ratio = to_ntuple(num_stages)(mlp_ratio) if stem_backbone is not None: assert stem_stride >= 2 self.stem = stem_backbone stride = stem_stride else: assert stem_type in ('s16', 's8') if stem_type == 's16': self.stem = Stem16(in_chans, embed_dim[0], act_layer=act_layer) else: self.stem = Stem8(in_chans, embed_dim[0], act_layer=act_layer) stride = self.stem.stride resolution = tuple([i // p for i, p in zip(to_2tuple(img_size), to_2tuple(stride))]) in_dim = embed_dim[0] stages = [] for i in range(num_stages): stage_stride = 2 if i > 0 else 1 stages += [LevitStage( in_dim, embed_dim[i], key_dim, depth=depth[i], num_heads=num_heads[i], attn_ratio=attn_ratio[i], mlp_ratio=mlp_ratio[i], act_layer=act_layer, attn_act_layer=attn_act_layer, resolution=resolution, use_conv=use_conv, downsample=down_op if stage_stride == 2 else '', drop_path=drop_path_rate )] stride *= stage_stride resolution = tuple([(r - 1) // stage_stride + 1 for r in resolution]) self.feature_info += [dict(num_chs=embed_dim[i], reduction=stride, module=f'stages.{i}')] in_dim = embed_dim[i] self.stages = nn.Sequential(*stages) # Classifier head self.head = NormLinear(embed_dim[-1], num_classes, drop=drop_rate) if num_classes > 0 else nn.Identity() @torch.jit.ignore def no_weight_decay(self): return {x for x in self.state_dict().keys() if 'attention_biases' in x} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int , global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear( self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages), indices) # forward pass x = self.stem(x) B, C, H, W = x.shape if not self.use_conv: x = x.flatten(2).transpose(1, 2) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index + 1] for feat_idx, stage in enumerate(stages): x = stage(x) if feat_idx in take_indices: if self.use_conv: intermediates.append(x) else: intermediates.append(x.reshape(B, H, W, -1).permute(0, 3, 1, 2)) H = (H + 2 - 1) // 2 W = (W + 2 - 1) // 2 if intermediates_only: return intermediates return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages), indices) self.stages = self.stages[:max_index + 1] # truncate blocks w/ stem as idx 0 if prune_head: self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.stem(x) if not self.use_conv: x = x.flatten(2).transpose(1, 2) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x class LevitDistilled(Levit): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.head_dist = NormLinear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head, self.head_dist def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = NormLinear( self.num_features, num_classes, drop=self.drop_rate) if num_classes > 0 else nn.Identity() self.head_dist = NormLinear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def forward_head(self, x, pre_logits: bool = False): if self.global_pool == 'avg': x = x.mean(dim=(-2, -1)) if self.use_conv else x.mean(dim=1) if pre_logits: return x x, x_dist = self.head(x), self.head_dist(x) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train/finetune, inference average the classifier predictions return (x + x_dist) / 2 def checkpoint_filter_fn(state_dict, model): if 'model' in state_dict: state_dict = state_dict['model'] # filter out attn biases, should not have been persistent state_dict = {k: v for k, v in state_dict.items() if 'attention_bias_idxs' not in k} # NOTE: old weight conversion code, disabled # D = model.state_dict() # out_dict = {} # for ka, kb, va, vb in zip(D.keys(), state_dict.keys(), D.values(), state_dict.values()): # if va.ndim == 4 and vb.ndim == 2: # vb = vb[:, :, None, None] # if va.shape != vb.shape: # # head or first-conv shapes may change for fine-tune # assert 'head' in ka or 'stem.conv1.linear' in ka # out_dict[ka] = vb return state_dict model_cfgs = dict( levit_128s=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)), levit_128=dict( embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)), levit_192=dict( embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)), levit_256=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)), levit_384=dict( embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)), # stride-8 stem experiments levit_384_s8=dict( embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), levit_512_s8=dict( embed_dim=(512, 640, 896), key_dim=64, num_heads=(8, 10, 14), depth=(4, 4, 4), act_layer='silu', stem_type='s8'), # wider experiments levit_512=dict( embed_dim=(512, 768, 1024), key_dim=64, num_heads=(8, 12, 16), depth=(4, 4, 4), act_layer='silu'), # deeper experiments levit_256d=dict( embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 8, 6), act_layer='silu'), levit_512d=dict( embed_dim=(512, 640, 768), key_dim=64, num_heads=(8, 10, 12), depth=(4, 8, 6), act_layer='silu'), ) def create_levit(variant, cfg_variant=None, pretrained=False, distilled=True, **kwargs): is_conv = '_conv' in variant out_indices = kwargs.pop('out_indices', (0, 1, 2)) if kwargs.get('features_only', False) and not is_conv: kwargs.setdefault('feature_cls', 'getter') if cfg_variant is None: if variant in model_cfgs: cfg_variant = variant elif is_conv: cfg_variant = variant.replace('_conv', '') model_cfg = dict(model_cfgs[cfg_variant], **kwargs) model = build_model_with_cfg( LevitDistilled if distilled else Levit, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **model_cfg, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.linear', 'classifier': ('head.linear', 'head_dist.linear'), **kwargs } default_cfgs = generate_default_cfgs({ # weights in nn.Linear mode 'levit_128s.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_128.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_192.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_256.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), 'levit_384.fb_dist_in1k': _cfg( hf_hub_id='timm/', ), # weights in nn.Conv2d mode 'levit_conv_128s.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_128.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_192.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_256.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_conv_384.fb_dist_in1k': _cfg( hf_hub_id='timm/', pool_size=(4, 4), ), 'levit_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_512.untrained': _cfg(classifier='head.linear'), 'levit_256d.untrained': _cfg(classifier='head.linear'), 'levit_512d.untrained': _cfg(classifier='head.linear'), 'levit_conv_384_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512_s8.untrained': _cfg(classifier='head.linear'), 'levit_conv_512.untrained': _cfg(classifier='head.linear'), 'levit_conv_256d.untrained': _cfg(classifier='head.linear'), 'levit_conv_512d.untrained': _cfg(classifier='head.linear'), }) @register_model def levit_128s(pretrained=False, **kwargs) -> Levit: return create_levit('levit_128s', pretrained=pretrained, **kwargs) @register_model def levit_128(pretrained=False, **kwargs) -> Levit: return create_levit('levit_128', pretrained=pretrained, **kwargs) @register_model def levit_192(pretrained=False, **kwargs) -> Levit: return create_levit('levit_192', pretrained=pretrained, **kwargs) @register_model def levit_256(pretrained=False, **kwargs) -> Levit: return create_levit('levit_256', pretrained=pretrained, **kwargs) @register_model def levit_384(pretrained=False, **kwargs) -> Levit: return create_levit('levit_384', pretrained=pretrained, **kwargs) @register_model def levit_384_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_384_s8', pretrained=pretrained, **kwargs) @register_model def levit_512_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512_s8', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_512(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_256d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_256d', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_512d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_512d', pretrained=pretrained, distilled=False, **kwargs) @register_model def levit_conv_128s(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_128s', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_128(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_128', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_192(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_192', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_256(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_256', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_384(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_384', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_384_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_384_s8', pretrained=pretrained, use_conv=True, **kwargs) @register_model def levit_conv_512_s8(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512_s8', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_512(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_256d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_256d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs) @register_model def levit_conv_512d(pretrained=False, **kwargs) -> Levit: return create_levit('levit_conv_512d', pretrained=pretrained, use_conv=True, distilled=False, **kwargs)
pytorch-image-models/timm/models/levit.py/0
{ "file_path": "pytorch-image-models/timm/models/levit.py", "repo_id": "pytorch-image-models", "token_count": 17159 }
""" TinyViT Paper: `TinyViT: Fast Pretraining Distillation for Small Vision Transformers` - https://arxiv.org/abs/2207.10666 Adapted from official impl at https://github.com/microsoft/Cream/tree/main/TinyViT """ __all__ = ['TinyVit'] import itertools from functools import partial from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import LayerNorm2d, NormMlpClassifierHead, DropPath,\ trunc_normal_, resize_rel_pos_bias_table_levit, use_fused_attn from ._builder import build_model_with_cfg from ._features_fx import register_notrace_module from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs class ConvNorm(torch.nn.Sequential): def __init__(self, in_chs, out_chs, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): super().__init__() self.conv = nn.Conv2d(in_chs, out_chs, ks, stride, pad, dilation, groups, bias=False) self.bn = nn.BatchNorm2d(out_chs) torch.nn.init.constant_(self.bn.weight, bn_weight_init) torch.nn.init.constant_(self.bn.bias, 0) @torch.no_grad() def fuse(self): c, bn = self.conv, self.bn w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps) ** 0.5 m = torch.nn.Conv2d( w.size(1) * self.conv.groups, w.size(0), w.shape[2:], stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class PatchEmbed(nn.Module): def __init__(self, in_chs, out_chs, act_layer): super().__init__() self.stride = 4 self.conv1 = ConvNorm(in_chs, out_chs // 2, 3, 2, 1) self.act = act_layer() self.conv2 = ConvNorm(out_chs // 2, out_chs, 3, 2, 1) def forward(self, x): x = self.conv1(x) x = self.act(x) x = self.conv2(x) return x class MBConv(nn.Module): def __init__(self, in_chs, out_chs, expand_ratio, act_layer, drop_path): super().__init__() mid_chs = int(in_chs * expand_ratio) self.conv1 = ConvNorm(in_chs, mid_chs, ks=1) self.act1 = act_layer() self.conv2 = ConvNorm(mid_chs, mid_chs, ks=3, stride=1, pad=1, groups=mid_chs) self.act2 = act_layer() self.conv3 = ConvNorm(mid_chs, out_chs, ks=1, bn_weight_init=0.0) self.act3 = act_layer() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.conv3(x) x = self.drop_path(x) x += shortcut x = self.act3(x) return x class PatchMerging(nn.Module): def __init__(self, dim, out_dim, act_layer): super().__init__() self.conv1 = ConvNorm(dim, out_dim, 1, 1, 0) self.act1 = act_layer() self.conv2 = ConvNorm(out_dim, out_dim, 3, 2, 1, groups=out_dim) self.act2 = act_layer() self.conv3 = ConvNorm(out_dim, out_dim, 1, 1, 0) def forward(self, x): x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) x = self.conv3(x) return x class ConvLayer(nn.Module): def __init__( self, dim, depth, act_layer, drop_path=0., conv_expand_ratio=4., ): super().__init__() self.dim = dim self.depth = depth self.blocks = nn.Sequential(*[ MBConv( dim, dim, conv_expand_ratio, act_layer, drop_path[i] if isinstance(drop_path, list) else drop_path, ) for i in range(depth) ]) def forward(self, x): x = self.blocks(x) return x class NormMlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, norm_layer=nn.LayerNorm, act_layer=nn.GELU, drop=0., ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.norm = norm_layer(in_features) self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.drop1 = nn.Dropout(drop) self.fc2 = nn.Linear(hidden_features, out_features) self.drop2 = nn.Dropout(drop) def forward(self, x): x = self.norm(x) x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Attention(torch.nn.Module): fused_attn: torch.jit.Final[bool] attention_bias_cache: Dict[str, torch.Tensor] def __init__( self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=(14, 14), ): super().__init__() assert isinstance(resolution, tuple) and len(resolution) == 2 self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.val_dim = int(attn_ratio * key_dim) self.out_dim = self.val_dim * num_heads self.attn_ratio = attn_ratio self.resolution = resolution self.fused_attn = use_fused_attn() self.norm = nn.LayerNorm(dim) self.qkv = nn.Linear(dim, num_heads * (self.val_dim + 2 * key_dim)) self.proj = nn.Linear(self.out_dim, dim) points = list(itertools.product(range(resolution[0]), range(resolution[1]))) N = len(points) attention_offsets = {} idxs = [] for p1 in points: for p2 in points: offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) self.attention_bias_cache = {} @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device: torch.device) -> torch.Tensor: if torch.jit.is_tracing() or self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, x): attn_bias = self.get_attention_biases(x.device) B, N, _ = x.shape # Normalization x = self.norm(x) qkv = self.qkv(x) # (B, N, num_heads, d) q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.val_dim], dim=3) # (B, num_heads, N, d) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) if self.fused_attn: x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn + attn_bias attn = attn.softmax(dim=-1) x = attn @ v x = x.transpose(1, 2).reshape(B, N, self.out_dim) x = self.proj(x) return x class TinyVitBlock(nn.Module): """ TinyViT Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 local_conv_size (int): the kernel size of the convolution between Attention and MLP. Default: 3 act_layer: the activation function. Default: nn.GELU """ def __init__( self, dim, num_heads, window_size=7, mlp_ratio=4., drop=0., drop_path=0., local_conv_size=3, act_layer=nn.GELU ): super().__init__() self.dim = dim self.num_heads = num_heads assert window_size > 0, 'window_size must be greater than 0' self.window_size = window_size self.mlp_ratio = mlp_ratio assert dim % num_heads == 0, 'dim must be divisible by num_heads' head_dim = dim // num_heads window_resolution = (window_size, window_size) self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.mlp = NormMlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() pad = local_conv_size // 2 self.local_conv = ConvNorm(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) def forward(self, x): B, H, W, C = x.shape L = H * W shortcut = x if H == self.window_size and W == self.window_size: x = x.reshape(B, L, C) x = self.attn(x) x = x.view(B, H, W, C) else: pad_b = (self.window_size - H % self.window_size) % self.window_size pad_r = (self.window_size - W % self.window_size) % self.window_size padding = pad_b > 0 or pad_r > 0 if padding: x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) # window partition pH, pW = H + pad_b, W + pad_r nH = pH // self.window_size nW = pW // self.window_size x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( B * nH * nW, self.window_size * self.window_size, C ) x = self.attn(x) # window reverse x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) if padding: x = x[:, :H, :W].contiguous() x = shortcut + self.drop_path1(x) x = x.permute(0, 3, 1, 2) x = self.local_conv(x) x = x.reshape(B, C, L).transpose(1, 2) x = x + self.drop_path2(self.mlp(x)) return x.view(B, H, W, C) def extra_repr(self) -> str: return f"dim={self.dim}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" register_notrace_module(TinyVitBlock) class TinyVitStage(nn.Module): """ A basic TinyViT layer for one stage. Args: dim (int): Number of input channels. out_dim: the output dimension of the layer depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 act_layer: the activation function. Default: nn.GELU """ def __init__( self, dim, out_dim, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., downsample=None, local_conv_size=3, act_layer=nn.GELU, ): super().__init__() self.depth = depth self.out_dim = out_dim # patch merging layer if downsample is not None: self.downsample = downsample( dim=dim, out_dim=out_dim, act_layer=act_layer, ) else: self.downsample = nn.Identity() assert dim == out_dim # build blocks self.blocks = nn.Sequential(*[ TinyVitBlock( dim=out_dim, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, local_conv_size=local_conv_size, act_layer=act_layer, ) for i in range(depth)]) def forward(self, x): x = self.downsample(x) x = x.permute(0, 2, 3, 1) # BCHW -> BHWC x = self.blocks(x) x = x.permute(0, 3, 1, 2) # BHWC -> BCHW return x def extra_repr(self) -> str: return f"dim={self.out_dim}, depth={self.depth}" class TinyVit(nn.Module): def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', embed_dims=(96, 192, 384, 768), depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_sizes=(7, 7, 14, 7), mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, use_checkpoint=False, mbconv_expand_ratio=4.0, local_conv_size=3, act_layer=nn.GELU, ): super().__init__() self.num_classes = num_classes self.depths = depths self.num_stages = len(depths) self.mlp_ratio = mlp_ratio self.grad_checkpointing = use_checkpoint self.patch_embed = PatchEmbed( in_chs=in_chans, out_chs=embed_dims[0], act_layer=act_layer, ) # stochastic depth rate rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # build stages self.stages = nn.Sequential() stride = self.patch_embed.stride prev_dim = embed_dims[0] self.feature_info = [] for stage_idx in range(self.num_stages): if stage_idx == 0: stage = ConvLayer( dim=prev_dim, depth=depths[stage_idx], act_layer=act_layer, drop_path=dpr[:depths[stage_idx]], conv_expand_ratio=mbconv_expand_ratio, ) else: out_dim = embed_dims[stage_idx] drop_path_rate = dpr[sum(depths[:stage_idx]):sum(depths[:stage_idx + 1])] stage = TinyVitStage( dim=embed_dims[stage_idx - 1], out_dim=out_dim, depth=depths[stage_idx], num_heads=num_heads[stage_idx], window_size=window_sizes[stage_idx], mlp_ratio=self.mlp_ratio, drop=drop_rate, local_conv_size=local_conv_size, drop_path=drop_path_rate, downsample=PatchMerging, act_layer=act_layer, ) prev_dim = out_dim stride *= 2 self.stages.append(stage) self.feature_info += [dict(num_chs=prev_dim, reduction=stride, module=f'stages.{stage_idx}')] # Classifier head self.num_features = self.head_hidden_size = embed_dims[-1] norm_layer_cf = partial(LayerNorm2d, eps=1e-5) self.head = NormMlpClassifierHead( self.num_features, num_classes, pool_type=global_pool, norm_layer=norm_layer_cf, ) # init weights self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay_keywords(self): return {'attention_biases'} @torch.jit.ignore def no_weight_decay(self): return {x for x in self.state_dict().keys() if 'attention_biases' in x} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+).downsample', (0,)), (r'^stages\.(\d+)\.\w+\.(\d+)', None), ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool) def forward_features(self, x): x = self.patch_embed(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'model' in state_dict.keys(): state_dict = state_dict['model'] target_sd = model.state_dict() out_dict = {} for k, v in state_dict.items(): if k.endswith('attention_bias_idxs'): continue if 'attention_biases' in k: # TODO: whether move this func into model for dynamic input resolution? (high risk) v = resize_rel_pos_bias_table_levit(v.T, target_sd[k].shape[::-1]).T out_dict[k] = v return out_dict def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv1.conv', 'classifier': 'head.fc', 'pool_size': (7, 7), 'input_size': (3, 224, 224), 'crop_pct': 0.95, **kwargs, } default_cfgs = generate_default_cfgs({ 'tiny_vit_5m_224.dist_in22k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_5m_224.dist_in22k_ft_in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_22kto1k_distill.pth' ), 'tiny_vit_5m_224.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_5m_1k.pth' ), 'tiny_vit_11m_224.dist_in22k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_11m_224.dist_in22k_ft_in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_22kto1k_distill.pth' ), 'tiny_vit_11m_224.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_11m_1k.pth' ), 'tiny_vit_21m_224.dist_in22k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22k_distill.pth', num_classes=21841 ), 'tiny_vit_21m_224.dist_in22k_ft_in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_distill.pth' ), 'tiny_vit_21m_224.in1k': _cfg( hf_hub_id='timm/', #url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_1k.pth' ), 'tiny_vit_21m_384.dist_in22k_ft_in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_384_distill.pth', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, ), 'tiny_vit_21m_512.dist_in22k_ft_in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/tiny_vit_21m_22kto1k_512_distill.pth', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash', ), }) def _create_tiny_vit(variant, pretrained=False, **kwargs): out_indices = kwargs.pop('out_indices', (0, 1, 2, 3)) model = build_model_with_cfg( TinyVit, variant, pretrained, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), pretrained_filter_fn=checkpoint_filter_fn, **kwargs ) return model @register_model def tiny_vit_5m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[64, 128, 160, 320], depths=[2, 2, 6, 2], num_heads=[2, 4, 5, 10], window_sizes=[7, 7, 14, 7], drop_path_rate=0.0, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_5m_224', pretrained, **model_kwargs) @register_model def tiny_vit_11m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[64, 128, 256, 448], depths=[2, 2, 6, 2], num_heads=[2, 4, 8, 14], window_sizes=[7, 7, 14, 7], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_11m_224', pretrained, **model_kwargs) @register_model def tiny_vit_21m_224(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[7, 7, 14, 7], drop_path_rate=0.2, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_224', pretrained, **model_kwargs) @register_model def tiny_vit_21m_384(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[12, 12, 24, 12], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_384', pretrained, **model_kwargs) @register_model def tiny_vit_21m_512(pretrained=False, **kwargs): model_kwargs = dict( embed_dims=[96, 192, 384, 576], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 18], window_sizes=[16, 16, 32, 16], drop_path_rate=0.1, ) model_kwargs.update(kwargs) return _create_tiny_vit('tiny_vit_21m_512', pretrained, **model_kwargs)
pytorch-image-models/timm/models/tiny_vit.py/0
{ "file_path": "pytorch-image-models/timm/models/tiny_vit.py", "repo_id": "pytorch-image-models", "token_count": 12466 }
from .adabelief import AdaBelief from .adafactor import Adafactor from .adafactor_bv import AdafactorBigVision from .adahessian import Adahessian from .adamp import AdamP from .adamw import AdamWLegacy from .adan import Adan from .adopt import Adopt from .lamb import Lamb from .laprop import LaProp from .lars import Lars from .lion import Lion from .lookahead import Lookahead from .madgrad import MADGRAD from .mars import Mars from .nadam import NAdamLegacy from .nadamw import NAdamW from .nvnovograd import NvNovoGrad from .radam import RAdamLegacy from .rmsprop_tf import RMSpropTF from .sgdp import SGDP from .sgdw import SGDW # bring common torch.optim Optimizers into timm.optim namespace for consistency from torch.optim import Adadelta, Adagrad, Adamax, Adam, AdamW, RMSprop, SGD try: # in case any very old torch versions being used from torch.optim import NAdam, RAdam except ImportError: pass from ._optim_factory import list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo, OptimizerRegistry, \ create_optimizer_v2, create_optimizer, optimizer_kwargs from ._param_groups import param_groups_layer_decay, param_groups_weight_decay, auto_group_layers
pytorch-image-models/timm/optim/__init__.py/0
{ "file_path": "pytorch-image-models/timm/optim/__init__.py", "repo_id": "pytorch-image-models", "token_count": 385 }
""" Lion Optimizer Paper: `Symbolic Discovery of Optimization Algorithms` - https://arxiv.org/abs/2302.06675 Original Impl: https://github.com/google/automl/tree/master/lion """ # Copyright 2023 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import List, Optional, Tuple import torch from torch.optim.optimizer import Optimizer from ._types import ParamsT class Lion(Optimizer): r"""Implements Lion algorithm.""" def __init__( self, params: ParamsT, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, caution: bool = False, maximize: bool = False, foreach: Optional[bool] = None, ): """Initialize the hyperparameters. Args: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate betas: coefficients used for computing running averages of gradient and its square weight_decay: weight decay coefficient caution: apply caution """ if not 0.0 <= lr: raise ValueError('Invalid learning rate: {}'.format(lr)) if not 0.0 <= betas[0] < 1.0: raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) defaults = dict( lr=lr, betas=betas, weight_decay=weight_decay, caution=caution, foreach=foreach, maximize=maximize, ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('caution', False) group.setdefault('maximize', False) group.setdefault('foreach', None) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure: A closure that reevaluates the model and returns the loss. Returns: the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('Lion does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) lion( params_with_grad, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], caution=group['caution'], maximize=group['maximize'], foreach=group['foreach'], ) return loss def lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim maximize: bool = False, foreach: bool = None, *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, ): r"""Functional API that performs Lion algorithm computation. """ if foreach is None: try: # cannot do foreach if this overload doesn't exist when caution enabled foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() except: foreach = False if foreach and torch.jit.is_scripting(): raise RuntimeError('torch.jit.script not supported with foreach optimizers') if foreach and not torch.jit.is_scripting(): func = _multi_tensor_lion else: func = _single_tensor_lion func( params, grads, exp_avgs, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, caution=caution, maximize=maximize, ) def _single_tensor_lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, maximize: bool, ): for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] if torch.is_complex(param): grad = torch.view_as_real(grad) exp_avg = torch.view_as_real(exp_avg) param = torch.view_as_real(param) # Perform stepweight decay param.mul_(1 - lr * weight_decay) # Weight update update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1).sign_() if caution: # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 mask = (update * grad > 0).to(grad.dtype) mask.div_(mask.mean().clamp_(min=1e-3)) update.mul_(mask) param.add_(update, alpha=-lr) # Decay the momentum running average coefficient exp_avg.lerp_(grad, 1 - beta2) def _multi_tensor_lion( params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, caution: bool, maximize: bool, ): if len(params) == 0: return if maximize: grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment] grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads] exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs] params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params] # Perform stepweight decay torch._foreach_mul_(params, 1 - lr * weight_decay) # Weight update updates = torch._foreach_mul(exp_avgs, beta1) torch._foreach_add_(updates, grads, alpha=1 - beta1) updates = [u.sign_() for u in updates] if caution: # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085 masks = torch._foreach_mul(updates, grads) masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] mask_scale = [m.mean() for m in masks] torch._foreach_maximum_(mask_scale, 1e-3) torch._foreach_div_(masks, mask_scale) torch._foreach_mul_(updates, masks) torch._foreach_add_(params, updates, alpha=-lr) # Decay the momentum running average coefficient torch._foreach_mul_(exp_avgs, beta2) torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2)
pytorch-image-models/timm/optim/lion.py/0
{ "file_path": "pytorch-image-models/timm/optim/lion.py", "repo_id": "pytorch-image-models", "token_count": 3736 }
""" Plateau Scheduler Adapts PyTorch plateau scheduler and allows application of noise, warmup. Hacked together by / Copyright 2020 Ross Wightman """ import torch from typing import List from .scheduler import Scheduler class PlateauLRScheduler(Scheduler): """Decay the LR by a factor every time the validation loss plateaus.""" def __init__( self, optimizer, decay_rate=0.1, patience_t=10, verbose=True, threshold=1e-4, cooldown_t=0, warmup_t=0, warmup_lr_init=0, lr_min=0, mode='max', noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize=True, ): super().__init__( optimizer, 'lr', noise_range_t=noise_range_t, noise_type=noise_type, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize, ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, patience=patience_t, factor=decay_rate, verbose=verbose, threshold=threshold, cooldown=cooldown_t, mode=mode, min_lr=lr_min ) self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] self.restore_lr = None def state_dict(self): return { 'best': self.lr_scheduler.best, 'last_epoch': self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): self.lr_scheduler.best = state_dict['best'] if 'last_epoch' in state_dict: self.lr_scheduler.last_epoch = state_dict['last_epoch'] # override the base class step fn completely def step(self, epoch, metric=None): if epoch <= self.warmup_t: lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps] super().update_groups(lrs) else: if self.restore_lr is not None: # restore actual LR from before our last noise perturbation before stepping base for i, param_group in enumerate(self.optimizer.param_groups): param_group['lr'] = self.restore_lr[i] self.restore_lr = None self.lr_scheduler.step(metric, epoch) # step the base scheduler if self._is_apply_noise(epoch): self._apply_noise(epoch) def step_update(self, num_updates: int, metric: float = None): return None def _apply_noise(self, epoch): noise = self._calculate_noise(epoch) # apply the noise on top of previous LR, cache the old value so we can restore for normal # stepping of base scheduler restore_lr = [] for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) restore_lr.append(old_lr) new_lr = old_lr + old_lr * noise param_group['lr'] = new_lr self.restore_lr = restore_lr def _get_lr(self, t: int) -> List[float]: assert False, 'should not be called as step is overridden'
pytorch-image-models/timm/scheduler/plateau_lr.py/0
{ "file_path": "pytorch-image-models/timm/scheduler/plateau_lr.py", "repo_id": "pytorch-image-models", "token_count": 1807 }
""" Eval metrics and related Hacked together by / Copyright 2020 Ross Wightman """ class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = min(max(topk), output.size()[1]) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk]
pytorch-image-models/timm/utils/metrics.py/0
{ "file_path": "pytorch-image-models/timm/utils/metrics.py", "repo_id": "pytorch-image-models", "token_count": 374 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # `smolagents` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/license_to_call.png" width=100%/> </div> This library is the simplest framework out there to build powerful agents! By the way, wtf are "agents"? We provide our definition [in this page](conceptual_guides/intro_agents), where you'll also find tips for when to use them or not (spoilers: you'll often be better off without agents). This library offers: ✨ **Simplicity**: the logic for agents fits in ~thousand lines of code. We kept abstractions to their minimal shape above raw code! 🌐 **Support for any LLM**: it supports models hosted on the Hub loaded in their `transformers` version or through our inference API and Inference providers, but also models from OpenAI, Anthropic... it's really easy to power an agent with any LLM. 🧑‍💻 **First-class support for Code Agents**, i.e. agents that write their actions in code (as opposed to "agents being used to write code"), [read more here](tutorials/secure_code_execution). 🤗 **Hub integrations**: you can share and load Gradio Spaces as tools to/from the Hub, and more is to come! <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./guided_tour" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Guided tour</div> <p class="text-gray-700">Learn the basics and become familiar with using Agents. Start here if you are using Agents for the first time!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./examples/text_to_sql" ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div> <p class="text-gray-700">Practical guides to help you achieve a specific goal: create an agent to generate and test SQL queries!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual_guides/intro_agents" ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div> <p class="text-gray-700">High-level explanations for building a better understanding of important topics.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/building_good_agents" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div> <p class="text-gray-700">Horizontal tutorials that cover important aspects of building agents.</p> </a> </div> </div>
smolagents/docs/source/en/index.md/0
{ "file_path": "smolagents/docs/source/en/index.md", "repo_id": "smolagents", "token_count": 1250 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # `smolagents` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/license_to_call.png" width=100%/> </div> यह लाइब्रेरी पावरफुल एजेंट्स बनाने के लिए सबसे सरल फ्रेमवर्क है! वैसे, "एजेंट्स" हैं क्या? हम अपनी परिभाषा [इस पेज पर](conceptual_guides/intro_agents) प्रदान करते हैं, जहाँ आपको यह भी पता चलेगा कि इन्हें कब उपयोग करें या न करें (स्पॉइलर: आप अक्सर एजेंट्स के बिना बेहतर काम कर सकते हैं)। यह लाइब्रेरी प्रदान करती है: ✨ **सरलता**: Agents का लॉजिक लगभग एक हजार लाइन्स ऑफ़ कोड में समाहित है। हमने रॉ कोड के ऊपर एब्स्ट्रैक्शन को न्यूनतम आकार में रखा है! 🌐 **सभी LLM के लिए सपोर्ट**: यह हब पर होस्ट किए गए मॉडल्स को उनके `transformers` वर्जन में या हमारे इन्फरेंस API के माध्यम से सपोर्ट करता है, साथ ही OpenAI, Anthropic से भी... किसी भी LLM से एजेंट को पावर करना वास्तव में आसान है। 🧑‍💻 **कोड Agents के लिए फर्स्ट-क्लास सपोर्ट**, यानी ऐसे एजेंट्स जो अपनी एक्शन्स को कोड में लिखते हैं (कोड लिखने के लिए उपयोग किए जाने वाले एजेंट्स के विपरीत), [यहाँ और पढ़ें](tutorials/secure_code_execution)। 🤗 **हब इंटीग्रेशन**: आप टूल्स को हब पर शेयर और लोड कर सकते हैं, और आगे और भी बहुत कुछ आने वाला है! ! <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./guided_tour" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">गाइडेड टूर</div> <p class="text-gray-700">बेसिक्स सीखें और एजेंट्स का उपयोग करने में परिचित हों। यदि आप पहली बार एजेंट्स का उपयोग कर रहे हैं तो यहाँ से शुरू करें!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./examples/text_to_sql" ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">हाउ-टू गाइड्स</div> <p class="text-gray-700">एक विशिष्ट लक्ष्य प्राप्त करने में मदद के लिए गाइड: SQL क्वेरी जनरेट और टेस्ट करने के लिए एजेंट बनाएं!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual_guides/intro_agents" ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">कॉन्सेप्चुअल गाइड्स</div> <p class="text-gray-700">महत्वपूर्ण विषयों की बेहतर समझ बनाने के लिए उच्च-स्तरीय व्याख्याएं।</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/building_good_agents" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">ट्यूटोरियल्स</div> <p class="text-gray-700">एजेंट्स बनाने के महत्वपूर्ण पहलुओं को कवर करने वाले क्ट्यूटोरियल्स।</p> </a> </div> </div>
smolagents/docs/source/hi/index.md/0
{ "file_path": "smolagents/docs/source/hi/index.md", "repo_id": "smolagents", "token_count": 2912 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Agents <Tip warning={true}> Smolagents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change. </Tip> To learn more about agents and tools make sure to read the [introductory guide](../index). This page contains the API docs for the underlying classes. ## Agents Our agents inherit from [`MultiStepAgent`], which means they can act in multiple steps, each step consisting of one thought, then one tool call and execution. Read more in [this conceptual guide](../conceptual_guides/react). We provide two types of agents, based on the main [`Agent`] class. - [`CodeAgent`] is the default agent, it writes its tool calls in Python code. - [`ToolCallingAgent`] writes its tool calls in JSON. Both require arguments `model` and list of tools `tools` at initialization. ### Classes of agents [[autodoc]] MultiStepAgent [[autodoc]] CodeAgent [[autodoc]] ToolCallingAgent ### ManagedAgent _This class is deprecated since 1.8.0: now you just need to pass name and description attributes to an agent to use it as a ManagedAgent._ ### stream_to_gradio [[autodoc]] stream_to_gradio ### GradioUI > [!TIP] > You must have `gradio` installed to use the UI. Please run `pip install smolagents[gradio]` if it's not the case. [[autodoc]] GradioUI ## Models You're free to create and use your own models to power your agent. You could use any `model` callable for your agent, as long as: 1. It follows the [messages format](./chat_templating) (`List[Dict[str, str]]`) for its input `messages`, and it returns a `str`. 2. It stops generating outputs *before* the sequences passed in the argument `stop_sequences` For defining your LLM, you can make a `custom_model` method which accepts a list of [messages](./chat_templating) and returns text. This callable also needs to accept a `stop_sequences` argument that indicates when to stop generating. ```python from huggingface_hub import login, InferenceClient login("<YOUR_HUGGINGFACEHUB_API_TOKEN>") model_id = "meta-llama/Llama-3.3-70B-Instruct" client = InferenceClient(model=model_id) def custom_model(messages, stop_sequences=["Task"]) -> str: response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000) answer = response.choices[0].message.content return answer ``` Additionally, `custom_model` can also take a `grammar` argument. In the case where you specify a `grammar` upon agent initialization, this argument will be passed to the calls to model, with the `grammar` that you defined upon initialization, to allow [constrained generation](https://huggingface.co/docs/text-generation-inference/conceptual/guidance) in order to force properly-formatted agent outputs. ### TransformersModel For convenience, we have added a `TransformersModel` that implements the points above by building a local `transformers` pipeline for the model_id given at initialization. ```python from smolagents import TransformersModel model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct") print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])) ``` ```text >>> What a ``` > [!TIP] > You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case. [[autodoc]] TransformersModel ### HfApiModel The `HfApiModel` wraps an [HF Inference API](https://huggingface.co/docs/api-inference/index) client for the execution of the LLM. ```python from smolagents import HfApiModel messages = [ {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "No need to help, take it easy."}, ] model = HfApiModel() print(model(messages)) ``` ```text >>> Of course! If you change your mind, feel free to reach out. Take care! ``` [[autodoc]] HfApiModel ### LiteLLMModel The `LiteLLMModel` leverages [LiteLLM](https://www.litellm.ai/) to support 100+ LLMs from various providers. You can pass kwargs upon model initialization that will then be used whenever using the model, for instance below we pass `temperature`. ```python from smolagents import LiteLLMModel messages = [ {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "No need to help, take it easy."}, ] model = LiteLLMModel("anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10) print(model(messages)) ``` [[autodoc]] LiteLLMModel
smolagents/docs/source/zh/reference/agents.md/0
{ "file_path": "smolagents/docs/source/zh/reference/agents.md", "repo_id": "smolagents", "token_count": 1598 }
import argparse import json import os import threading from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from pathlib import Path from typing import List import datasets import pandas as pd from dotenv import load_dotenv from huggingface_hub import login from scripts.reformulator import prepare_response from scripts.run_agents import ( get_single_file_description, get_zip_description, ) from scripts.text_inspector_tool import TextInspectorTool from scripts.text_web_browser import ( ArchiveSearchTool, FinderTool, FindNextTool, PageDownTool, PageUpTool, SearchInformationTool, SimpleTextBrowser, VisitTool, ) from scripts.visual_qa import visualizer from tqdm import tqdm from smolagents import ( CodeAgent, # HfApiModel, LiteLLMModel, Model, ToolCallingAgent, ) AUTHORIZED_IMPORTS = [ "requests", "zipfile", "os", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "io", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", ] load_dotenv(override=True) login(os.getenv("HF_TOKEN")) append_answer_lock = threading.Lock() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--concurrency", type=int, default=8) parser.add_argument("--model-id", type=str, default="o1") parser.add_argument("--api-base", type=str, default=None) parser.add_argument("--run-name", type=str, required=True) return parser.parse_args() ### IMPORTANT: EVALUATION SWITCHES print("Make sure you deactivated Tailscale VPN, else some URLs will be blocked!") USE_OPEN_MODELS = False SET = "validation" custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} ### LOAD EVALUATION DATASET eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET] eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"}) def preprocess_file_paths(row): if len(row["file_name"]) > 0: row["file_name"] = f"data/gaia/{SET}/" + row["file_name"] return row eval_ds = eval_ds.map(preprocess_file_paths) eval_df = pd.DataFrame(eval_ds) print("Loaded evaluation dataset:") print(eval_df["task"].value_counts()) user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" BROWSER_CONFIG = { "viewport_size": 1024 * 5, "downloads_folder": "downloads_folder", "request_kwargs": { "headers": {"User-Agent": user_agent}, "timeout": 300, }, "serpapi_key": os.getenv("SERPAPI_API_KEY"), } os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) def create_agent_hierarchy(model: Model): text_limit = 100000 ti_tool = TextInspectorTool(model, text_limit) browser = SimpleTextBrowser(**BROWSER_CONFIG) WEB_TOOLS = [ SearchInformationTool(browser), VisitTool(browser), PageUpTool(browser), PageDownTool(browser), FinderTool(browser), FindNextTool(browser), ArchiveSearchTool(browser), TextInspectorTool(model, text_limit), ] text_webbrowser_agent = ToolCallingAgent( model=model, tools=WEB_TOOLS, max_steps=20, verbosity_level=2, planning_interval=4, name="search_agent", description="""A team member that will search the internet to answer your question. Ask him for all your questions that require browsing the web. Provide him as much context as possible, in particular if you need to search on a specific timeframe! And don't hesitate to provide him with a complex search task, like finding a difference between two webpages. Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords. """, provide_run_summary=True, ) text_webbrowser_agent.prompt_templates["managed_agent"]["task"] += """You can navigate to .txt online files. If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it. Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information.""" manager_agent = CodeAgent( model=model, tools=[visualizer, ti_tool], max_steps=12, verbosity_level=2, additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=4, managed_agents=[text_webbrowser_agent], ) return manager_agent def append_answer(entry: dict, jsonl_file: str) -> None: jsonl_file = Path(jsonl_file) jsonl_file.parent.mkdir(parents=True, exist_ok=True) with append_answer_lock, open(jsonl_file, "a", encoding="utf-8") as fp: fp.write(json.dumps(entry) + "\n") assert os.path.exists(jsonl_file), "File not found!" print("Answer exported to file:", jsonl_file.resolve()) def answer_single_question(example, model_id, answers_file, visual_inspection_tool): model = LiteLLMModel( model_id, custom_role_conversions=custom_role_conversions, max_completion_tokens=8192, reasoning_effort="high", ) # model = HfApiModel("Qwen/Qwen2.5-72B-Instruct", provider="together") # "https://lnxyuvj02bpe6mam.us-east-1.aws.endpoints.huggingface.cloud", # custom_role_conversions=custom_role_conversions, # # provider="sambanova", # max_tokens=8096, # ) document_inspection_tool = TextInspectorTool(model, 100000) agent = create_agent_hierarchy(model) augmented_question = """You have one question to answer. It is paramount that you provide a correct answer. Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded. Run verification steps if that's needed, you must make sure you find the correct answer! Here is the task: """ + example["question"] if example["file_name"]: if ".zip" in example["file_name"]: prompt_use_files = "\n\nTo solve the task above, you will have to use these attached files:\n" prompt_use_files += get_zip_description( example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool ) else: prompt_use_files = "\n\nTo solve the task above, you will have to use this attached file:" prompt_use_files += get_single_file_description( example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool ) augmented_question += prompt_use_files start_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") try: # Run agent 🚀 final_result = agent.run(augmented_question) agent_memory = agent.write_memory_to_messages(summary_mode=True) final_result = prepare_response(augmented_question, agent_memory, reformulation_model=model) output = str(final_result) for memory_step in agent.memory.steps: memory_step.model_input_messages = None intermediate_steps = [str(step) for step in agent.memory.steps] # Check for parsing errors which indicate the LLM failed to follow the required format parsing_error = True if any(["AgentParsingError" in step for step in intermediate_steps]) else False # check if iteration limit exceeded iteration_limit_exceeded = True if "Agent stopped due to iteration limit or time limit." in output else False raised_exception = False except Exception as e: print("Error on ", augmented_question, e) output = None intermediate_steps = [] parsing_error = False iteration_limit_exceeded = False exception = e raised_exception = True end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") annotated_example = { "agent_name": model.model_id, "question": example["question"], "augmented_question": augmented_question, "prediction": output, "intermediate_steps": intermediate_steps, "parsing_error": parsing_error, "iteration_limit_exceeded": iteration_limit_exceeded, "agent_error": str(exception) if raised_exception else None, "start_time": start_time, "end_time": end_time, "task": example["task"], "task_id": example["task_id"], "true_answer": example["true_answer"], } append_answer(annotated_example, answers_file) def get_examples_to_answer(answers_file, eval_ds) -> List[dict]: print(f"Loading answers from {answers_file}...") try: done_questions = pd.read_json(answers_file, lines=True)["question"].tolist() print(f"Found {len(done_questions)} previous results!") except Exception as e: print("Error when loading records: ", e) print("No usable records! ▶️ Starting new.") done_questions = [] return [line for line in eval_ds.to_list() if line["question"] not in done_questions] def main(): args = parse_args() print(f"Starting run with arguments: {args}") answers_file = f"output/{SET}/{args.run_name}.jsonl" tasks_to_run = get_examples_to_answer(answers_file, eval_ds) with ThreadPoolExecutor(max_workers=args.concurrency) as exe: futures = [ exe.submit(answer_single_question, example, args.model_id, answers_file, visualizer) for example in tasks_to_run ] for f in tqdm(as_completed(futures), total=len(tasks_to_run), desc="Processing tasks"): f.result() # for example in tasks_to_run: # answer_single_question(example, args.model_id, answers_file, visualizer) print("All tasks processed.") if __name__ == "__main__": main()
smolagents/examples/open_deep_research/run_gaia.py/0
{ "file_path": "smolagents/examples/open_deep_research/run_gaia.py", "repo_id": "smolagents", "token_count": 3998 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pathlib import tempfile import uuid from io import BytesIO import numpy as np import requests from huggingface_hub.utils import is_torch_available from PIL import Image from PIL.Image import Image as ImageType from .utils import _is_package_available logger = logging.getLogger(__name__) class AgentType: """ Abstract class to be reimplemented to define types that can be returned by agents. These objects serve three purposes: - They behave as they were the type they're meant to be, e.g., a string for text, a PIL.Image for images - They can be stringified: str(object) in order to return a string defining the object - They should be displayed correctly in ipython notebooks/colab/jupyter """ def __init__(self, value): self._value = value def __str__(self): return self.to_string() def to_raw(self): logger.error( "This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable" ) return self._value def to_string(self) -> str: logger.error( "This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable" ) return str(self._value) class AgentText(AgentType, str): """ Text type returned by the agent. Behaves as a string. """ def to_raw(self): return self._value def to_string(self): return str(self._value) class AgentImage(AgentType, ImageType): """ Image type returned by the agent. Behaves as a PIL.Image. """ def __init__(self, value): AgentType.__init__(self, value) ImageType.__init__(self) self._path = None self._raw = None self._tensor = None if isinstance(value, AgentImage): self._raw, self._path, self._tensor = value._raw, value._path, value._tensor elif isinstance(value, ImageType): self._raw = value elif isinstance(value, bytes): self._raw = Image.open(BytesIO(value)) elif isinstance(value, (str, pathlib.Path)): self._path = value elif is_torch_available(): import torch if isinstance(value, torch.Tensor): self._tensor = value if isinstance(value, np.ndarray): self._tensor = torch.from_numpy(value) if self._path is None and self._raw is None and self._tensor is None: raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}") def _ipython_display_(self, include=None, exclude=None): """ Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...) """ from IPython.display import Image, display display(Image(self.to_string())) def to_raw(self): """ Returns the "raw" version of that object. In the case of an AgentImage, it is a PIL.Image. """ if self._raw is not None: return self._raw if self._path is not None: self._raw = Image.open(self._path) return self._raw if self._tensor is not None: array = self._tensor.cpu().detach().numpy() return Image.fromarray((255 - array * 255).astype(np.uint8)) def to_string(self): """ Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized version of the image. """ if self._path is not None: return self._path if self._raw is not None: directory = tempfile.mkdtemp() self._path = os.path.join(directory, str(uuid.uuid4()) + ".png") self._raw.save(self._path, format="png") return self._path if self._tensor is not None: array = self._tensor.cpu().detach().numpy() # There is likely simpler than load into image into save img = Image.fromarray((255 - array * 255).astype(np.uint8)) directory = tempfile.mkdtemp() self._path = os.path.join(directory, str(uuid.uuid4()) + ".png") img.save(self._path, format="png") return self._path def save(self, output_bytes, format: str = None, **params): """ Saves the image to a file. Args: output_bytes (bytes): The output bytes to save the image to. format (str): The format to use for the output image. The format is the same as in PIL.Image.save. **params: Additional parameters to pass to PIL.Image.save. """ img = self.to_raw() img.save(output_bytes, format=format, **params) class AgentAudio(AgentType, str): """ Audio type returned by the agent. """ def __init__(self, value, samplerate=16_000): if not _is_package_available("soundfile") or not is_torch_available(): raise ModuleNotFoundError( "Please install 'audio' extra to use AgentAudio: `pip install 'smolagents[audio]'`" ) import torch super().__init__(value) self._path = None self._tensor = None self.samplerate = samplerate if isinstance(value, (str, pathlib.Path)): self._path = value elif is_torch_available() and isinstance(value, torch.Tensor): self._tensor = value elif isinstance(value, tuple): self.samplerate = value[0] if isinstance(value[1], np.ndarray): self._tensor = torch.from_numpy(value[1]) else: self._tensor = torch.tensor(value[1]) else: raise ValueError(f"Unsupported audio type: {type(value)}") def _ipython_display_(self, include=None, exclude=None): """ Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...) """ from IPython.display import Audio, display display(Audio(self.to_string(), rate=self.samplerate)) def to_raw(self): """ Returns the "raw" version of that object. It is a `torch.Tensor` object. """ import soundfile as sf if self._tensor is not None: return self._tensor import torch if self._path is not None: if "://" in str(self._path): response = requests.get(self._path) response.raise_for_status() tensor, self.samplerate = sf.read(BytesIO(response.content)) else: tensor, self.samplerate = sf.read(self._path) self._tensor = torch.tensor(tensor) return self._tensor def to_string(self): """ Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized version of the audio. """ import soundfile as sf if self._path is not None: return self._path if self._tensor is not None: directory = tempfile.mkdtemp() self._path = os.path.join(directory, str(uuid.uuid4()) + ".wav") sf.write(self._path, self._tensor, samplerate=self.samplerate) return self._path _AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio} def handle_agent_input_types(*args, **kwargs): args = [(arg.to_raw() if isinstance(arg, AgentType) else arg) for arg in args] kwargs = {k: (v.to_raw() if isinstance(v, AgentType) else v) for k, v in kwargs.items()} return args, kwargs def handle_agent_output_types(output, output_type=None): if output_type in _AGENT_TYPE_MAPPING: # If the class has defined outputs, we can map directly according to the class definition decoded_outputs = _AGENT_TYPE_MAPPING[output_type](output) return decoded_outputs # If the class does not have defined output, then we map according to the type if isinstance(output, str): return AgentText(output) if isinstance(output, ImageType): return AgentImage(output) if is_torch_available(): import torch if isinstance(output, torch.Tensor): return AgentAudio(output) return output __all__ = ["AgentType", "AgentImage", "AgentText", "AgentAudio"]
smolagents/src/smolagents/agent_types.py/0
{ "file_path": "smolagents/src/smolagents/agent_types.py", "repo_id": "smolagents", "token_count": 3712 }
<div align="center"> <a href="https://www.youtube.com/watch?v=jlMAX2Oaht0"> <img width=560 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png"> </a> # Text Generation Inference <a href="https://github.com/huggingface/text-generation-inference"> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social"> </a> <a href="https://huggingface.github.io/text-generation-inference"> <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational"> </a> A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co) to power Hugging Chat, the Inference API and Inference Endpoint. </div> ## Table of contents - [Get Started](#get-started) - [Docker](#docker) - [API documentation](#api-documentation) - [Using a private or gated model](#using-a-private-or-gated-model) - [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm) - [Distributed Tracing](#distributed-tracing) - [Architecture](#architecture) - [Local install](#local-install) - [Local install (Nix)](#local-install-nix) - [Optimized architectures](#optimized-architectures) - [Run locally](#run-locally) - [Run](#run) - [Quantization](#quantization) - [Develop](#develop) - [Testing](#testing) Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as: - Simple launcher to serve most popular LLMs - Production ready (distributed tracing with Open Telemetry, Prometheus metrics) - Tensor Parallelism for faster inference on multiple GPUs - Token streaming using Server-Sent Events (SSE) - Continuous batching of incoming requests for increased total throughput - [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API - Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures - Quantization with : - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - [GPT-Q](https://arxiv.org/abs/2210.17323) - [EETQ](https://github.com/NetEase-FuXi/EETQ) - [AWQ](https://github.com/casper-hansen/AutoAWQ) - [Marlin](https://github.com/IST-DASLab/marlin) - [fp8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) - [Safetensors](https://github.com/huggingface/safetensors) weight loading - Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) - Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor)) - Stop sequences - Log probabilities - [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency - [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs.. - Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output - Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance ### Hardware support - [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) - [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm) - [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference) - [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475) - [Gaudi](https://github.com/huggingface/tgi-gaudi) - [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving) ## Get Started ### Docker For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container: ```shell model=HuggingFaceH4/zephyr-7b-beta # share a volume with the Docker container to avoid downloading weights every run volume=$PWD/data docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model ``` And then you can make requests like ```bash curl 127.0.0.1:8080/generate_stream \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses. ```bash curl localhost:8080/v1/chat/completions \ -X POST \ -d '{ "model": "tgi", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is deep learning?" } ], "stream": true, "max_tokens": 20 }' \ -H 'Content-Type: application/json' ``` **Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar. **Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.1.0-rocm --model-id $model` instead of the command above. To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli): ``` text-generation-launcher --help ``` ### API documentation You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route. The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference). ### Using a private or gated model You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by `text-generation-inference`. This allows you to gain access to protected resources. For example, if you want to serve the gated Llama V2 model variants: 1. Go to https://huggingface.co/settings/tokens 2. Copy your CLI READ token 3. Export `HF_TOKEN=<your CLI READ token>` or with Docker: ```shell model=meta-llama/Meta-Llama-3.1-8B-Instruct volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run token=<your cli READ token> docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:3.1.0 --model-id $model ``` ### A note on Shared Memory (shm) [`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by `PyTorch` to do distributed training/inference. `text-generation-inference` makes use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models. In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if peer-to-peer using NVLink or PCI is not possible. To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command. If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by creating a volume with: ```yaml - name: shm emptyDir: medium: Memory sizeLimit: 1Gi ``` and mounting it to `/dev/shm`. Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that this will impact performance. ### Distributed Tracing `text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be overridden with the `--otlp-service-name` argument ### Architecture ![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png) Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024)](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi) ### Local install You can also opt to install `text-generation-inference` locally. First clone the repository and change directory into it: ```shell git clone https://github.com/huggingface/text-generation-inference cd text-generation-inference ``` Then [install Rust](https://rustup.rs/) and create a Python virtual environment with at least Python 3.9, e.g. using `conda` or `python venv`: ```shell curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh #using conda conda create -n text-generation-inference python=3.11 conda activate text-generation-inference #using python venv python3 -m venv .venv source .venv/bin/activate ``` You may also need to install Protoc. On Linux: ```shell PROTOC_ZIP=protoc-21.12-linux-x86_64.zip curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' rm -f $PROTOC_ZIP ``` On MacOS, using Homebrew: ```shell brew install protobuf ``` Then run: ```shell BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 ``` **Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run: ```shell sudo apt-get install libssl-dev gcc -y ``` ### Local install (Nix) Another option is to install `text-generation-inference` locally using [Nix](https://nixos.org). Currently, we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can be pulled from a binary cache, removing the need to build them locally. First follow the instructions to [install Cachix and enable the TGI cache](https://app.cachix.org/cache/text-generation-inference). Setting up the cache is important, otherwise Nix will build many of the dependencies locally, which can take hours. After that you can run TGI with `nix run`: ```shell nix run . -- --model-id meta-llama/Llama-3.1-8B-Instruct ``` **Note:** when you are using Nix on a non-NixOS system, you have to [make some symlinks](https://danieldk.eu/Nix-CUDA-on-non-NixOS-systems#make-runopengl-driverlib-and-symlink-the-driver-library) to make the CUDA driver libraries visible to Nix packages. For TGI development, you can use the `impure` dev shell: ```shell nix develop .#impure # Only needed the first time the devshell is started or after updating the protobuf. ( cd server mkdir text_generation_server/pb || true python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \ --grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \; touch text_generation_server/pb/__init__.py ) ``` All development dependencies (cargo, Python, Torch), etc. are available in this dev shell. ## Optimized architectures TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models). Other architectures are supported on a best-effort basis using: `AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")` or `AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")` ## Run locally ### Run ```shell text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 ``` ### Quantization You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement: ```shell text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize ``` 4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`. Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization). ## Develop ```shell make server-dev make router-dev ``` ## Testing ```shell # python make python-server-tests make python-client-tests # or both server and client tests make python-tests # rust cargo tests make rust-tests # integration tests make integration-tests ```
text-generation-inference/README.md/0
{ "file_path": "text-generation-inference/README.md", "repo_id": "text-generation-inference", "token_count": 4564 }
use async_trait::async_trait; use cxx::UniquePtr; use hashbrown::HashMap; use std::hint; use std::ops::Deref; use std::path::Path; use tokenizers::Tokenizer; use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender}; use tokio::sync::TryAcquireError; use tokio::task::spawn_blocking; use tokio::time::Instant; use tokio_stream::wrappers::UnboundedReceiverStream; use tracing::{debug, error, warn}; use text_generation_router::infer::InferError::{GenerationError, ValidationError}; use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse}; use text_generation_router::validation::ValidationError::{ EmptyInput, Grammar, TopNTokensDisabled, UnsupportedModality, }; use text_generation_router::validation::{Chunk, ValidGenerateRequest}; use text_generation_router::Token; use crate::errors::TensorRtLlmBackendError; use crate::ffi::{ create_backend_from_engine_folder, FinishReason, GenerationStep, TensorRtLlmBackendImpl, }; use crate::utils::first_line; type InferResult<T> = Result<T, InferError>; /// Wrap the requests along with the channel used to stream back to the client the decoded tokens struct GenerationContext { request: ValidGenerateRequest, streamer: UnboundedSender<InferResult<InferStreamResponse>>, tokens: Vec<u32>, start: Option<Instant>, queued: Instant, } #[derive(Debug, Copy, Clone)] struct DecodedToken { id: u32, log_prob: f32, is_final: bool, finish_reason: FinishReason, } impl<'step> TryFrom<&'step GenerationStep> for DecodedToken { type Error = InferError; fn try_from(step: &'step GenerationStep) -> Result<Self, Self::Error> { if !step.has_error { Ok(Self { id: step.token_id, log_prob: step.log_prob, is_final: step.is_final, finish_reason: step.finish_reason, }) } else { Err(GenerationError(step.error_msg.clone())) } } } fn executor_status_looper( max_inflight_requests: usize, tokenizer: Tokenizer, mut backend: UniquePtr<TensorRtLlmBackendImpl>, mut backlog: UnboundedReceiver<GenerationContext>, ) { // Track the tuple (request_id, stream) for each request let mut in_flights = HashMap::<u64, GenerationContext>::with_capacity(max_inflight_requests * 2); 'scheduler: loop { // Is there any request pending to be scheduled? let awaiting_requests = backlog.len(); for _ in 0..awaiting_requests { // Retrieve all the requests if let Some(ctx) = backlog.blocking_recv() { // Submit all the request to the executor and move the context to the in-flight tracker let request = &ctx.request; let generation_params = &request.parameters; let stopping_params = &request.stopping_parameters; let input_ids = request.input_ids.as_deref(); // Submit to the TensorRT-LLM executor for scheduling match backend.pin_mut().submit( &input_ids.unwrap(), // This is checked beforehand in validate() stopping_params.max_new_tokens, generation_params.top_k, generation_params.top_p, generation_params.temperature, generation_params.repetition_penalty, generation_params.frequency_penalty, generation_params.seed, ) { Ok(request_id) => { // Insert the context linked to the generated request id in the tracker debug!("[in-flight] Added {}", request_id); in_flights.insert(request_id, ctx); } Err(e) => { // Return to the caller let what = e.to_string(); error!(error = what.as_str(), "Failed to schedule request"); let err = Err(InferError::Overloaded(TryAcquireError::NoPermits)); if let Err(_) = ctx.streamer.send(err) { error!("Failed to send back error to the client"); } } }; } else { break 'scheduler; } } if backend.num_tokens_ready() > 0 { let mut backend = backend.pin_mut(); match backend.as_mut().pull_tokens() { Ok(responses) => { // Iterate through all the decoded token for step in responses.deref() { if let Some(ctx) = in_flights.get_mut(&step.request_id) { // Update the starting timestamp if not set // This value might not be the actual real starting time of the request // on the executor side - Need to expose more info from the executor to // retrieve this value // TODO : Expose actual real starting time for a request on FFI layer if ctx.start.is_none() { ctx.start = Some(Instant::now()); } // Try to map the generation step to a DecodedToken let response = match DecodedToken::try_from(step) { Ok(decoded_token) => { post_process_decoded_token(&tokenizer, ctx, decoded_token) } Err(err) => Err(err), }; // Attempt to send back the response to the client if let Err(_) = ctx.streamer.send(response) { // Client has dropped, remove from tracked requests debug!( "Client dropped - removing request {} from tracked requests", step.request_id ); backend.as_mut().cancel(step.request_id); let _ = in_flights.remove(&step.request_id); } } else { warn!("Untracked request {}", step.request_id,); } } } Err(ref err) => { error!("Failed to get responses from the executor: {}.", err.what()); break 'scheduler; } } } // Hint the CPU we are spin-locking hint::spin_loop(); } } fn post_process_decoded_token( tokenizer: &Tokenizer, ctx: &mut GenerationContext, decoded_token: DecodedToken, ) -> InferResult<InferStreamResponse> { match tokenizer.decode(&[decoded_token.id], false) { Ok(text) => { let is_special = tokenizer.get_added_vocabulary().is_special_token(&text); let token = Token { id: decoded_token.id, text, logprob: decoded_token.log_prob, special: is_special, }; // Append the token to the tracked generated tokens ctx.tokens.push(token.id); // Map the correct response depending on the step is final or not let out = if !decoded_token.is_final { InferStreamResponse::Intermediate { token, top_tokens: vec![], } } else { let text = tokenizer.decode(&ctx.tokens, true); let generated_text = GeneratedText { text: text.unwrap(), generated_tokens: ctx.tokens.len() as u32, finish_reason: decoded_token.finish_reason.into(), seed: None, }; InferStreamResponse::End { token, top_tokens: vec![], generated_text, start: ctx.start.unwrap(), queued: ctx.queued, } }; Ok(out) } Err(err) => Err(GenerationError(err.to_string())), } } fn ensure_paths_exist<P: AsRef<Path>, PP: AsRef<Path>>( engine_folder: P, executor_worker_path: PP, ) -> Result<(String, String), TensorRtLlmBackendError> { // Retrieve paths as &str for the backend creation let engine_folder = engine_folder.as_ref(); let executor_worker_path = executor_worker_path.as_ref(); // Ensure the engine folder exists if !engine_folder.exists() { let err = TensorRtLlmBackendError::EngineFolderDoesntExists(engine_folder.to_path_buf()); error!("Path validation failed: {}", err,); return Err(err); } // Ensure executor worker binary exists if !executor_worker_path.exists() { let err = TensorRtLlmBackendError::ExecutorWorkerNotFound(engine_folder.to_path_buf()); error!("Path validation failed: {}", err,); return Err(err); } let engine_folder = String::from( engine_folder .to_str() .expect("Failed to convert engine_folder to valid UTF-8"), ); let executor_worker_path = String::from( executor_worker_path .to_str() .expect("Failed to convert executor_worker_path to valid UTF-8"), ); Ok((engine_folder, executor_worker_path)) } unsafe impl Send for TensorRtLlmBackendImpl {} pub struct TensorRtLlmBackendV2(UnboundedSender<GenerationContext>); impl TensorRtLlmBackendV2 { pub fn new<P: AsRef<Path> + Send, PP: AsRef<Path> + Send>( tokenizer: Tokenizer, engine_folder: P, executor_worker_path: PP, max_inflight_requests: usize, ) -> Result<Self, TensorRtLlmBackendError> { let (engine_folder, executor_worker_path) = ensure_paths_exist(engine_folder, executor_worker_path)?; // Allocate the IPC layer to communicate with the backend let (executor_sender, executor_receiver) = unbounded_channel(); // Create the FFI backend let backend = create_backend_from_engine_folder(&engine_folder, &executor_worker_path) .map_err(|e| TensorRtLlmBackendError::Runtime(first_line(e.what(), "Unknown error")))?; // Executor looper is responsible for scheduling and pulling requests state at regular interval spawn_blocking(move || { executor_status_looper(max_inflight_requests, tokenizer, backend, executor_receiver) }); Ok(TensorRtLlmBackendV2(executor_sender)) } fn validate(request: &ValidGenerateRequest) -> InferResult<()> { if request.input_ids.is_none() { return Err(ValidationError(UnsupportedModality("No token provided"))); } if request.top_n_tokens > 1 { return Err(ValidationError(TopNTokensDisabled)); } // TODO: Is it really needed? How can it be validated before? if request.parameters.grammar.is_some() { return Err(ValidationError(Grammar)); } match request.inputs.len() { 0 => Err(ValidationError(EmptyInput)), 2.. => Err(GenerationError( "TensorRT-LLM backend don't support multi-chunk".into(), )), 1 => match request.inputs.first().expect("Single item-chunk") { Chunk::Text(_) => Ok(()), Chunk::Image(_) => Err(ValidationError(UnsupportedModality("image"))), }, } } } #[async_trait] impl Backend for TensorRtLlmBackendV2 { fn schedule( &self, request: ValidGenerateRequest, ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> { Self::validate(&request)?; // Open-up the stream to send tokens let (streamer, receiver) = unbounded_channel::<InferResult<InferStreamResponse>>(); // Send the context to the executor for scheduling let queued = Instant::now(); match self.0.send(GenerationContext { request, streamer, tokens: Vec::with_capacity(256), start: None, queued, }) { Ok(_) => Ok(UnboundedReceiverStream::new(receiver)), Err(_) => Err(GenerationError( "Failed to submit request to the backend".into(), )), } } async fn health(&self, _: bool) -> bool { true } fn name(&self) -> &'static str { "TensorRT-LLM" } }
text-generation-inference/backends/trtllm/src/looper.rs/0
{ "file_path": "text-generation-inference/backends/trtllm/src/looper.rs", "repo_id": "text-generation-inference", "token_count": 6376 }
/// Text Generation Inference benchmarking tool /// /// Inspired by the great Oha app: https://github.com/hatoo/oha /// and: https://github.com/orhun/rust-tui-template use clap::Parser; use std::path::Path; use text_generation_client::v3::ShardedClient; use tokenizers::{FromPretrainedParameters, Tokenizer}; use tracing_subscriber::layer::SubscriberExt; use tracing_subscriber::util::SubscriberInitExt; use tracing_subscriber::EnvFilter; /// App Configuration #[derive(Parser, Debug)] #[clap(author, version, about, long_about = None)] struct Args { /// The name of the tokenizer (as in model_id on the huggingface hub, or local path). #[clap(short, long, env)] tokenizer_name: String, /// The revision to use for the tokenizer if on the hub. #[clap(default_value = "main", long, env)] revision: String, /// The various batch sizes to benchmark for, the idea is to get enough /// batching to start seeing increased latency, this usually means you're /// moving from memory bound (usual as BS=1) to compute bound, and this is /// a sweet spot for the maximum batch size for the model under test #[clap(short, long)] batch_size: Option<Vec<u32>>, /// This is the initial prompt sent to the text-generation-server length /// in token. Longer prompt will slow down the benchmark. Usually the /// latency grows somewhat linearly with this for the prefill step. /// /// Most importantly, the prefill step is usually not the one dominating /// your runtime, so it's ok to keep it short. #[clap(default_value = "10", short, long, env)] sequence_length: u32, /// This is how many tokens will be generated by the server and averaged out /// to give the `decode` latency. This is the *critical* number you want to optimize for /// LLM spend most of their time doing decoding. /// /// Decode latency is usually quite stable. #[clap(default_value = "8", short, long, env)] decode_length: u32, ///How many runs should we average from #[clap(default_value = "10", short, long, env)] runs: usize, /// Number of warmup cycles #[clap(default_value = "1", short, long, env)] warmups: usize, /// The location of the grpc socket. This benchmark tool bypasses the router /// completely and directly talks to the gRPC processes #[clap(default_value = "/tmp/text-generation-server-0", short, long, env)] master_shard_uds_path: String, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] temperature: Option<f32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] top_k: Option<u32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] top_p: Option<f32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] typical_p: Option<f32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] repetition_penalty: Option<f32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] frequency_penalty: Option<f32>, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] watermark: bool, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] do_sample: bool, /// Generation parameter in case you want to specifically test/debug particular /// decoding strategies, for full doc refer to the `text-generation-server` #[clap(long, env)] top_n_tokens: Option<u32>, } fn main() -> Result<(), Box<dyn std::error::Error>> { init_logging(); // Get args let args = Args::parse(); // Pattern match configuration let Args { tokenizer_name, revision, batch_size, sequence_length, decode_length, runs, warmups, temperature, top_k, top_p, typical_p, repetition_penalty, frequency_penalty, watermark, do_sample, master_shard_uds_path, top_n_tokens, } = args; let batch_size = batch_size.unwrap_or(vec![1, 2, 4, 8, 16, 32]); // Tokenizer instance // This will only be used to validate payloads tracing::info!("Loading tokenizer"); let local_path = Path::new(&tokenizer_name); let tokenizer = if local_path.exists() && local_path.is_dir() && local_path.join("tokenizer.json").exists() { // Load local tokenizer tracing::info!("Found local tokenizer"); Tokenizer::from_file(local_path.join("tokenizer.json")).unwrap() } else { tracing::info!("Downloading tokenizer"); // Parse Huggingface hub token let token = std::env::var("HF_TOKEN") .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN")) .ok(); // Download and instantiate tokenizer // We need to download it outside of the Tokio runtime let params = FromPretrainedParameters { revision, token, ..Default::default() }; Tokenizer::from_pretrained(tokenizer_name.clone(), Some(params)).unwrap() }; tracing::info!("Tokenizer loaded"); // Launch Tokio runtime tokio::runtime::Builder::new_multi_thread() .enable_all() .build() .unwrap() .block_on(async { // Instantiate sharded client from the master unix socket tracing::info!("Connect to model server"); let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path) .await .expect("Could not connect to server"); // Clear the cache; useful if the webserver rebooted sharded_client .clear_cache(None) .await .expect("Unable to clear cache"); tracing::info!("Connected"); // Run app text_generation_benchmark::run( tokenizer_name, tokenizer, batch_size, sequence_length, decode_length, top_n_tokens, runs, warmups, temperature, top_k, top_p, typical_p, repetition_penalty, frequency_penalty, watermark, do_sample, sharded_client, ) .await .unwrap(); }); Ok(()) } /// Init logging using LOG_LEVEL fn init_logging() { // STDOUT/STDERR layer let fmt_layer = tracing_subscriber::fmt::layer() .with_file(true) .with_line_number(true); // Filter events with LOG_LEVEL let env_filter = EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info")); tracing_subscriber::registry() .with(env_filter) .with(fmt_layer) .init(); }
text-generation-inference/benchmark/src/main.rs/0
{ "file_path": "text-generation-inference/benchmark/src/main.rs", "repo_id": "text-generation-inference", "token_count": 3164 }
import os import requests from typing import Dict, Optional, List from huggingface_hub.utils import build_hf_headers from text_generation import Client, AsyncClient, __version__ from text_generation.types import DeployedModel from text_generation.errors import NotSupportedError, parse_error INFERENCE_ENDPOINT = os.environ.get( "HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co" ) def deployed_models(headers: Optional[Dict] = None) -> List[DeployedModel]: """ Get all currently deployed models with text-generation-inference-support Returns: List[DeployedModel]: list of all currently deployed models """ resp = requests.get( "https://api-inference.huggingface.co/framework/text-generation-inference", headers=headers, timeout=5, ) payload = resp.json() if resp.status_code != 200: raise parse_error(resp.status_code, payload) models = [DeployedModel(**raw_deployed_model) for raw_deployed_model in payload] return models def check_model_support(repo_id: str, headers: Optional[Dict] = None) -> bool: """ Check if a given model is supported by text-generation-inference Returns: bool: whether the model is supported by this client """ resp = requests.get( f"https://api-inference.huggingface.co/status/{repo_id}", headers=headers, timeout=5, ) payload = resp.json() if resp.status_code != 200: raise parse_error(resp.status_code, payload) framework = payload["framework"] supported = framework == "text-generation-inference" return supported class InferenceAPIClient(Client): """Client to make calls to the HuggingFace Inference API. Only supports a subset of the available text-generation or text2text-generation models that are served using text-generation-inference Example: ```python >>> from text_generation import InferenceAPIClient >>> client = InferenceAPIClient("bigscience/bloomz") >>> client.generate("Why is the sky blue?").generated_text ' Rayleigh scattering' >>> result = "" >>> for response in client.generate_stream("Why is the sky blue?"): >>> if not response.token.special: >>> result += response.token.text >>> result ' Rayleigh scattering' ``` """ def __init__(self, repo_id: str, token: Optional[str] = None, timeout: int = 10): """ Init headers and API information Args: repo_id (`str`): Id of repository (e.g. `bigscience/bloom`). token (`str`, `optional`): The API token to use as HTTP bearer authorization. This is not the authentication token. You can find the token in https://huggingface.co/settings/token. Alternatively, you can find both your organizations and personal API tokens using `HfApi().whoami(token)`. timeout (`int`): Timeout in seconds """ headers = build_hf_headers( token=token, library_name="text-generation", library_version=__version__ ) # Text Generation Inference client only supports a subset of the available hub models if not check_model_support(repo_id, headers): raise NotSupportedError(repo_id) base_url = f"{INFERENCE_ENDPOINT}/models/{repo_id}" super(InferenceAPIClient, self).__init__( base_url, headers=headers, timeout=timeout ) class InferenceAPIAsyncClient(AsyncClient): """Aynschronous Client to make calls to the HuggingFace Inference API. Only supports a subset of the available text-generation or text2text-generation models that are served using text-generation-inference Example: ```python >>> from text_generation import InferenceAPIAsyncClient >>> client = InferenceAPIAsyncClient("bigscience/bloomz") >>> response = await client.generate("Why is the sky blue?") >>> response.generated_text ' Rayleigh scattering' >>> result = "" >>> async for response in client.generate_stream("Why is the sky blue?"): >>> if not response.token.special: >>> result += response.token.text >>> result ' Rayleigh scattering' ``` """ def __init__(self, repo_id: str, token: Optional[str] = None, timeout: int = 10): """ Init headers and API information Args: repo_id (`str`): Id of repository (e.g. `bigscience/bloom`). token (`str`, `optional`): The API token to use as HTTP bearer authorization. This is not the authentication token. You can find the token in https://huggingface.co/settings/token. Alternatively, you can find both your organizations and personal API tokens using `HfApi().whoami(token)`. timeout (`int`): Timeout in seconds """ headers = build_hf_headers( token=token, library_name="text-generation", library_version=__version__ ) # Text Generation Inference client only supports a subset of the available hub models if not check_model_support(repo_id, headers): raise NotSupportedError(repo_id) base_url = f"{INFERENCE_ENDPOINT}/models/{repo_id}" super(InferenceAPIAsyncClient, self).__init__( base_url, headers=headers, timeout=timeout )
text-generation-inference/clients/python/text_generation/inference_api.py/0
{ "file_path": "text-generation-inference/clients/python/text_generation/inference_api.py", "repo_id": "text-generation-inference", "token_count": 2182 }
# Using TGI CLI You can use TGI command-line interface (CLI) to download weights, serve and quantize models, or get information on serving parameters. To install the CLI, please refer to [the installation section](../installation#install-cli). `text-generation-server` lets you download the model with `download-weights` command like below 👇 ```bash text-generation-server download-weights MODEL_HUB_ID ``` You can also use it to quantize models like below 👇 ```bash text-generation-server quantize MODEL_HUB_ID OUTPUT_DIR ``` You can use `text-generation-launcher` to serve models. ```bash text-generation-launcher --model-id MODEL_HUB_ID --port 8080 ``` There are many options and parameters you can pass to `text-generation-launcher`. The documentation for CLI is kept minimal and intended to rely on self-generating documentation, which can be found by running ```bash text-generation-launcher --help ``` You can also find it hosted in this [Swagger UI](https://huggingface.github.io/text-generation-inference/). Same documentation can be found for `text-generation-server`. ```bash text-generation-server --help ```
text-generation-inference/docs/source/basic_tutorials/using_cli.md/0
{ "file_path": "text-generation-inference/docs/source/basic_tutorials/using_cli.md", "repo_id": "text-generation-inference", "token_count": 323 }
{ "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 76, "prefill": [], "seed": null, "tokens": [ { "id": 18183, "logprob": -1.5195312, "special": false, "text": " Deep" }, { "id": 6832, "logprob": -0.06817627, "special": false, "text": " learning" }, { "id": 374, "logprob": -0.13122559, "special": false, "text": " is" }, { "id": 264, "logprob": -0.13415527, "special": false, "text": " a" }, { "id": 25993, "logprob": -0.8769531, "special": false, "text": " subset" }, { "id": 315, "logprob": -0.0011396408, "special": false, "text": " of" }, { "id": 5662, "logprob": -0.16442871, "special": false, "text": " machine" }, { "id": 6832, "logprob": -0.0026416779, "special": false, "text": " learning" }, { "id": 429, "logprob": -0.48754883, "special": false, "text": " that" }, { "id": 5711, "logprob": -1.2294922, "special": false, "text": " uses" }, { "id": 29728, "logprob": -0.66503906, "special": false, "text": " neural" }, { "id": 14155, "logprob": -0.02960205, "special": false, "text": " networks" }, { "id": 311, "logprob": -0.7236328, "special": false, "text": " to" }, { "id": 3960, "logprob": -1.1914062, "special": false, "text": " learn" }, { "id": 504, "logprob": -0.7089844, "special": false, "text": " from" }, { "id": 821, "logprob": -0.7729492, "special": false, "text": " data" }, { "id": 13, "logprob": -0.7836914, "special": false, "text": "." }, { "id": 1084, "logprob": -0.9941406, "special": false, "text": " It" }, { "id": 374, "logprob": -0.52441406, "special": false, "text": " is" }, { "id": 264, "logprob": -0.9511719, "special": false, "text": " a" }, { "id": 943, "logprob": -0.8642578, "special": false, "text": " type" }, { "id": 315, "logprob": -0.00030231476, "special": false, "text": " of" }, { "id": 20443, "logprob": -0.14416504, "special": false, "text": " artificial" }, { "id": 11229, "logprob": -0.013824463, "special": false, "text": " intelligence" }, { "id": 429, "logprob": -0.18762207, "special": false, "text": " that" }, { "id": 646, "logprob": -1.0087891, "special": false, "text": " can" }, { "id": 3960, "logprob": -0.90234375, "special": false, "text": " learn" }, { "id": 504, "logprob": -0.54345703, "special": false, "text": " from" }, { "id": 323, "logprob": -1.0400391, "special": false, "text": " and" }, { "id": 1281, "logprob": -0.072509766, "special": false, "text": " make" }, { "id": 19898, "logprob": -0.16516113, "special": false, "text": " predictions" }, { "id": 389, "logprob": -0.4416504, "special": false, "text": " on" }, { "id": 3460, "logprob": -0.5385742, "special": false, "text": " large" }, { "id": 14713, "logprob": -0.4387207, "special": false, "text": " amounts" }, { "id": 315, "logprob": -0.00015091896, "special": false, "text": " of" }, { "id": 821, "logprob": -0.061431885, "special": false, "text": " data" }, { "id": 13, "logprob": -0.71875, "special": false, "text": "." }, { "id": 18183, "logprob": -0.23632812, "special": false, "text": " Deep" }, { "id": 6832, "logprob": -0.0017204285, "special": false, "text": " learning" }, { "id": 374, "logprob": -1.1738281, "special": false, "text": " is" }, { "id": 1483, "logprob": -0.61083984, "special": false, "text": " used" }, { "id": 304, "logprob": -0.035003662, "special": false, "text": " in" }, { "id": 264, "logprob": -0.118652344, "special": false, "text": " a" }, { "id": 8045, "logprob": -0.42016602, "special": false, "text": " variety" }, { "id": 315, "logprob": -1.6212463e-05, "special": false, "text": " of" }, { "id": 8357, "logprob": -0.1315918, "special": false, "text": " applications" }, { "id": 11, "logprob": -0.12915039, "special": false, "text": "," }, { "id": 2670, "logprob": -0.12463379, "special": false, "text": " including" }, { "id": 2168, "logprob": -0.37402344, "special": false, "text": " image" }, { "id": 323, "logprob": -0.1451416, "special": false, "text": " and" }, { "id": 8806, "logprob": -0.028869629, "special": false, "text": " speech" }, { "id": 17843, "logprob": -0.00024068356, "special": false, "text": " recognition" }, { "id": 11, "logprob": -0.00031018257, "special": false, "text": "," }, { "id": 5810, "logprob": -0.019821167, "special": false, "text": " natural" }, { "id": 4128, "logprob": -0.00012528896, "special": false, "text": " language" }, { "id": 8692, "logprob": -0.00089263916, "special": false, "text": " processing" }, { "id": 11, "logprob": -0.00073862076, "special": false, "text": "," }, { "id": 323, "logprob": -0.040161133, "special": false, "text": " and" }, { "id": 38193, "logprob": -0.4519043, "special": false, "text": " autonomous" }, { "id": 11474, "logprob": -0.39941406, "special": false, "text": " vehicles" }, { "id": 13, "logprob": -0.21166992, "special": false, "text": "." }, { "id": 1084, "logprob": -0.9082031, "special": false, "text": " It" }, { "id": 374, "logprob": -0.44213867, "special": false, "text": " is" }, { "id": 264, "logprob": -1.2177734, "special": false, "text": " a" }, { "id": 18512, "logprob": -0.5205078, "special": false, "text": " rapidly" }, { "id": 7826, "logprob": -0.15332031, "special": false, "text": " growing" }, { "id": 2070, "logprob": -0.0039978027, "special": false, "text": " field" }, { "id": 448, "logprob": -0.9091797, "special": false, "text": " with" }, { "id": 1657, "logprob": -0.17114258, "special": false, "text": " many" }, { "id": 4650, "logprob": -0.70703125, "special": false, "text": " potential" }, { "id": 8357, "logprob": -0.025131226, "special": false, "text": " applications" }, { "id": 304, "logprob": -0.6699219, "special": false, "text": " in" }, { "id": 279, "logprob": -0.35205078, "special": false, "text": " the" }, { "id": 3853, "logprob": -0.049194336, "special": false, "text": " future" }, { "id": 13, "logprob": -0.21972656, "special": false, "text": "." }, { "id": 151643, "logprob": -2.0019531, "special": true, "text": "<|endoftext|>" } ], "top_tokens": null }, "generated_text": " Deep learning is a subset of machine learning that uses neural networks to learn from data. It is a type of artificial intelligence that can learn from and make predictions on large amounts of data. Deep learning is used in a variety of applications, including image and speech recognition, natural language processing, and autonomous vehicles. It is a rapidly growing field with many potential applications in the future." }
text-generation-inference/integration-tests/models/__snapshots__/test_compressed_tensors_w8a8_int_dynamic_weight/test_compressed_tensors_w8a8_int_dynamic_weight.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_compressed_tensors_w8a8_int_dynamic_weight/test_compressed_tensors_w8a8_int_dynamic_weight.json", "repo_id": "text-generation-inference", "token_count": 5893 }
{ "choices": [ { "finish_reason": "stop", "index": 0, "logprobs": null, "message": { "content": "The image depicts an anthropomorphic rabbit, wearing a spacesuit, standing in a barren, rocky landscape that resembles the surface of another planet, possibly Mars. The rabbit has a red digestive system label on its chest, and the surrounding environment features red sandy terrain and a hazy, floating planet or moon in the background. The scene has a surreal, fantastical quality, blending elements of science fiction and space exploration with a whimsical character.", "name": null, "role": "assistant", "tool_calls": null }, "usage": null } ], "created": 1738347908, "id": "", "model": "Qwen/Qwen2-VL-7B-Instruct", "object": "chat.completion", "system_fingerprint": "3.1.1-dev0-native", "usage": { "completion_tokens": 89, "prompt_tokens": 1364, "total_tokens": 1453 } }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_qwen2_vl/test_flash_qwen2_vl_simple.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_qwen2_vl/test_flash_qwen2_vl_simple.json", "repo_id": "text-generation-inference", "token_count": 353 }
{ "details": { "finish_reason": "length", "generated_tokens": 40, "prefill": [], "seed": null, "tokens": [ { "id": 13, "logprob": -1.0488281, "special": false, "text": "\n" }, { "id": 13, "logprob": -1.0800781, "special": false, "text": "\n" }, { "id": 27332, "logprob": -2.1152344, "special": false, "text": "###" }, { "id": 28705, "logprob": -1.6748047, "special": false, "text": " " }, { "id": 28740, "logprob": -0.097229004, "special": false, "text": "1" }, { "id": 28723, "logprob": -0.16467285, "special": false, "text": "." }, { "id": 7615, "logprob": -2.2246094, "special": false, "text": " News" }, { "id": 13, "logprob": -1.0488281, "special": false, "text": "\n" }, { "id": 27332, "logprob": -0.69189453, "special": false, "text": "###" }, { "id": 28705, "logprob": -0.013343811, "special": false, "text": " " }, { "id": 28750, "logprob": -0.011230469, "special": false, "text": "2" }, { "id": 28723, "logprob": -0.00096845627, "special": false, "text": "." }, { "id": 21095, "logprob": -2.5605469, "special": false, "text": " Blog" }, { "id": 13, "logprob": -0.19458008, "special": false, "text": "\n" }, { "id": 27332, "logprob": -0.031280518, "special": false, "text": "###" }, { "id": 28705, "logprob": -0.0030708313, "special": false, "text": " " }, { "id": 28770, "logprob": -0.0029277802, "special": false, "text": "3" }, { "id": 28723, "logprob": -0.0012350082, "special": false, "text": "." }, { "id": 20108, "logprob": -2.1582031, "special": false, "text": " Article" }, { "id": 13, "logprob": -0.05810547, "special": false, "text": "\n" }, { "id": 27332, "logprob": -0.35083008, "special": false, "text": "###" }, { "id": 28705, "logprob": -0.034332275, "special": false, "text": " " }, { "id": 28781, "logprob": -0.009666443, "special": false, "text": "4" }, { "id": 28723, "logprob": -0.0013113022, "special": false, "text": "." }, { "id": 8349, "logprob": -2.6191406, "special": false, "text": " Review" }, { "id": 13, "logprob": -0.04031372, "special": false, "text": "\n" }, { "id": 27332, "logprob": -0.45239258, "special": false, "text": "###" }, { "id": 28705, "logprob": -0.045410156, "special": false, "text": " " }, { "id": 28782, "logprob": -0.0041236877, "special": false, "text": "5" }, { "id": 28723, "logprob": -0.0010223389, "special": false, "text": "." }, { "id": 5299, "logprob": -2.8066406, "special": false, "text": " Other" }, { "id": 13, "logprob": -0.12054443, "special": false, "text": "\n" }, { "id": 13, "logprob": -0.44580078, "special": false, "text": "\n" }, { "id": 13, "logprob": -1.4921875, "special": false, "text": "\n" }, { "id": 13, "logprob": -1.3574219, "special": false, "text": "\n" }, { "id": 13, "logprob": -1.0039062, "special": false, "text": "\n" }, { "id": 13, "logprob": -0.5859375, "special": false, "text": "\n" }, { "id": 13, "logprob": -0.43481445, "special": false, "text": "\n" }, { "id": 13, "logprob": -0.2783203, "special": false, "text": "\n" }, { "id": 13, "logprob": -0.20410156, "special": false, "text": "\n" } ] }, "generated_text": "\n\n### 1. News\n### 2. Blog\n### 3. Article\n### 4. Review\n### 5. Other\n\n\n\n\n\n\n\n\n" }
text-generation-inference/integration-tests/models/__snapshots__/test_lora_mistral/test_lora_mistral_without_adapter.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_lora_mistral/test_lora_mistral_without_adapter.json", "repo_id": "text-generation-inference", "token_count": 3130 }
import pytest @pytest.fixture(scope="module") def bloom_560_handle(launcher): with launcher("bigscience/bloom-560m", num_shard=1) as handle: yield handle @pytest.fixture(scope="module") async def bloom_560(bloom_560_handle): await bloom_560_handle.health(240) return bloom_560_handle.client @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m(bloom_560, response_snapshot): response = await bloom_560.generate( "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, top_p=0.9, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m_all_params(bloom_560, response_snapshot): response = await bloom_560.generate( "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_bloom_560m_load(bloom_560, generate_load, response_snapshot): responses = await generate_load( bloom_560, "Pour déguster un ortolan, il faut tout d'abord", max_new_tokens=10, n=4, ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_bloom_560m.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_bloom_560m.py", "repo_id": "text-generation-inference", "token_count": 783 }
import pytest @pytest.fixture(scope="module") def flash_gemma_gptq_handle(launcher): with launcher("TechxGenus/gemma-2b-GPTQ", num_shard=1, quantize="gptq") as handle: yield handle @pytest.fixture(scope="module") async def flash_gemma_gptq(flash_gemma_gptq_handle): await flash_gemma_gptq_handle.health(300) return flash_gemma_gptq_handle.client @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_gemma_gptq(flash_gemma_gptq, ignore_logprob_response_snapshot): response = await flash_gemma_gptq.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response == ignore_logprob_response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_gemma_gptq_all_params( flash_gemma_gptq, ignore_logprob_response_snapshot ): response = await flash_gemma_gptq.generate( "Test request", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == ignore_logprob_response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_flash_gemma_gptq_load( flash_gemma_gptq, generate_load, ignore_logprob_response_snapshot ): responses = await generate_load( flash_gemma_gptq, "Test request", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == ignore_logprob_response_snapshot
text-generation-inference/integration-tests/models/test_flash_gemma_gptq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_gemma_gptq.py", "repo_id": "text-generation-inference", "token_count": 804 }
import pytest @pytest.fixture(scope="module") def flash_mixtral_gptq_handle(launcher): with launcher( "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ", revision="gptq-4bit-128g-actorder_True", num_shard=2, ) as handle: yield handle @pytest.fixture(scope="module") async def flash_mixtral_gptq(flash_mixtral_gptq_handle): await flash_mixtral_gptq_handle.health(300) return flash_mixtral_gptq_handle.client @pytest.mark.asyncio async def test_flash_mixtral_gptq(flash_mixtral_gptq, response_snapshot): response = await flash_mixtral_gptq.generate( "What is deep learning?", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert ( response.generated_text == "\n\nDeep learning is a subset of machine learning" ) assert response == response_snapshot @pytest.mark.asyncio async def test_flash_mixtral_gptq_all_params(flash_mixtral_gptq, response_snapshot): response = await flash_mixtral_gptq.generate( "What is deep learning?", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, stop_sequences=["test"], temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert ( response.generated_text == "What is deep learning?\nDeep Learning is a subset of Machine Learning," ) assert response == response_snapshot @pytest.mark.asyncio async def test_flash_mixtral_gptq_load( flash_mixtral_gptq, generate_load, response_snapshot ): responses = await generate_load( flash_mixtral_gptq, "What is deep learning?", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert ( responses[0].generated_text == "\n\nDeep learning is a subset of machine learning" ) assert all( [r.generated_text == responses[0].generated_text for r in responses] ), f"{[r.generated_text for r in responses]}" assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_mixtral_gptq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_mixtral_gptq.py", "repo_id": "text-generation-inference", "token_count": 950 }
import pytest @pytest.fixture(scope="module") def idefics_handle(launcher): with launcher( "HuggingFaceM4/idefics-9b-instruct", num_shard=2, dtype="float16" ) as handle: yield handle @pytest.fixture(scope="module") async def idefics(idefics_handle): await idefics_handle.health(300) return idefics_handle.client @pytest.mark.asyncio async def test_idefics(idefics, response_snapshot, chicken): response = await idefics.generate( f"User:![]({chicken})Can you tell me a very short story based on the image?", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert ( response.generated_text == " \nAssistant: A rooster stands" ), f"{repr(response.generated_text)}" assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio @pytest.mark.private async def test_idefics_two_images(idefics, response_snapshot, chicken, cow_beach): response = await idefics.generate( f"User:![]({chicken})![]({cow_beach})Where are the cow and chicken?<end_of_utterance> \nAssistant:", max_new_tokens=20, ) assert ( response.generated_text == " The cow and chicken are on a beach." ), f"{repr(response.generated_text)}" assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_idefics_load(idefics, generate_load, response_snapshot, chicken): responses = await generate_load( idefics, f"User:![]({chicken})Can you tell me a very short story based on the image?", max_new_tokens=10, n=4, ) generated_texts = [r.generated_text for r in responses] assert generated_texts[0] == " \nAssistant: A rooster stands" assert len(generated_texts) == 4 assert generated_texts, all( [text == generated_texts[0] for text in generated_texts] ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_idefics.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_idefics.py", "repo_id": "text-generation-inference", "token_count": 782 }
[tool.poetry] name = "text-generation-integration-tests" version = "2.0.1" description = "Text Generation Inference integration tests" authors = ["Nicolas Patry <[email protected]>"] [tool.poetry.dependencies] pydantic = "> 2, < 3" python = ">=3.10,<3.13" syrupy = "^4.7.1" text-generation = "^0.6.0" pytest = "^7.4.0" pytest-asyncio = "^0.21.1" docker = "^7" numpy = "^1.20" [tool.isort] profile = "black"
text-generation-inference/integration-tests/pyproject.toml/0
{ "file_path": "text-generation-inference/integration-tests/pyproject.toml", "repo_id": "text-generation-inference", "token_count": 184 }
use crate::infer::InferError; use crate::{ FunctionDefinition, FunctionRef, FunctionsMap, JsonSchemaTool, Properties, Tool, ToolChoice, }; use serde_json::{json, Map, Value}; use std::collections::HashMap; pub(crate) struct ToolGrammar {} impl ToolGrammar { // find a tool by name fn find_tool_by_name(tools: &[Tool], name: &str) -> Result<Tool, InferError> { tools .iter() .find(|tool| tool.function.name == name) .cloned() .ok_or_else(|| InferError::ToolError(format!("Tool with name {} not found", name))) } pub fn apply( tools: Vec<Tool>, tool_choice: ToolChoice, ) -> Result<Option<(Vec<Tool>, JsonSchemaTool)>, InferError> { let tools_to_use = match tool_choice { ToolChoice::Function(function) => { vec![Self::find_tool_by_name(&tools, &function.name)?] } ToolChoice::Required => tools, ToolChoice::Auto => { // only add the no_tool function if the user has selected the auto option tools .iter() .cloned() .chain(std::iter::once(Tool { r#type: "function".to_string(), function: FunctionDefinition { name: "no_tool".to_string(), description: Some( "Open ended response with no specific tool selected".to_string(), ), arguments: json!({ "type": "object", "properties": { "content": { "type": "string", "description": "The response content", } }, "required": ["content"] }), }, })) .collect::<Vec<_>>() } ToolChoice::NoTool => vec![], }; // if no tools are provided or if the user has selected the no_tool option, return None if tools_to_use.is_empty() { return Ok(None); } let functions: HashMap<String, serde_json::Value> = tools_to_use .iter() .map(|tool| { let func = tool.function.clone(); let mut params = Map::new(); params.insert( "description".to_string(), Value::String(func.description.unwrap_or_default()), ); let mut properties = Map::new(); let mut required = vec![Value::String("_name".to_string())]; properties.insert( "_name".to_string(), json!({ "type": "string", "const": func.name.clone(), }), ); if let Value::Object(args) = func.arguments { if let Some(Value::Object(props)) = args.get("properties") { properties.extend(props.clone()); } if let Some(Value::Array(reqs)) = args.get("required") { required.extend(reqs.clone()); } params.insert( "additionalProperties".to_string(), Value::Bool( args.get("additionalProperties").and_then(|v| v.as_str()) == Some("true"), ), ); } params.insert("properties".to_string(), Value::Object(properties)); params.insert("required".to_string(), Value::Array(required)); (func.name, Value::Object(params)) }) .collect(); let tool_schema = JsonSchemaTool { functions_map: FunctionsMap { functions }, properties: Properties { function: tools_to_use .iter() .map(|tool| FunctionRef { ref_path: format!("#/$functions/{}", tool.function.name.clone()), }) .collect(), }, }; Ok(Some((tools_to_use, tool_schema))) } }
text-generation-inference/router/src/infer/tool_grammar.rs/0
{ "file_path": "text-generation-inference/router/src/infer/tool_grammar.rs", "repo_id": "text-generation-inference", "token_count": 2640 }
flash_att_commit := 3a9bfd076f98746c73362328958dbc68d145fbec build-flash-attention: if [ ! -d 'flash-attention' ]; then \ pip install -U packaging ninja --no-cache-dir && \ git clone https://github.com/HazyResearch/flash-attention.git; \ fi cd flash-attention && git fetch && git checkout $(flash_att_commit) && \ MAX_JOBS=8 python setup.py build && cd csrc/layer_norm && python setup.py build && cd ../rotary && python setup.py build install-flash-attention: build-flash-attention cd flash-attention && git checkout $(flash_att_commit) && MAX_JOBS=8 python setup.py install && cd csrc/layer_norm && python setup.py install && cd ../rotary && python setup.py install
text-generation-inference/server/Makefile-flash-att/0
{ "file_path": "text-generation-inference/server/Makefile-flash-att", "repo_id": "text-generation-inference", "token_count": 231 }
#include "q4_matmul.cuh" #include "column_remap.cuh" #include <ATen/cuda/CUDAContext.h> #include "../util.cuh" #include "../matrix.cuh" #include "../cu_compat.cuh" #include "../cuda_buffers.cuh" #if defined(USE_ROCM) #include "../hip_compat.cuh" #endif const int THREADS_X = 32; // Block size and thread count along columns in w and out const int THREADS_Y = 1; // Block size and thread count along rows in x and out typedef void (*fp_q4_matmul_kernel) ( const half*, const uint32_t*, half*, const half*, const uint32_t*, const int, const int, const int, const int, const int, const uint32_t*, bool ); template<bool use_half2, bool use_groupsize, bool use_x_map> __global__ void q4_matmul_kernel ( const half* __restrict__ x, const uint32_t* __restrict__ w, half* __restrict__ out, const half* __restrict__ w_scales, const uint32_t* __restrict__ w_zeros, const int height, const int dim, const int width, const int groupsize, const int block_size_z, const uint32_t* __restrict__ x_map, bool no_zero ) { // Start of block int x_column = block_size_z * blockIdx.z; int x_column_end = min(dim, block_size_z * (blockIdx.z + 1)); int w_column = THREADS_X * blockIdx.x + threadIdx.x; int x_row = THREADS_Y * blockIdx.y + threadIdx.y; int iterations = (x_column_end - x_column) / 8; // Views MatrixView_half x_(x, height, dim); MatrixView_half w_scales_(w_scales, dim / groupsize, width); MatrixView_q4_row w_zeros_(w_zeros, dim / groupsize, width); MatrixView_q4_column w_(w, dim, width); MatrixView_half_rw out_(out, height, width); // Zero output if (!no_zero && blockIdx.z == 0 && (threadIdx.x & 1) == 0) { *((uint32_t*) out_.item_ptr(x_row, w_column)) = 0; __syncthreads(); } // Loop over part of x row (and w column) half2 acc = {}; half acc_h = {}; if constexpr (use_groupsize) { // For quant matrices where groupsize divides BLOCK_SIZE_Z we always start on a group boundary, so this // could be slightly faster for (int k = x_column, group = x_column / groupsize; k < x_column + iterations * 8; group++, k += groupsize) { if constexpr (use_half2) { half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = (w_zeros_.item(group, w_column) + 1) & 0x0F; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } else { half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = (w_zeros_.item(group, w_column) + 1) & 0x0F; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, groupsize / 8); } } } else { // Otherwise assume groupsize is a multiple of 8, do 8 columns per iteration and trust the cache for (int k = x_column; k < x_column + iterations * 8; k += 8) { if constexpr (use_half2) { int group = k / groupsize; half2 w_scale = w_scales_.item_half2half2(group, w_column); uint32_t w_zero = (w_zeros_.item(group, w_column) + 1) & 0x0F; if constexpr (use_x_map) acc = dot_product_8_x_map(acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc = dot_product_8 (acc, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } else { int group = k / groupsize; half w_scale = w_scales_.item(group, w_column); uint32_t w_zero = (w_zeros_.item(group, w_column) + 1) & 0x0F; if constexpr (use_x_map) acc_h = dot_product_8_x_map_h(acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1, x_map); else acc_h = dot_product_8_h (acc_h, x_, x_row, k, w_, k, w_column, w_scale, w_zero, 1); } } } // Add to block result if constexpr (use_half2) { half result = __hadd(__low2half(acc), __high2half(acc)); atomicAdd(out_.item_ptr(x_row, w_column), result); } else { atomicAdd(out_.item_ptr(x_row, w_column), acc_h); } } fp_q4_matmul_kernel q4_matmul_kernel_pick(ExLlamaTuning* tuningParams, int block_size_z, int groupsize, uint32_t* x_map) { // <bool use_half2, bool use_groupsize, bool use_x_map> if (tuningParams->matmul_no_half2) { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<false, true, true >; else return q4_matmul_kernel<false, true, false>; } else { if (x_map) return q4_matmul_kernel<false, false, true >; else return q4_matmul_kernel<false, false, false>; } } else { if (block_size_z % groupsize == 0) { if (x_map) return q4_matmul_kernel<true, true, true >; else return q4_matmul_kernel<true, true, false>; } else { if (x_map) return q4_matmul_kernel<true, false, true >; else return q4_matmul_kernel<true, false, false>; } } }; // Compute y = x @ w void q4_matmul_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, const Q4Matrix* w, half* out, bool no_zero, cudaStream_t alt_stream ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); uint32_t* x_map = w->cuda_x_map; const half* x_mapped = x; if (x_map && !tuningParams->matmul_fused_remap && !alt_stream) { CudaBuffers* buffers = get_buffers(w->device); column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; x_map = NULL; } int block_size_z; if (w->width == 4096) block_size_z = 384; // 7B else if (w->width == 11008) block_size_z = 256; else if (w->width == 5120) block_size_z = 384; // 13B else if (w->width == 13824) block_size_z = 256; else if (w->width == 6656) block_size_z = 256; // 33B else if (w->width == 17920) block_size_z = 128; else block_size_z = 256; //if (!no_zero) cudaMemsetAsync(out, 0, x_height * w->width * sizeof(half)); dim3 threads(THREADS_X, THREADS_Y, 1); dim3 blocks ( (width + threads.x - 1) / threads.x, (height + threads.y - 1) / threads.y, (dim + block_size_z - 1) / block_size_z ); fp_q4_matmul_kernel kernel = q4_matmul_kernel_pick(tuningParams, block_size_z, w->groupsize, x_map); kernel<<<blocks, threads, 0, alt_stream>>> (x_mapped, w->cuda_qweight, out, w->cuda_scales, w->cuda_qzeros, height, dim, width, w->groupsize, block_size_z, x_map, no_zero); } void q4_matmul_recons_cuda ( ExLlamaTuning* tuningParams, const half* x, const int x_height, Q4Matrix* w, half* out, bool no_zero, const cublasHandle_t handle ) { int height = x_height; int dim = w->height; int width = w->width; cudaSetDevice(w->device); CudaBuffers* buffers = get_buffers(w->device); const half* x_mapped = x; if (w->cuda_x_map) { column_remap_cuda(x, buffers->temp_state, x_height, dim, w->cuda_x_map); x_mapped = buffers->temp_state; } w->reconstruct(buffers->temp_dq); const half alpha = __float2half(1.0f); const half beta = no_zero ? __float2half(1.0f) : __float2half(0.0f); cublasHgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, width, x_mapped, dim, &beta, out, width); // const float alpha = 1.0f; // const float beta = no_zero ? 1.0f : 0.0f; // cublasSgemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, width, height, dim, &alpha, buffers->temp_dq, CUDA_R_16F, width, // x_mapped, CUDA_R_16F, dim, &beta, out, CUDA_R_16F, width); }
text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cu/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matmul.cu", "repo_id": "text-generation-inference", "token_count": 4211 }
#include "compat.cuh" __forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ half2 dot22_16(half2(&dq)[8], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ half2 dot22_32(half2(&dq)[16], const half* a_ptr, const half2 g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); return __hfma2(result, __halves2half2(qs_h, qs_h), g_result); } __forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ float dot22_16_f(half2(&dq)[8], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ float dot22_32_f(half2(&dq)[16], const half* a_ptr, const float g_result, const float qs_f) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); float result_f = __half2float(__low2half(result)) + __half2float(__high2half(result)); return fma(result_f, qs_f, g_result); } __forceinline__ __device__ half dot22_8_h(half2(&dq)[4], const half* a_ptr, const half g_result, const half qs_h) { // Use FP32 accumulator to avoid potential overflow since unscaled weights are in the range -128..127 float result = {}; #pragma unroll for (int i = 0; i < 4; i++) { half2 w01 = dq[i]; float w0 = __low2float(w01); float w1 = __high2float(w01); float x0 = __half2float(*a_ptr++); float x1 = __half2float(*a_ptr++); result = fma(w0, x0, result); result = fma(w1, x1, result); } float qs = __half2float(qs_h); result *= qs; half result_h = __float2half_rn(result); return __hadd(result_h, g_result); } __forceinline__ __device__ half dot22_16_h(half2(&dq)[8], const half* a_ptr, const half g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result); half result_h = __hadd(__low2half(result), __high2half(result)); return __hfma(result_h, qs_h, g_result); } __forceinline__ __device__ half dot22_32_h(half2(&dq)[16], const half* a_ptr, const half g_result, const half qs_h) { half2 result = {}; const half2* a2_ptr = (const half2*)a_ptr; #pragma unroll for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result); half result_h = __hadd(__low2half(result), __high2half(result)); return __hfma(result_h, qs_h, g_result); } typedef void (*fp_gemm_half_q_half_kernel) ( const half*, const uint32_t*, const uint32_t*, const half*, half*, const int, const int, const int, const int, const uint16_t*, const uint16_t*, const int, const int, const int, const int, const int, const int, const bool, const half*, const int ); template <int m_count, bool use_r_weights, bool mul_r_weights> __global__ void gemm_half_q_half_kernel ( const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight, const uint32_t* __restrict__ b_q_scale, const half* __restrict__ b_q_scale_max, half* __restrict__ c, const int size_m, const int size_n, const int size_k, const int groups, const uint16_t* __restrict__ b_q_group_map, const uint16_t* __restrict__ b_q_perm, const int rows_8, const int rows_6, const int rows_5, const int rows_4, const int rows_3, const int rows_2, const bool clear, const half* r_weights, const int r_weights_stride ) { MatrixView_half a_(a, size_m, size_k); MatrixView_half_rw c_(c, size_m, size_n); MatrixView_q4_row b_q_scale_(b_q_scale, groups, size_n); int t = threadIdx.x; // Block int offset_n = blockIdx.x * EXL2_BLOCK_KN_SIZE * 4; int offset_m = blockIdx.y * m_count; int offset_k = blockIdx.z * EXL2_BLOCK_KN_SIZE; int end_n = min(offset_n + EXL2_BLOCK_KN_SIZE * 4, size_n); int end_m = min(offset_m + m_count, size_m); int end_k = min(offset_k + EXL2_BLOCK_KN_SIZE, size_k); int n = offset_n + t * 4; // Read weights half_uint16 weights[MAX_Q_GEMM_WEIGHTS]; if constexpr (use_r_weights) { uint16_t any_w = 0; const half* w_ptr = r_weights; for (int m = 0; m < m_count; ++m) { weights[m].as_half = *w_ptr; w_ptr += r_weights_stride; any_w |= weights[m].as_uint16; } if (!any_w) return; // Early exit if all weights are zero -- does not zero output (!!!) } // Preload block_a __shared__ half block_a[m_count][EXL2_BLOCK_KN_SIZE]; if (offset_k + t < end_k) { for (int m = 0; m < m_count; ++m) { const half* a_ptr = a_.item_ptr(offset_m + m, 0); half* block_a_ptr = block_a[m]; half a0 = a_ptr[b_q_perm[offset_k + t]]; // half a0 = a_ptr[offset_k + t]; block_a_ptr[t] = a0; } } // Clear if (n >= size_n) return; if (clear && blockIdx.z == 0) // && (threadIdx.x & 1) == 0) { for (int m = 0; m < m_count; m++) *((uint64_t*) c_.item_ptr(offset_m + m, n)) = 0; } __syncthreads(); // Find initial group //int group = offset_k / groupsize; int group = b_q_group_map[offset_k * 2]; // if (offset_m == 0 && t == 0) // DBGI2(offset_k, group); // Preload scales half scales[EXL2_MAX_GROUPS_IN_BLOCK][4]; //int groups_in_block = DIVIDE((end_k - offset_k), groupsize); int temp_k = offset_k; for (int g = 0; temp_k < end_k; g++) { int qscales[4]; b_q_scale_.item4(qscales, group + g, n); qscales[0]++; qscales[1]++; qscales[2]++; qscales[3]++; half maxscale = b_q_scale_max[group + g]; scales[g][0] = __hmul(__int2half_rn(qscales[0] * qscales[0]), maxscale); scales[g][1] = __hmul(__int2half_rn(qscales[1] * qscales[1]), maxscale); scales[g][2] = __hmul(__int2half_rn(qscales[2] * qscales[2]), maxscale); scales[g][3] = __hmul(__int2half_rn(qscales[3] * qscales[3]), maxscale); temp_k += b_q_group_map[temp_k * 2 + 1]; } // a, b offset int pre_rows_8 = min(rows_8, offset_k); int pre_rows_6 = offset_k > rows_8 ? min(rows_6, offset_k) - rows_8 : 0; int pre_rows_5 = offset_k > rows_6 ? min(rows_5, offset_k) - rows_6 : 0; int pre_rows_4 = offset_k > rows_5 ? min(rows_4, offset_k) - rows_5 : 0; int pre_rows_3 = offset_k > rows_4 ? min(rows_3, offset_k) - rows_4 : 0; int pre_rows_2 = offset_k > rows_3 ? min(rows_2, offset_k) - rows_3 : 0; int qk = 0; qk += pre_rows_8 / 32 * 8; qk += pre_rows_6 / 32 * 6; qk += pre_rows_5 / 32 * 5; qk += pre_rows_4 / 32 * 4; qk += pre_rows_3 / 32 * 3; qk += pre_rows_2 / 32 * 2; const uint32_t* b_ptr = b_q_weight + qk * size_n + n; const half* a_ptr = &block_a[0][0]; int a_stride = EXL2_BLOCK_KN_SIZE; // Initial group int scales_idx = 0; half qs_h0 = scales[scales_idx][0]; half qs_h1 = scales[scales_idx][1]; half qs_h2 = scales[scales_idx][2]; half qs_h3 = scales[scales_idx][3]; int nextgroup = offset_k + b_q_group_map[offset_k * 2 + 1]; // Column result half block_c[m_count][4] = {}; // Dequantize groups int k = offset_k; while (k < rows_8 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 4; j++) { int4 load_int4[2]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][4]; dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n); dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n); dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n); dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_8_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_8_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_8_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_8_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 8; } k += 32; } while (k < rows_6 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 2; j++) { int4 load_int4[3]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][8]; dequant_6bit_16(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n); dequant_6bit_16(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n); dequant_6bit_16(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n); dequant_6bit_16(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_16_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_16_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_16_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_16_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 16; } k += 32; } while (k < rows_5 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[5]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; load_int4[3] = *((int4*) b_ptr); b_ptr += size_n; load_int4[4] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][16]; dequant_5bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, load_int4[3].x, load_int4[4].x, dq[0], size_n); dequant_5bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, load_int4[3].y, load_int4[4].y, dq[1], size_n); dequant_5bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, load_int4[3].z, load_int4[4].z, dq[2], size_n); dequant_5bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, load_int4[3].w, load_int4[4].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_32_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_32_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_32_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_32_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 32; } k += 32; } while (k < rows_4 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 4; j++) { int4 load_int4[1]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][4]; dequant_4bit_8(load_int4[0].x, dq[0], size_n); dequant_4bit_8(load_int4[0].y, dq[1], size_n); dequant_4bit_8(load_int4[0].z, dq[2], size_n); dequant_4bit_8(load_int4[0].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_8_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_8_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_8_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_8_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 8; } k += 32; } while (k < rows_3 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[3]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; load_int4[1] = *((int4*) b_ptr); b_ptr += size_n; load_int4[2] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][16]; dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0], size_n); dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1], size_n); dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2], size_n); dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_32_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_32_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_32_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_32_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 32; } k += 32; } while (k < rows_2 && k < end_k) { if (k == nextgroup) { group++; scales_idx++; qs_h0 = scales[scales_idx][0]; qs_h1 = scales[scales_idx][1]; qs_h2 = scales[scales_idx][2]; qs_h3 = scales[scales_idx][3]; nextgroup += b_q_group_map[k * 2 + 1]; } #pragma unroll for (int j = 0; j < 1; j++) { int4 load_int4[1]; load_int4[0] = *((int4*) b_ptr); b_ptr += size_n; half2 dq[4][8]; dequant_2bit_16(load_int4[0].x, dq[0], size_n); dequant_2bit_16(load_int4[0].y, dq[1], size_n); dequant_2bit_16(load_int4[0].z, dq[2], size_n); dequant_2bit_16(load_int4[0].w, dq[3], size_n); for (int m = 0; m < m_count; m++) { if constexpr (use_r_weights) { if (!weights[m].as_uint16) continue; } block_c[m][0] = dot22_16_h(dq[0], a_ptr + m * a_stride, block_c[m][0], qs_h0); block_c[m][1] = dot22_16_h(dq[1], a_ptr + m * a_stride, block_c[m][1], qs_h1); block_c[m][2] = dot22_16_h(dq[2], a_ptr + m * a_stride, block_c[m][2], qs_h2); block_c[m][3] = dot22_16_h(dq[3], a_ptr + m * a_stride, block_c[m][3], qs_h3); } a_ptr += 16; } k += 16; } // Accumulate column sums in c for (int m = 0; m < m_count; m++) { half2* out = (half2*)c_.item_ptr(offset_m + m, n); half2 result01 = __halves2half2(block_c[m][0], block_c[m][1]); half2 result23 = __halves2half2(block_c[m][2], block_c[m][3]); if constexpr (mul_r_weights) { half2 w_mul2 = __half2half2(weights[m].as_half); result01 = __hmul2(result01, w_mul2); result23 = __hmul2(result23, w_mul2); } atomicAdd(out , result01); atomicAdd(out + 1, result23); // *out = result01; // *(out + 1) = result23; } } template <bool use_r_weights, bool mul_r_weights> struct map_m_count_exl2 { static constexpr fp_gemm_half_q_half_kernel pick_gemm_half_q_half_kernel(const int m_count) { #if EXL2_BLOCK_M_SIZE_MAX >= 1 if (m_count == 1) return gemm_half_q_half_kernel<1, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 2 if (m_count == 2) return gemm_half_q_half_kernel<2, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 3 if (m_count == 3) return gemm_half_q_half_kernel<3, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 4 if (m_count == 4) return gemm_half_q_half_kernel<4, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 5 if (m_count == 5) return gemm_half_q_half_kernel<5, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 6 if (m_count == 6) return gemm_half_q_half_kernel<6, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 7 if (m_count == 7) return gemm_half_q_half_kernel<7, use_r_weights, mul_r_weights>; #endif #if EXL2_BLOCK_M_SIZE_MAX >= 8 if (m_count == 8) return gemm_half_q_half_kernel<8, use_r_weights, mul_r_weights>; #endif return NULL; } }; fp_gemm_half_q_half_kernel pick_gemm_half_q_half_kernel(const int m_count, bool r_weights, bool mul_r_weights) { if (!r_weights && !mul_r_weights) return map_m_count_exl2<false, false>::pick_gemm_half_q_half_kernel(m_count); if (!r_weights && mul_r_weights) return map_m_count_exl2<false, true>::pick_gemm_half_q_half_kernel(m_count); if ( r_weights && !mul_r_weights) return map_m_count_exl2< true, false>::pick_gemm_half_q_half_kernel(m_count); if ( r_weights && mul_r_weights) return map_m_count_exl2< true, true>::pick_gemm_half_q_half_kernel(m_count); return NULL; }
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_gemm_kernel.cuh/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_gemm_kernel.cuh", "repo_id": "text-generation-inference", "token_count": 11459 }
import pytest import torch from text_generation_server.utils.weights import ( DefaultWeightsLoader, Weights, WeightsLoader, ) from text_generation_server.layers.gptq import GPTQWeight, GPTQWeightsLoader from text_generation_server.layers.exl2 import Exl2Weight, Exl2WeightsLoader from text_generation_server.layers.marlin.marlin import ( MarlinWeight, MarlinWeightsLoader, ) from types import SimpleNamespace from typing import List, Optional, Dict, Union from pathlib import Path @pytest.fixture def gptq_weights_loader(): return GPTQWeightsLoader( bits=4, groupsize=-1, desc_act=False, quant_method="gptq", quantize="gptq", sym=True, ) @pytest.fixture def gptq_weights_loader_awq(): return GPTQWeightsLoader( bits=4, groupsize=-1, desc_act=False, quant_method="awq", quantize="awq", sym=True, ) @pytest.fixture def marlin_weights_loader(): return MarlinWeightsLoader(bits=4, is_marlin_24=False) dummy_file_system = { "test_weights": { "layer.0.weight": torch.tensor( [ [1, 2], [3, 4], ], dtype=torch.float32, ), }, "test_weights_2": { "layer.1337.weight": torch.tensor( [ [1, 2, 3, 4], [5, 6, 7, 8], ], dtype=torch.float32, ), }, "test_get_weights_col_packed": { "weight.weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), }, "test_get_multi_weights_col": { "weight.weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), }, "test_get_weights_row": { "weight.weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), }, "test_get_weights_col_gptq": { "weight.qweight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), "weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32), "weight.qzeros": torch.tensor( [ [0, 1], [1, 0], ], dtype=torch.int32, ), "weight.scales": torch.tensor( [ [100.0, 100.0], [100.0, 100.0], ], dtype=torch.float16, ), "gptq_bits": torch.tensor([8], dtype=torch.float32), "gptq_groupsize": torch.tensor([2], dtype=torch.float32), }, "test_get_weights_col_marlin": { "weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), "weight.s": torch.tensor([[0.5000], [0.2500]], dtype=torch.float16), }, "test_get_weights_row_gptq": { "weight.qweight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32), "weight.qzeros": torch.tensor( [ [0, 1], [1, 0], ], dtype=torch.int32, ), "weight.scales": torch.tensor( [ [100.0, 100.0], [100.0, 100.0], ], dtype=torch.float16, ), "gptq_bits": torch.tensor([8], dtype=torch.float32), "gptq_groupsize": torch.tensor([2], dtype=torch.float32), }, "test_get_multi_weights_col_gptq": { "weight.qweight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32), "weight.qzeros": torch.tensor( [ [0, 1], [1, 0], ], dtype=torch.int32, ), "weight.scales": torch.tensor( [ [100.0, 100.0], [100.0, 100.0], ], dtype=torch.float16, ), "gptq_bits": torch.tensor([8], dtype=torch.float32), "gptq_groupsize": torch.tensor([2], dtype=torch.float32), }, "test_get_weights_col_packed_gptq": { "weight.qweight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32), "weight.qzeros": torch.tensor( [ [0, 1], [1, 0], ], dtype=torch.int32, ), "weight.scales": torch.tensor( [ [100.0, 100.0], [100.0, 100.0], ], dtype=torch.float16, ), "gptq_bits": torch.tensor([8], dtype=torch.float32), "gptq_groupsize": torch.tensor([2], dtype=torch.float32), }, "test_get_weights_col_packed_exl2": { "weight.q_weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.q_scale": torch.tensor([8], dtype=torch.int32), "weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32), "weight.q_scale_max": torch.tensor([100], dtype=torch.float16), "weight.q_groups": torch.tensor([4], dtype=torch.int16), }, "test_get_weights_row_exl2": { "weight.q_weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.q_scale": torch.tensor([8], dtype=torch.int32), "weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32), "weight.q_scale_max": torch.tensor([100], dtype=torch.float16), "weight.q_groups": torch.tensor([4], dtype=torch.int16), }, "test_get_multi_weights_col_exl2": { "weight.q_weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.q_scale": torch.tensor([8], dtype=torch.int32), "weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32), "weight.q_scale_max": torch.tensor([100], dtype=torch.float16), "weight.q_groups": torch.tensor([4], dtype=torch.int16), }, "test_get_weights_col_exl2": { "weight.q_weight": torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.int32, ), "weight.q_scale": torch.tensor([8], dtype=torch.int32), "weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32), "weight.q_scale_max": torch.tensor([100], dtype=torch.float16), "weight.q_groups": torch.tensor([4], dtype=torch.int16), }, "test_get_weights_row_marlin": { "weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), "weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16), }, "test_get_multi_weights_col_marlin": { "weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), "weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16), }, "test_get_weights_col_packed_marlin": { "weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), "weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16), }, } class MockSlice: def __init__(self, tensor): self.tensor = tensor def get_shape(self): return self.tensor.shape def __getitem__(self, idx): return self.tensor[idx] def mock_get_slice(tensor_name, filename): tensor = dummy_file_system[filename][tensor_name] return MockSlice(tensor) def mock_handle(filename, device, dtype): return SimpleNamespace( get_slice=lambda tensor_name: mock_get_slice(tensor_name, filename) ) class MockSafeOpen: def __init__(self, filename, framework, dummy_fs): self.filename = filename self.framework = framework self.dummy_fs = dummy_fs def keys(self): return list(self.dummy_fs[self.filename].keys()) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass class MockWeights(Weights): def __init__( self, filenames: List[Union[Path, str]], device, dtype, process_group, dummy_fs, aliases: Optional[Dict[str, List[str]]] = None, prefix: Optional[str] = None, weights_loader: Optional[WeightsLoader] = None, ): routing = {} self.dummy_fs = dummy_fs for filename in filenames: with MockSafeOpen(filename, framework="pytorch", dummy_fs=dummy_fs) as f: for k in f.keys(): if k in routing: raise RuntimeError( f"Key {k} was found in multiple files: {filename} and {routing[k]}" ) routing[k] = filename if aliases is None: aliases = {} self.aliases = aliases self.routing = routing self.device = device self.dtype = dtype self.process_group = process_group self.prefix = prefix self.weights_loader = ( # We don't need to get linear layers, so just wrap raw tensors. DefaultWeightsLoader(lambda x: x) if weights_loader is None else weights_loader ) self._handles = {} def _get_handle(self, filename: Union[Path, str]): if filename in self._handles: return self._handles[filename] else: handle = mock_handle(filename, self.device, self.dtype) self._handles[filename] = handle return handle def get_shape(self, tensor_name: str): filename, _ = self.get_filename(tensor_name) handle = self._get_handle(filename) return handle.get_slice(tensor_name).get_shape() def get_tensor(self, tensor_name: str): filename, _ = self.get_filename(tensor_name) handle = self._get_handle(filename) return handle.get_slice(tensor_name).tensor dummy_process_group = SimpleNamespace(rank=lambda: 0, size=lambda: 1) def test_weights(): weights = MockWeights( [ "test_weights", "test_weights_2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) assert weights.get_shape("layer.0.weight") == (2, 2) assert weights.get_tensor("layer.1337.weight").shape == (2, 4) def test_get_tensor(): weights = MockWeights( [ "test_weights", "test_weights_2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) assert torch.allclose( weights.get_tensor("layer.0.weight"), torch.tensor( [ [1, 2], [3, 4], ], dtype=torch.float32, ), ) assert torch.allclose( weights.get_tensor("layer.1337.weight"), torch.tensor( [ [1, 2, 3, 4], [5, 6, 7, 8], ], dtype=torch.float32, ), ) def test_get_weights_col_packed(): weights = MockWeights( [ "test_get_weights_col_packed", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) prefix = "weight" block_sizes = 1 w = weights.get_weights_col_packed( prefix=prefix, block_sizes=block_sizes, ) assert torch.allclose( w, torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), ) def test_get_weights_col_packed_block_size(): weights = MockWeights( [ "test_get_weights_col_packed", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) prefix = "weight" block_sizes = 2 w = weights.get_weights_col_packed( prefix=prefix, block_sizes=block_sizes, ) assert torch.allclose( w, torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), ) def test_get_weights_col_packed_block_size_arr(): weights = MockWeights( [ "test_get_weights_col_packed", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) prefix = "weight" block_sizes = [1, 1] w = weights.get_weights_col_packed( prefix=prefix, block_sizes=block_sizes, ) assert torch.allclose( w, torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), ) def test_get_multi_weights_col(): weights = MockWeights( [ "test_get_multi_weights_col", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) prefixes = ["weight", "weight"] w = weights.get_multi_weights_col( prefixes=prefixes, dim=0, ) assert torch.allclose( w, torch.tensor( [ [1, 2], [3, 4], [5, 6], [7, 8], [1, 2], [3, 4], [5, 6], [7, 8], ], dtype=torch.float32, ), ) def test_get_weights_row(): weights = MockWeights( [ "test_get_weights_row", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, ) prefix = "weight" w = weights.get_weights_row( prefix=prefix, ) assert torch.allclose( w, torch.tensor( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], dtype=torch.float32, ), ) # test_get_weights_col def test_get_weights_col_awq(gptq_weights_loader_awq): weights = MockWeights( [ "test_get_weights_col_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader_awq, ) prefix = "weight" w = weights.get_weights_col( prefix=prefix, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor( [[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16, ), g_idx=None, bits=8.0, groupsize=2.0, use_awq_kernel=True, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert w.g_idx == expected_weight.g_idx, "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_weights_col_gtpq(gptq_weights_loader): weights = MockWeights( [ "test_get_weights_col_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader, ) prefix = "weight" w = weights.get_weights_col( prefix=prefix, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32), bits=8.0, groupsize=2.0, use_awq_kernel=False, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_weights_col_exl2(): weights = MockWeights( [ "test_get_weights_col_exl2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=Exl2WeightsLoader(), ) prefix = "weight" w = weights.get_weights_col( prefix=prefix, ) scaled_scale_max = 0.3906 * 256 expected_weight = Exl2Weight( q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), q_scale=torch.tensor([8], dtype=torch.int32), q_invperm=torch.tensor([1, 0, 3, 2], dtype=torch.int16), q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16), q_groups=torch.tensor([4], dtype=torch.int16), ) assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch" assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch" assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch" assert torch.allclose( w.q_scale_max, expected_weight.q_scale_max ), "q_scale_max mismatch" assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch" def test_get_weights_col_marlin(marlin_weights_loader): weights = MockWeights( [ "test_get_weights_col_marlin", ], device="cpu", dtype=torch.float16, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=marlin_weights_loader, ) prefix = "weight" w = weights.get_weights_col( prefix=prefix, ) expected_weight = MarlinWeight( B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16), ) assert torch.allclose(w.B, expected_weight.B), "B mismatch" assert torch.allclose(w.s, expected_weight.s), "s mismatch" # test_get_weights_col_packed def test_get_weights_col_packed_awq(gptq_weights_loader_awq): weights = MockWeights( [ "test_get_weights_col_packed_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader_awq, ) prefix = "weight" block_sizes = 1 w = weights.get_weights_col_packed( prefix=prefix, block_sizes=block_sizes, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=None, bits=8.0, groupsize=2.0, use_awq_kernel=True, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert w.g_idx == expected_weight.g_idx, "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" @pytest.mark.skip(reason="Review expected functionality") def test_get_weights_col_packed_exl2(): weights = MockWeights( [ "test_get_weights_col_packed_exl2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=Exl2WeightsLoader(), ) prefix = "weight" block_sizes = 1 w = weights.get_weights_col_packed( prefix=prefix, block_sizes=block_sizes, ) scaled_scale_max = 0.3906 * 256 expected_weight = Exl2Weight( q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), q_scale=torch.tensor([8], dtype=torch.int32), q_invperm=torch.tensor([1], dtype=torch.int16), q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16), q_groups=torch.tensor([4], dtype=torch.int16), ) assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch" assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch" assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch" assert torch.allclose( w.q_scale_max, expected_weight.q_scale_max ), "q_scale_max mismatch" assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch" def test_get_weights_col_packed_gptq(gptq_weights_loader): weights = MockWeights( [ "test_get_weights_col_packed_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader, ) prefixes = ["weight"] w = weights.get_multi_weights_col( prefixes=prefixes, dim=0, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32), bits=8.0, groupsize=2.0, use_awq_kernel=False, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_weights_col_packed_marlin(marlin_weights_loader): weights = MockWeights( [ "test_get_weights_col_packed_marlin", ], device="cpu", dtype=torch.float16, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=marlin_weights_loader, ) prefix = "weight" w = weights.get_multi_weights_col( prefixes=[prefix], dim=0, ) expected_weight = MarlinWeight( B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16), ) print(expected_weight) assert torch.allclose(w.B, expected_weight.B), "B mismatch" assert torch.allclose(w.s, expected_weight.s), "s mismatch" # test_get_multi_weights_col def test_get_multi_weights_col_awq(gptq_weights_loader_awq): weights = MockWeights( [ "test_get_multi_weights_col_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader_awq, ) prefixes = ["weight"] w = weights.get_multi_weights_col( prefixes=prefixes, dim=0, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=None, bits=8.0, groupsize=2.0, use_awq_kernel=True, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert w.g_idx == expected_weight.g_idx, "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_multi_weights_col_exl2(): weights = MockWeights( [ "test_get_multi_weights_col_exl2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=Exl2WeightsLoader(), ) prefix = "weight" try: weights.get_multi_weights_col( prefixes=[prefix], dim=0, ) except ValueError as e: assert e.args[0] == "get_multi_weights_col is not supported for exl2" def test_get_multi_weights_col_gptq(gptq_weights_loader): weights = MockWeights( [ "test_get_multi_weights_col_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader, ) prefixes = ["weight"] w = weights.get_multi_weights_col( prefixes=prefixes, dim=0, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32), bits=8.0, groupsize=2.0, use_awq_kernel=False, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_multi_weights_col_marlin(marlin_weights_loader): weights = MockWeights( [ "test_get_multi_weights_col_marlin", ], device="cpu", dtype=torch.float16, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=marlin_weights_loader, ) prefix = "weight" w = weights.get_multi_weights_col( prefixes=[prefix], dim=0, ) expected_weight = MarlinWeight( B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16), ) assert torch.allclose(w.B, expected_weight.B), "B mismatch" assert torch.allclose(w.s, expected_weight.s), "s mismatch" # test_get_weights_row def test_get_weights_row_awq(gptq_weights_loader_awq): weights = MockWeights( [ "test_get_weights_row_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader_awq, ) prefix = "weight" w = weights.get_weights_row( prefix=prefix, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=None, bits=8.0, groupsize=2.0, use_awq_kernel=True, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert w.g_idx == expected_weight.g_idx, "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_weights_row_exl2(): weights = MockWeights( [ "test_get_weights_row_exl2", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=Exl2WeightsLoader(), ) prefix = "weight" w = weights.get_weights_row( prefix=prefix, ) print(w) scaled_scale_max = 0.3906 * 256 expected_weight = Exl2Weight( q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), q_scale=torch.tensor([8], dtype=torch.int32), q_invperm=torch.tensor([1, 0, 3, 2], dtype=torch.int16), q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16), q_groups=torch.tensor([4], dtype=torch.int16), ) assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch" assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch" assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch" assert torch.allclose( w.q_scale_max, expected_weight.q_scale_max ), "q_scale_max mismatch" assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch" def test_get_weights_row_gptq(gptq_weights_loader): weights = MockWeights( [ "test_get_weights_row_gptq", ], device="cpu", dtype=torch.float32, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=gptq_weights_loader, ) prefix = "weight" w = weights.get_weights_row( prefix=prefix, ) expected_weight = GPTQWeight( qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32), qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32), scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16), g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32), bits=8.0, groupsize=2.0, use_awq_kernel=False, use_exllama=False, ) assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch" assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch" assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch" assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch" assert w.bits == expected_weight.bits, "bits mismatch" assert w.groupsize == expected_weight.groupsize, "groupsize mismatch" assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch" assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch" def test_get_weights_row_marlin(marlin_weights_loader): weights = MockWeights( [ "test_get_weights_row_marlin", ], device="cpu", dtype=torch.float16, process_group=dummy_process_group, dummy_fs=dummy_file_system, weights_loader=marlin_weights_loader, ) prefix = "weight" w = weights.get_weights_row( prefix=prefix, ) expected_weight = MarlinWeight( B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32), s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16), ) assert torch.allclose(w.B, expected_weight.B), "B mismatch" assert torch.allclose(w.s, expected_weight.s), "s mismatch"
text-generation-inference/server/tests/utils/test_weights.py/0
{ "file_path": "text-generation-inference/server/tests/utils/test_weights.py", "repo_id": "text-generation-inference", "token_count": 17926 }
from typing import Tuple from dataclasses import dataclass, field from loguru import logger import torch from text_generation_server.layers.fp8 import fp8_quantize from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.log import log_once from text_generation_server.utils.weights import Weights @dataclass class KVScales: """ Key-value scales for FP8 KV cache. This data class stores key and value scales both as a GPU tensor and as a GPU float. This inconvenience is necessary because some functions (e.g. scaling kernels) take scales as a GPU tensor, whereas others (e.g. flashinfer) take scales as a CPU scalar. """ key_scale: torch.Tensor value_scale: torch.Tensor key_scale_cpu: float = field(init=False) value_scale_cpu: float = field(init=False) def __post_init__(self): if self.key_scale.numel() != 1 or self.value_scale.numel() != 1: raise ValueError("Key and value scales must be scalar tensors.") self.key_scale_cpu = self.key_scale.item() self.value_scale_cpu = self.value_scale.item() class KVCache: """ Key-value cache for attention layers. """ kv_cache: Tuple[torch.Tensor, torch.Tensor] def __init__( self, *, num_blocks: int, num_heads: int, head_size: int, dtype: torch.dtype, device: torch.device, ): """Construct the key-value cache for a layer.""" if dtype in {torch.float8_e5m2, torch.float8_e4m3fn}: if not ( (ATTENTION == "flashinfer" and SYSTEM == "cuda") or (ATTENTION == "paged" and SYSTEM in ("cuda", "rocm")) ): raise ValueError( "FP8 KV cache is currently only supported for flashinfer on CUDA and paged attention on CUDA and ROCm. " ) if SYSTEM == "rocm" and dtype == torch.float8_e5m2: raise ValueError( "float8_e5m2 FP8 KV cache is not supported on AMD ROCm" ) element_size = torch.tensor([], dtype=dtype).element_size() if SYSTEM == "ipex" and device.type == "xpu": x = 1 else: x = BLOCK_SIZE // element_size if ATTENTION in {"flashdecoding", "flashinfer"} or ( ATTENTION == "flashdecoding-ipex" and device.type == "xpu" ): self.kv_cache = ( torch.empty( (num_blocks, BLOCK_SIZE, num_heads, head_size), dtype=dtype, device=device, ), torch.empty( (num_blocks, BLOCK_SIZE, num_heads, head_size), dtype=dtype, device=device, ), ) elif SYSTEM == "ipex" and device == torch.device("cpu"): # ipex cpu flashdecoding kernel and paged attention kernel share same layout self.kv_cache = ( torch.empty( (num_blocks, num_heads, BLOCK_SIZE, head_size), dtype=dtype, device=device, ), torch.empty( (num_blocks, num_heads, BLOCK_SIZE, head_size), dtype=dtype, device=device, ), ) else: self.kv_cache = ( torch.zeros( (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), dtype=dtype, device=device, ), torch.zeros( (num_blocks, num_heads, head_size, BLOCK_SIZE), dtype=dtype, device=device, ), ) def can_scale(self, kv_scales: KVScales) -> bool: """Check if the cache can be scaled by the given scales.""" if kv_scales.key_scale_cpu == 1.0 and kv_scales.value_scale_cpu == 1.0: return False elif self.dtype == torch.float8_e4m3fn and ( (ATTENTION == "flashinfer" and SYSTEM == "cuda") or (ATTENTION == "paged" and SYSTEM == "rocm") ): log_once(logger.info, "Using FP8 KV cache scales") return True else: # We have scales, but not the correct FP8 cache type, so warn once. log_once( logger.info, "Ignoring FP8 KV cache scales, supported only for float8_e4m3fn KV cache with flashinfer on CUDA and paged attention on ROCm", ) return False @property def dtype(self): """Get the data type of the cache.""" return self.kv_cache[0].dtype @property def key(self): """Get the key cache.""" return self.kv_cache[0] @property def value(self): """Get the value cache.""" return self.kv_cache[1] def store( self, *, key: torch.Tensor, value: torch.Tensor, slots: torch.Tensor, kv_scales: KVScales, ): """Store the key and value at the given slots.""" key_cache = self.kv_cache[0] value_cache = self.kv_cache[1] if self.can_scale(kv_scales) and SYSTEM == "cuda": if kv_scales.key_scale_cpu != 1.0: key = fp8_quantize( key.float(), scale=kv_scales.key_scale, qdtype=self.dtype, scalar=True, )[0] if kv_scales.value_scale_cpu != 1.0: value = fp8_quantize( value.float(), scale=kv_scales.value_scale, qdtype=self.dtype, scalar=True, )[0] if ATTENTION in {"flashdecoding", "flashinfer"}: key = key.to(key_cache.dtype) value = value.to(value_cache.dtype) if key_cache.dtype in {torch.float8_e4m3fn, torch.float8_e5m2}: # Torch index_put does not support float8_{e5m2,e4m3fn} yet, so # put as raw data instead. key_cache = key_cache.view(torch.uint8) value_cache = value_cache.view(torch.uint8) key = key.view(torch.uint8) value = value.view(torch.uint8) shape = key_cache.shape key_cache.view(-1, shape[-2], shape[-1])[slots] = key value_cache.view(-1, shape[-2], shape[-1])[slots] = value elif ATTENTION == "flashdecoding-ipex" and key.device.type == "xpu": import intel_extension_for_pytorch as ipex ipex.llm.modules.PagedAttention.reshape_and_cache_flash( key, value, key_cache, value_cache, slots ) else: paged_reshape_and_cache( key, value, key_cache, value_cache, slots, kv_scales.key_scale_cpu, kv_scales.value_scale_cpu, ) def paged_reshape_and_cache( key: torch.Tensor, value: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, slots: torch.Tensor, k_scale: float = 1.0, v_scale: float = 1.0, ): if SYSTEM == "cuda": try: import attention_kernels except Exception as e: raise ImportError( f"Could not import attention_kernels. Make sure your installation is correct. Complete error: {e}" ) kv_cache_dtype = "auto" if key_cache.dtype == torch.float8_e4m3fn: kv_cache_dtype = "fp8" attention_kernels.reshape_and_cache( key, value, key_cache, value_cache, slots, kv_cache_dtype, k_scale, v_scale ) elif SYSTEM == "rocm": try: import vllm._custom_ops as ops except Exception as e: raise ImportError( f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}" ) kv_cache_dtype = "auto" if key_cache.dtype == torch.float8_e4m3fn: key_cache = key_cache.view(torch.uint8) value_cache = value_cache.view(torch.uint8) kv_cache_dtype = "fp8" ops.reshape_and_cache( key, value, key_cache, value_cache, slots, kv_cache_dtype, k_scale, v_scale ) elif SYSTEM == "ipex": import intel_extension_for_pytorch as ipex ipex.llm.modules.PagedAttention.reshape_and_cache( key, value, key_cache, value_cache, slots ) else: raise NotImplementedError( f"Cannot reshape and cache for paged attention, system '{SYSTEM}' not supported" ) def get_kv_scales(weights: Weights, prefix: str) -> KVScales: """Load KV cache scales.""" key_scale = torch.tensor(1.0, dtype=torch.float32, device=weights.device) value_scale = key_scale if weights.has_tensor(f"{prefix}.k_scale") and weights.has_tensor( f"{prefix}.v_scale" ): key_scale = weights.get_tensor(f"{prefix}.k_scale", to_dtype=False).float() value_scale = weights.get_tensor(f"{prefix}.v_scale", to_dtype=False).float() elif weights.has_tensor(f"{prefix}.kv_scale"): # Fall back to older more coarse-grained scale when available. key_scale = weights.get_tensor(f"{prefix}.kv_scale").float() value_scale = key_scale return KVScales(key_scale=key_scale, value_scale=value_scale)
text-generation-inference/server/text_generation_server/layers/attention/kv_cache.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/attention/kv_cache.py", "repo_id": "text-generation-inference", "token_count": 4988 }
from dataclasses import dataclass import os from typing import Optional, Tuple, Type, Union, List import torch from loguru import logger from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import ( Weight, WeightsLoader, UnquantizedWeight, Weights, ) from text_generation_server.utils.log import log_once try: import marlin_kernels except ImportError: marlin_kernels = None try: from moe_kernels.fp8_utils import w8a8_block_fp8_matmul, per_token_group_quant_fp8 except ImportError: w8a8_block_fp8_matmul = None per_token_group_quant_fp8 = None quant_dtype: torch.dtype = ( torch.float8_e4m3fnuz if SYSTEM == "rocm" else torch.float8_e4m3fn ) if SYSTEM == "cuda" and marlin_kernels is not None: major, minor = torch.cuda.get_device_capability() CUTLASS_FP8_AVAILABLE = marlin_kernels.cutlass_scaled_mm_supports_fp8( major * 10 + minor ) else: CUTLASS_FP8_AVAILABLE = False def get_fp8_linear(force_w8a16: bool = False) -> Type[torch.nn.Module]: """ Return an FP8 linear `Module` that is compatible with the current system. """ if SYSTEM == "cuda": major, _ = torch.cuda.get_device_capability() # Marlin is W8A16, use it when: # # - On capability 8.x where x < 8: W8A8 FP8 GEMM is not supported. # - On capability 8.9: W8A8 FP8 GEMM is supported, but Marlin-FP8 is faster. # - On capability 9.x when force_w8a16: cutlass kernels do not support W8A16. if (major == 8 or (major == 9 and force_w8a16)) and os.getenv( "USE_CUTLASS_W8A8", "0" ) != "1": # NOTE: Capability 8.9 is supported by cutlass kernels, but FP8-Marlin # gives better decoding throughput on L4 and L40. from text_generation_server.layers.marlin import GPTQMarlinFP8Linear if major == 8 and minor == 9: log_once( logger.info, "GPU supports FP8, but using Marlin FP8 kernel for better performance", ) else: log_once( logger.info, "GPU does not support FP8, using Marlin FP8 kernel" ) return GPTQMarlinFP8Linear # On other systems let Torch decide if the hardware supports FP8. return Fp8Linear def normalize_e4m3fn_to_native_float8( weight: torch.Tensor, weight_scale: torch.Tensor, input_scale: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: if weight.dtype == torch.float8_e4m3fn and SYSTEM == "rocm": # The bits pattern 10000000(-128) represents zero in e4m3fn # but NaN in e4m3fnuz. So here we set it to 0. # https://onnx.ai/onnx/technical/float8.html weight_as_int8 = weight.view(torch.int8) ROCM_FP8_NAN_AS_INT = -128 weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0 weight = weight_as_int8.view(torch.float8_e4m3fnuz) # For the same bits representation, e4m3fnuz value is half of # the e4m3fn value, so we should double the scaling factor to # get the same dequantized value. # https://onnx.ai/onnx/technical/float8.html weight_scale = weight_scale * 2.0 if input_scale is not None: input_scale = input_scale * 2.0 return weight, weight_scale, input_scale def per_tensor_dequantize( tensor: torch.Tensor, inv_scale: Union[float, torch.Tensor], dtype: torch.dtype = torch.float16, ) -> torch.Tensor: fake_qweight = tensor.to(dtype) dq_weight = fake_qweight * inv_scale return dq_weight def requantize_with_max_scale( weight: torch.Tensor, weight_scale: torch.Tensor, logical_widths: int, dtype: torch.dtype, ) -> Tuple[torch.Tensor, torch.Tensor]: # Max scale to be used for requanitzation. max_w_scale = weight_scale.max().float() start = 0 for idx, logical_width in enumerate(logical_widths): end = start + logical_width weight_dq = per_tensor_dequantize( weight[start:end, :], weight_scale[idx], dtype ) weight[start:end, :], max_w_scale_normalized = fp8_quantize( weight_dq, max_w_scale ) start = end return weight, max_w_scale_normalized def fp8_quantize( weight: torch.Tensor, scale: Optional[torch.Tensor] = None, scale_upper_bound: Optional[torch.Tensor] = None, qdtype: torch.dtype = torch.float8_e4m3fn, scalar: bool = False, ): """ This function returns a reciprocal of the scale, so that a tensor can be unscaled by multiplying it with the returned scale. If a scale is given through the `scale` argument, it must also be a reciprocal (so that scales from an FP8 checkpoint can be used without modification). """ if marlin_kernels is not None: shape = weight.shape qweight, scale = marlin_kernels.scaled_fp8_quant( weight.reshape(-1, shape[-1]), dtype=quant_dtype, scale=scale, scale_ub=scale_upper_bound, # TODO: don't do this when we have to use the Torch kernel. use_per_token_if_dynamic=not scalar, ) return qweight.reshape(shape), scale finfo = torch.finfo(qdtype) if scale is None: # Calculate the scale as dtype max divided by absmax scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound) # scale and clamp the tensor to bring it to # the representative range of float8 data type # (as default cast is unsaturated) qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max) scale = scale.float().reciprocal() else: if SYSTEM == "rocm": scale = scale / 2.0 # Use reciprocal to avoid more expensive division. qweight = (weight * scale.reciprocal()).clamp(min=finfo.min, max=finfo.max) # Return both float8 data and the inverse scale (as float), # as both required as inputs to torch._scaled_mm qweight = qweight.to(qdtype) if SYSTEM == "rocm": qweight, scale, _ = normalize_e4m3fn_to_native_float8(qweight, scale) return qweight, scale class HybridFP8UnquantLoader(WeightsLoader): """Weight loader that loads FP8 and unquantized Torch tensors.""" def __init__( self, activation_scale_ub: Optional[float], to_fp8: bool, weight_block_size: Optional[List[int]] = None, ): self.activation_scale_ub = activation_scale_ub self.to_fp8 = to_fp8 self.weight_block_size = weight_block_size def get_weights(self, weights: "Weights", prefix: str): w = weights.get_tensor(f"{prefix}.weight") if w.dtype == torch.float8_e4m3fn: if self.weight_block_size is not None: scale = weights.get_tensor(f"{prefix}.weight_scale_inv") return Fp8Weight( weight=w, weight_scale=scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, weight_block_size=self.weight_block_size, ) # FP8 branch scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) if SYSTEM == "cuda": scale.reshape(-1).expand(w.shape[0]) input_scale = None if weights.has_tensor(f"{prefix}.input_scale"): input_scale = ( weights.get_tensor(f"{prefix}.input_scale", to_dtype=False) .reshape(-1) .max() ) return Fp8Weight( weight=w, weight_scale=scale, input_scale=input_scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, ) if self.to_fp8: return Fp8Weight(weight=w, dtype=weights.dtype) return UnquantizedWeight(w) def get_weights_col_packed( self, weights: Weights, prefix: str, block_sizes: Union[int, List[int]], ): w = weights.get_packed_sharded( f"{prefix}.weight", dim=0, block_sizes=block_sizes ) if w.dtype == torch.float8_e4m3fn: # FP8 branch scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) if scale.numel() > 1: scale = weights.get_packed_sharded( f"{prefix}.weight_scale", dim=0, block_sizes=block_sizes, to_dtype=False, ) if SYSTEM == "cuda": scale = scale.reshape(-1).expand(w.shape[0]) input_scale = None if weights.has_tensor(f"{prefix}.input_scale"): input_scale = weights.get_tensor( f"{prefix}.input_scale", to_dtype=False ) if input_scale.numel() > 1: input_scale = weights.get_packed_sharded( f"{prefix}.input_scale", dim=0, block_sizes=block_sizes, to_dtype=False, ) input_scale = input_scale.reshape(-1).max() return Fp8Weight( weight=w, weight_scale=scale, input_scale=input_scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, ) if self.to_fp8: return Fp8Weight(weight=w, dtype=weights.dtype) return UnquantizedWeight(w) def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int): # FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet w = [ weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes ] shapes = [x.shape for x in w] # Concat then send to the device w = torch.cat(w, dim=dim).to(weights.device) # FP8 branch if w.dtype == torch.float8_e4m3fn: if self.weight_block_size is not None: scale = [ weights.get_sharded(f"{p}.weight_scale_inv", dim=0, to_device=False) for p in prefixes ] scale = torch.cat(scale, dim=dim) scale = scale.to(weights.device) return Fp8Weight( weight=w, weight_scale=scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, weight_block_size=self.weight_block_size, ) scale = [ _load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape) for p, shape in zip(prefixes, shapes) ] scale = torch.cat(scale, dim=0).reshape(-1) input_scale = [ _load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape) for p, shape in zip(prefixes, shapes) if weights.has_tensor(f"{p}.input_scale") ] assert len(input_scale) == 0 or len(input_scale) == len(prefixes) input_scale = ( torch.cat(input_scale, dim=0).reshape(-1).max() if len(input_scale) != 0 else None ) if SYSTEM == "rocm": w, scale, input_scale = normalize_e4m3fn_to_native_float8( w, scale, input_scale ) if scale.numel() == len(prefixes): logical_widths = [x[0] for x in shapes] w, scale = requantize_with_max_scale( w, scale.to(weights.device), logical_widths, weights.dtype ) return Fp8Weight( weight=w, weight_scale=scale, input_scale=input_scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, ) if self.to_fp8: return Fp8Weight(weight=w, dtype=weights.dtype) return UnquantizedWeight(w) def get_weights_row(self, weights: "Weights", prefix: str): w = weights.get_sharded(f"{prefix}.weight", dim=1) # FP8 branch if w.dtype == torch.float8_e4m3fn: if self.weight_block_size is not None: # XXX: Yes the weights is named scale_inv, but corresponds to scale it seems. scale = weights.get_sharded(f"{prefix}.weight_scale_inv", dim=1) return Fp8Weight( weight=w, weight_scale=scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, weight_block_size=self.weight_block_size, ) scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) if SYSTEM == "cuda": scale = scale.reshape(-1).expand(w.shape[0]) input_scale = None if weights.has_tensor(f"{prefix}.input_scale"): input_scale = ( weights.get_tensor(f"{prefix}.input_scale", to_dtype=False) .reshape(-1) .max() ) return Fp8Weight( weight=w, weight_scale=scale, input_scale=input_scale, activation_scale_ub=self.activation_scale_ub, dtype=weights.dtype, ) if self.to_fp8: return Fp8Weight(weight=w, dtype=weights.dtype) return UnquantizedWeight(w) @dataclass class Fp8Weight(Weight): weight: torch.Tensor dtype: torch.dtype weight_scale: Optional[torch.Tensor] = None input_scale: Optional[torch.Tensor] = None activation_scale_ub: Optional[float] = None force_w8a16: bool = False weight_block_size: Optional[List[int]] = None def get_linear(self, bias: torch.Tensor): if self.weight_scale is None: return get_fp8_linear(force_w8a16=self.force_w8a16).from_unquant( self.weight, bias, self.dtype ) # This is not checked by the fbgemm kernels, but they require contiguous # memory. Can be non-contiguous when we e.g. expand from scalars. self.weight_scale = self.weight_scale.contiguous() return get_fp8_linear(force_w8a16=self.force_w8a16).from_fp8( weight=self.weight, scale=self.weight_scale, dtype=self.dtype, bias=bias, input_scale=self.input_scale, scale_upper_bound=self.activation_scale_ub, weight_block_size=self.weight_block_size, ) class Fp8Linear(torch.nn.Module): _device_identity_cache = {} def __init__( self, qweight: torch.Tensor, scale: torch.Tensor, dtype: torch.dtype, bias: Optional[torch.Tensor] = None, input_scale: Optional[torch.Tensor] = None, scale_upper_bound: Optional[float] = None, weight_block_size: Optional[List[int]] = None, ) -> None: super().__init__() if CUTLASS_FP8_AVAILABLE: log_once(logger.info, "Using cutlass w8a8 kernels") if SYSTEM == "rocm" and qweight.dtype == torch.float8_e4m3fn: qweight, scale, input_scale = normalize_e4m3fn_to_native_float8( weight=qweight, weight_scale=scale, input_scale=input_scale ) self.dtype = dtype self.qweight = qweight self.scale = scale.float() self.input_scale = input_scale.float() if input_scale is not None else None self.weight_block_size = weight_block_size if CUTLASS_FP8_AVAILABLE and scale_upper_bound is not None: self.scale_upper_bound = torch.tensor( scale_upper_bound, dtype=torch.float32, device=qweight.device ) else: self.scale_upper_bound = scale_upper_bound self.bias = bias if bias is not None else None @classmethod def from_unquant(cls, weight, bias, dtype): qweight, scale = fp8_quantize(weight, scalar=not CUTLASS_FP8_AVAILABLE) return cls( qweight=qweight, scale=scale, dtype=dtype, bias=bias, input_scale=None, scale_upper_bound=None, ) @classmethod def from_fp8( cls, weight: torch.Tensor, scale: torch.Tensor, dtype: torch.dtype, bias: Optional[torch.Tensor] = None, **kwargs, ) -> "Fp8Linear": input_scale = kwargs.get("input_scale", None) scale_upper_bound = kwargs.get("scale_upper_bound", None) weight_block_size = kwargs.get("weight_block_size", None) return cls( qweight=weight, scale=scale, input_scale=input_scale, scale_upper_bound=scale_upper_bound, bias=bias, dtype=dtype, weight_block_size=weight_block_size, ) @classmethod def get_shared_device_identity(cls, device): # Input scaling factors are no longer optional in _scaled_mm starting # from pytorch 2.5. Allocating a dummy tensor to pass as input_scale if device not in cls._device_identity_cache: cls._device_identity_cache[device] = torch.ones(1, device=device) return cls._device_identity_cache[device] def forward(self, input: torch.Tensor) -> torch.Tensor: if self.weight_block_size is not None: # https://arxiv.org/pdf/2412.19437 # At a more granular level. As illustrated in Figure 7 (a), (1) for activations, we group and # scale elements on a 1x128 tile basis (i.e., per token per 128 channels); and (2) for weights, we # group and scale elements on a 128x128 block basis (i.e., per 128 input channels per 128 output # channels). qinput, scale = per_token_group_quant_fp8(input, self.weight_block_size[1]) output = w8a8_block_fp8_matmul( qinput, self.qweight, scale, self.scale, self.weight_block_size, output_dtype=input.dtype, ) if self.bias is not None: output = output + self.bias return output.to(dtype=input.dtype) if CUTLASS_FP8_AVAILABLE: # cutlass FP8 supports per-token scales, so get non-scalar scales. qinput, scale = fp8_quantize( input, scale_upper_bound=self.scale_upper_bound, scalar=False ) return marlin_kernels.cutlass_scaled_mm( qinput, self.qweight.t(), scale, self.scale, input.dtype, self.bias ) qinput, scale = fp8_quantize( input, self.input_scale, scale_upper_bound=self.scale_upper_bound, scalar=True, ) per_tensor_weights = self.scale.numel() == 1 per_tensor_activations = scale.numel() == 1 if SYSTEM != "rocm" or (per_tensor_weights and per_tensor_activations): output = torch._scaled_mm( qinput, self.qweight.t(), out_dtype=self.dtype, scale_a=scale, scale_b=self.scale, bias=self.bias, ) if isinstance(output, tuple) and len(output) == 2: output = output[0] else: device_identity = None if SYSTEM == "rocm": device_identity = self.get_shared_device_identity(self.qweight.device) output = torch._scaled_mm( qinput, self.qweight.t(), scale_a=device_identity, scale_b=device_identity, out_dtype=torch.float32, ) if isinstance(output, tuple) and len(output) == 2: output = output[0] output = output * scale * self.scale.t() if self.bias is not None: output = output + self.bias output = output.to(dtype=self.dtype) return output def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size): scale = weights.get_tensor(prefix, to_dtype=False) if scale.numel() > 1: scale = weights.get_sharded(prefix, dim=0, to_dtype=False) elif SYSTEM == "rocm": return scale.reshape(-1) return scale.reshape(-1).expand(shape[0])
text-generation-inference/server/text_generation_server/layers/fp8.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/fp8.py", "repo_id": "text-generation-inference", "token_count": 10534 }
import functools from typing import List, Tuple import numpy import torch from text_generation_server.utils.import_utils import SYSTEM try: import marlin_kernels except ImportError: marlin_kernels = None try: major, _minor = torch.cuda.get_device_capability() has_sm_8_0 = major >= 8 except Exception: has_sm_8_0 = False def _check_marlin_kernels(): if not (SYSTEM == "cuda" and has_sm_8_0): raise NotImplementedError( "Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later." ) if marlin_kernels is None: raise NotImplementedError( "marlin is not installed, install it with: pip install server/marlin" ) # https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54 @functools.cache def get_perms() -> Tuple[List[int], List[int]]: scale_perm = [] for i in range(8): scale_perm.extend([i + 8 * j for j in range(8)]) scale_perm_single = [] for i in range(4): scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) return scale_perm, scale_perm_single def permute_scales(scales: torch.Tensor): scale_perm, scale_perm_single = get_perms() out_features = scales.shape[1] if scales.shape[0] == 1: scales = scales.reshape((-1, len(scale_perm_single)))[:, scale_perm_single] else: scales = scales.reshape((-1, len(scale_perm)))[:, scale_perm] return scales.reshape((-1, out_features)).contiguous() # Functions below are from vLLM def get_pack_factor(bits: int) -> int: if 32 % bits != 0: raise ValueError(f"Cannot {bits} bit values into uint32") return 32 // bits def pack_cols( q_w: torch.Tensor, num_bits: int, size_k: int, size_n: int, ): assert q_w.shape == (size_k, size_n) pack_factor = get_pack_factor(num_bits) assert size_n % pack_factor == 0 orig_device = q_w.device q_w = q_w.cpu().numpy().astype(numpy.uint32) q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32) for i in range(pack_factor): q_res |= q_w[:, i::pack_factor] << num_bits * i q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device) q_res = q_res.contiguous() return q_res def unpack_cols( packed_q_w: torch.Tensor, num_bits: int, size_k: int, size_n: int, ): pack_factor = get_pack_factor(num_bits) assert size_n % pack_factor == 0 assert packed_q_w.shape == ( size_k, size_n // pack_factor, ), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format( packed_q_w.shape, size_k, size_n, pack_factor ) orig_device = packed_q_w.device packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32) q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32) mask = (1 << num_bits) - 1 for i in range(pack_factor): vals = packed_q_w_cpu & mask packed_q_w_cpu >>= num_bits q_res[:, i::pack_factor] = vals q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device) q_res = q_res.contiguous() return q_res def marlin_zero_points( zp: torch.Tensor, size_k: int, size_n: int, num_bits: int ) -> torch.Tensor: scale_perm, _ = get_perms() # Permute zero-points in a similar way to scales, but do not use the # "single" permutation, since zero-points are applied on every MMA zp = zp.reshape((-1, len(scale_perm)))[:, scale_perm] # Interleave column dim (for the dequantize code) and pack it to int32 if num_bits == 4: interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7]) elif num_bits == 8: interleave = numpy.array([0, 2, 1, 3]) else: raise Exception("num_bits must be 4 or 8, got {}".format(num_bits)) zp = zp.reshape((-1, len(interleave)))[:, interleave].ravel() zp = zp.reshape((-1, size_n)).contiguous() zp = pack_cols(zp, num_bits, size_k, size_n) return zp
text-generation-inference/server/text_generation_server/layers/marlin/util.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/marlin/util.py", "repo_id": "text-generation-inference", "token_count": 1782 }
from typing import Optional, Tuple import torch from torch import nn from transformers.activations import ACT2FN from transformers.modeling_attn_mask_utils import ( _create_4d_causal_attention_mask, _prepare_4d_attention_mask, ) from transformers.modeling_outputs import ( BaseModelOutputWithPooling, ) from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig from text_generation_server.layers import ( TensorParallelEmbedding, TensorParallelColumnLinear, TensorParallelRowLinear, ) class CLIPVisionEmbeddings(nn.Module): def __init__(self, prefix, config: CLIPVisionConfig, weights): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size # TODO Should we TP this ? self.class_embedding = weights.get_tensor(f"{prefix}.class_embedding") self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.patch_embedding.weight = nn.Parameter( weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = TensorParallelEmbedding( prefix=f"{prefix}.position_embedding", weights=weights ) self.register_buffer( "position_ids", torch.arange(self.num_positions, device=weights.device).expand((1, -1)), persistent=False, ) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding( pixel_values.to(dtype=target_dtype) ) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class CLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding( config.max_position_embeddings, embed_dim ) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = ( input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class CLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, prefix, config, weights): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_size = self.embed_dim // self.num_heads if self.head_size * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.num_heads = self.num_heads // weights.process_group.size() self.embed_dim = self.embed_dim // weights.process_group.size() self.scale = self.head_size**-0.5 self.dropout = config.attention_dropout self.qkv = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=True, ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return ( tensor.view(bsz, seq_len, self.num_heads, self.head_size) .transpose(1, 2) .contiguous() ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, _ = hidden_states.size() # get query proj qkv = self.qkv(hidden_states) query_states, key_states, value_states = qkv.split( [ self.head_size * self.num_heads, ] * 3, dim=2, ) query_states = query_states * self.scale key_states = self._shape(key_states, -1, bsz) value_states = self._shape(value_states, -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_size) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = ( attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = ( attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_probs = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None class CLIPMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = TensorParallelColumnLinear.load( prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True ) self.fc2 = TensorParallelRowLinear.load( prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class CLIPEncoderLayer(nn.Module): def __init__(self, prefix, config: CLIPConfig, weights): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.layer_norm1 = nn.LayerNorm.load( prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps ) self.mlp = CLIPMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.layer_norm2 = nn.LayerNorm.load( prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps ) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class CLIPPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPConfig base_model_prefix = "clip" supports_gradient_checkpointing = True CLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. """ class CLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`CLIPEncoderLayer`]. Args: config: CLIPConfig """ def __init__(self, prefix, config: CLIPConfig, weights): super().__init__() self.config = config self.layers = nn.ModuleList( [ CLIPEncoderLayer( prefix=f"{prefix}.layers.{i}", config=config, weights=weights ) for i in range(config.num_hidden_layers) ] ) def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) """ hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): hidden_states = encoder_layer( hidden_states, attention_mask, causal_attention_mask, ) return hidden_states class CLIPTextTransformer(nn.Module): def __init__(self, prefix: str, config: CLIPTextConfig, weights=None): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPTextEmbeddings(config) # Initialize weights and apply final processing with `self.post_init()` self.encoder = CLIPEncoder( prefix=f"{prefix}.encoder", config=config, weights=weights ) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, ): r""" Returns: """ if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask( attention_mask, hidden_states.dtype ) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 last_hidden_state[ torch.arange( last_hidden_state.shape[0], device=last_hidden_state.device ), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax( dim=-1 ), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) last_hidden_state[ torch.arange( last_hidden_state.shape[0], device=last_hidden_state.device ), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) ( input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id ) .int() .argmax(dim=-1), ] return last_hidden_state class CLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] def __init__(self, prefix, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(prefix, config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, ): r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, CLIPTextModel >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, ) class CLIPVisionTransformer(nn.Module): def __init__(self, prefix, config: CLIPVisionConfig, weights): super().__init__() self.config = config self.embeddings = CLIPVisionEmbeddings( prefix=f"{prefix}.embeddings", config=config, weights=weights ) self.pre_layrnorm = nn.LayerNorm.load( prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps ) self.encoder = CLIPEncoder( prefix=f"{prefix}.encoder", config=config, weights=weights ) # self.post_layernorm = nn.LayerNorm.load(prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, ): r""" Returns: """ if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, ) last_hidden_state = encoder_outputs # pooled_output = last_hidden_state[:, 0, :] # pooled_output = self.post_layernorm(pooled_output) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, # pooler_output=pooled_output, # hidden_states=encoder_outputs, ) class CLIPVisionModel(CLIPPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding def forward( self, pixel_values: Optional[torch.FloatTensor] = None, ): r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPVisionModel >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, ) class CLIPModel(nn.Module): def __init__(self, prefix, config: CLIPConfig, weights): super().__init__() text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPTextTransformer(text_config) self.vision_model = CLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear( self.vision_embed_dim, self.projection_dim, bias=False ) self.text_projection = nn.Linear( self.text_embed_dim, self.projection_dim, bias=False ) self.logit_scale = nn.Parameter( torch.tensor(self.config.logit_scale_init_value) ) # Initialize weights and apply final processing self.post_init() def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. vision_outputs = self.vision_model( pixel_values=pixel_values, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, ): r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. vision_outputs = self.vision_model( pixel_values=pixel_values, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() return logits_per_image, logits_per_text
text-generation-inference/server/text_generation_server/models/custom_modeling/clip.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/clip.py", "repo_id": "text-generation-inference", "token_count": 13765 }
import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) class Qwen2Attention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.max_past = ( config.sliding_window if config.sliding_window is not None else -1 ) self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ): qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) if prefill_cache_indices is not None: kv_to_cache = kv[prefill_cache_indices] else: kv_to_cache = kv kv_cache.store( key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, window_size_left=self.max_past, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) class Qwen2MLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) # Fuse gate and up proj self.gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) def forward(self, hidden_states): gate_up_states = self.gate_up_proj(hidden_states) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) class Qwen2Layer(nn.Module): def __init__(self, prefix, layer_id, config, weights): super().__init__() prefix = f"{prefix}.layers.{layer_id}" self.self_attn = Qwen2Attention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = Qwen2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps ) self.post_attention_layernorm = FastRMSNorm.load( prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=config.rms_norm_eps, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ): normed_hidden_states, residual = self.input_layernorm(hidden_states) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, prefill_cache_indices, ) hidden_states = attn_output + residual # faster post attention rms norm hidden_states, residual = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(hidden_states) hidden_states = mlp_output + residual return hidden_states class Qwen2Model(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() prefix = f"{prefix}.model" if prefix else "model" process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.layers = nn.ModuleList( [ Qwen2Layer( prefix, layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.norm = FastRMSNorm.load( prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads def forward( self, inputs_embeds: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], ) -> torch.Tensor: hidden_states = inputs_embeds cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, true_max_s, hidden_states.dtype, ) residual = None for i, layer in enumerate(self.layers): hidden_states = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, prefill_cache_indices, ) hidden_states, _ = self.norm(hidden_states) return hidden_states class Qwen2ForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.model = Qwen2Model(prefix, config, weights) if config.tie_word_embeddings: suffix = "model.embed_tokens" else: suffix = "lm_head" self.lm_head = SpeculativeHead.load( config, prefix=f"{prefix}.{suffix}" if prefix else suffix, weights=weights, ) self.embed_tokens = TensorParallelEmbedding( prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens", weights=weights, ) self.max_past = config.sliding_window self.max_past_tensor = ( torch.tensor(config.sliding_window, device=weights.device) if self.max_past is not None else None ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: true_max_s = max_s if prefill_cache_indices is not None: # Slots also need to be sliced as it has the same size as the whole kv tensor slots = slots[prefill_cache_indices] elif self.max_past is not None: # Clamp in decode mode as paged attention requires clamped values whereas the flash attention # kernel requires the true values seqlen = seqlen.clamp(max=self.max_past_tensor) inputs_embeds = self.embed_tokens(input_ids) hidden_states = self.model( inputs_embeds, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, true_max_s, prefill_cache_indices, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py", "repo_id": "text-generation-inference", "token_count": 6486 }
# coding=utf-8 # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTNeoX model.""" from typing import Optional, Tuple, Union import os import torch import torch.distributed import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from text_generation_server.layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, SpeculativeHead, ) CUSTOM_KERNELS_ENABLED = False if ( torch.cuda.is_available() and not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True" ): try: from custom_kernels import fused_attention_cuda CUSTOM_KERNELS_ENABLED = True except ImportError: pass def make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.ones( (target_length, target_length + past_key_values_length), dtype=torch.bool, device=device, ) mask = mask.triu(1 + past_key_values_length) expanded_mask = mask.unsqueeze(0).expand( batch_size, target_length, target_length + past_key_values_length ) return expanded_mask def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, tgt_length, src_length) def prepare_attn_mask( attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int, ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask class GPTNeoXPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ class GPTNeoXAttention(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.num_attention_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_attention_heads self.rotary_ndims = int(self.head_size * config.rotary_pct) # ??? TODO # self.register_buffer( # "bias", # torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( # 1, 1, max_positions, max_positions # ), # ) # self.register_buffer("masked_bias", torch.tensor(-1e9)) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base, ) self.rotary_emb.inv_freq = nn.Parameter( weights.get_tensor(f"{prefix}.rotary_emb.inv_freq") ) self.inv_norm_factor = 1.0 / torch.sqrt( torch.tensor(self.head_size, dtype=torch.float32) ).to(torch.get_default_dtype()) if self.num_attention_heads % weights.process_group.size() != 0: raise ValueError( f"`num_attention_heads` must be divisible by `num_shards` " f"(got `num_attention_heads`: {self.num_attention_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_attention_heads = ( self.num_attention_heads // weights.process_group.size() ) self.query_key_value = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True ) self.dense = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense", weights=weights, bias=True ) def forward( self, hidden_states, position_ids, attention_mask, head_mask=None, layer_past=None, use_cache=False, output_attentions=False, ): has_layer_past = layer_past is not None # Compute QKV # Attention heads [batch, seq_len, hidden_size] # --> [batch, seq_len, (np * 3 * head_size)] qkv = self.query_key_value(hidden_states) # [batch, seq_len, (num_heads * 3 * head_size)] # --> [batch, seq_len, num_heads, 3 * head_size] new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3) # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] query, key, value = qkv.split(self.head_size, -1) # Compute token offset for rotary embeddings (when decoding) seq_len = key.shape[-2] if has_layer_past: seq_len += layer_past[0].shape[-2] # Compute rotary embeddings on rotary_ndims query_rot = query[..., : self.rotary_ndims] key_rot = key[..., : self.rotary_ndims] query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len) query[..., : self.rotary_ndims] = query_rot key[..., : self.rotary_ndims] = key_rot if CUSTOM_KERNELS_ENABLED: attn_output, present, attn_weights = fused_attention_cuda.forward( query, key, value, layer_past, attention_mask, head_mask, self.inv_norm_factor, self.num_attention_heads, use_cache, ) else: # Cache QKV values if has_layer_past: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = (key, value) if use_cache else None # Compute attention attn_output, attn_weights = self._attn( query, key, value, attention_mask, head_mask ) # Reshape outputs attn_output = self._merge_heads( attn_output, self.num_attention_heads, self.head_size ) attn_output = self.dense(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs @classmethod def _split_heads(cls, tensor, num_attention_heads, attn_head_size): """ Splits hidden dim into attn_head_size and num_attention_heads """ # tensor: [bs, seq_len, hidden_size] new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view(new_shape) # -> [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3) return tensor @classmethod def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden dim """ # tensor [bs, num_attention_heads, seq_len, attn_head_size] tensor = tensor.permute(0, 2, 1, 3).contiguous() # -> [bs, seq_len, num_attention_heads, attn_head_size] tensor = tensor.view( tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size ) # -> [bs, seq_len, hidden_size] return tensor def _attn(self, query, key, value, attention_mask=None, head_mask=None): # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] # compute causal mask from causal mask buffer batch_size, num_attention_heads, query_length, attn_head_size = query.size() key_length = key.size(-2) query = query.reshape( batch_size * num_attention_heads, query_length, attn_head_size ) key = key.reshape(batch_size * num_attention_heads, key_length, attn_head_size) attn_scores = torch.zeros( 1, dtype=query.dtype, device=key.device, ).expand(batch_size * num_attention_heads, query_length, key_length) attn_scores = torch.baddbmm( attn_scores, query, key.transpose(1, 2), beta=1.0, alpha=self.inv_norm_factor, ) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attn_scores.dtype if input_dtype in [torch.float16, torch.bfloat16]: attn_scores = attn_scores.to(torch.float) attn_scores = torch.where( attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores ) attn_scores = attn_scores.view( batch_size, num_attention_heads, query_length, key_length ) attn_weights = nn.functional.softmax(attn_scores, dim=-1) attn_weights = attn_weights.to(value.dtype) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights class RotaryEmbedding(torch.nn.Module): def __init__(self, dim, max_position_embeddings, base=10000, device=None): super().__init__() self.true_inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2).float().to(device) / dim) ) self.register_buffer("inv_freq", self.true_inv_freq) # Build here to make `torch.jit.trace` work. self.max_seq_len_cached = max_position_embeddings self.cos_cached = None self.sin_cached = None @staticmethod def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) @staticmethod def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device): t = torch.arange( max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype ) freqs = torch.einsum("i,j->ij", t, inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype) def forward(self, q, k, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if ( seq_len > self.max_seq_len_cached or self.cos_cached is None or self.sin_cached is None ): if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len self.cos_cached, self.sin_cached = self._create_cos_sin( self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device ) return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids) @torch.jit.script def rotary_forward(q, k, cos, sin, position_ids): cos = cos[position_ids].unsqueeze(1) sin = sin[position_ids].unsqueeze(1) chunk_size = q.shape[-1] // 2 q1, q2 = q.split(chunk_size, -1) q_rotated = torch.cat((-q2, q1), dim=-1) k1, k2 = k.split(chunk_size, -1) k_rotated = torch.cat((-k2, k1), dim=-1) q_embed = (q * cos) + (q_rotated * sin) k_embed = (k * cos) + (k_rotated * sin) return q_embed, k_embed class GPTNeoXMLP(nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.act = ( ACT2FN[config.hidden_act] if "gelu_fast" not in config.hidden_act else lambda x: torch.nn.functional.gelu(x, approximate="tanh") ) self.dense_h_to_4h = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True ) self.dense_4h_to_h = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__(self, layer_id, prefix: str, config, weights): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.layers.{layer_id}.input_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.post_attention_layernorm = nn.LayerNorm.load( prefix=f"{prefix}.layers.{layer_id}.post_attention_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.attention = GPTNeoXAttention( config, prefix=f"{prefix}.layers.{layer_id}.attention", weights=weights ) self.mlp = GPTNeoXMLP( config, prefix=f"{prefix}.layers.{layer_id}.mlp", weights=weights ) def forward( self, hidden_states, position_ids, attention_mask=None, head_mask=None, use_cache=False, layer_past=None, output_attentions=False, ): attention_layer_outputs = self.attention( self.input_layernorm(hidden_states), attention_mask=attention_mask, position_ids=position_ids, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attention_layer_outputs[ 0 ] # output_attn: attn_output, present, (attn_weights) outputs = attention_layer_outputs[1:] if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) hidden_states = mlp_output + attn_output if use_cache: outputs = ( hidden_states, ) + outputs # hidden_states, present, (attn_weights) else: outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights) return outputs class GPTNeoXModel(GPTNeoXPreTrainedModel): def __init__(self, prefix: str, config, weights): super().__init__(config) self.config = config self.num_attention_heads = config.num_attention_heads self.embed_in = TensorParallelEmbedding( prefix=f"{prefix}.embed_in", weights=weights ) self.layers = nn.ModuleList( [ GPTNeoXLayer(layer_id, prefix, config, weights) for layer_id in range(config.num_hidden_layers) ] ) self.final_layer_norm = nn.LayerNorm.load( prefix=f"{prefix}.final_layer_norm", weights=weights, eps=config.layer_norm_eps, ) self.tp_world_size = weights.process_group.size() def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids=None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_length = 0 past_key_values = tuple([None] * self.config.num_hidden_layers) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_length, seq_length + past_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_in(input_ids) hidden_states = inputs_embeds # Attention mask. seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-1] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), device=hidden_states.device ) else: attention_mask = attention_mask.to(hidden_states.device) causal_mask = prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) assert self.num_attention_heads % self.tp_world_size == 0 block_size = self.num_attention_heads // self.tp_world_size causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) presents = () if use_cache else None all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = layer( hidden_states, position_ids=position_ids, attention_mask=causal_mask, head_mask=head_mask[i], layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_attentions = all_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.final_layer_norm(hidden_states) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, prefix: str, config, weights): super().__init__(config) if not prefix: prefix = "gpt_neox" else: prefix = f"{prefix}.gpt_neox" self.gpt_neox = GPTNeoXModel(prefix, config, weights) self.embed_out = SpeculativeHead.load( config, prefix="embed_out", weights=weights ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") >>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b") >>> config.is_decoder = True >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.gpt_neox( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits, speculative_logits = self.embed_out(hidden_states) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # we are doing next-token prediction; shift prediction scores and input ids by one shift_logits = lm_logits[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1) ) if not return_dict: output = (lm_logits,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return ( CausalLMOutputWithPast( loss=lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ), speculative_logits, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs, ): input_shape = input_ids.shape # cut decoder_input_ids if past is used if past_key_values and past_key_values[0] is not None: input_ids = input_ids[:, -1:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "position_ids": position_ids, } ) return model_inputs def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx) for past_state in layer_past[:2] ) + layer_past[2:], ) return reordered_past
text-generation-inference/server/text_generation_server/models/custom_modeling/neox_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/neox_modeling.py", "repo_id": "text-generation-inference", "token_count": 14228 }
import torch import torch.distributed import time from dataclasses import dataclass from opentelemetry import trace from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase, AutoConfig, ) from typing import Optional, Tuple, List, Type, Dict from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) from text_generation_server.utils.chunks import concat_text_chunks from text_generation_server.utils.quantization import get_loader from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.models import Model from text_generation_server.models.types import ( GeneratedText, Batch, Generation, Tokens, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling tracer = trace.get_tracer(__name__) @dataclass class Seq2SeqLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] requests_idx_mapping: Dict[int, int] # Encoder values input_ids: Optional[torch.Tensor] attention_mask: torch.Tensor # Decoder values decoder_input_ids: torch.Tensor decoder_attention_mask: Optional[torch.Tensor] encoder_last_hidden_state: Optional[torch.Tensor] # All tokens all_decoder_input_ids: List[torch.Tensor] # Seq2SeqLM keeps track of both encoder and decoder attention keys and values past_key_values: Optional[List[Tuple]] # Lengths of all generations present in the batch input_lengths: List[int] decoder_input_lengths: List[int] prefix_offsets: List[int] read_offsets: List[int] # Generation helpers next_token_choosers: List[NextTokenChooser] stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Metadata used for padding max_input_length: int max_decoder_input_length: int padding_right_offset: int # Maximum number of tokens this batch will grow to max_tokens: int def to_pb(self) -> generate_pb2.CachedBatch: """Convert a Seq2SeqLMBatch to a text_generation_server.v1.CachedBatch protobuf""" return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, current_tokens=len(self.decoder_input_ids), ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "Seq2SeqLMBatch": """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch""" inputs = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): inputs.append(concat_text_chunks(r.input_chunks.chunks)) requests_idx_mapping[r.id] = i decoder_input_lengths.append(1) next_token_choosers.append( NextTokenChooser.from_pb(r.parameters, device, tokenizer) ) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) # Tokenize batch tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() # Decoder sequence only contains the bos_token decoder_input_ids = ( torch.tensor(tokenizer.bos_token_id, device=device) .repeat(len(pb.requests)) .view(-1, 1) ) for _ in pb.requests: prefix_offsets.append(0) read_offsets.append(1) all_decoder_input_ids = decoder_input_ids.view(-1).split(1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * (max_input_length + max_decode_tokens) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=tokenized_inputs["input_ids"], attention_mask=tokenized_inputs["attention_mask"], decoder_input_ids=decoder_input_ids, all_decoder_input_ids=list(all_decoder_input_ids), decoder_attention_mask=None, encoder_last_hidden_state=None, past_key_values=None, input_lengths=input_lengths.tolist(), decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), max_decoder_input_length=1, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]: if len(request_ids) == 0: raise ValueError("Batch must have at least one request") if len(request_ids) == len(self): return self keep_indices = [] # New values after filtering requests_idx_mapping = {} requests = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] all_decoder_input_ids = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 total_remaining_decode_tokens = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] requests_idx_mapping[request_id] = i keep_indices.append(idx) requests.append(self.requests[idx]) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) all_decoder_input_ids.append(self.all_decoder_input_ids[idx]) request_input_length = self.input_lengths[idx] input_lengths.append(request_input_length) max_input_length = max(max_input_length, request_input_length) request_decoder_input_length = self.decoder_input_lengths[idx] decoder_input_lengths.append(request_decoder_input_length) max_decoder_input_length = max( max_decoder_input_length, request_decoder_input_length ) next_token_choosers.append(self.next_token_choosers[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) remaining_decode_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) total_remaining_decode_tokens += remaining_decode_tokens padding_right_offset = max(padding_right_offset, remaining_decode_tokens) # Apply indices to input_ids, attention mask, past key values and other items that need to be cached self.decoder_input_ids = self.decoder_input_ids[keep_indices] self.attention_mask = self.attention_mask[keep_indices, -max_input_length:] if self.decoder_attention_mask is not None: self.decoder_attention_mask = self.decoder_attention_mask[ keep_indices, -(self.padding_right_offset + max_decoder_input_length) : ( self.decoder_attention_mask.shape[1] - self.padding_right_offset ) + padding_right_offset, ] self.encoder_last_hidden_state = self.encoder_last_hidden_state[ keep_indices, -max_input_length: ] # Ensure that past_key_values tensors can be updated in-place if type(self.past_key_values[0]) is tuple: self.past_key_values = [ [t for t in layer] for layer in self.past_key_values ] decoder_past_seq_len = max_decoder_input_length - 1 for layer in self.past_key_values: layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:] layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:] layer[2] = layer[2][keep_indices, :, -max_input_length:] layer[3] = layer[3][keep_indices, :, -max_input_length:] top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices] max_tokens = ( len(request_ids) * (max_input_length + max_decoder_input_length) + remaining_decode_tokens ) self.requests = requests self.requests_idx_mapping = requests_idx_mapping self.input_ids = None self.all_decoder_input_ids = all_decoder_input_ids self.input_lengths = input_lengths self.decoder_input_lengths = decoder_input_lengths self.prefix_offsets = prefix_offsets self.read_offsets = read_offsets self.next_token_choosers = next_token_choosers self.stopping_criterias = stopping_criterias self.top_n_tokens = top_n_tokens self.top_n_tokens_tensor = top_n_tokens_tensor self.max_input_length = max_input_length self.max_decoder_input_length = max_decoder_input_length self.padding_right_offset = padding_right_offset self.max_tokens = max_tokens return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch": """Concatenate multiple batches together by padding internal torch tensors""" # Used for padding total_batch_size = 0 max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 for batch in batches: total_batch_size += len(batch) max_input_length = max(max_input_length, batch.max_input_length) max_decoder_input_length = max( max_decoder_input_length, batch.max_decoder_input_length ) padding_right_offset = max(padding_right_offset, batch.padding_right_offset) # Batch attributes requests = [] requests_idx_mapping = {} all_decoder_input_ids = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_tokens = 0 # Batch tensors attention_mask = None decoder_input_ids = None decoder_attention_mask = None encoder_last_hidden_state = None top_n_tokens_tensor = None past_key_values = [] # Used for slicing correctly inside the tensors # Equivalent to a cumsum on batch sizes start_index = 0 for i, batch in enumerate(batches): # Extend all list attributes requests.extend(batch.requests) all_decoder_input_ids.extend(batch.all_decoder_input_ids) input_lengths.extend(batch.input_lengths) decoder_input_lengths.extend(batch.decoder_input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) next_token_choosers.extend(batch.next_token_choosers) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + start_index # Slicing end index for this batch end_index = start_index + len(batch) # We only concatenate batches that did at least one step if batch.encoder_last_hidden_state is None: raise ValueError("Batch encoder_last_hidden_state cannot be None") # Create padded tensor if attention_mask is None: attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_input_length), ) # Copy to correct indices attention_mask[start_index:end_index, -batch.max_input_length :] = ( batch.attention_mask[:, -batch.max_input_length :] ) # Create padded tensor if decoder_input_ids is None: decoder_input_ids = batch.decoder_input_ids.new_zeros( (total_batch_size, 1), ) # Copy to correct indices decoder_input_ids[start_index:end_index] = batch.decoder_input_ids # Create padded tensor if decoder_attention_mask is None: # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here decoder_attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_decoder_input_length + padding_right_offset), ) # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated # this batch. All generations are of length `batch.max_decoder_input_length`. left_offset = max_decoder_input_length - batch.max_decoder_input_length if batch.decoder_attention_mask is None: decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = 1 # If it exists, we need to index else: batch_left_offset = ( batch.decoder_attention_mask.shape[1] - batch.max_decoder_input_length - batch.padding_right_offset ) decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = batch.decoder_attention_mask[ :, batch_left_offset : -batch.padding_right_offset, ] # Create padded tensor if encoder_last_hidden_state is None: encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros( ( total_batch_size, max_input_length, batch.encoder_last_hidden_state.shape[-1], ), ) if top_n_tokens_tensor is None: top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor # Copy to correct indices encoder_last_hidden_state[ start_index:end_index, -batch.max_input_length :, : ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :] batch.encoder_last_hidden_state = None # Ensure that we can update tensors in-place if isinstance(batch.past_key_values[0], tuple): batch.past_key_values = [ [t for t in layer] for layer in batch.past_key_values ] # Add eventual padding tokens that were added while concatenating max_tokens += batch.max_tokens + ( max_input_length - batch.max_input_length + max_decoder_input_length - batch.max_decoder_input_length ) * len(batch) start_index = end_index # Determine shapes for new past kv tensors first_past_kvs = batches[0].past_key_values _, num_heads, _, head_dim = first_past_kvs[0][0].shape padded_dec_t_shape = ( total_batch_size, num_heads, (max_decoder_input_length - 1), head_dim, ) padded_enc_t_shape = ( total_batch_size, num_heads, max_input_length, head_dim, ) # Iterate over attention layers for j in range(len(first_past_kvs)): past_key_values.append([]) # Decoder past for k in range(0, 2): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches past_seq_len = batch.max_decoder_input_length - 1 padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[ :, :, -past_seq_len:, : ] del t start_index = end_index # Encoder past for k in range(2, 4): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches padded_past_values[ start_index:end_index, :, -batch.max_input_length :, : ] = t[:, :, -batch.max_input_length :, :] del t start_index = end_index return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=None, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, all_decoder_input_ids=all_decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_last_hidden_state=encoder_last_hidden_state, past_key_values=past_key_values, input_lengths=input_lengths, decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length, max_decoder_input_length=max_decoder_input_length, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) def __len__(self): return len(self.requests) class Seq2SeqLM(Model): def __init__( self, model_id: str, model_class, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, default_dtype=torch.float16, trust_remote_code: bool = False, config_class=AutoConfig, tokenizer_class=AutoTokenizer, aliases=None, ): self.quantize = quantize self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = default_dtype if dtype is None else dtype elif hasattr(torch, "xpu") and torch.xpu.is_available(): device = torch.device(f"xpu:{rank}") dtype = default_dtype if dtype is None else dtype elif SYSTEM == "ipex": device = torch.device("cpu") # Float16 doesn't exist on target. dtype = torch.bfloat16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype config = config_class.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.speculator = speculator tokenizer = tokenizer_class.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = config.decoder_start_token_id weights_loader = get_loader( quantize=quantize, model_id=model_id, revision=revision ) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, aliases=aliases, weights_loader=weights_loader, ) if config.quantize in ["awq", "exl2", "gptq", "marlin"]: weights._set_gptq_params(model_id, revision) model = model_class(config, weights) torch.distributed.barrier(group=self.process_group) super().__init__( model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @classmethod def fallback( cls, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if speculator: raise RuntimeError("Speculator decoding is not enabled for AutoModel") device_count = 0 if torch.cuda.is_available(): device = torch.device("cuda") device_count = torch.cuda.device_count() dtype = torch.float16 if dtype is None else dtype elif hasattr(torch, "xpu") and torch.xpu.is_available(): device = torch.device("xpu") device_count = torch.xpu.device_count() dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype model = AutoModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map=("auto" if device_count > 1 else None), load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if device_count == 1: model = model.to(device) tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = model.config.decoder_start_token_id self = cls.__new__( cls, ) super().__init__( self, model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) self.quantize = quantize return self @property def batch_type(self) -> Type[Seq2SeqLMBatch]: return Seq2SeqLMBatch def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, Optional[torch.Tensor], torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) if isinstance(outputs, tuple): # Our custom models outputs, speculative_logits = outputs else: # Generic transformers models speculative_logits = None return ( outputs.logits, speculative_logits, outputs.encoder_last_hidden_state, outputs.past_key_values, ) @tracer.start_as_current_span("generate_token") def generate_token( self, batch: Seq2SeqLMBatch ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch], Tuple[int, int]]: start = time.time_ns() if batch.decoder_attention_mask is not None: # slice to the correct shape decoder_attention_mask = batch.decoder_attention_mask[ :, : -batch.padding_right_offset ] else: decoder_attention_mask = None # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]` # internally... if batch.encoder_last_hidden_state is not None: encoder_last_hidden_state = [batch.encoder_last_hidden_state] else: encoder_last_hidden_state = None logits, speculative_logits, encoder_last_hidden_state, past = self.forward( batch.input_ids, batch.attention_mask, batch.decoder_input_ids, decoder_attention_mask, encoder_last_hidden_state, batch.past_key_values, ) # Speculation is not active for seq2seq accepted_ids = torch.ones_like(batch.decoder_input_ids)[:, 0] batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, torch.log_softmax(logits[:, -1], -1), accepted_ids, ) start_decode = time.time_ns() # Finished requests generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, batch.decoder_input_lengths, logits, batch.next_token_choosers, batch.stopping_criterias, batch.all_decoder_input_ids, batch.top_n_tokens, batch_top_token_ids, batch_top_token_logprobs, ) # For each member of the batch for i, ( request, input_length, prefix_offset, read_offset, decoder_input_length, logits, next_token_chooser, stopping_criteria, all_decoder_input_ids, top_n_tokens, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Select next token next_token_id, logprobs = next_token_chooser( all_decoder_input_ids.view(1, -1), logits[-1:, :] ) # Append next token to decoder tokens all_decoder_input_ids = torch.cat( [all_decoder_input_ids, next_token_id.squeeze(1)] ) new_decoder_input_length = decoder_input_length + 1 # Generated token next_token_logprob = logprobs[-1, next_token_id] next_token_id_squeezed = next_token_id.squeeze() next_token_text, prefix_offset, read_offset = self.decode_token( all_decoder_input_ids, prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria(next_token_id, next_token_text) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Slice with decoder_input_length to remove padding # Decode all tokens output_text, _, _ = self.decode_token( all_decoder_input_ids, prefix_offset=len(all_decoder_input_ids) - decoder_input_length - 1, read_offset=len(all_decoder_input_ids) - decoder_input_length, skip_special_tokens=True, ) # Get seed if isinstance(next_token_chooser.choice, Sampling): seed = next_token_chooser.choice.seed else: seed = None generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: prefill_tokens = Tokens( [self.tokenizer.bos_token_id], [float("nan")], [self.tokenizer.bos_token], [False], ) else: prefill_tokens = None if top_n_tokens > 0: all_top_tokens = [] for top_token_ids, top_token_logprobs in zip( top_token_ids, top_token_logprobs ): toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) all_top_tokens.append(top_tokens) top_tokens = all_top_tokens else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id_squeezed], [next_token_logprob], [next_token_text], [next_token_id_squeezed.item() in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar( next_token_id_squeezed.item() ) batch.decoder_input_ids[i] = next_token_id batch.all_decoder_input_ids[i] = all_decoder_input_ids batch.input_lengths[i] = input_length batch.decoder_input_lengths[i] = new_decoder_input_length batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.max_input_length = max(batch.max_input_length, input_length) batch.max_decoder_input_length = max( batch.max_decoder_input_length, new_decoder_input_length ) # We finished all generations in the batch; there is no next batch if stopped: forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) # We don't need input_ids after the prefill forward batch.input_ids = None batch.encoder_last_hidden_state = encoder_last_hidden_state batch.past_key_values = past # Update decoder_attention_mask as we added a new token to input_ids if batch.decoder_attention_mask is not None: batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1 batch.padding_right_offset -= 1 forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
text-generation-inference/server/text_generation_server/models/seq2seq_lm.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/seq2seq_lm.py", "repo_id": "text-generation-inference", "token_count": 17976 }
import copy from abc import ABC from collections import defaultdict from typing import TYPE_CHECKING, Dict, List, Tuple, Type, Union from text_generation_server.utils.merges.utils import ( calculate_majority_sign_mask, disjoint_merge, prune, ) import torch if TYPE_CHECKING: from text_generation_server.adapters.lora import LoraConfig from text_generation_server.utils.adapter import ModuleMap class AdapterParameters: def __init__( self, adapter_ids, weights, merge_strategy, density, majority_sign_method ): self.adapter_ids = adapter_ids self.weights = weights self.merge_strategy = merge_strategy self.density = density self.majority_sign_method = majority_sign_method def _apply_weights( tensors: Union[torch.Tensor, List[torch.Tensor]], w: torch.Tensor ) -> torch.Tensor: if isinstance(tensors, torch.Tensor): t = tensors else: t = torch.stack(tensors, dim=0) # element-wise weighting of each task tensor # need to unsqueeze weights to match task tensor dimensions # for multiplication to apply element-wise while len(t.shape) > len(w.shape): w = w.unsqueeze(-1) return t * w class MergeStrategy(ABC): def merge( self, task_tensors: List[torch.Tensor], weights: torch.Tensor ) -> torch.Tensor: raise NotImplementedError() class LinearMerge(MergeStrategy): def __init__(self, **kwargs): pass def merge( self, task_tensors: List[torch.Tensor], weights: torch.Tensor ) -> torch.Tensor: weighted_task_tensors = _apply_weights(task_tensors, weights) return weighted_task_tensors.sum(dim=0) class TiesMerge(MergeStrategy): def __init__(self, density: float, majority_sign_method: str = "total", **kwargs): self.density = density self.majority_sign_method = majority_sign_method def merge( self, task_tensors: List[torch.Tensor], weights: torch.Tensor ) -> torch.Tensor: # sparsify task_tensors = [ prune(tensor, self.density, method="magnitude") for tensor in task_tensors ] task_tensors = torch.stack(task_tensors, dim=0) # elect sign before applying weights majority_sign_mask = calculate_majority_sign_mask( task_tensors, method=self.majority_sign_method ) weighted_task_tensors = _apply_weights(task_tensors, weights) # disjoint merge return disjoint_merge(weighted_task_tensors, majority_sign_mask) class DareLinearMerge(MergeStrategy): def __init__(self, density: float, **kwargs): self.density = density def merge( self, task_tensors: List[torch.Tensor], weights: torch.Tensor ) -> torch.Tensor: # sparsify task_tensors = [ prune(tensor, self.density, method="random", rescale=True) for tensor in task_tensors ] weighted_task_tensors = _apply_weights(task_tensors, weights) return weighted_task_tensors.sum(dim=0) class DareTiesMerge(MergeStrategy): def __init__(self, density: float, majority_sign_method: str = "total", **kwargs): self.density = density self.majority_sign_method = majority_sign_method def merge( self, task_tensors: List[torch.Tensor], weights: torch.Tensor ) -> torch.Tensor: # sparsify task_tensors = [ prune(tensor, self.density, method="random", rescale=True) for tensor in task_tensors ] task_tensors = torch.stack(task_tensors, dim=0) # elect sign before applying weights majority_sign_mask = calculate_majority_sign_mask( task_tensors, method=self.majority_sign_method ) weighted_task_tensors = _apply_weights(task_tensors, weights) # disjoint merge mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask) return mixed_task_tensors strategy_registry: Dict[str, Type[MergeStrategy]] = { "linear": LinearMerge, "ties": TiesMerge, "dare_linear": DareLinearMerge, "dare_ties": DareTiesMerge, } def merge_adapters( adapters: List[Tuple["ModuleMap", "LoraConfig"]], merge_params: AdapterParameters, ) -> Tuple["ModuleMap", "LoraConfig"]: # strategy_name = MergeStrategyEnum.Name(merge_params.merge_strategy).lower() strategy_name = "linear" weights = merge_params.weights if not weights: weights = torch.ones(len(adapters)) else: weights = torch.tensor(weights) merge_config = { "density": merge_params.density, # "majority_sign_method": MajoritySignMethodEnum.Name( # merge_params.majority_sign_method # ).lower(), "majority_sign_method": "total", } merge_strategy = strategy_registry[strategy_name](**merge_config) module_maps: Dict[str, Dict[str, Dict[str, List[torch.Tensor]]]] = defaultdict( lambda: defaultdict(lambda: defaultdict(list)) ) lora_configs = [] weight_name_to_adapter_idx = defaultdict(list) # input is list of (module_map, lora_config) tuples # convert into dict[k][param_name] -> list of tensors for idx, (module_map, lora_config) in enumerate(adapters): for weight_name, data in module_map.items(): weight_name_to_adapter_idx[weight_name].append(idx) for k, (param_data, param_name) in data.items(): module_maps[weight_name][k][param_name].append(param_data) lora_configs.append(lora_config) # validate lora configs are compatible _validate_lora_configs(lora_configs) # merge tensors for each module such that we have a single ModuleMap: # dict[k] -> merged tensor merged_module_map: "ModuleMap" = defaultdict(dict) for weight_name, data in module_maps.items(): indices = weight_name_to_adapter_idx[weight_name] param_weights = weights[indices] for k, param_data in data.items(): for param_name, tensors in param_data.items(): merged_tensor = merge_strategy.merge(tensors, param_weights) merged_module_map[weight_name][k] = (merged_tensor, param_name) # merge lora configs merged_lora_config = _merge_lora_configs(lora_configs) return merged_module_map, merged_lora_config def _validate_lora_configs(lora_configs: List["LoraConfig"]): # check that all configs have the same rank ranks = set(lora_config.r for lora_config in lora_configs) if len(ranks) > 1: raise ValueError( f"unable to merge adapters, lora configs have different ranks: {ranks}" ) if all(len(lora_config.target_modules) == 0 for lora_config in lora_configs): raise ValueError( "unable to merge adapters, lora configs have no target modules" ) def _merge_lora_configs(lora_configs: List["LoraConfig"]) -> "LoraConfig": merged_lora_config = copy.copy(lora_configs[0]) # merge target modules as a union operation merged_target_modules = sorted( set( module for lora_config in lora_configs for module in lora_config.target_modules ) ) merged_lora_config.target_modules = merged_target_modules return merged_lora_config
text-generation-inference/server/text_generation_server/utils/merges/strategies.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/merges/strategies.py", "repo_id": "text-generation-inference", "token_count": 3074 }
<p align="center"> <br> <img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-logo.png" width="600"/> <br> <p> <p align="center"> <img alt="Build" src="https://github.com/huggingface/tokenizers/workflows/Rust/badge.svg"> <a href="https://github.com/huggingface/tokenizers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/tokenizers.svg?color=blue&cachedrop"> </a> <a href="https://pepy.tech/project/tokenizers"> <img src="https://pepy.tech/badge/tokenizers/week" /> </a> </p> Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. ## Main features: - Train new vocabularies and tokenize, using today's most used tokenizers. - Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU. - Easy to use, but also extremely versatile. - Designed for research and production. - Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token. - Does all the pre-processing: Truncate, Pad, add the special tokens your model needs. ## Performances Performances can vary depending on hardware, but running the [~/bindings/python/benches/test_tiktoken.py](bindings/python/benches/test_tiktoken.py) should give the following on a g6 aws instance: ![image](https://github.com/user-attachments/assets/2b913d4b-e488-4cbc-b542-f90a6c40643d) ## Bindings We provide bindings to the following languages (more to come!): - [Rust](https://github.com/huggingface/tokenizers/tree/main/tokenizers) (Original implementation) - [Python](https://github.com/huggingface/tokenizers/tree/main/bindings/python) - [Node.js](https://github.com/huggingface/tokenizers/tree/main/bindings/node) - [Ruby](https://github.com/ankane/tokenizers-ruby) (Contributed by @ankane, external repo) ## Installation You can install from source using: ```bash pip install git+https://github.com/huggingface/tokenizers.git#subdirectory=bindings/python ``` our install the released versions with ```bash pip install tokenizers ``` ## Quick example using Python: Choose your model between Byte-Pair Encoding, WordPiece or Unigram and instantiate a tokenizer: ```python from tokenizers import Tokenizer from tokenizers.models import BPE tokenizer = Tokenizer(BPE()) ``` You can customize how pre-tokenization (e.g., splitting into words) is done: ```python from tokenizers.pre_tokenizers import Whitespace tokenizer.pre_tokenizer = Whitespace() ``` Then training your tokenizer on a set of files just takes two lines of codes: ```python from tokenizers.trainers import BpeTrainer trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) tokenizer.train(files=["wiki.train.raw", "wiki.valid.raw", "wiki.test.raw"], trainer=trainer) ``` Once your tokenizer is trained, encode any text with just one line: ```python output = tokenizer.encode("Hello, y'all! How are you 😁 ?") print(output.tokens) # ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"] ``` Check the [documentation](https://huggingface.co/docs/tokenizers/index) or the [quicktour](https://huggingface.co/docs/tokenizers/quicktour) to learn more!
tokenizers/README.md/0
{ "file_path": "tokenizers/README.md", "repo_id": "tokenizers", "token_count": 1127 }
/* eslint-disable */ var globRequire = require; describe("pipelineExample", () => { // This is a hack to let us require using path similar to what the user has to use function require(mod: string) { if (mod.startsWith("tokenizers")) { // let path = mod.slice("tokenizers".length); return globRequire("../../"); } else { return globRequire(mod); } } let console = { log: (..._args: any[]) => {} }; it("shows pipeline parts", async () => { // START reload_tokenizer let { Tokenizer } = require("tokenizers"); let tokenizer = Tokenizer.fromFile("data/tokenizer-wiki.json"); // END reload_tokenizer // START setup_normalizer let { sequenceNormalizer, nfdNormalizer, stripAccentsNormalizer } = require("tokenizers"); let normalizer = sequenceNormalizer([nfdNormalizer(), stripAccentsNormalizer()]); // END setup_normalizer // START test_normalizer let normalized = normalizer.normalizeString("Héllò hôw are ü?") // "Hello how are u?" // END test_normalizer expect(normalized).toEqual("Hello how are u?"); // START replace_normalizer tokenizer.setNormalizer(normalizer) // END replace_normalizer // START setup_pre_tokenizer let { whitespacePreTokenizer } = require("tokenizers"); var preTokenizer = whitespacePreTokenizer(); var preTokenized = preTokenizer.preTokenizeString("Hello! How are you? I'm fine, thank you."); // END setup_pre_tokenizer expect(preTokenized).toEqual([ ["Hello", [0, 5]], ["!", [5, 6]], ["How", [7, 10]], ["are", [11, 14]], ["you", [15, 18]], ["?", [18, 19]], ["I", [20, 21]], ["'", [21, 22]], ['m', [22, 23]], ["fine", [24, 28]], [",", [28, 29]], ["thank", [30, 35]], ["you", [36, 39]], [".", [39, 40]] ]); // START combine_pre_tokenizer let { sequencePreTokenizer, digitsPreTokenizer } = require("tokenizers"); var preTokenizer = sequencePreTokenizer([whitespacePreTokenizer(), digitsPreTokenizer(true)]); var preTokenized = preTokenizer.preTokenizeString("Call 911!"); // END combine_pre_tokenizer // START replace_pre_tokenizer tokenizer.setPreTokenizer(preTokenizer) // END replace_pre_tokenizer // START setup_processor let { templateProcessing } = require("tokenizers"); tokenizer.setPostProcessor(templateProcessing( "[CLS] $A [SEP]", "[CLS] $A [SEP] $B:1 [SEP]:1", [["[CLS]", 1], ["[SEP]", 2]] )); // END setup_processor // START test_decoding let output = await tokenizer.encode("Hello, y'all! How are you 😁 ?"); console.log(output.getIds()); // [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2] let decoded = await tokenizer.decode([1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2], true); // "Hello , y ' all ! How are you ?" // END test_decoding expect(decoded).toEqual("Hello , y ' all ! How are you ?"); }); it.skip("trains the tokenizer", async () => { // START bert_setup_tokenizer let { Tokenizer } = require("tokenizers"); let { WordPiece } = require("tokenizers"); let bertTokenizer = new Tokenizer(WordPiece.init({}, { unkToken: "[UNK]" })); // END bert_setup_tokenizer // START bert_setup_normalizer let { sequenceNormalizer, lowercaseNormalizer, nfdNormalizer, stripAccentsNormalizer } = require("tokenizers"); bertTokenizer.setNormalizer(sequenceNormalizer([ nfdNormalizer(), lowercaseNormalizer(), stripAccentsNormalizer() ])) // END bert_setup_normalizer // START bert_setup_pre_tokenizer let { whitespacePreTokenizer } = require("tokenizers"); bertTokenizer.setPreTokenizer(whitespacePreTokenizer()); // END bert_setup_pre_tokenizer // START bert_setup_processor let { templateProcessing } = require("tokenizers"); bertTokenizer.setPostProcessor(templateProcessing( "[CLS] $A [SEP]", "[CLS] $A [SEP] $B:1 [SEP]:1", [["[CLS]", 1], ["[SEP]", 2]] )); // END bert_setup_processor // START bert_train_tokenizer let { wordPieceTrainer } = require("tokenizers"); let trainer = wordPieceTrainer({ vocabSize: 30522, specialTokens: ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] }); let files = ["test", "train", "valid"].map(split => `data/wikitext-103-raw/wiki.${split}.raw`); bertTokenizer.train(files, trainer); bertTokenizer.save("data/bert-wiki.json") // END bert_train_tokenizer }); it("shows a full bert example", async () => { let { Tokenizer } = require("tokenizers"); let bertTokenizer = await Tokenizer.fromFile("data/bert-wiki.json") // START bert_test_decoding let output = await bertTokenizer.encode("Welcome to the 🤗 Tokenizers library."); console.log(output.getTokens()); // ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"] var decoded = await bertTokenizer.decode(output.getIds(), true); // "welcome to the tok ##eni ##zer ##s library ." // END bert_test_decoding expect(decoded).toEqual("welcome to the tok ##eni ##zer ##s library ."); // START bert_proper_decoding let { wordPieceDecoder } = require("tokenizers"); bertTokenizer.setDecoder(wordPieceDecoder()); var decoded = await bertTokenizer.decode(output.getIds(), true); // "welcome to the tokenizers library." // END bert_proper_decoding expect(decoded).toEqual("welcome to the tokenizers library."); }); });
tokenizers/bindings/node/examples/documentation/pipeline.test.ts/0
{ "file_path": "tokenizers/bindings/node/examples/documentation/pipeline.test.ts", "repo_id": "tokenizers", "token_count": 2710 }
use crate::arc_rwlock_serde; use crate::tasks::models::{BPEFromFilesTask, WordLevelFromFilesTask, WordPieceFromFilesTask}; use crate::trainers::Trainer; use napi::bindgen_prelude::*; use napi_derive::napi; use serde::{Deserialize, Serialize}; use std::collections::HashMap; use std::path::{Path, PathBuf}; use std::sync::{Arc, RwLock}; use tokenizers as tk; use tokenizers::models::bpe::{BpeBuilder, Merges, Vocab}; use tokenizers::models::wordlevel::WordLevelBuilder; use tokenizers::models::wordpiece::WordPieceBuilder; #[napi] #[derive(Clone, Serialize, Deserialize)] pub struct Model { #[serde(flatten, with = "arc_rwlock_serde")] pub(crate) model: Option<Arc<RwLock<tk::models::ModelWrapper>>>, } impl<M> From<M> for Model where M: Into<tk::models::ModelWrapper>, { fn from(wrapper: M) -> Self { Self { model: Some(Arc::new(RwLock::new(wrapper.into()))), } } } #[napi(js_name = "BPE")] pub struct Bpe {} #[napi] impl Bpe { #[napi(factory, ts_return_type = "Model")] pub fn empty() -> Result<Model> { let bpe = tk::models::bpe::BPE::default(); Ok(Model { model: Some(Arc::new(RwLock::new(bpe.into()))), }) } #[napi(factory, ts_return_type = "Model")] pub fn init(vocab: Vocab, merges: Merges, options: Option<BpeOptions>) -> Result<Model> { let options = options.unwrap_or_default(); let mut builder = tk::models::bpe::BPE::builder().vocab_and_merges(vocab, merges); builder = options.apply_to_bpe_builder(builder); let model = builder .build() .map_err(|e| Error::from_reason(e.to_string()))?; Ok(Model { model: Some(Arc::new(RwLock::new(model.into()))), }) } #[napi(ts_return_type = "Promise<Model>")] pub fn from_file( vocab: String, merges: String, options: Option<BpeOptions>, ) -> AsyncTask<BPEFromFilesTask> { let options = options.unwrap_or_default(); let mut builder = tk::models::bpe::BPE::from_file(&vocab, &merges); builder = options.apply_to_bpe_builder(builder); AsyncTask::new(BPEFromFilesTask { builder: Some(builder), }) } } impl tk::Model for Model { type Trainer = Trainer; fn tokenize(&self, sequence: &str) -> tk::Result<Vec<tk::Token>> { self .model .as_ref() .ok_or("Uninitialized Model")? .read() .unwrap() .tokenize(sequence) } fn token_to_id(&self, token: &str) -> Option<u32> { self.model.as_ref()?.read().unwrap().token_to_id(token) } fn id_to_token(&self, id: u32) -> Option<String> { self.model.as_ref()?.read().unwrap().id_to_token(id) } fn get_vocab(&self) -> HashMap<String, u32> { self .model .as_ref() .expect("Uninitialized Model") .read() .unwrap() .get_vocab() } fn get_vocab_size(&self) -> usize { self .model .as_ref() .expect("Uninitialized Model") .read() .unwrap() .get_vocab_size() } fn save(&self, folder: &Path, name: Option<&str>) -> tk::Result<Vec<PathBuf>> { self .model .as_ref() .ok_or("Uninitialized Model")? .read() .unwrap() .save(folder, name) } fn get_trainer(&self) -> Self::Trainer { self .model .as_ref() .expect("Uninitialized Model") .read() .unwrap() .get_trainer() .into() } } #[derive(Default)] #[napi(object)] pub struct BpeOptions { pub cache_capacity: Option<u32>, pub dropout: Option<f64>, pub unk_token: Option<String>, pub continuing_subword_prefix: Option<String>, pub end_of_word_suffix: Option<String>, pub fuse_unk: Option<bool>, pub byte_fallback: Option<bool>, } impl BpeOptions { fn apply_to_bpe_builder(self, mut builder: BpeBuilder) -> BpeBuilder { if let Some(cache_capacity) = self.cache_capacity { builder = builder.cache_capacity(cache_capacity as usize); } if let Some(dropout) = self.dropout { builder = builder.dropout(dropout as f32); } if let Some(unk_token) = self.unk_token { builder = builder.unk_token(unk_token); } if let Some(continuing_subword_prefix) = self.continuing_subword_prefix { builder = builder.continuing_subword_prefix(continuing_subword_prefix); } if let Some(end_of_word_suffix) = self.end_of_word_suffix { builder = builder.end_of_word_suffix(end_of_word_suffix); } if let Some(fuse_unk) = self.fuse_unk { builder = builder.fuse_unk(fuse_unk); } if let Some(byte_fallback) = self.byte_fallback { builder = builder.byte_fallback(byte_fallback); } builder } } #[derive(Default)] #[napi(object)] pub struct WordPieceOptions { pub unk_token: Option<String>, pub continuing_subword_prefix: Option<String>, pub max_input_chars_per_word: Option<u32>, } impl WordPieceOptions { fn apply_to_wordpiece_builder(self, mut builder: WordPieceBuilder) -> WordPieceBuilder { if let Some(token) = self.unk_token { builder = builder.unk_token(token); } if let Some(prefix) = self.continuing_subword_prefix { builder = builder.continuing_subword_prefix(prefix); } if let Some(max) = self.max_input_chars_per_word { builder = builder.max_input_chars_per_word(max as usize); } builder } } #[napi] pub struct WordPiece {} #[napi] impl WordPiece { #[napi(factory, ts_return_type = "Model")] pub fn init(vocab: Vocab, options: Option<WordPieceOptions>) -> Result<Model> { let options = options.unwrap_or_default(); let mut builder = tk::models::wordpiece::WordPiece::builder().vocab(vocab); builder = options.apply_to_wordpiece_builder(builder); let model = builder .build() .map_err(|e| Error::from_reason(e.to_string()))?; Ok(Model { model: Some(Arc::new(RwLock::new(model.into()))), }) } #[napi(factory)] pub fn empty() -> Model { let wordpiece = tk::models::wordpiece::WordPiece::default(); Model { model: Some(Arc::new(RwLock::new(wordpiece.into()))), } } #[napi(ts_return_type = "Promise<Model>")] pub fn from_file( vocab: String, options: Option<WordPieceOptions>, ) -> AsyncTask<WordPieceFromFilesTask> { let options = options.unwrap_or_default(); let mut builder = tk::models::wordpiece::WordPiece::from_file(&vocab); builder = options.apply_to_wordpiece_builder(builder); AsyncTask::new(WordPieceFromFilesTask { builder: Some(builder), }) } } #[derive(Default)] #[napi(object)] pub struct WordLevelOptions { pub unk_token: Option<String>, } impl WordLevelOptions { fn apply_to_wordlevel_builder(self, mut builder: WordLevelBuilder) -> WordLevelBuilder { if let Some(token) = self.unk_token { builder = builder.unk_token(token); } builder } } #[napi] pub struct WordLevel {} #[napi] impl WordLevel { #[napi(factory, ts_return_type = "Model")] pub fn init(vocab: Vocab, options: Option<WordLevelOptions>) -> Result<Model> { let options = options.unwrap_or_default(); let mut builder = tk::models::wordlevel::WordLevel::builder().vocab(vocab); builder = options.apply_to_wordlevel_builder(builder); let model = builder .build() .map_err(|e| Error::from_reason(e.to_string()))?; Ok(Model { model: Some(Arc::new(RwLock::new(model.into()))), }) } #[napi(factory)] pub fn empty() -> Model { let wordlevel = tk::models::wordlevel::WordLevel::default(); Model { model: Some(Arc::new(RwLock::new(wordlevel.into()))), } } #[napi(ts_return_type = "Promise<Model>")] pub fn from_file( vocab: String, options: Option<WordLevelOptions>, ) -> AsyncTask<WordLevelFromFilesTask> { let options = options.unwrap_or_default(); let mut builder = tk::models::wordlevel::WordLevel::builder().files(vocab); builder = options.apply_to_wordlevel_builder(builder); AsyncTask::new(WordLevelFromFilesTask { builder: Some(builder), }) } } #[derive(Default)] #[napi(object)] pub struct UnigramOptions { pub unk_id: Option<u32>, pub byte_fallback: Option<bool>, } #[napi] pub struct Unigram {} #[napi] impl Unigram { #[napi(factory, ts_return_type = "Model")] pub fn init(vocab: Vec<(String, f64)>, options: Option<UnigramOptions>) -> Result<Model> { let options = options.unwrap_or_default(); let unigram = tk::models::unigram::Unigram::from( vocab, options.unk_id.map(|u| u as usize), options.byte_fallback.unwrap_or(false), ) .map_err(|e| Error::from_reason(e.to_string()))?; Ok(Model { model: Some(Arc::new(RwLock::new(unigram.into()))), }) } #[napi(factory, ts_return_type = "Model")] pub fn empty() -> Model { let unigram = tk::models::unigram::Unigram::default(); Model { model: Some(Arc::new(RwLock::new(unigram.into()))), } } }
tokenizers/bindings/node/src/models.rs/0
{ "file_path": "tokenizers/bindings/node/src/models.rs", "repo_id": "tokenizers", "token_count": 3681 }
[package] name = "tokenizers-python" version = "0.21.0-dev.0" authors = ["Anthony MOI <[email protected]>"] edition = "2021" [lib] name = "tokenizers" crate-type = ["cdylib"] [dependencies] rayon = "1.10" serde = { version = "1.0", features = ["rc", "derive"] } serde_json = "1.0" libc = "0.2" env_logger = "0.11" pyo3 = { version = "0.23", features = ["abi3", "abi3-py39", "py-clone"] } numpy = "0.23" ndarray = "0.16" itertools = "0.12" [dependencies.tokenizers] path = "../../tokenizers" [dev-dependencies] tempfile = "3.10" pyo3 = { version = "0.23", features = ["auto-initialize"] } [features] defaut = ["pyo3/extension-module"]
tokenizers/bindings/python/Cargo.toml/0
{ "file_path": "tokenizers/bindings/python/Cargo.toml", "repo_id": "tokenizers", "token_count": 282 }
.tokenized-text { width:100%; padding:2rem; max-height: 400px; overflow-y: auto; box-sizing:border-box; line-height:4rem; /* Lots of space between lines */ font-family: "Roboto Light", "Ubuntu Light", "Ubuntu", monospace; box-shadow: 2px 2px 2px rgba(0,0,0,0.2); background-color: rgba(0,0,0,0.01); letter-spacing:2px; /* Give some extra separation between chars */ } .non-token{ /* White space and other things the tokenizer ignores*/ white-space: pre; letter-spacing:4px; border-top:1px solid #A0A0A0; /* A gentle border on top and bottom makes tabs more ovious*/ border-bottom:1px solid #A0A0A0; line-height: 1rem; height: calc(100% - 2px); } .token { white-space: pre; position:relative; color:black; letter-spacing:2px; } .annotation{ white-space:nowrap; /* Important - ensures that annotations appears even if the annotated text wraps a line */ border-radius:4px; position:relative; width:fit-content; } .annotation:before { /*The before holds the text and the after holds the background*/ z-index:1000; /* Make sure this is above the background */ content:attr(data-label); /* The annotations label is on a data attribute */ color:white; position:absolute; font-size:1rem; text-align:center; font-weight:bold; top:1.75rem; line-height:0; left:0; width:100%; padding:0.5rem 0; /* These make it so an annotation doesn't stretch beyond the annotated text if the label is longer*/ overflow: hidden; white-space: nowrap; text-overflow:ellipsis; } .annotation:after { content:attr(data-label); /* The content defines the width of the annotation*/ position:absolute; font-size:0.75rem; text-align:center; font-weight:bold; text-overflow:ellipsis; top:1.75rem; line-height:0; overflow: hidden; white-space: nowrap; left:0; width:100%; /* 100% of the parent, which is the annotation whose width is the tokens inside it*/ padding:0.5rem 0; /* Nast hack below: We set the annotations color in code because we don't know the colors at css time. But you can't pass a color as a data attribute to get it into the pseudo element (this thing) So to get around that, annotations have the color set on them with a style attribute and then we can get the color with currentColor. Annotations wrap tokens and tokens set the color back to black */ background-color: currentColor; } .annotation:hover::after, .annotation:hover::before{ /* When the user hovers over an annotation expand the label to display in full */ min-width: fit-content; } .annotation:hover{ /* Emphasize the annotation start end with a border on hover*/ border-color: currentColor; border: 2px solid; } .special-token:not(:empty){ /* A none empty special token is like UNK (as opposed to CLS which has no representation in the text ) */ position:relative; } .special-token:empty::before{ /* Special tokens that don't have text are displayed as pseudo elements so we dont select them with the mouse*/ content:attr(data-stok); background:#202020; font-size:0.75rem; color:white; margin: 0 0.25rem; padding: 0.25rem; border-radius:4px } .special-token:not(:empty):before { /* Special tokens that have text (UNK) are displayed above the actual text*/ content:attr(data-stok); position:absolute; bottom:1.75rem; min-width:100%; width:100%; height:1rem; line-height:1rem; font-size:1rem; text-align:center; color:white; font-weight:bold; background:#202020; border-radius:10%; } /* We want to alternate the color of tokens, but we can't use nth child because tokens might be broken up by annotations instead we apply even and odd class at generation time and color them that way */ .even-token{ background:#DCDCDC ; border: 1px solid #DCDCDC; } .odd-token{ background:#A0A0A0; border: 1px solid #A0A0A0; } .even-token.multi-token,.odd-token.multi-token{ background: repeating-linear-gradient( 45deg, transparent, transparent 1px, #ccc 1px, #ccc 1px ), /* on "bottom" */ linear-gradient( to bottom, #FFB6C1, #999 ); } .multi-token:hover::after { content:"This char has more than 1 token"; /* The content defines the width of the annotation*/ color:white; background-color: black; position:absolute; font-size:0.75rem; text-align:center; font-weight:bold; text-overflow:ellipsis; top:1.75rem; line-height:0; overflow: hidden; white-space: nowrap; left:0; width:fit-content; /* 100% of the parent, which is the annotation whose width is the tokens inside it*/ padding:0.5rem 0; }
tokenizers/bindings/python/py_src/tokenizers/tools/visualizer-styles.css/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/tools/visualizer-styles.css", "repo_id": "tokenizers", "token_count": 1806 }
use std::sync::{Arc, RwLock}; use pyo3::exceptions; use pyo3::exceptions::PyException; use pyo3::prelude::*; use pyo3::types::*; use serde::ser::SerializeStruct; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use tk::normalizer::SplitDelimiterBehavior; use tk::pre_tokenizers::bert::BertPreTokenizer; use tk::pre_tokenizers::byte_level::ByteLevel; use tk::pre_tokenizers::delimiter::CharDelimiterSplit; use tk::pre_tokenizers::digits::Digits; use tk::pre_tokenizers::metaspace::{Metaspace, PrependScheme}; use tk::pre_tokenizers::punctuation::Punctuation; use tk::pre_tokenizers::split::Split; use tk::pre_tokenizers::unicode_scripts::UnicodeScripts; use tk::pre_tokenizers::whitespace::{Whitespace, WhitespaceSplit}; use tk::pre_tokenizers::PreTokenizerWrapper; use tk::tokenizer::Offsets; use tk::{PreTokenizedString, PreTokenizer}; use tokenizers as tk; use super::error::ToPyResult; use super::utils::*; /// Base class for all pre-tokenizers /// /// This class is not supposed to be instantiated directly. Instead, any implementation of a /// PreTokenizer will return an instance of this class when instantiated. #[pyclass( dict, module = "tokenizers.pre_tokenizers", name = "PreTokenizer", subclass )] #[derive(Clone, Serialize, Deserialize)] #[serde(transparent)] pub struct PyPreTokenizer { pub(crate) pretok: PyPreTokenizerTypeWrapper, } impl PyPreTokenizer { #[allow(dead_code)] pub(crate) fn new(pretok: PyPreTokenizerTypeWrapper) -> Self { PyPreTokenizer { pretok } } pub(crate) fn get_as_subtype(&self, py: Python<'_>) -> PyResult<PyObject> { let base = self.clone(); Ok(match self.pretok { PyPreTokenizerTypeWrapper::Sequence(_) => Py::new(py, (PySequence {}, base))? .into_pyobject(py)? .into_any() .into(), PyPreTokenizerTypeWrapper::Single(ref inner) => { match &*inner .as_ref() .read() .map_err(|_| PyException::new_err("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer"))? { PyPreTokenizerWrapper::Custom(_) => { Py::new(py, base)?.into_pyobject(py)?.into_any().into() } PyPreTokenizerWrapper::Wrapped(inner) => match inner { PreTokenizerWrapper::Whitespace(_) => Py::new(py, (PyWhitespace {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::Split(_) => Py::new(py, (PySplit {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::Punctuation(_) => { Py::new(py, (PyPunctuation {}, base))? .into_pyobject(py)? .into_any() .into() } PreTokenizerWrapper::Sequence(_) => Py::new(py, (PySequence {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::Metaspace(_) => Py::new(py, (PyMetaspace {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::Delimiter(_) => { Py::new(py, (PyCharDelimiterSplit {}, base))? .into_pyobject(py)? .into_any() .into() } PreTokenizerWrapper::WhitespaceSplit(_) => { Py::new(py, (PyWhitespaceSplit {}, base))? .into_pyobject(py)? .into_any() .into() } PreTokenizerWrapper::ByteLevel(_) => Py::new(py, (PyByteLevel {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::BertPreTokenizer(_) => { Py::new(py, (PyBertPreTokenizer {}, base))? .into_pyobject(py)? .into_any() .into() } PreTokenizerWrapper::Digits(_) => Py::new(py, (PyDigits {}, base))? .into_pyobject(py)? .into_any() .into(), PreTokenizerWrapper::UnicodeScripts(_) => { Py::new(py, (PyUnicodeScripts {}, base))? .into_pyobject(py)? .into_any() .into() } }, } } }) } } impl PreTokenizer for PyPreTokenizer { fn pre_tokenize(&self, normalized: &mut PreTokenizedString) -> tk::Result<()> { self.pretok.pre_tokenize(normalized) } } #[pymethods] impl PyPreTokenizer { #[staticmethod] fn custom(pretok: PyObject) -> Self { PyPreTokenizer { pretok: PyPreTokenizerWrapper::Custom(CustomPreTokenizer::new(pretok)).into(), } } fn __getstate__(&self, py: Python) -> PyResult<PyObject> { let data = serde_json::to_string(&self.pretok).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to pickle PreTokenizer: {}", e )) })?; Ok(PyBytes::new(py, data.as_bytes()).into()) } fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> { match state.extract::<&[u8]>(py) { Ok(s) => { let unpickled = serde_json::from_slice(s).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to unpickle PreTokenizer: {}", e )) })?; self.pretok = unpickled; Ok(()) } Err(e) => Err(e), } } /// Pre-tokenize a :class:`~tokenizers.PyPreTokenizedString` in-place /// /// This method allows to modify a :class:`~tokenizers.PreTokenizedString` to /// keep track of the pre-tokenization, and leverage the capabilities of the /// :class:`~tokenizers.PreTokenizedString`. If you just want to see the result of /// the pre-tokenization of a raw string, you can use /// :meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize_str` /// /// Args: /// pretok (:class:`~tokenizers.PreTokenizedString): /// The pre-tokenized string on which to apply this /// :class:`~tokenizers.pre_tokenizers.PreTokenizer` #[pyo3(text_signature = "(self, pretok)")] fn pre_tokenize(&self, pretok: &mut PyPreTokenizedString) -> PyResult<()> { ToPyResult(self.pretok.pre_tokenize(&mut pretok.pretok)).into() } /// Pre tokenize the given string /// /// This method provides a way to visualize the effect of a /// :class:`~tokenizers.pre_tokenizers.PreTokenizer` but it does not keep track of the /// alignment, nor does it provide all the capabilities of the /// :class:`~tokenizers.PreTokenizedString`. If you need some of these, you can use /// :meth:`~tokenizers.pre_tokenizers.PreTokenizer.pre_tokenize` /// /// Args: /// sequence (:obj:`str`): /// A string to pre-tokeize /// /// Returns: /// :obj:`List[Tuple[str, Offsets]]`: /// A list of tuple with the pre-tokenized parts and their offsets #[pyo3(text_signature = "(self, sequence)")] fn pre_tokenize_str(&self, s: &str) -> PyResult<Vec<(String, Offsets)>> { let mut pretokenized = tk::tokenizer::PreTokenizedString::from(s); ToPyResult(self.pretok.pre_tokenize(&mut pretokenized)).into_py()?; Ok(pretokenized .get_splits(tk::OffsetReferential::Original, tk::OffsetType::Char) .into_iter() .map(|(s, o, _)| (s.to_owned(), o)) .collect()) } fn __repr__(&self) -> PyResult<String> { crate::utils::serde_pyo3::repr(self) .map_err(|e| exceptions::PyException::new_err(e.to_string())) } fn __str__(&self) -> PyResult<String> { crate::utils::serde_pyo3::to_string(self) .map_err(|e| exceptions::PyException::new_err(e.to_string())) } } macro_rules! getter { ($self: ident, $variant: ident, $($name: tt)+) => {{ let super_ = $self.as_ref(); if let PyPreTokenizerTypeWrapper::Single(ref single) = super_.pretok { if let PyPreTokenizerWrapper::Wrapped(PreTokenizerWrapper::$variant(ref pretok)) = *single.read().expect("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer") { pretok.$($name)+ } else { unreachable!() } } else { unreachable!() } }}; } macro_rules! setter { ($self: ident, $variant: ident, $name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let PyPreTokenizerTypeWrapper::Single(ref single) = super_.pretok { if let PyPreTokenizerWrapper::Wrapped(PreTokenizerWrapper::$variant(ref mut pretok)) = *single.write().expect("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer") { pretok.$name = $value; } } }}; ($self: ident, $variant: ident, @$name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let PyPreTokenizerTypeWrapper::Single(ref single) = super_.pretok { if let PyPreTokenizerWrapper::Wrapped(PreTokenizerWrapper::$variant(ref mut pretok)) = *single.write().expect("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer") { pretok.$name($value); } } }}; } /// ByteLevel PreTokenizer /// /// This pre-tokenizer takes care of replacing all bytes of the given string /// with a corresponding representation, as well as splitting into words. /// /// Args: /// add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`): /// Whether to add a space to the first word if there isn't already one. This /// lets us treat `hello` exactly like `say hello`. /// use_regex (:obj:`bool`, `optional`, defaults to :obj:`True`): /// Set this to :obj:`False` to prevent this `pre_tokenizer` from using /// the GPT2 specific regexp for spliting on whitespace. #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "ByteLevel")] pub struct PyByteLevel {} #[pymethods] impl PyByteLevel { #[getter] fn get_add_prefix_space(self_: PyRef<Self>) -> bool { getter!(self_, ByteLevel, add_prefix_space) } #[setter] fn set_add_prefix_space(self_: PyRef<Self>, add_prefix_space: bool) { setter!(self_, ByteLevel, add_prefix_space, add_prefix_space); } #[getter] fn get_use_regex(self_: PyRef<Self>) -> bool { getter!(self_, ByteLevel, use_regex) } #[setter] fn set_use_regex(self_: PyRef<Self>, use_regex: bool) { setter!(self_, ByteLevel, use_regex, use_regex); } #[getter] fn get_trim_offsets(self_: PyRef<Self>) -> bool { getter!(self_, ByteLevel, trim_offsets) } #[setter] fn set_trim_offsets(self_: PyRef<Self>, trim_offsets: bool) { setter!(self_, ByteLevel, trim_offsets, trim_offsets) } #[new] #[pyo3(signature = (add_prefix_space = true, use_regex = true, **_kwargs), text_signature = "(self, add_prefix_space=True, use_regex=True)")] fn new( add_prefix_space: bool, use_regex: bool, _kwargs: Option<&Bound<'_, PyDict>>, ) -> (Self, PyPreTokenizer) { ( PyByteLevel {}, ByteLevel::default() .add_prefix_space(add_prefix_space) .use_regex(use_regex) .into(), ) } /// Returns the alphabet used by this PreTokenizer. /// /// Since the ByteLevel works as its name suggests, at the byte level, it /// encodes each byte value to a unique visible character. This means that there is a /// total of 256 different characters composing this alphabet. /// /// Returns: /// :obj:`List[str]`: A list of characters that compose the alphabet #[staticmethod] #[pyo3(text_signature = "()")] fn alphabet() -> Vec<String> { ByteLevel::alphabet() .into_iter() .map(|c| c.to_string()) .collect() } } /// This pre-tokenizer simply splits using the following regex: `\w+|[^\w\s]+` #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Whitespace")] pub struct PyWhitespace {} #[pymethods] impl PyWhitespace { #[new] #[pyo3(text_signature = "(self)")] fn new() -> (Self, PyPreTokenizer) { (PyWhitespace {}, Whitespace {}.into()) } } /// This pre-tokenizer simply splits on the whitespace. Works like `.split()` #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "WhitespaceSplit")] pub struct PyWhitespaceSplit {} #[pymethods] impl PyWhitespaceSplit { #[new] #[pyo3(text_signature = "(self)")] fn new() -> (Self, PyPreTokenizer) { (PyWhitespaceSplit {}, WhitespaceSplit.into()) } } /// Split PreTokenizer /// /// This versatile pre-tokenizer splits using the provided pattern and /// according to the provided behavior. The pattern can be inverted by /// making use of the invert flag. /// /// Args: /// pattern (:obj:`str` or :class:`~tokenizers.Regex`): /// A pattern used to split the string. Usually a string or a regex built with `tokenizers.Regex`. /// If you want to use a regex pattern, it has to be wrapped around a `tokenizers.Regex`, /// otherwise we consider is as a string pattern. For example `pattern="|"` /// means you want to split on `|` (imagine a csv file for example), while /// `pattern=tokenizers.Regex("1|2")` means you split on either '1' or '2'. /// behavior (:class:`~tokenizers.SplitDelimiterBehavior`): /// The behavior to use when splitting. /// Choices: "removed", "isolated", "merged_with_previous", "merged_with_next", /// "contiguous" /// /// invert (:obj:`bool`, `optional`, defaults to :obj:`False`): /// Whether to invert the pattern. #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Split")] pub struct PySplit {} #[pymethods] impl PySplit { #[new] #[pyo3(signature = (pattern, behavior, invert = false), text_signature = "(self, pattern, behavior, invert=False)")] fn new( pattern: PyPattern, behavior: PySplitDelimiterBehavior, invert: bool, ) -> PyResult<(Self, PyPreTokenizer)> { Ok(( PySplit {}, ToPyResult(Split::new(pattern, behavior.into(), invert)) .into_py()? .into(), )) } fn __getnewargs__<'p>(&self, py: Python<'p>) -> PyResult<Bound<'p, PyTuple>> { PyTuple::new(py, [" ", "removed"]) } #[getter] fn get_pattern(_self: PyRef<Self>) -> PyResult<()> { Err(PyException::new_err("Cannot get pattern")) } #[setter] fn set_pattern(_self: PyRef<Self>, _pattern: PyPattern) -> PyResult<()> { Err(PyException::new_err( "Cannot set pattern, please instantiate a new split pattern instead", )) } #[getter] fn get_behavior(self_: PyRef<Self>) -> String { getter!(self_, Split, behavior).to_string().to_lowercase() } #[setter] fn set_behavior(self_: PyRef<Self>, behavior: String) -> PyResult<()> { let behavior = match behavior.as_ref() { "removed" => SplitDelimiterBehavior::Removed, "isolated" => SplitDelimiterBehavior::Isolated, "merged_with_previous" => SplitDelimiterBehavior::MergedWithPrevious, "merged_with_next" => SplitDelimiterBehavior::MergedWithNext, "contiguous" => SplitDelimiterBehavior::Contiguous, _ => { return Err(exceptions::PyValueError::new_err( "Wrong value for SplitDelimiterBehavior, expected one of: \ `removed, isolated, merged_with_previous, merged_with_next, contiguous`", )) } }; setter!(self_, Split, behavior, behavior); Ok(()) } #[getter] fn get_invert(self_: PyRef<Self>) -> bool { getter!(self_, Split, invert) } #[setter] fn set_invert(self_: PyRef<Self>, invert: bool) { setter!(self_, Split, invert, invert) } } /// This pre-tokenizer simply splits on the provided char. Works like `.split(delimiter)` /// /// Args: /// delimiter: str: /// The delimiter char that will be used to split input #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "CharDelimiterSplit")] pub struct PyCharDelimiterSplit {} #[pymethods] impl PyCharDelimiterSplit { #[getter] fn get_delimiter(self_: PyRef<Self>) -> String { getter!(self_, Delimiter, delimiter.to_string()) } #[setter] fn set_delimiter(self_: PyRef<Self>, delimiter: char) { setter!(self_, Delimiter, delimiter, delimiter); } #[new] #[pyo3(text_signature = None)] pub fn new(delimiter: char) -> PyResult<(Self, PyPreTokenizer)> { Ok(( PyCharDelimiterSplit {}, CharDelimiterSplit::new(delimiter).into(), )) } fn __getnewargs__<'p>(&self, py: Python<'p>) -> PyResult<Bound<'p, PyTuple>> { PyTuple::new(py, [" "]) } } /// BertPreTokenizer /// /// This pre-tokenizer splits tokens on spaces, and also on punctuation. /// Each occurrence of a punctuation character will be treated separately. #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "BertPreTokenizer")] pub struct PyBertPreTokenizer {} #[pymethods] impl PyBertPreTokenizer { #[new] #[pyo3(text_signature = "(self)")] fn new() -> (Self, PyPreTokenizer) { (PyBertPreTokenizer {}, BertPreTokenizer.into()) } } /// This pre-tokenizer simply splits on punctuation as individual characters. /// /// Args: /// behavior (:class:`~tokenizers.SplitDelimiterBehavior`): /// The behavior to use when splitting. /// Choices: "removed", "isolated" (default), "merged_with_previous", "merged_with_next", /// "contiguous" #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Punctuation")] pub struct PyPunctuation {} #[pymethods] impl PyPunctuation { #[new] #[pyo3( signature = (behavior = PySplitDelimiterBehavior(SplitDelimiterBehavior::Isolated)), text_signature = "(self, behavior=\"isolated\")")] fn new(behavior: PySplitDelimiterBehavior) -> (Self, PyPreTokenizer) { (PyPunctuation {}, Punctuation::new(behavior.into()).into()) } #[getter] fn get_behavior(self_: PyRef<Self>) -> String { getter!(self_, Punctuation, behavior) .to_string() .to_lowercase() } #[setter] fn set_behavior(self_: PyRef<Self>, behavior: String) -> PyResult<()> { let behavior = match behavior.as_ref() { "removed" => SplitDelimiterBehavior::Removed, "isolated" => SplitDelimiterBehavior::Isolated, "merged_with_previous" => SplitDelimiterBehavior::MergedWithPrevious, "merged_with_next" => SplitDelimiterBehavior::MergedWithNext, "contiguous" => SplitDelimiterBehavior::Contiguous, _ => { return Err(exceptions::PyValueError::new_err( "Wrong value for SplitDelimiterBehavior, expected one of: \ `removed, isolated, merged_with_previous, merged_with_next, contiguous`", )) } }; setter!(self_, Punctuation, behavior, behavior); Ok(()) } } /// This pre-tokenizer composes other pre_tokenizers and applies them in sequence #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Sequence")] pub struct PySequence {} #[pymethods] impl PySequence { #[new] #[pyo3(text_signature = "(self, pretokenizers)")] fn new(pre_tokenizers: &Bound<'_, PyList>) -> PyResult<(Self, PyPreTokenizer)> { let mut sequence = Vec::with_capacity(pre_tokenizers.len()); for n in pre_tokenizers.iter() { let pretokenizer: PyRef<PyPreTokenizer> = n.extract()?; match &pretokenizer.pretok { PyPreTokenizerTypeWrapper::Sequence(inner) => { sequence.extend(inner.iter().cloned()) } PyPreTokenizerTypeWrapper::Single(inner) => sequence.push(inner.clone()), } } Ok(( PySequence {}, PyPreTokenizer::new(PyPreTokenizerTypeWrapper::Sequence(sequence)), )) } fn __getnewargs__<'p>(&self, py: Python<'p>) -> PyResult<Bound<'p, PyTuple>> { PyTuple::new(py, [PyList::empty(py)]) } fn __getitem__(self_: PyRef<'_, Self>, py: Python<'_>, index: usize) -> PyResult<Py<PyAny>> { match &self_.as_ref().pretok { PyPreTokenizerTypeWrapper::Sequence(inner) => match inner.get(index) { Some(item) => PyPreTokenizer::new(PyPreTokenizerTypeWrapper::Single(item.clone())) .get_as_subtype(py), _ => Err(PyErr::new::<pyo3::exceptions::PyIndexError, _>( "Index not found", )), }, _ => Err(PyErr::new::<pyo3::exceptions::PyIndexError, _>( "This processor is not a Sequence, it does not support __getitem__", )), } } fn __setitem__(self_: PyRef<'_, Self>, index: usize, value: Bound<'_, PyAny>) -> PyResult<()> { let pretok: PyPreTokenizer = value.extract()?; let PyPreTokenizerTypeWrapper::Single(pretok) = pretok.pretok else { return Err(PyException::new_err( "pre tokenizer should not be a sequence", )); }; match &self_.as_ref().pretok { PyPreTokenizerTypeWrapper::Sequence(inner) => match inner.get(index) { Some(item) => { *item .write() .map_err(|_| PyException::new_err("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer"))? = (*pretok .read() .map_err(|_| PyException::new_err("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer"))?) .clone(); } _ => { return Err(PyErr::new::<pyo3::exceptions::PyIndexError, _>( "Index not found", )) } }, PyPreTokenizerTypeWrapper::Single(_) => { return Err(PyException::new_err("pre tokenizer is not a sequence")) } }; Ok(()) } } pub(crate) fn from_string(string: String) -> Result<PrependScheme, PyErr> { let scheme = match string.as_str() { "first" => PrependScheme::First, "never" => PrependScheme::Never, "always" => PrependScheme::Always, _ => { return Err(exceptions::PyValueError::new_err(format!( "{} is an unknown variant, should be one of ['first', 'never', 'always']", string ))); } }; Ok(scheme) } /// Metaspace pre-tokenizer /// /// This pre-tokenizer replaces any whitespace by the provided replacement character. /// It then tries to split on these spaces. /// /// Args: /// replacement (:obj:`str`, `optional`, defaults to :obj:`▁`): /// The replacement character. Must be exactly one character. By default we /// use the `▁` (U+2581) meta symbol (Same as in SentencePiece). /// /// prepend_scheme (:obj:`str`, `optional`, defaults to :obj:`"always"`): /// Whether to add a space to the first word if there isn't already one. This /// lets us treat `hello` exactly like `say hello`. /// Choices: "always", "never", "first". First means the space is only added on the first /// token (relevant when special tokens are used or other pre_tokenizer are used). /// #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Metaspace")] pub struct PyMetaspace {} #[pymethods] impl PyMetaspace { #[getter] fn get_replacement(self_: PyRef<Self>) -> String { getter!(self_, Metaspace, get_replacement().to_string()) } #[setter] fn set_replacement(self_: PyRef<Self>, replacement: char) { setter!(self_, Metaspace, @set_replacement, replacement); } #[getter] fn get_split(self_: PyRef<Self>) -> bool { getter!(self_, Metaspace, get_split()) } #[setter] fn set_split(self_: PyRef<Self>, split: bool) { setter!(self_, Metaspace, @set_split, split); } #[getter] fn get_prepend_scheme(self_: PyRef<Self>) -> String { // Assuming Metaspace has a method to get the prepend_scheme as a string getter!(self_, Metaspace, get_prepend_scheme()).to_string() } #[setter] fn set_prepend_scheme(self_: PyRef<Self>, prepend_scheme: String) -> PyResult<()> { let scheme = from_string(prepend_scheme)?; setter!(self_, Metaspace, @set_prepend_scheme, scheme); Ok(()) } #[new] #[pyo3(signature = (replacement = '▁', prepend_scheme=String::from("always"), split=true), text_signature = "(self, replacement=\"_\", prepend_scheme=\"always\", split=True)")] fn new( replacement: char, prepend_scheme: String, split: bool, ) -> PyResult<(Self, PyPreTokenizer)> { // Create a new Metaspace instance let prepend_scheme = from_string(prepend_scheme)?; let new_instance: Metaspace = Metaspace::new(replacement, prepend_scheme, split); Ok((PyMetaspace {}, new_instance.into())) } } /// This pre-tokenizer simply splits using the digits in separate tokens /// /// Args: /// individual_digits (:obj:`bool`, `optional`, defaults to :obj:`False`): /// If set to True, digits will each be separated as follows:: /// /// "Call 123 please" -> "Call ", "1", "2", "3", " please" /// /// If set to False, digits will grouped as follows:: /// /// "Call 123 please" -> "Call ", "123", " please" #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "Digits")] pub struct PyDigits {} #[pymethods] impl PyDigits { #[getter] fn get_individual_digits(self_: PyRef<Self>) -> bool { getter!(self_, Digits, individual_digits) } #[setter] fn set_individual_digits(self_: PyRef<Self>, individual_digits: bool) { setter!(self_, Digits, individual_digits, individual_digits); } #[new] #[pyo3(signature = (individual_digits = false), text_signature = "(self, individual_digits=False)")] fn new(individual_digits: bool) -> (Self, PyPreTokenizer) { (PyDigits {}, Digits::new(individual_digits).into()) } } /// This pre-tokenizer splits on characters that belong to different language family /// It roughly follows https://github.com/google/sentencepiece/blob/master/data/Scripts.txt /// Actually Hiragana and Katakana are fused with Han, and 0x30FC is Han too. /// This mimicks SentencePiece Unigram implementation. #[pyclass(extends=PyPreTokenizer, module = "tokenizers.pre_tokenizers", name = "UnicodeScripts")] pub struct PyUnicodeScripts {} #[pymethods] impl PyUnicodeScripts { #[new] #[pyo3(text_signature = "(self)")] fn new() -> (Self, PyPreTokenizer) { (PyUnicodeScripts {}, UnicodeScripts::new().into()) } } #[derive(Clone)] pub(crate) struct CustomPreTokenizer { inner: PyObject, } impl CustomPreTokenizer { pub fn new(inner: PyObject) -> Self { Self { inner } } } impl tk::tokenizer::PreTokenizer for CustomPreTokenizer { fn pre_tokenize(&self, sentence: &mut PreTokenizedString) -> tk::Result<()> { Python::with_gil(|py| { let pretok = PyPreTokenizedStringRefMut::new(sentence); let py_pretok = self.inner.bind(py); py_pretok.call_method("pre_tokenize", (pretok.get().clone(),), None)?; Ok(()) }) } } impl Serialize for CustomPreTokenizer { fn serialize<S>(&self, _serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { Err(serde::ser::Error::custom( "Custom PreTokenizer cannot be serialized", )) } } impl<'de> Deserialize<'de> for CustomPreTokenizer { fn deserialize<D>(_deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { Err(serde::de::Error::custom( "Custom PreTokenizer cannot be deserialized", )) } } #[derive(Clone, Deserialize)] #[serde(untagged)] pub(crate) enum PyPreTokenizerWrapper { Custom(CustomPreTokenizer), Wrapped(PreTokenizerWrapper), } impl Serialize for PyPreTokenizerWrapper { fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where S: Serializer, { match self { PyPreTokenizerWrapper::Wrapped(inner) => inner.serialize(serializer), PyPreTokenizerWrapper::Custom(inner) => inner.serialize(serializer), } } } #[derive(Clone)] pub(crate) enum PyPreTokenizerTypeWrapper { Sequence(Vec<Arc<RwLock<PyPreTokenizerWrapper>>>), Single(Arc<RwLock<PyPreTokenizerWrapper>>), } impl<'de> Deserialize<'de> for PyPreTokenizerTypeWrapper { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { let wrapper = PreTokenizerWrapper::deserialize(deserializer)?; let py_wrapper: PyPreTokenizerWrapper = wrapper.into(); Ok(py_wrapper.into()) } } impl Serialize for PyPreTokenizerTypeWrapper { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { match self { PyPreTokenizerTypeWrapper::Sequence(seq) => { let mut ser = serializer.serialize_struct("Sequence", 2)?; ser.serialize_field("type", "Sequence")?; ser.serialize_field("pretokenizers", seq)?; ser.end() } PyPreTokenizerTypeWrapper::Single(inner) => inner.serialize(serializer), } } } impl<I> From<I> for PyPreTokenizerWrapper where I: Into<PreTokenizerWrapper>, { fn from(pretok: I) -> Self { PyPreTokenizerWrapper::Wrapped(pretok.into()) } } impl<I> From<I> for PyPreTokenizerTypeWrapper where I: Into<PyPreTokenizerWrapper>, { fn from(pretok: I) -> Self { let pretok = pretok.into(); match pretok { PyPreTokenizerWrapper::Wrapped(PreTokenizerWrapper::Sequence(seq)) => { PyPreTokenizerTypeWrapper::Sequence( seq.into_iter() .map(|e| Arc::new(RwLock::new(PyPreTokenizerWrapper::Wrapped(e.clone())))) .collect(), ) } _ => PyPreTokenizerTypeWrapper::Single(Arc::new(RwLock::new(pretok))), } } } impl<I> From<I> for PyPreTokenizer where I: Into<PreTokenizerWrapper>, { fn from(pretok: I) -> Self { PyPreTokenizer { pretok: pretok.into().into(), } } } impl PreTokenizer for PyPreTokenizerTypeWrapper { fn pre_tokenize(&self, pretok: &mut PreTokenizedString) -> tk::Result<()> { match self { PyPreTokenizerTypeWrapper::Single(inner) => inner .read() .map_err(|_| PyException::new_err("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer"))? .pre_tokenize(pretok), PyPreTokenizerTypeWrapper::Sequence(inner) => inner.iter().try_for_each(|n| { n.read() .map_err(|_| PyException::new_err("RwLock synchronisation primitive is poisoned, cannot get subtype of PyPreTokenizer"))? .pre_tokenize(pretok) }), } } } impl PreTokenizer for PyPreTokenizerWrapper { fn pre_tokenize(&self, pretok: &mut PreTokenizedString) -> tk::Result<()> { match self { PyPreTokenizerWrapper::Wrapped(inner) => inner.pre_tokenize(pretok), PyPreTokenizerWrapper::Custom(inner) => inner.pre_tokenize(pretok), } } } /// PreTokenizers Module #[pymodule] pub fn pre_tokenizers(m: &Bound<'_, PyModule>) -> PyResult<()> { m.add_class::<PyPreTokenizer>()?; m.add_class::<PyByteLevel>()?; m.add_class::<PyWhitespace>()?; m.add_class::<PyWhitespaceSplit>()?; m.add_class::<PySplit>()?; m.add_class::<PyBertPreTokenizer>()?; m.add_class::<PyMetaspace>()?; m.add_class::<PyCharDelimiterSplit>()?; m.add_class::<PyPunctuation>()?; m.add_class::<PySequence>()?; m.add_class::<PyDigits>()?; m.add_class::<PyUnicodeScripts>()?; Ok(()) } #[cfg(test)] mod test { use pyo3::prelude::*; use tk::pre_tokenizers::sequence::Sequence; use tk::pre_tokenizers::whitespace::{Whitespace, WhitespaceSplit}; use tk::pre_tokenizers::PreTokenizerWrapper; use crate::pre_tokenizers::{ CustomPreTokenizer, PyPreTokenizer, PyPreTokenizerTypeWrapper, PyPreTokenizerWrapper, }; #[test] fn get_subtype() { Python::with_gil(|py| { let py_norm = PyPreTokenizer::new(Whitespace {}.into()); let py_wsp = py_norm.get_as_subtype(py).unwrap(); assert_eq!("Whitespace", py_wsp.bind(py).get_type().qualname().unwrap()); }) } #[test] fn serialize() { let py_wrapped: PyPreTokenizerWrapper = Whitespace {}.into(); let py_ser = serde_json::to_string(&py_wrapped).unwrap(); let rs_wrapped = PreTokenizerWrapper::Whitespace(Whitespace {}); let rs_ser = serde_json::to_string(&rs_wrapped).unwrap(); assert_eq!(py_ser, rs_ser); let py_pretok: PyPreTokenizer = serde_json::from_str(&rs_ser).unwrap(); match py_pretok.pretok { PyPreTokenizerTypeWrapper::Single(inner) => match *inner.as_ref().read().unwrap() { PyPreTokenizerWrapper::Wrapped(PreTokenizerWrapper::Whitespace(_)) => {} _ => panic!("Expected Whitespace"), }, _ => panic!("Expected wrapped, not custom."), } let py_seq: PyPreTokenizerWrapper = Sequence::new(vec![Whitespace {}.into(), WhitespaceSplit.into()]).into(); let py_wrapper_ser = serde_json::to_string(&py_seq).unwrap(); let rs_wrapped = PreTokenizerWrapper::Sequence(Sequence::new(vec![ Whitespace {}.into(), WhitespaceSplit.into(), ])); let rs_ser = serde_json::to_string(&rs_wrapped).unwrap(); assert_eq!(py_wrapper_ser, rs_ser); let py_seq = PyPreTokenizer::new(py_seq.into()); let py_ser = serde_json::to_string(&py_seq).unwrap(); assert_eq!(py_wrapper_ser, py_ser); let obj = Python::with_gil(|py| { let py_wsp = PyPreTokenizer::new(Whitespace {}.into()); let obj: PyObject = Py::new(py, py_wsp) .unwrap() .into_pyobject(py) .unwrap() .into_any() .into(); obj }); let py_seq: PyPreTokenizerWrapper = PyPreTokenizerWrapper::Custom(CustomPreTokenizer::new(obj)); assert!(serde_json::to_string(&py_seq).is_err()); } }
tokenizers/bindings/python/src/pre_tokenizers.rs/0
{ "file_path": "tokenizers/bindings/python/src/pre_tokenizers.rs", "repo_id": "tokenizers", "token_count": 17184 }
import pytest from tokenizers import BertWordPieceTokenizer from ..utils import bert_files, data_dir class TestEncoding: @pytest.fixture(scope="class") def encodings(self, bert_files): tokenizer = BertWordPieceTokenizer.from_file(bert_files["vocab"]) single_encoding = tokenizer.encode("I love HuggingFace") pair_encoding = tokenizer.encode("I love HuggingFace", "Do you?") return single_encoding, pair_encoding def test_sequence_ids(self, encodings): single, pair = encodings assert single.sequence_ids == [None, 0, 0, 0, 0, None] assert pair.sequence_ids == [None, 0, 0, 0, 0, None, 1, 1, 1, None] def test_n_sequences(self, encodings): single, pair = encodings assert single.n_sequences == 1 assert pair.n_sequences == 2 def test_word_to_tokens(self, encodings): single, pair = encodings assert single.tokens == ["[CLS]", "i", "love", "hugging", "##face", "[SEP]"] assert single.word_to_tokens(0) == (1, 2) assert pair.tokens == [ "[CLS]", "i", "love", "hugging", "##face", "[SEP]", "do", "you", "?", "[SEP]", ] assert pair.word_to_tokens(0) == (1, 2) assert pair.word_to_tokens(0, 0) == (1, 2) assert pair.word_to_tokens(6, 0) == None assert pair.word_to_tokens(0, 1) == (6, 7) def test_word_to_chars(self, encodings): single, pair = encodings assert single.word_to_chars(2) == (7, 18) assert pair.word_to_chars(2) == (7, 18) assert pair.word_to_chars(2, 0) == (7, 18) assert pair.word_to_chars(2, 1) == (6, 7) def test_token_to_sequence(self, encodings): single, pair = encodings assert single.token_to_sequence(2) == 0 assert pair.token_to_sequence(2) == 0 assert pair.token_to_sequence(0) == None assert pair.token_to_sequence(5) == None assert pair.token_to_sequence(6) == 1 assert pair.token_to_sequence(8) == 1 assert pair.token_to_sequence(9) == None assert pair.token_to_sequence(1200) == None def test_token_to_chars(self, encodings): single, pair = encodings assert single.token_to_chars(0) == None assert single.token_to_chars(2) == (2, 6) assert pair.token_to_chars(2) == (2, 6) assert pair.token_to_chars(5) == None assert pair.token_to_chars(6) == (0, 2) def test_token_to_word(self, encodings): single, pair = encodings assert single.token_to_word(0) == None assert single.token_to_word(1) == 0 assert single.token_to_word(4) == 2 assert pair.token_to_word(1) == 0 assert pair.token_to_word(4) == 2 assert pair.token_to_word(5) == None assert pair.token_to_word(6) == 0 assert pair.token_to_word(7) == 1 def test_char_to_token(self, encodings): single, pair = encodings assert single.char_to_token(0) == 1 assert pair.char_to_token(0) == 1 assert pair.char_to_token(0, 0) == 1 assert pair.char_to_token(1, 0) == None assert pair.char_to_token(0, 1) == 6 assert pair.char_to_token(2, 1) == None def test_char_to_word(self, encodings): single, pair = encodings assert single.char_to_word(0) == 0 assert single.char_to_word(1) == None assert pair.char_to_word(2) == 1 assert pair.char_to_word(2, 0) == 1 assert pair.char_to_word(2, 1) == None assert pair.char_to_word(3, 1) == 1 def test_truncation(self, encodings): single, _ = encodings single.truncate(2, 1, "right") assert single.tokens == ["[CLS]", "i"] assert single.overflowing[0].tokens == ["i", "love"] def test_invalid_truncate_direction(self, encodings): single, _ = encodings with pytest.raises(ValueError) as excinfo: single.truncate(2, 1, "not_a_direction") assert "Invalid truncation direction value : not_a_direction" == str(excinfo.value)
tokenizers/bindings/python/tests/bindings/test_encoding.py/0
{ "file_path": "tokenizers/bindings/python/tests/bindings/test_encoding.py", "repo_id": "tokenizers", "token_count": 1991 }
import pytest from tokenizers import SentencePieceBPETokenizer, SentencePieceUnigramTokenizer class TestSentencePieceBPE: def test_train_from_iterator(self): text = ["A first sentence", "Another sentence", "And a last one"] tokenizer = SentencePieceBPETokenizer() tokenizer.train_from_iterator(text, show_progress=False) output = tokenizer.encode("A sentence") assert output.tokens == ["▁A", "▁sentence"] class TestSentencePieceUnigram: def test_train(self, tmpdir): p = tmpdir.mkdir("tmpdir").join("file.txt") p.write("A first sentence\nAnother sentence\nAnd a last one") tokenizer = SentencePieceUnigramTokenizer() tokenizer.train(files=str(p), show_progress=False) output = tokenizer.encode("A sentence") assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e"] with pytest.raises(Exception) as excinfo: _ = tokenizer.encode("A sentence 🤗") assert str(excinfo.value) == "Encountered an unknown token but `unk_id` is missing" def test_train_with_unk_token(self, tmpdir): p = tmpdir.mkdir("tmpdir").join("file.txt") p.write("A first sentence\nAnother sentence\nAnd a last one") tokenizer = SentencePieceUnigramTokenizer() tokenizer.train(files=str(p), show_progress=False, special_tokens=["<unk>"], unk_token="<unk>") output = tokenizer.encode("A sentence 🤗") assert output.ids[-1] == 0 assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e", "▁", "🤗"] def test_train_from_iterator(self): text = ["A first sentence", "Another sentence", "And a last one"] tokenizer = SentencePieceUnigramTokenizer() tokenizer.train_from_iterator(text, show_progress=False) output = tokenizer.encode("A sentence") assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e"] with pytest.raises(Exception) as excinfo: _ = tokenizer.encode("A sentence 🤗") assert str(excinfo.value) == "Encountered an unknown token but `unk_id` is missing" def test_train_from_iterator_with_unk_token(self): text = ["A first sentence", "Another sentence", "And a last one"] tokenizer = SentencePieceUnigramTokenizer() tokenizer.train_from_iterator( text, vocab_size=100, show_progress=False, special_tokens=["<unk>"], unk_token="<unk>" ) output = tokenizer.encode("A sentence 🤗") assert output.ids[-1] == 0 assert output.tokens == ["▁A", "▁", "s", "en", "t", "en", "c", "e", "▁", "🤗"]
tokenizers/bindings/python/tests/implementations/test_sentencepiece.py/0
{ "file_path": "tokenizers/bindings/python/tests/implementations/test_sentencepiece.py", "repo_id": "tokenizers", "token_count": 1118 }
# Trainers <tokenizerslangcontent> <python> ## BpeTrainer [[autodoc]] tokenizers.trainers.BpeTrainer ## UnigramTrainer [[autodoc]] tokenizers.trainers.UnigramTrainer ## WordLevelTrainer [[autodoc]] tokenizers.trainers.WordLevelTrainer ## WordPieceTrainer [[autodoc]] tokenizers.trainers.WordPieceTrainer </python> <rust> The Rust API Reference is available directly on the [Docs.rs](https://docs.rs/tokenizers/latest/tokenizers/) website. </rust> <node> The node API has not been documented yet. </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/api/trainers.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/api/trainers.mdx", "repo_id": "tokenizers", "token_count": 183 }
/* Our DOM objects */ /* Version control */ .selectors { margin-bottom: 10px; } .dropdown-button { display: inline-block; width: 50%; background-color: #6670FF; color: white; border: none; padding: 5px; font-size: 15px; cursor: pointer; } .dropdown-button:hover, .dropdown-button:focus, .dropdown-button.active { background-color: #A6B0FF; } .dropdown-button.active { background-color: #7988FF; } .menu-dropdown { display: none; background-color: #7988FF; min-width: 160px; overflow: auto; font-size: 15px; padding: 10px 0; } .menu-dropdown a { color: white; padding: 3px 4px; text-decoration: none; display: block; } .menu-dropdown a:hover { background-color: #A6B0FF; } .dropdown-link.active { background-color: #A6B0FF; } .show { display: block; } /* The literal code blocks */ .rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal { color: #6670FF; } /* To keep the logo centered */ .wy-side-scroll { width: auto; font-size: 20px; } /* The div that holds the Hugging Face logo */ .HuggingFaceDiv { width: 100% } /* The research field on top of the toc tree */ .wy-side-nav-search{ padding-top: 0; background-color: #6670FF; } /* The toc tree */ .wy-nav-side{ background-color: #6670FF; padding-bottom: 0; } /* The section headers in the toc tree */ .wy-menu-vertical p.caption{ background-color: #4d59ff; line-height: 40px; } /* The selected items in the toc tree */ .wy-menu-vertical li.current{ background-color: #A6B0FF; } /* When a list item that does belong to the selected block from the toc tree is hovered */ .wy-menu-vertical li.current a:hover{ background-color: #B6C0FF; } /* When a list item that does NOT belong to the selected block from the toc tree is hovered. */ .wy-menu-vertical li a:hover{ background-color: #A7AFFB; } /* The text items on the toc tree */ .wy-menu-vertical a { color: #FFFFDD; font-family: Calibre-Light, sans-serif; } .wy-menu-vertical header, .wy-menu-vertical p.caption{ color: white; font-family: Calibre-Light, sans-serif; } /* The color inside the selected toc tree block */ .wy-menu-vertical li.toctree-l2 a, .wy-menu-vertical li.toctree-l3 a, .wy-menu-vertical li.toctree-l4 a { color: black; } /* Inside the depth-2 selected toc tree block */ .wy-menu-vertical li.toctree-l2.current>a { background-color: #B6C0FF } .wy-menu-vertical li.toctree-l2.current li.toctree-l3>a { background-color: #C6D0FF } /* Inside the depth-3 selected toc tree block */ .wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{ background-color: #D6E0FF } /* Inside code snippets */ .rst-content dl:not(.docutils) dt{ font-size: 15px; } /* Links */ a { color: #6670FF; } /* Content bars */ .rst-content dl:not(.docutils) dt { background-color: rgba(251, 141, 104, 0.1); border-right: solid 2px #FB8D68; border-left: solid 2px #FB8D68; color: #FB8D68; font-family: Calibre-Light, sans-serif; border-top: none; font-style: normal !important; } /* Expand button */ .wy-menu-vertical li.toctree-l2 span.toctree-expand, .wy-menu-vertical li.on a span.toctree-expand, .wy-menu-vertical li.current>a span.toctree-expand, .wy-menu-vertical li.toctree-l3 span.toctree-expand{ color: black; } /* Max window size */ .wy-nav-content{ max-width: 1200px; } /* Mobile header */ .wy-nav-top{ background-color: #6670FF; } /* Source spans */ .rst-content .viewcode-link, .rst-content .viewcode-back{ color: #6670FF; font-size: 110%; letter-spacing: 2px; text-transform: uppercase; } /* It would be better for table to be visible without horizontal scrolling */ .wy-table-responsive table td, .wy-table-responsive table th{ white-space: normal; } .footer { margin-top: 20px; } .footer__Social { display: flex; flex-direction: row; } .footer__CustomImage { margin: 2px 5px 0 0; } /* class and method names in doc */ .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{ font-family: Calibre, sans-serif; font-size: 20px !important; } /* class name in doc*/ .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{ margin-right: 10px; font-family: Calibre-Medium, sans-serif; } /* Method and class parameters */ .sig-param{ line-height: 23px; } /* Class introduction "class" string at beginning */ .rst-content dl:not(.docutils) .property{ font-size: 18px; color: black; } /* FONTS */ body{ font-family: Calibre, sans-serif; font-size: 16px; } h1 { font-family: Calibre-Thin, sans-serif; font-size: 70px; } h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{ font-family: Calibre-Medium, sans-serif; } @font-face { font-family: Calibre-Medium; src: url(./Calibre-Medium.otf); font-weight:400; } @font-face { font-family: Calibre; src: url(./Calibre-Regular.otf); font-weight:400; } @font-face { font-family: Calibre-Light; src: url(./Calibre-Light.ttf); font-weight:400; } @font-face { font-family: Calibre-Thin; src: url(./Calibre-Thin.otf); font-weight:400; } /** * Nav Links to other parts of huggingface.co */ div.hf-menu { position: absolute; top: 0; right: 0; padding-top: 20px; padding-right: 20px; z-index: 1000; } div.hf-menu a { font-size: 14px; letter-spacing: 0.3px; text-transform: uppercase; color: white; -webkit-font-smoothing: antialiased; background: linear-gradient(0deg, #6671ffb8, #9a66ffb8 50%); padding: 10px 16px 6px 16px; border-radius: 3px; margin-left: 12px; position: relative; } div.hf-menu a:active { top: 1px; } @media (min-width: 768px) and (max-width: 1860px) { .wy-breadcrumbs { margin-top: 32px; } } @media (max-width: 768px) { div.hf-menu { display: none; } }
tokenizers/docs/source/_static/css/huggingface.css/0
{ "file_path": "tokenizers/docs/source/_static/css/huggingface.css", "repo_id": "tokenizers", "token_count": 2708 }
Training from memory ---------------------------------------------------------------------------------------------------- In the `Quicktour <quicktour>`__, we saw how to build and train a tokenizer using text files, but we can actually use any Python Iterator. In this section we'll see a few different ways of training our tokenizer. For all the examples listed below, we'll use the same :class:`~tokenizers.Tokenizer` and :class:`~tokenizers.trainers.Trainer`, built as following: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START init_tokenizer_trainer :end-before: END init_tokenizer_trainer :dedent: 8 This tokenizer is based on the :class:`~tokenizers.models.Unigram` model. It takes care of normalizing the input using the NFKC Unicode normalization method, and uses a :class:`~tokenizers.pre_tokenizers.ByteLevel` pre-tokenizer with the corresponding decoder. For more information on the components used here, you can check `here <components>`__ The most basic way ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As you probably guessed already, the easiest way to train our tokenizer is by using a :obj:`List`: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START train_basic :end-before: END train_basic :dedent: 8 Easy, right? You can use anything working as an iterator here, be it a :obj:`List`, :obj:`Tuple`, or a :obj:`np.Array`. Anything works as long as it provides strings. Using the 🤗 Datasets library ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An awesome way to access one of the many datasets that exist out there is by using the 🤗 Datasets library. For more information about it, you should check `the official documentation here <https://huggingface.co/docs/datasets/>`__. Let's start by loading our dataset: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START load_dataset :end-before: END load_dataset :dedent: 8 The next step is to build an iterator over this dataset. The easiest way to do this is probably by using a generator: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START def_batch_iterator :end-before: END def_batch_iterator :dedent: 8 As you can see here, for improved efficiency we can actually provide a batch of examples used to train, instead of iterating over them one by one. By doing so, we can expect performances very similar to those we got while training directly from files. With our iterator ready, we just need to launch the training. In order to improve the look of our progress bars, we can specify the total length of the dataset: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START train_datasets :end-before: END train_datasets :dedent: 8 And that's it! Using gzip files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since gzip files in Python can be used as iterators, it is extremely simple to train on such files: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START single_gzip :end-before: END single_gzip :dedent: 8 Now if we wanted to train from multiple gzip files, it wouldn't be much harder: .. literalinclude:: ../../../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py :language: python :start-after: START multi_gzip :end-before: END multi_gzip :dedent: 8 And voilà!
tokenizers/docs/source/tutorials/python/training_from_memory.rst/0
{ "file_path": "tokenizers/docs/source/tutorials/python/training_from_memory.rst", "repo_id": "tokenizers", "token_count": 1149 }
[package] name = "unstable_wasm" version = "0.1.0" authors = ["Nicolas Patry"] edition = "2018" [lib] crate-type = ["cdylib", "rlib"] [features] default = ["console_error_panic_hook"] [dependencies] wasm-bindgen = "0.2.63" # The `console_error_panic_hook` crate provides better debugging of panics by # logging them with `console.error`. This is great for development, but requires # all the `std::fmt` and `std::panicking` infrastructure, so isn't great for # code size when deploying. console_error_panic_hook = { version = "0.1.6", optional = true } # `wee_alloc` is a tiny allocator for wasm that is only ~1K in code size # compared to the default allocator's ~10K. It is slower than the default # allocator, however. # # Unfortunately, `wee_alloc` requires nightly Rust when targeting wasm for now. wee_alloc = { version = "0.4.5", optional = true } tokenizers = { path = "../../", default-features=false, features = ["unstable_wasm"]} [dev-dependencies] wasm-bindgen-test = "0.3.13" [profile.release] # Tell `rustc` to optimize for small code size. opt-level = "s"
tokenizers/tokenizers/examples/unstable_wasm/Cargo.toml/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/Cargo.toml", "repo_id": "tokenizers", "token_count": 364 }
const CopyWebpackPlugin = require("copy-webpack-plugin"); const path = require('path'); module.exports = { entry: "./bootstrap.js", output: { path: path.resolve(__dirname, "dist"), filename: "bootstrap.js", }, mode: "development", plugins: [ new CopyWebpackPlugin(['index.html']) ], };
tokenizers/tokenizers/examples/unstable_wasm/www/webpack.config.js/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/www/webpack.config.js", "repo_id": "tokenizers", "token_count": 114 }
//! Popular tokenizer models. pub mod bpe; pub mod unigram; pub mod wordlevel; pub mod wordpiece; use std::collections::HashMap; use std::path::{Path, PathBuf}; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use crate::models::bpe::{BpeTrainer, BPE}; use crate::models::unigram::{Unigram, UnigramTrainer}; use crate::models::wordlevel::{WordLevel, WordLevelTrainer}; use crate::models::wordpiece::{WordPiece, WordPieceTrainer}; use crate::{AddedToken, Model, Result, Token, Trainer}; /// Wraps a vocab mapping (ID -> token) to a struct that will be serialized in order /// of token ID, smallest to largest. struct OrderedVocabIter<'a> { vocab_r: &'a HashMap<u32, String>, } impl<'a> OrderedVocabIter<'a> { fn new(vocab_r: &'a HashMap<u32, String>) -> Self { Self { vocab_r } } } impl Serialize for OrderedVocabIter<'_> { fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error> where S: Serializer, { // There could be holes so max + 1 is more correct than vocab_r.len() let mut holes = vec![]; let result = if let Some(max) = self.vocab_r.iter().map(|(key, _)| key).max() { let iter = (0..*max + 1).filter_map(|i| { if let Some(token) = self.vocab_r.get(&i) { Some((token, i)) } else { holes.push(i); None } }); serializer.collect_map(iter) } else { serializer.collect_map(std::iter::empty::<(&str, u32)>()) }; if !holes.is_empty() { warn!("The OrderedVocab you are attempting to save contains holes for indices {:?}, your vocabulary could be corrupted !", holes); println!("The OrderedVocab you are attempting to save contains holes for indices {holes:?}, your vocabulary could be corrupted !"); } result } } #[derive(Serialize, Debug, PartialEq, Clone)] #[serde(untagged)] pub enum ModelWrapper { BPE(BPE), // WordPiece must stay before WordLevel here for deserialization (for retrocompatibility // with the versions not including the "type"), since WordLevel is a subset of WordPiece WordPiece(WordPiece), WordLevel(WordLevel), Unigram(Unigram), } impl<'de> Deserialize<'de> for ModelWrapper { fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error> where D: Deserializer<'de>, { #[derive(Deserialize)] pub struct Tagged { #[serde(rename = "type")] variant: EnumType, #[serde(flatten)] rest: serde_json::Value, } #[derive(Deserialize)] pub enum EnumType { BPE, WordPiece, WordLevel, Unigram, } #[derive(Deserialize)] #[serde(untagged)] pub enum ModelHelper { Tagged(Tagged), Legacy(serde_json::Value), } #[derive(Deserialize)] #[serde(untagged)] pub enum ModelUntagged { BPE(BPE), // WordPiece must stay before WordLevel here for deserialization (for retrocompatibility // with the versions not including the "type"), since WordLevel is a subset of WordPiece WordPiece(WordPiece), WordLevel(WordLevel), Unigram(Unigram), } let helper = ModelHelper::deserialize(deserializer)?; Ok(match helper { ModelHelper::Tagged(model) => match model.variant { EnumType::BPE => ModelWrapper::BPE( serde_json::from_value(model.rest).map_err(serde::de::Error::custom)?, ), EnumType::WordPiece => ModelWrapper::WordPiece( serde_json::from_value(model.rest).map_err(serde::de::Error::custom)?, ), EnumType::WordLevel => ModelWrapper::WordLevel( serde_json::from_value(model.rest).map_err(serde::de::Error::custom)?, ), EnumType::Unigram => ModelWrapper::Unigram( serde_json::from_value(model.rest).map_err(serde::de::Error::custom)?, ), }, ModelHelper::Legacy(value) => { let untagged = serde_json::from_value(value).map_err(serde::de::Error::custom)?; match untagged { ModelUntagged::BPE(bpe) => ModelWrapper::BPE(bpe), ModelUntagged::WordPiece(bpe) => ModelWrapper::WordPiece(bpe), ModelUntagged::WordLevel(bpe) => ModelWrapper::WordLevel(bpe), ModelUntagged::Unigram(bpe) => ModelWrapper::Unigram(bpe), } } }) } } impl_enum_from!(WordLevel, ModelWrapper, WordLevel); impl_enum_from!(WordPiece, ModelWrapper, WordPiece); impl_enum_from!(BPE, ModelWrapper, BPE); impl_enum_from!(Unigram, ModelWrapper, Unigram); impl Model for ModelWrapper { type Trainer = TrainerWrapper; fn tokenize(&self, tokens: &str) -> Result<Vec<Token>> { match self { Self::WordLevel(t) => t.tokenize(tokens), Self::WordPiece(t) => t.tokenize(tokens), Self::BPE(t) => t.tokenize(tokens), Self::Unigram(t) => t.tokenize(tokens), } } fn token_to_id(&self, token: &str) -> Option<u32> { match self { Self::WordLevel(t) => t.token_to_id(token), Self::WordPiece(t) => t.token_to_id(token), Self::BPE(t) => t.token_to_id(token), Self::Unigram(t) => t.token_to_id(token), } } fn id_to_token(&self, id: u32) -> Option<String> { match self { Self::WordLevel(t) => t.id_to_token(id), Self::WordPiece(t) => t.id_to_token(id), Self::BPE(t) => t.id_to_token(id), Self::Unigram(t) => t.id_to_token(id), } } fn get_vocab(&self) -> HashMap<String, u32> { match self { Self::WordLevel(t) => t.get_vocab(), Self::WordPiece(t) => t.get_vocab(), Self::BPE(t) => t.get_vocab(), Self::Unigram(t) => t.get_vocab(), } } fn get_vocab_size(&self) -> usize { match self { Self::WordLevel(t) => t.get_vocab_size(), Self::WordPiece(t) => t.get_vocab_size(), Self::BPE(t) => t.get_vocab_size(), Self::Unigram(t) => t.get_vocab_size(), } } fn save(&self, folder: &Path, name: Option<&str>) -> Result<Vec<PathBuf>> { match self { Self::WordLevel(t) => t.save(folder, name), Self::WordPiece(t) => t.save(folder, name), Self::BPE(t) => t.save(folder, name), Self::Unigram(t) => t.save(folder, name), } } fn get_trainer(&self) -> Self::Trainer { match self { Self::WordLevel(t) => t.get_trainer().into(), Self::WordPiece(t) => t.get_trainer().into(), Self::BPE(t) => t.get_trainer().into(), Self::Unigram(t) => t.get_trainer().into(), } } } impl ModelWrapper { pub fn clear_cache(&mut self) { match self { Self::Unigram(model) => model.clear_cache(), Self::BPE(model) => model.clear_cache(), _ => (), } } pub fn resize_cache(&mut self, capacity: usize) { match self { Self::Unigram(model) => model.resize_cache(capacity), Self::BPE(model) => model.resize_cache(capacity), _ => (), } } } #[derive(Clone, Serialize, Deserialize)] pub enum TrainerWrapper { BpeTrainer(BpeTrainer), WordPieceTrainer(WordPieceTrainer), WordLevelTrainer(WordLevelTrainer), UnigramTrainer(UnigramTrainer), } impl Trainer for TrainerWrapper { type Model = ModelWrapper; fn should_show_progress(&self) -> bool { match self { Self::BpeTrainer(bpe) => bpe.should_show_progress(), Self::WordPieceTrainer(wpt) => wpt.should_show_progress(), Self::WordLevelTrainer(wpt) => wpt.should_show_progress(), Self::UnigramTrainer(wpt) => wpt.should_show_progress(), } } fn train(&self, model: &mut ModelWrapper) -> Result<Vec<AddedToken>> { match self { Self::BpeTrainer(t) => match model { ModelWrapper::BPE(bpe) => t.train(bpe), _ => Err("BpeTrainer can only train a BPE".into()), }, Self::WordPieceTrainer(t) => match model { ModelWrapper::WordPiece(wp) => t.train(wp), _ => Err("WordPieceTrainer can only train a WordPiece".into()), }, Self::WordLevelTrainer(t) => match model { ModelWrapper::WordLevel(wl) => t.train(wl), _ => Err("WordLevelTrainer can only train a WordLevel".into()), }, Self::UnigramTrainer(t) => match model { ModelWrapper::Unigram(u) => t.train(u), _ => Err("UnigramTrainer can only train a Unigram".into()), }, } } fn feed<I, S, F>(&mut self, iterator: I, process: F) -> Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> Result<Vec<String>> + Sync, { match self { Self::BpeTrainer(bpe) => bpe.feed(iterator, process), Self::WordPieceTrainer(wpt) => wpt.feed(iterator, process), Self::WordLevelTrainer(wpt) => wpt.feed(iterator, process), Self::UnigramTrainer(wpt) => wpt.feed(iterator, process), } } } impl_enum_from!(BpeTrainer, TrainerWrapper, BpeTrainer); impl_enum_from!(WordPieceTrainer, TrainerWrapper, WordPieceTrainer); impl_enum_from!(UnigramTrainer, TrainerWrapper, UnigramTrainer); impl_enum_from!(WordLevelTrainer, TrainerWrapper, WordLevelTrainer); #[cfg(test)] mod tests { use super::*; use crate::models::bpe::{BpeBuilder, Vocab}; #[test] fn trainer_wrapper_train_model_wrapper() { let trainer = TrainerWrapper::BpeTrainer(BpeTrainer::default()); let mut model = ModelWrapper::Unigram(Unigram::default()); let result = trainer.train(&mut model); assert!(result.is_err()); } #[test] fn incomplete_ordered_vocab() { let vocab_r: HashMap<u32, String> = HashMap::from([(0, "Hi".to_string()), (2, "There".to_string())]); let ordered = OrderedVocabIter::new(&vocab_r); let serialized = serde_json::to_string(&ordered).unwrap(); assert_eq!(serialized, "{\"Hi\":0,\"There\":2}"); } #[test] fn serialization() { let vocab: Vocab = [ ("<unk>".into(), 0), ("a".into(), 1), ("b".into(), 2), ("ab".into(), 3), ] .iter() .cloned() .collect(); let bpe = BpeBuilder::default() .vocab_and_merges(vocab, vec![("a".to_string(), "b".to_string())]) .unk_token("<unk>".to_string()) .ignore_merges(true) .build() .unwrap(); let model = ModelWrapper::BPE(bpe); let legacy = r#"{"type":"BPE","dropout":null,"unk_token":"<unk>","continuing_subword_prefix":null,"end_of_word_suffix":null,"fuse_unk":false,"byte_fallback":false,"ignore_merges":true,"vocab":{"<unk>":0,"a":1,"b":2,"ab":3},"merges":["a b"]}"#; let legacy = serde_json::from_str(legacy).unwrap(); assert_eq!(model, legacy); let data = serde_json::to_string(&model).unwrap(); assert_eq!( data, r#"{"type":"BPE","dropout":null,"unk_token":"<unk>","continuing_subword_prefix":null,"end_of_word_suffix":null,"fuse_unk":false,"byte_fallback":false,"ignore_merges":true,"vocab":{"<unk>":0,"a":1,"b":2,"ab":3},"merges":[["a","b"]]}"# ); let reconstructed = serde_json::from_str(&data).unwrap(); assert_eq!(model, reconstructed); // Legacy check, type is not necessary. let legacy = r#"{"dropout":null,"unk_token":"<unk>","continuing_subword_prefix":null,"end_of_word_suffix":null,"fuse_unk":false,"byte_fallback":false,"ignore_merges":true,"vocab":{"<unk>":0,"a":1,"b":2,"ab":3},"merges":["a b"]}"#; let reconstructed = serde_json::from_str(legacy).unwrap(); assert_eq!(model, reconstructed); let invalid = r#"{"type":"BPE","dropout":null,"unk_token":"<unk>","continuing_subword_prefix":null,"end_of_word_suffix":null,"fuse_unk":false,"byte_fallback":false,"ignore_merges":true,"vocab":{"<unk>":0,"a":1,"b":2,"ab":3},"merges":["a b c"]}"#; let reconstructed: std::result::Result<ModelWrapper, serde_json::Error> = serde_json::from_str(invalid); match reconstructed { Err(err) => assert_eq!(err.to_string(), "Merges text file invalid at line 1"), _ => panic!("Expected an error here"), } } }
tokenizers/tokenizers/src/models/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/mod.rs", "repo_id": "tokenizers", "token_count": 6331 }
use crate::tokenizer::{NormalizedString, Normalizer, Result}; pub use spm_precompiled::Precompiled; use std::cmp::Ordering; use unicode_segmentation::UnicodeSegmentation; fn replace(transformations: &mut Vec<(char, isize)>, old_part: &str, new_part: &str) { let old_count = old_part.chars().count() as isize; let new_count = new_part.chars().count() as isize; let diff = new_count - old_count; // If we are just replacing characters, all changes should be == 0 transformations.extend(new_part.chars().map(|c| (c, 0))); match diff.cmp(&0) { // If we are adding some characters, the last DIFF characters shoud be == 1 Ordering::Greater => { transformations .iter_mut() .rev() .take(diff as usize) .for_each(|(_, cs)| *cs = 1); } // If we are removing some characters, the last one should include the diff Ordering::Less => { if let Some((_, cs)) = transformations.last_mut() { *cs += diff; } } _ => {} } } impl Normalizer for Precompiled { fn normalize(&self, normalized: &mut NormalizedString) -> Result<()> { let mut transformations = Vec::with_capacity(normalized.get().len()); // Future reader. From @Narsil. // Yes, this is weird, // Yes, this seems broken // No, I don't know why Google did this. // If you question this code, check this normalizer against // XNLI database (all languages) with Unigram model against // Mbart, XLMRoberta *AND* Marian. If you don't get 100% or // break a single test. // You don't pass. let mut modified = false; normalized.get().graphemes(true).for_each(|grapheme| { if grapheme.len() < 6 { if let Some(norm) = self.transform(grapheme) { modified = true; replace(&mut transformations, grapheme, norm); return; } } for (char_index, c) in grapheme.char_indices() { let part = &grapheme[char_index..char_index + c.len_utf8()]; if let Some(norm) = self.transform(part) { modified = true; replace(&mut transformations, part, norm); } else { transformations.push((c, 0)); } } }); if modified { normalized.transform(transformations, 0); } Ok(()) } } #[cfg(test)] mod tests { use super::*; #[test] fn expansion_followed_by_removal() { // Simulate transformations from "™\x1eg" to "TMg" let mut transformations = vec![]; let mut n = NormalizedString::from("™\x1eg"); replace(&mut transformations, "™", "TM"); replace(&mut transformations, "\x1e", ""); transformations.push(('g', 0)); n.transform(transformations, 0); assert_eq!(n.get(), "TMg"); } }
tokenizers/tokenizers/src/normalizers/precompiled.rs/0
{ "file_path": "tokenizers/tokenizers/src/normalizers/precompiled.rs", "repo_id": "tokenizers", "token_count": 1432 }
use crate::pre_tokenizers::unicode_scripts::scripts::{get_script, Script}; use crate::tokenizer::{normalizer::Range, PreTokenizedString, PreTokenizer, Result}; use crate::utils::macro_rules_attribute; #[derive(Clone, Debug, PartialEq, Eq)] #[macro_rules_attribute(impl_serde_type!)] pub struct UnicodeScripts; impl UnicodeScripts { pub fn new() -> Self { Self {} } } impl Default for UnicodeScripts { fn default() -> Self { Self::new() } } // This code exists in the Unigram default IsValidSentencePiece. // It could be integrated directly within `get_script` but I // think it's kind of tricky to see those modifications later // I am guessing release mode will optimize this away anyway. fn fixed_script(c: char) -> Script { let raw_script = get_script(c); if c as u32 == 0x30FC { Script::Han } else if c == ' ' { Script::Any } else { match raw_script { Script::Hiragana => Script::Han, Script::Katakana => Script::Han, script => script, } } } impl PreTokenizer for UnicodeScripts { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { pretokenized.split(|_, normalized| { let mut last_script = None; let mut offset = 0; let mut ranges: Vec<_> = normalized .get() .chars() .filter_map(|c| { let script = Some(fixed_script(c)); let result = if script != Some(Script::Any) && last_script != Some(Script::Any) && last_script != script { Some(offset) } else { None }; offset += c.len_utf8(); if script != Some(Script::Any) { last_script = script; } result }) .collect(); ranges.push(normalized.get().len()); Ok(ranges .windows(2) .map(|item| { normalized .slice(Range::Normalized(item[0]..item[1])) .expect("NormalizedString bad split") }) .collect::<Vec<_>>()) }) } } #[cfg(test)] mod tests { use super::*; use crate::OffsetReferential; use crate::OffsetType; #[test] fn basic() { let pretok = UnicodeScripts {}; let mut pretokenized = PreTokenizedString::from("どこで生れ。Yes"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("どこで生れ", (0, 15)), ("。", (15, 18)), ("Yes", (18, 21))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("どこで生れ", (0, 15)), ("。", (15, 18)), ("Yes", (18, 21))] ); } #[test] fn spaces_are_included_in_every_script() { let pretok = UnicodeScripts {}; let mut pretokenized = PreTokenizedString::from("Apples are りんご 林檎"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("Apples are ", (0, 11)), ("りんご 林檎", (11, 27))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("Apples are ", (0, 11)), ("りんご 林檎", (11, 27))] ); } #[test] fn test_unicode_script() { assert_eq!(Script::Han, fixed_script('京')); assert_eq!(Script::Han, fixed_script('太')); assert_eq!(Script::Han, fixed_script('い')); assert_eq!(Script::Han, fixed_script('グ')); assert_eq!(Script::Han, fixed_script('ー')); assert_eq!(Script::Latin, fixed_script('a')); assert_eq!(Script::Latin, fixed_script('A')); assert_eq!(Script::Common, fixed_script('0')); assert_eq!(Script::Common, fixed_script('$')); assert_eq!(Script::Common, fixed_script('@')); assert_eq!(Script::Common, fixed_script('-')); assert_eq!(Script::Any, fixed_script(' ')); } }
tokenizers/tokenizers/src/pre_tokenizers/unicode_scripts/pre_tokenizer.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/unicode_scripts/pre_tokenizer.rs", "repo_id": "tokenizers", "token_count": 2584 }
use crate::tokenizer::pattern::Pattern; use crate::Offsets; use fancy_regex::Regex; use std::error::Error; #[derive(Debug)] pub struct SysRegex { regex: Regex, } impl SysRegex { pub fn find_iter<'r, 't>(&'r self, inside: &'t str) -> Matches<'r, 't> { Matches(self.regex.find_iter(inside)) } pub fn new(regex_str: &str) -> Result<Self, Box<dyn Error + Send + Sync + 'static>> { Ok(Self { regex: Regex::new(regex_str)?, }) } } pub struct Matches<'r, 't>(fancy_regex::Matches<'r, 't>); impl Iterator for Matches<'_, '_> { type Item = (usize, usize); fn next(&mut self) -> Option<Self::Item> { match self.0.next() { Some(Ok(mat)) => Some((mat.start(), mat.end())), // stop if an error is encountered None | Some(Err(_)) => None, } } } impl Pattern for &Regex { fn find_matches( &self, inside: &str, ) -> Result<Vec<(Offsets, bool)>, Box<dyn Error + Send + Sync + 'static>> { if inside.is_empty() { return Ok(vec![((0, 0), false)]); } let mut prev = 0; let mut splits = Vec::with_capacity(inside.len()); for match_ in self.find_iter(inside) { let match_ = match_?; let start = match_.start(); let end = match_.end(); if prev != start { splits.push(((prev, start), false)); } splits.push(((start, end), true)); prev = end; } if prev != inside.len() { splits.push(((prev, inside.len()), false)) } Ok(splits) } }
tokenizers/tokenizers/src/utils/fancy.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/fancy.rs", "repo_id": "tokenizers", "token_count": 823 }
use tokenizers::models::bpe::BPE; use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::{DecoderWrapper, NormalizerWrapper, PostProcessorWrapper, PreTokenizerWrapper}; use tokenizers::{Model, Tokenizer, TokenizerBuilder}; #[test] fn bpe_values_after_training() { let mut tokenizer = TokenizerBuilder::< BPE, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, >::default() .with_model( BPE::builder() .unk_token("[UNK]".to_string()) .dropout(0.1) .build() .unwrap(), ) .build() .unwrap(); let mut trainer = tokenizer.get_model().get_trainer(); tokenizer .train_from_files(&mut trainer, vec!["./data/small.txt".to_string()]) .unwrap(); assert_eq!(tokenizer.get_model().dropout, Some(0.1)); assert_eq!(tokenizer.get_model().unk_token, Some("[UNK]".to_string())); } #[test] fn bpe_continuing_subword_prefix_error() { let mut tokenizer = TokenizerBuilder::< BPE, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, >::default() .with_model( BPE::builder() .unk_token("[UNK]".to_string()) .continuing_subword_prefix("##".to_string()) .build() .unwrap(), ) .with_pre_tokenizer(Some(PreTokenizerWrapper::Whitespace(Whitespace {}))) .build() .unwrap(); let mut trainer = tokenizer.get_model().get_trainer(); tokenizer .train_from_files(&mut trainer, vec!["./data/small.txt".to_string()]) .unwrap(); tokenizer.save("tokenizer.json", true).unwrap(); let tokenizer = Tokenizer::from_file("tokenizer.json").unwrap(); assert_eq!(tokenizer.get_vocab_size(false), 1526); std::fs::remove_file("tokenizer.json").unwrap(); }
tokenizers/tokenizers/tests/training.rs/0
{ "file_path": "tokenizers/tokenizers/tests/training.rs", "repo_id": "tokenizers", "token_count": 851 }
# Accessing Private/Gated Models <Tip> Due to the possibility of leaking access tokens to users of your website or web application, we only support accessing private/gated models from server-side environments (e.g., Node.js) that have access to the process' environment variables. </Tip> ## Step 1: Generating a User Access Token [User Access Tokens](https://huggingface.co/docs/hub/security-tokens) are the preferred way to authenticate an application to Hugging Face services. To generate an access token, navigate to the [Access Tokens tab](https://huggingface.co/settings/tokens) in your settings and click on the **New token** button. Choose a name for your token and click **Generate a token** (we recommend keeping the "Role" as read-only). You can then click the **Copy** button next to your newly-created token to copy it to your clipboard. <div class="flex justify-center"> <img class="block dark:hidden" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hub/new-token.png"/> <img class="hidden dark:block" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hub/new-token-dark.png"/> </div> To delete or refresh User Access Tokens, you can click the **Manage** button. ## Step 2: Using the access token in Transformers.js Transformers.js will attach an Authorization header to requests made to the Hugging Face Hub when the `HF_TOKEN` environment variable is set and visible to the process. One way to do this is to call your program with the environment variable set. For example, let's say you have a file called `llama.js` with the following code: ```js import { AutoTokenizer } from '@huggingface/transformers'; // Load tokenizer for a gated repository. const tokenizer = await AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf'); // Encode text. const text = 'Hello world!'; const encoded = tokenizer.encode(text); console.log(encoded); ``` You can then use the following command to set the `HF_TOKEN` environment variable and run the file: ```bash HF_TOKEN=hf_... node tests/llama.js ``` (remember to replace `hf_...` with your actual access token). If done correctly, you should see the following output: ```bash [ 1, 15043, 3186, 29991 ] ``` Alternatively, you can set the environment variable directly in your code: ```js // Set access token (NB: Keep this private!) process.env.HF_TOKEN = 'hf_...'; // ... rest of your code ```
transformers.js/docs/source/guides/private.md/0
{ "file_path": "transformers.js/docs/source/guides/private.md", "repo_id": "transformers.js", "token_count": 711 }
import React from 'react' import ReactDOM from 'react-dom/client' import App from './App.jsx' import './index.css' ReactDOM.createRoot(document.getElementById('root')).render( <React.StrictMode> <App /> </React.StrictMode>, )
transformers.js/examples/cross-encoder/src/main.jsx/0
{ "file_path": "transformers.js/examples/cross-encoder/src/main.jsx", "repo_id": "transformers.js", "token_count": 87 }
* { box-sizing: border-box; padding: 0; margin: 0; font-family: sans-serif; } html, body { height: 100%; } body { padding: 16px 32px; } body, #container, #upload-button { display: flex; flex-direction: column; justify-content: center; align-items: center; } h1 { text-align: center; } #container { position: relative; width: 640px; height: 420px; max-width: 100%; max-height: 100%; border: 2px dashed #D1D5DB; border-radius: 0.75rem; overflow: hidden; margin-top: 1rem; background-size: 100% 100%; background-position: center; background-repeat: no-repeat; } #mask-output { position: absolute; width: 100%; height: 100%; pointer-events: none; } #upload-button { gap: 0.4rem; font-size: 18px; cursor: pointer; } #upload { display: none; } svg { pointer-events: none; } #example { font-size: 14px; text-decoration: underline; cursor: pointer; } #example:hover { color: #2563EB; } canvas { position: absolute; width: 100%; height: 100%; } #status { min-height: 16px; margin: 8px 0; } input[type="range"] { position: absolute; top: 10px; right: 10px; z-index: 1; }
transformers.js/examples/depth-anything-client/style.css/0
{ "file_path": "transformers.js/examples/depth-anything-client/style.css", "repo_id": "transformers.js", "token_count": 474 }
{ "name": "extension", "version": "0.0.1", "description": "Transformers.js | Sample browser extension", "scripts": { "build": "webpack", "dev": "webpack --watch" }, "type": "module", "author": "Xenova", "license": "MIT", "devDependencies": { "copy-webpack-plugin": "^11.0.0", "html-webpack-plugin": "^5.5.1", "webpack": "^5.79.0" }, "dependencies": { "@xenova/transformers": "^2.0.0" } }
transformers.js/examples/extension/package.json/0
{ "file_path": "transformers.js/examples/extension/package.json", "repo_id": "transformers.js", "token_count": 197 }
import { useState, useRef } from 'react'; const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beetle.png'; const ImageInput = ({ onImageChange, ...props }) => { const [imagePreview, setImagePreview] = useState(null); const fileInputRef = useRef(null); const readFile = (file) => { if (!file) return; const reader = new FileReader(); reader.onloadend = () => { setImagePreview(reader.result); if (onImageChange) { onImageChange(file, reader.result); } }; reader.readAsDataURL(file); } const handleImageChange = (event) => { readFile(event.target.files[0]); }; const handleDragOver = (event) => { event.preventDefault(); }; const handleDrop = (event) => { event.preventDefault(); readFile(event.dataTransfer.files[0]); }; const handleClick = () => { fileInputRef.current.click(); }; return ( <div {...props} onClick={handleClick} onDragOver={handleDragOver} onDrop={handleDrop} > <input type="file" accept="image/*" onChange={handleImageChange} ref={fileInputRef} className="hidden" /> {imagePreview ? ( <img src={imagePreview} alt="Selected" className="w-full max-h-[250px] h-full object-contain rounded-md" /> ) : ( <div className="w-full h-full flex flex-col items-center justify-center border-2 border-dashed border-gray-300 rounded-md"> <span className="text-gray-600 text-center m-3"><u>Drag & drop</u> or <u>click</u><br />to select an image</span> <span className="text-gray-500 text-sm hover:text-gray-800" onClick={(e) => { e.stopPropagation(); setImagePreview(EXAMPLE_URL); onImageChange(null, EXAMPLE_URL); }}>(or <u>try an example</u>)</span> </div> )} </div> ); }; export default ImageInput;
transformers.js/examples/florence2-webgpu/src/components/ImageInput.jsx/0
{ "file_path": "transformers.js/examples/florence2-webgpu/src/components/ImageInput.jsx", "repo_id": "transformers.js", "token_count": 1106 }
import './globals.css' import { Inter } from 'next/font/google' const inter = Inter({ subsets: ['latin'] }) export const metadata = { title: 'Create Next App', description: 'Generated by create next app', } export default function RootLayout({ children }) { return ( <html lang="en"> <body className={inter.className}>{children}</body> </html> ) }
transformers.js/examples/next-client/src/app/layout.js/0
{ "file_path": "transformers.js/examples/next-client/src/app/layout.js", "repo_id": "transformers.js", "token_count": 128 }
// Create a custom request handler for the /classify route. // For more information, see https://nextjs.org/docs/app/building-your-application/routing/router-handlers import { NextResponse } from 'next/server' import PipelineSingleton from './pipeline.js'; export async function GET(request) { const text = request.nextUrl.searchParams.get('text'); if (!text) { return NextResponse.json({ error: 'Missing text parameter', }, { status: 400 }); } // Get the classification pipeline. When called for the first time, // this will load the pipeline and cache it for future use. const classifier = await PipelineSingleton.getInstance(); // Actually perform the classification const result = await classifier(text); return NextResponse.json(result); }
transformers.js/examples/next-server/src/app/classify/route.js/0
{ "file_path": "transformers.js/examples/next-server/src/app/classify/route.js", "repo_id": "transformers.js", "token_count": 250 }
#root { max-width: 1280px; margin: 0 auto; padding: 2rem; text-align: center; } .language-container { display: flex; gap: 20px; } .textbox-container { display: flex; justify-content: center; gap: 20px; width: 800px; } .textbox-container>textarea, .language-selector { width: 50%; } .language-selector>select { width: 150px; } .progress-container { position: relative; font-size: 14px; color: white; background-color: #e9ecef; border: solid 1px; border-radius: 8px; text-align: left; overflow: hidden; } .progress-bar { padding: 0 4px; z-index: 0; top: 0; width: 1%; height: 100%; overflow: hidden; background-color: #007bff; white-space: nowrap; } .progress-text { z-index: 2; } .selector-container { display: flex; gap: 20px; } .progress-bars-container { padding: 8px; height: 140px; } .container { margin: 25px; display: flex; flex-direction: column; gap: 10px; }
transformers.js/examples/react-translator/src/App.css/0
{ "file_path": "transformers.js/examples/react-translator/src/App.css", "repo_id": "transformers.js", "token_count": 383 }
import { env, AutoTokenizer, CLIPTextModelWithProjection } from '@xenova/transformers'; import { getCachedFile, getCachedJSON } from './utils.js'; const EMBED_DIM = 512; // Skip local model check env.allowLocalModels = false; class ApplicationSingleton { static model_id = 'Xenova/clip-vit-base-patch16'; static BASE_URL = 'https://huggingface.co/datasets/Xenova/semantic-image-search-assets/resolve/main/'; static tokenizer = null; static text_model = null; static metadata = null; static embeddings = null; static async getInstance(progress_callback = null) { // Load tokenizer and text model if (this.tokenizer === null) { this.tokenizer = AutoTokenizer.from_pretrained(this.model_id, { progress_callback }); } if (this.text_model === null) { this.text_model = CLIPTextModelWithProjection.from_pretrained(this.model_id, { progress_callback }); } if (this.metadata === null) { this.metadata = getCachedJSON(this.BASE_URL + 'image-embeddings.json'); } if (this.embeddings === null) { this.embeddings = new Promise( (resolve, reject) => { getCachedFile(this.BASE_URL + 'image-embeddings_25k-512-32bit.bin') .then((buffer) => { resolve(new Float32Array(buffer)); }) .catch(reject); } ) } return Promise.all([this.tokenizer, this.text_model, this.metadata, this.embeddings]); } } function cosineSimilarity(query_embeds, database_embeds) { const numDB = database_embeds.length / EMBED_DIM; const similarityScores = new Array(numDB); for (let i = 0; i < numDB; ++i) { const startOffset = i * EMBED_DIM; const dbVector = database_embeds.slice(startOffset, startOffset + EMBED_DIM); let dotProduct = 0; let normEmbeds = 0; let normDB = 0; for (let j = 0; j < EMBED_DIM; ++j) { const embedValue = query_embeds[j]; const dbValue = dbVector[j]; dotProduct += embedValue * dbValue; normEmbeds += embedValue * embedValue; normDB += dbValue * dbValue; } similarityScores[i] = dotProduct / (Math.sqrt(normEmbeds) * Math.sqrt(normDB)); } return similarityScores; } // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Get the tokenizer, model, metadata, and embeddings. When called for the first time, // this will load the files and cache them for future use. const [tokenizer, text_model, metadata, embeddings] = await ApplicationSingleton.getInstance(self.postMessage); // Send the output back to the main thread self.postMessage({ status: 'ready' }); // Run tokenization const text_inputs = tokenizer(event.data.text, { padding: true, truncation: true }); // Compute embeddings const { text_embeds } = await text_model(text_inputs); // Compute similarity scores const scores = cosineSimilarity(text_embeds.data, embeddings); // Make a copy of the metadata let output = metadata.slice(0); // Add scores to output for (let i = 0; i < metadata.length; ++i) { output[i].score = scores[i]; } // Sort by score output.sort((a, b) => b.score - a.score); // Get top 100 results output = output.slice(0, 100); // Send the output back to the main thread self.postMessage({ status: 'complete', output: output, }); });
transformers.js/examples/semantic-image-search-client/src/app/worker.js/0
{ "file_path": "transformers.js/examples/semantic-image-search-client/src/app/worker.js", "repo_id": "transformers.js", "token_count": 1518 }
import Image from 'next/image' import { blurHashToDataURL } from '../utils.js' export function ImageGrid({ images, setCurrentImage }) { return ( <div className="columns-2 gap-4 sm:columns-3 xl:columns-4 2xl:columns-5"> {images && images.map(({ photo_id, photo_url, photo_image_url, photo_aspect_ratio, photo_width, photo_height, blur_hash, photo_description, ai_description, similarity, }) => ( <div key={photo_id} href={photo_url} className='after:content group cursor-pointer relative mb-4 block w-full after:pointer-events-none after:absolute after:inset-0 after:rounded-lg after:shadow-highlight' onClick={() => { setCurrentImage({ photo_id, photo_url, photo_image_url, photo_aspect_ratio, photo_width, photo_height, blur_hash, photo_description, ai_description, similarity, }); }} > <Image alt={photo_description || ai_description || ""} className="transform rounded-lg brightness-90 transition will-change-auto group-hover:brightness-110" style={{ transform: 'translate3d(0, 0, 0)' }} placeholder="blur" blurDataURL={blurHashToDataURL(blur_hash)} src={`${photo_image_url}?auto=format&fit=crop&w=480&q=80`} width={480} height={480 / photo_aspect_ratio} unoptimized={true} /> </div> ))} </div>) }
transformers.js/examples/semantic-image-search/src/app/components/ImageGrid.jsx/0
{ "file_path": "transformers.js/examples/semantic-image-search/src/app/components/ImageGrid.jsx", "repo_id": "transformers.js", "token_count": 1339 }
import React, { useState, useEffect, useRef } from 'react'; import AudioPlayer from './components/AudioPlayer'; import Progress from './components/Progress'; import { SPEAKERS, DEFAULT_SPEAKER } from './constants'; const App = () => { // Model loading const [ready, setReady] = useState(null); const [disabled, setDisabled] = useState(false); const [progressItems, setProgressItems] = useState([]); // Inputs and outputs const [text, setText] = useState('I love Hugging Face!'); const [selectedSpeaker, setSelectedSpeaker] = useState(DEFAULT_SPEAKER); const [output, setOutput] = useState(null); // Create a reference to the worker object. const worker = useRef(null); // We use the `useEffect` hook to setup the worker as soon as the `App` component is mounted. useEffect(() => { if (!worker.current) { // Create the worker if it does not yet exist. worker.current = new Worker(new URL('./worker.js', import.meta.url), { type: 'module' }); } // Create a callback function for messages from the worker thread. const onMessageReceived = (e) => { switch (e.data.status) { case 'initiate': // Model file start load: add a new progress item to the list. setReady(false); setProgressItems(prev => [...prev, e.data]); break; case 'progress': // Model file progress: update one of the progress items. setProgressItems( prev => prev.map(item => { if (item.file === e.data.file) { return { ...item, progress: e.data.progress } } return item; }) ); break; case 'done': // Model file loaded: remove the progress item from the list. setProgressItems( prev => prev.filter(item => item.file !== e.data.file) ); break; case 'ready': // Pipeline ready: the worker is ready to accept messages. setReady(true); break; case 'complete': // Generation complete: re-enable the "Translate" button setDisabled(false); const blobUrl = URL.createObjectURL(e.data.output); setOutput(blobUrl); break; } }; // Attach the callback function as an event listener. worker.current.addEventListener('message', onMessageReceived); // Define a cleanup function for when the component is unmounted. return () => worker.current.removeEventListener('message', onMessageReceived); }); const handleGenerateSpeech = () => { setDisabled(true); worker.current.postMessage({ text, speaker_id: selectedSpeaker, }); }; const isLoading = ready === false; return ( <div className='min-h-screen flex items-center justify-center bg-gray-100'> <div className='absolute gap-1 z-50 top-0 left-0 w-full h-full transition-all px-8 flex flex-col justify-center text-center' style={{ opacity: isLoading ? 1 : 0, pointerEvents: isLoading ? 'all' : 'none', background: 'rgba(0, 0, 0, 0.9)', backdropFilter: 'blur(8px)', }}> {isLoading && ( <label className='text-white text-xl p-3'>Loading models... (only run once)</label> )} {progressItems.map(data => ( <div key={`${data.name}/${data.file}`}> <Progress text={`${data.name}/${data.file}`} percentage={data.progress} /> </div> ))} </div> <div className='bg-white p-8 rounded-lg shadow-lg w-full max-w-xl m-2'> <h1 className='text-3xl font-semibold text-gray-800 mb-1 text-center'>In-browser Text to Speech</h1> <h2 className='text-base font-medium text-gray-700 mb-2 text-center'>Made with <a href='https://huggingface.co/docs/transformers.js'>🤗 Transformers.js</a></h2> <div className='mb-4'> <label htmlFor='text' className='block text-sm font-medium text-gray-600'> Text </label> <textarea id='text' className='border border-gray-300 rounded-md p-2 w-full' rows='4' placeholder='Enter text here' value={text} onChange={(e) => setText(e.target.value)} ></textarea> </div> <div className='mb-4'> <label htmlFor='speaker' className='block text-sm font-medium text-gray-600'> Speaker </label> <select id='speaker' className='border border-gray-300 rounded-md p-2 w-full' value={selectedSpeaker} onChange={(e) => setSelectedSpeaker(e.target.value)} > {Object.entries(SPEAKERS).map(([key, value]) => ( <option key={key} value={value}> {key} </option> ))} </select> </div> <div className='flex justify-center'> <button className={`${disabled ? 'bg-gray-400 cursor-not-allowed' : 'bg-blue-500 hover:bg-blue-600' } text-white rounded-md py-2 px-4`} onClick={handleGenerateSpeech} disabled={disabled} > {disabled ? 'Generating...' : 'Generate'} </button> </div> {output && <AudioPlayer audioUrl={output} mimeType={'audio/wav'} />} </div> </div> ); }; export default App;
transformers.js/examples/text-to-speech-client/src/App.jsx/0
{ "file_path": "transformers.js/examples/text-to-speech-client/src/App.jsx", "repo_id": "transformers.js", "token_count": 2478 }
import './style.css'; import { env, AutoModel, ones } from '@xenova/transformers'; import Chart from 'chart.js/auto'; // Throw an error if WebGPU is not supported if (!navigator.gpu) { const err = 'WebGPU is not supported by this browser.'; alert(err) throw Error(err); } env.backends.onnx.wasm.wasmPaths = 'https://cdn.jsdelivr.net/npm/[email protected]/dist/'; env.backends.onnx.wasm.numThreads = 1; // Reference the elements that we will need const ctx = document.getElementById('chart'); const batchSizes = document.getElementById('batch-sizes'); const xscale = document.getElementById('x-scale'); const yscale = document.getElementById('y-scale'); const sequenceLength = document.getElementById('sequence-length'); const modelID = document.getElementById('model-id'); const status = document.getElementById('status'); const start = document.getElementById('start'); const stop = document.getElementById('stop'); const tests = document.getElementsByClassName('tests'); // Benchmark settings const NUM_WARMUP_STEPS = 3; const MODEL_CACHE = new Map(); // Chart configuration const initChart = () => { const config = { type: 'line', data: { labels: [], datasets: [], }, options: { responsive: true, maintainAspectRatio: false, plugins: { legend: { position: 'top', }, }, scales: { x: { title: { display: true, text: 'Batch size', }, min: 1, }, y: { title: { display: true, text: 'Time (ms)', }, } } }, }; const chart = new Chart(ctx, config); return chart; } let chart = initChart(); const toggleScale = (axis, enabled) => { chart.options.scales[axis].type = enabled ? 'logarithmic' : 'linear'; chart.update(); } const getSelectedTests = () => { return [...tests].filter(x => x.checked); } const updateDatasets = () => { chart.data.datasets = getSelectedTests().map(test => { const color = test.getAttribute('data-color'); return { label: test.value, data: [], borderColor: `rgba(${color}, 1)`, backgroundColor: `rgba(${color}, 0.5)`, } }) chart.update(); } updateDatasets(); [...tests].forEach(test => test.addEventListener('change', updateDatasets)); xscale.addEventListener('change', () => toggleScale('x', xscale.checked)); yscale.addEventListener('change', () => toggleScale('y', yscale.checked)); const generateDummyInputs = (batch_size, seqLength) => { const inputs = ones([batch_size, seqLength]); const model_inputs = { input_ids: inputs, attention_mask: inputs, } return model_inputs; } let adapterInfo; let gpuHasFp16 = false; try { // Shouldn't fail since the WebGPU model has loaded successfully const adapter = await navigator.gpu.requestAdapter(); adapterInfo = await adapter.requestAdapterInfo(); gpuHasFp16 = adapter.features.has('shader-f16') } catch (err) { adapterInfo = {}; } if (!gpuHasFp16) { const element = document.querySelector('.tests[data-device="webgpu"][data-dtype="fp16"]'); element.setAttribute('unsupported', true); element.disabled = true; element.title = 'This device does not support fp16 on WebGPU'; } status.textContent = 'Ready'; let interrupted = false; start.addEventListener('click', async () => { const validTests = [...tests].filter(test => !test.getAttribute('unsupported')) // Update UI start.disabled = true; stop.disabled = false; batchSizes.disabled = true; sequenceLength.disabled = true; modelID.disabled = true; validTests.forEach(test => test.disabled = true); interrupted = false; // Get parameters const model_id = modelID.value; const batch_sizes = batchSizes.value.split(',').map(x => parseInt(x)).filter(x => x); const seqLength = parseInt(sequenceLength.value); const selectedTests = getSelectedTests().map(x => ({ label: x.value, dtype: x.getAttribute('data-dtype'), device: x.getAttribute('data-device'), })); // Reset chart.destroy(); chart = initChart(); updateDatasets(); // NOTE: Models must be loaded sequentially (otherwise it will fail due to multiple calls to initWasm()) const testsToRun = new Map(); for (const test of selectedTests) { const { label, dtype, device, quantized } = test; const key = `${model_id}///${label}`; const cached = MODEL_CACHE.get(key); if (cached) { testsToRun.set(label, cached); continue; } status.textContent = 'Loading model(s)...'; try { const model = await AutoModel.from_pretrained(model_id, { quantized, device, dtype, }); MODEL_CACHE.set(key, model); testsToRun.set(label, model); } catch (err) { status.textContent = err.message; alert(err.message) throw err; } } status.textContent = 'Warming up...'; // Warm up: This is important for the WebGPU execution provider, which compiles the shaders on first load for (let i = 0; i < NUM_WARMUP_STEPS; ++i) { const model_inputs = generateDummyInputs(1, seqLength); for (const [label, model] of testsToRun) { await model(model_inputs); } } status.textContent = 'Running benchmark...'; for (const batch_size of batch_sizes) { if (interrupted) break; const model_inputs = generateDummyInputs(batch_size, seqLength); const times = [] for (const [label, model] of testsToRun) { const start = performance.now(); await model(model_inputs); const end = performance.now(); times.push(end - start); } chart.data.labels.push(batch_size); for (let i = 0; i < times.length; ++i) { chart.data.datasets[i].data.push(times[i]); } chart.update(); } // Calculate max speedup: if (chart.data.labels.length === 0) return; const testNames = [...testsToRun.keys()]; const table = generateResultsTable(model_id, testNames, chart.data, seqLength); // Calculate slowest and fastest times let minMaxTimes = [Infinity, 0]; let minMaxIndices = [0, 0]; for (let i = 0; i < chart.data.datasets.length; i++) { const lastTime = chart.data.datasets[i].data.at(-1); if (lastTime < minMaxTimes[0]) { minMaxTimes[0] = lastTime; minMaxIndices[0] = i; } if (lastTime > minMaxTimes[1]) { minMaxTimes[1] = lastTime; minMaxIndices[1] = i; } } const speedup = minMaxTimes[1] / minMaxTimes[0]; const roundedSpeedup = speedup.toFixed(2); const params = new URLSearchParams({ title: `⚡ WebGPU Benchmark Results (${roundedSpeedup}x speedup)`, description: table.outerHTML, }); const paramsStr = params.toString(); status.innerHTML = `⚡ Done! ${testNames.at(minMaxIndices[0])} is <strong>${roundedSpeedup}x</strong> faster than ${testNames.at(minMaxIndices[1])}! ⚡<br><a href="https://huggingface.co/spaces/Xenova/webgpu-embedding-benchmark/discussions/new?${paramsStr}" target="_blank">Share results</a>`; start.disabled = false; stop.disabled = true; batchSizes.disabled = false; sequenceLength.disabled = false; modelID.disabled = false; validTests.forEach(test => test.disabled = false); }); start.disabled = false; stop.addEventListener('click', () => { status.textContent = 'Stopping...'; interrupted = true; stop.disabled = true; }); function generateResultsTable(model_id, testNames, data, sequence_length) { const datasets = data.datasets.map(d => d.data); const batch_sizes = data.labels; const container = document.createElement('div'); const table = document.createElement('table'); const thead = table.createTHead(); const tbody = table.createTBody(); // Add header row const headerRow = thead.insertRow(); headerRow.insertCell().textContent = 'Batch Size'; testNames.forEach(model => { headerRow.insertCell().textContent = model; }); // Add data rows batch_sizes.forEach((batchSize, rowIndex) => { const row = tbody.insertRow(); row.insertCell().textContent = batchSize; datasets.forEach(dataset => { row.insertCell().textContent = dataset[rowIndex].toFixed(2); }); }); container.appendChild(table); const createBulletPoint = (text) => { const li = document.createElement('li'); li.textContent = text; return li; } // Add other information const info = document.createElement('ul'); info.appendChild(createBulletPoint(`Model: ${model_id}`)); info.appendChild(createBulletPoint(`Tests run: ${testNames.join(', ')}`)); info.appendChild(createBulletPoint(`Sequence length: ${sequence_length}`)); info.appendChild(createBulletPoint(`Browser: ${navigator.userAgent}`)); info.appendChild(createBulletPoint(`GPU: vendor=${adapterInfo.vendor}, architecture=${adapterInfo.architecture}, device=${adapterInfo.device}, description=${adapterInfo.description}`)); container.appendChild(info); return container; }
transformers.js/examples/webgpu-embedding-benchmark/main.js/0
{ "file_path": "transformers.js/examples/webgpu-embedding-benchmark/main.js", "repo_id": "transformers.js", "token_count": 3269 }