text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Integrations with other Python libraries. """ import functools import importlib.metadata import importlib.util import json import numbers import os import pickle import shutil import sys import tempfile from dataclasses import asdict, fields from enum import Enum from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union import numpy as np import packaging.version from .. import PreTrainedModel, TFPreTrainedModel from .. import __version__ as version from ..utils import ( PushToHubMixin, flatten_dict, is_datasets_available, is_pandas_available, is_tf_available, is_torch_available, logging, ) logger = logging.get_logger(__name__) if is_torch_available(): import torch # comet_ml requires to be imported before any ML frameworks _MIN_COMET_VERSION = "3.43.2" try: _comet_version = importlib.metadata.version("comet_ml") _is_comet_installed = True _is_comet_recent_enough = packaging.version.parse(_comet_version) >= packaging.version.parse(_MIN_COMET_VERSION) # Check if the Comet API Key is set import comet_ml if comet_ml.config.get_config("comet.api_key") is not None: _is_comet_configured = True else: _is_comet_configured = False except (importlib.metadata.PackageNotFoundError, ImportError, ValueError, TypeError, AttributeError, KeyError): _comet_version = None _is_comet_installed = False _is_comet_recent_enough = False _is_comet_configured = False _has_neptune = ( importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None ) if TYPE_CHECKING and _has_neptune: try: _neptune_version = importlib.metadata.version("neptune") logger.info(f"Neptune version {_neptune_version} available.") except importlib.metadata.PackageNotFoundError: try: _neptune_version = importlib.metadata.version("neptune-client") logger.info(f"Neptune-client version {_neptune_version} available.") except importlib.metadata.PackageNotFoundError: _has_neptune = False from .. import modelcard # noqa: E402 from ..trainer_callback import ProgressCallback, TrainerCallback # noqa: E402 from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402 from ..training_args import ParallelMode # noqa: E402 from ..utils import ENV_VARS_TRUE_VALUES, is_torch_xla_available # noqa: E402 # Integration functions: def is_wandb_available(): # any value of WANDB_DISABLED disables wandb if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES: logger.warning( "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the " "--report_to flag to control the integrations used for logging result (for instance --report_to none)." ) return False return importlib.util.find_spec("wandb") is not None def is_clearml_available(): return importlib.util.find_spec("clearml") is not None def is_comet_available(): if os.getenv("COMET_MODE", "").upper() == "DISABLED": logger.warning( "Using the `COMET_MODE=DISABLED` environment variable is deprecated and will be removed in v5. Use the " "--report_to flag to control the integrations used for logging result (for instance --report_to none)." ) return False if _is_comet_installed is False: return False if _is_comet_recent_enough is False: logger.warning( "comet_ml version %s is installed, but version %s or higher is required. " "Please update comet_ml to the latest version to enable Comet logging with pip install 'comet-ml>=%s'.", _comet_version, _MIN_COMET_VERSION, _MIN_COMET_VERSION, ) return False if _is_comet_configured is False: logger.warning( "comet_ml is installed but the Comet API Key is not configured. " "Please set the `COMET_API_KEY` environment variable to enable Comet logging. " "Check out the documentation for other ways of configuring it: " "https://www.comet.com/docs/v2/guides/experiment-management/configure-sdk/#set-the-api-key" ) return False return True def is_tensorboard_available(): return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None def is_optuna_available(): return importlib.util.find_spec("optuna") is not None def is_ray_available(): return importlib.util.find_spec("ray") is not None def is_ray_tune_available(): if not is_ray_available(): return False return importlib.util.find_spec("ray.tune") is not None def is_sigopt_available(): return importlib.util.find_spec("sigopt") is not None def is_azureml_available(): if importlib.util.find_spec("azureml") is None: return False if importlib.util.find_spec("azureml.core") is None: return False return importlib.util.find_spec("azureml.core.run") is not None def is_mlflow_available(): if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE": return False return importlib.util.find_spec("mlflow") is not None def is_dagshub_available(): return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")] def is_neptune_available(): return _has_neptune def is_codecarbon_available(): return importlib.util.find_spec("codecarbon") is not None def is_flytekit_available(): return importlib.util.find_spec("flytekit") is not None def is_flyte_deck_standard_available(): if not is_flytekit_available(): return False return importlib.util.find_spec("flytekitplugins.deck") is not None def is_dvclive_available(): return importlib.util.find_spec("dvclive") is not None def hp_params(trial): if is_optuna_available(): import optuna if isinstance(trial, optuna.trial.BaseTrial): return trial.params if is_ray_tune_available(): if isinstance(trial, dict): return trial if is_sigopt_available(): if isinstance(trial, dict): return trial if is_wandb_available(): if isinstance(trial, dict): return trial raise RuntimeError(f"Unknown type for trial {trial.__class__}") def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import optuna from accelerate.utils.memory import release_memory if trainer.args.process_index == 0: def _objective(trial: optuna.Trial, checkpoint_dir=None): checkpoint = None if checkpoint_dir: for subdir in os.listdir(checkpoint_dir): if subdir.startswith(PREFIX_CHECKPOINT_DIR): checkpoint = os.path.join(checkpoint_dir, subdir) trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") trainer.hp_space(trial) fixed_trial = optuna.trial.FixedTrial(trial.params, trial.number) trial_main_rank_list = [fixed_trial] torch.distributed.broadcast_object_list(trial_main_rank_list, src=0) trainer.train(resume_from_checkpoint=checkpoint, trial=trial) else: trainer.train(resume_from_checkpoint=checkpoint, trial=trial) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) # Free GPU memory trainer.model_wrapped, trainer.model = release_memory(trainer.model_wrapped, trainer.model) trainer.accelerator.clear() return trainer.objective timeout = kwargs.pop("timeout", None) n_jobs = kwargs.pop("n_jobs", 1) gc_after_trial = kwargs.pop("gc_after_trial", False) directions = direction if isinstance(direction, list) else None direction = None if directions is not None else direction study = optuna.create_study(direction=direction, directions=directions, **kwargs) study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs, gc_after_trial=gc_after_trial) if not study._is_multi_objective(): best_trial = study.best_trial return BestRun(str(best_trial.number), best_trial.value, best_trial.params) else: best_trials = study.best_trials return [BestRun(str(best.number), best.values, best.params) for best in best_trials] else: for i in range(n_trials): trainer.objective = None trial_main_rank_list = [None] if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") torch.distributed.broadcast_object_list(trial_main_rank_list, src=0) trainer.train(resume_from_checkpoint=None, trial=trial_main_rank_list[0]) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return None def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import ray import ray.train def _objective(trial: dict, local_trainer): try: from transformers.utils.notebook import NotebookProgressCallback if local_trainer.pop_callback(NotebookProgressCallback): local_trainer.add_callback(ProgressCallback) except ModuleNotFoundError: pass local_trainer.objective = None checkpoint = ray.train.get_checkpoint() if checkpoint: # Upon trial resume, the local_trainer's objective gets reset to None. # If `local_trainer.train` is a noop (training has already reached # the target number of epochs/steps), then this would # trigger an unnecessary extra checkpoint at the end of training. # -> Set the objective to a dummy value upon resume as a workaround. local_trainer.objective = "objective" with checkpoint.as_directory() as checkpoint_dir: checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix() local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial) else: local_trainer.train(trial=trial) # If there hasn't been any evaluation during the training loop. if getattr(local_trainer, "objective", None) is None: metrics = local_trainer.evaluate() local_trainer.objective = local_trainer.compute_objective(metrics) metrics.update({"objective": local_trainer.objective, "done": True}) with tempfile.TemporaryDirectory() as temp_checkpoint_dir: local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir) checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir) ray.train.report(metrics, checkpoint=checkpoint) if not trainer._memory_tracker.skip_memory_metrics: from ..trainer_utils import TrainerMemoryTracker logger.warning( "Memory tracking for your Trainer is currently " "enabled. Automatically disabling the memory tracker " "since the memory tracker is not serializable." ) trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True) # The model and TensorBoard writer do not pickle so we have to remove them (if they exists) # while doing the ray hp search. _tb_writer = trainer.pop_callback(TensorBoardCallback) trainer.model = None # Setup default `resources_per_trial`. if "resources_per_trial" not in kwargs: # Default to 1 CPU and 1 GPU (if applicable) per trial. kwargs["resources_per_trial"] = {"cpu": 1} if trainer.args.n_gpu > 0: kwargs["resources_per_trial"]["gpu"] = 1 resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "") logger.info( "No `resources_per_trial` arg was passed into " "`hyperparameter_search`. Setting it to a default value " f"of {resource_msg} for each trial." ) # Make sure each trainer only uses GPUs that were allocated per trial. gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0) trainer.args._n_gpu = gpus_per_trial # Setup default `progress_reporter`. if "progress_reporter" not in kwargs: from ray.tune import CLIReporter kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"]) if "scheduler" in kwargs: from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining # Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting. if isinstance( kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining) ) and (not trainer.args.do_eval or trainer.args.eval_strategy == IntervalStrategy.NO): raise RuntimeError( "You are using {cls} as a scheduler but you haven't enabled evaluation during training. " "This means your trials will not report intermediate results to Ray Tune, and " "can thus not be stopped early or used to exploit other trials parameters. " "If this is what you want, do not use {cls}. If you would like to use {cls}, " "make sure you pass `do_eval=True` and `eval_strategy='steps'` in the " "Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__) ) trainable = ray.tune.with_parameters(_objective, local_trainer=trainer) @functools.wraps(trainable) def dynamic_modules_import_trainable(*args, **kwargs): """ Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor. Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565. Assumes that `_objective`, defined above, is a function. """ if is_datasets_available(): import datasets.load dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py") # load dynamic_modules from path spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path) datasets_modules = importlib.util.module_from_spec(spec) sys.modules[spec.name] = datasets_modules spec.loader.exec_module(datasets_modules) return trainable(*args, **kwargs) # special attr set by tune.with_parameters if hasattr(trainable, "__mixins__"): dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__ analysis = ray.tune.run( dynamic_modules_import_trainable, config=trainer.hp_space(None), num_samples=n_trials, **kwargs, ) best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope) best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis) if _tb_writer is not None: trainer.add_callback(_tb_writer) return best_run def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: import sigopt if trainer.args.process_index == 0: if importlib.metadata.version("sigopt") >= "8.0.0": sigopt.set_project("huggingface") experiment = sigopt.create_experiment( name="huggingface-tune", type="offline", parameters=trainer.hp_space(None), metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], parallel_bandwidth=1, budget=n_trials, ) logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") for run in experiment.loop(): with run: trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") trainer._hp_search_setup(run.run) torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) trainer.train(resume_from_checkpoint=None) else: trainer.train(resume_from_checkpoint=None, trial=run.run) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) run.log_metric("objective", trainer.objective) best = list(experiment.get_best_runs())[0] best_run = BestRun(best.id, best.values["objective"].value, best.assignments) else: from sigopt import Connection conn = Connection() proxies = kwargs.pop("proxies", None) if proxies is not None: conn.set_proxies(proxies) experiment = conn.experiments().create( name="huggingface-tune", parameters=trainer.hp_space(None), metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], parallel_bandwidth=1, observation_budget=n_trials, project="huggingface", ) logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") while experiment.progress.observation_count < experiment.observation_budget: suggestion = conn.experiments(experiment.id).suggestions().create() trainer.objective = None if trainer.args.world_size > 1: if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") trainer._hp_search_setup(suggestion) torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) trainer.train(resume_from_checkpoint=None) else: trainer.train(resume_from_checkpoint=None, trial=suggestion) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) values = [{"name": "objective", "value": trainer.objective}] obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values) logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]") experiment = conn.experiments(experiment.id).fetch() best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0] best_run = BestRun(best.id, best.value, best.assignments) return best_run else: for i in range(n_trials): trainer.objective = None args_main_rank = list(pickle.dumps(trainer.args)) if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") torch.distributed.broadcast_object_list(args_main_rank, src=0) args = pickle.loads(bytes(args_main_rank)) for key, value in asdict(args).items(): if key != "local_rank": setattr(trainer.args, key, value) trainer.train(resume_from_checkpoint=None) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) return None def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: from ..integrations import is_wandb_available if not is_wandb_available(): raise ImportError("This function needs wandb installed: `pip install wandb`") import wandb # add WandbCallback if not already added in trainer callbacks reporting_to_wandb = False for callback in trainer.callback_handler.callbacks: if isinstance(callback, WandbCallback): reporting_to_wandb = True break if not reporting_to_wandb: trainer.add_callback(WandbCallback()) trainer.args.report_to = ["wandb"] best_trial = {"run_id": None, "objective": None, "hyperparameters": None} sweep_id = kwargs.pop("sweep_id", None) project = kwargs.pop("project", None) name = kwargs.pop("name", None) entity = kwargs.pop("entity", None) metric = kwargs.pop("metric", "eval/loss") sweep_config = trainer.hp_space(None) sweep_config["metric"]["goal"] = direction sweep_config["metric"]["name"] = metric if name: sweep_config["name"] = name def _objective(): run = wandb.run if wandb.run else wandb.init() trainer.state.trial_name = run.name run.config.update({"assignments": {}, "metric": metric}) config = wandb.config trainer.objective = None trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"]) # If there hasn't been any evaluation during the training loop. if getattr(trainer, "objective", None) is None: metrics = trainer.evaluate() trainer.objective = trainer.compute_objective(metrics) format_metrics = rewrite_logs(metrics) if metric not in format_metrics: logger.warning( f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available" f" metrics are {format_metrics.keys()}" ) best_score = False if best_trial["run_id"] is not None: if direction == "minimize": best_score = trainer.objective < best_trial["objective"] elif direction == "maximize": best_score = trainer.objective > best_trial["objective"] if best_score or best_trial["run_id"] is None: best_trial["run_id"] = run.id best_trial["objective"] = trainer.objective best_trial["hyperparameters"] = dict(config) return trainer.objective sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id logger.info(f"wandb sweep id - {sweep_id}") wandb.agent(sweep_id, function=_objective, count=n_trials) return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"]) def get_available_reporting_integrations(): integrations = [] if is_azureml_available() and not is_mlflow_available(): integrations.append("azure_ml") if is_comet_available(): integrations.append("comet_ml") if is_dagshub_available(): integrations.append("dagshub") if is_dvclive_available(): integrations.append("dvclive") if is_mlflow_available(): integrations.append("mlflow") if is_neptune_available(): integrations.append("neptune") if is_tensorboard_available(): integrations.append("tensorboard") if is_wandb_available(): integrations.append("wandb") if is_codecarbon_available(): integrations.append("codecarbon") if is_clearml_available(): integrations.append("clearml") return integrations def rewrite_logs(d): new_d = {} eval_prefix = "eval_" eval_prefix_len = len(eval_prefix) test_prefix = "test_" test_prefix_len = len(test_prefix) for k, v in d.items(): if k.startswith(eval_prefix): new_d["eval/" + k[eval_prefix_len:]] = v elif k.startswith(test_prefix): new_d["test/" + k[test_prefix_len:]] = v else: new_d["train/" + k] = v return new_d class TensorBoardCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard). Args: tb_writer (`SummaryWriter`, *optional*): The writer to use. Will instantiate one if not set. """ def __init__(self, tb_writer=None): has_tensorboard = is_tensorboard_available() if not has_tensorboard: raise RuntimeError( "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or" " install tensorboardX." ) if has_tensorboard: try: from torch.utils.tensorboard import SummaryWriter # noqa: F401 self._SummaryWriter = SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter self._SummaryWriter = SummaryWriter except ImportError: self._SummaryWriter = None else: self._SummaryWriter = None self.tb_writer = tb_writer def _init_summary_writer(self, args, log_dir=None): log_dir = log_dir or args.logging_dir if self._SummaryWriter is not None: self.tb_writer = self._SummaryWriter(log_dir=log_dir) def on_train_begin(self, args, state, control, **kwargs): if not state.is_world_process_zero: return log_dir = None if state.is_hyper_param_search: trial_name = state.trial_name if trial_name is not None: log_dir = os.path.join(args.logging_dir, trial_name) if self.tb_writer is None: self._init_summary_writer(args, log_dir) if self.tb_writer is not None: self.tb_writer.add_text("args", args.to_json_string()) if "model" in kwargs: model = kwargs["model"] if hasattr(model, "config") and model.config is not None: model_config_json = model.config.to_json_string() self.tb_writer.add_text("model_config", model_config_json) def on_log(self, args, state, control, logs=None, **kwargs): if not state.is_world_process_zero: return if self.tb_writer is None: self._init_summary_writer(args) if self.tb_writer is not None: logs = rewrite_logs(logs) for k, v in logs.items(): if isinstance(v, (int, float)): self.tb_writer.add_scalar(k, v, state.global_step) elif isinstance(v, str): self.tb_writer.add_text(k, v, state.global_step) else: logger.warning( "Trainer is attempting to log a value of " f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' "This invocation of Tensorboard's writer.add_scalar() " "is incorrect so we dropped this attribute." ) self.tb_writer.flush() def on_train_end(self, args, state, control, **kwargs): if self.tb_writer: self.tb_writer.close() self.tb_writer = None def save_model_architecture_to_file(model: Any, output_dir: str): with open(f"{output_dir}/model_architecture.txt", "w+") as f: if isinstance(model, PreTrainedModel): print(model, file=f) elif is_tf_available() and isinstance(model, TFPreTrainedModel): def print_to_file(s): print(s, file=f) model.summary(print_fn=print_to_file) elif is_torch_available() and ( isinstance(model, (torch.nn.Module, PushToHubMixin)) and hasattr(model, "base_model") ): print(model, file=f) class WandbLogModel(str, Enum): """Enum of possible log model values in W&B.""" CHECKPOINT = "checkpoint" END = "end" FALSE = "false" @property def is_enabled(self) -> bool: """Check if the value corresponds to a state where the `WANDB_LOG_MODEL` setting is enabled.""" return self in (WandbLogModel.CHECKPOINT, WandbLogModel.END) @classmethod def _missing_(cls, value: Any) -> "WandbLogModel": if not isinstance(value, str): raise ValueError(f"Expecting to have a string `WANDB_LOG_MODEL` setting, but got {type(value)}") if value.upper() in ENV_VARS_TRUE_VALUES: raise DeprecationWarning( f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in " "version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead." ) logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead") return WandbLogModel.END logger.warning( f"Received unrecognized `WANDB_LOG_MODEL` setting value={value}; so disabling `WANDB_LOG_MODEL`" ) return WandbLogModel.FALSE class WandbCallback(TrainerCallback): """ A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/). """ def __init__(self): has_wandb = is_wandb_available() if not has_wandb: raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.") if has_wandb: import wandb self._wandb = wandb self._initialized = False self._log_model = WandbLogModel(os.getenv("WANDB_LOG_MODEL", "false")) def setup(self, args, state, model, **kwargs): """ Setup the optional Weights & Biases (*wandb*) integration. One can subclass and override this method to customize the setup if needed. Find more information [here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment variables: Environment: - **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`): Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model. <Deprecated version="5.0"> Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers. </Deprecated> - **WANDB_WATCH** (`str`, *optional* defaults to `"false"`): Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and parameters. - **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`): Set this to a custom string to store results in a different project. - **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`): Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. """ if self._wandb is None: return self._initialized = True # prepare to handle potential configuration issues during setup from wandb.sdk.lib.config_util import ConfigError as WandbConfigError if state.is_world_process_zero: logger.info( 'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' ) combined_dict = {**args.to_dict()} if hasattr(model, "config") and model.config is not None: model_config = model.config if isinstance(model.config, dict) else model.config.to_dict() combined_dict = {**model_config, **combined_dict} if hasattr(model, "peft_config") and model.peft_config is not None: peft_config = model.peft_config combined_dict = {**{"peft_config": peft_config}, **combined_dict} trial_name = state.trial_name init_args = {} if trial_name is not None: init_args["name"] = trial_name init_args["group"] = args.run_name elif args.run_name is not None: init_args["name"] = args.run_name if args.run_name == args.output_dir: self._wandb.termwarn( "The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was " "not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.", repeat=False, ) if self._wandb.run is None: self._wandb.init( project=os.getenv("WANDB_PROJECT", "huggingface"), **init_args, ) # add config parameters (run may have been created manually) self._wandb.config.update(combined_dict, allow_val_change=True) # define default x-axis (for latest wandb versions) if getattr(self._wandb, "define_metric", None): self._wandb.define_metric("train/global_step") self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True) # keep track of model topology and gradients, unsupported on TPU _watch_model = os.getenv("WANDB_WATCH", "false") if not is_torch_xla_available() and _watch_model in ("all", "parameters", "gradients"): self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps)) self._wandb.run._label(code="transformers_trainer") # add number of model parameters to wandb config try: self._wandb.config["model/num_parameters"] = model.num_parameters() except AttributeError: logger.info( "Could not log the number of model parameters in Weights & Biases due to an AttributeError." ) except WandbConfigError: logger.warning( "A ConfigError was raised whilst setting the number of model parameters in Weights & Biases config." ) # log the initial model architecture to an artifact if self._log_model.is_enabled: with tempfile.TemporaryDirectory() as temp_dir: model_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) model_artifact = self._wandb.Artifact( name=model_name, type="model", metadata={ "model_config": model.config.to_dict() if hasattr(model, "config") else None, "num_parameters": self._wandb.config.get("model/num_parameters"), "initial_model": True, }, ) # add the architecture to a separate text file save_model_architecture_to_file(model, temp_dir) for f in Path(temp_dir).glob("*"): if f.is_file(): with model_artifact.new_file(f.name, mode="wb") as fa: fa.write(f.read_bytes()) self._wandb.run.log_artifact(model_artifact, aliases=["base_model"]) badge_markdown = ( f'[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge' f'-28.svg" alt="Visualize in Weights & Biases" width="20' f'0" height="32"/>]({self._wandb.run.get_url()})' ) modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}" def on_train_begin(self, args, state, control, model=None, **kwargs): if self._wandb is None: return hp_search = state.is_hyper_param_search if hp_search: self._wandb.finish() self._initialized = False args.run_name = None if not self._initialized: self.setup(args, state, model, **kwargs) def on_train_end(self, args, state, control, model=None, processing_class=None, **kwargs): if self._wandb is None: return if self._log_model.is_enabled and self._initialized and state.is_world_process_zero: from ..trainer import Trainer fake_trainer = Trainer(args=args, model=model, processing_class=processing_class, eval_dataset=["fake"]) with tempfile.TemporaryDirectory() as temp_dir: fake_trainer.save_model(temp_dir) metadata = ( { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } if not args.load_best_model_at_end else { f"eval/{args.metric_for_best_model}": state.best_metric, "train/total_floss": state.total_flos, "model/num_parameters": self._wandb.config.get("model/num_parameters"), } ) metadata["final_model"] = True logger.info("Logging model artifacts. ...") model_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) # add the model architecture to a separate text file save_model_architecture_to_file(model, temp_dir) artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata) for f in Path(temp_dir).glob("*"): if f.is_file(): with artifact.new_file(f.name, mode="wb") as fa: fa.write(f.read_bytes()) self._wandb.run.log_artifact(artifact, aliases=["final_model"]) def on_log(self, args, state, control, model=None, logs=None, **kwargs): single_value_scalars = [ "train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss", "total_flos", ] if self._wandb is None: return if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: for k, v in logs.items(): if k in single_value_scalars: self._wandb.run.summary[k] = v non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars} non_scalar_logs = rewrite_logs(non_scalar_logs) self._wandb.log({**non_scalar_logs, "train/global_step": state.global_step}) def on_save(self, args, state, control, **kwargs): if self._log_model == WandbLogModel.CHECKPOINT and self._initialized and state.is_world_process_zero: checkpoint_metadata = { k: v for k, v in dict(self._wandb.summary).items() if isinstance(v, numbers.Number) and not k.startswith("_") } checkpoint_metadata["model/num_parameters"] = self._wandb.config.get("model/num_parameters") ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...") checkpoint_name = ( f"model-{self._wandb.run.id}" if (args.run_name is None or args.run_name == args.output_dir) else f"model-{self._wandb.run.name}" ) artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata) artifact.add_dir(artifact_path) self._wandb.log_artifact( artifact, aliases=[f"epoch_{round(state.epoch, 2)}", f"checkpoint_global_step_{state.global_step}"] ) def on_predict(self, args, state, control, metrics, **kwargs): if self._wandb is None: return if not self._initialized: self.setup(args, state, **kwargs) if state.is_world_process_zero: metrics = rewrite_logs(metrics) self._wandb.log(metrics) class CometCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.com/site/). """ def __init__(self): if _is_comet_installed is False or _is_comet_recent_enough is False: raise RuntimeError( f"CometCallback requires comet-ml>={_MIN_COMET_VERSION} to be installed. Run `pip install comet-ml>={_MIN_COMET_VERSION}`." ) self._initialized = False self._log_assets = False self._experiment = None def setup(self, args, state, model): """ Setup the optional Comet integration. Environment: - **COMET_MODE** (`str`, *optional*, default to `get_or_create`): Control whether to create and log to a new Comet experiment or append to an existing experiment. It accepts the following values: * `get_or_create`: Decides automatically depending if `COMET_EXPERIMENT_KEY` is set and whether an Experiment with that key already exists or not. * `create`: Always create a new Comet Experiment. * `get`: Always try to append to an Existing Comet Experiment. Requires `COMET_EXPERIMENT_KEY` to be set. * `ONLINE`: **deprecated**, used to create an online Experiment. Use `COMET_START_ONLINE=1` instead. * `OFFLINE`: **deprecated**, used to created an offline Experiment. Use `COMET_START_ONLINE=0` instead. * `DISABLED`: **deprecated**, used to disable Comet logging. Use the `--report_to` flag to control the integrations used for logging result instead. - **COMET_PROJECT_NAME** (`str`, *optional*): Comet project name for experiments. - **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`): Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or `FALSE`. For a number of configurable items in the environment, see [here](https://www.comet.com/docs/v2/guides/experiment-management/configure-sdk/#explore-comet-configuration-options). """ self._initialized = True log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper() if log_assets in {"TRUE", "1"}: self._log_assets = True if state.is_world_process_zero: comet_old_mode = os.getenv("COMET_MODE") mode = None online = None if comet_old_mode is not None: comet_old_mode = comet_old_mode.lower() if comet_old_mode == "online": online = True elif comet_old_mode == "offline": online = False elif comet_old_mode in ("get", "get_or_create", "create"): mode = comet_old_mode elif comet_old_mode: logger.warning("Invalid COMET_MODE env value %r, Comet logging is disabled", comet_old_mode) return # For HPO, we always create a new experiment for each trial if state.is_hyper_param_search: if mode is not None: logger.warning( "Hyperparameter Search is enabled, forcing the creation of new experimetns, COMET_MODE value %r is ignored", comet_old_mode, ) mode = "create" import comet_ml # Do not use the default run_name as the experiment name if args.run_name is not None and args.run_name != args.output_dir: experiment_config = comet_ml.ExperimentConfig(name=args.run_name) else: experiment_config = comet_ml.ExperimentConfig() self._experiment = comet_ml.start(online=online, mode=mode, experiment_config=experiment_config) self._experiment.__internal_api__set_model_graph__(model, framework="transformers") params = {"args": args.to_dict()} if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() params["config"] = model_config if hasattr(model, "peft_config") and model.peft_config is not None: peft_config = model.peft_config params["peft_config"] = peft_config self._experiment.__internal_api__log_parameters__( params, framework="transformers", source="manual", flatten_nested=True ) if state.is_hyper_param_search: optimization_id = getattr(state, "trial_name", None) optimization_params = getattr(state, "trial_params", None) self._experiment.log_optimization(optimization_id=optimization_id, parameters=optimization_params) def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, model=None, logs=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: if self._experiment is not None: rewritten_logs = rewrite_logs(logs) self._experiment.__internal_api__log_metrics__( rewritten_logs, step=state.global_step, epoch=state.epoch, framework="transformers" ) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: if self._experiment is not None: if self._log_assets is True: logger.info("Logging checkpoints. This may take time.") self._experiment.log_asset_folder( args.output_dir, recursive=True, log_file_name=True, step=state.global_step ) # We create one experiment per trial in HPO mode if state.is_hyper_param_search: self._experiment.clean() self._initialized = False def on_predict(self, args, state, control, metrics, **kwargs): if not self._initialized: self.setup(args, state, model=None) if state.is_world_process_zero and self._experiment is not None: rewritten_metrics = rewrite_logs(metrics) self._experiment.__internal_api__log_metrics__( rewritten_metrics, step=state.global_step, epoch=state.epoch, framework="transformers" ) class AzureMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/). """ def __init__(self, azureml_run=None): if not is_azureml_available(): raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.") self.azureml_run = azureml_run def on_init_end(self, args, state, control, **kwargs): from azureml.core.run import Run if self.azureml_run is None and state.is_world_process_zero: self.azureml_run = Run.get_context() def on_log(self, args, state, control, logs=None, **kwargs): if self.azureml_run and state.is_world_process_zero: for k, v in logs.items(): if isinstance(v, (int, float)): self.azureml_run.log(k, v, description=k) class MLflowCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`. """ def __init__(self): if not is_mlflow_available(): raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.") import mlflow self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH self._initialized = False self._auto_end_run = False self._log_artifacts = False self._ml_flow = mlflow def setup(self, args, state, model): """ Setup the optional MLflow integration. Environment: - **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*): Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in [`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote storage will just copy the files to your artifact location. - **MLFLOW_TRACKING_URI** (`str`, *optional*): Whether to store runs at a specific path or remote server. Unset by default, which skips setting the tracking URI entirely. - **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`): Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment with this name is created. - **MLFLOW_TAGS** (`str`, *optional*): A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example: `os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`. - **MLFLOW_NESTED_RUN** (`str`, *optional*): Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current run. - **MLFLOW_RUN_ID** (`str`, *optional*): Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When `MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID and other parameters are ignored. - **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`): Whether to flatten the parameters dictionary before logging. - **MLFLOW_MAX_LOG_PARAMS** (`int`, *optional*): Set the maximum number of parameters to log in the run. """ self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._tracking_uri = os.getenv("MLFLOW_TRACKING_URI", None) self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self._run_id = os.getenv("MLFLOW_RUN_ID", None) self._max_log_params = os.getenv("MLFLOW_MAX_LOG_PARAMS", None) # "synchronous" flag is only available with mlflow version >= 2.8.0 # https://github.com/mlflow/mlflow/pull/9705 # https://github.com/mlflow/mlflow/releases/tag/v2.8.0 self._async_log = packaging.version.parse(self._ml_flow.__version__) >= packaging.version.parse("2.8.0") logger.debug( f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run}," f" tracking_uri={self._tracking_uri}" ) if state.is_world_process_zero: if not self._ml_flow.is_tracking_uri_set(): if self._tracking_uri: self._ml_flow.set_tracking_uri(self._tracking_uri) logger.debug(f"MLflow tracking URI is set to {self._tracking_uri}") else: logger.debug( "Environment variable `MLFLOW_TRACKING_URI` is not provided and therefore will not be" " explicitly set." ) else: logger.debug(f"MLflow tracking URI is set to {self._ml_flow.get_tracking_uri()}") if self._ml_flow.active_run() is None or self._nested_run or self._run_id: if self._experiment_name: # Use of set_experiment() ensure that Experiment is created if not exists self._ml_flow.set_experiment(self._experiment_name) self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run) logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}") self._auto_end_run = True combined_dict = args.to_dict() if hasattr(model, "config") and model.config is not None: model_config = model.config.to_dict() combined_dict = {**model_config, **combined_dict} combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict # remove params that are too long for MLflow for name, value in list(combined_dict.items()): # internally, all values are converted to str in MLflow if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: logger.warning( f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s' " log_param() only accepts values no longer than 250 characters so we dropped this attribute." " You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and" " avoid this message." ) del combined_dict[name] # MLflow cannot log more than 100 values in one go, so we have to split it combined_dict_items = list(combined_dict.items()) if self._max_log_params and self._max_log_params.isdigit(): max_log_params = int(self._max_log_params) if max_log_params < len(combined_dict_items): logger.debug( f"Reducing the number of parameters to log from {len(combined_dict_items)} to {max_log_params}." ) combined_dict_items = combined_dict_items[:max_log_params] for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): if self._async_log: self._ml_flow.log_params( dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]), synchronous=False ) else: self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) mlflow_tags = os.getenv("MLFLOW_TAGS", None) if mlflow_tags: mlflow_tags = json.loads(mlflow_tags) self._ml_flow.set_tags(mlflow_tags) self._initialized = True def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, logs, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: metrics = {} for k, v in logs.items(): if isinstance(v, (int, float)): metrics[k] = v elif isinstance(v, torch.Tensor) and v.numel() == 1: metrics[k] = v.item() else: logger.warning( f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. ' "MLflow's log_metric() only accepts float and int types so we dropped this attribute." ) if self._async_log: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False) else: self._ml_flow.log_metrics(metrics=metrics, step=state.global_step) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: if self._auto_end_run and self._ml_flow.active_run(): self._ml_flow.end_run() def on_save(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero and self._log_artifacts: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") self._ml_flow.pyfunc.log_model( ckpt_dir, artifacts={"model_path": artifact_path}, python_model=self._ml_flow.pyfunc.PythonModel(), ) def __del__(self): # if the previous run is not terminated correctly, the fluent API will # not let you start a new run before the previous one is killed if ( self._auto_end_run and callable(getattr(self._ml_flow, "active_run", None)) and self._ml_flow.active_run() is not None ): self._ml_flow.end_run() class DagsHubCallback(MLflowCallback): """ A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`] """ def __init__(self): super().__init__() if not is_dagshub_available(): raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.") from dagshub.upload import Repo self.Repo = Repo def setup(self, *args, **kwargs): """ Setup the DagsHub's Logging integration. Environment: - **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*): Whether to save the data and model artifacts for the experiment. Default to `False`. """ self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main" self.remote = os.getenv("MLFLOW_TRACKING_URI") self.repo = self.Repo( owner=self.remote.split(os.sep)[-2], name=self.remote.split(os.sep)[-1].split(".")[0], branch=os.getenv("BRANCH") or "main", ) self.path = Path("artifacts") if self.remote is None: raise RuntimeError( "DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run" " `dagshub.init()`?" ) super().setup(*args, **kwargs) def on_train_end(self, args, state, control, **kwargs): if self.log_artifacts: if getattr(self, "train_dataloader", None): torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt")) self.repo.directory(str(self.path)).add_dir(args.output_dir) class NeptuneMissingConfiguration(Exception): def __init__(self): super().__init__( """ ------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to `NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and `project` by saving them as environment variables or passing them to the callback. """ ) class NeptuneCallback(TrainerCallback): """TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai). Args: api_token (`str`, *optional*): Neptune API token obtained upon registration. You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment variable (strongly recommended). See full setup instructions in the [docs](https://docs.neptune.ai/setup/installation). project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name". You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the value of the `NEPTUNE_PROJECT` environment variable is used. name (`str`, *optional*): Custom name for the run. base_namespace (`str`, *optional*, defaults to "finetuning"): In the Neptune run, the root namespace that will contain all of the metadata logged by the callback. log_parameters (`bool`, *optional*, defaults to `True`): If True, logs all Trainer arguments and model parameters provided by the Trainer. log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer. If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among the ones saved by the Trainer). If `None`, does not upload checkpoints. run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object). **neptune_run_kwargs (*optional*): Additional keyword arguments to be passed directly to the [`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created. For instructions and examples, see the [Transformers integration guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation. """ integration_version_key = "source_code/integrations/transformers" model_parameters_key = "model_parameters" trial_name_key = "trial" trial_params_key = "trial_params" trainer_parameters_key = "trainer_parameters" flat_metrics = {"train/epoch"} def __init__( self, *, api_token: Optional[str] = None, project: Optional[str] = None, name: Optional[str] = None, base_namespace: str = "finetuning", run=None, log_parameters: bool = True, log_checkpoints: Optional[str] = None, **neptune_run_kwargs, ): if not is_neptune_available(): raise ValueError( "NeptuneCallback requires the Neptune client library to be installed. " "To install the library, run `pip install neptune`." ) try: from neptune import Run from neptune.internal.utils import verify_type except ImportError: from neptune.new.internal.utils import verify_type from neptune.new.metadata_containers.run import Run verify_type("api_token", api_token, (str, type(None))) verify_type("project", project, (str, type(None))) verify_type("name", name, (str, type(None))) verify_type("base_namespace", base_namespace, str) verify_type("run", run, (Run, type(None))) verify_type("log_parameters", log_parameters, bool) verify_type("log_checkpoints", log_checkpoints, (str, type(None))) self._base_namespace_path = base_namespace self._log_parameters = log_parameters self._log_checkpoints = log_checkpoints self._initial_run: Optional[Run] = run self._run = None self._is_monitoring_run = False self._run_id = None self._force_reset_monitoring_run = False self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs} self._volatile_checkpoints_dir = None self._should_upload_checkpoint = self._log_checkpoints is not None self._recent_checkpoint_path = None if self._log_checkpoints in {"last", "best"}: self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}" self._should_clean_recently_uploaded_checkpoint = True else: self._target_checkpoints_namespace = "checkpoints" self._should_clean_recently_uploaded_checkpoint = False def _stop_run_if_exists(self): if self._run: self._run.stop() del self._run self._run = None def _initialize_run(self, **additional_neptune_kwargs): try: from neptune import init_run from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException except ImportError: from neptune.new import init_run from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException self._stop_run_if_exists() try: run_params = additional_neptune_kwargs.copy() run_params.update(self._init_run_kwargs) self._run = init_run(**run_params) self._run_id = self._run["sys/id"].fetch() except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e: raise NeptuneMissingConfiguration() from e def _use_initial_run(self): self._run = self._initial_run self._is_monitoring_run = True self._run_id = self._run["sys/id"].fetch() self._initial_run = None def _ensure_run_with_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._force_reset_monitoring_run and self._is_monitoring_run: return if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run: self._initialize_run(with_id=self._run_id) self._is_monitoring_run = True else: self._initialize_run() self._force_reset_monitoring_run = False def _ensure_at_least_run_without_monitoring(self): if self._initial_run is not None: self._use_initial_run() else: if not self._run: self._initialize_run( with_id=self._run_id, capture_stdout=False, capture_stderr=False, capture_hardware_metrics=False, capture_traceback=False, ) self._is_monitoring_run = False @property def run(self): if self._run is None: self._ensure_at_least_run_without_monitoring() return self._run @property def _metadata_namespace(self): return self.run[self._base_namespace_path] def _log_integration_version(self): self.run[NeptuneCallback.integration_version_key] = version def _log_trainer_parameters(self, args): self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict() def _log_model_parameters(self, model): from neptune.utils import stringify_unsupported if model and hasattr(model, "config") and model.config is not None: self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported( model.config.to_dict() ) def _log_hyper_param_search_parameters(self, state): if state and hasattr(state, "trial_name"): self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name if state and hasattr(state, "trial_params") and state.trial_params is not None: self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params def _log_model_checkpoint(self, source_directory: str, checkpoint: str): target_path = relative_path = os.path.join(source_directory, checkpoint) if self._volatile_checkpoints_dir is not None: consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint) try: # Remove leading ../ from a relative path. cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep) copy_path = os.path.join(consistent_checkpoint_path, cpkt_path) shutil.copytree(relative_path, copy_path) target_path = consistent_checkpoint_path except IOError as e: logger.warning( "NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. " "Could fail trying to upload.".format(e) ) self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path) if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None: self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path) self._recent_checkpoint_path = relative_path def on_init_end(self, args, state, control, **kwargs): self._volatile_checkpoints_dir = None if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None): self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name if self._log_checkpoints == "best" and not args.load_best_model_at_end: raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.") def on_train_begin(self, args, state, control, model=None, **kwargs): if not state.is_world_process_zero: return self._ensure_run_with_monitoring() self._force_reset_monitoring_run = True self._log_integration_version() if self._log_parameters: self._log_trainer_parameters(args) self._log_model_parameters(model) if state.is_hyper_param_search: self._log_hyper_param_search_parameters(state) def on_train_end(self, args, state, control, **kwargs): self._stop_run_if_exists() def __del__(self): if self._volatile_checkpoints_dir is not None: shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True) self._stop_run_if_exists() def on_save(self, args, state, control, **kwargs): if self._should_upload_checkpoint: self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}") def on_evaluate(self, args, state, control, metrics=None, **kwargs): if self._log_checkpoints == "best": best_metric_name = args.metric_for_best_model if not best_metric_name.startswith("eval_"): best_metric_name = f"eval_{best_metric_name}" metric_value = metrics.get(best_metric_name) operator = np.greater if args.greater_is_better else np.less self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric) @classmethod def get_run(cls, trainer): for callback in trainer.callback_handler.callbacks: if isinstance(callback, cls): return callback.run raise Exception("The trainer doesn't have a NeptuneCallback configured.") def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs): if not state.is_world_process_zero: return if logs is not None: for name, value in rewrite_logs(logs).items(): if isinstance(value, (int, float)): if name in NeptuneCallback.flat_metrics: self._metadata_namespace[name] = value else: self._metadata_namespace[name].log(value, step=state.global_step) class CodeCarbonCallback(TrainerCallback): """ A [`TrainerCallback`] that tracks the CO2 emission of training. """ def __init__(self): if not is_codecarbon_available(): raise RuntimeError( "CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." ) elif torch.version.hip: raise RuntimeError( "CodeCarbonCallback requires `codecarbon` package, which is not compatible with AMD ROCm (https://github.com/mlco2/codecarbon/pull/490). When using the Trainer, please specify the `report_to` argument (https://huggingface.co/docs/transformers/v4.39.3/en/main_classes/trainer#transformers.TrainingArguments.report_to) to disable CodeCarbonCallback." ) import codecarbon self._codecarbon = codecarbon self.tracker = None def on_init_end(self, args, state, control, **kwargs): if self.tracker is None and state.is_local_process_zero: # CodeCarbon will automatically handle environment variables for configuration self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) def on_train_begin(self, args, state, control, model=None, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.start() def on_train_end(self, args, state, control, **kwargs): if self.tracker and state.is_local_process_zero: self.tracker.stop() class ClearMLCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/). Environment: - **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`): ClearML project name. - **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`): ClearML task name. - **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`): Whether to log models as artifacts during training. """ log_suffix = "" _hparams_section = "Transformers" _model_config_section = "Model Configuration" _ignore_hparams_overrides = "_ignore_hparams_ui_overrides_" _ignoge_model_config_overrides = "_ignore_model_config_ui_overrides_" _model_config_description = "The configuration of model number {}." _model_config_description_note = ( "Note that, when cloning this task and running it remotely," " the configuration might be applied to another model instead of this one." " To avoid this, initialize the task externally by calling `Task.init`" " before the `ClearMLCallback` is instantiated." ) _train_run_counter = 0 _model_connect_counter = 0 _task_created_in_callback = False _should_close_on_train_end = None def __init__(self): if is_clearml_available(): import clearml self._clearml = clearml else: raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.") self._initialized = False self._clearml_task = None self._log_model = False self._checkpoints_saved = [] def setup(self, args, state, model, processing_class, **kwargs): if self._clearml is None: return if self._initialized: return ClearMLCallback._train_run_counter += 1 ClearMLCallback._model_connect_counter += 1 ClearMLCallback.log_suffix = ( "" if ClearMLCallback._train_run_counter == 1 else "_" + str(ClearMLCallback._train_run_counter) ) if state.is_world_process_zero: logger.info("Automatic ClearML logging enabled.") if self._clearml_task is None: if ClearMLCallback._should_close_on_train_end is None: if not self._clearml.Task.running_locally() or self._clearml.Task.current_task(): ClearMLCallback._should_close_on_train_end = False else: ClearMLCallback._should_close_on_train_end = True # This might happen when running inside of a pipeline, where the task is already initialized # from outside of Hugging Face if self._clearml.Task.running_locally() and self._clearml.Task.current_task(): self._clearml_task = self._clearml.Task.current_task() self._log_model = os.getenv( "CLEARML_LOG_MODEL", "FALSE" if not ClearMLCallback._task_created_in_callback else "TRUE", ).upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}) logger.info("External ClearML Task has been connected.") else: self._clearml_task = self._clearml.Task.init( project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"), task_name=os.getenv("CLEARML_TASK", "Trainer"), auto_connect_frameworks={"tensorboard": False, "pytorch": False}, output_uri=True, ) self._log_model = os.getenv("CLEARML_LOG_MODEL", "TRUE").upper() in ENV_VARS_TRUE_VALUES.union( {"TRUE"} ) ClearMLCallback._task_created_in_callback = True logger.info("ClearML Task has been initialized.") self._initialized = True suffixed_hparams_section = ClearMLCallback._hparams_section + ClearMLCallback.log_suffix ignore_hparams_config_section = suffixed_hparams_section + "/" + ClearMLCallback._ignore_hparams_overrides if self._clearml.Task.running_locally(): self._copy_training_args_as_hparams(args, suffixed_hparams_section) self._clearml_task.set_parameter( name=ignore_hparams_config_section, value=True, value_type=bool, description=( "If True, ignore Transformers hyperparameters overrides done in the UI/backend " + "when running remotely. Otherwise, the overrides will be applied when running remotely" ), ) elif not self._clearml_task.get_parameter(ignore_hparams_config_section, default=True, cast=True): self._clearml_task.connect(args, suffixed_hparams_section) else: self._copy_training_args_as_hparams( args, ClearMLCallback._hparams_section + ClearMLCallback.log_suffix ) if getattr(model, "config", None) is not None: ignore_model_config_section = ( suffixed_hparams_section + "/" + ClearMLCallback._ignoge_model_config_overrides ) configuration_object_description = ClearMLCallback._model_config_description.format( ClearMLCallback._model_connect_counter ) if ClearMLCallback._model_connect_counter != ClearMLCallback._train_run_counter: configuration_object_description += " " + ClearMLCallback._model_config_description_note if self._clearml.Task.running_locally(): self._clearml_task.set_parameter( name=ignore_model_config_section, value=True, value_type=bool, description=( "If True, ignore Transformers model configuration overrides done in the UI/backend " + "when running remotely. Otherwise, the overrides will be applied when running remotely" ), ) self._clearml_task.set_configuration_object( name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, config_dict=model.config.to_dict(), description=configuration_object_description, ) elif not self._clearml_task.get_parameter(ignore_model_config_section, default=True, cast=True): model.config = model.config.from_dict( self._clearml_task.get_configuration_object_as_dict( ClearMLCallback._model_config_section + ClearMLCallback.log_suffix ) ) else: self._clearml_task.set_configuration_object( name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, config_dict=model.config.to_dict(), description=configuration_object_description, ) def on_train_begin(self, args, state, control, model=None, processing_class=None, **kwargs): if self._clearml is None: return self._checkpoints_saved = [] if state.is_hyper_param_search: self._initialized = False if not self._initialized: self.setup(args, state, model, processing_class, **kwargs) def on_train_end(self, args, state, control, **kwargs): if ClearMLCallback._should_close_on_train_end: self._clearml_task.close() ClearMLCallback._train_run_counter = 0 def on_log(self, args, state, control, model=None, processing_class=None, logs=None, **kwargs): if self._clearml is None: return if not self._initialized: self.setup(args, state, model, processing_class, **kwargs) if state.is_world_process_zero: eval_prefix = "eval_" eval_prefix_len = len(eval_prefix) test_prefix = "test_" test_prefix_len = len(test_prefix) single_value_scalars = [ "train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss", "total_flos", "epoch", ] for k, v in logs.items(): if isinstance(v, (int, float)): if k in single_value_scalars: self._clearml_task.get_logger().report_single_value( name=k + ClearMLCallback.log_suffix, value=v ) elif k.startswith(eval_prefix): self._clearml_task.get_logger().report_scalar( title="eval" + ClearMLCallback.log_suffix, series=k[eval_prefix_len:], value=v, iteration=state.global_step, ) elif k.startswith(test_prefix): self._clearml_task.get_logger().report_scalar( title="test" + ClearMLCallback.log_suffix, series=k[test_prefix_len:], value=v, iteration=state.global_step, ) else: self._clearml_task.get_logger().report_scalar( title="train" + ClearMLCallback.log_suffix, series=k, value=v, iteration=state.global_step, ) else: logger.warning( "Trainer is attempting to log a value of " f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' "This invocation of ClearML logger's report_scalar() " "is incorrect so we dropped this attribute." ) def on_save(self, args, state, control, **kwargs): if self._log_model and self._clearml_task and state.is_world_process_zero: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) name = ckpt_dir + ClearMLCallback.log_suffix logger.info(f"Logging checkpoint artifact `{name}`. This may take some time.") output_model = self._clearml.OutputModel(task=self._clearml_task, name=name) output_model.connect(task=self._clearml_task, name=name) output_model.update_weights_package( weights_path=artifact_path, target_filename=ckpt_dir, iteration=state.global_step, auto_delete_file=False, ) self._checkpoints_saved.append(output_model) while args.save_total_limit and args.save_total_limit < len(self._checkpoints_saved): try: self._clearml.model.Model.remove( self._checkpoints_saved[0], delete_weights_file=True, force=True, raise_on_errors=True, ) except Exception as e: logger.warning( "Could not remove checkpoint `{}` after going over the `save_total_limit`. Error is: {}".format( self._checkpoints_saved[0].name, e ) ) break self._checkpoints_saved = self._checkpoints_saved[1:] def _copy_training_args_as_hparams(self, training_args, prefix): as_dict = { field.name: getattr(training_args, field.name) for field in fields(training_args) if field.init and not field.name.endswith("_token") } flat_dict = {str(k): v for k, v in self._clearml.utilities.proxy_object.flatten_dictionary(as_dict).items()} self._clearml_task._arguments.copy_from_dict(flat_dict, prefix=prefix) class FlyteCallback(TrainerCallback): """A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/). NOTE: This callback only works within a Flyte task. Args: save_log_history (`bool`, *optional*, defaults to `True`): When set to True, the training logs are saved as a Flyte Deck. sync_checkpoints (`bool`, *optional*, defaults to `True`): When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an interruption. Example: ```python # Note: This example skips over some setup steps for brevity. from flytekit import current_context, task @task def train_hf_transformer(): cp = current_context().checkpoint trainer = Trainer(..., callbacks=[FlyteCallback()]) output = trainer.train(resume_from_checkpoint=cp.restore()) ``` """ def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True): super().__init__() if not is_flytekit_available(): raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.") if not is_flyte_deck_standard_available() or not is_pandas_available(): logger.warning( "Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. " "Run `pip install flytekitplugins-deck-standard pandas` to enable this feature." ) save_log_history = False from flytekit import current_context self.cp = current_context().checkpoint self.save_log_history = save_log_history self.sync_checkpoints = sync_checkpoints def on_save(self, args, state, control, **kwargs): if self.sync_checkpoints and state.is_world_process_zero: ckpt_dir = f"checkpoint-{state.global_step}" artifact_path = os.path.join(args.output_dir, ckpt_dir) logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.") self.cp.save(artifact_path) def on_train_end(self, args, state, control, **kwargs): if self.save_log_history: import pandas as pd from flytekit import Deck from flytekitplugins.deck.renderer import TableRenderer log_history_df = pd.DataFrame(state.log_history) Deck("Log History", TableRenderer().to_html(log_history_df)) class DVCLiveCallback(TrainerCallback): """ A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive). Use the environment variables below in `setup` to configure the integration. To customize this callback beyond those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). Args: live (`dvclive.Live`, *optional*, defaults to `None`): Optional Live instance. If None, a new instance will be created using **kwargs. log_model (Union[Literal["all"], bool], *optional*, defaults to `None`): Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`, the final checkpoint is logged at the end of training. If set to `"all"`, the entire [`TrainingArguments`]'s `output_dir` is logged at each checkpoint. """ def __init__( self, live: Optional[Any] = None, log_model: Optional[Union[Literal["all"], bool]] = None, **kwargs, ): if not is_dvclive_available(): raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.") from dvclive import Live self._initialized = False self.live = None if isinstance(live, Live): self.live = live elif live is not None: raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live") self._log_model = log_model if self._log_model is None: log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE") if log_model_env.upper() in ENV_VARS_TRUE_VALUES: self._log_model = True elif log_model_env.lower() == "all": self._log_model = "all" def setup(self, args, state, model): """ Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). Environment: - **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*): Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or *1*, the final checkpoint is logged at the end of training. If set to `all`, the entire [`TrainingArguments`]'s `output_dir` is logged at each checkpoint. """ from dvclive import Live self._initialized = True if state.is_world_process_zero: if not self.live: self.live = Live() self.live.log_params(args.to_dict()) def on_train_begin(self, args, state, control, model=None, **kwargs): if not self._initialized: self.setup(args, state, model) def on_log(self, args, state, control, model=None, logs=None, **kwargs): if not self._initialized: self.setup(args, state, model) if state.is_world_process_zero: from dvclive.plots import Metric from dvclive.utils import standardize_metric_name for key, value in logs.items(): if Metric.could_log(value): self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value) else: logger.warning( "Trainer is attempting to log a value of " f'"{value}" of type {type(value)} for key "{key}" as a scalar. ' "This invocation of DVCLive's Live.log_metric() " "is incorrect so we dropped this attribute." ) self.live.next_step() def on_save(self, args, state, control, **kwargs): if self._log_model == "all" and self._initialized and state.is_world_process_zero: self.live.log_artifact(args.output_dir) def on_train_end(self, args, state, control, **kwargs): if self._initialized and state.is_world_process_zero: from transformers.trainer import Trainer if self._log_model is True: fake_trainer = Trainer( args=args, model=kwargs.get("model"), processing_class=kwargs.get("processing_class"), eval_dataset=["fake"], ) name = "best" if args.load_best_model_at_end else "last" output_dir = os.path.join(args.output_dir, name) fake_trainer.save_model(output_dir) self.live.log_artifact(output_dir, name=name, type="model", copy=True) self.live.end() INTEGRATION_TO_CALLBACK = { "azure_ml": AzureMLCallback, "comet_ml": CometCallback, "mlflow": MLflowCallback, "neptune": NeptuneCallback, "tensorboard": TensorBoardCallback, "wandb": WandbCallback, "codecarbon": CodeCarbonCallback, "clearml": ClearMLCallback, "dagshub": DagsHubCallback, "flyte": FlyteCallback, "dvclive": DVCLiveCallback, } def get_reporting_integration_callbacks(report_to): if report_to is None: return [] if isinstance(report_to, str): if "none" == report_to: return [] elif "all" == report_to: report_to = get_available_reporting_integrations() else: report_to = [report_to] for integration in report_to: if integration not in INTEGRATION_TO_CALLBACK: raise ValueError( f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported." ) return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
transformers/src/transformers/integrations/integration_utils.py/0
{ "file_path": "transformers/src/transformers/integrations/integration_utils.py", "repo_id": "transformers", "token_count": 44219 }
/*! ************************************************************************************************** * Deformable DETR * Copyright (c) 2020 SenseTime. All Rights Reserved. * Licensed under the Apache License, Version 2.0 [see LICENSE for details] ************************************************************************************************** * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 ************************************************************************************************** */ #pragma once #include "cpu/ms_deform_attn_cpu.h" #ifdef WITH_CUDA #include "cuda/ms_deform_attn_cuda.h" #endif at::Tensor ms_deform_attn_forward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const int im2col_step) { if (value.is_cuda()) { #ifdef WITH_CUDA return ms_deform_attn_cuda_forward( value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step); #else AT_ERROR("Not compiled with GPU support"); #endif } AT_ERROR("Not implemented on the CPU"); } std::vector<at::Tensor> ms_deform_attn_backward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const at::Tensor &grad_output, const int im2col_step) { if (value.is_cuda()) { #ifdef WITH_CUDA return ms_deform_attn_cuda_backward( value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step); #else AT_ERROR("Not compiled with GPU support"); #endif } AT_ERROR("Not implemented on the CPU"); }
transformers/src/transformers/kernels/deformable_detr/ms_deform_attn.h/0
{ "file_path": "transformers/src/transformers/kernels/deformable_detr/ms_deform_attn.h", "repo_id": "transformers", "token_count": 663 }
#include <torch/extension.h> #include <ATen/ATen.h> #include "cuda_launch.h" #include <vector> std::vector<at::Tensor> index_max( at::Tensor index_vals, at::Tensor indices, int A_num_block, int B_num_block ) { return index_max_kernel( index_vals, indices, A_num_block, B_num_block ); } at::Tensor mm_to_sparse( at::Tensor dense_A, at::Tensor dense_B, at::Tensor indices ) { return mm_to_sparse_kernel( dense_A, dense_B, indices ); } at::Tensor sparse_dense_mm( at::Tensor sparse_A, at::Tensor indices, at::Tensor dense_B, int A_num_block ) { return sparse_dense_mm_kernel( sparse_A, indices, dense_B, A_num_block ); } at::Tensor reduce_sum( at::Tensor sparse_A, at::Tensor indices, int A_num_block, int B_num_block ) { return reduce_sum_kernel( sparse_A, indices, A_num_block, B_num_block ); } at::Tensor scatter( at::Tensor dense_A, at::Tensor indices, int B_num_block ) { return scatter_kernel( dense_A, indices, B_num_block ); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("index_max", &index_max, "index_max (CUDA)"); m.def("mm_to_sparse", &mm_to_sparse, "mm_to_sparse (CUDA)"); m.def("sparse_dense_mm", &sparse_dense_mm, "sparse_dense_mm (CUDA)"); m.def("reduce_sum", &reduce_sum, "reduce_sum (CUDA)"); m.def("scatter", &scatter, "scatter (CUDA)"); }
transformers/src/transformers/kernels/mra/torch_extension.cpp/0
{ "file_path": "transformers/src/transformers/kernels/mra/torch_extension.cpp", "repo_id": "transformers", "token_count": 655 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from torch.nn import BCEWithLogitsLoss, MSELoss from .loss_deformable_detr import DeformableDetrForObjectDetectionLoss, DeformableDetrForSegmentationLoss from .loss_for_object_detection import ForObjectDetectionLoss, ForSegmentationLoss from .loss_rt_detr import RTDetrForObjectDetectionLoss def fixed_cross_entropy(source, target, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs): reduction = "sum" if num_items_in_batch is not None else "mean" loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction) if reduction == "sum": loss = loss / num_items_in_batch return loss def ForCausalLMLoss( logits, labels, vocab_size: int, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs ): # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() labels = labels.to(logits.device) # Shift so that tokens < n predict n labels = nn.functional.pad(labels, (0, 1), value=ignore_index) shift_labels = labels[..., 1:].contiguous() # Flatten the tokens logits = logits.view(-1, vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(logits.device) loss = fixed_cross_entropy(logits, shift_labels, num_items_in_batch, ignore_index, **kwargs) return loss def ForMaskedLMLoss( logits, labels, vocab_size: int, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs ): # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() labels = labels.to(logits.device) # Flatten the tokens logits = logits.view(-1, vocab_size) labels = labels.view(-1) # Enable model parallelism labels = labels.to(logits.device) loss = fixed_cross_entropy(logits, labels, num_items_in_batch, ignore_index, **kwargs) return loss def ForSequenceClassificationLoss(labels, pooled_logits, config, **kwargs): num_labels = config.num_labels if config.problem_type is None: if num_labels == 1: config.problem_type = "regression" elif num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): config.problem_type = "single_label_classification" else: config.problem_type = "multi_label_classification" labels = labels.to(pooled_logits.device) if config.problem_type == "regression": loss_fct = MSELoss() if num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif config.problem_type == "single_label_classification": loss = fixed_cross_entropy(pooled_logits.view(-1, num_labels), labels.view(-1), **kwargs) elif config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) return loss def ForQuestionAnsweringLoss(start_logits, end_logits, start_positions, end_positions, **kwargs): total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) start_loss = fixed_cross_entropy(start_logits, start_positions, ignore_index=ignored_index, **kwargs) end_loss = fixed_cross_entropy(end_logits, end_positions, ignore_index=ignored_index, **kwargs) total_loss = (start_loss + end_loss) / 2 return total_loss def ForTokenClassification(logits, labels, config, **kwargs): # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.view(-1, config.num_labels) labels = labels.view(-1).to(logits.device) logits = logits.float() # Flatten the tokens return fixed_cross_entropy(logits, labels, **kwargs) LOSS_MAPPING = { "ForCausalLM": ForCausalLMLoss, "ForMaskedLM": ForMaskedLMLoss, "ForQuestionAnswering": ForQuestionAnsweringLoss, "ForSequenceClassification": ForSequenceClassificationLoss, "ForTokenClassification": ForTokenClassification, "ForSegmentation": ForSegmentationLoss, "ForObjectDetection": ForObjectDetectionLoss, "DeformableDetrForObjectDetection": DeformableDetrForObjectDetectionLoss, "ConditionalDetrForObjectDetection": DeformableDetrForObjectDetectionLoss, "DabDetrForObjectDetection": DeformableDetrForObjectDetectionLoss, "GroundingDinoForObjectDetection": DeformableDetrForObjectDetectionLoss, "ConditionalDetrForSegmentation": DeformableDetrForSegmentationLoss, "RTDetrForObjectDetection": RTDetrForObjectDetectionLoss, "RTDetrV2ForObjectDetection": RTDetrForObjectDetectionLoss, }
transformers/src/transformers/loss/loss_utils.py/0
{ "file_path": "transformers/src/transformers/loss/loss_utils.py", "repo_id": "transformers", "token_count": 2181 }
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ALBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig class AlbertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ALBERT [albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30000): Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`]. embedding_size (`int`, *optional*, defaults to 128): Dimensionality of vocabulary embeddings. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_hidden_groups (`int`, *optional*, defaults to 1): Number of groups for the hidden layers, parameters in the same group are shared. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 16384): The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. inner_group_num (`int`, *optional*, defaults to 1): The number of inner repetition of attention and ffn. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 3): End of stream token id. Examples: ```python >>> from transformers import AlbertConfig, AlbertModel >>> # Initializing an ALBERT-xxlarge style configuration >>> albert_xxlarge_configuration = AlbertConfig() >>> # Initializing an ALBERT-base style configuration >>> albert_base_configuration = AlbertConfig( ... hidden_size=768, ... num_attention_heads=12, ... intermediate_size=3072, ... ) >>> # Initializing a model (with random weights) from the ALBERT-base style configuration >>> model = AlbertModel(albert_xxlarge_configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "albert" def __init__( self, vocab_size=30000, embedding_size=128, hidden_size=4096, num_hidden_layers=12, num_hidden_groups=1, num_attention_heads=64, intermediate_size=16384, inner_group_num=1, hidden_act="gelu_new", hidden_dropout_prob=0, attention_probs_dropout_prob=0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, classifier_dropout_prob=0.1, position_embedding_type="absolute", pad_token_id=0, bos_token_id=2, eos_token_id=3, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_hidden_groups = num_hidden_groups self.num_attention_heads = num_attention_heads self.inner_group_num = inner_group_num self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.classifier_dropout_prob = classifier_dropout_prob self.position_embedding_type = position_embedding_type # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert class AlbertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] ) __all__ = ["AlbertConfig", "AlbertOnnxConfig"]
transformers/src/transformers/models/albert/configuration_albert.py/0
{ "file_path": "transformers/src/transformers/models/albert/configuration_albert.py", "repo_id": "transformers", "token_count": 3085 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """AutoImageProcessor class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import BaseImageProcessor, ImageProcessingMixin from ...image_processing_utils_fast import BaseImageProcessorFast from ...utils import ( CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, is_timm_config_dict, is_timm_local_checkpoint, is_torchvision_available, is_vision_available, logging, ) from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: # This significantly improves completion suggestion performance when # the transformers package is used with Microsoft's Pylance language server. IMAGE_PROCESSOR_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() else: IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict( [ ("align", ("EfficientNetImageProcessor",)), ("aria", ("AriaImageProcessor")), ("beit", ("BeitImageProcessor",)), ("bit", ("BitImageProcessor",)), ("blip", ("BlipImageProcessor", "BlipImageProcessorFast")), ("blip-2", ("BlipImageProcessor", "BlipImageProcessorFast")), ("bridgetower", ("BridgeTowerImageProcessor",)), ("chameleon", ("ChameleonImageProcessor",)), ("chinese_clip", ("ChineseCLIPImageProcessor",)), ("clip", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("clipseg", ("ViTImageProcessor", "ViTImageProcessorFast")), ("conditional_detr", ("ConditionalDetrImageProcessor",)), ("convnext", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("convnextv2", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("cvt", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("data2vec-vision", ("BeitImageProcessor",)), ("deformable_detr", ("DeformableDetrImageProcessor", "DeformableDetrImageProcessorFast")), ("deit", ("DeiTImageProcessor", "DeiTImageProcessorFast")), ("depth_anything", ("DPTImageProcessor",)), ("deta", ("DetaImageProcessor",)), ("detr", ("DetrImageProcessor", "DetrImageProcessorFast")), ("dinat", ("ViTImageProcessor", "ViTImageProcessorFast")), ("dinov2", ("BitImageProcessor",)), ("donut-swin", ("DonutImageProcessor",)), ("dpt", ("DPTImageProcessor",)), ("efficientformer", ("EfficientFormerImageProcessor",)), ("efficientnet", ("EfficientNetImageProcessor",)), ("flava", ("FlavaImageProcessor",)), ("focalnet", ("BitImageProcessor",)), ("fuyu", ("FuyuImageProcessor",)), ("git", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("glpn", ("GLPNImageProcessor",)), ("got_ocr2", ("GotOcr2ImageProcessor",)), ("grounding-dino", ("GroundingDinoImageProcessor",)), ("groupvit", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("hiera", ("BitImageProcessor",)), ("idefics", ("IdeficsImageProcessor",)), ("idefics2", ("Idefics2ImageProcessor",)), ("idefics3", ("Idefics3ImageProcessor",)), ("ijepa", ("ViTImageProcessor", "ViTImageProcessorFast")), ("imagegpt", ("ImageGPTImageProcessor",)), ("instructblip", ("BlipImageProcessor", "BlipImageProcessorFast")), ("instructblipvideo", ("InstructBlipVideoImageProcessor",)), ("kosmos-2", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("layoutlmv2", ("LayoutLMv2ImageProcessor",)), ("layoutlmv3", ("LayoutLMv3ImageProcessor",)), ("levit", ("LevitImageProcessor",)), ("llava", ("LlavaImageProcessor", "LlavaImageProcessorFast")), ("llava_next", ("LlavaNextImageProcessor", "LlavaNextImageProcessorFast")), ("llava_next_video", ("LlavaNextVideoImageProcessor",)), ("llava_onevision", ("LlavaOnevisionImageProcessor", "LlavaOnevisionImageProcessorFast")), ("mask2former", ("Mask2FormerImageProcessor",)), ("maskformer", ("MaskFormerImageProcessor",)), ("mgp-str", ("ViTImageProcessor", "ViTImageProcessorFast")), ("mllama", ("MllamaImageProcessor",)), ("mobilenet_v1", ("MobileNetV1ImageProcessor",)), ("mobilenet_v2", ("MobileNetV2ImageProcessor",)), ("mobilevit", ("MobileViTImageProcessor",)), ("mobilevitv2", ("MobileViTImageProcessor",)), ("nat", ("ViTImageProcessor", "ViTImageProcessorFast")), ("nougat", ("NougatImageProcessor",)), ("oneformer", ("OneFormerImageProcessor",)), ("owlv2", ("Owlv2ImageProcessor",)), ("owlvit", ("OwlViTImageProcessor",)), ("paligemma", ("SiglipImageProcessor", "SiglipImageProcessorFast")), ("perceiver", ("PerceiverImageProcessor",)), ("pix2struct", ("Pix2StructImageProcessor",)), ("pixtral", ("PixtralImageProcessor", "PixtralImageProcessorFast")), ("poolformer", ("PoolFormerImageProcessor",)), ("pvt", ("PvtImageProcessor",)), ("pvt_v2", ("PvtImageProcessor",)), ("qwen2_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")), ("regnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("resnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("rt_detr", ("RTDetrImageProcessor", "RTDetrImageProcessorFast")), ("sam", ("SamImageProcessor",)), ("segformer", ("SegformerImageProcessor",)), ("seggpt", ("SegGptImageProcessor",)), ("siglip", ("SiglipImageProcessor", "SiglipImageProcessorFast")), ("superglue", "SuperGlueImageProcessor"), ("swiftformer", ("ViTImageProcessor", "ViTImageProcessorFast")), ("swin", ("ViTImageProcessor", "ViTImageProcessorFast")), ("swin2sr", ("Swin2SRImageProcessor",)), ("swinv2", ("ViTImageProcessor", "ViTImageProcessorFast")), ("table-transformer", ("DetrImageProcessor",)), ("timesformer", ("VideoMAEImageProcessor",)), ("timm_wrapper", ("TimmWrapperImageProcessor",)), ("tvlt", ("TvltImageProcessor",)), ("tvp", ("TvpImageProcessor",)), ("udop", ("LayoutLMv3ImageProcessor",)), ("upernet", ("SegformerImageProcessor",)), ("van", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")), ("videomae", ("VideoMAEImageProcessor",)), ("vilt", ("ViltImageProcessor",)), ("vipllava", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("vit", ("ViTImageProcessor", "ViTImageProcessorFast")), ("vit_hybrid", ("ViTHybridImageProcessor",)), ("vit_mae", ("ViTImageProcessor", "ViTImageProcessorFast")), ("vit_msn", ("ViTImageProcessor", "ViTImageProcessorFast")), ("vitmatte", ("VitMatteImageProcessor",)), ("xclip", ("CLIPImageProcessor", "CLIPImageProcessorFast")), ("yolos", ("YolosImageProcessor",)), ("zoedepth", ("ZoeDepthImageProcessor",)), ] ) for model_type, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): slow_image_processor_class, *fast_image_processor_class = image_processors if not is_vision_available(): slow_image_processor_class = None # If the fast image processor is not defined, or torchvision is not available, we set it to None if not fast_image_processor_class or fast_image_processor_class[0] is None or not is_torchvision_available(): fast_image_processor_class = None else: fast_image_processor_class = fast_image_processor_class[0] IMAGE_PROCESSOR_MAPPING_NAMES[model_type] = (slow_image_processor_class, fast_image_processor_class) IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def get_image_processor_class_from_name(class_name: str): if class_name == "BaseImageProcessorFast": return BaseImageProcessorFast for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for _, extractors in IMAGE_PROCESSOR_MAPPING._extra_content.items(): for extractor in extractors: if getattr(extractor, "__name__", None) == class_name: return extractor # We did not find the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_image_processor_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, **kwargs, ): """ Loads the image processor configuration from a pretrained model image processor configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the image processor configuration from local files. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Dict`: The configuration of the image processor. Examples: ```python # Download configuration from huggingface.co and cache. image_processor_config = get_image_processor_config("google-bert/bert-base-uncased") # This model does not have a image processor config so the result will be an empty dict. image_processor_config = get_image_processor_config("FacebookAI/xlm-roberta-base") # Save a pretrained image processor locally and you can reload its config from transformers import AutoTokenizer image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") image_processor.save_pretrained("image-processor-test") image_processor_config = get_image_processor_config("image-processor-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token resolved_config_file = get_file_from_repo( pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(resolved_config_file, encoding="utf-8") as reader: return json.load(reader) def _warning_fast_image_processor_available(fast_class): logger.warning( f"Fast image processor class {fast_class} is available for this model. " "Using slow image processor class. To use the fast image processor class set `use_fast=True`." ) class AutoImageProcessor: r""" This is a generic image processor class that will be instantiated as one of the image processor classes of the library when created with the [`AutoImageProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the image processor classes of the library from a pretrained model vocabulary. The image processor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained image_processor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a image processor file saved using the [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved image processor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model image processor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the image processor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. use_fast (`bool`, *optional*, defaults to `False`): Use a fast torchvision-base image processor if it is supported for a given model. If a fast image processor is not available for a given model, a normal numpy-based image processor is returned instead. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final image processor object. If `True`, then this functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of `kwargs` which has not been used to update `image_processor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. image_processor_filename (`str`, *optional*, defaults to `"config.json"`): The name of the file in the model directory to use for the image processor config. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are image processor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoImageProcessor >>> # Download image processor from huggingface.co and cache. >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*) >>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) # TODO: @yoni, change in v4.48 (use_fast set to True by default) use_fast = kwargs.pop("use_fast", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True # Resolve the image processor config filename if "image_processor_filename" in kwargs: image_processor_filename = kwargs.pop("image_processor_filename") elif is_timm_local_checkpoint(pretrained_model_name_or_path): image_processor_filename = CONFIG_NAME else: image_processor_filename = IMAGE_PROCESSOR_NAME # Load the image processor config try: # Main path for all transformers models and local TimmWrapper checkpoints config_dict, _ = ImageProcessingMixin.get_image_processor_dict( pretrained_model_name_or_path, image_processor_filename=image_processor_filename, **kwargs ) except Exception as initial_exception: # Fallback path for Hub TimmWrapper checkpoints. Timm models' image processing is saved in `config.json` # instead of `preprocessor_config.json`. Because this is an Auto class and we don't have any information # except the model name, the only way to check if a remote checkpoint is a timm model is to try to # load `config.json` and if it fails with some error, we raise the initial exception. try: config_dict, _ = ImageProcessingMixin.get_image_processor_dict( pretrained_model_name_or_path, image_processor_filename=CONFIG_NAME, **kwargs ) except Exception: raise initial_exception # In case we have a config_dict, but it's not a timm config dict, we raise the initial exception, # because only timm models have image processing in `config.json`. if not is_timm_config_dict(config_dict): raise initial_exception image_processor_type = config_dict.get("image_processor_type", None) image_processor_auto_map = None if "AutoImageProcessor" in config_dict.get("auto_map", {}): image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_type is None and image_processor_auto_map is None: feature_extractor_class = config_dict.pop("feature_extractor_type", None) if feature_extractor_class is not None: image_processor_type = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor") if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor") # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_type is None and image_processor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs, ) # It could be in `config.image_processor_type`` image_processor_type = getattr(config, "image_processor_type", None) if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map: image_processor_auto_map = config.auto_map["AutoImageProcessor"] image_processor_class = None # TODO: @yoni, change logic in v4.48 (when use_fast set to True by default) if image_processor_type is not None: # if use_fast is not set and the processor was saved with a fast processor, we use it, otherwise we use the slow processor. if use_fast is None: use_fast = image_processor_type.endswith("Fast") if not use_fast: logger.warning_once( "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. " "`use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. " "This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`." ) # Update class name to reflect the use_fast option. If class is not found, we fall back to the slow version. if use_fast and not is_torchvision_available(): logger.warning_once( "Using `use_fast=True` but `torchvision` is not available. Falling back to the slow image processor." ) use_fast = False if use_fast: if not image_processor_type.endswith("Fast"): image_processor_type += "Fast" for _, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if image_processor_type in image_processors: break else: image_processor_type = image_processor_type[:-4] use_fast = False logger.warning_once( "`use_fast` is set to `True` but the image processor class does not have a fast version. " " Falling back to the slow version." ) image_processor_class = get_image_processor_class_from_name(image_processor_type) else: image_processor_type = ( image_processor_type[:-4] if image_processor_type.endswith("Fast") else image_processor_type ) image_processor_class = get_image_processor_class_from_name(image_processor_type) has_remote_code = image_processor_auto_map is not None has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple): # In some configs, only the slow image processor class is stored image_processor_auto_map = (image_processor_auto_map, None) if has_remote_code and trust_remote_code: if not use_fast and image_processor_auto_map[1] is not None: _warning_fast_image_processor_available(image_processor_auto_map[1]) if use_fast and image_processor_auto_map[1] is not None: class_ref = image_processor_auto_map[1] else: class_ref = image_processor_auto_map[0] image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(config_dict, **kwargs) elif image_processor_class is not None: return image_processor_class.from_dict(config_dict, **kwargs) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(config) in IMAGE_PROCESSOR_MAPPING: image_processor_tuple = IMAGE_PROCESSOR_MAPPING[type(config)] image_processor_class_py, image_processor_class_fast = image_processor_tuple if not use_fast and image_processor_class_fast is not None: _warning_fast_image_processor_available(image_processor_class_fast) if image_processor_class_fast and (use_fast or image_processor_class_py is None): return image_processor_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: if image_processor_class_py is not None: return image_processor_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This image processor cannot be instantiated. Please make sure you have `Pillow` installed." ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}" ) @staticmethod def register( config_class, image_processor_class=None, slow_image_processor_class=None, fast_image_processor_class=None, exist_ok=False, ): """ Register a new image processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. image_processor_class ([`ImageProcessingMixin`]): The image processor to register. """ if image_processor_class is not None: if slow_image_processor_class is not None: raise ValueError("Cannot specify both image_processor_class and slow_image_processor_class") warnings.warn( "The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead", FutureWarning, ) slow_image_processor_class = image_processor_class if slow_image_processor_class is None and fast_image_processor_class is None: raise ValueError("You need to specify either slow_image_processor_class or fast_image_processor_class") if slow_image_processor_class is not None and issubclass(slow_image_processor_class, BaseImageProcessorFast): raise ValueError("You passed a fast image processor in as the `slow_image_processor_class`.") if fast_image_processor_class is not None and issubclass(fast_image_processor_class, BaseImageProcessor): raise ValueError("You passed a slow image processor in as the `fast_image_processor_class`.") if ( slow_image_processor_class is not None and fast_image_processor_class is not None and issubclass(fast_image_processor_class, BaseImageProcessorFast) and fast_image_processor_class.slow_image_processor_class != slow_image_processor_class ): raise ValueError( "The fast processor class you are passing has a `slow_image_processor_class` attribute that is not " "consistent with the slow processor class you passed (fast tokenizer has " f"{fast_image_processor_class.slow_image_processor_class} and you passed {slow_image_processor_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast image processor if we are passing just the other ones. if config_class in IMAGE_PROCESSOR_MAPPING._extra_content: existing_slow, existing_fast = IMAGE_PROCESSOR_MAPPING[config_class] if slow_image_processor_class is None: slow_image_processor_class = existing_slow if fast_image_processor_class is None: fast_image_processor_class = existing_fast IMAGE_PROCESSOR_MAPPING.register( config_class, (slow_image_processor_class, fast_image_processor_class), exist_ok=exist_ok )
transformers/src/transformers/models/auto/image_processing_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/image_processing_auto.py", "repo_id": "transformers", "token_count": 13700 }
"""Convert Bark checkpoint.""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) set_seed(770) new_layer_name_dict = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } REMOTE_MODEL_PATHS = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } CUR_PATH = os.path.dirname(os.path.abspath(__file__)) default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache") CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _get_ckpt_path(model_type, use_small=False): key = model_type if use_small: key += "_small" return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"]) def _download(from_hf_path, file_name): os.makedirs(CACHE_DIR, exist_ok=True) hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR) def _load_model(ckpt_path, device, use_small=False, model_type="text"): if model_type == "text": ModelClass = BarkSemanticModel ConfigClass = BarkSemanticConfig GenerationConfigClass = BarkSemanticGenerationConfig elif model_type == "coarse": ModelClass = BarkCoarseModel ConfigClass = BarkCoarseConfig GenerationConfigClass = BarkCoarseGenerationConfig elif model_type == "fine": ModelClass = BarkFineModel ConfigClass = BarkFineConfig GenerationConfigClass = BarkFineGenerationConfig else: raise NotImplementedError() model_key = f"{model_type}_small" if use_small else model_type model_info = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(ckpt_path): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.") _download(model_info["repo_id"], model_info["file_name"]) checkpoint = torch.load(ckpt_path, map_location=device) # this is a hack model_args = checkpoint["model_args"] if "input_vocab_size" not in model_args: model_args["input_vocab_size"] = model_args["vocab_size"] model_args["output_vocab_size"] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments model_args["num_heads"] = model_args.pop("n_head") model_args["hidden_size"] = model_args.pop("n_embd") model_args["num_layers"] = model_args.pop("n_layer") model_config = ConfigClass(**checkpoint["model_args"]) model = ModelClass(config=model_config) model_generation_config = GenerationConfigClass() model.generation_config = model_generation_config state_dict = checkpoint["model"] # fixup checkpoint unwanted_prefix = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): # replace part of the key with corresponding layer name in HF implementation new_k = k[len(unwanted_prefix) :] for old_layer_name in new_layer_name_dict: new_k = new_k.replace(old_layer_name, new_layer_name_dict[old_layer_name]) state_dict[new_k] = state_dict.pop(k) extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) extra_keys = {k for k in extra_keys if not k.endswith(".attn.bias")} missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) missing_keys = {k for k in missing_keys if not k.endswith(".attn.bias")} if len(extra_keys) != 0: raise ValueError(f"extra keys found: {extra_keys}") if len(missing_keys) != 0: raise ValueError(f"missing keys: {missing_keys}") model.load_state_dict(state_dict, strict=False) n_params = model.num_parameters(exclude_embeddings=True) val_loss = checkpoint["best_val_loss"].item() logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") model.eval() model.to(device) del checkpoint, state_dict return model def load_model(pytorch_dump_folder_path, use_small=False, model_type="text"): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() device = "cpu" # do conversion on cpu ckpt_path = _get_ckpt_path(model_type, use_small=use_small) model = _load_model(ckpt_path, device, model_type=model_type, use_small=use_small) # load bark initial model bark_model = _bark_load_model(ckpt_path, "cpu", model_type=model_type, use_small=use_small) if model_type == "text": bark_model = bark_model["model"] if model.num_parameters(exclude_embeddings=True) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters") # check if same output as the bark model batch_size = 5 sequence_length = 10 if model_type in ["text", "coarse"]: vec = torch.randint(256, (batch_size, sequence_length), dtype=torch.int) output_old_model = bark_model(vec)[0] output_new_model_total = model(vec) # take last logits output_new_model = output_new_model_total.logits[:, [-1], :] else: prediction_codeboook_channel = 3 n_codes_total = 8 vec = torch.randint(256, (batch_size, sequence_length, n_codes_total), dtype=torch.int) output_new_model_total = model(prediction_codeboook_channel, vec) output_old_model = bark_model(prediction_codeboook_channel, vec) output_new_model = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape") if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) def load_whole_bark_model( semantic_path, coarse_path, fine_path, append_text, hub_path, folder_path, ): pytorch_dump_folder_path = os.path.join(folder_path, append_text) semanticConfig = BarkSemanticConfig.from_pretrained(os.path.join(semantic_path, "config.json")) coarseAcousticConfig = BarkCoarseConfig.from_pretrained(os.path.join(coarse_path, "config.json")) fineAcousticConfig = BarkFineConfig.from_pretrained(os.path.join(fine_path, "config.json")) codecConfig = EncodecConfig.from_pretrained("facebook/encodec_24khz") semantic = BarkSemanticModel.from_pretrained(semantic_path) coarseAcoustic = BarkCoarseModel.from_pretrained(coarse_path) fineAcoustic = BarkFineModel.from_pretrained(fine_path) codec = EncodecModel.from_pretrained("facebook/encodec_24khz") bark_config = BarkConfig.from_sub_model_configs( semanticConfig, coarseAcousticConfig, fineAcousticConfig, codecConfig ) bark_generation_config = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config ) bark = BarkModel(bark_config) bark.semantic = semantic bark.coarse_acoustics = coarseAcoustic bark.fine_acoustics = fineAcoustic bark.codec_model = codec bark.generation_config = bark_generation_config Path(pytorch_dump_folder_path).mkdir(exist_ok=True) bark.save_pretrained(pytorch_dump_folder_path, repo_id=hub_path, push_to_hub=True) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") args = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
transformers/src/transformers/models/bark/convert_suno_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/bark/convert_suno_to_hf.py", "repo_id": "transformers", "token_count": 3747 }
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 BERT model.""" from __future__ import annotations import math import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_bert import BertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english" _TOKEN_CLASS_EXPECTED_OUTPUT = ( "['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] " ) _TOKEN_CLASS_EXPECTED_LOSS = 0.01 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "ydshieh/bert-base-cased-squad2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 7.41 _QA_TARGET_START_INDEX = 14 _QA_TARGET_END_INDEX = 15 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ydshieh/bert-base-uncased-yelp-polarity" _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'" _SEQ_CLASS_EXPECTED_LOSS = 0.01 class TFBertPreTrainingLoss: """ Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. """ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) # make sure only labels that are not equal to -100 # are taken into account for the loss computation lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) masked_lm_losses = unmasked_lm_losses * lm_loss_mask reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) masked_ns_loss = unmasked_ns_loss * ns_loss_mask reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) class TFBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFBertSelfAttention(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) class TFBertSelfOutput(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFBertAttention(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFBertSelfAttention(config, name="self") self.dense_output = TFBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFBertIntermediate(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFBertOutput(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFBertLayer(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFBertAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFBertAttention(config, name="crossattention") self.intermediate = TFBertIntermediate(config, name="intermediate") self.bert_output = TFBertOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) class TFBertEncoder(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFBertPooler(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFBertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFBertLMPredictionHead(keras.layers.Layer): def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.transform = TFBertPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFBertMLMHead(keras.layers.Layer): def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) class TFBertNSPHead(keras.layers.Layer): def __init__(self, config: BertConfig, **kwargs): super().__init__(**kwargs) self.seq_relationship = keras.layers.Dense( units=2, kernel_initializer=get_initializer(config.initializer_range), name="seq_relationship", ) self.config = config def call(self, pooled_output: tf.Tensor) -> tf.Tensor: seq_relationship_score = self.seq_relationship(inputs=pooled_output) return seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size]) @keras_serializable class TFBertMainLayer(keras.layers.Layer): config_class = BertConfig def __init__(self, config: BertConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TFBertEmbeddings(config, name="embeddings") self.encoder = TFBertEncoder(config, name="encoder") self.pooler = TFBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig base_model_prefix = "bert" @dataclass class TFBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None BERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class TFBertModel(TFBertPreTrainedModel): def __init__(self, config: BertConfig, add_pooling_layer: bool = True, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, add_pooling_layer, name="bert") @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"position_ids", r"cls.predictions.decoder.weight", r"cls.predictions.decoder.bias", ] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.nsp = TFBertNSPHead(config, name="nsp___cls") self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = TFBertForPreTraining.from_pretrained("google-bert/bert-base-uncased") >>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf") >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits, seq_relationship_logits = outputs[:2] ```""" outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) seq_relationship_score = self.nsp(pooled_output=pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "nsp", None) is not None: with tf.name_scope(self.nsp.name): self.nsp.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"cls.seq_relationship", r"cls.predictions.decoder.weight", r"nsp___cls", ] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert") self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.88, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) class TFBertLMHeadModel(TFBertPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"cls.seq_relationship", r"cls.predictions.decoder.weight", r"nsp___cls", ] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFBertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert") self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None) @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"cls.predictions"] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.nsp = TFBertNSPHead(config, name="nsp___cls") @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> model = TFBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] >>> assert logits[0][0] < logits[0][1] # the next sentence was random ```""" outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.nsp(pooled_output=pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "nsp", None) is not None: with tf.name_scope(self.nsp.name): self.nsp.build(None) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, name="bert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(rate=classifier_dropout) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.bert( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(rate=classifier_dropout) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config: BertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert", None) is not None: with tf.name_scope(self.bert.name): self.bert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) __all__ = [ "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ]
transformers/src/transformers/models/bert/modeling_tf_bert.py/0
{ "file_path": "transformers/src/transformers/models/bert/modeling_tf_bert.py", "repo_id": "transformers", "token_count": 40760 }
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_big_bird import BigBirdConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" _CONFIG_FOR_DOC = "BigBirdConfig" remat = nn_partitioning.remat @flax.struct.dataclass class FlaxBigBirdForPreTrainingOutput(ModelOutput): """ Output type of [`BigBirdForPreTraining`]. Args: prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_logits: jnp.ndarray = None seq_relationship_logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None @flax.struct.dataclass class FlaxBigBirdForQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: start_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Span-end scores (before SoftMax). pooled_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): pooled_output returned by FlaxBigBirdModel. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: jnp.ndarray = None end_logits: jnp.ndarray = None pooled_output: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None BIG_BIRD_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BIG_BIRD_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxBigBirdEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.setup def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) if self.config.rescale_embeddings: inputs_embeds *= self.config.hidden_size**0.5 # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->BigBird class FlaxBigBirdSelfAttention(nn.Module): config: BigBirdConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxBigBirdBlockSparseAttention(nn.Module): config: BigBirdConfig block_sparse_seed: int = None dtype: jnp.dtype = jnp.float32 def setup(self): self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, use_bias=self.config.use_bias, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) @staticmethod def transpose_for_scores(x, n_heads, head_size): new_x_shape = x.shape[:-1] + (n_heads, head_size) x = x.reshape(*new_x_shape) return jnp.transpose(x, axes=(0, 2, 1, 3)) def __call__( self, hidden_states, attention_mask, deterministic=True, output_attentions=False, ): n_heads = self.config.num_attention_heads head_size = self.config.hidden_size // n_heads blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( attention_mask, self.config.block_size ) query_layer = self.transpose_for_scores(self.query(hidden_states), n_heads, head_size) key_layer = self.transpose_for_scores(self.key(hidden_states), n_heads, head_size) value_layer = self.transpose_for_scores(self.value(hidden_states), n_heads, head_size) indices_prng_key = None if not deterministic: indices_prng_key = self.make_rng("indices") attn_output, attn_weights = self.bigbird_block_sparse_attention( query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, blocked_encoder_mask, blocked_encoder_mask, n_heads, head_size, indices_prng_key=indices_prng_key, deterministic=deterministic, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=output_attentions, ) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs @staticmethod def create_masks_for_block_sparse_attn(attention_mask, block_size: int): batch_size, seq_length = attention_mask.shape if seq_length % block_size != 0: raise ValueError( f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block" f" size is {block_size}." ) def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. Returns: float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. """ exp_blocked_to_pad = jnp.concatenate( [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], axis=2 ) band_mask = jnp.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) band_mask = jnp.expand_dims(band_mask, 1) return band_mask blocked_encoder_mask = attention_mask.reshape(batch_size, seq_length // block_size, block_size) band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) from_mask = attention_mask.reshape(batch_size, 1, seq_length, 1) to_mask = attention_mask.reshape(batch_size, 1, 1, seq_length) return blocked_encoder_mask, band_mask, from_mask, to_mask def bigbird_block_sparse_attention( self, query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, n_heads, head_size, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=None, ): # BigBird block-sparse attention as suggested in paper # ITC: # global tokens: 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # ETC: # global tokens: extra_globals_tokens + 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # Note: # 1) Currently, ETC is not supported. # 2) Window size is fixed to 3 blocks & it can be changed only by # changing `block_size`. # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be # controlled only by `block_size`. # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of # shifting tokens (for calculating sliding attention). hence following code can be divided into 5 parts. bsz, _, from_seq_len, _ = query_layer.shape to_seq_len = key_layer.shape[2] from_block_size = to_block_size = self.config.block_size if from_seq_len % from_block_size != 0: raise ValueError("Query sided sequence length must be multiple of block size") if to_seq_len % to_block_size != 0: raise ValueError("Key/Value sided sequence length must be multiple of block size") if from_seq_len // from_block_size != to_seq_len // to_block_size: raise ValueError("Error the number of blocks needs to be same!") n_rand_blocks = self.config.num_random_blocks rsqrt_d = 1 / jnp.sqrt(head_size) attn_mask_penalty = -10000.0 if from_seq_len in [1024, 3072, 4096]: # old plans used in paper max_seqlen = self.config.max_position_embeddings rand_attn = [ self._bigbird_block_rand_mask( max_seqlen, max_seqlen, from_block_size, to_block_size, n_rand_blocks, indices_prng_key=indices_prng_key, deterministic=deterministic, last_idx=1024, )[: (from_seq_len // from_block_size - 2)] for _ in range(n_heads) ] else: if plan_from_length is None: plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( from_seq_len, from_block_size, n_rand_blocks ) rand_attn = self._bigbird_block_rand_mask_with_head( from_seq_length=from_seq_len, to_seq_length=to_seq_len, from_block_size=from_block_size, to_block_size=to_block_size, num_heads=n_heads, plan_from_length=plan_from_length, plan_num_rand_blocks=plan_num_rand_blocks, indices_prng_key=indices_prng_key, ) rand_attn = jnp.stack(rand_attn, axis=0) rand_attn = jnp.broadcast_to(rand_attn, (bsz,) + rand_attn.shape) rand_mask = self._create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size ) blocked_query_matrix = query_layer.reshape(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) blocked_key_matrix = key_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) blocked_value_matrix = value_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) shape = (bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1) gathered_key = self.jax_gather(blocked_key_matrix, rand_attn, batch_dims=2).reshape(*shape) gathered_value = self.jax_gather(blocked_value_matrix, rand_attn, batch_dims=2).reshape(*shape) # 1st PART # 1st block (global block) attention scores # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] first_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 0], key_layer) first_product = first_product * rsqrt_d first_product += (1.0 - to_mask) * attn_mask_penalty first_attn_weights = jax.nn.softmax(first_product, axis=-1) # [bsz, n_heads, from_block_size, to_seq_len] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] first_context_layer = jnp.einsum("bhqk,bhkd->bhqd", first_attn_weights, value_layer) first_context_layer = jnp.expand_dims(first_context_layer, 2) # 2nd PART # 2nd block attention scores # q[1] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> 2nd, 3rd blocks # global key blocks -> 1st block second_key_mat = jnp.concatenate( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1], blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :, -1], gathered_key[:, :, 0], ], axis=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] second_value_mat = jnp.concatenate( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1], blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1], gathered_value[:, :, 0], ], axis=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 1], second_key_mat) second_seq_pad = jnp.concatenate( [ to_mask[:, :, :, : 3 * to_block_size], to_mask[:, :, :, -to_block_size:], jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), ], axis=3, ) second_rand_pad = jnp.concatenate( [ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), rand_mask[:, :, 0], ], axis=3, ) second_product = second_product * rsqrt_d second_product += (1.0 - jnp.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty second_attn_weights = jax.nn.softmax( second_product, axis=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+r)*to_block_size] x [bsz, n_heads, (4+r)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, -1] second_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_attn_weights, second_value_mat) second_context_layer = jnp.expand_dims(second_context_layer, 2) # 3rd PART # Middle blocks attention scores # q[-2:2] x (sliding_keys, random_keys, global_keys) # sliding attn is calculated using special trick of shifting tokens as discussed in paper # random keys are generated by taking random indices as per `rand_attn` # global keys -> 1st & last block exp_blocked_key_matrix = jnp.concatenate( [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], axis=3 ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] exp_blocked_value_matrix = jnp.concatenate( [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], axis=3, ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] middle_query_matrix = blocked_query_matrix[:, :, 2:-2] # sliding attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] inner_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, exp_blocked_key_matrix) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] inner_band_product = inner_band_product * rsqrt_d # randn attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] rand_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, gathered_key[:, :, 1:-1]) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] rand_band_product = rand_band_product * rsqrt_d # Including 1st block (since it's global) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] first_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]) first_band_product = first_band_product * rsqrt_d # Including last block (since it's global) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] last_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]) last_band_product = last_band_product * rsqrt_d # masking padded tokens inner_band_product += (1.0 - band_mask) * attn_mask_penalty first_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, :to_block_size], 3)) * attn_mask_penalty last_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, -to_block_size:], 3)) * attn_mask_penalty rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty # completing attention scores matrix for all q[-2:2] band_product = jnp.concatenate( [first_band_product, inner_band_product, rand_band_product, last_band_product], axis=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # safely doing softmax since attention matrix is completed attn_weights = jax.nn.softmax( band_product, axis=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # contribution of sliding keys # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] # x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] context_layer = jnp.einsum( "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of random keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] # x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of global keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += jnp.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] ) # 4th PART # last 2nd token attention scores # q[-2] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> last 3 blocks # global key block -> 1st block # random key block -> based on indices stored in `randn_attn` second_last_key_mat = jnp.concatenate( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3], blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1], gathered_key[:, :, -1], ], axis=2, ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] second_last_value_mat = jnp.concatenate( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3], blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1], gathered_value[:, :, -1], ], axis=2, ) # [bsz, n_heads, (4+r)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -2], second_last_key_mat) second_last_seq_pad = jnp.concatenate( [ to_mask[:, :, :, :to_block_size], to_mask[:, :, :, -3 * to_block_size :], jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype), ], axis=3, ) second_last_rand_pad = jnp.concatenate( [ jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype), rand_mask[:, :, -1], ], axis=3, ) second_last_product = second_last_product * rsqrt_d second_last_product += (1.0 - jnp.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty second_last_attn_weights = jax.nn.softmax( second_last_product, axis=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # ==> [bsz, n_heads, from_block_size, -1] second_last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_last_attn_weights, second_last_value_mat) second_last_context_layer = jnp.expand_dims(second_last_context_layer, 2) # 5th PART # last block (global) attention scores # q[-1] x (k[0], k[1], k[2], k[3], .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -1], key_layer) last_product = last_product * rsqrt_d last_product += (1.0 - to_mask) * attn_mask_penalty last_attn_weights = jax.nn.softmax(last_product, axis=-1) # [bsz, n_heads, from_block_size, n] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", last_attn_weights, value_layer) last_context_layer = jnp.expand_dims(last_context_layer, 2) # combining representations of all tokens context_layer = jnp.concatenate( [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], axis=2, ) context_layer = context_layer.reshape(bsz, n_heads, from_seq_len, -1) * from_mask context_layer = jnp.transpose(context_layer, axes=(0, 2, 1, 3)).reshape(bsz, from_seq_len, -1) attention_probs = None return context_layer, attention_probs @staticmethod def jax_gather(params, indices, batch_dims=2): """ Gather the indices from params correctly (equivalent to tf.gather but with modifications) Args: params: (bsz, n_heads, num_blocks, block_size, head_dim) indices: (<num_blocks, 1) """ def _jax_gather(params, indices): return params[indices] for _ in range(batch_dims): _jax_gather = jax.vmap(_jax_gather, in_axes=(0, 0)) return _jax_gather(params, indices) # params.shape[:batch_dims] + indices.shape + params.shape[batch_dims+1:] def _create_rand_mask_from_inputs( self, from_blocked_mask, to_blocked_mask, broadcasted_rand_attn, num_attention_heads, num_random_blocks, batch_size, from_seq_length, from_block_size, ): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. broadcasted_rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_random_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size]. """ num_windows = from_seq_length // from_block_size - 2 rand_mask = self.jax_gather(to_blocked_mask, broadcasted_rand_attn, batch_dims=1) rand_mask = rand_mask.reshape( batch_size, num_attention_heads, num_windows, num_random_blocks * from_block_size ) rand_mask = jnp.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) return rand_mask @staticmethod def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): """ Gives the plan of where to put random attention. Args: from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. num_rand_blocks: int. Number of random chunks per row. Returns: plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for each block """ plan_from_length = [] plan_num_rand_blocks = [] if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(0) elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks // 2) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) else: plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks) return plan_from_length, plan_num_rand_blocks @staticmethod def _bigbird_block_rand_mask( from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, last_idx: Optional[int] = -1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_rand_blocks: int. Number of random chunks per row. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. deterministic: bool. When False random attention will be used. last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, if positive then num_rand_blocks blocks chosen only up to last_idx. Returns: adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rand_attn = jnp.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=jnp.int32) # deterministic nor randomness if deterministic: return rand_attn middle_seq = jnp.arange(1, to_seq_length // to_block_size - 1, dtype=jnp.int32) last = to_seq_length // to_block_size - 1 if last_idx > (2 * to_block_size): last = (last_idx // to_block_size) - 1 r = num_rand_blocks # shorthand for i in range(1, from_seq_length // from_block_size - 1): start = i - 2 end = i if i == 1: seq_values = jax.random.permutation(indices_prng_key, middle_seq[2:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif i == 2: seq_values = jax.random.permutation(indices_prng_key, middle_seq[3:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif i == from_seq_length // from_block_size - 3: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) # Missing -3: should have been sliced till last-3 elif i == from_seq_length // from_block_size - 2: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) # Missing -4: should have been sliced till last-4 else: if start > last: start = last seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) elif (end + 1) == last: seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) else: concat_values = jnp.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) seq_values = jax.random.permutation(indices_prng_key, concat_values)[:r] rand_attn = rand_attn.at[i - 1].set(seq_values) return rand_attn def _bigbird_block_rand_mask_with_head( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_heads, plan_from_length, plan_num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, deterministic: Optional[bool] = True, window_block_left=1, window_block_right=1, global_block_top=1, global_block_bottom=1, global_block_left=1, global_block_right=1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_heads: int. total number of heads. plan_from_length: list. plan from length where num_random_blocks are choosen from. plan_num_rand_blocks: list. number of rand blocks within the plan. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations. deterministic: bool. When False random attention will be used. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_top: int. number of blocks at the top. global_block_bottom: int. number of blocks at the bottom. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length not in [1024, 3072, 4096] if from_seq_length // from_block_size != to_seq_length // to_block_size: raise ValueError("Error the number of blocks needs to be same!") if from_seq_length not in plan_from_length: raise ValueError("Error from sequence length not in plan!") # Total number of blocks in the mmask num_blocks = from_seq_length // from_block_size # Number of blocks per plan plan_block_length = jnp.array(plan_from_length) // from_block_size # till when to follow plan max_plan_idx = plan_from_length.index(from_seq_length) # Random Attention adjacency list rand_attn = [ jnp.zeros((num_blocks, sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=jnp.int32) for i in range(num_heads) ] # deterministic if deterministic: for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn # We will go iteratively over the plan blocks and pick random number of # Attention blocks from the legally allowed blocks for plan_idx in range(max_plan_idx + 1): rnd_r_cnt = 0 if plan_idx > 0: # set the row for all from_blocks starting from 0 to # plan_block_length[plan_idx-1] # column indx start fromm plan_block_length[plan_idx-1] and ends at # plan_block_length[plan_idx] if plan_num_rand_blocks[plan_idx] > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=plan_block_length[plan_idx - 1], to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = ( rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) ) for pl_id in range(plan_idx): if plan_num_rand_blocks[pl_id] == 0: continue for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): rnd_r_cnt = 0 to_start_block_id = 0 if pl_id > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:pl_id])) to_start_block_id = plan_block_length[pl_id - 1] curr_r_cnt = int(sum(plan_num_rand_blocks[: pl_id + 1])) for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[pl_id], num_rand_blocks=plan_num_rand_blocks[pl_id], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = ( rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) ) if plan_num_rand_blocks[plan_idx] == 0: continue curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1])) from_start_block_id = global_block_top to_start_block_id = 0 if plan_idx > 0: rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx])) from_start_block_id = plan_block_length[plan_idx - 1] to_start_block_id = plan_block_length[plan_idx - 1] for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): for h in range(num_heads): single_block_row_attention = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, indices_prng_key=indices_prng_key, ) rand_attn[h] = rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention) for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn @staticmethod def _get_single_block_row_attention( block_id, to_start_block_id, to_end_block_id, num_rand_blocks, indices_prng_key: Optional[jax.random.PRNGKey] = None, window_block_left=1, window_block_right=1, global_block_left=1, global_block_right=1, ): """ For a single row block get random row attention. Args: block_id: int. block id of row. to_start_block_id: int. random attention column start id. to_end_block_id: int. random attention column end id. num_rand_blocks: int. number of random blocks to be selected. indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: row containing the random attention vector of size num_rand_blocks. """ # list of to_blocks from which to choose random attention to_block_list = jnp.arange(to_start_block_id, to_end_block_id, dtype=jnp.int32) # permute the blocks perm_block = jax.random.permutation(indices_prng_key, to_block_list) # illegal blocks for the current block id, using window illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) # Add blocks at the start and at the end illegal_blocks.extend(list(range(global_block_left))) illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) # The second from_block cannot choose random attention on second last to_block if block_id == 1: illegal_blocks.append(to_end_block_id - 2) # The second last from_block cannot choose random attention on second to_block if block_id == to_end_block_id - 2: illegal_blocks.append(1) selected_random_blocks = [] for i in range(to_end_block_id - to_start_block_id): if perm_block[i] not in illegal_blocks: selected_random_blocks.append(perm_block[i]) if len(selected_random_blocks) == num_rand_blocks: break return jnp.array(selected_random_blocks, dtype=jnp.int32) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->BigBird class FlaxBigBirdSelfOutput(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FlaxBigBirdAttention(nn.Module): config: BigBirdConfig layer_id: int = None causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): if self.config.attention_type == "original_full": self.self = FlaxBigBirdSelfAttention(self.config, causal=self.causal, dtype=self.dtype) elif self.config.attention_type == "block_sparse": self.self = FlaxBigBirdBlockSparseAttention(self.config, block_sparse_seed=self.layer_id, dtype=self.dtype) else: raise ValueError( f"Your `config.attention_type` is {self.config.attention_type} but it can either be `original_full` or" " `block_sparse`" ) self.output = FlaxBigBirdSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) if self.config.attention_type == "original_full": attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) else: attn_outputs = self.self( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->BigBird class FlaxBigBirdIntermediate(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->BigBird class FlaxBigBirdOutput(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states class FlaxBigBirdLayer(nn.Module): config: BigBirdConfig layer_id: int = None dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxBigBirdAttention( self.config, layer_id=self.layer_id, causal=self.config.is_decoder, dtype=self.dtype ) self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxBigBirdAttention(self.config, causal=False, dtype=self.dtype) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer.__call__ with Bert->BigBird def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs class FlaxBigBirdLayerCollection(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxBigBirdCheckpointLayer = remat(FlaxBigBirdLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxBigBirdCheckpointLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxBigBirdLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection.__call__ with Bert->BigBird def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->BigBird class FlaxBigBirdEncoder(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxBigBirdLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->BigBird class FlaxBigBirdPredictionHeadTransform(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.activation = ACT2FN[self.config.hidden_act] self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return self.LayerNorm(hidden_states) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->BigBird, np.ndarray->jnp.ndarray class FlaxBigBirdLMPredictionHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.transform = FlaxBigBirdPredictionHeadTransform(self.config, dtype=self.dtype) self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.transform(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->BigBird class FlaxBigBirdOnlyMLMHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding) return hidden_states class FlaxBigBirdPreTrainingHeads(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype) self.seq_relationship = nn.Dense(2, dtype=self.dtype) def __call__(self, hidden_states, pooled_output, shared_embedding=None): prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BigBirdConfig base_model_prefix = "bert" module_class: nn.Module = None def __init__( self, config: BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) if config.attention_type == "block_sparse" and input_shape is None: input_shape = (1, 12 * config.block_size) elif input_shape is None: input_shape = (1, 1) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng, indices_rng = jax.random.split(rng, num=3) rngs = {"params": params_rng, "dropout": dropout_rng, "indices": indices_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False, ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if indices_rng is not None: rngs["indices"] = indices_rng if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxBigBirdAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs class FlaxBigBirdModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxBigBirdEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxBigBirdEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.pooler = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled = nn.tanh(self.pooler(hidden_states[:, 0, :])) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModel with Bert->BigBird class FlaxBigBirdModel(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdModule append_call_sample_docstring(FlaxBigBirdModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingModule with Bert->BigBird class FlaxBigBirdForPreTrainingModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdPreTrainingHeads(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None hidden_states = outputs[0] pooled_output = outputs[1] prediction_scores, seq_relationship_score = self.cls( hidden_states, pooled_output, shared_embedding=shared_embedding ) if not return_dict: return (prediction_scores, seq_relationship_score) + outputs[2:] return FlaxBigBirdForPreTrainingOutput( prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTraining with Bert->BigBird class FlaxBigBirdForPreTraining(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForPreTrainingModule FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base") >>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ overwrite_call_docstring( FlaxBigBirdForPreTraining, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxBigBirdForPreTraining, output_type=FlaxBigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLMModule with Bert->BigBird class FlaxBigBirdForMaskedLMModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLM with Bert->BigBird class FlaxBigBirdForMaskedLM(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForMaskedLMModule append_call_sample_docstring(FlaxBigBirdForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxBigBirdClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__(self, features, deterministic=True): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, deterministic=deterministic) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x, deterministic=deterministic) x = self.out_proj(x) return x class FlaxBigBirdForSequenceClassificationModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.classifier = FlaxBigBirdClassificationHead(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, deterministic=deterministic) if not return_dict: return (logits,) + outputs[2:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForSequenceClassification with Bert->BigBird class FlaxBigBirdForSequenceClassification(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForSequenceClassificationModule append_call_sample_docstring( FlaxBigBirdForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->BigBird class FlaxBigBirdForMultipleChoiceModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BIG_BIRD_START_DOCSTRING, ) class FlaxBigBirdForMultipleChoice(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForMultipleChoiceModule def __init__( self, config: BigBirdConfig, input_shape: Optional[tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if config.attention_type == "block_sparse" and input_shape is None: input_shape = (1, 1, 12 * config.block_size) elif input_shape is None: input_shape = (1, 1) super().__init__(config, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) overwrite_call_docstring( FlaxBigBirdForMultipleChoice, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxBigBirdForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->BigBird class FlaxBigBirdForTokenClassificationModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassification with Bert->BigBird class FlaxBigBirdForTokenClassification(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForTokenClassificationModule append_call_sample_docstring( FlaxBigBirdForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxBigBirdForQuestionAnsweringHead(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype) self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__(self, encoder_output, deterministic=True): hidden_states = self.dropout(encoder_output, deterministic=deterministic) hidden_states = self.intermediate(hidden_states) hidden_states = self.output(hidden_states, encoder_output) hidden_states = self.qa_outputs(hidden_states) return hidden_states class FlaxBigBirdForQuestionAnsweringModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 add_pooling_layer: bool = False gradient_checkpointing: bool = False def setup(self): self.config.num_labels = 2 self.bert = FlaxBigBirdModule( self.config, dtype=self.dtype, add_pooling_layer=self.add_pooling_layer, gradient_checkpointing=self.gradient_checkpointing, ) self.qa_classifier = FlaxBigBirdForQuestionAnsweringHead(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, logits_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled_output = outputs[1] if self.add_pooling_layer else None logits = self.qa_classifier(hidden_states, deterministic=deterministic) if logits_mask is not None: # removing question tokens from the competition logits = logits - logits_mask * 1e6 start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxBigBirdForQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, pooled_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BIG_BIRD_START_DOCSTRING, ) class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForQuestionAnsweringModule @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, question_lengths=None, params: dict = None, dropout_rng: Optional[jax.random.PRNGKey] = None, indices_rng: Optional[jax.random.PRNGKey] = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) if question_lengths is None and input_ids is not None: # assuming input_ids format: <cls> <question> <sep> context <sep> question_lengths = jnp.argmax((input_ids == self.config.sep_token_id).astype("i4"), axis=-1) + 1 question_lengths = jnp.expand_dims(question_lengths, axis=1) seqlen = input_ids.shape[1] logits_mask = None if question_lengths is not None: # setting lengths logits to `-inf` logits_mask = self.prepare_question_mask(question_lengths, seqlen) if token_type_ids is None: token_type_ids = (~logits_mask).astype("i4") logits_mask = jnp.expand_dims(logits_mask, axis=2) logits_mask = logits_mask.at[:, 0].set(False) # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng if indices_rng is not None: rngs["indices"] = indices_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids, jnp.array(position_ids, dtype="i4"), jnp.array(head_mask, dtype="i4"), logits_mask, not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) @staticmethod def prepare_question_mask(q_lengths, maxlen: int): # q_lengths -> (bz, 1) mask = jnp.arange(0, maxlen) mask = jnp.expand_dims(mask, axis=0) < q_lengths return mask append_call_sample_docstring( FlaxBigBirdForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxBigBirdForQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) class FlaxBigBirdForCausalLMModule(nn.Module): config: BigBirdConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.bert = FlaxBigBirdModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, token_type_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ BigBird Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, BIG_BIRD_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->BigBird class FlaxBigBirdForCausalLM(FlaxBigBirdPreTrainedModel): module_class = FlaxBigBirdForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxBigBirdForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, ) __all__ = [ "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBigBirdPreTrainedModel", ]
transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py/0
{ "file_path": "transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py", "repo_id": "transformers", "token_count": 50896 }
# coding=utf-8 # Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BiT model. Also supports backbone for ViT hybrid.""" import collections import math from typing import Optional, Tuple import numpy as np import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_bit import BitConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "BitConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/bit-50" _EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/bit-50" _IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat" def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]: r""" Utility function to get the tuple padding value given the kernel_size and padding. Args: padding (Union[`str`, `int`], *optional*): Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from PyTorch is used. kernel_size (`int`, *optional*, defaults to 7): Kernel size of the convolution layers. stride (`int`, *optional*, defaults to 1): Stride value of the convolution layers. dilation (`int`, *optional*, defaults to 1): Dilation value of the convolution layers. """ dynamic = False if padding is None: padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding, dynamic if isinstance(padding, str): # for any string padding, the padding will be calculated for you, one of three ways padding = padding.lower() if padding == "same": # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0: # static case, no extra overhead padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 else: # dynamic 'SAME' padding, has runtime/GPU memory overhead padding = 0 dynamic = True elif padding == "valid": # 'VALID' padding, same as padding=0 padding = 0 else: # Default to PyTorch style 'same'-ish symmetric padding padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding, dynamic class WeightStandardizedConv2d(nn.Conv2d): """Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model. Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight Standardization](https://arxiv.org/abs/1903.10520v2) """ def __init__( self, in_channel, out_channels, kernel_size, stride=1, padding="SAME", dilation=1, groups=1, bias=False, eps=1e-6, ): padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation) super().__init__( in_channel, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, ) if is_dynamic: self.pad = DynamicPad2d(kernel_size, stride, dilation) else: self.pad = None self.eps = eps def forward(self, hidden_state): if self.pad is not None: hidden_state = self.pad(hidden_state) weight = nn.functional.batch_norm( self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps ).reshape_as(self.weight) hidden_state = nn.functional.conv2d( hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups ) return hidden_state class BitGroupNormActivation(nn.GroupNorm): r""" A module that combines group normalization with an activation function. """ def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True): super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine) if apply_activation: self.activation = ACT2FN[config.hidden_act] else: self.activation = nn.Identity() def forward(self, hidden_state): hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps) hidden_state = self.activation(hidden_state) return hidden_state class DynamicPad2d(nn.Module): r""" A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input hidden states. """ def __init__(self, kernel_size, stride, dilation, value=0): super().__init__() # Safety checkers if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(stride, int): stride = (stride, stride) if isinstance(dilation, int): dilation = (dilation, dilation) self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.value = value def compute_padding(x, kernel_size, stride, dilation): return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) self.compute_padding = compute_padding def __call__(self, input): # Get width and height input_height, input_width = input.size()[-2:] # Compute the padding values padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0]) padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1]) # apply pad if padding_height > 0 or padding_width > 0: input = nn.functional.pad( input, [ padding_width // 2, padding_width - padding_width // 2, padding_height // 2, padding_height - padding_height // 2, ], value=self.value, ) return input class BitMaxPool2d(nn.MaxPool2d): """Tensorflow like 'SAME' wrapper for 2D max pooling""" def __init__( self, kernel_size: int, stride=None, dilation=1, ceil_mode=False, padding=(0, 0), padding_value=0, use_dynamic_padding=True, ): kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation) super().__init__(kernel_size, stride, padding, dilation, ceil_mode) if use_dynamic_padding: self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value) else: self.pad = nn.Identity() def forward(self, hidden_states): hidden_states = self.pad(hidden_states) return nn.functional.max_pool2d( hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode ) class BitEmbeddings(nn.Module): """ BiT Embeddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: BitConfig): super().__init__() self.convolution = WeightStandardizedConv2d( config.num_channels, config.embedding_size, kernel_size=7, stride=2, eps=1e-8, padding=config.global_padding, ) self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding) # Use the same padding strategy as convolutional layers if config.global_padding is not None and config.global_padding.upper() == "SAME": self.pad = nn.Identity() else: self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0) if not config.layer_type == "preactivation": self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size) else: self.norm = nn.Identity() self.num_channels = config.num_channels def forward(self, pixel_values: Tensor) -> Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embedding = self.convolution(pixel_values) embedding = self.pad(embedding) embedding = self.norm(embedding) embedding = self.pooler(embedding) return embedding # Copied from transformers.models.convnext.modeling_convnext.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit class BitDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) def make_div(value, divisor=8): min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) if new_value < 0.9 * value: new_value += divisor return new_value class BitPreActivationBottleneckLayer(nn.Module): """Pre-activation (v2) bottleneck block. Follows the implementation of "Identity Mappings in Deep Residual Networks": https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua Except it puts the stride on 3x3 conv when available. """ def __init__( self, config, in_channels, out_channels=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, drop_path_rate=0.0, is_first_layer=False, ): super().__init__() first_dilation = first_dilation or dilation out_channels = out_channels or in_channels mid_channels = make_div(out_channels * bottle_ratio) if is_first_layer: self.downsample = BitDownsampleConv( config, in_channels, out_channels, stride=stride, preact=True, ) else: self.downsample = None self.norm1 = BitGroupNormActivation(config, in_channels) self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding) self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels) self.conv2 = WeightStandardizedConv2d( mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding ) self.norm3 = BitGroupNormActivation(config, mid_channels) self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding) self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def forward(self, hidden_states): hidden_states_preact = self.norm1(hidden_states) # shortcut branch shortcut = hidden_states if self.downsample is not None: shortcut = self.downsample(hidden_states_preact) # residual branch hidden_states = self.conv1(hidden_states_preact) hidden_states = self.conv2(self.norm2(hidden_states)) hidden_states = self.conv3(self.norm3(hidden_states)) hidden_states = self.drop_path(hidden_states) return hidden_states + shortcut class BitBottleneckLayer(nn.Module): """Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid.""" def __init__( self, config, in_channels, out_channels=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1, drop_path_rate=0.0, is_first_layer=False, ): super().__init__() first_dilation = first_dilation or dilation out_channels = out_channels or in_channels mid_chs = make_div(out_channels * bottle_ratio) if is_first_layer: self.downsample = BitDownsampleConv( config, in_channels, out_channels, stride=stride, preact=False, ) else: self.downsample = None self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding) self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs) self.conv2 = WeightStandardizedConv2d( mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups, eps=1e-8, padding=config.global_padding, ) self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs) self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding) self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_states): # shortcut branch shortcut = hidden_states if self.downsample is not None: shortcut = self.downsample(hidden_states) # residual hidden_states = self.conv1(hidden_states) hidden_states = self.norm1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = self.conv3(hidden_states) hidden_states = self.norm3(hidden_states) hidden_states = self.drop_path(hidden_states) hidden_states = self.activation(hidden_states + shortcut) return hidden_states class BitDownsampleConv(nn.Module): def __init__( self, config, in_channels, out_channels, stride=1, preact=True, ): super().__init__() self.conv = WeightStandardizedConv2d( in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding ) self.norm = ( nn.Identity() if preact else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False) ) def forward(self, x): return self.norm(self.conv(x)) class BitStage(nn.Module): """ A ResNet v2 stage composed by stacked layers. """ def __init__( self, config, in_channels, out_channels, stride, dilation, depth, bottle_ratio=0.25, layer_dropout=None, ): super().__init__() first_dilation = 1 if dilation in (1, 2) else 2 # Get the layer type if config.layer_type == "bottleneck": layer_cls = BitBottleneckLayer else: layer_cls = BitPreActivationBottleneckLayer prev_chs = in_channels self.layers = nn.Sequential() for layer_idx in range(depth): # Get the current hyper-parameters stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters( layer_idx, stride, layer_dropout ) self.layers.add_module( str(layer_idx), layer_cls( config, prev_chs, out_channels, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, first_dilation=first_dilation, drop_path_rate=drop_path_rate, is_first_layer=is_first_layer, ), ) prev_chs = out_channels first_dilation = dilation def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout): r""" Get the new hyper-parameters with respect to the previous ones and the index of the current layer. """ if layer_dropout: drop_path_rate = layer_dropout[layer_idx] else: drop_path_rate = 0.0 if layer_idx != 0: stride = 1 is_first_layer = layer_idx == 0 return stride, drop_path_rate, is_first_layer def forward(self, input: Tensor) -> Tensor: hidden_state = input for _, layer in enumerate(self.layers): hidden_state = layer(hidden_state) return hidden_state class BitEncoder(nn.Module): def __init__(self, config: BitConfig): super().__init__() self.stages = nn.ModuleList([]) prev_chs = config.embedding_size # These needs to stay hardcoded current_stride = 4 dilation = 1 layer_dropouts = [ x.tolist() for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths) ] for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate( zip(config.depths, config.hidden_sizes, layer_dropouts) ): # Get the updated hyper params out_channels, stride, dilation = self._get_updated_hyperparameters( stage_idx, current_stride, current_hidden_size, dilation, config ) stage = BitStage( config, prev_chs, out_channels, stride=stride, dilation=dilation, depth=current_depth, layer_dropout=layer_dropout, ) prev_chs = out_channels current_stride *= stride self.stages.add_module(str(stage_idx), stage) def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config): out_channels = make_div(current_hidden_size * config.width_factor) stride = 1 if stage_idx == 0 else 2 if current_stride >= config.output_stride: dilation *= stride stride = 1 return out_channels, stride, dilation def forward( self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> BaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_state, hidden_states=hidden_states, ) class BitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BitConfig base_model_prefix = "bit" main_input_name = "pixel_values" _no_split_modules = ["BitEmbeddings"] def _init_weights(self, module): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") # copied from the `reset_parameters` method of `class Linear(Module)` in `torch`. elif isinstance(module, nn.Linear): nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(module.bias, -bound, bound) elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) BIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare BiT model outputting raw features without any specific head on top.", BIT_START_DOCSTRING, ) class BitModel(BitPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embedder = BitEmbeddings(config) self.encoder = BitEncoder(config) self.norm = ( BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1]) if config.layer_type == "preactivation" else nn.Identity() ) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.norm(last_hidden_state) pooled_output = self.pooler(last_hidden_state) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, BIT_START_DOCSTRING, ) class BitForImageClassification(BitPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bit = BitModel(config) # classification head self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ BiT backbone, to be used with frameworks like DETR and MaskFormer. """, BIT_START_DOCSTRING, ) class BitBackbone(BitPreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.bit = BitModel(config) self.num_features = [config.embedding_size] + config.hidden_sizes # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("google/bit-50") >>> model = AutoBackbone.from_pretrained("google/bit-50") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True) hidden_states = outputs.hidden_states feature_maps = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, ) __all__ = ["BitForImageClassification", "BitModel", "BitPreTrainedModel", "BitBackbone"]
transformers/src/transformers/models/bit/modeling_bit.py/0
{ "file_path": "transformers/src/transformers/models/bit/modeling_bit.py", "repo_id": "transformers", "token_count": 14083 }
# coding=utf-8 # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bloom configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging logger = logging.get_logger(__name__) class BloomConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to the Bloom architecture [bigscience/bloom](https://huggingface.co/bigscience/bloom). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250880): Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented by the `inputs_ids` passed when calling [`BloomModel`]. Check [this discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the `vocab_size` has been defined. hidden_size (`int`, *optional*, defaults to 64): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 2): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks hidden_dropout (`float`, *optional*, defaults to 0.1): Dropout rate of the dropout function on the bias dropout. attention_dropout (`float`, *optional*, defaults to 0.1): Dropout rate applied to the attention probs use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). pretraining_tp (`int`, *optional*, defaults to `1`): Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when `slow_but_exact=True`. slow_but_exact (`bool`, *optional*, defaults to `False`): Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While merging the TP rank tensors, due to slicing operations the results may be slightly different between the model trained on Megatron and our model. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to enable this feature. Enabling this will hurt the computational time of the inference. Will be probably resolved in the future once the main model has been fine-tuned with TP_rank=1. Example: ```python >>> from transformers import BloomConfig, BloomModel >>> # Initializing a Bloom configuration >>> configuration = BloomConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = BloomModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bloom" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, vocab_size=250880, hidden_size=64, n_layer=2, n_head=8, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, apply_residual_connection_post_layernorm=False, hidden_dropout=0.0, attention_dropout=0.0, pretraining_tp=1, # TP rank used when training with megatron slow_but_exact=False, **kwargs, ): self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.pretraining_tp = pretraining_tp self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.slow_but_exact = slow_but_exact super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) class BloomOnnxConfig(OnnxConfigWithPast): torch_onnx_minimum_version = version.parse("1.12") def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) if not getattr(self._config, "pad_token_id", None): # TODO: how to do that better? self._config.pad_token_id = 0 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_layers(self) -> int: return self._config.n_layer @property def num_attention_heads(self) -> int: return self._config.n_head @property def atol_for_validation(self) -> float: return 1e-3 def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizer", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 head_dim = self._config.hidden_size // self.num_attention_heads past_key_shape = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) past_value_shape = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13 __all__ = ["BloomConfig", "BloomOnnxConfig"]
transformers/src/transformers/models/bloom/configuration_bloom.py/0
{ "file_path": "transformers/src/transformers/models/bloom/configuration_bloom.py", "repo_id": "transformers", "token_count": 4063 }
# coding=utf-8 # Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for CPMAnt.""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class WordpieceTokenizer: def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, token): chars = list(token) if len(chars) > self.max_input_chars_per_word: return [self.unk_token] start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(cur_substr) start = end return sub_tokens class CpmAntTokenizer(PreTrainedTokenizer): """ Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. bod_token (`str`, *optional*, defaults to `"<d>"`): The beginning of document token. eod_token (`str`, *optional*, defaults to `"</d>"`): The end of document token. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. line_token (`str`, *optional*, defaults to `"</n>"`): The line token. space_token (`str`, *optional*, defaults to `"</_>"`): The space token. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] add_prefix_space = False def __init__( self, vocab_file, bod_token="<d>", eod_token="</d>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", unk_token="<unk>", line_token="</n>", space_token="</_>", padding_side="left", **kwargs, ): requires_backends(self, ["jieba"]) self.bod_token = bod_token self.eod_token = eod_token self.encoder = load_vocab(vocab_file) self.encoder[" "] = self.encoder[space_token] self.encoder["\n"] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) self.decoder = {v: k for k, v in self.encoder.items()} self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token) super().__init__( bod_token=bod_token, eod_token=eod_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, line_token=line_token, space_token=space_token, padding_side=padding_side, **kwargs, ) @property def bod_token_id(self): return self.encoder[self.bod_token] @property def eod_token_id(self): return self.encoder[self.eod_token] @property def newline_id(self): return self.encoder["\n"] @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def _tokenize(self, text): """Tokenize a string.""" output_tokens = [] for x in jieba.cut(text, cut_all=False): output_tokens.extend(self.wordpiece_tokenizer.tokenize(x)) return output_tokens def _decode(self, token_ids, **kwargs): """Decode ids into a string.""" token_ids = [i for i in token_ids if i >= 0] token_ids = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(token_ids, **kwargs) def check(self, token): return token in self.encoder def convert_tokens_to_string(self, tokens: List[str]) -> str: return "".join(tokens) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory index = 0 if " " in self.encoder: self.encoder["</_>"] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: self.encoder["</n>"] = self.encoder["\n"] del self.encoder["\n"] self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1])) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CPMAnt sequence has the following format: - single sequence: `[BOS] Sequence`. Args: token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added. token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: return [self.bos_token_id] + token_ids_0 return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) __all__ = ["CpmAntTokenizer"]
transformers/src/transformers/models/cpmant/tokenization_cpmant.py/0
{ "file_path": "transformers/src/transformers/models/cpmant/tokenization_cpmant.py", "repo_id": "transformers", "token_count": 4399 }
# coding=utf-8 # Copyright 2024 Descript and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dac model configuration""" import math import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class DacConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`DacModel`]. It is used to instantiate a Dac model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [descript/dac_16khz](https://huggingface.co/descript/dac_16khz) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: encoder_hidden_size (`int`, *optional*, defaults to 64): Intermediate representation dimension for the encoder. downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 8, 8]`): Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 1536): Intermediate representation dimension for the decoder. n_codebooks (`int`, *optional*, defaults to 9): Number of codebooks in the VQVAE. codebook_size (`int`, *optional*, defaults to 1024): Number of discrete codes in each codebook. codebook_dim (`int`, *optional*, defaults to 8): Dimension of the codebook vectors. If not defined, uses `encoder_hidden_size`. quantizer_dropout (`bool`, *optional*, defaults to 0): Whether to apply dropout to the quantizer. commitment_loss_weight (float, *optional*, defaults to 0.25): Weight of the commitment loss term in the VQVAE loss function. codebook_loss_weight (float, *optional*, defaults to 1.0): Weight of the codebook loss term in the VQVAE loss function. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). Example: ```python >>> from transformers import DacModel, DacConfig >>> # Initializing a "descript/dac_16khz" style configuration >>> configuration = DacConfig() >>> # Initializing a model (with random weights) from the "descript/dac_16khz" style configuration >>> model = DacModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dac" def __init__( self, encoder_hidden_size=64, downsampling_ratios=[2, 4, 8, 8], decoder_hidden_size=1536, n_codebooks=9, codebook_size=1024, codebook_dim=8, quantizer_dropout=0, commitment_loss_weight=0.25, codebook_loss_weight=1.0, sampling_rate=16000, **kwargs, ): self.encoder_hidden_size = encoder_hidden_size self.downsampling_ratios = downsampling_ratios self.decoder_hidden_size = decoder_hidden_size self.upsampling_ratios = downsampling_ratios[::-1] self.n_codebooks = n_codebooks self.codebook_size = codebook_size self.codebook_dim = codebook_dim self.quantizer_dropout = quantizer_dropout self.sampling_rate = sampling_rate self.hidden_size = encoder_hidden_size * (2 ** len(downsampling_ratios)) self.hop_length = int(np.prod(downsampling_ratios)) self.commitment_loss_weight = commitment_loss_weight self.codebook_loss_weight = codebook_loss_weight super().__init__(**kwargs) @property def frame_rate(self) -> int: hop_length = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) __all__ = ["DacConfig"]
transformers/src/transformers/models/dac/configuration_dac.py/0
{ "file_path": "transformers/src/transformers/models/dac/configuration_dac.py", "repo_id": "transformers", "token_count": 1666 }
# coding=utf-8 # Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DBRX model configuration""" from typing import Any, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class DbrxAttentionConfig(PretrainedConfig): """Configuration class for Dbrx Attention. [`DbrxAttention`] class. It is used to instantiate attention layers according to the specified arguments, defining the layers architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: attn_pdrop (`float`, *optional*, defaults to 0.0): The dropout probability for the attention layers. clip_qkv (`float`, *optional*): If set, clip the queries, keys, and values in the attention layer to this value. kv_n_heads (`int`, *optional*, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads. rope_theta (`float`, *optional*, defaults to 10000.0): The base frequency for rope. """ base_config_key = "attn_config" def __init__( self, attn_pdrop: float = 0.0, clip_qkv: Optional[float] = None, kv_n_heads: int = 1, rope_theta: float = 10000.0, **kwargs: Any, ): super().__init__(**kwargs) self.attn_pdrop = attn_pdrop self.clip_qkv = clip_qkv self.kv_n_heads = kv_n_heads self.rope_theta = rope_theta for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash", "torch_dtype"]: if k in kwargs: kwargs.pop(k) if len(kwargs) != 0: raise ValueError(f"Found unknown {kwargs=}") class DbrxFFNConfig(PretrainedConfig): """Configuration class for Dbrx FFN. [`DbrxFFN`] class. It is used to instantiate feedforward layers according to the specified arguments, defining the layers architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: ffn_act_fn (`dict`, *optional*, defaults to `None`): A dict specifying activation function for the FFN. The dict should have a key 'name' with the value being the name of the activation function along with any additional keyword arguments. If `None`, then set to `{"name": "silu"}`. ffn_hidden_size (`int`, *optional*, defaults to 3584): The hidden size of the feedforward network. moe_num_experts (`int`, *optional*, defaults to 4): The number of experts in the mixture of experts layer. moe_top_k (`int`, *optional*, defaults to 1): The number of experts to use in the mixture of experts layer. moe_jitter_eps (`float`, *optional*, defaults to `None`): If not `None`, the jitter epsilon for the mixture of experts layer. moe_loss_weight (`float`, *optional*, defaults to 0.01): The loss weight for the mixture of experts layer. moe_normalize_expert_weights (`float`, *optional*, defaults to 1.0): The normalization factor for the expert weights. """ base_config_key = "ffn_config" def __init__( self, ffn_act_fn: dict = None, ffn_hidden_size: int = 3584, moe_num_experts: int = 4, moe_top_k: int = 1, moe_jitter_eps: Optional[float] = None, moe_loss_weight: float = 0.01, moe_normalize_expert_weights: Optional[float] = 1.0, **kwargs: Any, ): super().__init__() if ffn_act_fn is None: ffn_act_fn = {"name": "silu"} self.ffn_act_fn = ffn_act_fn self.ffn_hidden_size = ffn_hidden_size self.moe_num_experts = moe_num_experts self.moe_top_k = moe_top_k self.moe_jitter_eps = moe_jitter_eps self.moe_loss_weight = moe_loss_weight self.moe_normalize_expert_weights = moe_normalize_expert_weights for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash", "torch_dtype"]: if k in kwargs: kwargs.pop(k) if len(kwargs) != 0: raise ValueError(f"Found unknown {kwargs=}") class DbrxConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DbrxModel`]. It is used to instantiate a Dbrx model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a different configuration to that of the [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: d_model (`int`, *optional*, defaults to 2048): Dimensionality of the embeddings and hidden states. n_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. n_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. max_seq_len (`int`, *optional*, defaults to 2048): The maximum sequence length of the model. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by the `inputs_ids` passed when calling [`DbrxModel`]. resid_pdrop (`float`, *optional*, defaults to 0.0): The dropout probability applied to the attention output before combining with residual. emb_pdrop (`float`, *optional*, defaults to 0.0): The dropout probability for the embedding layer. attn_config (`dict`, *optional*): A dictionary used to configure the model's attention module. ffn_config (`dict`, *optional*): A dictionary used to configure the model's FFN module. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss. See [here]() for more details. Example: ```python >>> from transformers import DbrxConfig, DbrxModel >>> # Initializing a Dbrx configuration >>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128) >>> # Initializing a model (with random weights) from the configuration >>> model = DbrxModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "dbrx" sub_configs = {"attn_config": DbrxAttentionConfig, "ffn_config": DbrxFFNConfig} attribute_map = { "num_attention_heads": "n_heads", "hidden_size": "d_model", "num_hidden_layers": "n_layers", "max_position_embeddings": "max_seq_len", } def __init__( self, d_model: int = 2048, n_heads: int = 16, n_layers: int = 24, max_seq_len: int = 2048, vocab_size: int = 32000, resid_pdrop: float = 0.0, emb_pdrop: float = 0.0, attn_config: Optional[DbrxAttentionConfig] = None, ffn_config: Optional[DbrxFFNConfig] = None, use_cache: bool = True, initializer_range: float = 0.02, output_router_logits: bool = False, **kwargs: Any, ): if attn_config is None: self.attn_config = DbrxAttentionConfig() elif isinstance(attn_config, dict): self.attn_config = DbrxAttentionConfig(**attn_config) else: self.attn_config = attn_config if ffn_config is None: self.ffn_config = DbrxFFNConfig() elif isinstance(ffn_config, dict): self.ffn_config = DbrxFFNConfig(**ffn_config) else: self.ffn_config = ffn_config self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.max_seq_len = max_seq_len self.vocab_size = vocab_size self.resid_pdrop = resid_pdrop self.emb_pdrop = emb_pdrop self.use_cache = use_cache self.initializer_range = initializer_range self.output_router_logits = output_router_logits self.num_key_value_heads = self.attn_config.kv_n_heads tie_word_embeddings = kwargs.pop("tie_word_embeddings", False) if tie_word_embeddings: raise ValueError("tie_word_embeddings is not supported for DBRX models.") super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) __all__ = ["DbrxConfig"]
transformers/src/transformers/models/dbrx/configuration_dbrx.py/0
{ "file_path": "transformers/src/transformers/models/dbrx/configuration_dbrx.py", "repo_id": "transformers", "token_count": 3913 }
# coding=utf-8 # Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch DecisionTransformer model.""" import math import os from dataclasses import dataclass from typing import Callable, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_decision_transformer import DecisionTransformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium" _CONFIG_FOR_DOC = "DecisionTransformerConfig" # Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2 def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except ValueError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model # Copied from transformers.models.gpt2.modeling_gpt2.eager_attention_forward def eager_attention_forward(module, query, key, value, attention_mask, head_mask=None, **kwargs): attn_weights = torch.matmul(query, key.transpose(-1, -2)) if module.scale_attn_weights: attn_weights = attn_weights / torch.full( [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device ) # Layer-wise attention scaling if module.scale_attn_by_inverse_layer_idx: attn_weights = attn_weights / float(module.layer_idx + 1) if not module.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = module.bias[:, :, key_length - query_length : key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise attn_weights = attn_weights.type(value.dtype) attn_weights = module.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2) return attn_output, attn_weights # Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2 class DecisionTransformerGPT2Attention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() self.config = config max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.split_size = self.embed_dim if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.is_cross_attention = is_cross_attention # Layer-wise attention scaling, reordering, and upcasting self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx self.layer_idx = layer_idx self.reorder_and_upcast_attn = config.reorder_and_upcast_attn if self.is_cross_attention: self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) self.q_attn = Conv1D(self.embed_dim, self.embed_dim) else: self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) self.c_proj = Conv1D(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.is_causal = True self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) self.num_heads = self.num_heads - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = query.size() _, _, k_seq_len, _ = key.size() # Preallocate attn_weights for `baddbmm` attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) # Compute Scale Factor scale_factor = 1.0 if self.scale_attn_weights: scale_factor /= float(value.size(-1)) ** 0.5 if self.scale_attn_by_inverse_layer_idx: scale_factor /= float(self.layer_idx + 1) # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) with torch.amp.autocast(query.device.type, enabled=False): q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise if attn_weights.dtype != torch.float32: raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2) return attn_output, attn_weights def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn"): raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`." ) query_states = self.q_attn(hidden_states) key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2) shape_q = (*query_states.shape[:-1], -1, self.head_dim) shape_kv = (*key_states.shape[:-1], -1, self.head_dim) query_states = query_states.view(shape_q).transpose(1, 2) key_states = key_states.view(shape_kv).transpose(1, 2) value_states = value_states.view(shape_kv).transpose(1, 2) if layer_past is not None: past_key, past_value = layer_past key_states = torch.cat((past_key, key_states), dim=-2) value_states = torch.cat((past_value, value_states), dim=-2) if use_cache is True: present = (key_states, value_states) else: present = None is_cross_attention = encoder_hidden_states is not None is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention using_eager = self.config._attn_implementation == "eager" attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None): using_eager = True logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: # Attention functions are consistent with previous equivalent attention classes, however they do not support some options # (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but # not necessarily to eager (if mentionned options are provided). attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] if using_eager and self.reorder_and_upcast_attn: attn_output, attn_weights = self._upcast_and_reordered_attn( query_states, key_states, value_states, attention_mask, head_mask ) else: attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, head_mask=head_mask, dropout=self.attn_dropout.p if self.training else 0.0, is_causal=is_causal, **kwargs, ) attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous() attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2 class DecisionTransformerGPT2MLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2 class DecisionTransformerGPT2Block(nn.Module): # Ignore copy def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: self.crossattention = DecisionTransformerGPT2Attention( config, is_cross_attention=True, layer_idx=layer_idx ) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = DecisionTransformerGPT2MLP(inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DecisionTransformerConfig load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if "c_proj" in name and "weight" in name: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))) class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList( [DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, use_cache, output_attentions, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @dataclass class DecisionTransformerOutput(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`): Environment state predictions action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`): Model action predictions return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`): Predicted returns for each state hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ state_preds: torch.FloatTensor = None action_preds: torch.FloatTensor = None return_preds: torch.FloatTensor = None hidden_states: torch.FloatTensor = None attentions: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None class DecisionTransformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DecisionTransformerConfig base_model_prefix = "decision_transformer" main_input_name = "states" supports_gradient_checkpointing = False def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) DECISION_TRANSFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DECISION_TRANSFORMER_INPUTS_DOCSTRING = r""" Args: states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`): The states for each step in the trajectory actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`): The actions taken by the "expert" policy for the current state, these are masked for auto regressive prediction rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`): The rewards for each state, action returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`): The returns for each state in the trajectory timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`): The timestep for each step in the trajectory attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`): Masking, used to mask the actions when performing autoregressive prediction """ @add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING) class DecisionTransformerModel(DecisionTransformerPreTrainedModel): """ The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345 """ def __init__(self, config): super().__init__(config) self.config = config self.hidden_size = config.hidden_size # note: the only difference between this GPT2Model and the default Huggingface version # is that the positional embeddings are removed (since we'll add those ourselves) self.encoder = DecisionTransformerGPT2Model(config) self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size) self.embed_return = torch.nn.Linear(1, config.hidden_size) self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size) self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size) self.embed_ln = nn.LayerNorm(config.hidden_size) # note: we don't predict states or returns for the paper self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim) self.predict_action = nn.Sequential( *([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else [])) ) self.predict_return = torch.nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC) def forward( self, states: Optional[torch.FloatTensor] = None, actions: Optional[torch.FloatTensor] = None, rewards: Optional[torch.FloatTensor] = None, returns_to_go: Optional[torch.FloatTensor] = None, timesteps: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]: r""" Returns: Examples: ```python >>> from transformers import DecisionTransformerModel >>> import torch >>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium") >>> # evaluation >>> model = model.to(device) >>> model.eval() >>> env = gym.make("Hopper-v3") >>> state_dim = env.observation_space.shape[0] >>> act_dim = env.action_space.shape[0] >>> state = env.reset() >>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32) >>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32) >>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32) >>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1) >>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1) >>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32) >>> # forward pass >>> with torch.no_grad(): ... state_preds, action_preds, return_preds = model( ... states=states, ... actions=actions, ... rewards=rewards, ... returns_to_go=target_return, ... timesteps=timesteps, ... attention_mask=attention_mask, ... return_dict=False, ... ) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, seq_length = states.shape[0], states.shape[1] if attention_mask is None: # attention mask for GPT: 1 if can be attended to, 0 if not attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long) # embed each modality with a different head state_embeddings = self.embed_state(states) action_embeddings = self.embed_action(actions) returns_embeddings = self.embed_return(returns_to_go) time_embeddings = self.embed_timestep(timesteps) # time embeddings are treated similar to positional embeddings state_embeddings = state_embeddings + time_embeddings action_embeddings = action_embeddings + time_embeddings returns_embeddings = returns_embeddings + time_embeddings # this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...) # which works nice in an autoregressive sense since states predict actions stacked_inputs = ( torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1) .permute(0, 2, 1, 3) .reshape(batch_size, 3 * seq_length, self.hidden_size) ) stacked_inputs = self.embed_ln(stacked_inputs) # to make the attention mask fit the stacked inputs, have to stack it as well stacked_attention_mask = ( torch.stack((attention_mask, attention_mask, attention_mask), dim=1) .permute(0, 2, 1) .reshape(batch_size, 3 * seq_length) ) device = stacked_inputs.device # we feed in the input embeddings (not word indices as in NLP) to the model encoder_outputs = self.encoder( inputs_embeds=stacked_inputs, attention_mask=stacked_attention_mask, position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) x = encoder_outputs[0] # reshape x so that the second dimension corresponds to the original # returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3) # get predictions return_preds = self.predict_return(x[:, 2]) # predict next return given state and action state_preds = self.predict_state(x[:, 2]) # predict next state given state and action action_preds = self.predict_action(x[:, 1]) # predict next action given state if not return_dict: return (state_preds, action_preds, return_preds) return DecisionTransformerOutput( last_hidden_state=encoder_outputs.last_hidden_state, state_preds=state_preds, action_preds=action_preds, return_preds=return_preds, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) __all__ = [ "DecisionTransformerGPT2Model", "DecisionTransformerGPT2PreTrainedModel", "DecisionTransformerModel", "DecisionTransformerPreTrainedModel", ]
transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py/0
{ "file_path": "transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py", "repo_id": "transformers", "token_count": 19105 }
# coding=utf-8 # Copyright 2023 Snapchat Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow EfficientFormer model.""" import itertools from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ....activations_tf import ACT2FN from ....modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFImageClassifierOutput, ) from ....modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ....tf_utils import shape_list, stable_softmax from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_efficientformer import EfficientFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "EfficientFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "snap-research/efficientformer-l1-300" _EXPECTED_OUTPUT_SHAPE = [1, 49, 448] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "snap-research/efficientformer-l1-300" _IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281" class TFEfficientFormerPatchEmbeddings(keras.layers.Layer): """ This class performs downsampling between two stages. For the input tensor with the shape [batch_size, num_channels, height, width] it produces output tensor with the shape [batch_size, num_channels, height/stride, width/stride] """ def __init__( self, config: EfficientFormerConfig, num_channels: int, embed_dim: int, apply_norm: bool = True, **kwargs ) -> None: super().__init__(**kwargs) self.num_channels = num_channels self.padding = keras.layers.ZeroPadding2D(padding=config.downsample_pad) self.projection = keras.layers.Conv2D( filters=embed_dim, kernel_size=config.downsample_patch_size, strides=config.downsample_stride, padding="valid", name="projection", ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.norm = ( keras.layers.BatchNormalization(axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="norm") if apply_norm else tf.identity ) self.embed_dim = embed_dim def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: tf.debugging.assert_shapes( [(pixel_values, (..., None, None, self.num_channels))], message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", ) embeddings = self.projection(self.padding(pixel_values)) embeddings = self.norm(embeddings, training=training) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) if getattr(self, "norm", None) is not None: if hasattr(self.norm, "name"): with tf.name_scope(self.norm.name): self.norm.build([None, None, None, self.embed_dim]) class TFEfficientFormerSelfAttention(keras.layers.Layer): def __init__( self, dim: int, key_dim: int, num_heads: int, attention_ratio: int, resolution: int, config: EfficientFormerConfig, **kwargs, ): super().__init__(**kwargs) self.num_heads = num_heads self.key_dim = key_dim self.attention_ratio = attention_ratio self.scale = key_dim**-0.5 self.total_key_dim = key_dim * num_heads self.expanded_key_dim = int(attention_ratio * key_dim) self.total_expanded_key_dim = int(self.expanded_key_dim * num_heads) hidden_size = self.total_expanded_key_dim + self.total_key_dim * 2 self.qkv = keras.layers.Dense( units=hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="qkv" ) self.projection = keras.layers.Dense( units=dim, kernel_initializer=get_initializer(config.initializer_range), name="projection" ) self.resolution = resolution self.dim = dim def build(self, input_shape: tf.TensorShape) -> None: points = list(itertools.product(range(self.resolution), range(self.resolution))) num_points = len(points) attention_offsets = {} idxs = [] for point_1 in points: for point_2 in points: offset = (abs(point_1[0] - point_2[0]), abs(point_1[1] - point_2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = self.add_weight( shape=(self.num_heads, len(attention_offsets)), initializer=keras.initializers.zeros(), trainable=True, name="attention_biases", ) self.attention_bias_idxs = self.add_weight( shape=(num_points, num_points), trainable=False, dtype=tf.int32, name="attention_bias_idxs", ) self.attention_bias_idxs.assign(tf.reshape(tf.cast(idxs, dtype=tf.int32), (num_points, num_points))) if self.built: return self.built = True if getattr(self, "qkv", None) is not None: with tf.name_scope(self.qkv.name): self.qkv.build([None, None, self.dim]) if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, self.total_expanded_key_dim]) def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: batch_size, sequence_length, *_ = shape_list(hidden_states) qkv = self.qkv(inputs=hidden_states) query_layer, key_layer, value_layer = tf.split( tf.reshape(tensor=qkv, shape=(batch_size, sequence_length, self.num_heads, -1)), num_or_size_splits=[self.key_dim, self.key_dim, self.expanded_key_dim], axis=3, ) query_layer = tf.transpose(query_layer, perm=[0, 2, 1, 3]) key_layer = tf.transpose(key_layer, perm=[0, 2, 1, 3]) value_layer = tf.transpose(value_layer, perm=[0, 2, 1, 3]) attention_probs = tf.matmul(query_layer, tf.transpose(key_layer, perm=[0, 1, 3, 2])) scale = tf.cast(self.scale, dtype=attention_probs.dtype) attention_probs = tf.multiply(attention_probs, scale) attention_biases = tf.gather(params=self.attention_biases, indices=self.attention_bias_idxs, axis=1) attention_probs = attention_probs + attention_biases attention_probs = stable_softmax(logits=attention_probs, axis=-1) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( tensor=context_layer, shape=(batch_size, sequence_length, self.total_expanded_key_dim) ) context_layer = self.projection(context_layer) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFEfficientFormerConvStem(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, out_channels: int, **kwargs): super().__init__(**kwargs) self.padding = keras.layers.ZeroPadding2D(padding=1) self.convolution1 = keras.layers.Conv2D( filters=out_channels // 2, kernel_size=3, strides=2, padding="valid", name="convolution1" ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_before = keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before" ) self.convolution2 = keras.layers.Conv2D( filters=out_channels, kernel_size=3, strides=2, padding="valid", name="convolution2", ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_after = keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after" ) self.activation = keras.layers.Activation(activation=keras.activations.relu, name="activation") self.out_channels = out_channels self.config = config def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: features = self.batchnorm_before(self.convolution1(self.padding(pixel_values)), training=training) features = self.activation(features) features = self.batchnorm_after(self.convolution2(self.padding(features)), training=training) features = self.activation(features) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convolution1", None) is not None: with tf.name_scope(self.convolution1.name): self.convolution1.build([None, None, None, self.config.num_channels]) if getattr(self, "batchnorm_before", None) is not None: with tf.name_scope(self.batchnorm_before.name): self.batchnorm_before.build([None, None, None, self.out_channels // 2]) if getattr(self, "convolution2", None) is not None: with tf.name_scope(self.convolution2.name): self.convolution2.build([None, None, None, self.out_channels // 2]) if getattr(self, "batchnorm_after", None) is not None: with tf.name_scope(self.batchnorm_after.name): self.batchnorm_after.build([None, None, None, self.out_channels]) if getattr(self, "activation", None) is not None: with tf.name_scope(self.activation.name): self.activation.build(None) class TFEfficientFormerPooling(keras.layers.Layer): def __init__(self, pool_size: int, **kwargs): super().__init__(**kwargs) self.pool = keras.layers.AveragePooling2D(pool_size=pool_size, strides=1, padding="same") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: output = self.pool(hidden_states) output = output - hidden_states return output class TFEfficientFormerDenseMlp(keras.layers.Layer): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features hidden_features = hidden_features or in_features self.linear_in = keras.layers.Dense( units=hidden_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_in" ) self.activation = ACT2FN[config.hidden_act] self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.linear_out = keras.layers.Dense( units=out_features, kernel_initializer=get_initializer(config.initializer_range), name="linear_out" ) self.hidden_features = hidden_features self.in_features = in_features def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.linear_in(inputs=hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.linear_out(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_in", None) is not None: with tf.name_scope(self.linear_in.name): self.linear_in.build([None, None, self.in_features]) if getattr(self, "linear_out", None) is not None: with tf.name_scope(self.linear_out.name): self.linear_out.build([None, None, self.hidden_features]) class TFEfficientFormerConvMlp(keras.layers.Layer): def __init__( self, config: EfficientFormerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, drop: float = 0.0, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features hidden_features = hidden_features or in_features self.convolution1 = keras.layers.Conv2D( filters=hidden_features, kernel_size=1, name="convolution1", padding="valid", ) self.activation = ACT2FN[config.hidden_act] self.convolution2 = keras.layers.Conv2D( filters=out_features, kernel_size=1, name="convolution2", padding="valid", ) self.dropout = keras.layers.Dropout(rate=drop) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_before = keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_before" ) # Use same default momentum and epsilon as PyTorch equivalent for BatchNormalization self.batchnorm_after = keras.layers.BatchNormalization( axis=-1, epsilon=config.batch_norm_eps, momentum=0.9, name="batchnorm_after" ) self.hidden_features = hidden_features self.in_features = in_features self.out_features = out_features def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution1(hidden_state) hidden_state = self.batchnorm_before(hidden_state, training=training) hidden_state = self.activation(hidden_state) hidden_state = self.dropout(hidden_state, training=training) hidden_state = self.convolution2(hidden_state) hidden_state = self.batchnorm_after(hidden_state, training=training) hidden_state = self.dropout(hidden_state, training=training) return hidden_state def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convolution1", None) is not None: with tf.name_scope(self.convolution1.name): self.convolution1.build([None, None, None, self.in_features]) if getattr(self, "convolution2", None) is not None: with tf.name_scope(self.convolution2.name): self.convolution2.build([None, None, None, self.hidden_features]) if getattr(self, "batchnorm_before", None) is not None: with tf.name_scope(self.batchnorm_before.name): self.batchnorm_before.build([None, None, None, self.hidden_features]) if getattr(self, "batchnorm_after", None) is not None: with tf.name_scope(self.batchnorm_after.name): self.batchnorm_after.build([None, None, None, self.out_features]) # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->EfficientFormer class TFEfficientFormerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFEfficientFormerFlat(keras.layers.Layer): def __init__(self, **kwargs): super().__init__(**kwargs) def call(self, hidden_states: tf.Tensor) -> Tuple[tf.Tensor]: batch_size, _, _, in_channels = shape_list(hidden_states) hidden_states = tf.reshape(hidden_states, shape=[batch_size, -1, in_channels]) return hidden_states class TFEfficientFormerMeta3D(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) self.token_mixer = TFEfficientFormerSelfAttention( dim=config.dim, key_dim=config.key_dim, num_heads=config.num_attention_heads, attention_ratio=config.attention_ratio, resolution=config.resolution, name="token_mixer", config=config, ) self.dim = dim self.config = config self.layernorm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm1") self.layernorm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm2") mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = TFEfficientFormerDenseMlp(config, in_features=dim, hidden_features=mlp_hidden_dim, name="mlp") # Using `layers.Activation` instead of `tf.identity` to better control `training' behavior. self.drop_path = ( TFEfficientFormerDropPath(drop_path) if drop_path > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.config = config def build(self, input_shape=None): self.layer_scale_1 = None self.layer_scale_2 = None if self.config.use_layer_scale: self.layer_scale_1 = self.add_weight( shape=(self.dim,), initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_1", ) self.layer_scale_2 = self.add_weight( shape=(self.dim,), initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_2", ) if self.built: return self.built = True if getattr(self, "token_mixer", None) is not None: with tf.name_scope(self.token_mixer.name): self.token_mixer.build(None) if getattr(self, "layernorm1", None) is not None: with tf.name_scope(self.layernorm1.name): self.layernorm1.build([None, None, self.dim]) if getattr(self, "layernorm2", None) is not None: with tf.name_scope(self.layernorm2.name): self.layernorm2.build([None, None, self.dim]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: self_attention_outputs = self.token_mixer( hidden_states=self.layernorm1(hidden_states, training=training), output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.config.use_layer_scale: layer_output = hidden_states + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * attention_output, training=training, ) layer_output = layer_output + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0) * self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training), training=training, ) else: layer_output = hidden_states + self.drop_path(attention_output, training=training) layer_output = layer_output + self.drop_path( self.mlp(hidden_states=self.layernorm2(inputs=layer_output, training=training), training=training), training=training, ) outputs = (layer_output,) + outputs return outputs class TFEfficientFormerMeta3DLayers(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:-1])) for block_idx in range(config.num_meta3d_blocks) ] self.blocks = [ TFEfficientFormerMeta3D(config, config.hidden_sizes[-1], drop_path=drop_path, name=f"blocks.{i}") for i, drop_path in enumerate(drop_paths) ] def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: all_attention_outputs = () if output_attentions else None for i, layer_module in enumerate(self.blocks): if isinstance(hidden_states, tuple): hidden_states = hidden_states[0] hidden_states = layer_module( hidden_states=hidden_states, output_attentions=output_attentions, training=training ) if output_attentions: all_attention_outputs = all_attention_outputs + (hidden_states[1],) if output_attentions: outputs = (hidden_states[0],) + all_attention_outputs return outputs return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "blocks", None) is not None: for layer in self.blocks: with tf.name_scope(layer.name): layer.build(None) class TFEfficientFormerMeta4D(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) pool_size = config.pool_size if config.pool_size is not None else 3 self.token_mixer = TFEfficientFormerPooling(pool_size=pool_size, name="token_mixer") self.dim = dim mlp_hidden_dim = int(dim * config.mlp_expansion_ratio) self.mlp = TFEfficientFormerConvMlp( config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=config.hidden_dropout_prob, name="mlp" ) self.drop_path = ( TFEfficientFormerDropPath(drop_path, name="drop_path") if drop_path > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.config = config def build(self, input_shape=None): self.layer_scale_1 = None self.layer_scale_2 = None if self.config.use_layer_scale: self.layer_scale_1 = self.add_weight( shape=(self.dim), initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_1", ) self.layer_scale_2 = self.add_weight( shape=(self.dim), initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value), trainable=True, name="layer_scale_2", ) if self.built: return self.built = True if getattr(self, "token_mixer", None) is not None: with tf.name_scope(self.token_mixer.name): self.token_mixer.build(None) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: outputs = self.token_mixer(hidden_states) if self.config.use_layer_scale: layer_output = hidden_states + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_1, 0), 0) * outputs, training=training, ) layer_output = layer_output + self.drop_path( tf.expand_dims(tf.expand_dims(self.layer_scale_2, 0), 0) * self.mlp(hidden_state=layer_output, training=training), training=training, ) else: layer_output = hidden_states + self.drop_path(outputs, training=training) layer_output = layer_output + self.drop_path( self.mlp(hidden_state=layer_output, training=training), training=training ) return layer_output class TFEfficientFormerMeta4DLayers(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, stage_idx: int, **kwargs): super().__init__(**kwargs) num_layers = ( config.depths[stage_idx] if stage_idx != -1 else config.depths[stage_idx] - config.num_meta3d_blocks ) drop_paths = [ config.drop_path_rate * (block_idx + sum(config.depths[:stage_idx])) for block_idx in range(num_layers) ] self.blocks = [ TFEfficientFormerMeta4D( config=config, dim=config.hidden_sizes[stage_idx], drop_path=drop_paths[i], name=f"blocks.{i}" ) for i in range(len(drop_paths)) ] def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: for layer_module in self.blocks: hidden_states = layer_module(hidden_states=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "blocks", None) is not None: for layer in self.blocks: with tf.name_scope(layer.name): layer.build(None) class TFEfficientFormerIntermediateStage(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, index: int, **kwargs): super().__init__(**kwargs) self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=index, name="meta4D_layers") def call(self, hidden_states: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor]: hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "meta4D_layers", None) is not None: with tf.name_scope(self.meta4D_layers.name): self.meta4D_layers.build(None) class TFEfficientFormerLastStage(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) self.meta4D_layers = TFEfficientFormerMeta4DLayers(config=config, stage_idx=-1, name="meta4D_layers") self.flat = TFEfficientFormerFlat(name="flat") self.meta3D_layers = TFEfficientFormerMeta3DLayers(config, name="meta3D_layers") def call( self, hidden_states: tf.Tensor, output_attentions: bool = False, training: bool = False ) -> Tuple[tf.Tensor]: hidden_states = self.meta4D_layers(hidden_states=hidden_states, training=training) hidden_states = self.flat(hidden_states=hidden_states) hidden_states = self.meta3D_layers( hidden_states=hidden_states, output_attentions=output_attentions, training=training ) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "meta4D_layers", None) is not None: with tf.name_scope(self.meta4D_layers.name): self.meta4D_layers.build(None) if getattr(self, "flat", None) is not None: with tf.name_scope(self.flat.name): self.flat.build(None) if getattr(self, "meta3D_layers", None) is not None: with tf.name_scope(self.meta3D_layers.name): self.meta3D_layers.build(None) class TFEfficientFormerEncoder(keras.layers.Layer): def __init__(self, config: EfficientFormerConfig, **kwargs): super().__init__(**kwargs) self.config = config num_intermediate_stages = len(config.depths) - 1 downsamples = [ config.downsamples[i] or config.hidden_sizes[i] != config.hidden_sizes[i + 1] for i in range(num_intermediate_stages) ] intermediate_stages = [] layer_count = -1 for i in range(num_intermediate_stages): layer_count += 1 intermediate_stages.append( TFEfficientFormerIntermediateStage(config, i, name=f"intermediate_stages.{layer_count}") ) if downsamples[i]: layer_count += 1 intermediate_stages.append( TFEfficientFormerPatchEmbeddings( config, config.hidden_sizes[i], config.hidden_sizes[i + 1], name=f"intermediate_stages.{layer_count}", ) ) self.intermediate_stages = intermediate_stages self.last_stage = TFEfficientFormerLastStage(config, name="last_stage") def call( self, hidden_states: tf.Tensor, output_hidden_states: bool, output_attentions: bool, return_dict: bool, training: bool = False, ) -> TFBaseModelOutput: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for layer_module in self.intermediate_stages: hidden_states = layer_module(hidden_states, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_output = self.last_stage(hidden_states, output_attentions=output_attentions, training=training) if output_attentions: all_self_attentions = all_self_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (layer_output[0],) if not return_dict: return tuple(v for v in [layer_output[0], all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=layer_output[0], hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "last_stage", None) is not None: with tf.name_scope(self.last_stage.name): self.last_stage.build(None) for layer in self.intermediate_stages: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFEfficientFormerMainLayer(keras.layers.Layer): config_class = EfficientFormerConfig def __init__(self, config: EfficientFormerConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.patch_embed = TFEfficientFormerConvStem(config, config.hidden_sizes[0], name="patch_embed") self.encoder = TFEfficientFormerEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") @unpack_inputs def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[tf.Tensor] = None, output_hidden_states: Optional[tf.Tensor] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor, ...]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # When running on CPU, keras.layers.Conv2D and keras.layers.AveragePool2D do not # support channels first NCHW format. A number of blocks contain both. # So change the input format from (batch_size, num_channels, height, width) to # (batch_size, height, width, num_channels) here. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embedding_output = self.patch_embed(pixel_values, training=training) encoder_outputs = self.encoder( hidden_states=embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output, training=training) # Change the hidden states from (batch_size, height, width, num_channels) to # (batch_size, num_channels, height, width). # The hidden states are in (batch_size, height, width, num_channels) # shape after all stages except the MB3D blocks. if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1][:-1]]) + ( encoder_outputs[1][-1], ) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "patch_embed", None) is not None: with tf.name_scope(self.patch_embed.name): self.patch_embed.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_sizes[-1]]) class TFEfficientFormerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EfficientFormerConfig base_model_prefix = "efficientformer" main_input_name = "pixel_values" EFFICIENTFORMER_START_DOCSTRING = r""" This model is a TensorFlow [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`EfficientFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ EFFICIENTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values ((`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`EfficientFormerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top.", EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerModel(TFEfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "efficientformer", None) is not None: with tf.name_scope(self.efficientformer.name): self.efficientformer.build(None) @add_start_docstrings( """ EfficientFormer Model transformer with an image classification head on top of pooled last hidden state, e.g. for ImageNet. """, EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerForImageClassification(TFEfficientFormerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: EfficientFormerConfig): super().__init__(config) self.num_labels = config.num_labels self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") # Classifier head self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="classifier") ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tf.Tensor, TFImageClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2)) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "efficientformer", None) is not None: with tf.name_scope(self.efficientformer.name): self.efficientformer.build(None) if getattr(self, "classifier", None) is not None: if hasattr(self.classifier, "name"): with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) @dataclass class TFEfficientFormerForImageClassificationWithTeacherOutput(ModelOutput): """ Args: Output type of [`EfficientFormerForImageClassificationWithTeacher`]. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None cls_logits: tf.Tensor = None distillation_logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None @add_start_docstrings( """ EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, EFFICIENTFORMER_START_DOCSTRING, ) class TFEfficientFormerForImageClassificationWithTeacher(TFEfficientFormerPreTrainedModel): def __init__(self, config: EfficientFormerConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.efficientformer = TFEfficientFormerMainLayer(config, name="efficientformer") # Classifier heads self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="classifier") ) self.distillation_classifier = ( keras.layers.Dense(config.num_labels, name="distillation_classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="distillation_classifier") ) @unpack_inputs @add_start_docstrings_to_model_forward(EFFICIENTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFEfficientFormerForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFEfficientFormerForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict if training: raise Exception( "This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported." ) outputs = self.efficientformer( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_logits = self.classifier(tf.reduce_mean(sequence_output, axis=-2)) distillation_logits = self.distillation_classifier(tf.reduce_mean(sequence_output, axis=-2)) logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return TFEfficientFormerForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "efficientformer", None) is not None: with tf.name_scope(self.efficientformer.name): self.efficientformer.build(None) if getattr(self, "classifier", None) is not None: if hasattr(self.classifier, "name"): with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) if getattr(self, "distillation_classifier", None) is not None: if hasattr(self.distillation_classifier, "name"): with tf.name_scope(self.distillation_classifier.name): self.distillation_classifier.build([None, None, self.config.hidden_sizes[-1]])
transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/efficientformer/modeling_tf_efficientformer.py", "repo_id": "transformers", "token_count": 21530 }
# coding=utf-8 # Copyright 2022 The OpenAI Team Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Jukebox configuration""" import os from typing import List, Union from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) _LARGE_ATTENTION = [ "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "block_attn", "transpose_block_attn", "prev_block_attn", "cross_attention", ] _RawColumnPreviousRowAttention = ["block_attn", "transpose_block_attn", "prev_block_attn"] _FullDenseAttention = ["dense_attention"] _PrimePrimeDenseAttention = ["prime_attn", "prime_attn", "dense_attn"] def full_dense_attention(layer): return _FullDenseAttention[0] def raw_column_previous_row_attention(layer): return _RawColumnPreviousRowAttention[layer % 3] def large_separated_enc_dec_w_lyrics(layer): return _LARGE_ATTENTION[layer % 79] def enc_dec_with_lyrics(layer): if layer % 16 == 15: return _PrimePrimeDenseAttention[layer % 3] return _RawColumnPreviousRowAttention[layer % 3] ATTENTION_PATTERNS = { "full_dense_attention": full_dense_attention, "raw_column_previous_row_attention": raw_column_previous_row_attention, # Alternate row, column and previous row attn "large_separated_enc_dec_w_lyrics": large_separated_enc_dec_w_lyrics, # Used by large separated_enc_dec model with lyrics "enc_dec_with_lyrics": enc_dec_with_lyrics, # Used by encoder_decoder model with lyrics } class JukeboxPriorConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxPrior`]. It is used to instantiate a `JukeboxPrior` according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the top level prior from the [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox -1b-lyrics) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: act_fn (`str`, *optional*, defaults to `"quick_gelu"`): Activation function. alignment_head (`int`, *optional*, defaults to 2): Head that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio alignment alignment_layer (`int`, *optional*, defaults to 68): Index of the layer that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio alignment attention_multiplier (`float`, *optional*, defaults to 0.25): Multiplier coefficient used to define the hidden dimension of the attention layers. 0.25 means that 0.25*width of the model will be used. attention_pattern (`str`, *optional*, defaults to `"enc_dec_with_lyrics"`): Which attention pattern to use for the decoder/ attn_dropout (`int`, *optional*, defaults to 0): Dropout probability for the post-attention layer dropout in the decoder. attn_res_scale (`bool`, *optional*, defaults to `False`): Whether or not to scale the residuals in the attention conditioner block. blocks (`int`, *optional*, defaults to 64): Number of blocks used in the `block_attn`. A sequence of length seq_len is factored as `[blocks, seq_len // blocks]` in the `JukeboxAttention` layer. conv_res_scale (`int`, *optional*): Whether or not to scale the residuals in the conditioner block. Since the top level prior does not have a conditioner, the default value is to None and should not be modified. num_layers (`int`, *optional*, defaults to 72): Number of layers of the transformer architecture. emb_dropout (`int`, *optional*, defaults to 0): Embedding dropout used in the lyric decoder. encoder_config (`JukeboxPriorConfig`, *optional*) : Configuration of the encoder which models the prior on the lyrics. encoder_loss_fraction (`float`, *optional*, defaults to 0.4): Multiplication factor used in front of the lyric encoder loss. hidden_size (`int`, *optional*, defaults to 2048): Hidden dimension of the attention layers. init_scale (`float`, *optional*, defaults to 0.2): Initialization scales for the prior modules. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether or not the prior is an encoder-decoder model. In case it is not, and `nb_relevant_lyric_tokens` is greater than 0, the `encoder` args should be specified for the lyric encoding. mask (`bool`, *optional*, defaults to `False`): Whether or not to mask the previous positions in the attention. max_duration (`int`, *optional*, defaults to 600): Maximum supported duration of the generated song in seconds. max_nb_genres (`int`, *optional*, defaults to 1): Maximum number of genres that can be used to condition the model. merged_decoder (`bool`, *optional*, defaults to `True`): Whether or not the decoder and the encoder inputs are merged. This is used for the separated encoder-decoder architecture metadata_conditioning (`bool`, *optional*, defaults to `True)`: Whether or not to condition on the artist and genre metadata. metadata_dims (`List[int]`, *optional*, defaults to `[604, 7898]`): Number of genres and the number of artists that were used to train the embedding layers of the prior models. min_duration (`int`, *optional*, defaults to 0): Minimum duration of the generated audio on which the model was trained. mlp_multiplier (`float`, *optional*, defaults to 1.0): Multiplier coefficient used to define the hidden dimension of the MLP layers. 0.25 means that 0.25*width of the model will be used. music_vocab_size (`int`, *optional*, defaults to 2048): Number of different music tokens. Should be similar to the `JukeboxVQVAEConfig.nb_discrete_codes`. n_ctx (`int`, *optional*, defaults to 6144): Number of context tokens for each prior. The context tokens are the music tokens that are attended to when generating music tokens. n_heads (`int`, *optional*, defaults to 2): Number of attention heads. nb_relevant_lyric_tokens (`int`, *optional*, defaults to 384): Number of lyric tokens that are used when sampling a single window of length `n_ctx` res_conv_depth (`int`, *optional*, defaults to 3): Depth of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the `JukeboxMusicTokenConditioner`. res_conv_width (`int`, *optional*, defaults to 128): Width of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the `JukeboxMusicTokenConditioner`. res_convolution_multiplier (`int`, *optional*, defaults to 1): Multiplier used to scale the `hidden_dim` of the `JukeboxResConv1DBlock`. res_dilation_cycle (`int`, *optional*): Dilation cycle used to define the `JukeboxMusicTokenConditioner`. Usually similar to the ones used in the corresponding level of the VQVAE. The first prior does not use it as it is not conditioned on upper level tokens. res_dilation_growth_rate (`int`, *optional*, defaults to 1): Dilation grow rate used between each convolutionnal block of the `JukeboxMusicTokenConditioner` res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`): Downsampling rates used in the audio conditioning network res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Striding used in the audio conditioning network resid_dropout (`int`, *optional*, defaults to 0): Residual dropout used in the attention pattern. sampling_rate (`int`, *optional*, defaults to 44100): Sampling rate used for training. spread (`int`, *optional*): Spread used in the `summary_spread_attention` pattern timing_dims (`int`, *optional*, defaults to 64): Dimension of the timing embedding. zero_out (`bool`, *optional*, defaults to `False`): Whether or not to zero out convolution weights when initializing. """ model_type = "jukebox_prior" attribute_map = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", } def __init__( self, act_fn="quick_gelu", level=0, alignment_head=2, alignment_layer=68, attention_multiplier=0.25, attention_pattern="enc_dec_with_lyrics", attn_dropout=0, attn_res_scale=False, blocks=64, conv_res_scale=None, num_layers=72, emb_dropout=0, encoder_config=None, encoder_loss_fraction=0.4, hidden_size=2048, init_scale=0.2, is_encoder_decoder=True, lyric_vocab_size=80, mask=False, max_duration=600, max_nb_genres=1, merged_decoder=True, metadata_conditioning=True, metadata_dims=[604, 7898], min_duration=0, mlp_multiplier=1.0, music_vocab_size=2048, n_ctx=6144, n_heads=2, nb_relevant_lyric_tokens=384, res_conv_depth=3, res_conv_width=128, res_convolution_multiplier=1, res_dilation_cycle=None, res_dilation_growth_rate=1, res_downs_t=[3, 2, 2], res_strides_t=[2, 2, 2], resid_dropout=0, sampling_rate=44100, spread=None, timing_dims=64, zero_out=False, **kwargs, ): self.act_fn = act_fn self.alignment_head = alignment_head self.alignment_layer = alignment_layer self.attention_multiplier = attention_multiplier self.attention_pattern = attention_pattern self.attn_dropout = attn_dropout self.attn_res_scale = attn_res_scale self.blocks = blocks self.conv_res_scale = conv_res_scale self.num_layers = num_layers self.emb_dropout = emb_dropout self.music_vocab_size = music_vocab_size if encoder_config is not None: self.encoder_config = JukeboxPriorConfig(**encoder_config) else: self.encoder_config = None self.encoder_loss_fraction = encoder_loss_fraction self.init_scale = init_scale self.is_encoder_decoder = is_encoder_decoder self.lyric_vocab_size = lyric_vocab_size self.level = level self.mask = mask self.max_duration = max_duration self.max_nb_genres = max_nb_genres self.merged_decoder = merged_decoder self.metadata_conditioning = metadata_conditioning self.metadata_dims = metadata_dims self.min_duration = min_duration self.mlp_multiplier = mlp_multiplier self.n_ctx = n_ctx self.n_heads = n_heads self.nb_relevant_lyric_tokens = nb_relevant_lyric_tokens self.res_conv_depth = res_conv_depth self.res_conv_width = res_conv_width self.res_convolution_multiplier = res_convolution_multiplier self.res_dilation_cycle = res_dilation_cycle self.res_dilation_growth_rate = res_dilation_growth_rate self.res_downs_t = res_downs_t self.res_strides_t = res_strides_t self.resid_dropout = resid_dropout self.sampling_rate = sampling_rate self.spread = spread self.timing_dims = timing_dims self.hidden_size = hidden_size self.zero_out = zero_out @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], level=0, **kwargs ) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the prior config dict if we are loading from JukeboxConfig if config_dict.get("model_type") == "jukebox": config_dict = config_dict[f"prior_{level}"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class JukeboxVQVAEConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxVQVAE`]. It is used to instantiate a `JukeboxVQVAE` according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VQVAE from [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: act_fn (`str`, *optional*, defaults to `"relu"`): Activation function of the model. nb_discrete_codes (`int`, *optional*, defaults to 2048): Number of codes of the VQVAE. commit (`float`, *optional*, defaults to 0.02): Commit loss multiplier. conv_input_shape (`int`, *optional*, defaults to 1): Number of audio channels. conv_res_scale (`bool`, *optional*, defaults to `False`): Whether or not to scale the residuals of the `JukeboxResConv1DBlock`. embed_dim (`int`, *optional*, defaults to 64): Embedding dimension of the codebook vectors. hop_fraction (`List[int]`, *optional*, defaults to `[0.125, 0.5, 0.5]`): Fraction of non-intersecting window used when continuing the sampling process. levels (`int`, *optional*, defaults to 3): Number of hierarchical levels that used in the VQVAE. lmu (`float`, *optional*, defaults to 0.99): Used in the codebook update, exponential moving average coefficient. For more detail refer to Appendix A.1 of the original [VQVAE paper](https://arxiv.org/pdf/1711.00937v2.pdf) multipliers (`List[int]`, *optional*, defaults to `[2, 1, 1]`): Depth and width multipliers used for each level. Used on the `res_conv_width` and `res_conv_depth` res_conv_depth (`int`, *optional*, defaults to 4): Depth of the encoder and decoder block. If no `multipliers` are used, this is the same for each level. res_conv_width (`int`, *optional*, defaults to 32): Width of the encoder and decoder block. If no `multipliers` are used, this is the same for each level. res_convolution_multiplier (`int`, *optional*, defaults to 1): Scaling factor of the hidden dimension used in the `JukeboxResConv1DBlock`. res_dilation_cycle (`int`, *optional*): Dilation cycle value used in the `JukeboxResnet`. If an int is used, each new Conv1 block will have a depth reduced by a power of `res_dilation_cycle`. res_dilation_growth_rate (`int`, *optional*, defaults to 3): Resnet dilation growth rate used in the VQVAE (dilation_growth_rate ** depth) res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`): Downsampling rate for each level of the hierarchical VQ-VAE. res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Stride used for each level of the hierarchical VQ-VAE. sample_length (`int`, *optional*, defaults to 1058304): Provides the max input shape of the VQVAE. Is used to compute the input shape of each level. init_scale (`float`, *optional*, defaults to 0.2): Initialization scale. zero_out (`bool`, *optional*, defaults to `False`): Whether or not to zero out convolution weights when initializing. """ model_type = "jukebox_vqvae" def __init__( self, act_fn="relu", nb_discrete_codes=2048, commit=0.02, conv_input_shape=1, conv_res_scale=False, embed_dim=64, hop_fraction=[0.125, 0.5, 0.5], levels=3, lmu=0.99, multipliers=[2, 1, 1], res_conv_depth=4, res_conv_width=32, res_convolution_multiplier=1, res_dilation_cycle=None, res_dilation_growth_rate=3, res_downs_t=[3, 2, 2], res_strides_t=[2, 2, 2], sample_length=1058304, init_scale=0.2, zero_out=False, **kwargs, ): self.hop_fraction = hop_fraction self.conv_input_shape = conv_input_shape self.sample_length = sample_length # VQVAE parameters (all used) self.levels = levels self.embed_dim = embed_dim self.nb_discrete_codes = nb_discrete_codes self.res_conv_width = res_conv_width self.res_conv_depth = res_conv_depth self.res_convolution_multiplier = res_convolution_multiplier self.res_dilation_growth_rate = res_dilation_growth_rate self.res_dilation_cycle = res_dilation_cycle self.multipliers = multipliers self.res_downs_t = res_downs_t self.res_strides_t = res_strides_t self.lmu = lmu self.commit = commit self.conv_res_scale = conv_res_scale self.act_fn = act_fn self.init_scale = init_scale self.zero_out = zero_out @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from CLIPConfig if config_dict.get("model_type") == "jukebox": config_dict = config_dict["vqvae_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class JukeboxConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`JukeboxModel`]. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the defaults will yield a similar configuration to that of [openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture. The downsampling and stride are used to determine downsampling of the input sequence. For example, downsampling = (5,3), and strides = (2, 2) will downsample the audio by 2^5 = 32 to get the first level of codes, and 2**8 = 256 to get the second level codes. This is mostly true for training the top level prior and the upsamplers. Args: vqvae_config (`JukeboxVQVAEConfig`, *optional*): Configuration for the `JukeboxVQVAE` model. prior_config_list (`List[JukeboxPriorConfig]`, *optional*): List of the configs for each of the `JukeboxPrior` of the model. The original architecture uses 3 priors. nb_priors (`int`, *optional*, defaults to 3): Number of prior models that will sequentially sample tokens. Each prior is conditional auto regressive (decoder) model, apart from the top prior, which can include a lyric encoder. The available models were trained using a top prior and 2 upsampler priors. sampling_rate (`int`, *optional*, defaults to 44100): Sampling rate of the raw audio. timing_dims (`int`, *optional*, defaults to 64): Dimensions of the JukeboxRangeEmbedding layer which is equivalent to traditional positional embedding layer. The timing embedding layer converts the absolute and relative position in the currently sampled audio to a tensor of length `timing_dims` that will be added to the music tokens. min_duration (`int`, *optional*, defaults to 0): Minimum duration of the audios to generate max_duration (`float`, *optional*, defaults to 600.0): Maximum duration of the audios to generate max_nb_genres (`int`, *optional*, defaults to 5): Maximum number of genres that can be used to condition a single sample. metadata_conditioning (`bool`, *optional*, defaults to `True`): Whether or not to use metadata conditioning, corresponding to the artist, the genre and the min/maximum duration. Example: ```python >>> from transformers import JukeboxModel, JukeboxConfig >>> # Initializing a Jukebox configuration >>> configuration = JukeboxConfig() >>> # Initializing a model from the configuration >>> model = JukeboxModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "jukebox" def __init__( self, vqvae_config=None, prior_config_list=None, nb_priors=3, sampling_rate=44100, timing_dims=64, min_duration=0, max_duration=600.0, max_nb_genres=5, metadata_conditioning=True, **kwargs, ): if vqvae_config is None: vqvae_config = {} logger.info("vqvae_config is None. initializing the JukeboxVQVAE with default values.") self.vqvae_config = JukeboxVQVAEConfig(**vqvae_config) if prior_config_list is not None: self.prior_configs = [JukeboxPriorConfig(**prior_config) for prior_config in prior_config_list] else: self.prior_configs = [] for prior_idx in range(nb_priors): prior_config = kwargs.pop(f"prior_{prior_idx}", None) if prior_config is None: prior_config = {} logger.info( f"prior_{prior_idx}'s config is None. Initializing the JukeboxPriorConfig list with default" " values." ) self.prior_configs.append(JukeboxPriorConfig(**prior_config)) self.hop_fraction = self.vqvae_config.hop_fraction self.nb_priors = nb_priors # Metadata conditioning self.max_nb_genres = max_nb_genres self.sampling_rate = sampling_rate self.timing_dims = timing_dims self.min_duration = min_duration self.max_duration = max_duration self.metadata_conditioning = metadata_conditioning super().__init__(**kwargs) @classmethod def from_configs(cls, prior_configs: List[JukeboxPriorConfig], vqvae_config: JukeboxVQVAEConfig, **kwargs): r""" Instantiate a [`JukeboxConfig`] (or a derived class) from clip text model configuration and clip vision model configuration. Returns: [`JukeboxConfig`]: An instance of a configuration object """ prior_config_list = [config.to_dict() for config in prior_configs] return cls(prior_config_list=prior_config_list, vqvae_config_dict=vqvae_config.to_dict(), **kwargs) def to_dict(self): # Override the default to_dict to apply to_dict to the list of prior configs. result = super().to_dict() result["prior_config_list"] = [config.to_dict() for config in result.pop("prior_configs")] return result
transformers/src/transformers/models/deprecated/jukebox/configuration_jukebox.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/jukebox/configuration_jukebox.py", "repo_id": "transformers", "token_count": 10955 }
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_nat": ["NatConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_nat"] = [ "NatForImageClassification", "NatModel", "NatPreTrainedModel", "NatBackbone", ] if TYPE_CHECKING: from .configuration_nat import NatConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nat import ( NatBackbone, NatForImageClassification, NatModel, NatPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/deprecated/nat/__init__.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/nat/__init__.py", "repo_id": "transformers", "token_count": 571 }
# coding=utf-8 # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TrajectoryTransformer pytorch checkpoint conversion""" import torch import trajectory.utils as utils from transformers import TrajectoryTransformerModel class Parser(utils.Parser): dataset: str = "halfcheetah-medium-expert-v2" config: str = "config.offline" def convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(logbase, dataset, loadpath, epoch, device): """Converting Sequential blocks to ModuleList""" gpt, gpt_epoch = utils.load_model(logbase, dataset, loadpath, epoch=epoch, device=device) trajectory_transformer = TrajectoryTransformerModel(gpt.config) trajectory_transformer.tok_emb.load_state_dict(gpt.tok_emb.state_dict()) trajectory_transformer.pos_emb = gpt.pos_emb trajectory_transformer.drop.load_state_dict(gpt.drop.state_dict()) trajectory_transformer.ln_f.load_state_dict(gpt.ln_f.state_dict()) trajectory_transformer.head.load_state_dict(gpt.head.state_dict()) for i, block in enumerate(gpt.blocks): trajectory_transformer.blocks[i].ln1.load_state_dict(gpt.blocks[i].ln1.state_dict()) trajectory_transformer.blocks[i].ln2.load_state_dict(gpt.blocks[i].ln2.state_dict()) trajectory_transformer.blocks[i].attn.load_state_dict(gpt.blocks[i].attn.state_dict()) trajectory_transformer.blocks[i].l1.load_state_dict(gpt.blocks[i].mlp[0].state_dict()) trajectory_transformer.blocks[i].act.load_state_dict(gpt.blocks[i].mlp[1].state_dict()) trajectory_transformer.blocks[i].l2.load_state_dict(gpt.blocks[i].mlp[2].state_dict()) trajectory_transformer.blocks[i].drop.load_state_dict(gpt.blocks[i].mlp[3].state_dict()) torch.save(trajectory_transformer.state_dict(), "pytorch_model.bin") if __name__ == "__main__": """ To run this script you will need to install the original repository to run the original model. You can find it here: https://github.com/jannerm/trajectory-transformer From this repository code you can also download the original pytorch checkpoints. Run with the command: ```sh >>> python convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py --dataset <dataset_name> ... --gpt_loadpath <path_to_original_pytorch_checkpoint> ``` """ args = Parser().parse_args("plan") convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch( args.logbase, args.dataset, args.gpt_loadpath, args.gpt_epoch, args.device )
transformers/src/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1099 }
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_van": ["VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_van"] = [ "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/deprecated/van/__init__.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/van/__init__.py", "repo_id": "transformers", "token_count": 540 }
# coding=utf-8 # Copyright 2024 TikTok and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Depth Anything model.""" from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...file_utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import DepthEstimatorOutput from ...modeling_utils import PreTrainedModel from ...utils import logging from ...utils.backbone_utils import load_backbone from .configuration_depth_anything import DepthAnythingConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DepthAnythingConfig" DEPTH_ANYTHING_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DepthAnythingConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEPTH_ANYTHING_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class DepthAnythingReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() self.projection = nn.Conv2d(in_channels=config.reassemble_hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) # Copied from transformers.models.dpt.modeling_dpt.DPTReassembleLayer.forward def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state class DepthAnythingReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Take the patch embeddings and reshape them to image-like feature representations. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() for channels, factor in zip(config.neck_hidden_sizes, config.reassemble_factors): self.layers.append(DepthAnythingReassembleLayer(config, channels=channels, factor=factor)) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ out = [] for i, hidden_state in enumerate(hidden_states): # reshape to (batch_size, num_channels, height, width) hidden_state = hidden_state[:, 1:] batch_size, _, num_channels = hidden_state.shape hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() hidden_state = self.layers[i](hidden_state) out.append(hidden_state) return out class DepthAnythingPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.activation1 = nn.ReLU() self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=True, ) self.activation2 = nn.ReLU() self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=True, ) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) return hidden_state + residual class DepthAnythingFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = DepthAnythingPreActResidualLayer(config) self.residual_layer2 = DepthAnythingPreActResidualLayer(config) def forward(self, hidden_state, residual=None, size=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) modifier = {"scale_factor": 2} if size is None else {"size": size} hidden_state = nn.functional.interpolate( hidden_state, **modifier, mode="bilinear", align_corners=True, ) hidden_state = self.projection(hidden_state) return hidden_state class DepthAnythingFeatureFusionStage(nn.Module): # Copied from transformers.models.dpt.modeling_dpt.DPTFeatureFusionStage.__init__ with DPT->DepthAnything def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(DepthAnythingFeatureFusionLayer(config)) def forward(self, hidden_states, size=None): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] fused_hidden_state = None for idx, (hidden_state, layer) in enumerate(zip(hidden_states, self.layers)): size = hidden_states[idx + 1].shape[2:] if idx != (len(hidden_states) - 1) else None if fused_hidden_state is None: # first layer only uses the last hidden_state fused_hidden_state = layer(hidden_state, size=size) else: fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states # Copied from transformers.models.dpt.modeling_dpt.DPTPreTrainedModel with DPT->DepthAnything,dpt->depth_anything class DepthAnythingPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DepthAnythingConfig base_model_prefix = "depth_anything" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class DepthAnythingNeck(nn.Module): """ DepthAnythingNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For DepthAnything, it includes 2 stages: * DepthAnythingReassembleStage * DepthAnythingFeatureFusionStage. Args: config (dict): config dict. """ def __init__(self, config): super().__init__() self.config = config self.reassemble_stage = DepthAnythingReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = DepthAnythingFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise TypeError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features) return output class DepthAnythingDepthEstimationHead(nn.Module): """ Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in the DPT paper's supplementary material). The final activation function is either ReLU or Sigmoid, depending on the depth estimation type (relative or metric). For metric depth estimation, the output is scaled by the maximum depth used during pretraining. """ def __init__(self, config): super().__init__() self.head_in_index = config.head_in_index self.patch_size = config.patch_size features = config.fusion_hidden_size self.conv1 = nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(features // 2, config.head_hidden_size, kernel_size=3, stride=1, padding=1) self.activation1 = nn.ReLU() self.conv3 = nn.Conv2d(config.head_hidden_size, 1, kernel_size=1, stride=1, padding=0) if config.depth_estimation_type == "relative": self.activation2 = nn.ReLU() elif config.depth_estimation_type == "metric": self.activation2 = nn.Sigmoid() else: raise ValueError(f"Unknown depth estimation type: {config.depth_estimation_type}") self.max_depth = config.max_depth def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> torch.Tensor: hidden_states = hidden_states[self.head_in_index] predicted_depth = self.conv1(hidden_states) predicted_depth = nn.functional.interpolate( predicted_depth, (int(patch_height * self.patch_size), int(patch_width * self.patch_size)), mode="bilinear", align_corners=True, ) predicted_depth = self.conv2(predicted_depth) predicted_depth = self.activation1(predicted_depth) predicted_depth = self.conv3(predicted_depth) predicted_depth = self.activation2(predicted_depth) * self.max_depth predicted_depth = predicted_depth.squeeze(dim=1) # shape (batch_size, height, width) return predicted_depth @add_start_docstrings( """ Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """, DEPTH_ANYTHING_START_DOCSTRING, ) class DepthAnythingForDepthEstimation(DepthAnythingPreTrainedModel): _no_split_modules = ["DPTViTEmbeddings"] def __init__(self, config): super().__init__(config) self.backbone = load_backbone(config) self.neck = DepthAnythingNeck(config) self.head = DepthAnythingDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEPTH_ANYTHING_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") >>> model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # interpolate to original size >>> post_processed_output = image_processor.post_process_depth_estimation( ... outputs, ... target_sizes=[(image.height, image.width)], ... ) >>> # visualize the prediction >>> predicted_depth = post_processed_output[0]["predicted_depth"] >>> depth = predicted_depth * 255 / predicted_depth.max() >>> depth = depth.detach().cpu().numpy() >>> depth = Image.fromarray(depth.astype("uint8")) ```""" loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) hidden_states = outputs.feature_maps _, _, height, width = pixel_values.shape patch_size = self.config.patch_size patch_height = height // patch_size patch_width = width // patch_size hidden_states = self.neck(hidden_states, patch_height, patch_width) predicted_depth = self.head(hidden_states, patch_height, patch_width) if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) __all__ = ["DepthAnythingForDepthEstimation", "DepthAnythingPreTrainedModel"]
transformers/src/transformers/models/depth_anything/modeling_depth_anything.py/0
{ "file_path": "transformers/src/transformers/models/depth_anything/modeling_depth_anything.py", "repo_id": "transformers", "token_count": 7286 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dilated Neighborhood Attention Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class DinatConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinat [shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 64): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`): Number of layers in each level of the encoder. num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`): Number of attention heads in each layer of the Transformer encoder. kernel_size (`int`, *optional*, defaults to 7): Neighborhood Attention kernel size. dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`): Dilation value of each NA layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 3.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.0): The initial value for the layer scale. Disabled if <=0. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import DinatConfig, DinatModel >>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration >>> configuration = DinatConfig() >>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration >>> model = DinatModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinat" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, patch_size=4, num_channels=3, embed_dim=64, depths=[3, 4, 6, 5], num_heads=[2, 4, 8, 16], kernel_size=7, dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], mlp_ratio=3.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-5, layer_scale_init_value=0.0, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.kernel_size = kernel_size self.dilations = dilations self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.layer_scale_init_value = layer_scale_init_value self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) __all__ = ["DinatConfig"]
transformers/src/transformers/models/dinat/configuration_dinat.py/0
{ "file_path": "transformers/src/transformers/models/dinat/configuration_dinat.py", "repo_id": "transformers", "token_count": 2852 }
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DistilBERT model """ from __future__ import annotations import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_distilbert import DistilBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "distilbert-base-uncased" _CONFIG_FOR_DOC = "DistilBertConfig" class TFEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.dim = config.dim self.initializer_range = config.initializer_range self.max_position_embeddings = config.max_position_embeddings self.LayerNorm = keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.dropout) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.dim], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.dim]) def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings = inputs_embeds + position_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMultiHeadSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.dropout = keras.layers.Dropout(config.attention_dropout) self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}" self.q_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin" ) self.k_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin" ) self.v_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin" ) self.out_lin = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin" ) self.pruned_heads = set() self.config = config def prune_heads(self, heads): raise NotImplementedError def call(self, query, key, value, mask, head_mask, output_attentions, training=False): """ Parameters: query: tf.Tensor(bs, seq_length, dim) key: tf.Tensor(bs, seq_length, dim) value: tf.Tensor(bs, seq_length, dim) mask: tf.Tensor(bs, seq_length) Returns: weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs, seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` """ bs, q_length, dim = shape_list(query) k_length = shape_list(key)[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' # assert key.size() == value.size() dim_per_head = int(self.dim / self.n_heads) dim_per_head = tf.cast(dim_per_head, dtype=tf.int32) mask_reshape = [bs, 1, 1, k_length] def shape(x): """separate heads""" return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """group heads""" return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) q = tf.cast(q, dtype=tf.float32) q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32))) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, q_length, dim) context = self.out_lin(context) # (bs, q_length, dim) if output_attentions: return (context, weights) else: return (context,) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_lin", None) is not None: with tf.name_scope(self.q_lin.name): self.q_lin.build([None, None, self.config.dim]) if getattr(self, "k_lin", None) is not None: with tf.name_scope(self.k_lin.name): self.k_lin.build([None, None, self.config.dim]) if getattr(self, "v_lin", None) is not None: with tf.name_scope(self.v_lin.name): self.v_lin.build([None, None, self.config.dim]) if getattr(self, "out_lin", None) is not None: with tf.name_scope(self.out_lin.name): self.out_lin.build([None, None, self.config.dim]) class TFFFN(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dropout = keras.layers.Dropout(config.dropout) self.lin1 = keras.layers.Dense( config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1" ) self.lin2 = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2" ) self.activation = get_tf_activation(config.activation) self.config = config def call(self, input, training=False): x = self.lin1(input) x = self.activation(x) x = self.lin2(x) x = self.dropout(x, training=training) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "lin1", None) is not None: with tf.name_scope(self.lin1.name): self.lin1.build([None, None, self.config.dim]) if getattr(self, "lin2", None) is not None: with tf.name_scope(self.lin2.name): self.lin2.build([None, None, self.config.hidden_dim]) class TFTransformerBlock(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_heads = config.n_heads self.dim = config.dim self.hidden_dim = config.hidden_dim self.dropout = keras.layers.Dropout(config.dropout) self.activation = config.activation self.output_attentions = config.output_attentions assert ( config.dim % config.n_heads == 0 ), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}" self.attention = TFMultiHeadSelfAttention(config, name="attention") self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm") self.ffn = TFFFN(config, name="ffn") self.output_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm") self.config = config def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None """ Parameters: x: tf.Tensor(bs, seq_length, dim) attn_mask: tf.Tensor(bs, seq_length) Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization. """ # Self-Attention sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training) if output_attentions: sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples # assert type(sa_output) == tuple sa_output = sa_output[0] sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) # Feed Forward Network ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim) ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) output = (ffn_output,) if output_attentions: output = (sa_weights,) + output return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "sa_layer_norm", None) is not None: with tf.name_scope(self.sa_layer_norm.name): self.sa_layer_norm.build([None, None, self.config.dim]) if getattr(self, "ffn", None) is not None: with tf.name_scope(self.ffn.name): self.ffn.build(None) if getattr(self, "output_layer_norm", None) is not None: with tf.name_scope(self.output_layer_norm.name): self.output_layer_norm.build([None, None, self.config.dim]) class TFTransformer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.n_layers = config.n_layers self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.layer = [TFTransformerBlock(config, name=f"layer_._{i}") for i in range(config.n_layers)] def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False): # docstyle-ignore """ Parameters: x: tf.Tensor(bs, seq_length, dim) Input sequence embedded. attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence. Returns: hidden_state: tf.Tensor(bs, seq_length, dim) Sequence of hidden states in the last (top) layer all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)] Tuple of length n_layers with the hidden states from each layer. Optional: only if output_hidden_states=True all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)] Tuple of length n_layers with the attention weights from each layer Optional: only if output_attentions=True """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_state = x for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training) hidden_state = layer_outputs[-1] if output_attentions: assert len(layer_outputs) == 2 attentions = layer_outputs[0] all_attentions = all_attentions + (attentions,) else: assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1" # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFDistilBertMainLayer(keras.layers.Layer): config_class = DistilBertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings self.transformer = TFTransformer(config, name="transformer") # Encoder def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.ones(input_shape) # (bs, seq_length) attention_mask = tf.cast(attention_mask, dtype=tf.float32) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim) tfmr_output = self.transformer( embedding_output, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) # INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # class TFDistilBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DistilBertConfig base_model_prefix = "distilbert" DISTILBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DISTILBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, ) class TFDistilBertModel(TFDistilBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) class TFDistilBertLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.dim = config.dim # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.dim]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings( """DistilBert Model with a `masked language modeling` head on top.""", DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.vocab_transform = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform" ) self.act = get_tf_activation(config.activation) self.vocab_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm") self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector") def get_lm_head(self): return self.vocab_projector def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.vocab_projector.name @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits) if not return_dict: output = (prediction_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "vocab_transform", None) is not None: with tf.name_scope(self.vocab_transform.name): self.vocab_transform.build([None, None, self.config.dim]) if getattr(self, "vocab_layer_norm", None) is not None: with tf.name_scope(self.vocab_layer_norm.name): self.vocab_layer_norm.build([None, None, self.config.dim]) if getattr(self, "vocab_projector", None) is not None: with tf.name_scope(self.vocab_projector.name): self.vocab_projector.build(None) @add_start_docstrings( """ DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.pre_classifier = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.dropout = keras.layers.Dropout(config.seq_classif_dropout) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) # (bs, dim) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "pre_classifier", None) is not None: with tf.name_scope(self.pre_classifier.name): self.pre_classifier.build([None, None, self.config.dim]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.dim]) @add_start_docstrings( """ DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = keras.layers.Dropout(config.dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.dropout = keras.layers.Dropout(config.seq_classif_dropout) self.pre_classifier = keras.layers.Dense( config.dim, kernel_initializer=get_initializer(config.initializer_range), activation="relu", name="pre_classifier", ) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) distilbert_output = self.distilbert( flat_input_ids, flat_attention_mask, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output, training=training) # (bs, dim) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "pre_classifier", None) is not None: with tf.name_scope(self.pre_classifier.name): self.pre_classifier.build([None, None, self.config.dim]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.dim]) @add_start_docstrings( """ DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, ) class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.distilbert = TFDistilBertMainLayer(config, name="distilbert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2" self.dropout = keras.layers.Dropout(config.qa_dropout) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + distilbert_output[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=distilbert_output.hidden_states, attentions=distilbert_output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "distilbert", None) is not None: with tf.name_scope(self.distilbert.name): self.distilbert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.dim]) __all__ = [ "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ]
transformers/src/transformers/models/distilbert/modeling_tf_distilbert.py/0
{ "file_path": "transformers/src/transformers/models/distilbert/modeling_tf_distilbert.py", "repo_id": "transformers", "token_count": 21177 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput class Emu3TextKwargs(TextKwargs, total=False): return_for_image_generation: bool class Emu3ImagesKwargs(ImagesKwargs, total=False): ratio: str image_area: int class Emu3ProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: Emu3TextKwargs images_kwargs: Emu3ImagesKwargs _defaults = { "text_kwargs": { "return_for_image_generation": False, }, "images_kwargs": { "ratio": "1:1", "image_area": 518400, }, } class Emu3Processor(ProcessorMixin): r""" Constructs a Emu3 processor which wraps a Emu3 image processor and a GPT2 tokenizer into a single processor. [`Emu3Processor`] offers all the functionalities of [`Emu3ImageProcessor`] and [`GPT2TokenizerFast`]. See the [`~Emu3Processor.__call__`] and [`~Emu3Processor.decode`] for more information. Args: image_processor ([`Emu3ImageProcessor`]): The image processor is a required input. tokenizer ([`Emu3TokenizerFast`]): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast") image_processor_class = "Emu3ImageProcessor" def __init__( self, image_processor, tokenizer, chat_template=None, **kwargs, ): self.image_token = tokenizer.image_token # image_token as placeholder to be replaced by vq-vae tokens self.image_start_token = tokenizer.boi_token # "<|image start|>" fixed tokens for start and end of image self.image_end_token = tokenizer.eoi_token # "<|image end|>" self.fake_token_around_image = tokenizer.image_wrapper_token # "<|image token|>" every image starts with it self.eof_token = tokenizer.eof_token # "<|extra_201|>" self.bos_token = tokenizer.bos_token self.downsample_ratio = 8 super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: Optional[ImageInput] = None, text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, audio=None, videos=None, **kwargs: Unpack[Emu3ProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to Emu3TokenizerFast's [`~Emu3TokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ # check if images and text inputs are reversed for BC if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise TypeError("Invalid input text. Please provide a string, or a list of strings") output_kwargs = self._merge_kwargs( Emu3ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) return_for_image_generation = output_kwargs["text_kwargs"].pop("return_for_image_generation", False) ratio = output_kwargs["images_kwargs"].pop("ratio", None) image_area = output_kwargs["images_kwargs"].pop("image_area", None) if return_for_image_generation and images is not None: raise ValueError("You should not provide `images` when `return_for_image_generation=True`") if not return_for_image_generation and text is None and images is None: raise ValueError("You must provide either text or images when `return_for_image_generation=False`") image_features = {} image_start_tokens = f"{self.image_start_token}" image_end_tokens = f"{self.eof_token}{self.image_end_token}" # generate text from image + text input, so we add placeholders for image tokens if not return_for_image_generation and images is not None: image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) image_sizes = iter(image_features.image_sizes) prompt_strings = [] for sample in text: while self.image_token in sample: image_size = next(image_sizes) height, width = image_size height = height // self.downsample_ratio width = width // self.downsample_ratio image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code image_placeholder = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}{'<placeholder>' * image_seq_length}{image_end_tokens}" sample = sample.replace(self.image_token, image_placeholder, 1) sample = f"{self.bos_token}{sample}" # add BOS because PT tokenizer doesn't add it prompt_strings.append(sample) text = [sample.replace("<placeholder>", self.image_token) for sample in prompt_strings] # generate image from text input, so we add begin-of-image tokens from where image generation starts elif return_for_image_generation: height, width = self.calculate_generate_size(ratio, image_area, self.downsample_ratio) image_prompt = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}" text = [f"{self.bos_token}{sample}{image_prompt}" for sample in text] image_features["image_sizes"] = [[height, width]] * len(text) # else just generate from text-only input, and we do no special treatment for text data = self.tokenizer(text, **output_kwargs["text_kwargs"]) data.update(**image_features) return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]) def calculate_generate_size(self, ratio, image_area, spatial_factor): width, height = map(int, ratio.split(":")) current_area = width * height target_ratio = (image_area / current_area) ** 0.5 token_height = int(round(height * target_ratio / spatial_factor)) token_width = int(round(width * target_ratio / spatial_factor)) return token_height, token_width def postprocess(self, images: ImageInput, **kwargs): return self.image_processor.postprocess(images, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["Emu3Processor"]
transformers/src/transformers/models/emu3/processing_emu3.py/0
{ "file_path": "transformers/src/transformers/models/emu3/processing_emu3.py", "repo_id": "transformers", "token_count": 4129 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ESM checkpoint.""" import argparse import pathlib from pathlib import Path from tempfile import TemporaryDirectory import esm as esm_module import torch from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences from esm.esmfold.v1.pretrained import esmfold_v1 from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig from transformers.models.esm.modeling_esm import ( EsmForMaskedLM, EsmForSequenceClassification, EsmIntermediate, EsmLayer, EsmOutput, EsmSelfAttention, EsmSelfOutput, ) from transformers.models.esm.modeling_esmfold import EsmForProteinFolding from transformers.models.esm.tokenization_esm import EsmTokenizer from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_DATA = [ ( "protein1", "MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA", ), ("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"), ("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"), ("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"), ] MODEL_MAPPING = { "esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S, "esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1, "esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2, "esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3, "esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4, "esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5, "esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D, "esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D, "esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D, "esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D, "esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D, "esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D, "esmfold_v1": esmfold_v1, } restypes = list("ARNDCQEGHILKMFPSTWYV") restypes_with_x = restypes + ["X"] restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"] def get_esmfold_tokenizer(): with TemporaryDirectory() as tempdir: vocab = "\n".join(restypes_with_extras) vocab_file = Path(tempdir) / "vocab.txt" vocab_file.write_text(vocab) hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want return hf_tokenizer def transfer_and_check_weights(original_module, our_module): status = our_module.load_state_dict(original_module.state_dict()) if status.missing_keys: raise ValueError(f"Missing keys: {status.missing_keys}") if status.unexpected_keys: raise ValueError(f"Unexpected keys: {status.unexpected_keys}") def convert_esm_checkpoint_to_pytorch( model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str ): """ Copy/paste/tweak esm's weights to our BERT structure. """ if model.startswith("esmfold"): esm = MODEL_MAPPING[model]() else: esm, alphabet = MODEL_MAPPING[model]() esm.eval() # disable dropout if model.startswith("esmfold"): embed_dim = esm.esm.embed_dim num_layers = esm.esm.num_layers num_attention_heads = esm.esm.attention_heads intermediate_size = 4 * embed_dim token_dropout = esm.esm.token_dropout emb_layer_norm_before = False # This code path does not exist in ESM-2 position_embedding_type = "rotary" is_folding_model = True esmfold_config = EsmFoldConfig() for key, val in esm.cfg.items(): if hasattr(esmfold_config, key) and key != "trunk": setattr(esmfold_config, key, val) for key, val in esm.cfg.trunk.items(): if hasattr(esmfold_config.trunk, key) and key != "structure_module": setattr(esmfold_config.trunk, key, val) for key, val in esm.cfg.trunk.structure_module.items(): if hasattr(esmfold_config.trunk.structure_module, key): setattr(esmfold_config.trunk.structure_module, key, val) elif hasattr(esm, "args"): # Indicates an ESM-1b or ESM-1v model embed_dim = esm.args.embed_dim num_layers = esm.args.layers num_attention_heads = esm.args.attention_heads intermediate_size = esm.args.ffn_embed_dim token_dropout = esm.args.token_dropout emb_layer_norm_before = True if esm.emb_layer_norm_before else False position_embedding_type = "absolute" is_folding_model = False esmfold_config = None else: # Indicates an ESM-2 model embed_dim = esm.embed_dim num_layers = esm.num_layers num_attention_heads = esm.attention_heads intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2 token_dropout = esm.token_dropout emb_layer_norm_before = False # This code path does not exist in ESM-2 position_embedding_type = "rotary" is_folding_model = False esmfold_config = None if is_folding_model: alphabet = esm.esm.alphabet vocab_list = tuple(alphabet.all_toks) mask_token_id = alphabet.mask_idx pad_token_id = alphabet.padding_idx if is_folding_model: original_esm_model = esm.esm else: original_esm_model = esm config = EsmConfig( vocab_size=original_esm_model.embed_tokens.num_embeddings, mask_token_id=mask_token_id, hidden_size=embed_dim, num_hidden_layers=num_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, max_position_embeddings=1026, layer_norm_eps=1e-5, # PyTorch default used in fairseq attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.0, pad_token_id=pad_token_id, emb_layer_norm_before=emb_layer_norm_before, token_dropout=token_dropout, position_embedding_type=position_embedding_type, is_folding_model=is_folding_model, esmfold_config=esmfold_config, vocab_list=vocab_list, ) if classification_head: config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0] print("Our ESM config:", config) if model.startswith("esmfold"): model_class = EsmForProteinFolding elif classification_head: model_class = EsmForSequenceClassification else: model_class = EsmForMaskedLM model = model_class(config) model.eval() # Now let's copy all the weights. # Embeddings model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight if position_embedding_type == "absolute": model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight if config.emb_layer_norm_before: model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: EsmLayer = model.esm.encoder.layer[i] # esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i] esm_layer = original_esm_model.layers[i] # self attention self_attn: EsmSelfAttention = layer.attention.self assert ( esm_layer.self_attn.k_proj.weight.data.shape == esm_layer.self_attn.q_proj.weight.data.shape == esm_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias if getattr(esm_layer.self_attn, "rot_emb", None) is not None: # Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached. # During the training of ESM-2 the model was converted to float16 precision, which also converts # the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32. # If we recompute inv_freq without this loss of precision then we will get subtly different rotary # embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this, # we make sure the new model copies the data from the old inv_freq. self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq # LayerNorm changes for pre-activation layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias layer.LayerNorm.weight = esm_layer.final_layer_norm.weight layer.LayerNorm.bias = esm_layer.final_layer_norm.bias # self-attention output self_output: EsmSelfOutput = layer.attention.output assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape self_output.dense.weight = esm_layer.self_attn.out_proj.weight self_output.dense.bias = esm_layer.self_attn.out_proj.bias # intermediate intermediate: EsmIntermediate = layer.intermediate assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape intermediate.dense.weight = esm_layer.fc1.weight intermediate.dense.bias = esm_layer.fc1.bias # output bert_output: EsmOutput = layer.output assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape bert_output.dense.weight = esm_layer.fc2.weight bert_output.dense.bias = esm_layer.fc2.bias # end of layer if is_folding_model: model.esm_s_combine.data = esm.esm_s_combine.data model.af2_to_esm.data = esm.af2_to_esm.data transfer_and_check_weights(esm.embedding, model.embedding) transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp) transfer_and_check_weights(esm.trunk, model.trunk) transfer_and_check_weights(esm.distogram_head, model.distogram_head) transfer_and_check_weights(esm.ptm_head, model.ptm_head) transfer_and_check_weights(esm.lm_head, model.lm_head) transfer_and_check_weights(esm.lddt_head, model.lddt_head) elif classification_head: model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias else: # LM Head model.lm_head.dense.weight = esm.lm_head.dense.weight model.lm_head.dense.bias = esm.lm_head.dense.bias model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias model.lm_head.decoder.weight = esm.lm_head.weight model.lm_head.bias = esm.lm_head.bias # Contact prediction head transfer_and_check_weights(esm.contact_head, model.esm.contact_head) # Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4) if is_folding_model: # Folding models aren't trained on masked inputs and don't like mask tokens. sample_data = SAMPLE_DATA[:2] else: sample_data = SAMPLE_DATA if is_folding_model: hf_tokenizer = get_esmfold_tokenizer() hf_tokens = hf_tokenizer( [row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False ) esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data]) success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all( hf_tokens["attention_mask"] == esmfold_mask ) else: # Let's check that we get the same results. batch_converter = alphabet.get_batch_converter() batch_labels, batch_strs, batch_tokens = batch_converter(sample_data) # Prepare tokenizer and make sure it matches with TemporaryDirectory() as tempdir: vocab = "\n".join(alphabet.all_toks) vocab_file = Path(tempdir) / "vocab.txt" vocab_file.write_text(vocab) hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file)) hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True) success = torch.all(hf_tokens["input_ids"] == batch_tokens) print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩") if not success: raise Exception("Tokenization does not match!") with torch.no_grad(): if is_folding_model: # Let's test the model in parts # ESMFold always converts the ESM stem to float16, which requires float16 ops # that don't exist on CPU. Therefore, to test it we need to run it on GPU. However, # ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the # original and the converted model on the GPU at the same time. their_output = esm.cuda().infer([row[1] for row in sample_data]) our_output = model.cuda()( input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda() ) else: our_output = model(**hf_tokens, output_hidden_states=True) our_output = our_output["logits"] if classification_head: their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens)) else: their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999))) their_output = their_output["logits"] if is_folding_model: max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item() success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5) else: max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() success = torch.allclose(our_output, their_output, atol=1e-5) print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") if not is_folding_model: # Let's check contact prediction too our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"]) their_output = esm.predict_contacts(hf_tokens["input_ids"]) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() success = torch.allclose(our_output, their_output, atol=1e-5) print("Contact prediction testing:") print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5 print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) del esm # Free up some memory before continuing print(f"Saving tokenizer to {pytorch_dump_folder_path}") hf_tokenizer.save_pretrained(pytorch_dump_folder_path) if push_to_repo: model.push_to_hub(repo_id=push_to_repo, token_token=auth_token) hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.") parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).") parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.") args = parser.parse_args() convert_esm_checkpoint_to_pytorch( args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token )
transformers/src/transformers/models/esm/convert_esm.py/0
{ "file_path": "transformers/src/transformers/models/esm/convert_esm.py", "repo_id": "transformers", "token_count": 8133 }
import json from argparse import ArgumentParser from pathlib import Path """ This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded without needing trust_remote_code=True. """ if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--checkpoint_dir", type=Path, required=True, help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.", ) args = parser.parse_args() if not args.checkpoint_dir.is_dir(): raise ValueError("--checkpoint_dir argument should be a directory!") if ( not (args.checkpoint_dir / "configuration_RW.py").is_file() or not (args.checkpoint_dir / "modelling_RW.py").is_file() ): raise ValueError( "The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?" ) (args.checkpoint_dir / "configuration_RW.py").unlink() (args.checkpoint_dir / "modelling_RW.py").unlink() config = args.checkpoint_dir / "config.json" text = config.read_text() text = text.replace("RWForCausalLM", "FalconForCausalLM") text = text.replace("RefinedWebModel", "falcon") text = text.replace("RefinedWeb", "falcon") json_config = json.loads(text) del json_config["auto_map"] if "n_head" in json_config: json_config["num_attention_heads"] = json_config.pop("n_head") if "n_layer" in json_config: json_config["num_hidden_layers"] = json_config.pop("n_layer") if "n_head_kv" in json_config: json_config["num_kv_heads"] = json_config.pop("n_head_kv") json_config["new_decoder_architecture"] = True else: json_config["new_decoder_architecture"] = False bos_token_id = json_config.get("bos_token_id", 1) eos_token_id = json_config.get("eos_token_id", 2) config.unlink() config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) tokenizer_config = args.checkpoint_dir / "tokenizer_config.json" if tokenizer_config.is_file(): text = tokenizer_config.read_text() json_config = json.loads(text) if json_config["tokenizer_class"] == "PreTrainedTokenizerFast": json_config["model_input_names"] = ["input_ids", "attention_mask"] tokenizer_config.unlink() tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) generation_config_path = args.checkpoint_dir / "generation_config.json" generation_dict = { "_from_model_config": True, "bos_token_id": bos_token_id, "eos_token_id": eos_token_id, "transformers_version": "4.33.0.dev0", } generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True)) print("Done! Please double-check that the new checkpoint works as expected.")
transformers/src/transformers/models/falcon/convert_custom_code_checkpoint.py/0
{ "file_path": "transformers/src/transformers/models/falcon/convert_custom_code_checkpoint.py", "repo_id": "transformers", "token_count": 1171 }
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Flaubert.""" import json import os import re import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } def convert_to_unicode(text): """ Converts `text` to Unicode (if it's not already), assuming UTF-8 input. """ def ensure_text(s, encoding="utf-8", errors="strict"): if isinstance(s, bytes): return s.decode(encoding, errors) elif isinstance(s, str): return s else: raise TypeError(f"not expecting type '{type(s)}'") return ensure_text(text, encoding="utf-8", errors="ignore") # Copied from transformers.models.xlm.tokenization_xlm.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs # Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text # Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) class FlaubertTokenizer(PreTrainedTokenizer): """ Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. do_lowercase (`bool`, *optional*, defaults to `False`): Controls lower casing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, do_lowercase=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, **kwargs, ): do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None) if do_lowercase_and_remove_accent is not None: logger.warning( "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything." " `FlaubertTokenizer` will always set it to `False`." ) # always `False` self.do_lowercase_and_remove_accent = False self.do_lowercase = do_lowercase try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use FlaubertTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( do_lowercase=do_lowercase, unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, **kwargs, ) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case def do_lower_case(self): return self.do_lowercase_and_remove_accent # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def preprocess_text(self, text): text = text.replace("``", '"').replace("''", '"') text = convert_to_unicode(text) text = unicodedata.normalize("NFC", text) if self.do_lowercase: text = text.lower() return text def _tokenize(self, text, bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ lang = "fr" if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() else: text = self.preprocess_text(text) text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses __all__ = ["FlaubertTokenizer"]
transformers/src/transformers/models/flaubert/tokenization_flaubert.py/0
{ "file_path": "transformers/src/transformers/models/flaubert/tokenization_flaubert.py", "repo_id": "transformers", "token_count": 9980 }
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FocalNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class FocalNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FocalNet [microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch in the embeddings layer. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. use_conv_embed (`bool`, *optional*, defaults to `False`): Whether to use convolutional embedding. The authors noted that using convolutional embedding usually improve the performance, but it's not used by default. hidden_sizes (`List[int]`, *optional*, defaults to `[192, 384, 768, 768]`): Dimensionality (hidden size) at each stage. depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`): Depth (number of layers) of each stage in the encoder. focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`): Number of focal levels in each layer of the respective stages in the encoder. focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`): Focal window size in each layer of the respective stages in the encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. use_layerscale (`bool`, *optional*, defaults to `False`): Whether to use layer scale in the encoder. layerscale_value (`float`, *optional*, defaults to 0.0001): The initial value of the layer scale. use_post_layernorm (`bool`, *optional*, defaults to `False`): Whether to use post layer normalization in the encoder. use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`): Whether to use post layer normalization in the modulation layer. normalize_modulator (`bool`, *optional*, defaults to `False`): Whether to normalize the modulator. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. encoder_stride (`int`, *optional*, defaults to 32): Factor to increase the spatial resolution by in the decoder head for masked image modeling. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import FocalNetConfig, FocalNetModel >>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration >>> configuration = FocalNetConfig() >>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration >>> model = FocalNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "focalnet" def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, use_conv_embed=False, hidden_sizes=[192, 384, 768, 768], depths=[2, 2, 6, 2], focal_levels=[2, 2, 2, 2], focal_windows=[3, 3, 3, 3], hidden_act="gelu", mlp_ratio=4.0, hidden_dropout_prob=0.0, drop_path_rate=0.1, use_layerscale=False, layerscale_value=1e-4, use_post_layernorm=False, use_post_layernorm_in_modulation=False, normalize_modulator=False, initializer_range=0.02, layer_norm_eps=1e-5, encoder_stride=32, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.use_conv_embed = use_conv_embed self.hidden_sizes = hidden_sizes self.depths = depths self.focal_levels = focal_levels self.focal_windows = focal_windows self.hidden_act = hidden_act self.mlp_ratio = mlp_ratio self.hidden_dropout_prob = hidden_dropout_prob self.drop_path_rate = drop_path_rate self.use_layerscale = use_layerscale self.layerscale_value = layerscale_value self.use_post_layernorm = use_post_layernorm self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation self.normalize_modulator = normalize_modulator self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.encoder_stride = encoder_stride self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) __all__ = ["FocalNetConfig"]
transformers/src/transformers/models/focalnet/configuration_focalnet.py/0
{ "file_path": "transformers/src/transformers/models/focalnet/configuration_focalnet.py", "repo_id": "transformers", "token_count": 3079 }
# coding=utf-8 # Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fuyu model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) class FuyuConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 262144): Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FuyuForCausalLM`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 16384): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 16384): The maximum sequence length that this model might ever be used with. image_size (`int`, *optional*, defaults to 300): The input image size. patch_size (`int`, *optional*, defaults to 30): The input vision transformer encoding patch size. num_channels (`int`, *optional*, defaults to 3): The input image number of channels. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Whether to tie weight embeddings tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. rope_theta (`float`, *optional*, defaults to 25000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. qk_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to normalize the Queries and Keys after projecting the hidden states hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after computing the attention scores. partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding. pad_token_id (`int`, *optional*): The id of the *padding* token. bos_token_id (`int`, *optional*, defaults to 1): The id of the *beginning-of-sequence* token. eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize the `language``[`Aut`]. ```python >>> from transformers import FuyuConfig >>> # Initializing a Fuyu fuyu-7b style configuration >>> configuration = FuyuConfig() ```""" model_type = "fuyu" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=262144, hidden_size=4096, intermediate_size=16384, num_hidden_layers=36, num_attention_heads=64, hidden_act="relu2", max_position_embeddings=16384, image_size=300, patch_size=30, num_channels=3, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=25000.0, rope_scaling=None, qk_layernorm=True, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.5, pad_token_id=None, bos_token_id=1, eos_token_id=2, text_config=None, **kwargs, ): if text_config is None: text_config = { "vocab_size": vocab_size, "max_position_embeddings": max_position_embeddings, "hidden_size": hidden_size, "intermediate_size": intermediate_size, "num_hidden_layers": num_hidden_layers, "num_attention_heads": num_attention_heads, "hidden_act": hidden_act, "initializer_range": initializer_range, "layer_norm_eps": layer_norm_eps, "use_cache": use_cache, "rope_theta": rope_theta, "rope_scaling": rope_scaling, "qk_layernorm": qk_layernorm, "hidden_dropout": hidden_dropout, "attention_dropout": attention_dropout, "partial_rotary_factor": partial_rotary_factor, "pad_token_id": pad_token_id, "bos_token_id": bos_token_id, "eos_token_id": eos_token_id, "tie_word_embeddings": tie_word_embeddings, } logger.info("text_config is None. initializing the text model with default values.") text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self._vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.qk_layernorm = qk_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") __all__ = ["FuyuConfig"]
transformers/src/transformers/models/fuyu/configuration_fuyu.py/0
{ "file_path": "transformers/src/transformers/models/fuyu/configuration_fuyu.py", "repo_id": "transformers", "token_count": 4132 }
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/gemma2/modular_gemma2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_gemma2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn from ...activations import ACT2FN from ...cache_utils import Cache, HybridCache from ...generation import GenerationMixin from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_torchdynamo_compiling, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_gemma2 import Gemma2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/gemma2-7b" _CONFIG_FOR_DOC = "Gemma2Config" class Gemma2RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.zeros(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()) # Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16) # See https://github.com/huggingface/transformers/pull/29402 output = output * (1.0 + self.weight.float()) return output.type_as(x) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" class Gemma2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_activation] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, softcap: Optional[float] = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: if scaling is None: scaling = module.head_dim**-0.5 key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if softcap is not None: attn_weights = attn_weights / softcap attn_weights = torch.tanh(attn_weights) attn_weights = attn_weights * softcap if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Gemma2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = config.query_pre_attn_scalar**-0.5 self.attention_dropout = self.config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.attn_logit_softcapping = self.config.attn_logit_softcapping self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = { "sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Here we need to slice as we use a static cache by default, but FA2 does not support it if attention_mask is not None and self.config._attn_implementation == "flash_attention_2": seq_len = attention_mask.shape[-1] key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :] attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, softcap=self.attn_logit_softcapping, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Gemma2DecoderLayer(nn.Module): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.config = config self.is_sliding = not bool(layer_idx % 2) self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx) self.mlp = Gemma2MLP(config) self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.sliding_window = config.sliding_window def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, last_cache_position: int = 0, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding # In prefill, we may be larger than sliding window effective_seq_len = max(cache_position.shape[0], self.sliding_window) # For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]), # thus we must slice from the right (at most `effective_seq_len` elements) if self.config._attn_implementation == "flash_attention_2": attention_mask = attention_mask[:, -effective_seq_len:] # Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice # from the left, with an offset if we are beyond the sliding window else: min_dtype = torch.finfo(hidden_states.dtype).min sliding_window_mask = torch.tril( torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window ) attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask) # In case we are beyond the sliding window, we need to correctly offset the mask slicing # `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo offset = last_cache_position - effective_seq_len # Should only be used when beyond the sliding window (i.e. offset > 0) offset = max(0, offset) attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len] residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_feedforward_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Gemma2RotaryEmbedding(nn.Module): def __init__(self, config: Gemma2Config, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) GEMMA2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Gemma2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", GEMMA2_START_DOCSTRING, ) class Gemma2PreTrainedModel(PreTrainedModel): config_class = Gemma2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Gemma2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() GEMMA2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.", GEMMA2_START_DOCSTRING, ) class Gemma2Model(Gemma2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`] Args: config: Gemma2Config """ def __init__(self, config: Gemma2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Gemma2RotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, last_cache_position: Optional[int] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None and not self.training: batch_size, seq_len, _ = inputs_embeds.shape past_key_values = HybridCache( self.config, max_batch_size=batch_size, max_cache_len=seq_len, dtype=inputs_embeds.dtype, ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing # (retrieving the same value from `cache_position` later on would crash dynamo) if last_cache_position is None: last_cache_position = 0 if attention_mask is not None: # In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position # It will break dynamo tracing but there are no way around it (and it should never happen in practice) last_cache_position = ( attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item() ) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # normalized # Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5 # See https://github.com/huggingface/transformers/pull/29402 normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype) hidden_states = hidden_states * normalizer # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, position_embeddings, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, last_cache_position, ) else: layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, last_cache_position=last_cache_position, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() @torch.no_grad() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: HybridCache, output_attentions: bool, ): # Flash Attention currently doesn't support static cache but Gemma2 work only with static cache. # So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape # to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible # as it doesn't cause dynamic control issues. if self.config._attn_implementation == "flash_attention_2": return attention_mask dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if isinstance(past_key_values, HybridCache): target_length = past_key_values.get_max_cache_shape() else: target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1] # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = Gemma2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, GemmaForCausalLM >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b") >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" if self.training and self.config._attn_implementation != "eager": logger.warning_once( "It is strongly recommended to train Gemma2 models with the `eager` attention implementation " f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **loss_kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) if self.config.final_logit_softcapping is not None: logits = logits / self.config.final_logit_softcapping logits = torch.tanh(logits) logits = logits * self.config.final_logit_softcapping loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, logits_to_keep=None, **kwargs, ): # Overwritten: has a special cache type, `HybridCache` # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if past_key_values is not None: if ( inputs_embeds is not None # Exception 1 or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride # during the decoding. Here, simply using `.contiguous()` is not sufficient as in the # batch size = 1 case, `position_ids` is already contiguous but with varying stride # which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} else: # The clone here is for the same reason as for `position_ids`. model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} # This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing # (retrieving the same value from `cache_position` later on would crash dynamo) model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0 if ( isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2 and not self.config._attn_implementation == "flash_attention_2" ): if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs["input_ids"].shape device = model_inputs["input_ids"].device attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_cache_shape(), dtype=self.lm_head.weight.dtype, device=device, cache_position=cache_position, batch_size=batch_size, ) if logits_to_keep is not None: model_inputs["logits_to_keep"] = logits_to_keep model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings( """ The Gemma2 Model transformer with a sequence classification head on top (linear layer). [`Gemma2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GEMMA2_START_DOCSTRING, ) class Gemma2ForSequenceClassification(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Gemma2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, GEMMA2_START_DOCSTRING, ) class Gemma2ForTokenClassification(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "Gemma2ForCausalLM", "Gemma2Model", "Gemma2PreTrainedModel", "Gemma2ForSequenceClassification", "Gemma2ForTokenClassification", ]
transformers/src/transformers/models/gemma2/modeling_gemma2.py/0
{ "file_path": "transformers/src/transformers/models/gemma2/modeling_gemma2.py", "repo_id": "transformers", "token_count": 24067 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for GLPN.""" from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union if TYPE_CHECKING: from ...modeling_outputs import DepthEstimatorOutput import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, is_torch_available, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, logging, requires_backends if is_torch_available(): import torch logger = logging.get_logger(__name__) class GLPNImageProcessor(BaseImageProcessor): r""" Constructs a GLPN image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of `size_divisor`. Can be overridden by `do_resize` in `preprocess`. size_divisor (`int`, *optional*, defaults to 32): When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`. resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be overridden by `do_rescale` in `preprocess`. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size_divisor: int = 32, resample=PILImageResampling.BILINEAR, do_rescale: bool = True, **kwargs, ) -> None: self.do_resize = do_resize self.do_rescale = do_rescale self.size_divisor = size_divisor self.resample = resample super().__init__(**kwargs) def resize( self, image: np.ndarray, size_divisor: int, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor. If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160). Args: image (`np.ndarray`): The image to resize. size_divisor (`int`): The image is resized so its height and width are rounded down to the closest multiple of `size_divisor`. resample: `PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If `None`, the channel dimension format of the input image is used. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not set, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ height, width = get_image_size(image, channel_dim=input_data_format) # Rounds the height and width down to the closest multiple of size_divisor new_h = height // size_divisor * size_divisor new_w = width // size_divisor * size_divisor image = resize( image, (new_h, new_w), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return image @filter_out_non_signature_kwargs() def preprocess( self, images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]], do_resize: Optional[bool] = None, size_divisor: Optional[int] = None, resample=None, do_rescale: Optional[bool] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ Preprocess the given images. Args: images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`): Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_normalize=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`. size_divisor (`int`, *optional*, defaults to `self.size_divisor`): When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest multiple of `size_divisor`. resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`): `PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # Here, the rescale() method uses a constant rescale_factor. It does not need to be validated # with a rescale_factor. validate_preprocess_arguments( do_resize=do_resize, size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size. resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(img) for img in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_depth_estimation( self, outputs: "DepthEstimatorOutput", target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None, ) -> List[Dict[str, TensorType]]: """ Converts the raw output of [`DepthEstimatorOutput`] into final depth predictions and depth PIL images. Only supports PyTorch. Args: outputs ([`DepthEstimatorOutput`]): Raw outputs of the model. target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. Returns: `List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth predictions. """ requires_backends(self, "torch") predicted_depth = outputs.predicted_depth if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the predicted depth" ) results = [] target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes for depth, target_size in zip(predicted_depth, target_sizes): if target_size is not None: depth = depth[None, None, ...] depth = torch.nn.functional.interpolate(depth, size=target_size, mode="bicubic", align_corners=False) depth = depth.squeeze() results.append({"predicted_depth": depth}) return results __all__ = ["GLPNImageProcessor"]
transformers/src/transformers/models/glpn/image_processing_glpn.py/0
{ "file_path": "transformers/src/transformers/models/glpn/image_processing_glpn.py", "repo_id": "transformers", "token_count": 5323 }
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import torch from accelerate import init_empty_weights from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, Idefics2Config, Idefics2ForConditionalGeneration, Idefics2ImageProcessor, Idefics2Processor, MistralConfig, ) EPILOG_TXT = """Example: python transformers/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py --original_model_id HuggingFaceM4/idefics2-8b --output_hub_path org/idefics2 """ KEYS_TO_MODIFY_MAPPING = { "lm_head.weight": "lm_head.linear.weight", "model.layers": "model.text_model.layers", "model.norm": "model.text_model.norm", "model.perceiver_resampler": "model.connector.perceiver_resampler", "model.modality_projection": "model.connector.modality_projection", } WEIGHTS_TO_MERGE_MAPPING = ( # (weights to merge in merging order), (new weight name) ( ("model.embed_tokens.weight", "model.embed_tokens.additional_embedding.weight"), "model.text_model.embed_tokens.weight", ), (("lm_head.linear.weight", "additional_fc.weight"), "lm_head.weight"), ) def convert_state_dict_to_hf(state_dict): new_state_dict = {} for key, value in state_dict.items(): if key.endswith(".inv_freq"): continue for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) new_state_dict[key] = value return new_state_dict def merge_weights(state_dict): new_state_dict = copy.deepcopy(state_dict) # Merge the weights for weights_to_merge, new_weight_name in WEIGHTS_TO_MERGE_MAPPING: for weight in weights_to_merge: assert weight in state_dict, f"Weight {weight} is missing in the state dict" if new_weight_name not in new_state_dict: new_state_dict[new_weight_name] = [state_dict[weight]] else: new_state_dict[new_weight_name].append(state_dict[weight]) new_state_dict[new_weight_name] = torch.cat(new_state_dict[new_weight_name], dim=0) # Remove the weights that were merged for weights_to_merge, new_weight_name in WEIGHTS_TO_MERGE_MAPPING: for weight in weights_to_merge: if weight in new_state_dict and weight != new_weight_name: new_state_dict.pop(weight) return new_state_dict def get_config(checkpoint): if checkpoint == "HuggingFaceM4/idefics2": # We load the config then recreate to use the text_config config = AutoConfig.from_pretrained(checkpoint) text_config = MistralConfig( vocab_size=config.vocab_size + config.additional_vocab_size, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, num_key_value_heads=config.num_key_value_heads, hidden_act=config.hidden_act, max_position_embeddings=config.max_position_embeddings, initializer_range=config.initializer_range, rms_norm_eps=config.rms_norm_eps, tie_word_embeddings=config.tie_word_embeddings, rope_theta=config.rope_theta, sliding_window=config.sliding_window, attention_dropout=config.attention_dropout, pad_token_id=config.pad_token_id, bos_token_id=config.bos_token_id, eos_token_id=config.eos_token_id, ) perceiver_config = config.perceiver_config.to_dict() config = Idefics2Config( text_config=text_config.to_dict(), vision_config=config.vision_config, perceiver_config=perceiver_config, use_cache=config.use_cache, image_token_id=config.image_token_id, tie_word_embeddings=config.tie_word_embeddings, ) return config return AutoConfig.from_pretrained(checkpoint) def convert_idefics2_hub_to_hf(original_model_id, output_hub_path, push_to_hub): # The original model maps to AutoModelForCausalLM, converted we map to Idefics2ForConditionalGeneration original_model = AutoModelForCausalLM.from_pretrained(original_model_id, trust_remote_code=True) # The original model doesn't use the idefics2 processing objects image_seq_len = original_model.config.perceiver_config.resampler_n_latents image_processor = Idefics2ImageProcessor() tokenizer = AutoTokenizer.from_pretrained(original_model_id) processor = Idefics2Processor( image_processor=image_processor, tokenizer=tokenizer, image_seq_len=image_seq_len, ) state_dict = original_model.state_dict() state_dict = convert_state_dict_to_hf(state_dict) # Merge weights state_dict = merge_weights(state_dict) config = get_config(original_model_id) with init_empty_weights(): model = Idefics2ForConditionalGeneration(config) model.load_state_dict(state_dict, strict=True, assign=True) model.save_pretrained(output_hub_path) processor.save_pretrained(output_hub_path) if push_to_hub: model.push_to_hub(output_hub_path, private=True) processor.push_to_hub(output_hub_path, private=True) def main(): parser = argparse.ArgumentParser( epilog=EPILOG_TXT, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--original_model_id", help="Hub location of the text model", ) parser.add_argument( "--output_hub_path", help="Location on the hub of the converted model", ) parser.add_argument( "--push_to_hub", action="store_true", help="If set, the model will be pushed to the hub after conversion.", ) args = parser.parse_args() convert_idefics2_hub_to_hf(args.original_model_id, args.output_hub_path, args.push_to_hub) if __name__ == "__main__": main()
transformers/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/idefics2/convert_idefics2_weights_to_hf.py", "repo_id": "transformers", "token_count": 2763 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OpenAI ImageGPT configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType logger = logging.get_logger(__name__) class ImageGPTConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT [openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 512): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`]. n_positions (`int`, *optional*, defaults to 32*32): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 512): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"quick_gelu"`): Activation function (can be one of the activation functions defined in src/transformers/activations.py). Defaults to "quick_gelu". resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): Whether to additionally scale attention weights by `1 / layer_idx + 1`. reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. Example: ```python >>> from transformers import ImageGPTConfig, ImageGPTModel >>> # Initializing a ImageGPT configuration >>> configuration = ImageGPTConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = ImageGPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "imagegpt" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=512 + 1, # add one for start of sentence (sos) token n_positions=32 * 32, n_embd=512, n_layer=24, n_head=8, n_inner=None, activation_function="quick_gelu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, tie_word_embeddings=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.reorder_and_upcast_attn = reorder_and_upcast_attn self.tie_word_embeddings = tie_word_embeddings super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) class ImageGPTOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def generate_dummy_inputs( self, preprocessor: "FeatureExtractionMixin", batch_size: int = 1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, num_channels: int = 3, image_width: int = 32, image_height: int = 32, ) -> Mapping[str, Any]: """ Generate inputs to provide to the ONNX exporter for the specific framework Args: preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]): The preprocessor associated with this model configuration. batch_size (`int`, *optional*, defaults to -1): The batch size to export the model for (-1 means dynamic axis). num_choices (`int`, *optional*, defaults to -1): The number of candidate answers provided for multiple choice task (-1 means dynamic axis). seq_length (`int`, *optional*, defaults to -1): The sequence length to export the model for (-1 means dynamic axis). is_pair (`bool`, *optional*, defaults to `False`): Indicate if the input is a pair (sentence 1, sentence 2) framework (`TensorType`, *optional*, defaults to `None`): The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for. num_channels (`int`, *optional*, defaults to 3): The number of channels of the generated images. image_width (`int`, *optional*, defaults to 40): The width of the generated images. image_height (`int`, *optional*, defaults to 40): The height of the generated images. Returns: Mapping[str, Tensor] holding the kwargs to provide to the model's forward function """ input_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) inputs = dict(preprocessor(images=input_image, return_tensors=framework)) return inputs __all__ = ["ImageGPTConfig", "ImageGPTOnnxConfig"]
transformers/src/transformers/models/imagegpt/configuration_imagegpt.py/0
{ "file_path": "transformers/src/transformers/models/imagegpt/configuration_imagegpt.py", "repo_id": "transformers", "token_count": 3439 }
# coding=utf-8 # Copyright 2010, The Microsoft Research Asia LayoutLM Team authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LayoutLM model configuration""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PretrainedConfig, PreTrainedTokenizer from ...onnx import OnnxConfig, PatchingSpec from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) class LayoutLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LayoutLM [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture. Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the documentation from [`BertConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`LayoutLMModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The value used to pad input_ids. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the 2D position embedding might ever used. Typically set this to something large just in case (e.g., 1024). Examples: ```python >>> from transformers import LayoutLMConfig, LayoutLMModel >>> # Initializing a LayoutLM configuration >>> configuration = LayoutLMConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = LayoutLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "layoutlm" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, max_2d_position_embeddings=1024, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.max_2d_position_embeddings = max_2d_position_embeddings class LayoutLMOnnxConfig(OnnxConfig): def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, ): super().__init__(config, task=task, patching_specs=patching_specs) self.max_2d_positions = config.max_2d_position_embeddings - 1 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("token_type_ids", {0: "batch", 1: "sequence"}), ] ) def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: """ Generate inputs to provide to the ONNX exporter for the specific framework Args: tokenizer: The tokenizer associated with this model configuration batch_size: The batch size (int) to export the model for (-1 means dynamic axis) seq_length: The sequence length (int) to export the model for (-1 means dynamic axis) is_pair: Indicate if the input is a pair (sentence 1, sentence 2) framework: The framework (optional) the tokenizer will generate tensor for Returns: Mapping[str, Tensor] holding the kwargs to provide to the model's forward function """ input_dict = super().generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # Generate a dummy bbox box = [48, 84, 73, 128] if not framework == TensorType.PYTORCH: raise NotImplementedError("Exporting LayoutLM to ONNX is currently only supported for PyTorch.") if not is_torch_available(): raise ValueError("Cannot generate dummy inputs without PyTorch installed.") import torch batch_size, seq_length = input_dict["input_ids"].shape input_dict["bbox"] = torch.tensor([*[box] * seq_length]).tile(batch_size, 1, 1) return input_dict __all__ = ["LayoutLMConfig", "LayoutLMOnnxConfig"]
transformers/src/transformers/models/layoutlm/configuration_layoutlm.py/0
{ "file_path": "transformers/src/transformers/models/layoutlm/configuration_layoutlm.py", "repo_id": "transformers", "token_count": 3485 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LayoutLMv3.""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_pytesseract_available, is_vision_available, logging, requires_backends, ) if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract logger = logging.get_logger(__name__) def normalize_box(box, width, height): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def apply_tesseract( image: np.ndarray, lang: Optional[str], tesseract_config: Optional[str], input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" # apply OCR pil_image = to_pil_image(image, input_data_format=input_data_format) image_width, image_height = pil_image.size data = pytesseract.image_to_data(pil_image, lang=lang, output_type="dict", config=tesseract_config) words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format actual_boxes = [] for x, y, w, h in zip(left, top, width, height): actual_box = [x, y, x + w, y + h] actual_boxes.append(actual_box) # finally, normalize the bounding boxes normalized_boxes = [] for box in actual_boxes: normalized_boxes.append(normalize_box(box, image_width, image_height)) assert len(words) == len(normalized_boxes), "Not as many words as there are bounding boxes" return words, normalized_boxes class LayoutLMv3ImageProcessor(BaseImageProcessor): r""" Constructs a LayoutLMv3 image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be overridden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by `size` in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image's pixel values by the specified `rescale_value`. Can be overridden by `do_rescale` in `preprocess`. rescale_factor (`float`, *optional*, defaults to 1 / 255): Value by which the image's pixel values are rescaled. Can be overridden by `rescale_factor` in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`Iterable[float]` or `float`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. apply_ocr (`bool`, *optional*, defaults to `True`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by the `apply_ocr` parameter in the `preprocess` method. ocr_lang (`str`, *optional*): The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is used. Can be overridden by the `ocr_lang` parameter in the `preprocess` method. tesseract_config (`str`, *optional*): Any additional custom configuration flags that are forwarded to the `config` parameter when calling Tesseract. For example: '--psm 6'. Can be overridden by the `tesseract_config` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_value: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, Iterable[float]] = None, image_std: Union[float, Iterable[float]] = None, apply_ocr: bool = True, ocr_lang: Optional[str] = None, tesseract_config: Optional[str] = "", **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_value self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.apply_ocr = apply_ocr self.ocr_lang = ocr_lang self.tesseract_config = tesseract_config # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample=None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Union[float, Iterable[float]] = None, image_std: Union[float, Iterable[float]] = None, apply_ocr: bool = None, ocr_lang: Optional[str] = None, tesseract_config: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Desired size of the output image after applying `resize`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` filters. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values between [0, 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to apply to the image pixel values. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `Iterable[float]`, *optional*, defaults to `self.image_mean`): Mean values to be used for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `Iterable[float]`, *optional*, defaults to `self.image_std`): Standard deviation values to be used for normalization. Only has an effect if `do_normalize` is set to `True`. apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`): Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`): The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is used. tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`): Any additional custom configuration flags that are forwarded to the `config` parameter when calling Tesseract. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std apply_ocr = apply_ocr if apply_ocr is not None else self.apply_ocr ocr_lang = ocr_lang if ocr_lang is not None else self.ocr_lang tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self, "pytesseract") words_batch = [] boxes_batch = [] for image in images: words, boxes = apply_tesseract(image, ocr_lang, tesseract_config, input_data_format=input_data_format) words_batch.append(words) boxes_batch.append(boxes) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if apply_ocr: data["words"] = words_batch data["boxes"] = boxes_batch return data __all__ = ["LayoutLMv3ImageProcessor"]
transformers/src/transformers/models/layoutlmv3/image_processing_layoutlmv3.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/image_processing_layoutlmv3.py", "repo_id": "transformers", "token_count": 7653 }
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert LLaVa-NeXT-Video checkpoints from the original repository. URL: https://github.com/LLaVA-VL/LLaVA-NeXT/tree/inference """ import argparse import glob import json from pathlib import Path import torch from accelerate import init_empty_weights from huggingface_hub import hf_hub_download, snapshot_download from safetensors import safe_open from transformers import ( AddedToken, AutoConfig, AutoTokenizer, LlavaNextImageProcessor, LlavaNextVideoConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoImageProcessor, LlavaNextVideoProcessor, ) KEYS_TO_MODIFY_MAPPING = { "model.vision_tower.": "", ".vision_resampler": "", # all lmms-lab models do avg pooling, so no vision_resampler "model.mm_projector": "multi_modal_projector", "model": "model.model", "vision_model.model": "vision_model", "lm_head": "language_model.lm_head", "model.model": "language_model.model", "multi_modal_projector.0": "multi_modal_projector.linear_1", "multi_modal_projector.2": "multi_modal_projector.linear_2", "language_model.model.image_newline": "image_newline", } # {{SYSTEM_PROMPT}} USER: <image>\n{{PROMPT}} ASSISTANT:" assistant end with "</s> " chat_vicuna = ( "{% for message in messages %}" "{% if message['role'] == 'system' %}" "{{ message['content'][0]['text'] }}" "{% else %}" "{{ message['role'].upper() + ': '}}" "{% endif %}" "{# Render all images first #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}" "{{ '<image>\n' }}" "{% endfor %}" "{# Render all text next #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}" "{{ content['text'] + ' '}}" "{% endfor %}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ 'ASSISTANT:' }}" "{% endif %}" ) # "[INST] <image>\nWhat is shown in this image? [/INST]" assistant end with "</s> " chat_mistral = ( "{% for message in messages %}" "{% if message['role'] == 'user' %}" "{{ '[INST] ' }}" "{# Render all images first #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}" "{{ '<image>\n' }}" "{% endfor %}" "{# Render all text next #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}" "{{ content['text'] }}" "{% endfor %}" "{{' [/INST]' }}" "{% elif message['role'] == 'assistant' %}" r"{{ ' ' + message['content'][0]['text'] + '<\s> '}}" "{% else %}" "{{ raise_exception('Only user and assistant roles are supported!') }}" "{% endif %}" "{% endfor %}" ) # "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n" chat_yi = ( "{% for message in messages %}" "{{'<|im_start|>' + message['role'] + '\n'}}" "{# Render all images first #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}" "{{ '<image>\n' }}" "{% endfor %}" "{# Render all text next #}" "{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}" "{{ content['text'] }}" "{% endfor %}" "{{'<|im_end|>' + '\n'}}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ '<|im_start|>assistant\n' }}" "{% endif %}" ) model2template = { "lmms-lab/LLaVA-NeXT-Video-7B-32K": chat_mistral, "lmms-lab/LLaVA-NeXT-Video-7B": chat_vicuna, "lmms-lab/LLaVA-NeXT-Video-7B-DPO": chat_vicuna, "lmms-lab/LLaVA-NeXT-Video-34B": chat_yi, "lmms-lab/LLaVA-NeXT-Video-34B-DPO": chat_yi, } def load_original_state_dict(model_id): directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"]) original_state_dict = {} for path in glob.glob(f"{directory_path}/*"): if path.endswith(".safetensors"): with safe_open(path, framework="pt", device="cpu") as f: for key in f.keys(): original_state_dict[key] = f.get_tensor(key) return original_state_dict def convert_state_dict_to_hf(state_dict): new_state_dict = {} for key, value in state_dict.items(): if key.endswith(".inv_freq"): continue for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) new_state_dict[key] = value.to(torch.bfloat16) return new_state_dict def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False): # load original config filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model") with open(filepath) as f: data = json.load(f) print(data) if model_id == "lmms-lab/LLaVA-NeXT-Video-7B-32K": text_model_id = "mistralai/Mistral-7B-Instruct-v0.2" video_token_index = 32000 image_token_index = 32001 overwrite_text_config = {} elif model_id in ["lmms-lab/LLaVA-NeXT-Video-7B", "lmms-lab/LLaVA-NeXT-Video-7B-DPO"]: text_model_id = "lmsys/vicuna-7b-v1.5" video_token_index = 32000 image_token_index = 32001 overwrite_text_config = {"factor": 2.0, "type": "linear"} elif model_id in ["lmms-lab/LLaVA-NeXT-Video-34B", "lmms-lab/LLaVA-NeXT-Video-34B-DPO"]: text_model_id = "NousResearch/Nous-Hermes-2-Yi-34B" video_token_index = 64000 image_token_index = 64001 overwrite_text_config = {} else: raise ValueError("Incorrect checkpoint referenced. Text model-id not identified!") vision_model_id = data["mm_vision_tower"] torch.set_default_dtype(torch.bfloat16) text_config = AutoConfig.from_pretrained(text_model_id) text_config = text_config.to_dict() text_config.update(overwrite_text_config) tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=True, padding_side="left") tokenizer.add_tokens(AddedToken("<video>", special=True, normalized=False), special_tokens=True) tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True) image_processor = LlavaNextImageProcessor.from_pretrained(vision_model_id) video_processor = LlavaNextVideoImageProcessor.from_pretrained(vision_model_id) processor = LlavaNextVideoProcessor( tokenizer=tokenizer, video_processor=video_processor, image_processor=image_processor, chat_template=model2template[model_id], ) config = LlavaNextVideoConfig( text_config=text_config, image_grid_pinpoints=image_processor.image_grid_pinpoints, use_image_newline_parameter=True, video_token_index=video_token_index, image_token_index=image_token_index, ) with init_empty_weights(): model = LlavaNextVideoForConditionalGeneration(config) # load original state dict state_dict = load_original_state_dict(model_id) state_dict = convert_state_dict_to_hf(state_dict) model.load_state_dict(state_dict, assign=True, strict=True) # See https://nlp.stanford.edu/~johnhew/vocab-expansion.html for why we get mean/stdev this way to expand embeddings pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data mu = torch.mean(pre_expansion_embeddings, dim=0).float() n = pre_expansion_embeddings.size()[0] sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma) # We add an image token so we resize the model # Pad to 64 for performance reasons pad_shape = 64 vocab_size = config.text_config.vocab_size # this one has 2 additional tokens, namely <image>, <video> and <pad> num_tokens = vocab_size + 3 model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape) model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack( tuple( (dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0])) ), dim=0, ) model.language_model.lm_head.weight.data[vocab_size:] = torch.stack( tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))), dim=0, ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: repo_id = model_id.split("/")[-1] print(f"Pushing model to hub repo: {repo_id}") model.push_to_hub(f"llava-hf/{repo_id}-hf") processor.push_to_hub(f"llava-hf/{repo_id}-hf") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", help="Hub location of the model to convert", default="lmms-lab/LLaVA-NeXT-Video-7B", choices=[ "lmms-lab/LLaVA-NeXT-Video-7B", "lmms-lab/LLaVA-NeXT-Video-7B-DPO", "lmms-lab/LLaVA-NeXT-Video-7B-32K", "lmms-lab/LLaVA-NeXT-Video-34B", "lmms-lab/LLaVA-NeXT-Video-34B-DPO", ], required=False, ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/llava_next_video/convert_llava_next_video_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/llava_next_video/convert_llava_next_video_weights_to_hf.py", "repo_id": "transformers", "token_count": 4425 }
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RoBERTa checkpoint.""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class LightningModel(pl.LightningModule): def __init__(self, model): super().__init__() self.model = model self.num_labels = 2 self.qa_outputs = nn.Linear(self.model.config.hidden_size, self.num_labels) # implement only because lightning requires to do so def forward(self): pass def convert_longformer_qa_checkpoint_to_pytorch( longformer_model: str, longformer_question_answering_ckpt_path: str, pytorch_dump_folder_path: str ): # load longformer model from model identifier longformer = LongformerModel.from_pretrained(longformer_model) lightning_model = LightningModel(longformer) ckpt = torch.load(longformer_question_answering_ckpt_path, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model longformer_for_qa = LongformerForQuestionAnswering.from_pretrained(longformer_model) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(pytorch_dump_folder_path) print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
transformers/src/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py", "repo_id": "transformers", "token_count": 1071 }
# coding=utf-8 # Copyright 2018, Hao Tan, Mohit Bansal # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LXMERT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class LxmertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Lxmert [unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the LXMERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LxmertModel`] or [`TFLxmertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_qa_labels (`int`, *optional*, defaults to 9500): This represents the total number of different question answering (QA) labels there are. If using more than one dataset with QA, the user will need to account for the total number of labels that all of the datasets have in total. num_object_labels (`int`, *optional*, defaults to 1600): This represents the total number of semantically unique objects that lxmert will be able to classify a pooled-object feature as belonging too. num_attr_labels (`int`, *optional*, defaults to 400): This represents the total number of semantically unique attributes that lxmert will be able to classify a pooled-object feature as possessing. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`BertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. l_layers (`int`, *optional*, defaults to 9): Number of hidden layers in the Transformer language encoder. x_layers (`int`, *optional*, defaults to 5): Number of hidden layers in the Transformer cross modality encoder. r_layers (`int`, *optional*, defaults to 5): Number of hidden layers in the Transformer visual encoder. visual_feat_dim (`int`, *optional*, defaults to 2048): This represents the last dimension of the pooled-object features used as input for the model, representing the size of each object feature itself. visual_pos_dim (`int`, *optional*, defaults to 4): This represents the number of spacial features that are mixed into the visual features. The default is set to 4 because most commonly this will represent the location of a bounding box. i.e., (x, y, width, height) visual_loss_normalizer (`float`, *optional*, defaults to 6.67): This represents the scaling factor in which each visual loss is multiplied by if during pretraining, one decided to train with multiple vision-based loss objectives. task_matched (`bool`, *optional*, defaults to `True`): This task is used for sentence-image matching. If the sentence correctly describes the image the label will be 1. If the sentence does not correctly describe the image, the label will be 0. task_mask_lm (`bool`, *optional*, defaults to `True`): Whether or not to add masked language modeling (as used in pretraining models such as BERT) to the loss objective. task_obj_predict (`bool`, *optional*, defaults to `True`): Whether or not to add object prediction, attribute prediction and feature regression to the loss objective. task_qa (`bool`, *optional*, defaults to `True`): Whether or not to add the question-answering loss to the objective visual_obj_loss (`bool`, *optional*, defaults to `True`): Whether or not to calculate the object-prediction loss objective visual_attr_loss (`bool`, *optional*, defaults to `True`): Whether or not to calculate the attribute-prediction loss objective visual_feat_loss (`bool`, *optional*, defaults to `True`): Whether or not to calculate the feature-regression loss objective """ model_type = "lxmert" attribute_map = {} def __init__( self, vocab_size=30522, hidden_size=768, num_attention_heads=12, num_qa_labels=9500, num_object_labels=1600, num_attr_labels=400, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, l_layers=9, x_layers=5, r_layers=5, visual_feat_dim=2048, visual_pos_dim=4, visual_loss_normalizer=6.67, task_matched=True, task_mask_lm=True, task_obj_predict=True, task_qa=True, visual_obj_loss=True, visual_attr_loss=True, visual_feat_loss=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.num_qa_labels = num_qa_labels self.num_object_labels = num_object_labels self.num_attr_labels = num_attr_labels self.l_layers = l_layers self.x_layers = x_layers self.r_layers = r_layers self.visual_feat_dim = visual_feat_dim self.visual_pos_dim = visual_pos_dim self.visual_loss_normalizer = visual_loss_normalizer self.task_matched = task_matched self.task_mask_lm = task_mask_lm self.task_obj_predict = task_obj_predict self.task_qa = task_qa self.visual_obj_loss = visual_obj_loss self.visual_attr_loss = visual_attr_loss self.visual_feat_loss = visual_feat_loss self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**kwargs) __all__ = ["LxmertConfig"]
transformers/src/transformers/models/lxmert/configuration_lxmert.py/0
{ "file_path": "transformers/src/transformers/models/lxmert/configuration_lxmert.py", "repo_id": "transformers", "token_count": 3383 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAMBA2 configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Mamba2Config(PretrainedConfig): """ This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MAMBA2 [state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_heads (`int`, *optional*, defaults to 128): Number of heads for the evolution matrices of mamba 2. head_dim (`int`, *optional*, defaults to 64): Dimension of each head. vocab_size (`int`, *optional*, defaults to 32768): Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Mamba2Model`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. state_size (`int`, *optional*, defaults to 128): shape of the state space latents. num_hidden_layers (`int`, *optional*, defaults to 64): Number of hidden layers in the model. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 2): The id of the end of sentence token in the vocabulary. expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. n_groups (`int`, *optional*, defaults to 8): Number of groups for the evolution matrices of mamba 2. use_bias (`bool`, *optional*, defaults to `False`): Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.1): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. residual_in_fp32 (`bool`, *optional*, defaults to `True`): Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`): Accepted range of time step values. rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): Whether or not to rescale `out_proj` weights when initializing. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the cache should be used. rms_norm (`bool`, *optional*, defaults to `True`): Whether to use RMS norm or not. chunk_size (`int`, *optional*, defaults to 256): Size of the chunks that will comprise the sequence. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings or not. Example: ```python >>> from transformers import Mamba2Config, Mamba2Model >>> # Initializing a Mamba2 configuration >>> configuration = Mamba2Config() >>> # Initializing a model (with random weights) from the configuration >>> model = Mamba2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mamba2" def __init__( self, num_heads=128, head_dim=64, vocab_size=32768, hidden_size=4096, state_size=128, num_hidden_layers=64, layer_norm_epsilon=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, expand=2, conv_kernel=4, n_groups=8, use_bias=False, use_conv_bias=True, hidden_act="silu", initializer_range=0.1, residual_in_fp32=True, time_step_rank="auto", time_step_min=0.001, time_step_max=0.1, time_step_floor=1e-4, time_step_limit=(0.0, float("inf")), rescale_prenorm_residual=False, use_cache=True, rms_norm=True, chunk_size=256, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.state_size = state_size self.num_hidden_layers = num_hidden_layers self.layer_norm_epsilon = layer_norm_epsilon self.conv_kernel = conv_kernel self.expand = expand self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.use_bias = use_bias self.use_conv_bias = use_conv_bias self.hidden_act = hidden_act self.initializer_range = initializer_range self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_floor = time_step_floor self.rescale_prenorm_residual = rescale_prenorm_residual self.residual_in_fp32 = residual_in_fp32 self.use_cache = use_cache self.n_groups = n_groups self.num_heads = num_heads self.head_dim = head_dim self.rms_norm = rms_norm self.state_size = state_size self.chunk_size = chunk_size self.time_step_limit = time_step_limit self.tie_word_embeddings = tie_word_embeddings super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["Mamba2Config"]
transformers/src/transformers/models/mamba2/configuration_mamba2.py/0
{ "file_path": "transformers/src/transformers/models/mamba2/configuration_mamba2.py", "repo_id": "transformers", "token_count": 3221 }
# coding=utf-8 # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for MarkupLM.""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class MarkupLMTokenizer(PreTrainedTokenizer): r""" Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, tags_dict, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_depth=50, max_width=1000, pad_width=1001, pad_token_label=-100, only_label_first_subword=True, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.tags_dict = tags_dict self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.max_depth = max_depth self.max_width = max_width self.pad_width = pad_width self.unk_tag_id = len(self.tags_dict) self.pad_tag_id = self.unk_tag_id + 1 self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth super().__init__( vocab_file=vocab_file, merges_file=merges_file, tags_dict=tags_dict, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_depth=max_depth, max_width=max_width, pad_width=pad_width, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword def get_xpath_seq(self, xpath): """ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of tag IDs and corresponding subscripts, taking into account max depth. """ xpath_tags_list = [] xpath_subs_list = [] xpath_units = xpath.split("/") for unit in xpath_units: if not unit.strip(): continue name_subs = unit.strip().split("[") tag_name = name_subs[0] sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) xpath_subs_list.append(min(self.max_width, sub)) xpath_tags_list = xpath_tags_list[: self.max_depth] xpath_subs_list = xpath_subs_list[: self.max_depth] xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) return xpath_tags_list, xpath_subs_list @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" logger.warning( "MarkupLM now does not support generative tasks, decoding is experimental and subject to change." ) text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) # save vocab_file with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") # save merge_file index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def build_xpath_tags_with_special_tokens( self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_tags_seq] if len(xpath_tags_1) == 0: return pad + xpath_tags_0 + pad return pad + xpath_tags_0 + pad + xpath_tags_1 + pad def build_xpath_subs_with_special_tokens( self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_subs_seq] if len(xpath_subs_1) == 0: return pad + xpath_subs_0 + pad return pad + xpath_subs_0 + pad + xpath_subs_1 + pad def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, xpaths: Union[List[List[int]], List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with node-level xpaths and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of nodes). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). xpaths (`List[List[int]]`, `List[List[List[int]]]`): Node-level xpaths. node_labels (`List[int]`, `List[List[int]]`, *optional*): Node-level integer labels (for token classification tasks). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = nodes if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be nodes if not isinstance(text, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) nodes = text if text_pair is None else text_pair assert xpaths is not None, "You must provide corresponding xpaths" if is_batched: assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" for nodes_example, xpaths_example in zip(nodes, xpaths): assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" else: assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: bool = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)): batch_text_or_text_pair, xpaths_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, xpaths_example, node_labels=node_labels[idx] if node_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> List[int]: encoded_inputs = self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, xpaths=xpaths, text_pair=text_pair, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level `node_labels` are turned into token-level `labels`. The node label is used for the first token of the node, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] xpath_tags_seq = [] xpath_subs_seq = [] pair_xpath_tags_seq = [] pair_xpath_subs_seq = [] labels = [] if text_pair is None: if node_labels is None: # CASE 1: web page classification (training + inference) + CASE 2: token classification (inference) for word, xpath in zip(text, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) else: # CASE 2: token classification (training) for word, xpath, label in zip(text, xpaths, node_labels): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: web page question answering (inference) # text = question # text_pair = nodes tokens = self.tokenize(text) xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))] xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))] for word, xpath in zip(text_pair, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) = self.truncate_sequences( ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, pair_ids=pair_ids, pair_xpath_tags_seq=pair_xpath_tags_seq, pair_xpath_subs_seq=pair_xpath_subs_seq, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq) xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq) if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["xpath_tags_seq"] = xpath_tags_ids encoded_inputs["xpath_subs_seq"] = xpath_subs_ids if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], xpath_tags_seq: List[List[int]], xpath_subs_seq: List[List[int]], pair_ids: Optional[List[int]] = None, pair_xpath_tags_seq: Optional[List[List[int]]] = None, pair_xpath_subs_seq: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Args: Truncates a sequence pair in-place following the strategy. ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. xpath_tags_seq (`List[List[int]]`): XPath tag IDs of the first sequence. xpath_subs_seq (`List[List[int]]`): XPath sub IDs of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_xpath_tags_seq (`List[List[int]]`, *optional*): XPath tag IDs of the second sequence. pair_xpath_subs_seq (`List[List[int]]`, *optional*): XPath sub IDs of the second sequence. num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:] ids = ids[:-num_tokens_to_remove] xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove] xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): ids = ids[:-1] xpath_tags_seq = xpath_tags_seq[:-1] xpath_subs_seq = xpath_subs_seq[:-1] labels = labels[:-1] else: pair_ids = pair_ids[:-1] pair_xpath_tags_seq = pair_xpath_tags_seq[:-1] pair_xpath_subs_seq = pair_xpath_subs_seq[:-1] elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove] pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Args: Pad encoded inputs (on left/right and up to predefined length or max length in the batch) encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = ( encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference ) if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = ( encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ "xpath_tags_seq" ] if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ "xpath_subs_seq" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs __all__ = ["MarkupLMTokenizer"]
transformers/src/transformers/models/markuplm/tokenization_markuplm.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/tokenization_markuplm.py", "repo_id": "transformers", "token_count": 32792 }
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer Swin Transformer. The reason Swin Transformer is implemented here is because MaskFormer uses the hidden states before downsampling, which is different from the default Swin Transformer.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import Tensor, nn from ...activations import ACT2FN from ...file_utils import ModelOutput from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import torch_int from ...utils.backbone_utils import BackboneMixin from .configuration_maskformer_swin import MaskFormerSwinConfig @dataclass class MaskFormerSwinModelOutputWithPooling(ModelOutput): """ Class for MaskFormerSwinModel's outputs that also contains the spatial dimensions of the hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state after a mean pooling operation. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot be inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerSwinBaseModelOutput(ModelOutput): """ Class for SwinEncoder's outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class MaskFormerSwinEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = MaskFormerSwinPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values, interpolate_pos_encoding): _, num_channels, height, width = pixel_values.shape embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) if self.position_embeddings is not None: if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->MaskFormerSwin class MaskFormerSwinPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging class MaskFormerSwinPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature # Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->MaskFormerSwin class MaskFormerSwinDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->MaskFormerSwin class MaskFormerSwinSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MaskFormerSwinModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->MaskFormerSwin class MaskFormerSwinSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->MaskFormerSwin class MaskFormerSwinAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = MaskFormerSwinSelfAttention(config, dim, num_heads, window_size) self.output = MaskFormerSwinSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->MaskFormerSwin class MaskFormerSwinIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->MaskFormerSwin class MaskFormerSwinOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MaskFormerSwinLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, drop_path_rate=0.0, shift_size=0): super().__init__() self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = MaskFormerSwinAttention(config, dim, num_heads, self.window_size) self.drop_path = MaskFormerSwinDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = MaskFormerSwinIntermediate(config, dim) self.output = MaskFormerSwinOutput(config, dim) def get_attn_mask(self, input_resolution): if self.shift_size > 0: # calculate attention mask for SW-MSA height, width = input_resolution img_mask = torch.zeros((1, height, width, 1)) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_left = pad_top = 0 pad_rigth = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, pad_left, pad_rigth, pad_top, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward(self, hidden_states, input_dimensions, head_mask=None, output_attentions=False): height, width = input_dimensions batch_size, dim, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask((height_pad, width_pad)) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) self_attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse( attention_windows, self.window_size, height_pad, width_pad ) # B height' width' C # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) outputs = (layer_output,) + outputs return outputs class MaskFormerSwinStage(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinStage.__init__ with Swin->MaskFormerSwin def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ MaskFormerSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, drop_path_rate=drop_path[i], shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False ): all_hidden_states = () if output_hidden_states else None height, width = input_dimensions for i, block_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None block_hidden_states = block_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) hidden_states = block_hidden_states[0] if output_hidden_states: all_hidden_states += (hidden_states,) if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states, input_dimensions) else: output_dimensions = (height, width, height, width) return hidden_states, output_dimensions, all_hidden_states class MaskFormerSwinEncoder(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinEncoder.__init__ with Swin->MaskFormerSwin def __init__(self, config, grid_size): super().__init__() self.num_layers = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ MaskFormerSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=MaskFormerSwinPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_input_dimensions = () all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_hidden_states, output_dimensions, layer_all_hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_hidden_states, output_dimensions, layer_all_hidden_states = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, output_hidden_states, ) input_dimensions = (output_dimensions[-2], output_dimensions[-1]) all_input_dimensions += (input_dimensions,) if output_hidden_states: all_hidden_states += (layer_all_hidden_states,) hidden_states = layer_hidden_states if output_attentions: all_self_attentions = all_self_attentions + (layer_all_hidden_states[1],) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return MaskFormerSwinBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, hidden_states_spatial_dimensions=all_input_dimensions, attentions=all_self_attentions, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->MaskFormerSwin, swin->model class MaskFormerSwinPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MaskFormerSwinConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MaskFormerSwinStage"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class MaskFormerSwinModel(MaskFormerSwinPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = MaskFormerSwinEmbeddings(config) self.encoder = MaskFormerSwinEncoder(config, self.embeddings.patch_grid) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, pixel_values=None, head_mask=None, output_attentions=None, output_hidden_states=None, interpolate_pos_encoding=False, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] hidden_states_spatial_dimensions = (input_dimensions,) + encoder_outputs.hidden_states_spatial_dimensions return MaskFormerSwinModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, hidden_states_spatial_dimensions=hidden_states_spatial_dimensions, attentions=encoder_outputs.attentions, ) class MaskFormerSwinBackbone(MaskFormerSwinPreTrainedModel, BackboneMixin): """ MaskFormerSwin backbone, designed especially for the MaskFormer framework. This classes reshapes `hidden_states` from (`batch_size, sequence_length, hidden_size)` to (`batch_size, num_channels, height, width)`). It also adds additional layernorms after each stage. Args: config (`MaskFormerSwinConfig`): The configuration used by [`MaskFormerSwinModel`]. """ def __init__(self, config: MaskFormerSwinConfig): super().__init__(config) super()._init_backbone(config) self.model = MaskFormerSwinModel(config) if "stem" in self.out_features: raise ValueError("This backbone does not support 'stem' in the `out_features`.") self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] self.hidden_states_norms = nn.ModuleList( [nn.LayerNorm(num_channels) for num_channels in self.num_features[1:]] ) # Initialize weights and apply final processing self.post_init() def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.model( pixel_values, output_hidden_states=True, output_attentions=output_attentions, return_dict=True ) # we skip the stem hidden_states = outputs.hidden_states[1:] # we need to reshape the hidden states to their original spatial dimensions # spatial dimensions contains all the heights and widths of each stage, including after the embeddings spatial_dimensions: Tuple[Tuple[int, int]] = outputs.hidden_states_spatial_dimensions feature_maps = () for i, (hidden_state, stage, (height, width)) in enumerate( zip(hidden_states, self.stage_names[1:], spatial_dimensions) ): norm = self.hidden_states_norms[i] # the last element corespond to the layer's last block output but before patch merging hidden_state_unpolled = hidden_state[-1] hidden_state_norm = norm(hidden_state_unpolled) # the pixel decoder (FPN) expects 3D tensors (features) batch_size, _, hidden_size = hidden_state_norm.shape # reshape "b (h w) d -> b d h w" hidden_state_permuted = ( hidden_state_norm.permute(0, 2, 1).view((batch_size, hidden_size, height, width)).contiguous() ) if stage in self.out_features: feature_maps += (hidden_state_permuted,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) if output_attentions: output += (outputs.attentions,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) __all__ = ["MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel"]
transformers/src/transformers/models/maskformer/modeling_maskformer_swin.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/modeling_maskformer_swin.py", "repo_id": "transformers", "token_count": 17818 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MobileNetV2 checkpoints from the tensorflow/models library.""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetV2Config, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2ImageProcessor, load_tf_weights_in_mobilenet_v2, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_mobilenet_v2_config(model_name): config = MobileNetV2Config(layer_norm_eps=0.001) if "quant" in model_name: raise ValueError("Quantized models are not supported.") matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name) if matches: config.depth_multiplier = float(matches[1]) config.image_size = int(matches[2]) if model_name.startswith("deeplabv3_"): config.output_stride = 8 config.num_labels = 21 filename = "pascal-voc-id2label.json" else: # The TensorFlow version of MobileNetV2 predicts 1001 classes instead # of the usual 1000. The first class (index 0) is "background". config.num_labels = 1001 filename = "imagenet-1k-id2label.json" repo_id = "huggingface/label-files" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) if config.num_labels == 1001: id2label = {int(k) + 1: v for k, v in id2label.items()} id2label[0] = "background" else: id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our MobileNetV2 structure. """ config = get_mobilenet_v2_config(model_name) # Load 🤗 model if model_name.startswith("deeplabv3_"): model = MobileNetV2ForSemanticSegmentation(config).eval() else: model = MobileNetV2ForImageClassification(config).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path) # Check outputs on an image, prepared by MobileNetV2ImageProcessor image_processor = MobileNetV2ImageProcessor( crop_size={"width": config.image_size, "height": config.image_size}, size={"shortest_edge": config.image_size + 32}, ) encoding = image_processor(images=prepare_img(), return_tensors="pt") outputs = model(**encoding) logits = outputs.logits if model_name.startswith("deeplabv3_"): assert logits.shape == (1, 21, 65, 65) if model_name == "deeplabv3_mobilenet_v2_1.0_513": expected_logits = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ) else: raise ValueError(f"Unknown model name: {model_name}") assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4) else: assert logits.shape == (1, 1001) if model_name == "mobilenet_v2_1.4_224": expected_logits = torch.tensor([0.0181, -1.0015, 0.4688]) elif model_name == "mobilenet_v2_1.0_224": expected_logits = torch.tensor([0.2445, -1.1993, 0.1905]) elif model_name == "mobilenet_v2_0.75_160": expected_logits = torch.tensor([0.2482, 0.4136, 0.6669]) elif model_name == "mobilenet_v2_0.35_96": expected_logits = torch.tensor([0.1451, -0.4624, 0.7192]) else: expected_logits = None if expected_logits is not None: assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") repo_id = "google/" + model_name image_processor.push_to_hub(repo_id) model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v2_1.0_224", type=str, help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 2730 }
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_modernbert.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Literal from ...configuration_utils import PretrainedConfig class ModernBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ModernBertModel`]. It is used to instantiate an ModernBert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ModernBERT-base. e.g. [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50368): Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ModernBertModel`] hidden_size (`int`, *optional*, defaults to 768): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 1152): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 22): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu"` if not specified. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_cutoff_factor (`float`, *optional*, defaults to 2.0): The cutoff factor for the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. norm_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the normalization layers. pad_token_id (`int`, *optional*, defaults to 50283): Padding token id. eos_token_id (`int`, *optional*, defaults to 50282): End of stream token id. bos_token_id (`int`, *optional*, defaults to 50281): Beginning of stream token id. cls_token_id (`int`, *optional*, defaults to 50281): Classification token id. sep_token_id (`int`, *optional*, defaults to 50282): Separation token id. global_rope_theta (`float`, *optional*, defaults to 160000.0): The base period of the global RoPE embeddings. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. global_attn_every_n_layers (`int`, *optional*, defaults to 3): The number of layers between global attention layers. local_attention (`int`, *optional*, defaults to 128): The window size for local attention. local_rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the local RoPE embeddings. embedding_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the MLP layers. mlp_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the MLP layers. decoder_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the decoder layers. classifier_pooling (`str`, *optional*, defaults to `"cls"`): The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the CLS token doesn't attend to all tokens on long sequences. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the classifier. classifier_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the classifier. classifier_activation (`str`, *optional*, defaults to `"gelu"`): The activation function for the classifier. deterministic_flash_attn (`bool`, *optional*, defaults to `False`): Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic. sparse_prediction (`bool`, *optional*, defaults to `False`): Whether to use sparse prediction for the masked language model instead of returning the full dense logits. sparse_pred_ignore_index (`int`, *optional*, defaults to -100): The index to ignore for the sparse prediction. reference_compile (`bool`, *optional*): Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may be faster in some scenarios. repad_logits_with_grad (`bool`, *optional*, defaults to `False`): When True, ModernBertForMaskedLM keeps track of the logits' gradient when repadding for output. This only applies when using Flash Attention 2 with passed labels. Otherwise output logits always have a gradient. Examples: ```python >>> from transformers import ModernBertModel, ModernBertConfig >>> # Initializing a ModernBert style configuration >>> configuration = ModernBertConfig() >>> # Initializing a model from the modernbert-base style configuration >>> model = ModernBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "modernbert" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50368, hidden_size=768, intermediate_size=1152, num_hidden_layers=22, num_attention_heads=12, hidden_activation="gelu", max_position_embeddings=8192, initializer_range=0.02, initializer_cutoff_factor=2.0, norm_eps=1e-5, norm_bias=False, pad_token_id=50283, eos_token_id=50282, bos_token_id=50281, cls_token_id=50281, sep_token_id=50282, global_rope_theta=160000.0, attention_bias=False, attention_dropout=0.0, global_attn_every_n_layers=3, local_attention=128, local_rope_theta=10000.0, embedding_dropout=0.0, mlp_bias=False, mlp_dropout=0.0, decoder_bias=True, classifier_pooling: Literal["cls", "mean"] = "cls", classifier_dropout=0.0, classifier_bias=False, classifier_activation="gelu", deterministic_flash_attn=False, sparse_prediction=False, sparse_pred_ignore_index=-100, reference_compile=None, repad_logits_with_grad=False, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, cls_token_id=cls_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.initializer_cutoff_factor = initializer_cutoff_factor self.norm_eps = norm_eps self.norm_bias = norm_bias self.global_rope_theta = global_rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.global_attn_every_n_layers = global_attn_every_n_layers self.local_attention = local_attention self.local_rope_theta = local_rope_theta self.embedding_dropout = embedding_dropout self.mlp_bias = mlp_bias self.mlp_dropout = mlp_dropout self.decoder_bias = decoder_bias self.classifier_pooling = classifier_pooling self.classifier_dropout = classifier_dropout self.classifier_bias = classifier_bias self.classifier_activation = classifier_activation self.deterministic_flash_attn = deterministic_flash_attn self.sparse_prediction = sparse_prediction self.sparse_pred_ignore_index = sparse_pred_ignore_index self.reference_compile = reference_compile self.repad_logits_with_grad = repad_logits_with_grad if self.classifier_pooling not in ["cls", "mean"]: raise ValueError( f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.' ) __all__ = ["ModernBertConfig"]
transformers/src/transformers/models/modernbert/configuration_modernbert.py/0
{ "file_path": "transformers/src/transformers/models/modernbert/configuration_modernbert.py", "repo_id": "transformers", "token_count": 4556 }
from typing import Callable, Optional, Tuple import torch from torch import nn from ...cache_utils import Cache from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import logging from ..llama.modeling_llama import LlamaRMSNorm, eager_attention_forward from ..olmo.configuration_olmo import OlmoConfig from ..olmo.modeling_olmo import ( OlmoAttention, OlmoDecoderLayer, OlmoForCausalLM, OlmoModel, apply_rotary_pos_emb, ) logger = logging.get_logger(__name__) class Olmo2Config(OlmoConfig): r""" This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Olmo2Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 50279): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. ```python >>> from transformers import Olmo2Model, Olmo2Config >>> # Initializing a Olmo2 7B style configuration >>> configuration = Olmo2Config() >>> # Initializing a model from the Olmo2 7B style configuration >>> model = Olmo2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "olmo2" base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.k_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.v_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the added norm on q and k "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } def __init__( self, vocab_size=50304, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, use_cache=True, pad_token_id=1, bos_token_id=None, eos_token_id=50279, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, rms_norm_eps=1e-5, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, intermediate_size=intermediate_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_key_value_heads=num_key_value_heads, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, initializer_range=initializer_range, use_cache=use_cache, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, rope_theta=rope_theta, rope_scaling=rope_scaling, attention_bias=attention_bias, attention_dropout=attention_dropout, **kwargs, ) self.rms_norm_eps = rms_norm_eps del self.clip_qkv class Olmo2RMSNorm(LlamaRMSNorm): pass ALL_LAYERNORM_LAYERS.append(Olmo2RMSNorm) # Olmo2 attention is identical to OLMo attention except: # - Norm is applied to attention queries and keys. # - No qkv clipping. class Olmo2Attention(OlmoAttention): def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None): super().__init__(config, layer_idx=layer_idx) self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps) self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_norm(self.q_proj(hidden_states)) key_states = self.k_norm(self.k_proj(hidden_states)) value_states = self.v_proj(hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights # The OLMo2 layers are identical to those of the OLMo model except: # - RMSNorm is used instead of standard layer norm. # - Norm is applied after attention/feedforward rather than before. class Olmo2DecoderLayer(OlmoDecoderLayer): def __init__(self, config: Olmo2Config, layer_idx: int): super().__init__(config, layer_idx=layer_idx) self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx) del self.input_layernorm def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs # The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of # standard layer norm for the output norm. class Olmo2Model(OlmoModel): def __init__(self, config: Olmo2Config): super().__init__(config) self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layers = nn.ModuleList( [Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) # The heads now only need to redefine the model inside to the correct `RobertaModel` class Olmo2ForCausalLM(OlmoForCausalLM): pass __all__ = [ "Olmo2Config", "Olmo2ForCausalLM", "Olmo2Model", "Olmo2PreTrainedModel", # noqa: F822 ]
transformers/src/transformers/models/olmo2/modular_olmo2.py/0
{ "file_path": "transformers/src/transformers/models/olmo2/modular_olmo2.py", "repo_id": "transformers", "token_count": 5647 }
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for OWLv2.""" import warnings from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_to_corners_format, pad, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_scipy_available, is_torch_available, is_vision_available, logging, requires_backends, ) if is_torch_available(): import torch if is_vision_available(): import PIL if is_scipy_available(): from scipy import ndimage as ndi if TYPE_CHECKING: from .modeling_owlv2 import Owlv2ObjectDetectionOutput logger = logging.get_logger(__name__) def _scale_boxes(boxes, target_sizes): """ Scale batch of bounding boxes to the target sizes. Args: boxes (`torch.Tensor` of shape `(batch_size, num_boxes, 4)`): Bounding boxes to scale. Each box is expected to be in (x1, y1, x2, y2) format. target_sizes (`List[Tuple[int, int]]` or `torch.Tensor` of shape `(batch_size, 2)`): Target sizes to scale the boxes to. Each target size is expected to be in (height, width) format. Returns: `torch.Tensor` of shape `(batch_size, num_boxes, 4)`: Scaled bounding boxes. """ if isinstance(target_sizes, (list, tuple)): image_height = torch.tensor([i[0] for i in target_sizes]) image_width = torch.tensor([i[1] for i in target_sizes]) elif isinstance(target_sizes, torch.Tensor): image_height, image_width = target_sizes.unbind(1) else: raise ValueError("`target_sizes` must be a list, tuple or torch.Tensor") # for owlv2 image is padded to max size unlike owlvit, thats why we have to scale boxes to max size max_size = torch.max(image_height, image_width) scale_factor = torch.stack([max_size, max_size, max_size, max_size], dim=1) scale_factor = scale_factor.unsqueeze(1).to(boxes.device) boxes = boxes * scale_factor return boxes # Copied from transformers.models.owlvit.image_processing_owlvit._upcast def _upcast(t): # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.owlvit.image_processing_owlvit.box_area def box_area(boxes): """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.owlvit.image_processing_owlvit.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def _preprocess_resize_output_shape(image, output_shape): """Validate resize output shape according to input image. Args: image (`np.ndarray`): Image to be resized. output_shape (`iterable`): Size of the generated output image `(rows, cols[, ...][, dim])`. If `dim` is not provided, the number of channels is preserved. Returns image (`np.ndarray`): The input image, but with additional singleton dimensions appended in the case where `len(output_shape) > input.ndim`. output_shape (`Tuple`): The output shape converted to tuple. Raises ------ ValueError: If output_shape length is smaller than the image number of dimensions. Notes ----- The input image is reshaped if its number of dimensions is not equal to output_shape_length. """ output_shape = tuple(output_shape) output_ndim = len(output_shape) input_shape = image.shape if output_ndim > image.ndim: # append dimensions to input_shape input_shape += (1,) * (output_ndim - image.ndim) image = np.reshape(image, input_shape) elif output_ndim == image.ndim - 1: # multichannel case: append shape of last axis output_shape = output_shape + (image.shape[-1],) elif output_ndim < image.ndim: raise ValueError("output_shape length cannot be smaller than the " "image number of dimensions") return image, output_shape def _clip_warp_output(input_image, output_image): """Clip output image to range of values of input image. Note that this function modifies the values of *output_image* in-place. Taken from: https://github.com/scikit-image/scikit-image/blob/b4b521d6f0a105aabeaa31699949f78453ca3511/skimage/transform/_warps.py#L640. Args: input_image : ndarray Input image. output_image : ndarray Output image, which is modified in-place. """ min_val = np.min(input_image) if np.isnan(min_val): # NaNs detected, use NaN-safe min/max min_func = np.nanmin max_func = np.nanmax min_val = min_func(input_image) else: min_func = np.min max_func = np.max max_val = max_func(input_image) output_image = np.clip(output_image, min_val, max_val) return output_image class Owlv2ImageProcessor(BaseImageProcessor): r""" Constructs an OWLv2 image processor. Args: do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image to a square with gray pixels on the bottom and the right. Can be overriden by `do_pad` in the `preprocess` method. do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 960, "width": 960}`): Size to resize the image to. Can be overriden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling method to use if resizing the image. Can be overriden by `resample` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_pad: bool = True, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.do_resize = do_resize self.size = size if size is not None else {"height": 960, "width": 960} self.resample = resample self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD def pad( self, image: np.array, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad an image to a square with gray pixels on the bottom and the right, as per the original OWLv2 implementation. Args: image (`np.ndarray`): Image to pad. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ height, width = get_image_size(image) size = max(height, width) image = pad( image=image, padding=((0, size - height), (0, size - width)), constant_values=0.5, data_format=data_format, input_data_format=input_data_format, ) return image def resize( self, image: np.ndarray, size: Dict[str, int], anti_aliasing: bool = True, anti_aliasing_sigma=None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image as per the original implementation. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary containing the height and width to resize the image to. anti_aliasing (`bool`, *optional*, defaults to `True`): Whether to apply anti-aliasing when downsampling the image. anti_aliasing_sigma (`float`, *optional*, defaults to `None`): Standard deviation for Gaussian kernel when downsampling the image. If `None`, it will be calculated automatically. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ requires_backends(self, "scipy") output_shape = (size["height"], size["width"]) image = to_channel_dimension_format(image, ChannelDimension.LAST) image, output_shape = _preprocess_resize_output_shape(image, output_shape) input_shape = image.shape factors = np.divide(input_shape, output_shape) # Translate modes used by np.pad to those used by scipy.ndimage ndi_mode = "mirror" cval = 0 order = 1 if anti_aliasing: if anti_aliasing_sigma is None: anti_aliasing_sigma = np.maximum(0, (factors - 1) / 2) else: anti_aliasing_sigma = np.atleast_1d(anti_aliasing_sigma) * np.ones_like(factors) if np.any(anti_aliasing_sigma < 0): raise ValueError("Anti-aliasing standard deviation must be " "greater than or equal to zero") elif np.any((anti_aliasing_sigma > 0) & (factors <= 1)): warnings.warn( "Anti-aliasing standard deviation greater than zero but " "not down-sampling along all axes" ) filtered = ndi.gaussian_filter(image, anti_aliasing_sigma, cval=cval, mode=ndi_mode) else: filtered = image zoom_factors = [1 / f for f in factors] out = ndi.zoom(filtered, zoom_factors, order=order, mode=ndi_mode, cval=cval, grid_mode=True) image = _clip_warp_output(image, out) image = to_channel_dimension_format(image, input_data_format, ChannelDimension.LAST) image = ( to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image ) return image @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_pad: bool = None, do_resize: bool = None, size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image to a square with gray pixels on the bottom and the right. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size to resize the image to. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_pad = do_pad if do_pad is not None else self.do_pad do_resize = do_resize if do_resize is not None else self.do_resize do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size) # for BC images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # Here, pad and resize methods are different from the rest of image processors # as they don't have any resampling in resize() # or pad size in pad() (the maximum of (height, width) is taken instead). # hence, these arguments don't need to be passed in validate_preprocess_arguments. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, size=size, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_pad: images = [self.pad(image=image, input_data_format=input_data_format) for image in images] if do_resize: images = [ self.resize( image=image, size=size, input_data_format=input_data_format, ) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_object_detection with OwlViT->Owlv2 def post_process_object_detection( self, outputs: "Owlv2ObjectDetectionOutput", threshold: float = 0.1, target_sizes: Optional[Union[TensorType, List[Tuple]]] = None, ): """ Converts the raw output of [`Owlv2ForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`Owlv2ObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.1): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the following keys: - "scores": The confidence scores for each predicted box on the image. - "labels": Indexes of the classes predicted by the model on the image. - "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. """ batch_logits, batch_boxes = outputs.logits, outputs.pred_boxes batch_size = len(batch_logits) if target_sizes is not None and len(target_sizes) != batch_size: raise ValueError("Make sure that you pass in as many target sizes as images") # batch_logits of shape (batch_size, num_queries, num_classes) batch_class_logits = torch.max(batch_logits, dim=-1) batch_scores = torch.sigmoid(batch_class_logits.values) batch_labels = batch_class_logits.indices # Convert to [x0, y0, x1, y1] format batch_boxes = center_to_corners_format(batch_boxes) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: batch_boxes = _scale_boxes(batch_boxes, target_sizes) results = [] for scores, labels, boxes in zip(batch_scores, batch_labels, batch_boxes): keep = scores > threshold scores = scores[keep] labels = labels[keep] boxes = boxes[keep] results.append({"scores": scores, "labels": labels, "boxes": boxes}) return results # Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_image_guided_detection def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None): """ Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO api. Args: outputs ([`OwlViTImageGuidedObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.0): Minimum confidence threshold to use to filter out predicted boxes. nms_threshold (`float`, *optional*, defaults to 0.3): IoU threshold for non-maximum suppression of overlapping boxes. target_sizes (`torch.Tensor`, *optional*): Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to None, predictions will not be unnormalized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. All labels are set to None as `OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection. """ logits, target_boxes = outputs.logits, outputs.target_pred_boxes if target_sizes is not None and len(logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes is not None and target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") probs = torch.max(logits, dim=-1) scores = torch.sigmoid(probs.values) # Convert to [x0, y0, x1, y1] format target_boxes = center_to_corners_format(target_boxes) # Apply non-maximum suppression (NMS) if nms_threshold < 1.0: for idx in range(target_boxes.shape[0]): for i in torch.argsort(-scores[idx]): if not scores[idx][i]: continue ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0] ious[i] = -1.0 # Mask self-IoU. scores[idx][ious > nms_threshold] = 0.0 # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: target_boxes = _scale_boxes(target_boxes, target_sizes) # Compute box display alphas based on prediction scores results = [] alphas = torch.zeros_like(scores) for idx in range(target_boxes.shape[0]): # Select scores for boxes matching the current query: query_scores = scores[idx] if not query_scores.nonzero().numel(): continue # Apply threshold on scores before scaling query_scores[query_scores < threshold] = 0.0 # Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1. # All other boxes will either belong to a different query, or will not be shown. max_score = torch.max(query_scores) + 1e-6 query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9) query_alphas = torch.clip(query_alphas, 0.0, 1.0) alphas[idx] = query_alphas mask = alphas[idx] > 0 box_scores = alphas[idx][mask] boxes = target_boxes[idx][mask] results.append({"scores": box_scores, "labels": None, "boxes": boxes}) return results __all__ = ["Owlv2ImageProcessor"]
transformers/src/transformers/models/owlv2/image_processing_owlv2.py/0
{ "file_path": "transformers/src/transformers/models/owlv2/image_processing_owlv2.py", "repo_id": "transformers", "token_count": 11872 }
# coding=utf-8 # Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch PEGASUS-X model.""" import dataclasses import math from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_pegasus_x import PegasusXConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/pegasus-x-base" _CONFIG_FOR_DOC = "PegasusXConfig" @dataclasses.dataclass class DimensionInfo: """Wrapper for dimension info.""" batch_size: int # batch size seq_len: int # token length block_size: int # block size num_heads: int # num heads hidden_dim: int # hidden dim dim_per_head: int # dim per head num_blocks: int # num blocks global_len: int # global length padded_seq_len: int # padded token seq length # Note: Compared to the original Flax implementation, we will pad the token representations to # a multiple of block size at the start of the encoder layers, so T=P always. # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->PegasusX class PegasusXScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale class PegasusXSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, embed_dim, max_scale: int = 10000.0): super().__init__() self.embed_dim = embed_dim self.max_scale = max_scale @torch.no_grad() def forward(self, input_embeds: torch.Tensor, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" batch_size, seq_len = input_embeds.shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device )[:, None] pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype) half_d_feature = self.embed_dim // 2 div_term = torch.exp( torch.arange(half_d_feature, device=input_embeds.device, dtype=torch.int64).type_as(input_embeds) * -(np.log(float(self.max_scale)) / (half_d_feature - 1)) ) pe[:, :half_d_feature] = torch.sin(positions * div_term) pe[:, half_d_feature:] = torch.cos(positions * div_term) return pe[None].expand(batch_size, -1, -1) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PegasusX class PegasusXAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[PegasusXConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class PegasusXGlobalLocalAttention(nn.Module): """Global + Local attention. For use with Encoder only.""" def __init__( self, embed_dim: int, num_heads: int, block_size: int, dropout: float = 0.0, is_decoder: bool = False, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.block_size = block_size self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, token_hidden_states: torch.Tensor, global_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" dim = DimensionInfo( batch_size=token_hidden_states.shape[0], seq_len=token_hidden_states.shape[1], block_size=self.block_size, num_heads=self.num_heads, hidden_dim=token_hidden_states.shape[2], dim_per_head=self.head_dim, num_blocks=token_hidden_states.shape[1] // self.block_size, global_len=global_hidden_states.shape[1], padded_seq_len=token_hidden_states.shape[1], ) # [batch_size, num_heads, padded_seq_len, dim_per_head] local_q = self._shape( self.q_proj(token_hidden_states) * self.scaling, seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) local_k = self._shape( self.k_proj(token_hidden_states), seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) local_v = self._shape( self.v_proj(token_hidden_states), seq_len=dim.padded_seq_len, bsz=dim.batch_size, ) # [batch_size, num_heads, global_len, dim_per_head] global_q = self._shape( self.q_proj(global_hidden_states) * self.scaling, seq_len=dim.global_len, bsz=dim.batch_size, ) global_k = self._shape( self.k_proj(global_hidden_states), seq_len=dim.global_len, bsz=dim.batch_size, ) global_v = self._shape( self.v_proj(global_hidden_states), seq_len=dim.global_len, bsz=dim.batch_size, ) global_attn_output, global_attn_probs = self.compute_global_attention_representations( global_q=global_q, global_k=global_k, global_v=global_v, local_k=local_k, local_v=local_v, mask=attention_mask, dim=dim, ) local_attn_output, local_attn_probs = self.compute_local_attention_representations( global_k=global_k, global_v=global_v, local_q=local_q, local_k=local_k, local_v=local_v, mask=attention_mask, dim=dim, ) # [batch_size, global_len, hidden_dim] global_attn_output = ( global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim) ) # [batch_size, global_len, hidden_dim] global_attn_output = self.out_proj(global_attn_output) # [batch_size, num_heads, block_size, num_heads, dim_per_head] local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous() # [batch_size, padded_seq_len, hidden_dim] local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim) # [batch_size, padded_seq_len, hidden_dim] local_attn_output = self.out_proj(local_attn_output) if output_attentions: attn_probs = {"global": global_attn_probs, "local": local_attn_probs} else: attn_probs = None return local_attn_output, global_attn_output, attn_probs def compute_global_attention_representations( self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo ): """Compute attention representations for global tokens. Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input sequence tokens are arranged in blocks for local attention, we unblock them and compute attention. Args: global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: query vectors from global tokens global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: key vectors from global tokens global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: value vectors from global tokens local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: key vectors from local tokens local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: value vectors from local tokens mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask dim (DimensionInfo): DimensionInfo wrapper for dimensions Returns: output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size """ # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] global_and_local_k = torch.cat([global_k, local_k], dim=2) # [batch_size, num_heads, global_len+padded_seq_len, dim_per_head] global_and_local_v = torch.cat([global_v, local_v], dim=2) # [batch_size, global_len+padded_seq_len] extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0) # [batch_size, num_heads, global_len, global_len+padded_seq_len] attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k) attn_weights = attn_weights + extended_mask[:, None, None, :] attn_probs = nn.functional.softmax(attn_weights, dim=-1) attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) # [batch_size, num_heads, global_len, F] attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v) return attn_output, attn_probs def compute_local_attention_representations( self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo ): """Compute attention representations for local tokens. Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence, we need to tile and concatenate the global tokens to every local block Args: global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: key vectors from global tokens global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]: value vectors from global tokens local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: query vectors from local tokens local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: key vectors from local tokens local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]: value vectors from local tokens mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask dim (DimensionInfo): DimensionInfo wrapper for dimensions Returns: output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size """ # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head) # [batch_size, num_blocks, global_len+block_size] extended_mask = nn.functional.pad( mask.view(dim.batch_size, dim.num_blocks, dim.block_size), pad=(dim.global_len, 0), value=0, ) # [batch_size, num_heads, num_blocks, block_size, global_len] blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k) # [batch_size, num_heads, num_blocks, block_size, block_size] blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k) # [batch_size, num_heads, num_blocks, block_size, global_len+block_size] attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1) attn_weights = attn_weights + extended_mask[:, None, :, None, :] attn_probs = nn.functional.softmax(attn_weights, dim=-1) attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) # [batch_size, num_heads, num_blocks, block_size, global_len] local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len] # [batch_size, num_heads, num_blocks, block_size, block_size] local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :] # [batch_size, num_heads, num_blocks, block_size, dim_per_head] local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v) # [batch_size, num_heads, num_blocks, block_size, dim_per_head] attn_output = local2global_attn_output + local2local_attn_output return attn_output, attn_probs class PegasusXEncoderLayer(nn.Module): def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusXGlobalLocalAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, block_size=config.block_size, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) self.stagger_blocks_this_layer = stagger_blocks_this_layer self.block_size = config.block_size def forward( self, hidden_states: torch.Tensor, global_hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* global_hidden_states (`torch.FloatTensor`): global token hidden states *(seq_len, num_global_tokens, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states global_residual = global_hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states) if self.stagger_blocks_this_layer: # Pad the blocks to simulate staggering hidden_states, attention_mask = self.pad_local_tokens( hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size ) hidden_states, global_hidden_states, attn_weights = self.self_attn( token_hidden_states=hidden_states, global_hidden_states=global_hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) if self.stagger_blocks_this_layer: # Undo the padding hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states global_residual = global_hidden_states global_hidden_states = self.final_layer_norm(global_hidden_states) global_hidden_states = self.activation_fn(self.fc1(global_hidden_states)) global_hidden_states = nn.functional.dropout( global_hidden_states, p=self.activation_dropout, training=self.training ) global_hidden_states = self.fc2(global_hidden_states) global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training) global_hidden_states = global_residual + global_hidden_states outputs = (hidden_states, global_hidden_states) if output_attentions: outputs += (attn_weights,) return outputs @classmethod def pad_local_tokens(cls, hidden_states, attention_mask, block_size): # hidden_states: [batch_size, seq_len, hidden_dim] pad_size = block_size // 2 mask_min_value = torch.finfo(hidden_states.dtype).min padded_hidden_states = torch.nn.functional.pad( hidden_states, pad=(0, 0, pad_size, pad_size), ) padded_mask = torch.nn.functional.pad( attention_mask, pad=(pad_size, pad_size), value=mask_min_value, ) return padded_hidden_states, padded_mask @classmethod def unpad_local_tokens(cls, padded_hidden_states, block_size): # padded_hidden_states: [batch_size, padded seq_len, hidden_dim] pad_size = block_size // 2 return padded_hidden_states[:, pad_size:-pad_size, :] class PegasusXDecoderLayer(nn.Module): def __init__(self, config: PegasusXConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = PegasusXAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = PegasusXAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(seq_len, batch, embed_dim)* encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache: Whether to us KV cache for decoding """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class PegasusXPreTrainedModel(PreTrainedModel): config_class = PegasusXConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = [r"PegasusXEncoderLayer", r"PegasusXDecoderLayer"] def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) PEGASUS_X_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PegasusXConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PEGASUS_X_GENERATION_EXAMPLE = r""" Summarization example: ```python >>> from transformers import AutoTokenizer, PegasusXForConditionalGeneration >>> model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]) >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "California's largest electricity provider has turned off power to hundreds of thousands of customers." ``` """ PEGASUS_X_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class PegasusXEncoder(PegasusXPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`PegasusXEncoderLayer`]. Args: config: PegasusXConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = PegasusXScaledWordEmbedding( config.vocab_size, embed_dim, padding_idx, embed_scale=embed_scale ) self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim) self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim) self.layers = nn.ModuleList( [ PegasusXEncoderLayer( stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config ) for i in range(config.encoder_layers) ] ) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") self.config.max_position_embeddings = new_num_position_embeddings self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model) self.embed_positions.to(self.device) def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings matrix """ return self.embed_positions def forward( self, input_ids=None, attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(inputs_embeds) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) batch_size, seq_len, _ = hidden_states.shape # Setup mask if attention_mask is None: attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device) attention_mask = attention_mask.to(dtype=hidden_states.dtype) mask_min_value = torch.finfo(hidden_states.dtype).min inverted_mask = 1.0 - attention_mask attention_mask = inverted_mask.masked_fill( inverted_mask.to(torch.bool), mask_min_value, ) # padding to block_size if seq_len % self.config.block_size != 0: pad_len = self.config.block_size - seq_len % self.config.block_size hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0) attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value) # Global tokens global_hidden_states = self.embed_global( torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1) ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, global_hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, global_hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] global_hidden_states = layer_outputs[1] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) # Undo padding-to-block-size hidden_states = hidden_states[:, :seq_len] hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + ((hidden_states, global_hidden_states),) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class PegasusXDecoder(PegasusXPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`] Args: config: PegasusXConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 padding_idx = config.pad_token_id if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = PegasusXScaledWordEmbedding( config.vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale ) self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model) self.layers = nn.ModuleList([PegasusXDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(inputs_embeds, past_key_values_length) positions = positions.to(inputs_embeds.device) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare PEGASUS-X Model outputting raw hidden-states without any specific head on top.", PEGASUS_X_START_DOCSTRING, ) class PegasusXModel(PegasusXPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: PegasusXConfig): super().__init__(config) vocab_size = config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 padding_idx = config.pad_token_id self.shared = PegasusXScaledWordEmbedding( vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale ) self.encoder = PegasusXEncoder(config, self.shared) self.decoder = PegasusXDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.encoder.resize_position_embeddings(new_num_position_embeddings) self.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> Tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings()) @add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, PegasusModel >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large") >>> model = PegasusModel.from_pretrained("google/pegasus-x-large") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 4, 1024] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("The PEGASUS-X for conditional generation (e.g. summarization).", PEGASUS_X_START_DOCSTRING) class PegasusXForConditionalGeneration(PegasusXPreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: PegasusXConfig): super().__init__(config) self.model = PegasusXModel(config) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings matrix of the model if `new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (`int`): The number of new position embeddings. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.config.max_position_embeddings = new_num_position_embeddings self.model.encoder.resize_position_embeddings(new_num_position_embeddings) self.model.decoder.resize_position_embeddings(new_num_position_embeddings) def get_position_embeddings(self) -> Tuple[nn.Embedding]: """ Returns the position embeddings matrix """ return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings()) @add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(PEGASUS_X_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PegasusX class PegasusXDecoderWrapper(PegasusXPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = PegasusXDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) __all__ = ["PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel"]
transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py/0
{ "file_path": "transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py", "repo_id": "transformers", "token_count": 32814 }
from typing import Callable, Optional, Tuple, Union import torch import torch.nn as nn from ...cache_utils import Cache, DynamicCache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import logging from ..clip.modeling_clip import CLIPMLP from ..llama.modeling_llama import ( LlamaAttention, LlamaForCausalLM, LlamaForSequenceClassification, LlamaForTokenClassification, LlamaModel, apply_rotary_pos_emb, eager_attention_forward, # copied from Llama ) from .configuration_phi import PhiConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/phi-1" _CONFIG_FOR_DOC = "PhiConfig" class PhiAttention(LlamaAttention): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__(config, layer_idx) self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True) del self.o_proj self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self.k_layernorm = nn.LayerNorm( config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.dense(attn_output) return attn_output, attn_weights class PhiMLP(CLIPMLP): pass class PhiDecoderLayer(nn.Module): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.self_attn = PhiAttention(config, layer_idx=layer_idx) self.mlp = PhiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class PhiModel(LlamaModel): def __init__(self, config: PhiConfig): super().__init__(config) self.layers = nn.ModuleList( [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) del self.norm def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # diff with Llama # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() class PhiForCausalLM(LlamaForCausalLM): def __init__(self, config): super().__init__(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) class PhiForSequenceClassification(LlamaForSequenceClassification): pass class PhiForTokenClassification(LlamaForTokenClassification): pass
transformers/src/transformers/models/phi/modular_phi.py/0
{ "file_path": "transformers/src/transformers/models/phi/modular_phi.py", "repo_id": "transformers", "token_count": 5494 }
# coding=utf-8 # Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, # Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Pvt checkpoints from the original library.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import PvtConfig, PvtForImageClassification, PvtImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] for i in range(config.num_encoder_blocks): # Remane embedings' paramters rename_keys.append((f"pos_embed{i + 1}", f"pvt.encoder.patch_embeddings.{i}.position_embeddings")) rename_keys.append((f"patch_embed{i + 1}.proj.weight", f"pvt.encoder.patch_embeddings.{i}.projection.weight")) rename_keys.append((f"patch_embed{i + 1}.proj.bias", f"pvt.encoder.patch_embeddings.{i}.projection.bias")) rename_keys.append((f"patch_embed{i + 1}.norm.weight", f"pvt.encoder.patch_embeddings.{i}.layer_norm.weight")) rename_keys.append((f"patch_embed{i + 1}.norm.bias", f"pvt.encoder.patch_embeddings.{i}.layer_norm.bias")) for j in range(config.depths[i]): # Rename blocks' parameters rename_keys.append( (f"block{i + 1}.{j}.attn.q.weight", f"pvt.encoder.block.{i}.{j}.attention.self.query.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.q.bias", f"pvt.encoder.block.{i}.{j}.attention.self.query.bias") ) rename_keys.append( (f"block{i + 1}.{j}.attn.kv.weight", f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight") ) rename_keys.append((f"block{i + 1}.{j}.attn.kv.bias", f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias")) if config.sequence_reduction_ratios[i] > 1: rename_keys.append( ( f"block{i + 1}.{j}.attn.norm.weight", f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.weight", ) ) rename_keys.append( (f"block{i + 1}.{j}.attn.norm.bias", f"pvt.encoder.block.{i}.{j}.attention.self.layer_norm.bias") ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.weight", f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.weight", ) ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.bias", f"pvt.encoder.block.{i}.{j}.attention.self.sequence_reduction.bias", ) ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.weight", f"pvt.encoder.block.{i}.{j}.attention.output.dense.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.bias", f"pvt.encoder.block.{i}.{j}.attention.output.dense.bias") ) rename_keys.append((f"block{i + 1}.{j}.norm1.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_1.weight")) rename_keys.append((f"block{i + 1}.{j}.norm1.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_1.bias")) rename_keys.append((f"block{i + 1}.{j}.norm2.weight", f"pvt.encoder.block.{i}.{j}.layer_norm_2.weight")) rename_keys.append((f"block{i + 1}.{j}.norm2.bias", f"pvt.encoder.block.{i}.{j}.layer_norm_2.bias")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense1.weight")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc1.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense1.bias")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.weight", f"pvt.encoder.block.{i}.{j}.mlp.dense2.weight")) rename_keys.append((f"block{i + 1}.{j}.mlp.fc2.bias", f"pvt.encoder.block.{i}.{j}.mlp.dense2.bias")) # Rename cls token rename_keys.extend( [ ("cls_token", "pvt.encoder.patch_embeddings.3.cls_token"), ] ) # Rename norm layer and classifier layer rename_keys.extend( [ ("norm.weight", "pvt.encoder.layer_norm.weight"), ("norm.bias", "pvt.encoder.layer_norm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_k_v(state_dict, config): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) kv_weight = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.weight") kv_bias = state_dict.pop(f"pvt.encoder.block.{i}.{j}.attention.self.kv.bias") # next, add keys and values (in that order) to the state dict state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[: config.hidden_sizes[i], :] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[ config.hidden_sizes[i] :, : ] state_dict[f"pvt.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[config.hidden_sizes[i] :] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_pvt_checkpoint(pvt_size, pvt_checkpoint, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our PVT structure. """ # define default Pvt configuration if pvt_size == "tiny": config_path = "Zetatech/pvt-tiny-224" elif pvt_size == "small": config_path = "Zetatech/pvt-small-224" elif pvt_size == "medium": config_path = "Zetatech/pvt-medium-224" elif pvt_size == "large": config_path = "Zetatech/pvt-large-224" else: raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given") config = PvtConfig(name_or_path=config_path) # load original model from https://github.com/whai362/PVT state_dict = torch.load(pvt_checkpoint, map_location="cpu") rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_k_v(state_dict, config) # load HuggingFace model model = PvtForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by PVTFeatureExtractor image_processor = PvtImageProcessor(size=config.image_size) encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) logits = outputs.logits.detach().cpu() if pvt_size == "tiny": expected_slice_logits = torch.tensor([-1.4192, -1.9158, -0.9702]) elif pvt_size == "small": expected_slice_logits = torch.tensor([0.4353, -0.1960, -0.2373]) elif pvt_size == "medium": expected_slice_logits = torch.tensor([-0.2914, -0.2231, 0.0321]) elif pvt_size == "large": expected_slice_logits = torch.tensor([0.3740, -0.7739, -0.4214]) else: raise ValueError(f"Available model's size: 'tiny', 'small', 'medium', 'large', but " f"'{pvt_size}' was given") assert torch.allclose(logits[0, :3], expected_slice_logits, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model pytorch_model.bin to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pvt_size", default="tiny", type=str, help="Size of the PVT pretrained model you'd like to convert.", ) parser.add_argument( "--pvt_checkpoint", default="pvt_tiny.pth", type=str, help="Checkpoint of the PVT pretrained model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_pvt_checkpoint(args.pvt_size, args.pvt_checkpoint, args.pytorch_dump_folder_path)
transformers/src/transformers/models/pvt/convert_pvt_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/pvt/convert_pvt_to_pytorch.py", "repo_id": "transformers", "token_count": 4511 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ResNet checkpoints from timm.""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger() @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: self.traced.append(m) def __call__(self, x: Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class ModuleTransfer: src: nn.Module dest: nn.Module verbose: int = 0 src_skip: List = field(default_factory=list) dest_skip: List = field(default_factory=list) def __call__(self, x: Tensor): """ Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the hood we tracked all the operations in both modules. """ dest_traced = Tracker(self.dest)(x).parametrized src_traced = Tracker(self.src)(x).parametrized src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) if len(dest_traced) != len(src_traced): raise Exception( f"Numbers of operations are different. Source module has {len(src_traced)} operations while" f" destination module has {len(dest_traced)}." ) for dest_m, src_m in zip(dest_traced, src_traced): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def convert_weight_and_push(name: str, config: ResNetConfig, save_directory: Path, push_to_hub: bool = True): print(f"Converting {name}...") with torch.no_grad(): from_model = timm.create_model(name, pretrained=True).eval() our_model = ResNetForImageClassification(config).eval() module_transfer = ModuleTransfer(src=from_model, dest=our_model) x = torch.randn((1, 3, 224, 224)) module_transfer(x) assert torch.allclose(from_model(x), our_model(x).logits), "The model logits don't match the original one." checkpoint_name = f"resnet{'-'.join(name.split('resnet'))}" print(checkpoint_name) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add model", use_temp_dir=True, ) # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add image processor", use_temp_dir=True, ) print(f"Pushed {checkpoint_name}") def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 expected_shape = (1, num_labels) repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(ResNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type="bottleneck" ), } if model_name: convert_weight_and_push(model_name, names_to_config[model_name], save_directory, push_to_hub) else: for model_name, config in names_to_config.items(): convert_weight_and_push(model_name, config, save_directory, push_to_hub) return config, expected_shape if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
transformers/src/transformers/models/resnet/convert_resnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/resnet/convert_resnet_to_pytorch.py", "repo_id": "transformers", "token_count": 2997 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RT-DETR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import verify_backbone_config_arguments from ..auto import CONFIG_MAPPING from .configuration_rt_detr_resnet import RTDetrResNetConfig logger = logging.get_logger(__name__) class RTDetrConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RTDetrModel`]. It is used to instantiate a RT-DETR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RT-DETR [checkpoing/todo](https://huggingface.co/checkpoing/todo) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_bias_prior_prob (`float`, *optional*): The prior probability used by the bias initializer to initialize biases for `enc_score_head` and `class_embed`. If `None`, `prior_prob` computed as `prior_prob = 1 / (num_labels + 1)` while initializing model weights. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. backbone_config (`Dict`, *optional*, defaults to `RTDetrResNetConfig()`): The configuration of the backbone model. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, defaults to `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. freeze_backbone_batch_norms (`bool`, *optional*, defaults to `True`): Whether to freeze the batch normalization layers in the backbone. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. encoder_hidden_dim (`int`, *optional*, defaults to 256): Dimension of the layers in hybrid encoder. encoder_in_channels (`list`, *optional*, defaults to `[512, 1024, 2048]`): Multi level features input for encoder. feat_strides (`List[int]`, *optional*, defaults to `[8, 16, 32]`): Strides used in each feature map. encoder_layers (`int`, *optional*, defaults to 1): Total of layers to be used by the encoder. encoder_ffn_dim (`int`, *optional*, defaults to 1024): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.0): The ratio for all dropout layers. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. encode_proj_layers (`List[int]`, *optional*, defaults to `[2]`): Indexes of the projected layers to be used in the encoder. positional_encoding_temperature (`int`, *optional*, defaults to 10000): The temperature parameter used to create the positional encodings. encoder_activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. activation_function (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the general layer. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. eval_size (`Tuple[int, int]`, *optional*): Height and width used to computes the effective height and width of the position embeddings after taking into account the stride. normalize_before (`bool`, *optional*, defaults to `False`): Determine whether to apply layer normalization in the transformer encoder layer before self-attention and feed-forward modules. hidden_expansion (`float`, *optional*, defaults to 1.0): Expansion ratio to enlarge the dimension size of RepVGGBlock and CSPRepLayer. d_model (`int`, *optional*, defaults to 256): Dimension of the layers exclude hybrid encoder. num_queries (`int`, *optional*, defaults to 300): Number of object queries. decoder_in_channels (`list`, *optional*, defaults to `[256, 256, 256]`): Multi level features dimension for decoder decoder_ffn_dim (`int`, *optional*, defaults to 1024): Dimension of the "intermediate" (often named feed-forward) layer in decoder. num_feature_levels (`int`, *optional*, defaults to 3): The number of input feature levels. decoder_n_points (`int`, *optional*, defaults to 4): The number of sampled keys in each feature level for each attention head in the decoder. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. decoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. decoder_activation_function (`str`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the decoder. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_denoising (`int`, *optional*, defaults to 100): The total number of denoising tasks or queries to be used for contrastive denoising. label_noise_ratio (`float`, *optional*, defaults to 0.5): The fraction of denoising labels to which random noise should be added. box_noise_scale (`float`, *optional*, defaults to 1.0): Scale or magnitude of noise to be added to the bounding boxes. learn_initial_query (`bool`, *optional*, defaults to `False`): Indicates whether the initial query embeddings for the decoder should be learned during training anchor_image_size (`Tuple[int, int]`, *optional*): Height and width of the input image used during evaluation to generate the bounding box anchors. If None, automatic generate anchor is applied. disable_custom_kernels (`bool`, *optional*, defaults to `True`): Whether to disable custom kernels. with_box_refine (`bool`, *optional*, defaults to `True`): Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes based on the predictions from the previous layer. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the architecture has an encoder decoder structure. matcher_alpha (`float`, *optional*, defaults to 0.25): Parameter alpha used by the Hungarian Matcher. matcher_gamma (`float`, *optional*, defaults to 2.0): Parameter gamma used by the Hungarian Matcher. matcher_class_cost (`float`, *optional*, defaults to 2.0): The relative weight of the class loss used by the Hungarian Matcher. matcher_bbox_cost (`float`, *optional*, defaults to 5.0): The relative weight of the bounding box loss used by the Hungarian Matcher. matcher_giou_cost (`float`, *optional*, defaults to 2.0): The relative weight of the giou loss of used by the Hungarian Matcher. use_focal_loss (`bool`, *optional*, defaults to `True`): Parameter informing if focal focal should be used. auxiliary_loss (`bool`, *optional*, defaults to `True`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. focal_loss_alpha (`float`, *optional*, defaults to 0.75): Parameter alpha used to compute the focal loss. focal_loss_gamma (`float`, *optional*, defaults to 2.0): Parameter gamma used to compute the focal loss. weight_loss_vfl (`float`, *optional*, defaults to 1.0): Relative weight of the varifocal loss in the object detection loss. weight_loss_bbox (`float`, *optional*, defaults to 5.0): Relative weight of the L1 bounding box loss in the object detection loss. weight_loss_giou (`float`, *optional*, defaults to 2.0): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.0001): Relative classification weight of the 'no-object' class in the object detection loss. Examples: ```python >>> from transformers import RTDetrConfig, RTDetrModel >>> # Initializing a RT-DETR configuration >>> configuration = RTDetrConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = RTDetrModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "rt_detr" layer_types = ["basic", "bottleneck"] attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, initializer_range=0.01, initializer_bias_prior_prob=None, layer_norm_eps=1e-5, batch_norm_eps=1e-5, # backbone backbone_config=None, backbone=None, use_pretrained_backbone=False, use_timm_backbone=False, freeze_backbone_batch_norms=True, backbone_kwargs=None, # encoder HybridEncoder encoder_hidden_dim=256, encoder_in_channels=[512, 1024, 2048], feat_strides=[8, 16, 32], encoder_layers=1, encoder_ffn_dim=1024, encoder_attention_heads=8, dropout=0.0, activation_dropout=0.0, encode_proj_layers=[2], positional_encoding_temperature=10000, encoder_activation_function="gelu", activation_function="silu", eval_size=None, normalize_before=False, hidden_expansion=1.0, # decoder RTDetrTransformer d_model=256, num_queries=300, decoder_in_channels=[256, 256, 256], decoder_ffn_dim=1024, num_feature_levels=3, decoder_n_points=4, decoder_layers=6, decoder_attention_heads=8, decoder_activation_function="relu", attention_dropout=0.0, num_denoising=100, label_noise_ratio=0.5, box_noise_scale=1.0, learn_initial_query=False, anchor_image_size=None, disable_custom_kernels=True, with_box_refine=True, is_encoder_decoder=True, # Loss matcher_alpha=0.25, matcher_gamma=2.0, matcher_class_cost=2.0, matcher_bbox_cost=5.0, matcher_giou_cost=2.0, use_focal_loss=True, auxiliary_loss=True, focal_loss_alpha=0.75, focal_loss_gamma=2.0, weight_loss_vfl=1.0, weight_loss_bbox=5.0, weight_loss_giou=2.0, eos_coefficient=1e-4, **kwargs, ): self.initializer_range = initializer_range self.initializer_bias_prior_prob = initializer_bias_prior_prob self.layer_norm_eps = layer_norm_eps self.batch_norm_eps = batch_norm_eps # backbone if backbone_config is None and backbone is None: logger.info( "`backbone_config` and `backbone` are `None`. Initializing the config with the default `RTDetr-ResNet` backbone." ) backbone_config = RTDetrResNetConfig( num_channels=3, embedding_size=64, hidden_sizes=[256, 512, 1024, 2048], depths=[3, 4, 6, 3], layer_type="bottleneck", hidden_act="relu", downsample_in_first_stage=False, downsample_in_bottleneck=False, out_features=None, out_indices=[2, 3, 4], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.pop("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) verify_backbone_config_arguments( use_timm_backbone=use_timm_backbone, use_pretrained_backbone=use_pretrained_backbone, backbone=backbone, backbone_config=backbone_config, backbone_kwargs=backbone_kwargs, ) self.backbone_config = backbone_config self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.freeze_backbone_batch_norms = freeze_backbone_batch_norms self.backbone_kwargs = backbone_kwargs # encoder self.encoder_hidden_dim = encoder_hidden_dim self.encoder_in_channels = encoder_in_channels self.feat_strides = feat_strides self.encoder_attention_heads = encoder_attention_heads self.encoder_ffn_dim = encoder_ffn_dim self.dropout = dropout self.activation_dropout = activation_dropout self.encode_proj_layers = encode_proj_layers self.encoder_layers = encoder_layers self.positional_encoding_temperature = positional_encoding_temperature self.eval_size = eval_size self.normalize_before = normalize_before self.encoder_activation_function = encoder_activation_function self.activation_function = activation_function self.hidden_expansion = hidden_expansion # decoder self.d_model = d_model self.num_queries = num_queries self.decoder_ffn_dim = decoder_ffn_dim self.decoder_in_channels = decoder_in_channels self.num_feature_levels = num_feature_levels self.decoder_n_points = decoder_n_points self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_activation_function = decoder_activation_function self.attention_dropout = attention_dropout self.num_denoising = num_denoising self.label_noise_ratio = label_noise_ratio self.box_noise_scale = box_noise_scale self.learn_initial_query = learn_initial_query self.anchor_image_size = anchor_image_size self.auxiliary_loss = auxiliary_loss self.disable_custom_kernels = disable_custom_kernels self.with_box_refine = with_box_refine # Loss self.matcher_alpha = matcher_alpha self.matcher_gamma = matcher_gamma self.matcher_class_cost = matcher_class_cost self.matcher_bbox_cost = matcher_bbox_cost self.matcher_giou_cost = matcher_giou_cost self.use_focal_loss = use_focal_loss self.focal_loss_alpha = focal_loss_alpha self.focal_loss_gamma = focal_loss_gamma self.weight_loss_vfl = weight_loss_vfl self.weight_loss_bbox = weight_loss_bbox self.weight_loss_giou = weight_loss_giou self.eos_coefficient = eos_coefficient super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model @classmethod def from_backbone_configs(cls, backbone_config: PretrainedConfig, **kwargs): """Instantiate a [`RTDetrConfig`] (or a derived class) from a pre-trained backbone model configuration and DETR model configuration. Args: backbone_config ([`PretrainedConfig`]): The backbone configuration. Returns: [`RTDetrConfig`]: An instance of a configuration object """ return cls( backbone_config=backbone_config, **kwargs, ) __all__ = ["RTDetrConfig"]
transformers/src/transformers/models/rt_detr/configuration_rt_detr.py/0
{ "file_path": "transformers/src/transformers/models/rt_detr/configuration_rt_detr.py", "repo_id": "transformers", "token_count": 7302 }
# coding=utf-8 # Copyright 2023 Bo Peng and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RWKV model.""" import math from dataclasses import dataclass from pathlib import Path from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...generation import GenerationMixin from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_bitsandbytes_available, is_ninja_available, is_torch_cuda_available, logging, ) from .configuration_rwkv import RwkvConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "RWKV/rwkv-4-169m-pile" _CONFIG_FOR_DOC = "RwkvConfig" rwkv_cuda_kernel = None def load_wkv_cuda_kernel(context_length): from torch.utils.cpp_extension import load as load_kernel global rwkv_cuda_kernel kernel_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "rwkv" cuda_kernel_files = [kernel_folder / f for f in ["wkv_op.cpp", "wkv_cuda.cu", "wkv_cuda_bf16.cu"]] # Only load the kernel if it's not been loaded yet or if we changed the context length if rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == context_length: return logger.info(f"Loading CUDA kernel for RWKV at context length of {context_length}.") flags = [ "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={context_length}", ] rwkv_cuda_kernel = load_kernel( name=f"wkv_{context_length}", sources=cuda_kernel_files, verbose=(logging.get_verbosity() == logging.DEBUG), extra_cuda_cflags=flags, ) rwkv_cuda_kernel.max_seq_length = context_length class RwkvLinearAttention(torch.autograd.Function): @staticmethod def forward(ctx, time_decay, time_first, key, value, state=None, return_state=False): batch_size, seq_len, hidden_size = key.size() if seq_len > rwkv_cuda_kernel.max_seq_length: raise ValueError( f"Cannot process a batch with {seq_len} tokens at the same time, use a maximum of " f"{rwkv_cuda_kernel.max_seq_length} with this model." ) if batch_size * hidden_size % min(hidden_size, 32) != 0: raise ValueError( f"The product of batch size ({batch_size}) and hidden size ({hidden_size}) needs to be a round " f"multiple of {min(hidden_size, 32)}." ) ctx.input_dtype = key.dtype if ( time_decay.device.type != "cuda" or time_first.device.type != "cuda" or key.device.type != "cuda" or value.device.type != "cuda" ): raise ValueError("Calling the CUDA kernel for wkv attention requires all tensors to be on CUDA devices.") time_decay = -torch.exp(time_decay.float().contiguous()) if key.dtype == torch.float16: time_first = time_first.float() key = key.float() value = value.float() time_first = time_first.contiguous() key = key.contiguous() value = value.contiguous() # The CUDA kernel will fill this tensor. output = torch.empty_like(key, memory_format=torch.contiguous_format) if return_state or state is not None: if state is None: state = torch.zeros( batch_size, hidden_size, 3, dtype=torch.float32, device=key.device, memory_format=torch.contiguous_format, ) state[:, :, 2] -= 1e38 else: state = torch.cat([s.unsqueeze(2) for s in state], dim=2).contiguous() if key.dtype == torch.bfloat16: forward_func = rwkv_cuda_kernel.forward_with_state_bf16 else: forward_func = rwkv_cuda_kernel.forward_with_state forward_func(time_decay, time_first, key, value, output, state) else: forward_func = rwkv_cuda_kernel.forward_bf16 if key.dtype == torch.bfloat16 else rwkv_cuda_kernel.forward forward_func(time_decay, time_first, key, value, output) ctx.save_for_backward(time_decay, time_first, key, value, output) if state is not None: state = [s.squeeze(2) for s in torch.chunk(state, 3, dim=2)] return output.to(ctx.input_dtype), state @staticmethod # g stands for grad def backward(ctx, g_output, g_state=None): input_dtype = ctx.input_dtype time_decay, time_first, key, value, output = ctx.saved_tensors # The CUDA kernel will fill those tensors. g_time_decay = torch.empty_like( time_decay, memory_format=torch.contiguous_format, dtype=torch.bfloat16 if input_dtype == torch.bfloat16 else torch.float32, ) g_time_first = torch.empty_like(time_first, memory_format=torch.contiguous_format) g_key = torch.empty_like(key, memory_format=torch.contiguous_format) g_value = torch.empty_like(value, memory_format=torch.contiguous_format) if input_dtype == torch.float16: g_output = g_output.float() backward_func = rwkv_cuda_kernel.backward_bf16 if input_dtype == torch.bfloat16 else rwkv_cuda_kernel.backward backward_func( time_decay, time_first, key, value, output, g_output.contiguous(), g_time_decay, g_time_first, g_key, g_value, ) return ( g_time_decay.to(input_dtype), g_time_first.to(input_dtype), g_key.to(input_dtype), g_value.to(input_dtype), None, None, ) def rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=None, return_state=False): # For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed # within a torch.no_grad. _, seq_length, _ = key.size() output = torch.zeros_like(key) if state is None: num_state = torch.zeros_like(key[:, 0], dtype=torch.float32) den_state = torch.zeros_like(key[:, 0], dtype=torch.float32) max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38 else: num_state, den_state, max_state = state # For numerical stability # real_numerator_state = num_state * torch.exp(max_state) # real_denominator_state = den_state * torch.exp(max_state) time_decay = -torch.exp(time_decay) for current_index in range(seq_length): current_key = key[:, current_index].float() current_value = value[:, current_index] # wkv computation at time t max_for_output = torch.maximum(max_state, current_key + time_first) e1 = torch.exp(max_state - max_for_output) e2 = torch.exp(current_key + time_first - max_for_output) numerator = e1 * num_state + e2 * current_value denominator = e1 * den_state + e2 output[:, current_index] = (numerator / denominator).to(output.dtype) # Update state for next iteration max_for_state = torch.maximum(max_state + time_decay, current_key) e1 = torch.exp(max_state + time_decay - max_for_state) e2 = torch.exp(current_key - max_for_state) num_state = e1 * num_state + e2 * current_value den_state = e1 * den_state + e2 max_state = max_for_state if return_state or state is not None: state = [num_state, den_state, max_state] return output, state def rwkv_linear_attention(time_decay, time_first, key, value, state=None, return_state=False): no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value]) # Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version # in this case). one_token = key.size(1) == 1 if rwkv_cuda_kernel is None or no_cuda or one_token: return rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=state, return_state=return_state) else: return RwkvLinearAttention.apply(time_decay, time_first, key, value, state, return_state) class RwkvSelfAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.config = config kernel_loaded = rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == config.context_length if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded: try: load_wkv_cuda_kernel(config.context_length) except Exception: logger.info("Could not load the custom CUDA kernel for RWKV attention.") self.layer_id = layer_id hidden_size = config.hidden_size attention_hidden_size = ( config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size ) self.attention_hidden_size = attention_hidden_size self.time_decay = nn.Parameter(torch.empty(attention_hidden_size)) self.time_first = nn.Parameter(torch.empty(attention_hidden_size)) self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False) self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False) # TODO: maybe jit, otherwise move inside forward def extract_key_value(self, hidden, state=None): # Mix hidden with the previous timestep to produce key, value, receptance if hidden.size(1) == 1 and state is not None: shifted = state[1][:, :, self.layer_id] else: shifted = self.time_shift(hidden) if state is not None: shifted[:, 0] = state[1][:, :, self.layer_id] key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value) receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) key = self.key(key) value = self.value(value) receptance = torch.sigmoid(self.receptance(receptance)) if state is not None: state[1][:, :, self.layer_id] = hidden[:, -1] return receptance, key, value, state def forward(self, hidden, state=None, use_cache=False): receptance, key, value, state = self.extract_key_value(hidden, state=state) layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None rwkv, layer_state = rwkv_linear_attention( self.time_decay, self.time_first, key, value, state=layer_state, return_state=use_cache, ) if layer_state is not None: state[2][:, :, self.layer_id] = layer_state[0] state[3][:, :, self.layer_id] = layer_state[1] state[4][:, :, self.layer_id] = layer_state[2] return self.output(receptance * rwkv), state class RwkvFeedForward(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.config = config self.layer_id = layer_id hidden_size = config.hidden_size intermediate_size = ( config.intermediate_size if config.intermediate_size is not None else 4 * config.hidden_size ) self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size)) self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size)) self.key = nn.Linear(hidden_size, intermediate_size, bias=False) self.receptance = nn.Linear(hidden_size, hidden_size, bias=False) self.value = nn.Linear(intermediate_size, hidden_size, bias=False) def forward(self, hidden, state=None): if hidden.size(1) == 1 and state is not None: shifted = state[0][:, :, self.layer_id] else: shifted = self.time_shift(hidden) if state is not None: shifted[:, 0] = state[0][:, :, self.layer_id] key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key) receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance) key = torch.square(torch.relu(self.key(key))) value = self.value(key) receptance = torch.sigmoid(self.receptance(receptance)) if state is not None: state[0][:, :, self.layer_id] = hidden[:, -1] return receptance * value, state class RwkvBlock(nn.Module): def __init__(self, config, layer_id): super().__init__() self.config = config self.layer_id = layer_id if layer_id == 0: self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.attention = RwkvSelfAttention(config, layer_id) self.feed_forward = RwkvFeedForward(config, layer_id) def forward(self, hidden, state=None, use_cache=False, output_attentions=False): if self.layer_id == 0: hidden = self.pre_ln(hidden) attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache) hidden = hidden + attention feed_forward, state = self.feed_forward(self.ln2(hidden), state=state) hidden = hidden + feed_forward outputs = (hidden, state) if output_attentions: outputs += (attention,) else: outputs += (None,) return outputs class RwkvPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RwkvConfig base_model_prefix = "rwkv" _no_split_modules = ["RwkvBlock"] _keep_in_fp32_modules = ["time_decay", "time_first"] supports_gradient_checkpointing = True _is_stateful = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, RwkvSelfAttention): layer_id = module.layer_id num_hidden_layers = module.config.num_hidden_layers hidden_size = module.config.hidden_size attention_hidden_size = module.attention_hidden_size ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1 ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 time_weight = torch.tensor( [i / hidden_size for i in range(hidden_size)], dtype=module.time_mix_key.dtype, device=module.time_mix_key.device, ) time_weight = time_weight[None, None, :] decay_speed = [ -5 + 8 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1) for h in range(attention_hidden_size) ] decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device) zigzag = ( torch.tensor( [(i + 1) % 3 - 1 for i in range(attention_hidden_size)], dtype=module.time_first.dtype, device=module.time_first.device, ) * 0.5 ) with torch.no_grad(): module.time_decay.data = decay_speed module.time_first.data = torch.ones_like(module.time_first * math.log(0.3) + zigzag) module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1 module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0) elif isinstance(module, RwkvFeedForward): layer_id = module.layer_id num_hidden_layers = module.config.num_hidden_layers hidden_size = module.config.hidden_size ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 time_weight = torch.tensor( [i / hidden_size for i in range(hidden_size)], dtype=module.time_mix_key.dtype, device=module.time_mix_key.device, ) time_weight = time_weight[None, None, :] with torch.no_grad(): module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0) module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0) @dataclass class RwkvOutput(ModelOutput): """ Class for the RWKV model outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None state: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class RwkvCausalLMOutput(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None state: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None RWKV_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RwkvConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ RWKV_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. This is currently not used by `RwkvModel`, but will be supported in the future. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*): If passed along, the model uses the previous state in all the blocks (which will give the output for the `input_ids` provided as if the model add `state_input_ids + input_ids` as context). use_cache (`bool`, *optional*): If set to `True`, the last state is returned and can be used to quickly generate the next logits. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RWKV Model transformer outputting raw hidden-states without any specific head on top.", RWKV_START_DOCSTRING, ) class RwkvModel(RwkvPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.blocks = nn.ModuleList([RwkvBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)]) self.ln_out = nn.LayerNorm(config.hidden_size) self.layers_are_rescaled = False self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings @add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=RwkvOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, # noqa inputs_embeds: Optional[torch.FloatTensor] = None, state: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, RwkvOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if attention_mask is None: logger.warning_once("`attention_mask` was passed, but it is unused in this model.") if self.training == self.layers_are_rescaled: self._rescale_layers() if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is None and inputs_embeds is None: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) if use_cache and state is None: shape = (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers) state = [ torch.zeros( *shape, dtype=inputs_embeds.dtype if i <= 1 else torch.float32, device=inputs_embeds.device ) for i in range(5) ] state[4] -= 1e30 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False hidden_states = inputs_embeds all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for idx, block in enumerate(self.blocks): if self.gradient_checkpointing and self.training: hidden_states, state, attentions = self._gradient_checkpointing_func( block.__call__, hidden_states, state, use_cache, output_attentions ) else: hidden_states, state, attentions = block( hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions ) if ( self.layers_are_rescaled and self.config.rescale_every > 0 and (idx + 1) % self.config.rescale_every == 0 ): hidden_states = hidden_states / 2 if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if output_attentions: all_self_attentions = all_self_attentions + (attentions,) hidden_states = self.ln_out(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(x for x in [hidden_states, state, all_hidden_states, all_self_attentions] if x is not None) return RwkvOutput( last_hidden_state=hidden_states, state=state, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def _rescale_layers(self): # Layers should be rescaled for inference only. if self.layers_are_rescaled == (not self.training): return if self.config.rescale_every > 0: with torch.no_grad(): for block_id, block in enumerate(self.blocks): if self.training: block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) else: # Deal with quantization statistics if hasattr(block.attention.output.weight, "SCB"): block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) elif hasattr(block.attention.output.weight, "quant_state"): self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id) self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id) else: block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every)) block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) self.layers_are_rescaled = not self.training def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id): r""" Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will be quantized again. """ if not is_bitsandbytes_available(): raise ImportError("Please install bitsandbytes to use this method.") import bitsandbytes as bnb dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state) dequant_weights.div_(2 ** int(block_id // self.config.rescale_every)) # re-quantize the model: # we need to put it first on CPU then back to the device # this will create an overhead :/ # We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid # bugs with bnb quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device) setattr(target_layer, "weight", quant_weight) @add_start_docstrings( """ The RWKV Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, RWKV_START_DOCSTRING, ) class RwkvForCausalLM(RwkvPreTrainedModel, GenerationMixin): _tied_weights_keys = ["head.weight"] def __init__(self, config): super().__init__(config) self.rwkv = RwkvModel(config) self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.head def set_output_embeddings(self, new_embeddings): self.head = new_embeddings def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, use_cache=None, **kwargs): # Overwritten -- this model uses `state`, but doesn't have a cache (`past_key_values`) # only last token for inputs_ids if the state is passed along. if state is not None: input_ids = input_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and state is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs["state"] = state model_inputs["use_cache"] = use_cache return model_inputs @add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=RwkvCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, # noqa inputs_embeds: Optional[torch.FloatTensor] = None, state: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, RwkvCausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict rwkv_outputs = self.rwkv( input_ids, inputs_embeds=inputs_embeds, state=state, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = rwkv_outputs[0] logits = self.head(hidden_states) loss = None if labels is not None: loss = self.loss_function( logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (logits,) + rwkv_outputs[1:] return ((loss,) + output) if loss is not None else output return RwkvCausalLMOutput( loss=loss, logits=logits, state=rwkv_outputs.state, hidden_states=rwkv_outputs.hidden_states, attentions=rwkv_outputs.attentions, ) __all__ = ["RwkvForCausalLM", "RwkvModel", "RwkvPreTrainedModel"]
transformers/src/transformers/models/rwkv/modeling_rwkv.py/0
{ "file_path": "transformers/src/transformers/models/rwkv/modeling_rwkv.py", "repo_id": "transformers", "token_count": 16012 }
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert SpeechT5 HiFi-GAN checkpoint.""" import argparse import numpy as np import torch from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig, logging logging.set_verbosity_info() logger = logging.get_logger("transformers.models.speecht5") def load_weights(checkpoint, hf_model, config): hf_model.apply_weight_norm() hf_model.conv_pre.weight_g.data = checkpoint["input_conv.weight_g"] hf_model.conv_pre.weight_v.data = checkpoint["input_conv.weight_v"] hf_model.conv_pre.bias.data = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates)): hf_model.upsampler[i].weight_g.data = checkpoint[f"upsamples.{i}.1.weight_g"] hf_model.upsampler[i].weight_v.data = checkpoint[f"upsamples.{i}.1.weight_v"] hf_model.upsampler[i].bias.data = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)): for j in range(len(config.resblock_dilation_sizes)): hf_model.resblocks[i].convs1[j].weight_g.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] hf_model.resblocks[i].convs1[j].weight_v.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] hf_model.resblocks[i].convs1[j].bias.data = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] hf_model.resblocks[i].convs2[j].weight_g.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] hf_model.resblocks[i].convs2[j].weight_v.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] hf_model.resblocks[i].convs2[j].bias.data = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] hf_model.conv_post.weight_g.data = checkpoint["output_conv.1.weight_g"] hf_model.conv_post.weight_v.data = checkpoint["output_conv.1.weight_v"] hf_model.conv_post.bias.data = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def convert_hifigan_checkpoint( checkpoint_path, stats_path, pytorch_dump_folder_path, config_path=None, repo_id=None, ): if config_path is not None: config = SpeechT5HifiGanConfig.from_pretrained(config_path) else: config = SpeechT5HifiGanConfig() model = SpeechT5HifiGan(config) orig_checkpoint = torch.load(checkpoint_path) load_weights(orig_checkpoint["model"]["generator"], model, config) stats = np.load(stats_path) mean = stats[0].reshape(-1) scale = stats[1].reshape(-1) model.mean = torch.from_numpy(mean).float() model.scale = torch.from_numpy(scale).float() model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
transformers/src/transformers/models/speecht5/convert_hifigan.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/convert_hifigan.py", "repo_id": "transformers", "token_count": 1706 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SuperPoint.""" from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ... import is_torch_available, is_vision_available from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging, requires_backends if is_torch_available(): import torch if TYPE_CHECKING: from .modeling_superpoint import SuperPointKeypointDescriptionOutput if is_vision_available(): import PIL logger = logging.get_logger(__name__) def is_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if input_data_format == ChannelDimension.FIRST: if image.shape[0] == 1: return True return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]) elif input_data_format == ChannelDimension.LAST: if image.shape[-1] == 1: return True return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2]) def convert_to_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> ImageInput: """ Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch and tensorflow grayscale conversion This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each channel, because of an issue that is discussed in : https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 Args: image (Image): The image to convert. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. """ requires_backends(convert_to_grayscale, ["vision"]) if isinstance(image, np.ndarray): if is_grayscale(image, input_data_format=input_data_format): return image if input_data_format == ChannelDimension.FIRST: gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=0) elif input_data_format == ChannelDimension.LAST: gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=-1) return gray_image if not isinstance(image, PIL.Image.Image): return image image = image.convert("L") return image class SuperPointImageProcessor(BaseImageProcessor): r""" Constructs a SuperPoint image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`): Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to `True`. Can be overriden by `size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` method. do_grayscale (`bool`, *optional*, defaults to `False`): Whether to convert the image to grayscale. Can be overriden by `do_grayscale` in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_grayscale: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 480, "width": 640} size = get_size_dict(size, default_to_square=False) self.do_resize = do_resize self.size = size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_grayscale = do_grayscale def resize( self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ size = get_size_dict(size, default_to_square=False) return resize( image, size=(size["height"], size["width"]), data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images, do_resize: bool = None, size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_grayscale: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_grayscale (`bool`, *optional*, defaults to `self.do_grayscale`): Whether to convert the image to grayscale. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_grayscale = do_grayscale if do_grayscale is not None else self.do_grayscale size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image=image, size=size, input_data_format=input_data_format) for image in images] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_grayscale: images = [convert_to_grayscale(image, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_keypoint_detection( self, outputs: "SuperPointKeypointDescriptionOutput", target_sizes: Union[TensorType, List[Tuple]] ) -> List[Dict[str, "torch.Tensor"]]: """ Converts the raw output of [`SuperPointForKeypointDetection`] into lists of keypoints, scores and descriptors with coordinates absolute to the original image sizes. Args: outputs ([`SuperPointKeypointDescriptionOutput`]): Raw outputs of the model containing keypoints in a relative (x, y) format, with scores and descriptors. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. This must be the original image size (before any processing). Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the keypoints in absolute format according to target_sizes, scores and descriptors for an image in the batch as predicted by the model. """ if len(outputs.mask) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the mask") if isinstance(target_sizes, List): image_sizes = torch.tensor(target_sizes, device=outputs.mask.device) else: if target_sizes.shape[1] != 2: raise ValueError( "Each element of target_sizes must contain the size (h, w) of each image of the batch" ) image_sizes = target_sizes # Flip the image sizes to (width, height) and convert keypoints to absolute coordinates image_sizes = torch.flip(image_sizes, [1]) masked_keypoints = outputs.keypoints * image_sizes[:, None] # Convert masked_keypoints to int masked_keypoints = masked_keypoints.to(torch.int32) results = [] for image_mask, keypoints, scores, descriptors in zip( outputs.mask, masked_keypoints, outputs.scores, outputs.descriptors ): indices = torch.nonzero(image_mask).squeeze(1) keypoints = keypoints[indices] scores = scores[indices] descriptors = descriptors[indices] results.append({"keypoints": keypoints, "scores": scores, "descriptors": descriptors}) return results __all__ = ["SuperPointImageProcessor"]
transformers/src/transformers/models/superpoint/image_processing_superpoint.py/0
{ "file_path": "transformers/src/transformers/models/superpoint/image_processing_superpoint.py", "repo_id": "transformers", "token_count": 6564 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Swin2SR.""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, logging logger = logging.get_logger(__name__) class Swin2SRImageProcessor(BaseImageProcessor): r""" Constructs a Swin2SR image processor. Args: do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_pad: bool = True, pad_size: int = 8, **kwargs, ) -> None: super().__init__(**kwargs) self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.pad_size = pad_size def pad( self, image: np.ndarray, size: int, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad an image to make the height and width divisible by `size`. Args: image (`np.ndarray`): Image to pad. size (`int`): The size to make the height and width divisible by. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The padded image. """ old_height, old_width = get_image_size(image, input_data_format) pad_height = (old_height // size + 1) * size - old_height pad_width = (old_width // size + 1) * size - old_width return pad( image, ((0, pad_height), (0, pad_width)), mode="symmetric", data_format=data_format, input_data_format=input_data_format, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_pad: Optional[bool] = None, pad_size: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image to make the height and width divisible by `window_size`. pad_size (`int`, *optional*, defaults to 32): The size of the sliding window for the local attention. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of typ, input_data_format=input_data_formate `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_pad = do_pad if do_pad is not None else self.do_pad pad_size = pad_size if pad_size is not None else self.pad_size images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_pad=do_pad, size_divisibility=pad_size, # Here the pad function simply requires pad_size. ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_pad: images = [self.pad(image, size=pad_size, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["Swin2SRImageProcessor"]
transformers/src/transformers/models/swin2sr/image_processing_swin2sr.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/image_processing_swin2sr.py", "repo_id": "transformers", "token_count": 3906 }
#!/usr/bin/env bash # Use this script as follows ./download_from_gcp.sh /path/to/folder/to/store/downloads folder_to_store_downloads=${1} # Replace by gcp_path to T5 cloud bucket folder here # To download the official `t5-small` model of https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints: gcp_path="gs://t5-data/pretrained_models/small" # Number of files the checkpoint is split into num_of_checks=16 # Create dir if not exist mkdir -p ${folder_to_store_downloads} # Copy all meta information files gsutil cp "${gcp_path}/operative_config.gin" ${folder_to_store_downloads} gsutil cp "${gcp_path}/checkpoint" ${folder_to_store_downloads} gsutil cp "${gcp_path}/model.ckpt-1000000.index" ${folder_to_store_downloads} gsutil cp "${gcp_path}/model.ckpt-1000000.meta" ${folder_to_store_downloads} # Copy all model weights # single digit num checkpoitns for ((i = 0 ; i < ${num_of_checks} ; i++)); do gsutil cp "${gcp_path}/model.ckpt-1000000.data-0000${i}-of-000${num_of_checks}" ${folder_to_store_downloads} done # double digit num checkpoints for ((i = 0 ; i < ${num_of_checks} ; i++)); do gsutil cp "${gcp_path}/model.ckpt-1000000.data-000${i}-of-000${num_of_checks}" ${folder_to_store_downloads} done # Having run this script, you should create a suitable config.json, *e.g.* by # looking at `https://huggingface.co/t5-small`. # Then you can run `python convert_t5_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path "${folder_to_store_downloads}" --config_file "config.json" --pytorch_dump_path "/path/to/store/pytorch/weights"
transformers/src/transformers/models/t5/download_from_gcp.sh/0
{ "file_path": "transformers/src/transformers/models/t5/download_from_gcp.sh", "repo_id": "transformers", "token_count": 579 }
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for TAPAS model.""" import collections import datetime import enum import itertools import math import os import re import unicodedata from dataclasses import dataclass from typing import Callable, Dict, Generator, List, Optional, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, VERY_LARGE_INTEGER, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, ) from ...utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available, logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} class TapasTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" DO_NOT_TRUNCATE = "do_not_truncate" TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"]) @dataclass(frozen=True) class TokenCoordinates: column_index: int row_index: int token_index: int @dataclass class TokenizedTable: rows: List[List[List[str]]] selected_tokens: List[TokenCoordinates] @dataclass(frozen=True) class SerializedExample: tokens: List[str] column_ids: List[int] row_ids: List[int] segment_ids: List[int] def _is_inner_wordpiece(token: str): return token.startswith("##") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ class TapasTokenizer(PreTrainedTokenizer): r""" Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by TAPAS models. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`, `column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`: - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and padding. - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. Tokens of column headers are also 0. - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in a conversational setup (such as SQA). - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2 respectively. 0 for all question tokens, special tokens and padding. - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are 1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding. - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all question tokens, special tokens and padding. [`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and wordpiece. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. empty_token (`str`, *optional*, defaults to `"[EMPTY]"`): The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?". tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). cell_trim_length (`int`, *optional*, defaults to -1): If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be used with `truncation` set to `True`. max_column_id (`int`, *optional*): Max column id to extract. max_row_id (`int`, *optional*): Max row id to extract. strip_column_names (`bool`, *optional*, defaults to `False`): Whether to add empty strings instead of column names. update_answer_coordinates (`bool`, *optional*, defaults to `False`): Whether to recompute the answer coordinates from the answer text. min_question_length (`int`, *optional*): Minimum length of each question in terms of tokens (will be skipped otherwise). max_question_length (`int`, *optional*): Maximum length of each question in terms of tokens (will be skipped otherwise). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", empty_token="[EMPTY]", tokenize_chinese_chars=True, strip_accents=None, cell_trim_length: int = -1, max_column_id: int = None, max_row_id: int = None, strip_column_names: bool = False, update_answer_coordinates: bool = False, min_question_length=None, max_question_length=None, model_max_length: int = 512, additional_special_tokens: Optional[List[str]] = None, clean_up_tokenization_spaces=True, **kwargs, ): if not is_pandas_available(): raise ImportError("Pandas is required for the TAPAS tokenizer.") if additional_special_tokens is not None: if empty_token not in additional_special_tokens: additional_special_tokens.append(empty_token) else: additional_special_tokens = [empty_token] if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) # Additional properties self.cell_trim_length = cell_trim_length self.max_column_id = ( max_column_id if max_column_id is not None else model_max_length if model_max_length is not None else VERY_LARGE_INTEGER ) self.max_row_id = ( max_row_id if max_row_id is not None else model_max_length if model_max_length is not None else VERY_LARGE_INTEGER ) self.strip_column_names = strip_column_names self.update_answer_coordinates = update_answer_coordinates self.min_question_length = min_question_length self.max_question_length = max_question_length super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, empty_token=empty_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, cell_trim_length=cell_trim_length, max_column_id=max_column_id, max_row_id=max_row_id, strip_column_names=strip_column_names, update_answer_coordinates=update_answer_coordinates, min_question_length=min_question_length, max_question_length=max_question_length, model_max_length=model_max_length, additional_special_tokens=additional_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): if format_text(text) == EMPTY_TEXT: return [self.additional_special_tokens[0]] split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]: """ Creates the attention mask according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the attention mask values. """ return [1] * (1 + len(query_ids) + 1 + len(table_values)) def create_segment_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the segment token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the segment token type IDs values. """ table_ids = list(zip(*table_values))[0] if table_values else [] return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids) def create_column_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the column token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the column token type IDs values. """ table_column_ids = list(zip(*table_values))[1] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_column_ids) def create_row_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the row token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the row token type IDs values. """ table_row_ids = list(zip(*table_values))[2] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_row_ids) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a question and flattened table for question answering or sequence classification tasks by concatenating and adding special tokens. Args: token_ids_0 (`List[int]`): The ids of the question. token_ids_1 (`List[int]`, *optional*): The ids of the flattened table. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: raise ValueError("With TAPAS, you must provide both question IDs and table IDs.") return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of question IDs. token_ids_1 (`List[int]`, *optional*): List of flattened table IDs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) + [1] @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: "pd.DataFrame", queries: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None, answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) related to a table. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`str` or `List[str]`): Question or batch of questions related to a table to be encoded. Note that in case of a batch, all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). """ assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame" # Input type checking for clearer error valid_query = False # Check that query has a valid type if queries is None or isinstance(queries, str): valid_query = True elif isinstance(queries, (list, tuple)): if len(queries) == 0 or isinstance(queries[0], str): valid_query = True if not valid_query: raise ValueError( "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized" " example). " ) is_batched = isinstance(queries, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: "pd.DataFrame", queries: Optional[ Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a list of strings for the model. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`List[str]`): Batch of questions related to a table to be encoded. Note that all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") elif answer_coordinates is None and answer_text is None: answer_coordinates = answer_text = [None] * len(queries) if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _get_question_tokens(self, query): """Tokenizes the query, taking into account the max and min question length.""" query_tokens = self.tokenize(query) if self.max_question_length is not None and len(query_tokens) > self.max_question_length: logger.warning("Skipping query as its tokens are longer than the max question length") return "", [] if self.min_question_length is not None and len(query_tokens) < self.min_question_length: logger.warning("Skipping query as its tokens are shorter than the min question length") return "", [] return query, query_tokens def _batch_encode_plus( self, table, queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: table_tokens = self._tokenize_table(table) queries_tokens = [] for idx, query in enumerate(queries): query, query_tokens = self._get_question_tokens(query) queries[idx] = query queries_tokens.append(query_tokens) batch_outputs = self._batch_prepare_for_model( table, queries, tokenized_table=table_tokens, queries_tokens=queries_tokens, answer_coordinates=answer_coordinates, padding=padding, truncation=truncation, answer_text=answer_text, add_special_tokens=add_special_tokens, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) return BatchEncoding(batch_outputs) def _batch_prepare_for_model( self, raw_table: "pd.DataFrame", raw_queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], tokenized_table: Optional[TokenizedTable] = None, queries_tokens: Optional[List[List[str]]] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: batch_outputs = {} for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)): raw_query, query_tokens, answer_coords, answer_txt = example outputs = self.prepare_for_model( raw_table, raw_query, tokenized_table=tokenized_table, query_tokens=query_tokens, answer_coordinates=answer_coords, answer_text=answer_txt, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation, max_length=max_length, pad_to_multiple_of=None, # we pad in batch afterwards padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None, prev_answer_text=answer_text[index - 1] if index != 0 else None, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use that method if you want to build your processing on your own, otherwise refer to `__call__`. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. """ encoded_inputs = self.encode_plus( table, query=query, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a string for the model. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._encode_plus( table=table, query=query, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ): if query is None: query = "" logger.warning( "TAPAS is a question answering model but you have not passed a query. Please be aware that the " "model will probably not behave correctly." ) table_tokens = self._tokenize_table(table) query, query_tokens = self._get_question_tokens(query) return self.prepare_for_model( table, query, tokenized_table=table_tokens, query_tokens=query_tokens, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, raw_table: "pd.DataFrame", raw_query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], tokenized_table: Optional[TokenizedTable] = None, query_tokens: Optional[TokenizedTable] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens. Args: raw_table (`pd.DataFrame`): The original table before any transformation (like tokenization) was applied to it. raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`): The original query before any transformation (like tokenization) was applied to it. tokenized_table (`TokenizedTable`): The table after tokenization. query_tokens (`List[str]`): The query after tokenization. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if isinstance(padding, bool): if padding and (max_length is not None or pad_to_multiple_of is not None): padding = PaddingStrategy.MAX_LENGTH else: padding = PaddingStrategy.DO_NOT_PAD elif not isinstance(padding, PaddingStrategy): padding = PaddingStrategy(padding) if isinstance(truncation, bool): if truncation: truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT else: truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE elif not isinstance(truncation, TapasTruncationStrategy): truncation = TapasTruncationStrategy(truncation) encoded_inputs = {} is_part_of_batch = False prev_answer_coordinates, prev_answer_text = None, None if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs: is_part_of_batch = True prev_answer_coordinates = kwargs["prev_answer_coordinates"] prev_answer_text = kwargs["prev_answer_text"] num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE) num_columns = self._get_num_columns(raw_table) _, _, num_tokens = self._get_table_boundaries(tokenized_table) if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE: num_rows, num_tokens = self._get_truncated_table_rows( query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation ) table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens)) query_ids = self.convert_tokens_to_ids(query_tokens) table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data)) table_ids = self.convert_tokens_to_ids(list(table_ids)) if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]: raise ValueError("TAPAS does not return overflowing tokens as it works on tables.") if add_special_tokens: input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids) else: input_ids = query_ids + table_ids if max_length is not None and len(input_ids) > max_length: raise ValueError( "Could not encode the query and table header given the maximum length. Encoding the query and table " f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}" ) encoded_inputs["input_ids"] = input_ids segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data) column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data) row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data) if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None): # simply set the prev_labels to zeros prev_labels = [0] * len(row_ids) else: prev_labels = self.get_answer_ids( column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates ) # FIRST: parse both the table and question in terms of numeric values raw_table = add_numeric_table_values(raw_table) raw_query = add_numeric_values_to_question(raw_query) # SECOND: add numeric-related features (and not parse them in these functions): column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table) numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_attention_mask: attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data) encoded_inputs["attention_mask"] = attention_mask if answer_coordinates is not None and answer_text is not None: labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates) numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids) numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids) encoded_inputs["labels"] = labels encoded_inputs["numeric_values"] = numeric_values encoded_inputs["numeric_values_scale"] = numeric_values_scale if return_token_type_ids: token_type_ids = [ segment_ids, column_ids, row_ids, prev_labels, column_ranks, inv_column_ranks, numeric_relations, ] token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))] encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(input_ids) # Check lengths if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this " "sequence through the model will result in indexing errors." ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True # Padding if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _get_truncated_table_rows( self, query_tokens: List[str], tokenized_table: TokenizedTable, num_rows: int, num_columns: int, max_length: int, truncation_strategy: Union[str, TapasTruncationStrategy], ) -> Tuple[int, int]: """ Truncates a sequence pair in-place following the strategy. Args: query_tokens (`List[str]`): List of strings corresponding to the tokenized query. tokenized_table (`TokenizedTable`): Tokenized table num_rows (`int`): Total number of table rows num_columns (`int`): Total number of table columns max_length (`int`): Total maximum length. truncation_strategy (`str` or [`TapasTruncationStrategy]`): Truncation strategy to use. Seeing as this method should only be called when truncating, the only available strategy is the `"drop_rows_to_fit"` strategy. Returns: `Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available for each table element. """ if not isinstance(truncation_strategy, TapasTruncationStrategy): truncation_strategy = TapasTruncationStrategy(truncation_strategy) if max_length is None: max_length = self.model_max_length if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT: while True: num_tokens = self._get_max_num_tokens( query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length ) if num_tokens is not None: # We could fit the table. break # Try to drop a row to fit the table. num_rows -= 1 if num_rows < 1: break elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE: raise ValueError(f"Unknown truncation strategy {truncation_strategy}.") return num_rows, num_tokens or 1 def _tokenize_table( self, table=None, ): """ Tokenizes column headers and cell texts of a table. Args: table (`pd.Dataframe`): Table. Returns: `TokenizedTable`: TokenizedTable object. """ tokenized_rows = [] tokenized_row = [] # tokenize column headers for column in table: if self.strip_column_names: tokenized_row.append(self.tokenize("")) else: tokenized_row.append(self.tokenize(column)) tokenized_rows.append(tokenized_row) # tokenize cell values for idx, row in table.iterrows(): tokenized_row = [] for cell in row: tokenized_row.append(self.tokenize(cell)) tokenized_rows.append(tokenized_row) token_coordinates = [] for row_index, row in enumerate(tokenized_rows): for column_index, cell in enumerate(row): for token_index, _ in enumerate(cell): token_coordinates.append( TokenCoordinates( row_index=row_index, column_index=column_index, token_index=token_index, ) ) return TokenizedTable( rows=tokenized_rows, selected_tokens=token_coordinates, ) def _question_encoding_cost(self, question_tokens): # Two extra spots of SEP and CLS. return len(question_tokens) + 2 def _get_token_budget(self, question_tokens, max_length=None): """ Computes the number of tokens left for the table after tokenizing a question, taking into account the max sequence length of the model. Args: question_tokens (`List[String]`): List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max length. """ return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost( question_tokens ) def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]: """Iterates over partial table and returns token, column and row indexes.""" for tc in table.selected_tokens: # First row is header row. if tc.row_index >= num_rows + 1: continue if tc.column_index >= num_columns: continue cell = table.rows[tc.row_index][tc.column_index] token = cell[tc.token_index] word_begin_index = tc.token_index # Don't add partial words. Find the starting word piece and check if it # fits in the token budget. while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]): word_begin_index -= 1 if word_begin_index >= num_tokens: continue yield TableValue(token, tc.column_index + 1, tc.row_index) def _get_table_boundaries(self, table): """Return maximal number of rows, columns and tokens.""" max_num_tokens = 0 max_num_columns = 0 max_num_rows = 0 for tc in table.selected_tokens: max_num_columns = max(max_num_columns, tc.column_index + 1) max_num_rows = max(max_num_rows, tc.row_index + 1) max_num_tokens = max(max_num_tokens, tc.token_index + 1) max_num_columns = min(self.max_column_id, max_num_columns) max_num_rows = min(self.max_row_id, max_num_rows) return max_num_rows, max_num_columns, max_num_tokens def _get_table_cost(self, table, num_columns, num_rows, num_tokens): return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens)) def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length): """Computes max number of tokens that can be squeezed into the budget.""" token_budget = self._get_token_budget(question_tokens, max_length) _, _, max_num_tokens = self._get_table_boundaries(tokenized_table) if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length: max_num_tokens = self.cell_trim_length num_tokens = 0 for num_tokens in range(max_num_tokens + 1): cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1) if cost > token_budget: break if num_tokens < max_num_tokens: if self.cell_trim_length >= 0: # We don't allow dynamic trimming if a cell_trim_length is set. return None if num_tokens == 0: return None return num_tokens def _get_num_columns(self, table): num_columns = table.shape[1] if num_columns >= self.max_column_id: raise ValueError("Too many columns") return num_columns def _get_num_rows(self, table, drop_rows_to_fit): num_rows = table.shape[0] if num_rows >= self.max_row_id: if drop_rows_to_fit: num_rows = self.max_row_id - 1 else: raise ValueError("Too many rows") return num_rows def _serialize_text(self, question_tokens): """Serializes texts in index arrays.""" tokens = [] segment_ids = [] column_ids = [] row_ids = [] # add [CLS] token at the beginning tokens.append(self.cls_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token in question_tokens: tokens.append(token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) return tokens, segment_ids, column_ids, row_ids def _serialize( self, question_tokens, table, num_columns, num_rows, num_tokens, ): """Serializes table and text.""" tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens) # add [SEP] token between question and table tokens tokens.append(self.sep_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens): tokens.append(token) segment_ids.append(1) column_ids.append(column_id) row_ids.append(row_id) return SerializedExample( tokens=tokens, segment_ids=segment_ids, column_ids=column_ids, row_ids=row_ids, ) def _get_column_values(self, table, col_index): table_numeric_values = {} for row_index, row in table.iterrows(): cell = row[col_index] if cell.numeric_value is not None: table_numeric_values[row_index] = cell.numeric_value return table_numeric_values def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id): for index in range(len(column_ids)): if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id: yield index def _get_numeric_column_ranks(self, column_ids, row_ids, table): """Returns column ranks for all numeric columns.""" ranks = [0] * len(column_ids) inv_ranks = [0] * len(column_ids) # original code from tf_example_utils.py of the original implementation if table is not None: for col_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, col_index) if not table_numeric_values: continue try: key_fn = get_numeric_sort_key_fn(table_numeric_values.values()) except ValueError: continue table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()} table_numeric_values_inv = collections.defaultdict(list) for row_index, value in table_numeric_values.items(): table_numeric_values_inv[value].append(row_index) unique_values = sorted(table_numeric_values_inv.keys()) for rank, value in enumerate(unique_values): for row_index in table_numeric_values_inv[value]: for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): ranks[index] = rank + 1 inv_ranks[index] = len(unique_values) - rank return ranks, inv_ranks def _get_numeric_sort_key_fn(self, table_numeric_values, value): """ Returns the sort key function for comparing value to table values. The function returned will be a suitable input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details Args: table_numeric_values: Numeric values of a column value: Numeric value in the question Returns: A function key function to compare column and question values. """ if not table_numeric_values: return None all_values = list(table_numeric_values.values()) all_values.append(value) try: return get_numeric_sort_key_fn(all_values) except ValueError: return None def _get_numeric_relations(self, question, column_ids, row_ids, table): """ Returns numeric relations embeddings Args: question: Question object. column_ids: Maps word piece position to column id. row_ids: Maps word piece position to row id. table: The table containing the numeric cell values. """ numeric_relations = [0] * len(column_ids) # first, we add any numeric value spans to the question: # Create a dictionary that maps a table cell to the set of all relations # this cell has with any value in the question. cell_indices_to_relations = collections.defaultdict(set) if question is not None and table is not None: for numeric_value_span in question.numeric_spans: for value in numeric_value_span.values: for column_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, column_index) sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value) if sort_key_fn is None: continue for row_index, cell_value in table_numeric_values.items(): relation = get_numeric_relation(value, cell_value, sort_key_fn) if relation is not None: cell_indices_to_relations[column_index, row_index].add(relation) # For each cell add a special feature for all its word pieces. for (column_index, row_index), relations in cell_indices_to_relations.items(): relation_set_index = 0 for relation in relations: assert relation.value >= Relation.EQ.value relation_set_index += 2 ** (relation.value - Relation.EQ.value) for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): numeric_relations[cell_token_index] = relation_set_index return numeric_relations def _get_numeric_values(self, table, column_ids, row_ids): """Returns numeric values for computation of answer loss.""" numeric_values = [float("nan")] * len(column_ids) if table is not None: num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): numeric_value = table.iloc[row_index, col_index].numeric_value if numeric_value is not None: if numeric_value.float_value is None: continue float_value = numeric_value.float_value if float_value == float("inf"): continue for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): numeric_values[index] = float_value return numeric_values def _get_numeric_values_scale(self, table, column_ids, row_ids): """Returns a scale to each token to down weigh the value of long words.""" numeric_values_scale = [1.0] * len(column_ids) if table is None: return numeric_values_scale num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index)) num_indices = len(indices) if num_indices > 1: for index in indices: numeric_values_scale[index] = float(num_indices) return numeric_values_scale def _pad_to_seq_length(self, inputs): while len(inputs) > self.model_max_length: inputs.pop() while len(inputs) < self.model_max_length: inputs.append(0) def _get_all_answer_ids_from_coordinates( self, column_ids, row_ids, answers_list, ): """Maps lists of answer coordinates to token indexes.""" answer_ids = [0] * len(column_ids) found_answers = set() all_answers = set() for answers in answers_list: column_index, row_index = answers all_answers.add((column_index, row_index)) for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): found_answers.add((column_index, row_index)) answer_ids[index] = 1 missing_count = len(all_answers) - len(found_answers) return answer_ids, missing_count def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates): """ Maps answer coordinates of a question to token indexes. In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to (column, row) format before calling _get_all_answer_ids_from_coordinates. """ def _to_coordinates(answer_coordinates_question): return [(coords[1], coords[0]) for coords in answer_coordinates_question] return self._get_all_answer_ids_from_coordinates( column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates)) ) def _find_tokens(self, text, segment): """Return start index of segment in text or None.""" logging.info(f"text: {text} {segment}") for index in range(1 + len(text) - len(segment)): for seg_index, seg_token in enumerate(segment): if text[index + seg_index].piece != seg_token.piece: break else: return index return None def _find_answer_coordinates_from_answer_text( self, tokenized_table, answer_text, ): """Returns all occurrences of answer_text in the table.""" logging.info(f"answer text: {answer_text}") for row_index, row in enumerate(tokenized_table.rows): if row_index == 0: # We don't search for answers in the header. continue for col_index, cell in enumerate(row): token_index = self._find_tokens(cell, answer_text) if token_index is not None: yield TokenCoordinates( row_index=row_index, column_index=col_index, token_index=token_index, ) def _find_answer_ids_from_answer_texts( self, column_ids, row_ids, tokenized_table, answer_texts, ): """Maps question with answer texts to the first matching token indexes.""" answer_ids = [0] * len(column_ids) for answer_text in answer_texts: for coordinates in self._find_answer_coordinates_from_answer_text( tokenized_table, answer_text, ): # Maps answer coordinates to indexes this can fail if tokens / rows have # been pruned. indexes = list( self._get_cell_token_indexes( column_ids, row_ids, column_id=coordinates.column_index, row_id=coordinates.row_index - 1, ) ) indexes.sort() coordinate_answer_ids = [] if indexes: begin_index = coordinates.token_index + indexes[0] end_index = begin_index + len(answer_text) for index in indexes: if index >= begin_index and index < end_index: coordinate_answer_ids.append(index) if len(coordinate_answer_ids) == len(answer_text): for index in coordinate_answer_ids: answer_ids[index] = 1 break return answer_ids def _get_answer_ids(self, column_ids, row_ids, answer_coordinates): """Maps answer coordinates of a question to token indexes.""" answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates) if missing_count: raise ValueError("Couldn't find all answers") return answer_ids def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question): if self.update_answer_coordinates: return self._find_answer_ids_from_answer_texts( column_ids, row_ids, tokenized_table, answer_texts=[self.tokenize(at) for at in answer_texts_question], ) return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = ( padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = ( encoded_inputs["numeric_values_scale"] + [1.0] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[ "token_type_ids" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"] if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"] if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[ "numeric_values_scale" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs # Everything related to converting logits to predictions def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids): for i, p in enumerate(probabilities): segment_id = segment_ids[i] col = column_ids[i] - 1 row = row_ids[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: yield i, p def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids): """Computes average probability per cell, aggregating over tokens.""" coords_to_probs = collections.defaultdict(list) for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids): col = column_ids[i] - 1 row = row_ids[i] - 1 coords_to_probs[(col, row)].append(prob) return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()} def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5): """ Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional aggregation indices. The original implementation, on which this function is based, can be found [here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288). Args: data (`dict`): Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`]. logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits at the token level. logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*): Tensor containing the aggregation logits. cell_classification_threshold (`float`, *optional*, defaults to 0.5): Threshold to be used for cell selection. All table cells for which their probability is larger than this threshold will be selected. Returns: `tuple` comprising various elements depending on the inputs: - predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index). - predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when `logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head. """ # converting to numpy arrays to work with PT/TF logits = logits.numpy() if logits_agg is not None: logits_agg = logits_agg.numpy() data = {key: value.numpy() for key, value in data.items() if key != "training"} # input data is of type float32 # np.log(np.finfo(np.float32).max) = 88.72284 # Any value over 88.72284 will overflow when passed through the exponential, sending a warning # We disable this warning by truncating the logits. logits[logits < -88.7] = -88.7 # Compute probabilities from token logits probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"] token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len) input_ids = data["input_ids"] segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")] row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")] column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")] # next, get answer coordinates for every example in the batch num_batch = input_ids.shape[0] predicted_answer_coordinates = [] for i in range(num_batch): probabilities_example = probabilities[i].tolist() segment_ids_example = segment_ids[i] row_ids_example = row_ids[i] column_ids_example = column_ids[i] max_width = column_ids_example.max() max_height = row_ids_example.max() if max_width == 0 and max_height == 0: continue cell_coords_to_prob = self._get_mean_cell_probs( probabilities_example, segment_ids_example.tolist(), row_ids_example.tolist(), column_ids_example.tolist(), ) # Select the answers above the classification threshold. answer_coordinates = [] for col in range(max_width): for row in range(max_height): cell_prob = cell_coords_to_prob.get((col, row), None) if cell_prob is not None: if cell_prob > cell_classification_threshold: answer_coordinates.append((row, col)) answer_coordinates = sorted(answer_coordinates) predicted_answer_coordinates.append(answer_coordinates) output = (predicted_answer_coordinates,) if logits_agg is not None: predicted_aggregation_indices = logits_agg.argmax(axis=-1) output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) return output # End of everything related to converting logits to predictions # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens # Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow). # This includes functions to parse numeric values (dates and numbers) from both the table and questions in order # to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in # prepare_for_model of TapasTokenizer. # These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used. # taken from constants.py of the original implementation # URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py class Relation(enum.Enum): HEADER_TO_CELL = 1 # Connects header to cell. CELL_TO_HEADER = 2 # Connects cell to header. QUERY_TO_HEADER = 3 # Connects query to headers. QUERY_TO_CELL = 4 # Connects query to cells. ROW_TO_CELL = 5 # Connects row to cells. CELL_TO_ROW = 6 # Connects cells to row. EQ = 7 # Annotation value is same as cell value LT = 8 # Annotation value is less than cell value GT = 9 # Annotation value is greater than cell value @dataclass class Date: year: Optional[int] = None month: Optional[int] = None day: Optional[int] = None @dataclass class NumericValue: float_value: Optional[float] = None date: Optional[Date] = None @dataclass class NumericValueSpan: begin_index: int = None end_index: int = None values: List[NumericValue] = None @dataclass class Cell: text: str numeric_value: Optional[NumericValue] = None @dataclass class Question: original_text: str # The original raw question string. text: str # The question string after normalization. numeric_spans: Optional[List[NumericValueSpan]] = None # Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match) # from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py # Constants for parsing date expressions. # Masks that specify (by a bool) which of (year, month, day) will be populated. _DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"]) _YEAR = _DateMask(True, False, False) _YEAR_MONTH = _DateMask(True, True, False) _YEAR_MONTH_DAY = _DateMask(True, True, True) _MONTH = _DateMask(False, True, False) _MONTH_DAY = _DateMask(False, True, True) # Pairs of patterns to pass to 'datetime.strptime' and masks specifying which # fields will be set by the corresponding pattern. _DATE_PATTERNS = ( ("%B", _MONTH), ("%Y", _YEAR), ("%Ys", _YEAR), ("%b %Y", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%B %d", _MONTH_DAY), ("%b %d", _MONTH_DAY), ("%d %b", _MONTH_DAY), ("%d %B", _MONTH_DAY), ("%B %d, %Y", _YEAR_MONTH_DAY), ("%d %B %Y", _YEAR_MONTH_DAY), ("%m-%d-%Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%Y-%m", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%d %b %Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%b %d, %Y", _YEAR_MONTH_DAY), ("%d.%m.%Y", _YEAR_MONTH_DAY), ("%A, %b %d", _MONTH_DAY), ("%A, %B %d", _MONTH_DAY), ) # This mapping is used to convert date patterns to regex patterns. _FIELD_TO_REGEX = ( ("%A", r"\w+"), # Weekday as locale’s full name. ("%B", r"\w+"), # Month as locale’s full name. ("%Y", r"\d{4}"), # Year with century as a decimal number. ("%b", r"\w{3}"), # Month as locale’s abbreviated name. ("%d", r"\d{1,2}"), # Day of the month as a zero-padded decimal number. ("%m", r"\d{1,2}"), # Month as a zero-padded decimal number. ) def _process_date_pattern(dp): """Compute a regex for each date pattern to use as a prefilter.""" pattern, mask = dp regex = pattern regex = regex.replace(".", re.escape(".")) regex = regex.replace("-", re.escape("-")) regex = regex.replace(" ", r"\s+") for field, field_regex in _FIELD_TO_REGEX: regex = regex.replace(field, field_regex) # Make sure we didn't miss any of the fields. assert "%" not in regex, regex return pattern, mask, re.compile("^" + regex + "$") def _process_date_patterns(): return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS) _PROCESSED_DATE_PATTERNS = _process_date_patterns() _MAX_DATE_NGRAM_SIZE = 5 # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L414. _NUMBER_WORDS = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", ] _ORDINAL_WORDS = [ "zeroth", "first", "second", "third", "fourth", "fith", "sixth", "seventh", "eighth", "ninth", "tenth", "eleventh", "twelfth", ] _ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"] _NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))") # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L293. _MIN_YEAR = 1700 _MAX_YEAR = 2016 _INF = float("INF") def _get_numeric_value_from_date(date, mask): """Converts date (datetime Python object) to a NumericValue object with a Date object value.""" if date.year < _MIN_YEAR or date.year > _MAX_YEAR: raise ValueError(f"Invalid year: {date.year}") new_date = Date() if mask.year: new_date.year = date.year if mask.month: new_date.month = date.month if mask.day: new_date.day = date.day return NumericValue(date=new_date) def _get_span_length_key(span): """Sorts span by decreasing length first and increasing first index second.""" return span[1] - span[0], -span[0] def _get_numeric_value_from_float(value): """Converts float (Python) to a NumericValue object with a float value.""" return NumericValue(float_value=value) # Doesn't parse ordinal expressions such as '18th of february 1655'. def _parse_date(text): """Attempts to format a text as a standard date string (yyyy-mm-dd).""" text = re.sub(r"Sept\b", "Sep", text) for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS: if not regex.match(text): continue try: date = datetime.datetime.strptime(text, in_pattern).date() except ValueError: continue try: return _get_numeric_value_from_date(date, mask) except ValueError: continue return None def _parse_number(text): """Parses simple cardinal and ordinals numbers.""" for suffix in _ORDINAL_SUFFIXES: if text.endswith(suffix): text = text[: -len(suffix)] break text = text.replace(",", "") try: value = float(text) except ValueError: return None if math.isnan(value): return None if value == _INF: return None return value def get_all_spans(text, max_ngram_length): """ Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation. Args: text: Text to split. max_ngram_length: maximal ngram length. Yields: Spans, tuples of begin-end index. """ start_indexes = [] for index, char in enumerate(text): if not char.isalnum(): continue if index == 0 or not text[index - 1].isalnum(): start_indexes.append(index) if index + 1 == len(text) or not text[index + 1].isalnum(): for start_index in start_indexes[-max_ngram_length:]: yield start_index, index + 1 def normalize_for_match(text): return " ".join(text.lower().split()) def format_text(text): """Lowercases and strips punctuation.""" text = text.lower().strip() if text == "n/a" or text == "?" or text == "nan": text = EMPTY_TEXT text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ") text = " ".join(text.split()) text = text.strip() if text: return text return EMPTY_TEXT def parse_text(text): """ Extracts longest number and date spans. Args: text: text to annotate Returns: List of longest numeric value spans. """ span_dict = collections.defaultdict(list) for match in _NUMBER_PATTERN.finditer(text): span_text = text[match.start() : match.end()] number = _parse_number(span_text) if number is not None: span_dict[match.span()].append(_get_numeric_value_from_float(number)) for begin_index, end_index in get_all_spans(text, max_ngram_length=1): if (begin_index, end_index) in span_dict: continue span_text = text[begin_index:end_index] number = _parse_number(span_text) if number is not None: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number)) for number, word in enumerate(_NUMBER_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for number, word in enumerate(_ORDINAL_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE): span_text = text[begin_index:end_index] date = _parse_date(span_text) if date is not None: span_dict[begin_index, end_index].append(date) spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True) selected_spans = [] for span, value in spans: for selected_span, _ in selected_spans: if selected_span[0] <= span[0] and span[1] <= selected_span[1]: break else: selected_spans.append((span, value)) selected_spans.sort(key=lambda span_value: span_value[0][0]) numeric_value_spans = [] for span, values in selected_spans: numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values)) return numeric_value_spans # Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode # and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py _PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]] _SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]] _DATE_TUPLE_SIZE = 3 EMPTY_TEXT = "EMPTY" NUMBER_TYPE = "number" DATE_TYPE = "date" def _get_value_type(numeric_value): if numeric_value.float_value is not None: return NUMBER_TYPE elif numeric_value.date is not None: return DATE_TYPE raise ValueError(f"Unknown type: {numeric_value}") def _get_value_as_primitive_value(numeric_value): """Maps a NumericValue proto to a float or tuple of float.""" if numeric_value.float_value is not None: return numeric_value.float_value if numeric_value.date is not None: date = numeric_value.date value_tuple = [None, None, None] # All dates fields are cased to float to produce a simple primitive value. if date.year is not None: value_tuple[0] = float(date.year) if date.month is not None: value_tuple[1] = float(date.month) if date.day is not None: value_tuple[2] = float(date.day) return tuple(value_tuple) raise ValueError(f"Unknown type: {numeric_value}") def _get_all_types(numeric_values): return {_get_value_type(value) for value in numeric_values} def get_numeric_sort_key_fn(numeric_values): """ Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values (2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010., 5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare by the year so we would map to (2010.,), (2007.,) and (2006.,). Args: numeric_values: Values to compare Returns: A function that can be used as a sort key function (mapping numeric values to a comparable tuple) Raises: ValueError if values don't have a common type or are not comparable. """ value_types = _get_all_types(numeric_values) if len(value_types) != 1: raise ValueError(f"No common value type in {numeric_values}") value_type = next(iter(value_types)) if value_type == NUMBER_TYPE: # Primitive values are simple floats, nothing to do here. return _get_value_as_primitive_value # The type can only be Date at this point which means the primitive type # is a float triple. valid_indexes = set(range(_DATE_TUPLE_SIZE)) for numeric_value in numeric_values: value = _get_value_as_primitive_value(numeric_value) assert isinstance(value, tuple) for tuple_index, inner_value in enumerate(value): if inner_value is None: valid_indexes.discard(tuple_index) if not valid_indexes: raise ValueError(f"No common value in {numeric_values}") def _sort_key_fn(numeric_value): value = _get_value_as_primitive_value(numeric_value) return tuple(value[index] for index in valid_indexes) return _sort_key_fn def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info): """ Finds the most common numeric values in a column and returns them Args: row_index_to_values: For each row index all the values in that cell. min_consolidation_fraction: Fraction of cells that need to have consolidated value. debug_info: Additional information only used for logging Returns: For each row index the first value that matches the most common value. Rows that don't have a matching value are dropped. Empty list if values can't be consolidated. """ type_counts = collections.Counter() for numeric_values in row_index_to_values.values(): type_counts.update(_get_all_types(numeric_values)) if not type_counts: return {} max_count = max(type_counts.values()) if max_count < len(row_index_to_values) * min_consolidation_fraction: # logging.log_every_n(logging.INFO, f'Can\'t consolidate types: {debug_info} {row_index_to_values} {max_count}', 100) return {} valid_types = set() for value_type, count in type_counts.items(): if count == max_count: valid_types.add(value_type) if len(valid_types) > 1: assert DATE_TYPE in valid_types max_type = DATE_TYPE else: max_type = next(iter(valid_types)) new_row_index_to_value = {} for index, values in row_index_to_values.items(): # Extract the first matching value. for value in values: if _get_value_type(value) == max_type: new_row_index_to_value[index] = value break return new_row_index_to_value def _get_numeric_values(text): """Parses text and returns numeric values.""" numeric_spans = parse_text(text) return itertools.chain(*(span.values for span in numeric_spans)) def _get_column_values(table, col_index): """ Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from number_annotation_utils.py of the original implementation Args: table: Pandas dataframe col_index: integer, indicating the index of the column to get the numeric values of """ index_to_values = {} for row_index, row in table.iterrows(): text = normalize_for_match(row[col_index].text) index_to_values[row_index] = list(_get_numeric_values(text)) return index_to_values def get_numeric_relation(value, other_value, sort_key_fn): """Compares two values and returns their relation or None.""" value = sort_key_fn(value) other_value = sort_key_fn(other_value) if value == other_value: return Relation.EQ if value < other_value: return Relation.LT if value > other_value: return Relation.GT return None def add_numeric_values_to_question(question): """Adds numeric value spans to a question.""" original_text = question question = normalize_for_match(question) numeric_spans = parse_text(question) return Question(original_text=original_text, text=question, numeric_spans=numeric_spans) def filter_invalid_unicode(text): """Return an empty string and True if 'text' is in invalid unicode.""" return ("", True) if isinstance(text, bytes) else (text, False) def filter_invalid_unicode_from_table(table): """ Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes, reset the table cell text to an empty str and log a warning for each invalid cell Args: table: table to clean. """ # to do: add table id support if not hasattr(table, "table_id"): table.table_id = 0 for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): cell, is_invalid = filter_invalid_unicode(cell) if is_invalid: logging.warning( f"Scrub an invalid table body @ table_id: {table.table_id}, row_index: {row_index}, " f"col_index: {col_index}", ) for col_index, column in enumerate(table.columns): column, is_invalid = filter_invalid_unicode(column) if is_invalid: logging.warning(f"Scrub an invalid table header @ table_id: {table.table_id}, col_index: {col_index}") def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None): """ Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a common types (date or number) Args: table: Table to annotate. min_consolidation_fraction: Fraction of cells in a column that need to have consolidated value. debug_info: Additional information used for logging. """ table = table.copy() # First, filter table on invalid unicode filter_invalid_unicode_from_table(table) # Second, replace cell values by Cell objects for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): table.iloc[row_index, col_index] = Cell(text=cell) # Third, add numeric_value attributes to these Cell objects for col_index, column in enumerate(table.columns): column_values = _consolidate_numeric_values( _get_column_values(table, col_index), min_consolidation_fraction=min_consolidation_fraction, debug_info=(debug_info, column), ) for row_index, numeric_value in column_values.items(): table.iloc[row_index, col_index].numeric_value = numeric_value return table __all__ = ["TapasTokenizer"]
transformers/src/transformers/models/tapas/tokenization_tapas.py/0
{ "file_path": "transformers/src/transformers/models/tapas/tokenization_tapas.py", "repo_id": "transformers", "token_count": 52360 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeechSat checkpoint.""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_sat_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechSatConfig.from_pretrained(config_path) else: config = UniSpeechSatConfig() dict_path = "" if is_finetuned: hf_wav2vec = UniSpeechSatForCTC(config) else: hf_wav2vec = UniSpeechSatForPreTraining(config) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) model = model[0].eval() recursively_load_weights(model, hf_wav2vec) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4200 }
# coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch VideoLlava model.""" from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ..auto import AutoModel, AutoModelForCausalLM from .configuration_video_llava import VideoLlavaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VideoLlavaConfig" @dataclass class VideoLlavaCausalLMOutputWithPast(ModelOutput): """ Base class for VideoLlava causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. video_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size * num_frames, num_videos, sequence_length, hidden_size)`. video_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None video_hidden_states: Optional[torch.FloatTensor] = None # Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->VideoLlava class VideoLlavaMultiModalProjector(nn.Module): def __init__(self, config: VideoLlavaConfig): super().__init__() # We have hidden_size * the number of vision feature layers num_feature_layers = 1 if isinstance(config.vision_feature_layer, int) else len(config.vision_feature_layer) self.linear_1 = nn.Linear( config.vision_config.hidden_size * num_feature_layers, config.text_config.hidden_size, bias=config.multimodal_projector_bias, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states VIDEO_LLAVA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VideoLlavaConfig`] or [`VideoLlavaVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( VIDEO_LLAVA_START_DOCSTRING, ) class VideoLlavaPreTrainedModel(PreTrainedModel): config_class = VideoLlavaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["VideoLlavaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() VIDEO_LLAVA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values_images (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`VideoLlavaImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`VideoLlavaImageProcessor`] for processing images). pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, image_size, image_size)): The tensors corresponding to the input video. Pixel values can be obtained using [`AutoImageProcessor`]. See [`VideoLlavaImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`VideoLlavaImageProcessor`] for processing videos). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """The VideoLlava model which consists of a vision backbone and a language model.""", VIDEO_LLAVA_START_DOCSTRING, ) class VideoLlavaForConditionalGeneration(VideoLlavaPreTrainedModel, GenerationMixin): def __init__(self, config: VideoLlavaConfig): super().__init__(config) self.video_tower = AutoModel.from_config(config.vision_config) self.image_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = VideoLlavaMultiModalProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def _merge_input_ids_with_visual_features( self, visual_features, inputs_embeds, input_ids, attention_mask, labels, num_frames=1 ): num_images, num_image_patches, embed_dim = visual_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) special_vision_token = self.config.video_token_index if num_frames > 1 else self.config.image_token_index # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == special_vision_token num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_seq_len = (num_special_image_tokens.max() * (num_image_patches * num_frames - 1)) + sequence_length batch_indices, non_image_indices = torch.where(input_ids != special_vision_token) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = ( torch.cumsum((special_image_token_mask * (num_image_patches * num_frames - 1) + 1), dim=-1) - 1 ) nb_image_pad = max_seq_len - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position # expand input ids so that the second "merge" with videos does not fail final_embedding = torch.zeros( batch_size, max_seq_len, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_seq_len, dtype=attention_mask.dtype, device=inputs_embeds.device ) final_input_ids = torch.full( (batch_size, max_seq_len), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices] if labels is not None: final_labels = torch.full( (batch_size, max_seq_len), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device ) final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] else: final_labels = None # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling image_to_overwrite = torch.full((batch_size, max_seq_len), True, dtype=torch.bool, device=inputs_embeds.device) image_to_overwrite[batch_indices, text_to_overwrite] = False if left_padding: image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) else: mask = torch.ones_like(image_to_overwrite, dtype=torch.bool).cumsum(-1) - 1 padding_mask = mask <= new_token_positions[:, -1:].to(target_device) image_to_overwrite &= padding_mask if image_to_overwrite.sum() != visual_features.shape[:-1].numel(): visual_type = "videos" if num_frames == 8 else "images" num_images //= num_frames raise ValueError( f"The input provided to the model are wrong. The number of {visual_type} tokens is {torch.sum(special_image_token_mask)} while" f" the number of {visual_type} given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = visual_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) return final_embedding, final_attention_mask, final_labels, position_ids, final_input_ids def get_image_features( self, pixel_values_images: torch.FloatTensor, vision_feature_layer: Union[int, List[int]], vision_feature_select_strategy: str, ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values_images (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. vision_feature_layer (`Union[int, List[int]]`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. vision_feature_select_strategy (`str`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"` Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ if vision_feature_select_strategy not in ["default", "full"]: raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}") image_outputs = self.image_tower(pixel_values_images, output_hidden_states=True) # If we have one vision feature layer, return the corresponding hidden states, # otherwise, select the hidden states of each feature layer and concatenate them if isinstance(vision_feature_layer, int): image_outputs = image_outputs.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": image_outputs = image_outputs[:, 1:] else: hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer] # For default; crop CLS from each hidden state in the hidden state pool if vision_feature_select_strategy == "default": hs_pool = [hs[:, 1:] for hs in hs_pool] image_outputs = torch.cat(hs_pool, dim=-1) image_features = self.multi_modal_projector(image_outputs) return image_features def get_video_features( self, pixel_values_videos: torch.FloatTensor, vision_feature_layer: Union[int, List[int]], ): """ Obtains video last hidden states from the vision tower and apply multimodal projection. Args: pixel_values_videos (`torch.FloatTensor]` of shape `(batch_size, num_frames, channels, height, width)`) The tensors corresponding to the input videos. vision_feature_layer (`Union[int, List[int]]`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. Returns: video_features (`torch.Tensor`): Video feature tensor of shape `(num_videos * num_frames, image_length, embed_dim)`). frames (`int`): Number of frames the videos have. """ batch_size_vid, num_frames, channels, height, width = pixel_values_videos.shape pixel_values = pixel_values_videos.reshape(batch_size_vid * num_frames, channels, height, width) video_outputs = self.video_tower(pixel_values, output_hidden_states=True) # If we have one vision feature layer, return the corresponding hidden states, # otherwise, select the hidden states of each feature layer and concatenate them if isinstance(vision_feature_layer, int): video_features = video_outputs.hidden_states[vision_feature_layer] else: hs_pool = [video_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer] video_features = torch.cat(hs_pool, dim=-1) video_features = self.multi_modal_projector(video_features) return video_features, num_frames @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(VIDEO_LLAVA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VideoLlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values_images: torch.FloatTensor = None, pixel_values_videos: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[Union[int, List[int]]] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **lm_kwargs, ) -> Union[Tuple, VideoLlavaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from PIL import Image >>> import requests >>> import numpy as np >>> import av >>> from huggingface_hub import hf_hub_download >>> from transformers import VideoLlavaProcessor, VideoLlavaForConditionalGeneration >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf") >>> processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf") >>> prompt = "USER: <video>\nWhy is this video funny? ASSISTANT:" >>> video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset") >>> container = av.open(video_path) >>> # sample uniformly 8 frames from the video >>> total_frames = container.streams.video[0].frames >>> indices = np.arange(0, total_frames, total_frames / 8).astype(int) >>> clip = read_video_pyav(container, indices) >>> inputs = processor(text=prompt, videos=clip, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=80) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "USER: Why is this video funny? ASSISTANT: The video is funny because the baby is playing with a Wii remote while sitting on the floor, and the baby is wearing glasses.Ъ. The baby's actions are amusing because it is a young child trying to interact with a video game, which is not a typical activity for a" >>> # to generate from image and video mix >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> prompt = [ ... "USER: <image>\nHow many cats do you see? ASSISTANT:", ... "USER: <video>\nWhy is this video funny? ASSISTANT:" ... ] >>> inputs = processor(text=prompt, images=image, videos=clip, padding=True, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=50) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) ['USER: How many cats do you see? ASSISTANT: There are two cats visible in the image. (or three, if you count the one in the background).', 'USER: Why is this video funny? ASSISTANT: The video is funny because it shows a baby sitting on a bed and playing with a Wii remote.Ъ. The baby is holding the remote'] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if (pixel_values_images is not None or pixel_values_videos is not None) and inputs_embeds is not None: raise ValueError( "You cannot specify both `pixel_values_images`/`pixel_values_videos` and `inputs_embeds` at the same " "time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values_images is not None: image_features = self.get_image_features( pixel_values_images, vision_feature_layer=vision_feature_layer, vision_feature_select_strategy=vision_feature_select_strategy, ) n_image_tokens = (input_ids == self.config.image_token_index).sum().item() n_image_features = image_features.shape[0] * image_features.shape[1] if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) if pixel_values_videos is not None: video_features, num_frames = self.get_video_features( pixel_values_videos=pixel_values_videos, vision_feature_layer=vision_feature_layer ) n_video_tokens = (input_ids == self.config.video_token_index).sum().item() n_video_features = video_features.shape[0] * video_features.shape[1] if n_video_tokens != n_video_features: raise ValueError( f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}" ) special_image_mask = (input_ids == self.config.video_token_index).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) video_features = video_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, video_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, logits_to_keep=logits_to_keep, **lm_kwargs, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return VideoLlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values_images is not None else None, video_hidden_states=video_features if pixel_values_videos is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values_images=None, pixel_values_videos=None, attention_mask=None, cache_position=None, logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values_images"] = pixel_values_images model_inputs["pixel_values_videos"] = pixel_values_videos return model_inputs __all__ = ["VideoLlavaPreTrainedModel", "VideoLlavaForConditionalGeneration"]
transformers/src/transformers/models/video_llava/modeling_video_llava.py/0
{ "file_path": "transformers/src/transformers/models/video_llava/modeling_video_llava.py", "repo_id": "transformers", "token_count": 14753 }
# coding=utf-8 # Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VipLlava model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) class VipLlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VipLlavaForConditionalGeneration`]. It is used to instantiate an VipLlava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VipLlava-9B. e.g. [ybelkada/vip-llava-7b-hf](https://huggingface.co/ybelkada/vip-llava-7b-hf) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`VipLlavaVisionConfig`, *optional*): Custom vision config or dict text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. projector_layernorm_eps (`float`, *optional*, defaults to 1e-05): The layer norm epsilon of the projector layernorm vision_feature_layers (`Union[int, List[int]]`, *optional*, defaults to `[-2, -5, -8, -11, 6]`): The vision feature layer, or list of layers to select the vision features from. image_seq_length (`int`, *optional*, defaults to 576): Sequence length of one image embedding. Example: ```python >>> from transformers import VipLlavaForConditionalGeneration, VipLlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a VipLlava vipllava-7b style configuration >>> configuration = VipLlavaConfig(vision_config, text_config) >>> # Initializing a model from the vipllava-7b style configuration >>> model = VipLlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vipllava" sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", projector_layernorm_eps=1e-5, vision_feature_layers=[-2, -5, -8, -11, 6], image_seq_length=576, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.projector_layernorm_eps = projector_layernorm_eps self.vision_feature_layers = vision_feature_layers self.image_seq_length = image_seq_length self.vision_config = vision_config if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["llama"]() self.text_config = text_config super().__init__(**kwargs) __all__ = ["VipLlavaConfig"]
transformers/src/transformers/models/vipllava/configuration_vipllava.py/0
{ "file_path": "transformers/src/transformers/models/vipllava/configuration_vipllava.py", "repo_id": "transformers", "token_count": 2012 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VisualBert checkpoint.""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) rename_keys_prefix = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] ACCEPTABLE_CHECKPOINTS = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def load_state_dict(checkpoint_path): sd = torch.load(checkpoint_path, map_location="cpu") return sd def get_new_dict(d, config, rename_keys_prefix=rename_keys_prefix): new_d = OrderedDict() new_d["visual_bert.embeddings.position_ids"] = torch.arange(config.max_position_embeddings).expand((1, -1)) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue new_key = key for name_pair in rename_keys_prefix: new_key = new_key.replace(name_pair[0], name_pair[1]) new_d[new_key] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately new_d["cls.predictions.decoder.bias"] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def convert_visual_bert_checkpoint(checkpoint_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisualBERT structure. """ assert ( checkpoint_path.split("/")[-1] in ACCEPTABLE_CHECKPOINTS ), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: model_type = "pretraining" if "vcr" in checkpoint_path: config_params = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: config_params = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: config_params = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: config_params = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"No implementation found for `{checkpoint_path}`.") else: if "vcr" in checkpoint_path: config_params = {"visual_embedding_dim": 512} model_type = "multichoice" elif "vqa_advanced" in checkpoint_path: config_params = {"visual_embedding_dim": 2048} model_type = "vqa_advanced" elif "vqa" in checkpoint_path: config_params = {"visual_embedding_dim": 2048, "num_labels": 3129} model_type = "vqa" elif "nlvr" in checkpoint_path: config_params = { "visual_embedding_dim": 1024, "num_labels": 2, } model_type = "nlvr" config = VisualBertConfig(**config_params) # Load State Dict state_dict = load_state_dict(checkpoint_path) new_state_dict = get_new_dict(state_dict, config) if model_type == "pretraining": model = VisualBertForPreTraining(config) elif model_type == "vqa": model = VisualBertForQuestionAnswering(config) elif model_type == "nlvr": model = VisualBertForVisualReasoning(config) elif model_type == "multichoice": model = VisualBertForMultipleChoice(config) model.load_state_dict(new_state_dict) # Save Checkpoints Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") args = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 2115 }
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ViT MAE (masked autoencoder) model.""" import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Set, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int, ) from .configuration_vit_mae import ViTMAEConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViTMAEConfig" _CHECKPOINT_FOR_DOC = "facebook/vit-mae-base" @dataclass class ViTMAEModelOutput(ModelOutput): """ Class for ViTMAEModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ViTMAEDecoderOutput(ModelOutput): """ Class for ViTMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ViTMAEForPreTrainingOutput(ModelOutput): """ Class for ViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mask: torch.LongTensor = None ids_restore: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False): """ Create 2D sin/cos positional embeddings. Args: embed_dim (`int`): Embedding dimension. grid_size (`int`): The grid height and width. add_cls_token (`bool`, *optional*, defaults to `False`): Whether or not to add a classification (CLS) token. Returns: (`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position embeddings (with or without classification token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if add_cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") omega = np.arange(embed_dim // 2, dtype=float) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class ViTMAEEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViTMAEPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = nn.Parameter( torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False ) self.patch_size = config.patch_size self.config = config self.initialize_weights() def initialize_weights(self): # initialize (and freeze) position embeddings by sin-cos embedding pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True ) self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # initialize patch_embeddings like nn.Linear (instead of nn.Conv2d) w = self.patch_embeddings.projection.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range) # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def random_masking(self, sequence, noise=None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: sequence (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`) noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size, seq_length, dim = sequence.shape len_keep = int(seq_length * (1 - self.config.mask_ratio)) if noise is None: noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([batch_size, seq_length], device=sequence.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return sequence_unmasked, mask, ids_restore def forward(self, pixel_values, noise=None, interpolate_pos_encoding: bool = False): batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if interpolate_pos_encoding: position_embeddings = self.interpolate_pos_encoding(embeddings, height, width) else: position_embeddings = self.position_embeddings # add position embeddings w/o cls token embeddings = embeddings + position_embeddings[:, 1:, :] # masking: length -> length * config.mask_ratio embeddings, mask, ids_restore = self.random_masking(embeddings, noise) # append cls token cls_token = self.cls_token + position_embeddings[:, :1, :] cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) return embeddings, mask, ids_restore class ViTMAEPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values, interpolate_pos_encoding: bool = False): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTMAE class ViTMAESelfAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention ViT->ViTMAE class ViTMAESdpaSelfAttention(ViTMAESelfAttention): def __init__(self, config: ViTMAEConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states: torch.FloatTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: if output_attentions or head_mask is not None: logger.warning_once( "`ViTMAESdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but " "specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions, ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTMAE class ViTMAESelfOutput(nn.Module): """ The residual connection is defined in ViTMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMAE class ViTMAEAttention(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.attention = ViTMAESelfAttention(config) self.output = ViTMAESelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->ViTMAE class ViTMAESdpaAttention(ViTMAEAttention): def __init__(self, config: ViTMAEConfig) -> None: super().__init__(config) self.attention = ViTMAESdpaSelfAttention(config) # Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTMAE class ViTMAEIntermediate(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTMAE class ViTMAEOutput(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states VITMAE_ATTENTION_CLASSES = { "eager": ViTMAEAttention, "sdpa": ViTMAESdpaAttention, } # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTMAE,VIT->VITMAE class ViTMAELayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VITMAE_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = ViTMAEIntermediate(config) self.output = ViTMAEOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTMAE, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMAE class ViTMAEEncoder(nn.Module): def __init__(self, config: ViTMAEConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTMAELayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViTMAEPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMAEConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VIT_MAE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTMAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_MAE_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. interpolate_pos_encoding (`bool`, *optional*, default `False`): Whether to interpolate the pre-trained position encodings. This is mainly used to use the model on higher resolution images. """ @add_start_docstrings( "The bare ViTMAE Model transformer outputting raw hidden-states without any specific head on top.", VIT_MAE_START_DOCSTRING, ) class ViTMAEModel(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ViTMAEEmbeddings(config) self.encoder = ViTMAEEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, ViTMAEModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEModel.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, mask, ids_restore = self.embeddings( pixel_values, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output, mask, ids_restore) + encoder_outputs[1:] return ViTMAEModelOutput( last_hidden_state=sequence_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViTMAEDecoder(nn.Module): def __init__(self, config, num_patches): super().__init__() self.decoder_embed = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=True) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.decoder_pos_embed = nn.Parameter( torch.zeros(1, num_patches + 1, config.decoder_hidden_size), requires_grad=False ) # fixed sin-cos embedding decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [ViTMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.decoder_norm = nn.LayerNorm(config.decoder_hidden_size, eps=config.layer_norm_eps) self.decoder_pred = nn.Linear( config.decoder_hidden_size, config.patch_size**2 * config.num_channels, bias=True ) # encoder to decoder self.gradient_checkpointing = False self.config = config self.initialize_weights(num_patches) def interpolate_pos_encoding(self, embeddings: torch.Tensor) -> torch.Tensor: """ This method is a modified version of the interpolation function for ViT-mae model at the decoder, that allows to interpolate the pre-trained decoder position encodings, to be able to use the model on higher resolution images. Adapted from: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ # -1 removes the class dimension since we later append it without interpolation embeddings_positions = embeddings.shape[1] - 1 # Separation of class token and patch tokens class_pos_embed = self.decoder_pos_embed[:, :1] patch_pos_embed = self.decoder_pos_embed[:, 1:] # To retain the final 3d tensor with the required dimensions dim = self.decoder_pos_embed.shape[-1] # Increasing a dimension to enable bicubic interpolation patch_pos_embed = patch_pos_embed.reshape(1, 1, -1, dim) # permute to bring the dimension to be interpolated, to the last patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) # Interpolating the decoder position embeddings shape wrt embeddings shape i.e (x). # we keep the second last dimension constant patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(patch_pos_embed.shape[-2], embeddings_positions), mode="bicubic", align_corners=False, ) # Converting back to the original shape patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) # Adding the class token back return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def initialize_weights(self, num_patches): # initialize (and freeze) position embeddings by sin-cos embedding decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(num_patches**0.5), add_cls_token=True ) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.mask_token, std=self.config.initializer_range) def forward( self, hidden_states, ids_restore, output_attentions=False, output_hidden_states=False, return_dict=True, interpolate_pos_encoding: bool = False, ): # embed tokens x = self.decoder_embed(hidden_states) # append mask tokens to sequence mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token # unshuffle x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device)) x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token # add pos embed if interpolate_pos_encoding: decoder_pos_embed = self.interpolate_pos_encoding(x) else: decoder_pos_embed = self.decoder_pos_embed hidden_states = x + decoder_pos_embed # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, None, output_attentions, ) else: layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.decoder_norm(hidden_states) # predictor projection logits = self.decoder_pred(hidden_states) # remove cls token logits = logits[:, 1:, :] if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return ViTMAEDecoderOutput( logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """The ViTMAE Model transformer with the decoder on top for self-supervised pre-training. <Tip> Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). </Tip> """, VIT_MAE_START_DOCSTRING, ) class ViTMAEForPreTraining(ViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = ViTMAEModel(config) self.decoder = ViTMAEDecoder(config, num_patches=self.vit.embeddings.num_patches) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.vit.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def patchify(self, pixel_values, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # sanity checks if not interpolate_pos_encoding and ( pixel_values.shape[2] != pixel_values.shape[3] or pixel_values.shape[2] % patch_size != 0 ): raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size") if pixel_values.shape[1] != num_channels: raise ValueError( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ) # patchify batch_size = pixel_values.shape[0] num_patches_h = pixel_values.shape[2] // patch_size num_patches_w = pixel_values.shape[3] // patch_size patchified_pixel_values = pixel_values.reshape( batch_size, num_channels, num_patches_h, patch_size, num_patches_w, patch_size ) patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values) patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]] = None): """ Args: patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. original_image_size (`Tuple[int, int]`, *optional*): Original image size. Returns: `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels original_image_size = ( original_image_size if original_image_size is not None else (self.config.image_size, self.config.image_size) ) original_height, original_width = original_image_size num_patches_h = original_height // patch_size num_patches_w = original_width // patch_size # sanity check if num_patches_h * num_patches_w != patchified_pixel_values.shape[1]: raise ValueError( f"The number of patches in the patchified pixel values {patchified_pixel_values.shape[1]}, does not match the number of patches on original image {num_patches_h}*{num_patches_w}" ) # unpatchify batch_size = patchified_pixel_values.shape[0] patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels, ) patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values) pixel_values = patchified_pixel_values.reshape( batch_size, num_channels, num_patches_h * patch_size, num_patches_w * patch_size, ) return pixel_values def forward_loss(self, pixel_values, pred, mask, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `torch.FloatTensor`: Pixel reconstruction loss. """ target = self.patchify(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if self.config.norm_pix_loss: mean = target.mean(dim=-1, keepdim=True) var = target.var(dim=-1, keepdim=True) target = (target - mean) / (var + 1.0e-6) ** 0.5 loss = (pred - target) ** 2 loss = loss.mean(dim=-1) # [N, L], mean loss per patch loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, ViTMAEForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMAEForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) latent = outputs.last_hidden_state ids_restore = outputs.ids_restore mask = outputs.mask decoder_outputs = self.decoder(latent, ids_restore, interpolate_pos_encoding=interpolate_pos_encoding) logits = decoder_outputs.logits # shape (batch_size, num_patches, patch_size*patch_size*num_channels) loss = self.forward_loss(pixel_values, logits, mask, interpolate_pos_encoding=interpolate_pos_encoding) if not return_dict: output = (logits, mask, ids_restore) + outputs[2:] return ((loss,) + output) if loss is not None else output return ViTMAEForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_restore, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel"]
transformers/src/transformers/models/vit_mae/modeling_vit_mae.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/modeling_vit_mae.py", "repo_id": "transformers", "token_count": 21553 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for VitPose.""" import itertools import math from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_scipy_available, is_torch_available, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL if is_scipy_available(): from scipy.linalg import inv from scipy.ndimage import affine_transform, gaussian_filter if TYPE_CHECKING: from .modeling_vitpose import VitPoseEstimatorOutput logger = logging.get_logger(__name__) # inspired by https://github.com/ViTAE-Transformer/ViTPose/blob/d5216452796c90c6bc29f5c5ec0bdba94366768a/mmpose/datasets/datasets/base/kpt_2d_sview_rgb_img_top_down_dataset.py#L132 def box_to_center_and_scale( box: Union[Tuple, List, np.ndarray], image_width: int, image_height: int, normalize_factor: float = 200.0, padding_factor: float = 1.25, ): """ Encodes a bounding box in COCO format into (center, scale). Args: box (`Tuple`, `List`, or `np.ndarray`): Bounding box in COCO format (top_left_x, top_left_y, width, height). image_width (`int`): Image width. image_height (`int`): Image height. normalize_factor (`float`): Width and height scale factor. padding_factor (`float`): Bounding box padding factor. Returns: tuple: A tuple containing center and scale. - `np.ndarray` [float32](2,): Center of the bbox (x, y). - `np.ndarray` [float32](2,): Scale of the bbox width & height. """ top_left_x, top_left_y, width, height = box[:4] aspect_ratio = image_width / image_height center = np.array([top_left_x + width * 0.5, top_left_y + height * 0.5], dtype=np.float32) if width > aspect_ratio * height: height = width * 1.0 / aspect_ratio elif width < aspect_ratio * height: width = height * aspect_ratio scale = np.array([width / normalize_factor, height / normalize_factor], dtype=np.float32) scale = scale * padding_factor return center, scale def coco_to_pascal_voc(bboxes: np.ndarray) -> np.ndarray: """ Converts bounding boxes from the COCO format to the Pascal VOC format. In other words, converts from (top_left_x, top_left_y, width, height) format to (top_left_x, top_left_y, bottom_right_x, bottom_right_y). Args: bboxes (`np.ndarray` of shape `(batch_size, 4)): Bounding boxes in COCO format. Returns: `np.ndarray` of shape `(batch_size, 4) in Pascal VOC format. """ bboxes[:, 2] = bboxes[:, 2] + bboxes[:, 0] - 1 bboxes[:, 3] = bboxes[:, 3] + bboxes[:, 1] - 1 return bboxes def get_keypoint_predictions(heatmaps: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Get keypoint predictions from score maps. Args: heatmaps (`np.ndarray` of shape `(batch_size, num_keypoints, height, width)`): Model predicted heatmaps. Returns: tuple: A tuple containing aggregated results. - coords (`np.ndarray` of shape `(batch_size, num_keypoints, 2)`): Predicted keypoint location. - scores (`np.ndarray` of shape `(batch_size, num_keypoints, 1)`): Scores (confidence) of the keypoints. """ if not isinstance(heatmaps, np.ndarray): raise ValueError("Heatmaps should be np.ndarray") if heatmaps.ndim != 4: raise ValueError("Heatmaps should be 4-dimensional") batch_size, num_keypoints, _, width = heatmaps.shape heatmaps_reshaped = heatmaps.reshape((batch_size, num_keypoints, -1)) idx = np.argmax(heatmaps_reshaped, 2).reshape((batch_size, num_keypoints, 1)) scores = np.amax(heatmaps_reshaped, 2).reshape((batch_size, num_keypoints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = preds[:, :, 0] % width preds[:, :, 1] = preds[:, :, 1] // width preds = np.where(np.tile(scores, (1, 1, 2)) > 0.0, preds, -1) return preds, scores def post_dark_unbiased_data_processing(coords: np.ndarray, batch_heatmaps: np.ndarray, kernel: int = 3) -> np.ndarray: """DARK post-pocessing. Implemented by unbiased_data_processing. Paper references: - Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). - Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). Args: coords (`np.ndarray` of shape `(num_persons, num_keypoints, 2)`): Initial coordinates of human pose. batch_heatmaps (`np.ndarray` of shape `(batch_size, num_keypoints, height, width)`): Batched heatmaps as predicted by the model. A batch_size of 1 is used for the bottom up paradigm where all persons share the same heatmap. A batch_size of `num_persons` is used for the top down paradigm where each person has its own heatmaps. kernel (`int`, *optional*, defaults to 3): Gaussian kernel size (K) for modulation. Returns: `np.ndarray` of shape `(num_persons, num_keypoints, 2)` ): Refined coordinates. """ batch_size, num_keypoints, height, width = batch_heatmaps.shape num_coords = coords.shape[0] if not (batch_size == 1 or batch_size == num_coords): raise ValueError("The batch size of heatmaps should be 1 or equal to the batch size of coordinates.") radius = int((kernel - 1) // 2) batch_heatmaps = np.array( [ [gaussian_filter(heatmap, sigma=0.8, radius=(radius, radius), axes=(0, 1)) for heatmap in heatmaps] for heatmaps in batch_heatmaps ] ) batch_heatmaps = np.clip(batch_heatmaps, 0.001, 50) batch_heatmaps = np.log(batch_heatmaps) batch_heatmaps_pad = np.pad(batch_heatmaps, ((0, 0), (0, 0), (1, 1), (1, 1)), mode="edge").flatten() # calculate indices for coordinates index = coords[..., 0] + 1 + (coords[..., 1] + 1) * (width + 2) index += (width + 2) * (height + 2) * np.arange(0, batch_size * num_keypoints).reshape(-1, num_keypoints) index = index.astype(int).reshape(-1, 1) i_ = batch_heatmaps_pad[index] ix1 = batch_heatmaps_pad[index + 1] iy1 = batch_heatmaps_pad[index + width + 2] ix1y1 = batch_heatmaps_pad[index + width + 3] ix1_y1_ = batch_heatmaps_pad[index - width - 3] ix1_ = batch_heatmaps_pad[index - 1] iy1_ = batch_heatmaps_pad[index - 2 - width] # calculate refined coordinates using Newton's method dx = 0.5 * (ix1 - ix1_) dy = 0.5 * (iy1 - iy1_) derivative = np.concatenate([dx, dy], axis=1) derivative = derivative.reshape(num_coords, num_keypoints, 2, 1) dxx = ix1 - 2 * i_ + ix1_ dyy = iy1 - 2 * i_ + iy1_ dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_) hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1) hessian = hessian.reshape(num_coords, num_keypoints, 2, 2) hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2)) coords -= np.einsum("ijmn,ijnk->ijmk", hessian, derivative).squeeze() return coords def transform_preds(coords: np.ndarray, center: np.ndarray, scale: np.ndarray, output_size: np.ndarray) -> np.ndarray: """Get final keypoint predictions from heatmaps and apply scaling and translation to map them back to the image. Note: num_keypoints: K Args: coords (`np.ndarray` of shape `(num_keypoints, ndims)`): * If ndims=2, corrds are predicted keypoint location. * If ndims=4, corrds are composed of (x, y, scores, tags) * If ndims=5, corrds are composed of (x, y, scores, tags, flipped_tags) center (`np.ndarray` of shape `(2,)`): Center of the bounding box (x, y). scale (`np.ndarray` of shape `(2,)`): Scale of the bounding box wrt original image of width and height. output_size (`np.ndarray` of shape `(2,)`): Size of the destination heatmaps in (height, width) format. Returns: np.ndarray: Predicted coordinates in the images. """ if coords.shape[1] not in (2, 4, 5): raise ValueError("Coordinates need to have either 2, 4 or 5 dimensions.") if len(center) != 2: raise ValueError("Center needs to have 2 elements, one for x and one for y.") if len(scale) != 2: raise ValueError("Scale needs to consist of a width and height") if len(output_size) != 2: raise ValueError("Output size needs to consist of a height and width") # Recover the scale which is normalized by a factor of 200. scale = scale * 200.0 # We use unbiased data processing scale_y = scale[1] / (output_size[0] - 1.0) scale_x = scale[0] / (output_size[1] - 1.0) target_coords = np.ones_like(coords) target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5 target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5 return target_coords def get_warp_matrix(theta: float, size_input: np.ndarray, size_dst: np.ndarray, size_target: np.ndarray): """ Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Source: https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Args: theta (`float`): Rotation angle in degrees. size_input (`np.ndarray`): Size of input image [width, height]. size_dst (`np.ndarray`): Size of output image [width, height]. size_target (`np.ndarray`): Size of ROI in input plane [w, h]. Returns: `np.ndarray`: A matrix for transformation. """ theta = np.deg2rad(theta) matrix = np.zeros((2, 3), dtype=np.float32) scale_x = size_dst[0] / size_target[0] scale_y = size_dst[1] / size_target[1] matrix[0, 0] = math.cos(theta) * scale_x matrix[0, 1] = -math.sin(theta) * scale_x matrix[0, 2] = scale_x * ( -0.5 * size_input[0] * math.cos(theta) + 0.5 * size_input[1] * math.sin(theta) + 0.5 * size_target[0] ) matrix[1, 0] = math.sin(theta) * scale_y matrix[1, 1] = math.cos(theta) * scale_y matrix[1, 2] = scale_y * ( -0.5 * size_input[0] * math.sin(theta) - 0.5 * size_input[1] * math.cos(theta) + 0.5 * size_target[1] ) return matrix def scipy_warp_affine(src, M, size): """ This function implements cv2.warpAffine function using affine_transform in scipy. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html and https://docs.opencv.org/4.x/d4/d61/tutorial_warp_affine.html for more details. Note: the original implementation of cv2.warpAffine uses cv2.INTER_LINEAR. """ channels = [src[..., i] for i in range(src.shape[-1])] # Convert to a 3x3 matrix used by SciPy M_scipy = np.vstack([M, [0, 0, 1]]) # If you have a matrix for the ‘push’ transformation, use its inverse (numpy.linalg.inv) in this function. M_inv = inv(M_scipy) M_inv[0, 0], M_inv[0, 1], M_inv[1, 0], M_inv[1, 1], M_inv[0, 2], M_inv[1, 2] = ( M_inv[1, 1], M_inv[1, 0], M_inv[0, 1], M_inv[0, 0], M_inv[1, 2], M_inv[0, 2], ) new_src = [affine_transform(channel, M_inv, output_shape=size, order=1) for channel in channels] new_src = np.stack(new_src, axis=-1) return new_src class VitPoseImageProcessor(BaseImageProcessor): r""" Constructs a VitPose image processor. Args: do_affine_transform (`bool`, *optional*, defaults to `True`): Whether to apply an affine transformation to the input images. size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 192}`): Resolution of the image after `affine_transform` is applied. Only has an effect if `do_affine_transform` is set to `True`. Can be overriden by `size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`List[int]`, defaults to `[0.485, 0.456, 0.406]`, *optional*): The sequence of means for each channel, to be used when normalizing images. image_std (`List[int]`, defaults to `[0.229, 0.224, 0.225]`, *optional*): The sequence of standard deviations for each channel, to be used when normalizing images. """ model_input_names = ["pixel_values"] def __init__( self, do_affine_transform: bool = True, size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ): super().__init__(**kwargs) self.do_affine_transform = do_affine_transform self.size = size if size is not None else {"height": 256, "width": 192} self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.normalize_factor = 200.0 def affine_transform( self, image: np.array, center: Tuple[float], scale: Tuple[float], rotation: float, size: Dict[str, int], data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.array: """ Apply an affine transformation to an image. Args: image (`np.array`): Image to transform. center (`Tuple[float]`): Center of the bounding box (x, y). scale (`Tuple[float]`): Scale of the bounding box with respect to height/width. rotation (`float`): Rotation angle in degrees. size (`Dict[str, int]`): Size of the destination image. data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format of the output image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. """ data_format = input_data_format if data_format is None else data_format size = (size["width"], size["height"]) # one uses a pixel standard deviation of 200 pixels transformation = get_warp_matrix(rotation, center * 2.0, np.array(size) - 1.0, scale * 200.0) # input image requires channels last format image = ( image if input_data_format == ChannelDimension.LAST else to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format) ) image = scipy_warp_affine(src=image, M=transformation, size=(size[1], size[0])) image = to_channel_dimension_format(image, data_format, ChannelDimension.LAST) return image def preprocess( self, images: ImageInput, boxes: Union[List[List[float]], np.ndarray], do_affine_transform: bool = None, size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. boxes (`List[List[List[float]]]` or `np.ndarray`): List or array of bounding boxes for each image. Each box should be a list of 4 floats representing the bounding box coordinates in COCO format (top_left_x, top_left_y, width, height). do_affine_transform (`bool`, *optional*, defaults to `self.do_affine_transform`): Whether to apply an affine transformation to the input images. size (`Dict[str, int]` *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'np'`): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width). """ do_affine_transform = do_affine_transform if do_affine_transform is not None else self.do_affine_transform size = size if size is not None else self.size do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if isinstance(boxes, list) and len(images) != len(boxes): raise ValueError(f"Batch of images and boxes mismatch : {len(images)} != {len(boxes)}") elif isinstance(boxes, np.ndarray) and len(images) != boxes.shape[0]: raise ValueError(f"Batch of images and boxes mismatch : {len(images)} != {boxes.shape[0]}") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # transformations (affine transformation + rescaling + normalization) if self.do_affine_transform: new_images = [] for image, image_boxes in zip(images, boxes): for box in image_boxes: center, scale = box_to_center_and_scale( box, image_width=size["width"], image_height=size["height"], normalize_factor=self.normalize_factor, ) transformed_image = self.affine_transform( image, center, scale, rotation=0, size=size, input_data_format=input_data_format ) new_images.append(transformed_image) images = new_images # For batch processing, the number of boxes must be consistent across all images in the batch. # When using a list input, the number of boxes can vary dynamically per image. # The image processor creates pixel_values of shape (batch_size*num_persons, num_channels, height, width) all_images = [] for image in images: if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) return encoded_inputs def keypoints_from_heatmaps( self, heatmaps: np.ndarray, center: np.ndarray, scale: np.ndarray, kernel: int = 11, ): """ Get final keypoint predictions from heatmaps and transform them back to the image. Args: heatmaps (`np.ndarray` of shape `(batch_size, num_keypoints, height, width])`): Model predicted heatmaps. center (`np.ndarray` of shape `(batch_size, 2)`): Center of the bounding box (x, y). scale (`np.ndarray` of shape `(batch_size, 2)`): Scale of the bounding box wrt original images of width and height. kernel (int, *optional*, defaults to 11): Gaussian kernel size (K) for modulation, which should match the heatmap gaussian sigma when training. K=17 for sigma=3 and k=11 for sigma=2. Returns: tuple: A tuple containing keypoint predictions and scores. - preds (`np.ndarray` of shape `(batch_size, num_keypoints, 2)`): Predicted keypoint location in images. - scores (`np.ndarray` of shape `(batch_size, num_keypoints, 1)`): Scores (confidence) of the keypoints. """ batch_size, _, height, width = heatmaps.shape coords, scores = get_keypoint_predictions(heatmaps) preds = post_dark_unbiased_data_processing(coords, heatmaps, kernel=kernel) # Transform back to the image for i in range(batch_size): preds[i] = transform_preds(preds[i], center=center[i], scale=scale[i], output_size=[height, width]) return preds, scores def post_process_pose_estimation( self, outputs: "VitPoseEstimatorOutput", boxes: Union[List[List[List[float]]], np.ndarray], kernel_size: int = 11, threshold: float = None, target_sizes: Union[TensorType, List[Tuple]] = None, ): """ Transform the heatmaps into keypoint predictions and transform them back to the image. Args: outputs (`VitPoseEstimatorOutput`): VitPoseForPoseEstimation model outputs. boxes (`List[List[List[float]]]` or `np.ndarray`): List or array of bounding boxes for each image. Each box should be a list of 4 floats representing the bounding box coordinates in COCO format (top_left_x, top_left_y, width, height). kernel_size (`int`, *optional*, defaults to 11): Gaussian kernel size (K) for modulation. threshold (`float`, *optional*, defaults to None): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will be resize with the default value. Returns: `List[List[Dict]]`: A list of dictionaries, each dictionary containing the keypoints and boxes for an image in the batch as predicted by the model. """ # First compute centers and scales for each bounding box batch_size, num_keypoints, _, _ = outputs.heatmaps.shape if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) centers = np.zeros((batch_size, 2), dtype=np.float32) scales = np.zeros((batch_size, 2), dtype=np.float32) flattened_boxes = list(itertools.chain(*boxes)) for i in range(batch_size): if target_sizes is not None: image_width, image_height = target_sizes[i][0], target_sizes[i][1] scale_factor = np.array([image_width, image_height, image_width, image_height]) flattened_boxes[i] = flattened_boxes[i] * scale_factor width, height = self.size["width"], self.size["height"] center, scale = box_to_center_and_scale(flattened_boxes[i], image_width=width, image_height=height) centers[i, :] = center scales[i, :] = scale preds, scores = self.keypoints_from_heatmaps( outputs.heatmaps.cpu().numpy(), centers, scales, kernel=kernel_size ) all_boxes = np.zeros((batch_size, 4), dtype=np.float32) all_boxes[:, 0:2] = centers[:, 0:2] all_boxes[:, 2:4] = scales[:, 0:2] poses = torch.tensor(preds) scores = torch.tensor(scores) labels = torch.arange(0, num_keypoints) bboxes_xyxy = torch.tensor(coco_to_pascal_voc(all_boxes)) results: List[List[Dict[str, torch.Tensor]]] = [] pose_bbox_pairs = zip(poses, scores, bboxes_xyxy) for image_bboxes in boxes: image_results: List[Dict[str, torch.Tensor]] = [] for _ in image_bboxes: # Unpack the next pose and bbox_xyxy from the iterator pose, score, bbox_xyxy = next(pose_bbox_pairs) score = score.squeeze() keypoints_labels = labels if threshold is not None: keep = score > threshold pose = pose[keep] score = score[keep] keypoints_labels = keypoints_labels[keep] pose_result = {"keypoints": pose, "scores": score, "labels": keypoints_labels, "bbox": bbox_xyxy} image_results.append(pose_result) results.append(image_results) return results __all__ = ["VitPoseImageProcessor"]
transformers/src/transformers/models/vitpose/image_processing_vitpose.py/0
{ "file_path": "transformers/src/transformers/models/vitpose/image_processing_vitpose.py", "repo_id": "transformers", "token_count": 12644 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2Conformer checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( Wav2Vec2ConformerConfig, Wav2Vec2ConformerForCTC, Wav2Vec2ConformerForPreTraining, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value elif weight_type == "running_mean": hf_pointer.running_mean.data = value elif weight_type == "running_var": hf_pointer.running_var.data = value elif weight_type == "num_batches_tracked": hf_pointer.num_batches_tracked.data = value elif weight_type == "inv_freq": hf_pointer.inv_freq.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.wav2vec2_conformer.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "pos_bias_u" in name: weight_type = None elif "pos_bias_v" in name: weight_type = None elif "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" elif "running_mean" in name: weight_type = "running_mean" elif "inv_freq" in name: weight_type = "inv_freq" elif "running_var" in name: weight_type = "running_var" elif "num_batches_tracked" in name: weight_type = "num_batches_tracked" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") # Copied from transformers.models.wav2vec2.convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.load_conv_layer def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_wav2vec2_conformer_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Wav2Vec2ConformerConfig.from_pretrained(config_path, hidden_act="swish") else: config = Wav2Vec2ConformerConfig() if "rope" in checkpoint_path: config.position_embeddings_type = "rotary" if is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) vocab_dict = target_dict.indices # fairseq has the <pad> and <s> switched vocab_dict["<pad>"] = 0 vocab_dict["<s>"] = 1 with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(vocab_dict, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_wav2vec = Wav2Vec2ConformerForCTC(config) else: hf_wav2vec = Wav2Vec2ConformerForPreTraining(config) if is_finetuned: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: task_arg = argparse.Namespace(task="audio_pretraining") task = fairseq.tasks.setup_task(task_arg) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task) model = model[0].eval() recursively_load_weights(model, hf_wav2vec, not is_finetuned) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_wav2vec2_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/wav2vec2_conformer/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_conformer/convert_wav2vec2_conformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 6286 }
# coding=utf-8 # Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 XGLM model.""" from __future__ import annotations import math import random from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation # Public API from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import logging from .configuration_xglm import XGLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xglm-564M" _CONFIG_FOR_DOC = "XGLMConfig" LARGE_NEGATIVE = -1e8 def create_sinusoidal_positions(num_positions: int, embedding_dim: int, padding_idx: Optional[int]) -> tf.Tensor: half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.expand_dims(tf.range(num_positions, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) emb = tf.reshape(tf.concat([tf.sin(emb), tf.cos(emb)], axis=1), (num_positions, -1)) if embedding_dim % 2 == 1: # zero pad emb = tf.concat([emb, tf.zeros((num_positions, 1))], axis=1) if padding_idx is not None: _padding_mask = tf.concat( [ tf.ones((padding_idx, shape_list(emb)[1])), tf.zeros((1, shape_list(emb)[1])), tf.ones((shape_list(emb)[0] - padding_idx - 1, shape_list(emb)[1])), ], axis=0, ) emb *= _padding_mask return tf.constant(emb, name="embed_positions") def _create_position_ids_from_input_ids( input_ids: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int] ) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = tf.where(input_ids != padding_idx, 1, 0) incremental_indices = (tf.cast(tf.cumsum(mask, axis=1), dtype=mask.dtype) + past_key_values_length) * mask return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx def _create_position_ids_from_inputs_embeds( inputs_embeds: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int] ) -> tf.Tensor: """ Args: We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. inputs_embeds: tf.Tensor Returns: tf.Tensor """ input_shape = shape_list(inputs_embeds)[:-1] sequence_length = input_shape[1] position_ids = tf.range(padding_idx + 1, sequence_length + padding_idx + 1, dtype=tf.int64) return tf.broadcast_to(tf.expand_dims(position_ids, axis=0), input_shape) + past_key_values_length # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->XGLM class TFXGLMAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFXGLMDecoderLayer(keras.layers.Layer): def __init__(self, config: XGLMConfig, **kwargs: Any) -> None: super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFXGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, name="self_attn", ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) if config.add_cross_attention: self.encoder_attn = TFXGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, name="encoder_attn", ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization( epsilon=1e-5, name="encoder_attn_layer_norm" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer.call def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) @keras_serializable class TFXGLMMainLayer(keras.layers.Layer): config_class = XGLMConfig def __init__( self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs, **kwargs: Any ) -> None: super().__init__(*inputs, **kwargs) self.config = config self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = TFSharedEmbeddings( config.vocab_size, config.d_model, self.padding_idx, name="embed_tokens" ) self.offset = 2 self._embed_positions_weights = create_sinusoidal_positions( num_positions=config.max_position_embeddings + self.offset, embedding_dim=config.d_model, padding_idx=config.pad_token_id, ) self.dropout = keras.layers.Dropout(config.dropout) self.layers = [TFXGLMDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_layers)] self.layerdrop = config.layerdrop self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_input_embeddings(self) -> TFSharedEmbeddings: return self.embed_tokens def set_input_embeddings(self, value: TFSharedEmbeddings) -> None: self.embed_tokens = value def _prepare_decoder_attention_mask( self, attention_mask: tf.Tensor | None, input_shape: tf.TensorShape, past_key_values_length: int, ) -> tf.Tensor: # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length) combined_attention_mask = tf.cond( input_shape[-1] > 1, lambda: combined_attention_mask, lambda: tf.ones_like(combined_attention_mask) ) if attention_mask is None: return combined_attention_mask expand_attention_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) return expand_attention_mask + combined_attention_mask def embed_positions(self, position_ids: np.ndarray | tf.Tensor | None = None) -> tf.Tensor: position_ids += self.offset positions = tf.gather(self._embed_positions_weights, position_ids, axis=0) return positions @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs: Any, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = tf.shape(input_ids) input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = tf.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if position_ids is None: position_ids = tf.expand_dims( tf.range(past_key_values_length, input_shape[-1] + past_key_values_length), axis=0 ) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(position_ids) hidden_states = tf.cast(inputs_embeds, dtype=tf.float32) + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), past_key_value=past_key_value, ) if use_cache: next_decoder_cache += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attentions += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFXGLMPreTrainedModel(TFPreTrainedModel): config_class = XGLMConfig base_model_prefix = "model" XGLM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ XGLM_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.num_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", XGLM_START_DOCSTRING, ) class TFXGLMModel(TFXGLMPreTrainedModel): """ Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`TFXGLMDecoderLayer`] Args: config: XGLMConfig embed_tokens: [TFSharedEmbeddings]: output embedding """ def __init__( self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any ) -> None: super().__init__(config, *inputs, **kwargs) self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") @unpack_inputs @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs: Any, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( """ The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XGLM_START_DOCSTRING, ) class TFXGLMForCausalLM(TFXGLMPreTrainedModel, TFCausalLanguageModelingLoss): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ r"model.embed_positions.weights", r"lm_head.weight", ] _keys_to_ignore_on_save = [ r"model.embed_positions.weights", ] def __init__( self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any ) -> None: super().__init__(config, *inputs, **kwargs) self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") self.lm_head = keras.layers.Dense( config.vocab_size, use_bias=False, kernel_initializer=get_initializer(config.init_std), name="lm_head", ) self.config = config def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) position_ids = kwargs.get("position_ids", None) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None and position_ids is None: position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True) if past_key_values: position_ids = tf.expand_dims(position_ids[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, } @unpack_inputs @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs: Any, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # shift labels to the left and cut last logit token labels = tf.concat( [labels[:, 1:], tf.fill((labels.shape[0], 1), tf.cast(self.config.pad_token_id, labels.dtype))], axis=-1, ) loss = self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.hidden_size]) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "lm_head.weight": return tf_weight, "model.embed_tokens.weight" else: return (tf_weight,) __all__ = ["TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel"]
transformers/src/transformers/models/xglm/modeling_tf_xglm.py/0
{ "file_path": "transformers/src/transformers/models/xglm/modeling_tf_xglm.py", "repo_id": "transformers", "token_count": 20020 }
# coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re from itertools import cycle from typing import Callable, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( logging, ) from ...utils.import_utils import ( is_causal_conv1d_available, is_mamba_ssm_available, ) from ..llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb from ..mamba2.modeling_mamba2 import pad_tensor_by_size, reshape_into_chunks, segment_sum from ..zamba.modeling_zamba import ( ZambaAttention, ZambaAttentionDecoderLayer, ZambaForCausalLM, ZambaForSequenceClassification, ZambaHybridDynamicCache, ZambaHybridLayer, ZambaMambaDecoderLayer, ZambaModel, ZambaRMSNorm, eager_attention_forward, ) from .configuration_zamba2 import Zamba2Config if is_mamba_ssm_available(): from mamba_ssm.ops.triton.selective_state_update import selective_state_update from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined else: selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update)) _CONFIG_FOR_DOC = "Zyphra/Zamba2-2.7B" logger = logging.get_logger(__name__) class Zamba2RMSNormGated(torch.nn.Module): def __init__(self, hidden_size, group_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps self.group_size = group_size def forward(self, hidden_states, gate=None): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) if gate is not None: hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) *prefix_dims, last_dim = hidden_states.shape group_count = last_dim // self.group_size hidden_states_group = hidden_states.view(*prefix_dims, group_count, self.group_size) variance = hidden_states_group.pow(2).mean(-1, keepdim=True) hidden_states_group = hidden_states_group * torch.rsqrt(variance + self.variance_epsilon) hidden_states = hidden_states_group.view(*prefix_dims, group_count * self.group_size) return self.weight * hidden_states.to(input_dtype) class Zamba2RMSNorm(ZambaRMSNorm): pass class Zamba2HybridDynamicCache(ZambaHybridDynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__( self, config: Zamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None ): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False self.intermediate_size = int(config.mamba_expand * config.hidden_size) self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} self.conv_states = {} self.ssm_states = {} for i in range(config.num_hidden_layers): self.conv_states[i] = torch.zeros( batch_size, self.intermediate_size + 2 * config.mamba_ngroups * config.mamba_d_state, self.conv_kernel_size, device=device, dtype=dtype, ) self.ssm_states[i] = torch.zeros( batch_size, self.n_mamba_heads, config.mamba_headdim, self.ssm_state_size, device=device, dtype=dtype ) if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def update_conv_state( self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor ) -> torch.Tensor: conv_state = self.conv_states[layer_idx] cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) conv_state = conv_state.roll(shifts=-1, dims=-1) conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) self.conv_states[layer_idx].zero_() self.conv_states[layer_idx] += conv_state return self.conv_states[layer_idx] def reset(self): self.conv_states.zero_() self.ssm_states.zero_() def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0: return 0 return self.key_cache[layer_idx].shape[-2] class Zamba2RotaryEmbedding(LlamaRotaryEmbedding): def __init__( self, config: Zamba2Config, device=None, ): super().__init__(config, device) # we cannot use the config here to parameterize because of a factor 2 for the head_dim inv_freq, self.attention_scaling = self.rope_init_fn( device=device, base=config.rope_theta, dim=config.attention_head_dim ) class Zamba2Attention(ZambaAttention): """ Multi-headed attention from 'Attention Is All You Need' paper. Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Finally, this attention layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapters (formally the same as LoRA but used in the base model) modules are added to the q, k, v projectors to increase expressivity with a small memory overhead (see Fig. 2 of https://arxiv.org/pdf/2411.15242). """ def __init__( self, config: Zamba2Config, layer_idx: Optional[int] = None, num_fwd_mem_blocks: int = None, block_id: int = None, ): super().__init__(config, layer_idx) self.num_fwd_mem_blocks = num_fwd_mem_blocks self.layer_block_map = config.hybrid_layer_ids self.block_id = block_id if config.use_shared_attention_adapter: self.linear_q_adapter_list = nn.ModuleList([]) self.linear_k_adapter_list = nn.ModuleList([]) self.linear_v_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: linear_q_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_k_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_v_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) else: linear_q_adapter = nn.Identity() linear_k_adapter = nn.Identity() linear_v_adapter = nn.Identity() self.linear_q_adapter_list.append(linear_q_adapter) self.linear_k_adapter_list.append(linear_k_adapter) self.linear_v_adapter_list.append(linear_v_adapter) self.layer_dic = {value: index for index, value in enumerate(self.layer_block_map)} def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.config.use_shared_attention_adapter: adapter_layer_idx = self.layer_dic[layer_idx] query_states = query_states + self.linear_q_adapter_list[adapter_layer_idx](hidden_states) key_states = key_states + self.linear_k_adapter_list[adapter_layer_idx](hidden_states) value_states = value_states + self.linear_v_adapter_list[adapter_layer_idx](hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) if self.config.use_mem_rope: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Zamba2MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: Zamba2Config, layer_idx: int = None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = int(config.mamba_expand * self.hidden_size) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.activation = "silu" self.act = nn.SiLU() self.use_mem_eff_path = config.use_mem_eff_path self.n_groups = config.mamba_ngroups self.head_dim = config.mamba_headdim self.num_heads = self.config.n_mamba_heads self.chunk_size = config.chunk_size self.time_step_limit = config.time_step_limit self.time_step_min = config.time_step_min self.time_step_max = config.time_step_max self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=True, kernel_size=config.mamba_d_conv, groups=self.conv_dim, padding=config.mamba_d_conv - 1, ) # projection of the input hidden states projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=config.add_bias_linear, ) # selective projection used to make dt, B and C input dependant # time step projection (discretization) # instantiate once and copy inv_dt in init_weights of PretrainedModel self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.num_heads + 1) self.A_log = nn.Parameter(torch.log(A)) self.A_log._no_weight_decay = True self.norm = Zamba2RMSNormGated( self.intermediate_size, group_size=self.intermediate_size // self.n_groups, eps=1e-5 ) self.D = nn.Parameter(torch.ones(self.num_heads)) self.D._no_weight_decay = True self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): # set up dimensions for reshapes later batch_size, seq_len, _ = hidden_states.shape groups_time_state_size = self.n_groups * self.ssm_state_size d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads # getting projected states from cache if it exists if cache_params is not None and cache_params.has_previous_state: in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D) d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2 split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads] _, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1) hidden_states_B_C = causal_conv1d_update( hidden_states_B_C, cache_params.conv_states[self.layer_idx], self.conv1d.weight.squeeze(1), self.conv1d.bias, self.activation, ) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) A = -torch.exp(self.A_log.float()) # (nheads,) A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) dt = dt[:, :, None].expand(-1, -1, self.head_dim) dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) D = self.D[:, None, ...].expand(-1, self.head_dim) B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) hidden_states = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True, ) hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) hidden_states = self.norm(hidden_states, gate) out = self.out_proj(hidden_states)[:, None, ...] # if no cache is found, calling the kernel else: if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states) A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) dt_limit_kwargs = {} if self.time_step_limit is None else {"dt_limit": self.time_step_limit} if attention_mask is not None: input_not_masked = torch.all(attention_mask == 1) else: input_not_masked = True if self.use_mem_eff_path and self.training and cache_params is None and input_not_masked: out, ssm_state = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=True, **dt_limit_kwargs, ) else: gate, hidden_states_B_C, time_step = torch.split( projected_states, [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1, ) # 1D Convolution if cache_params is not None: hidden_states_B_C_t = hidden_states_B_C.transpose(1, 2) conv_state = nn.functional.pad( hidden_states_B_C_t, (self.conv_kernel_size - hidden_states_B_C_t.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: hidden_states_B_C = self.act( self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len] ) # (B, L, self.d_inner + 2 * ngroups * d_state) else: hidden_states_B_C = causal_conv1d_fn( x=hidden_states_B_C.transpose(1, 2), weight=self.conv1d.weight.squeeze(1), bias=self.conv1d.bias, activation=self.activation, ).transpose(1, 2)[:, :seq_len] hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) scan_output, ssm_state = mamba_chunk_scan_combined( hidden_states.view(batch_size, seq_len, -1, self.head_dim), time_step, A, B.view(batch_size, seq_len, self.n_groups, -1), C.view(batch_size, seq_len, self.n_groups, -1), chunk_size=self.chunk_size, D=self.D, z=None, seq_idx=None, return_final_states=True, dt_bias=self.dt_bias, dt_softplus=True, **dt_limit_kwargs, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = scan_output.view(batch_size, seq_len, -1) # Multiply "gate" branch and apply extra normalization layer scan_output = self.norm(scan_output, gate) out = self.out_proj(scan_output) return out # fmt: off def torch_forward(self, input_states, cache_params: Optional[Zamba2HybridDynamicCache]=None, attention_mask: Optional[torch.Tensor]=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # Gated MLP's linear projection if cache_params is not None and cache_params.has_previous_state: projected_states = self.in_proj(input_states.squeeze(1)) else: if attention_mask is not None and not torch.all(attention_mask==1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 input_states = (input_states * attention_mask[:, :, None]).to(dtype) projected_states = self.in_proj(input_states) d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2 _, _, gate, hidden_states, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) if cache_params.has_previous_state: gate = gate.unsqueeze(1) conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) # handle batched generation - states are copied through conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding else: hidden_states = hidden_states.transpose(1,2) conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len] if attention_mask is not None and not torch.all(attention_mask==1): dtype = hidden_states.dtype # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) else: ssm_state = torch.zeros( (batch_size, self.num_heads, self.head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2)) hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1) A = -torch.exp(self.A_log.float()) # [num_heads] if cache_params is not None and cache_params.has_previous_state: # Note: there is no need to pad parameter matrices here, as there is just one new token # for batched generation dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...] dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) # [num_heads] -> [num_heads, head_dim] dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max) A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) # [bsz, num_heads, head_dim, state_size] dA = torch.exp(dt[..., None] * A) # Discretize B # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() B = B.reshape(batch_size, -1, B.shape[-1]) # [bsz, num_heads, head_dim, state_size] dB = dt[..., None] * B[..., None, :] # Discretize x into dB # [bsz, intermediate_size] -> [bsz, num_heads, head_dim] hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) dBx = dB * hidden_states[..., None] # State calculation cache_params.ssm_states[self.layer_idx].copy_( cache_params.ssm_states[self.layer_idx] * dA + dBx ) # Subsequent output # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() C = C.reshape(batch_size, -1, C.shape[-1]) # [bsz, num_heads, head_dim] ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n] # Reshape ssm_states to merge the first two dimensions ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] y = torch.bmm(ssm_states_reshaped, C_reshaped) y = y.view(batch_size, self.num_heads, self.head_dim) # D skip connection # [num_heads] -> [num_heads, head_dim] D = self.D[..., None].expand(self.D.shape[0], self.head_dim) y = (y + hidden_states * D).to(y.dtype) # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] y = y.reshape(batch_size, -1)[:, None, ...] else: # begin ssd naive implementation without einsums dt = nn.functional.softplus(dt + self.dt_bias) dt = torch.clamp(dt, self.time_step_min) hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) # Discretize x and A hidden_states = hidden_states * dt[..., None] A = A.to(hidden_states.dtype) * dt # Rearrange into blocks/chunks hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] A = A.permute(0, 3, 1, 2) A_cumsum = torch.cumsum(A, dim=-1) # 1. Compute the output for each intra-chunk (diagonal blocks) # This is the analog of a causal mask L = torch.exp(segment_sum(A)) # First, contraction of C and B to get G (attention-weights like) G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n) G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) # Step 2: Compute M, equivalent to applying attention mask to weights M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] M = M_intermediate.sum(dim=-1) # Step 3: Compute Y_diag (apply to values) Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3) # (right term of low-rank factorization of off-diagonal blocks; B terms) decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None] # permute back B * decay states states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3) if cache_params is not None and cache_params.has_previous_state: previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...] else: previous_states = torch.zeros_like(states[:, :1]) states = torch.cat([previous_states, states], dim=1) decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) states_permuted = states.permute(0, 2, 1, 3, 4) result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2) new_states = result.permute(0, 2, 1, 3, 4) states, ssm_state = new_states[:, :-1], new_states[:, -1] # Compute state -> output conversion per chunk # (left term of low-rank factorization of off-diagonal blocks; C terms) state_decay_out = torch.exp(A_cumsum) # compute Yoff C_times_states = (C[..., None, :] * states[:, :, None, ...]) state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) y = Y_diag + Y_off # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) y = y + D_residual # Cutting off padded chunks if pad_size > 0: y = y[:, :seq_len, :, :] y = y.reshape(batch_size, seq_len, -1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = self.norm(y, gate) # end ssd naive # 4. Final linear projection contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask) return self.torch_forward(hidden_states, cache_params, attention_mask) class Zamba2MLP(nn.Module): def __init__(self, config: Zamba2Config, num_fwd_mem_blocks=None, block_id: int = None): """ This MLP layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapter modules (formally same as LoRA, but used in the base model) are added to the up and gate projectors to increase expressivity with a small memory overhead. """ super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.num_fwd_mem_blocks = num_fwd_mem_blocks self.block_id = block_id self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.add_bias_linear) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) self.act_fn = ACT2FN[config.hidden_act] self.gate_up_proj_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: gate_up_proj_adapter = nn.Sequential( nn.Linear(self.config.hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, 2 * self.intermediate_size, bias=False), ) else: gate_up_proj_adapter = nn.Identity() self.gate_up_proj_adapter_list.append(gate_up_proj_adapter) layer_block_map = config.hybrid_layer_ids self.layer_dic = {value: index for index, value in enumerate(layer_block_map)} def forward(self, hidden_state, layer_idx=None): gate_up_state = self.gate_up_proj(hidden_state) layer_idx = self.layer_dic[layer_idx] gate_up_state = gate_up_state + self.gate_up_proj_adapter_list[layer_idx](hidden_state) gate_up_state = torch.chunk(gate_up_state, 2, dim=-1) hidden_state = self.act_fn(gate_up_state[0]) * gate_up_state[1] output = self.down_proj(hidden_state) return output class Zamba2AttentionDecoderLayer(ZambaAttentionDecoderLayer): def __init__(self, config: Zamba2Config, block_id: int = None, layer_idx: Optional[int] = None): self.block_id = block_id num_gs = len(config.hybrid_layer_ids) super().__init__(config, layer_idx) self.self_attn = Zamba2Attention(config, layer_idx=-1, num_fwd_mem_blocks=num_gs, block_id=block_id) self.feed_forward = Zamba2MLP(config, num_fwd_mem_blocks=num_gs, block_id=block_id) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states, layer_idx) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Zamba2MambaDecoderLayer(ZambaMambaDecoderLayer): def __init__(self, config: Zamba2Config, layer_idx: int): super().__init__(config, layer_idx) self.mamba = Zamba2MambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) class Zamba2HybridLayer(ZambaHybridLayer): def __init__( self, shared_transformer: Zamba2AttentionDecoderLayer, linear: nn.Linear, mamba: Zamba2MambaDecoderLayer ): super().__init__(shared_transformer, linear, mamba) del self.shared_transf self.shared_transformer = shared_transformer def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: int = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ layer_outputs = self.shared_transformer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs class Zamba2PreTrainedModel(PreTrainedModel): config_class = Zamba2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Zamba2AttentionDecoderLayer", "Zamba2MambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_flex_attn = True _supports_sdpa = True _supports_cache_class = True # Note: only supports Zamba2HybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Zamba2MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt = torch.exp( torch.rand(self.config.n_mamba_heads) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_bias.copy_(inv_dt) module.dt_bias._no_reinit = True class Zamba2Model(ZambaModel, Zamba2PreTrainedModel): """ Model consisting of *config.num_hidden_layers* layers. Args: config: Zamba2Config """ def __init__(self, config: Zamba2Config): Zamba2PreTrainedModel.__init__(self, config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) blocks = [Zamba2AttentionDecoderLayer(config, block_id=k) for k in range(config.num_mem_blocks)] mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) blocks = cycle(blocks) layers = self.get_layers(blocks, linear_layers, mamba_layers) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if config.use_mem_rope: if config.use_long_context: logger.warning_once( "`use_long_context` set to `True`: using rescaled `rope_theta` and extended `max_position_embeddings`." ) self.rotary_emb = Zamba2RotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_layers(self, blocks, linear_layers, mamba_layers): layers = [] self._tied_weights_keys = [] self.first_transformer_layer_id = 0 for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": if self.first_transformer_layer_id == 0: self.first_transformer_layer_id = layer_id block = next(blocks) if self.config.num_mem_blocks * len(self.config.hybrid_layer_ids) > 1: prefix_pattern = rf"^layers\.{layer_id}\.shared_transformer\." main_keys_pattern = re.compile( prefix_pattern + r"(?:" + r"self_attn\.(?:q_proj|k_proj|v_proj|o_proj)\.weight|" + r"feed_forward\.(?:gate_up_proj|down_proj)\.weight|" + r"(?:input_layernorm|pre_ff_layernorm)\.weight" + r")$" ) self._tied_weights_keys.append(main_keys_pattern) adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: adapter_pattern = re.compile( r"^shared_transformer\.feed_forward\.gate_up_proj_adapter_list\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(adapter_pattern) adapter_id += 1 if self.config.use_shared_attention_adapter: adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: attn_adapter_pattern = re.compile( r"^shared_transformer\.self_attn\." + r"(?:linear_q_adapter_list|linear_k_adapter_list|linear_v_adapter_list)\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(attn_adapter_pattern) adapter_id += 1 layers.append(Zamba2HybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) return layers def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] past_key_values = Zamba2HybridDynamicCache(self.config, batch_size, dtype=self.dtype, device=self.device) if cache_position is None: past_seen_tokens = ( past_key_values.get_seq_length(layer_idx=self.first_transformer_layer_id) if past_key_values is not None else 0 ) cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # create position embeddings to be shared across the decoder layers if self.config.use_mem_rope: position_embeddings = self.rotary_emb(hidden_states, position_ids) else: position_embeddings = None all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, position_embeddings, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() class Zamba2ForCausalLM(ZambaForCausalLM): pass class Zamba2ForSequenceClassification(ZambaForSequenceClassification): pass __all__ = [ "Zamba2ForCausalLM", "Zamba2ForSequenceClassification", "Zamba2Model", "Zamba2PreTrainedModel", ]
transformers/src/transformers/models/zamba2/modular_zamba2.py/0
{ "file_path": "transformers/src/transformers/models/zamba2/modular_zamba2.py", "repo_id": "transformers", "token_count": 26947 }
# Copyright 2023 The HuggingFace Team. All rights reserved. import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array: """ Helper function to read an audio file through ffmpeg. """ ar = f"{sampling_rate}" ac = "1" format_for_conversion = "f32le" ffmpeg_command = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process: output_stream = ffmpeg_process.communicate(bpayload) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error out_bytes = output_stream[0] audio = np.frombuffer(out_bytes, np.float32) if audio.shape[0] == 0: raise ValueError( "Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has " "a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote " "URL, ensure that the URL is the full address to **download** the audio file." ) return audio def ffmpeg_microphone( sampling_rate: int, chunk_length_s: float, format_for_conversion: str = "f32le", ffmpeg_input_device: Optional[str] = None, ffmpeg_additional_args: Optional[list[str]] = None, ): """ Helper function to read audio from a microphone using ffmpeg. The default input device will be used unless another input device is specified using the `ffmpeg_input_device` argument. Uses 'alsa' on Linux, 'avfoundation' on MacOS and 'dshow' on Windows. Arguments: sampling_rate (`int`): The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to avoid resampling later. chunk_length_s (`float` or `int`): The length of the maximum chunk of audio to be sent returned. format_for_conversion (`str`, defaults to `f32le`): The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le` could also be used. ffmpeg_input_device (`str`, *optional*): The identifier of the input device to be used by ffmpeg (i.e. ffmpeg's '-i' argument). If unset, the default input device will be used. See `https://www.ffmpeg.org/ffmpeg-devices.html#Input-Devices` for how to specify and list input devices. ffmpeg_additional_args (`list[str]`, *optional*): Additional arguments to pass to ffmpeg, can include arguments like -nostdin for running as a background process. For example, to pass -nostdin to the ffmpeg process, pass in ["-nostdin"]. If passing in flags with multiple arguments, use the following convention (eg ["flag", "arg1", "arg2]). Returns: A generator yielding audio chunks of `chunk_length_s` seconds as `bytes` objects of length `int(round(sampling_rate * chunk_length_s)) * size_of_sample`. """ ar = f"{sampling_rate}" ac = "1" if format_for_conversion == "s16le": size_of_sample = 2 elif format_for_conversion == "f32le": size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") system = platform.system() if system == "Linux": format_ = "alsa" input_ = ffmpeg_input_device or "default" elif system == "Darwin": format_ = "avfoundation" input_ = ffmpeg_input_device or ":default" elif system == "Windows": format_ = "dshow" input_ = ffmpeg_input_device or _get_microphone_name() ffmpeg_additional_args = [] if ffmpeg_additional_args is None else ffmpeg_additional_args ffmpeg_command = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] ffmpeg_command.extend(ffmpeg_additional_args) chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample iterator = _ffmpeg_stream(ffmpeg_command, chunk_len) for item in iterator: yield item def ffmpeg_microphone_live( sampling_rate: int, chunk_length_s: float, stream_chunk_s: Optional[int] = None, stride_length_s: Optional[Union[Tuple[float, float], float]] = None, format_for_conversion: str = "f32le", ffmpeg_input_device: Optional[str] = None, ffmpeg_additional_args: Optional[list[str]] = None, ): """ Helper function to read audio from a microphone using ffmpeg. This will output `partial` overlapping chunks starting from `stream_chunk_s` (if it is defined) until `chunk_length_s` is reached. It will make use of striding to avoid errors on the "sides" of the various chunks. The default input device will be used unless another input device is specified using the `ffmpeg_input_device` argument. Uses 'alsa' on Linux, 'avfoundation' on MacOS and 'dshow' on Windows. Arguments: sampling_rate (`int`): The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to avoid resampling later. chunk_length_s (`float` or `int`): The length of the maximum chunk of audio to be sent returned. This includes the eventual striding. stream_chunk_s (`float` or `int`): The length of the minimal temporary audio to be returned. stride_length_s (`float` or `int` or `(float, float)`, *optional*): The length of the striding to be used. Stride is used to provide context to a model on the (left, right) of an audio sample but without using that part to actually make the prediction. Setting this does not change the length of the chunk. format_for_conversion (`str`, *optional*, defaults to `f32le`): The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le` could also be used. ffmpeg_input_device (`str`, *optional*): The identifier of the input device to be used by ffmpeg (i.e. ffmpeg's '-i' argument). If unset, the default input device will be used. See `https://www.ffmpeg.org/ffmpeg-devices.html#Input-Devices` for how to specify and list input devices. ffmpeg_additional_args (`list[str]`, *optional*): Additional arguments to pass to ffmpeg, can include arguments like -nostdin for running as a background process. For example, to pass -nostdin to the ffmpeg process, pass in ["-nostdin"]. If passing in flags with multiple arguments, use the following convention (eg ["flag", "arg1", "arg2]). Return: A generator yielding dictionaries of the following form `{"sampling_rate": int, "raw": np.array(), "partial" bool}` With optionally a `"stride" (int, int)` key if `stride_length_s` is defined. `stride` and `raw` are all expressed in `samples`, and `partial` is a boolean saying if the current yield item is a whole chunk, or a partial temporary result to be later replaced by another larger chunk. """ if stream_chunk_s is not None: chunk_s = stream_chunk_s else: chunk_s = chunk_length_s microphone = ffmpeg_microphone( sampling_rate, chunk_s, format_for_conversion=format_for_conversion, ffmpeg_input_device=ffmpeg_input_device, ffmpeg_additional_args=[] if ffmpeg_additional_args is None else ffmpeg_additional_args, ) if format_for_conversion == "s16le": dtype = np.int16 size_of_sample = 2 elif format_for_conversion == "f32le": dtype = np.float32 size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") if stride_length_s is None: stride_length_s = chunk_length_s / 6 chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] stride_left = int(round(sampling_rate * stride_length_s[0])) * size_of_sample stride_right = int(round(sampling_rate * stride_length_s[1])) * size_of_sample audio_time = datetime.datetime.now() delta = datetime.timedelta(seconds=chunk_s) for item in chunk_bytes_iter(microphone, chunk_len, stride=(stride_left, stride_right), stream=True): # Put everything back in numpy scale item["raw"] = np.frombuffer(item["raw"], dtype=dtype) item["stride"] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) item["sampling_rate"] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def chunk_bytes_iter(iterator, chunk_len: int, stride: Tuple[int, int], stream: bool = False): """ Reads raw bytes from an iterator and does chunks of length `chunk_len`. Optionally adds `stride` to each chunks to get overlaps. `stream` is used to return partial results even if a full `chunk_len` is not yet available. """ acc = b"" stride_left, stride_right = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) _stride_left = 0 for raw in iterator: acc += raw if stream and len(acc) < chunk_len: stride = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(acc) >= chunk_len: # We are flushing the accumulator stride = (_stride_left, stride_right) item = {"raw": acc[:chunk_len], "stride": stride} if stream: item["partial"] = False yield item _stride_left = stride_left acc = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(acc) > stride_left: item = {"raw": acc, "stride": (_stride_left, 0)} if stream: item["partial"] = False yield item def _ffmpeg_stream(ffmpeg_command, buflen: int): """ Internal function to create the generator of data through ffmpeg """ bufsize = 2**24 # 16Mo try: with subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, bufsize=bufsize) as ffmpeg_process: while True: raw = ffmpeg_process.stdout.read(buflen) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename") from error def _get_microphone_name(): """ Retrieve the microphone name in Windows . """ command = ["ffmpeg", "-list_devices", "true", "-f", "dshow", "-i", ""] try: ffmpeg_devices = subprocess.run(command, text=True, stderr=subprocess.PIPE, encoding="utf-8") microphone_lines = [line for line in ffmpeg_devices.stderr.splitlines() if "(audio)" in line] if microphone_lines: microphone_name = microphone_lines[0].split('"')[1] print(f"Using microphone: {microphone_name}") return f"audio={microphone_name}" except FileNotFoundError: print("ffmpeg was not found. Please install it or make sure it is in your system PATH.") return "default"
transformers/src/transformers/pipelines/audio_utils.py/0
{ "file_path": "transformers/src/transformers/pipelines/audio_utils.py", "repo_id": "transformers", "token_count": 4993 }
import inspect import types import warnings from collections.abc import Iterable from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ..data import SquadExample, SquadFeatures, squad_convert_examples_to_features from ..modelcard import ModelCard from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( PaddingStrategy, add_end_docstrings, is_tf_available, is_tokenizers_available, is_torch_available, logging, ) from .base import ArgumentHandler, ChunkPipeline, build_pipeline_init_args logger = logging.get_logger(__name__) if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel if is_tokenizers_available(): import tokenizers if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES Dataset = None if is_torch_available(): import torch from torch.utils.data import Dataset from ..models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES def decode_spans( start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int, undesired_tokens: np.ndarray ) -> Tuple: """ Take the output of any `ModelForQuestionAnswering` and will generate probabilities for each span to be the actual answer. In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or answer end position being before the starting position. The method supports output the k-best answer through the topk argument. Args: start (`np.ndarray`): Individual start probabilities for each token. end (`np.ndarray`): Individual end probabilities for each token. topk (`int`): Indicates how many possible answer span(s) to extract from the model output. max_answer_len (`int`): Maximum size of the answer to extract from the model's output. undesired_tokens (`np.ndarray`): Mask determining tokens that can be part of the answer """ # Ensure we have batch axis if start.ndim == 1: start = start[None] if end.ndim == 1: end = end[None] # Compute the score of each tuple(start, end) to be the real answer outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) # Remove candidate with end < start and end - start > max_answer_len candidates = np.tril(np.triu(outer), max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten() if topk == 1: idx_sort = [np.argmax(scores_flat)] elif len(scores_flat) < topk: idx_sort = np.argsort(-scores_flat) else: idx = np.argpartition(-scores_flat, topk)[0:topk] idx_sort = idx[np.argsort(-scores_flat[idx])] starts, ends = np.unravel_index(idx_sort, candidates.shape)[1:] desired_spans = np.isin(starts, undesired_tokens.nonzero()) & np.isin(ends, undesired_tokens.nonzero()) starts = starts[desired_spans] ends = ends[desired_spans] scores = candidates[0, starts, ends] return starts, ends, scores def select_starts_ends( start, end, p_mask, attention_mask, min_null_score=1000000, top_k=1, handle_impossible_answer=False, max_answer_len=15, ): """ Takes the raw output of any `ModelForQuestionAnswering` and first normalizes its outputs and then uses `decode_spans()` to generate probabilities for each span to be the actual answer. Args: start (`np.ndarray`): Individual start logits for each token. end (`np.ndarray`): Individual end logits for each token. p_mask (`np.ndarray`): A mask with 1 for values that cannot be in the answer attention_mask (`np.ndarray`): The attention mask generated by the tokenizer min_null_score(`float`): The minimum null (empty) answer score seen so far. topk (`int`): Indicates how many possible answer span(s) to extract from the model output. handle_impossible_answer(`bool`): Whether to allow null (empty) answers max_answer_len (`int`): Maximum size of the answer to extract from the model's output. """ # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = np.abs(np.array(p_mask) - 1) if attention_mask is not None: undesired_tokens = undesired_tokens & attention_mask # Generate mask undesired_tokens_mask = undesired_tokens == 0.0 # Make sure non-context indexes in the tensor cannot contribute to the softmax start = np.where(undesired_tokens_mask, -10000.0, start) end = np.where(undesired_tokens_mask, -10000.0, end) # Normalize logits and spans to retrieve the answer start = np.exp(start - start.max(axis=-1, keepdims=True)) start = start / start.sum() end = np.exp(end - end.max(axis=-1, keepdims=True)) end = end / end.sum() if handle_impossible_answer: min_null_score = min(min_null_score, (start[0, 0] * end[0, 0]).item()) # Mask CLS start[0, 0] = end[0, 0] = 0.0 starts, ends, scores = decode_spans(start, end, top_k, max_answer_len, undesired_tokens) return starts, ends, scores, min_null_score class QuestionAnsweringArgumentHandler(ArgumentHandler): """ QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to internal [`SquadExample`]. QuestionAnsweringArgumentHandler manages all the possible to create a [`SquadExample`] from the command-line supplied arguments. """ def normalize(self, item): if isinstance(item, SquadExample): return item elif isinstance(item, dict): for k in ["question", "context"]: if k not in item: raise KeyError("You need to provide a dictionary with keys {question:..., context:...}") elif item[k] is None: raise ValueError(f"`{k}` cannot be None") elif isinstance(item[k], str) and len(item[k]) == 0: raise ValueError(f"`{k}` cannot be empty") return QuestionAnsweringPipeline.create_sample(**item) raise ValueError(f"{item} argument needs to be of type (SquadExample, dict)") def __call__(self, *args, **kwargs): # Detect where the actual inputs are if args is not None and len(args) > 0: if len(args) == 1: inputs = args[0] elif len(args) == 2 and {type(el) for el in args} == {str}: inputs = [{"question": args[0], "context": args[1]}] else: inputs = list(args) # Generic compatibility with sklearn and Keras # Batched data elif "X" in kwargs: warnings.warn( "Passing the `X` argument to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) inputs = kwargs["X"] elif "data" in kwargs: warnings.warn( "Passing the `data` argument to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) inputs = kwargs["data"] elif "question" in kwargs and "context" in kwargs: if isinstance(kwargs["question"], list) and isinstance(kwargs["context"], str): inputs = [{"question": Q, "context": kwargs["context"]} for Q in kwargs["question"]] elif isinstance(kwargs["question"], list) and isinstance(kwargs["context"], list): if len(kwargs["question"]) != len(kwargs["context"]): raise ValueError("Questions and contexts don't have the same lengths") inputs = [{"question": Q, "context": C} for Q, C in zip(kwargs["question"], kwargs["context"])] elif isinstance(kwargs["question"], str) and isinstance(kwargs["context"], str): inputs = [{"question": kwargs["question"], "context": kwargs["context"]}] else: raise ValueError("Arguments can't be understood") else: raise ValueError(f"Unknown arguments {kwargs}") # When user is sending a generator we need to trust it's a valid example generator_types = (types.GeneratorType, Dataset) if Dataset is not None else (types.GeneratorType,) if isinstance(inputs, generator_types): return inputs # Normalize inputs if isinstance(inputs, dict): inputs = [inputs] elif isinstance(inputs, Iterable): # Copy to avoid overriding arguments inputs = list(inputs) else: raise ValueError(f"Invalid arguments {kwargs}") for i, item in enumerate(inputs): inputs[i] = self.normalize(item) return inputs @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class QuestionAnsweringPipeline(ChunkPipeline): """ Question Answering pipeline using any `ModelForQuestionAnswering`. See the [question answering examples](../task_summary#question-answering) for more information. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="deepset/roberta-base-squad2") >>> oracle(question="Where do I live?", context="My name is Wolfgang and I live in Berlin") {'score': 0.9191, 'start': 34, 'end': 40, 'answer': 'Berlin'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=question-answering). """ default_input_names = "question,context" handle_impossible_answer = False def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", **kwargs, ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, task=task, **kwargs, ) self._args_parser = QuestionAnsweringArgumentHandler() self.check_model_type( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) @staticmethod def create_sample( question: Union[str, List[str]], context: Union[str, List[str]] ) -> Union[SquadExample, List[SquadExample]]: """ QuestionAnsweringPipeline leverages the [`SquadExample`] internally. This helper method encapsulate all the logic for converting question(s) and context(s) to [`SquadExample`]. We currently support extractive question answering. Arguments: question (`str` or `List[str]`): The question(s) asked. context (`str` or `List[str]`): The context(s) in which we will look for the answer. Returns: One or a list of [`SquadExample`]: The corresponding [`SquadExample`] grouping question and context. """ if isinstance(question, list): return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)] else: return SquadExample(None, question, context, None, None, None) def _sanitize_parameters( self, padding=None, topk=None, top_k=None, doc_stride=None, max_answer_len=None, max_seq_len=None, max_question_len=None, handle_impossible_answer=None, align_to_words=None, **kwargs, ): # Set defaults values preprocess_params = {} if padding is not None: preprocess_params["padding"] = padding if doc_stride is not None: preprocess_params["doc_stride"] = doc_stride if max_question_len is not None: preprocess_params["max_question_len"] = max_question_len if max_seq_len is not None: preprocess_params["max_seq_len"] = max_seq_len postprocess_params = {} if topk is not None and top_k is None: warnings.warn("topk parameter is deprecated, use top_k instead", UserWarning) top_k = topk if top_k is not None: if top_k < 1: raise ValueError(f"top_k parameter should be >= 1 (got {top_k})") postprocess_params["top_k"] = top_k if max_answer_len is not None: if max_answer_len < 1: raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}") if max_answer_len is not None: postprocess_params["max_answer_len"] = max_answer_len if handle_impossible_answer is not None: postprocess_params["handle_impossible_answer"] = handle_impossible_answer if align_to_words is not None: postprocess_params["align_to_words"] = align_to_words return preprocess_params, {}, postprocess_params def __call__(self, *args, **kwargs): """ Answer the question(s) given as inputs by using the context(s). Args: question (`str` or `List[str]`): One or several question(s) (must be used in conjunction with the `context` argument). context (`str` or `List[str]`): One or several context(s) associated with the question(s) (must be used in conjunction with the `question` argument). top_k (`int`, *optional*, defaults to 1): The number of answers to return (will be chosen by order of likelihood). Note that we return less than top_k answers if there are not enough options available within the context. doc_stride (`int`, *optional*, defaults to 128): If the context is too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (`int`, *optional*, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (`int`, *optional*, defaults to 384): The maximum length of the total sentence (context + question) in tokens of each chunk passed to the model. The context will be split in several chunks (using `doc_stride` as overlap) if needed. max_question_len (`int`, *optional*, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (`bool`, *optional*, defaults to `False`): Whether or not we accept impossible as an answer. align_to_words (`bool`, *optional*, defaults to `True`): Attempts to align the answer to real words. Improves quality on space separated languages. Might hurt on non-space-separated languages (like Japanese or Chinese) Return: A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: - **score** (`float`) -- The probability associated to the answer. - **start** (`int`) -- The character start index of the answer (in the tokenized version of the input). - **end** (`int`) -- The character end index of the answer (in the tokenized version of the input). - **answer** (`str`) -- The answer to the question. """ # Convert inputs to features if args: warnings.warn( "Passing a list of SQuAD examples to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) examples = self._args_parser(*args, **kwargs) if isinstance(examples, (list, tuple)) and len(examples) == 1: return super().__call__(examples[0], **kwargs) return super().__call__(examples, **kwargs) def preprocess(self, example, padding="do_not_pad", doc_stride=None, max_question_len=64, max_seq_len=None): # XXX: This is specal, args_parser will not handle anything generator or dataset like # For those we expect user to send a simple valid example either directly as a SquadExample or simple dict. # So we still need a little sanitation here. if isinstance(example, dict): example = SquadExample(None, example["question"], example["context"], None, None, None) if max_seq_len is None: max_seq_len = min(self.tokenizer.model_max_length, 384) if doc_stride is None: doc_stride = min(max_seq_len // 2, 128) if doc_stride > max_seq_len: raise ValueError(f"`doc_stride` ({doc_stride}) is larger than `max_seq_len` ({max_seq_len})") if not self.tokenizer.is_fast: features = squad_convert_examples_to_features( examples=[example], tokenizer=self.tokenizer, max_seq_length=max_seq_len, doc_stride=doc_stride, max_query_length=max_question_len, padding_strategy=PaddingStrategy.MAX_LENGTH, is_training=False, tqdm_enabled=False, ) else: # Define the side we want to truncate / pad and the text/pair sorting question_first = self.tokenizer.padding_side == "right" encoded_inputs = self.tokenizer( text=example.question_text if question_first else example.context_text, text_pair=example.context_text if question_first else example.question_text, padding=padding, truncation="only_second" if question_first else "only_first", max_length=max_seq_len, stride=doc_stride, return_token_type_ids=True, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, ) # When the input is too long, it's converted in a batch of inputs with overflowing tokens # and a stride of overlap between the inputs. If a batch of inputs is given, a special output # "overflow_to_sample_mapping" indicate which member of the encoded batch belong to which original batch sample. # Here we tokenize examples one-by-one so we don't need to use "overflow_to_sample_mapping". # "num_span" is the number of output samples generated from the overflowing tokens. num_spans = len(encoded_inputs["input_ids"]) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) p_mask = [ [tok != 1 if question_first else 0 for tok in encoded_inputs.sequence_ids(span_id)] for span_id in range(num_spans) ] features = [] for span_idx in range(num_spans): input_ids_span_idx = encoded_inputs["input_ids"][span_idx] attention_mask_span_idx = ( encoded_inputs["attention_mask"][span_idx] if "attention_mask" in encoded_inputs else None ) token_type_ids_span_idx = ( encoded_inputs["token_type_ids"][span_idx] if "token_type_ids" in encoded_inputs else None ) # keep the cls_token unmasked (some models use it to indicate unanswerable questions) if self.tokenizer.cls_token_id is not None: cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0] for cls_index in cls_indices: p_mask[span_idx][cls_index] = 0 submask = p_mask[span_idx] features.append( SquadFeatures( input_ids=input_ids_span_idx, attention_mask=attention_mask_span_idx, token_type_ids=token_type_ids_span_idx, p_mask=submask, encoding=encoded_inputs[span_idx], # We don't use the rest of the values - and actually # for Fast tokenizer we could totally avoid using SquadFeatures and SquadExample cls_index=None, token_to_orig_map={}, example_index=0, unique_id=0, paragraph_len=0, token_is_max_context=0, tokens=[], start_position=0, end_position=0, is_impossible=False, qas_id=None, ) ) for i, feature in enumerate(features): fw_args = {} others = {} model_input_names = self.tokenizer.model_input_names + ["p_mask", "token_type_ids"] for k, v in feature.__dict__.items(): if k in model_input_names: if self.framework == "tf": tensor = tf.constant(v) if tensor.dtype == tf.int64: tensor = tf.cast(tensor, tf.int32) fw_args[k] = tf.expand_dims(tensor, 0) elif self.framework == "pt": tensor = torch.tensor(v) if tensor.dtype == torch.int32: tensor = tensor.long() fw_args[k] = tensor.unsqueeze(0) else: others[k] = v is_last = i == len(features) - 1 yield {"example": example, "is_last": is_last, **fw_args, **others} def _forward(self, inputs): example = inputs["example"] model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names} # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False output = self.model(**model_inputs) if isinstance(output, dict): return {"start": output["start_logits"], "end": output["end_logits"], "example": example, **inputs} else: start, end = output[:2] return {"start": start, "end": end, "example": example, **inputs} def postprocess( self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, align_to_words=True, ): min_null_score = 1000000 # large and positive answers = [] for output in model_outputs: if self.framework == "pt" and output["start"].dtype == torch.bfloat16: start_ = output["start"].to(torch.float32) else: start_ = output["start"] if self.framework == "pt" and output["start"].dtype == torch.bfloat16: end_ = output["end"].to(torch.float32) else: end_ = output["end"] example = output["example"] p_mask = output["p_mask"] attention_mask = ( output["attention_mask"].numpy() if output.get("attention_mask", None) is not None else None ) starts, ends, scores, min_null_score = select_starts_ends( start_, end_, p_mask, attention_mask, min_null_score, top_k, handle_impossible_answer, max_answer_len ) if not self.tokenizer.is_fast: char_to_word = np.array(example.char_to_word_offset) # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer for s, e, score in zip(starts, ends, scores): token_to_orig_map = output["token_to_orig_map"] answers.append( { "score": score.item(), "start": np.where(char_to_word == token_to_orig_map[s])[0][0].item(), "end": np.where(char_to_word == token_to_orig_map[e])[0][-1].item(), "answer": " ".join(example.doc_tokens[token_to_orig_map[s] : token_to_orig_map[e] + 1]), } ) else: # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer question_first = bool(self.tokenizer.padding_side == "right") enc = output["encoding"] # Encoding was *not* padded, input_ids *might*. # It doesn't make a difference unless we're padding on # the left hand side, since now we have different offsets # everywhere. if self.tokenizer.padding_side == "left": offset = (output["input_ids"] == self.tokenizer.pad_token_id).numpy().sum() else: offset = 0 # Sometimes the max probability token is in the middle of a word so: # - we start by finding the right word containing the token with `token_to_word` # - then we convert this word in a character span with `word_to_chars` sequence_index = 1 if question_first else 0 for s, e, score in zip(starts, ends, scores): s = s - offset e = e - offset start_index, end_index = self.get_indices(enc, s, e, sequence_index, align_to_words) answers.append( { "score": score.item(), "start": start_index, "end": end_index, "answer": example.context_text[start_index:end_index], } ) if handle_impossible_answer: answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""}) answers = sorted(answers, key=lambda x: x["score"], reverse=True)[:top_k] if len(answers) == 1: return answers[0] return answers def get_indices( self, enc: "tokenizers.Encoding", s: int, e: int, sequence_index: int, align_to_words: bool ) -> Tuple[int, int]: if align_to_words: try: start_word = enc.token_to_word(s) end_word = enc.token_to_word(e) start_index = enc.word_to_chars(start_word, sequence_index=sequence_index)[0] end_index = enc.word_to_chars(end_word, sequence_index=sequence_index)[1] except Exception: # Some tokenizers don't really handle words. Keep to offsets then. start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] else: start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] return start_index, end_index def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: """ When decoding from token probabilities, this method maps token indexes to actual word in the initial context. Args: text (`str`): The actual context to extract the answer from. start (`int`): The answer starting token index. end (`int`): The answer end token index. Returns: Dictionary like `{'answer': str, 'start': int, 'end': int}` """ words = [] token_idx = char_start_idx = char_end_idx = chars_idx = 0 for i, word in enumerate(text.split(" ")): token = self.tokenizer.tokenize(word) # Append words if they are in the span if start <= token_idx <= end: if token_idx == start: char_start_idx = chars_idx if token_idx == end: char_end_idx = chars_idx + len(word) words += [word] # Stop if we went over the end of the answer if token_idx > end: break # Append the subtokenization length to the running index token_idx += len(token) chars_idx += len(word) + 1 # Join text with spaces return { "answer": " ".join(words), "start": max(0, char_start_idx), "end": min(len(text), char_end_idx), }
transformers/src/transformers/pipelines/question_answering.py/0
{ "file_path": "transformers/src/transformers/pipelines/question_answering.py", "repo_id": "transformers", "token_count": 13563 }
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Dict, Optional, Union from ..models.auto.configuration_auto import AutoConfig from ..utils import logging from ..utils.quantization_config import ( AqlmConfig, AwqConfig, BitNetConfig, BitsAndBytesConfig, CompressedTensorsConfig, EetqConfig, FbgemmFp8Config, GPTQConfig, HiggsConfig, HqqConfig, QuantizationConfigMixin, QuantizationMethod, QuantoConfig, TorchAoConfig, VptqConfig, ) from .quantizer_aqlm import AqlmHfQuantizer from .quantizer_awq import AwqQuantizer from .quantizer_bitnet import BitNetHfQuantizer from .quantizer_bnb_4bit import Bnb4BitHfQuantizer from .quantizer_bnb_8bit import Bnb8BitHfQuantizer from .quantizer_compressed_tensors import CompressedTensorsHfQuantizer from .quantizer_eetq import EetqHfQuantizer from .quantizer_fbgemm_fp8 import FbgemmFp8HfQuantizer from .quantizer_gptq import GptqHfQuantizer from .quantizer_higgs import HiggsHfQuantizer from .quantizer_hqq import HqqHfQuantizer from .quantizer_quanto import QuantoHfQuantizer from .quantizer_torchao import TorchAoHfQuantizer from .quantizer_vptq import VptqHfQuantizer AUTO_QUANTIZER_MAPPING = { "awq": AwqQuantizer, "bitsandbytes_4bit": Bnb4BitHfQuantizer, "bitsandbytes_8bit": Bnb8BitHfQuantizer, "gptq": GptqHfQuantizer, "aqlm": AqlmHfQuantizer, "quanto": QuantoHfQuantizer, "eetq": EetqHfQuantizer, "higgs": HiggsHfQuantizer, "hqq": HqqHfQuantizer, "compressed-tensors": CompressedTensorsHfQuantizer, "fbgemm_fp8": FbgemmFp8HfQuantizer, "torchao": TorchAoHfQuantizer, "bitnet": BitNetHfQuantizer, "vptq": VptqHfQuantizer, } AUTO_QUANTIZATION_CONFIG_MAPPING = { "awq": AwqConfig, "bitsandbytes_4bit": BitsAndBytesConfig, "bitsandbytes_8bit": BitsAndBytesConfig, "eetq": EetqConfig, "gptq": GPTQConfig, "aqlm": AqlmConfig, "quanto": QuantoConfig, "hqq": HqqConfig, "compressed-tensors": CompressedTensorsConfig, "fbgemm_fp8": FbgemmFp8Config, "higgs": HiggsConfig, "torchao": TorchAoConfig, "bitnet": BitNetConfig, "vptq": VptqConfig, } logger = logging.get_logger(__name__) class AutoQuantizationConfig: """ The Auto-HF quantization config class that takes care of automatically dispatching to the correct quantization config given a quantization config stored in a dictionary. """ @classmethod def from_dict(cls, quantization_config_dict: Dict): quant_method = quantization_config_dict.get("quant_method", None) # We need a special care for bnb models to make sure everything is BC .. if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" ) if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method] return target_cls.from_dict(quantization_config_dict) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) if getattr(model_config, "quantization_config", None) is None: raise ValueError( f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized." ) quantization_config_dict = model_config.quantization_config quantization_config = cls.from_dict(quantization_config_dict) # Update with potential kwargs that are passed through from_pretrained. quantization_config.update(**kwargs) return quantization_config class AutoHfQuantizer: """ The Auto-HF quantizer class that takes care of automatically instantiating to the correct `HfQuantizer` given the `QuantizationConfig`. """ @classmethod def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs): # Convert it to a QuantizationConfig if the q_config is a dict if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config) quant_method = quantization_config.quant_method # Again, we need a special care for bnb as we have a single quantization config # class for both 4-bit and 8-bit quantization if quant_method == QuantizationMethod.BITS_AND_BYTES: if quantization_config.load_in_8bit: quant_method += "_8bit" else: quant_method += "_4bit" if quant_method not in AUTO_QUANTIZER_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZER_MAPPING[quant_method] return target_cls(quantization_config, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls.from_config(quantization_config) @classmethod def merge_quantization_configs( cls, quantization_config: Union[dict, QuantizationConfigMixin], quantization_config_from_args: Optional[QuantizationConfigMixin], ): """ handles situations where both quantization_config from args and quantization_config from model config are present. """ if quantization_config_from_args is not None: warning_msg = ( "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading" " already has a `quantization_config` attribute. The `quantization_config` from the model will be used." ) else: warning_msg = "" if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config) if ( isinstance(quantization_config, (GPTQConfig, AwqConfig, FbgemmFp8Config, CompressedTensorsConfig)) and quantization_config_from_args is not None ): # special case for GPTQ / AWQ / FbgemmFp8 config collision loading_attr_dict = quantization_config_from_args.get_loading_attributes() for attr, val in loading_attr_dict.items(): setattr(quantization_config, attr, val) warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored." if warning_msg != "": warnings.warn(warning_msg) return quantization_config @staticmethod def supports_quant_method(quantization_config_dict): quant_method = quantization_config_dict.get("quant_method", None) if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" ) if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): logger.warning( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}. Hence, we will skip the quantization. " "To remove the warning, you can delete the quantization_config attribute in config.json" ) return False return True
transformers/src/transformers/quantizers/auto.py/0
{ "file_path": "transformers/src/transformers/quantizers/auto.py", "repo_id": "transformers", "token_count": 3651 }
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Tuple def get_module_from_name(module, tensor_name: str) -> Tuple[Any, str]: if "." in tensor_name: splits = tensor_name.split(".") for split in splits[:-1]: new_module = getattr(module, split) if new_module is None: raise ValueError(f"{module} has no attribute {split}.") module = new_module tensor_name = splits[-1] return module, tensor_name
transformers/src/transformers/quantizers/quantizers_utils.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizers_utils.py", "repo_id": "transformers", "token_count": 361 }
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import io import json import math import os import warnings from dataclasses import asdict, dataclass, field, fields from datetime import timedelta from enum import Enum from pathlib import Path from typing import Any, Dict, List, Optional, Union from huggingface_hub import get_full_repo_name from packaging import version from .debug_utils import DebugOption from .trainer_utils import ( EvaluationStrategy, FSDPOption, HubStrategy, IntervalStrategy, SaveStrategy, SchedulerType, ) from .utils import ( ACCELERATE_MIN_VERSION, ExplicitEnum, cached_property, is_accelerate_available, is_ipex_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_torch_available, is_torch_bf16_cpu_available, is_torch_bf16_gpu_available, is_torch_mlu_available, is_torch_mps_available, is_torch_musa_available, is_torch_neuroncore_available, is_torch_npu_available, is_torch_tf32_available, is_torch_xla_available, is_torch_xpu_available, logging, requires_backends, ) from .utils.generic import strtobool from .utils.import_utils import is_optimum_neuron_available logger = logging.get_logger(__name__) log_levels = logging.get_log_levels_dict().copy() trainer_log_levels = dict(**log_levels, passive=-1) if is_torch_available(): import torch import torch.distributed as dist if is_accelerate_available(): from accelerate.state import AcceleratorState, PartialState from accelerate.utils import DistributedType from .trainer_pt_utils import AcceleratorConfig if is_torch_xla_available(): import torch_xla.core.xla_model as xm if is_torch_neuroncore_available(check_device=False): # torchrun support # https://github.com/pytorch/xla/pull/3609 if os.environ.get("TORCHELASTIC_RUN_ID"): if is_optimum_neuron_available(): logger.info( "Make sure that you are performing the training with the NeuronTrainer from optimum[neuron], this " "will fail otherwise." ) else: logger.warning( "Please use the NeuronTrainer from optimum[neuron] instead of the Transformers library to perform " "training on AWS Trainium instances. More information here: " "https://github.com/huggingface/optimum-neuron" ) import torch_xla.distributed.xla_backend as xbn if not isinstance(dist.group.WORLD, xbn.ProcessGroupXla): dist.init_process_group(backend="xla") if not isinstance(dist.group.WORLD, xbn.ProcessGroupXla): raise AssertionError("Failed to initialize torch.distributed process group using XLA backend.") if is_sagemaker_mp_enabled(): import smdistributed.modelparallel.torch as smp smp.init() def default_logdir() -> str: """ Same default as PyTorch """ import socket from datetime import datetime current_time = datetime.now().strftime("%b%d_%H-%M-%S") return os.path.join("runs", current_time + "_" + socket.gethostname()) def get_int_from_env(env_keys, default): """Returns the first positive env value found in the `env_keys` list or the default.""" for e in env_keys: val = int(os.environ.get(e, -1)) if val >= 0: return val return default def get_xla_device_type(device: "torch.device") -> Optional[str]: """ Returns the xla device type (CPU|GPU|TPU) or None if the device is a non-xla device. """ if is_torch_xla_available(): if device.type == "cpu": return "CPU" return xm.xla_real_devices([device])[0].split(":")[0] return None class OptimizerNames(ExplicitEnum): """ Stores the acceptable string identifiers for optimizers. """ ADAMW_HF = "adamw_hf" ADAMW_TORCH = "adamw_torch" ADAMW_TORCH_FUSED = "adamw_torch_fused" ADAMW_TORCH_XLA = "adamw_torch_xla" ADAMW_TORCH_NPU_FUSED = "adamw_torch_npu_fused" ADAMW_APEX_FUSED = "adamw_apex_fused" ADAFACTOR = "adafactor" ADAMW_ANYPRECISION = "adamw_anyprecision" ADAMW_TORCH_4BIT = "adamw_torch_4bit" ADAMW_TORCH_8BIT = "adamw_torch_8bit" ADEMAMIX = "ademamix" SGD = "sgd" ADAGRAD = "adagrad" ADAMW_BNB = "adamw_bnb_8bit" ADAMW_8BIT = "adamw_8bit" # just an alias for adamw_bnb_8bit ADEMAMIX_8BIT = "ademamix_8bit" LION_8BIT = "lion_8bit" LION = "lion_32bit" PAGED_ADAMW = "paged_adamw_32bit" PAGED_ADAMW_8BIT = "paged_adamw_8bit" PAGED_ADEMAMIX = "paged_ademamix_32bit" PAGED_ADEMAMIX_8BIT = "paged_ademamix_8bit" PAGED_LION = "paged_lion_32bit" PAGED_LION_8BIT = "paged_lion_8bit" RMSPROP = "rmsprop" RMSPROP_BNB = "rmsprop_bnb" RMSPROP_8BIT = "rmsprop_bnb_8bit" RMSPROP_32BIT = "rmsprop_bnb_32bit" GALORE_ADAMW = "galore_adamw" GALORE_ADAMW_8BIT = "galore_adamw_8bit" GALORE_ADAFACTOR = "galore_adafactor" GALORE_ADAMW_LAYERWISE = "galore_adamw_layerwise" GALORE_ADAMW_8BIT_LAYERWISE = "galore_adamw_8bit_layerwise" GALORE_ADAFACTOR_LAYERWISE = "galore_adafactor_layerwise" LOMO = "lomo" ADALOMO = "adalomo" GROKADAMW = "grokadamw" SCHEDULE_FREE_ADAMW = "schedule_free_adamw" SCHEDULE_FREE_SGD = "schedule_free_sgd" # Sometimes users will pass in a `str` repr of a dict in the CLI # We need to track what fields those can be. Each time a new arg # has a dict type, it must be added to this list. # Important: These should be typed with Optional[Union[dict,str,...]] _VALID_DICT_FIELDS = [ "accelerator_config", "fsdp_config", "deepspeed", "gradient_checkpointing_kwargs", "lr_scheduler_kwargs", ] def _convert_str_dict(passed_value: dict): "Safely checks that a passed value is a dictionary and converts any string values to their appropriate types." for key, value in passed_value.items(): if isinstance(value, dict): passed_value[key] = _convert_str_dict(value) elif isinstance(value, str): # First check for bool and convert if value.lower() in ("true", "false"): passed_value[key] = value.lower() == "true" # Check for digit elif value.isdigit(): passed_value[key] = int(value) elif value.replace(".", "", 1).isdigit(): passed_value[key] = float(value) return passed_value # TODO: `TrainingArguments` users rely on it being fully mutable. In the future see if we can narrow this to a few keys: https://github.com/huggingface/transformers/pull/25903 @dataclass class TrainingArguments: """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using [`HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: output_dir (`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (`bool`, *optional*, defaults to `False`): If `True`, overwrite the content of the output directory. Use this to continue training if `output_dir` points to a checkpoint directory. do_train (`bool`, *optional*, defaults to `False`): Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. do_eval (`bool`, *optional*): Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. do_predict (`bool`, *optional*, defaults to `False`): Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`): The evaluation strategy to adopt during training. Possible values are: - `"no"`: No evaluation is done during training. - `"steps"`: Evaluation is done (and logged) every `eval_steps`. - `"epoch"`: Evaluation is done at the end of each epoch. prediction_loss_only (`bool`, *optional*, defaults to `False`): When performing evaluation and generating predictions, only returns the loss. per_device_train_batch_size (`int`, *optional*, defaults to 8): The batch size per GPU/XPU/TPU/MPS/NPU core/CPU for training. per_device_eval_batch_size (`int`, *optional*, defaults to 8): The batch size per GPU/XPU/TPU/MPS/NPU core/CPU for evaluation. gradient_accumulation_steps (`int`, *optional*, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. <Tip warning={true}> When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples. </Tip> eval_accumulation_steps (`int`, *optional*): Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/NPU/TPU before being moved to the CPU (faster but requires more memory). eval_delay (`float`, *optional*): Number of epochs or steps to wait for before the first evaluation can be performed, depending on the eval_strategy. torch_empty_cache_steps (`int`, *optional*): Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied. <Tip> This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372). </Tip> learning_rate (`float`, *optional*, defaults to 5e-5): The initial learning rate for [`AdamW`] optimizer. weight_decay (`float`, *optional*, defaults to 0): The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`] optimizer. adam_beta1 (`float`, *optional*, defaults to 0.9): The beta1 hyperparameter for the [`AdamW`] optimizer. adam_beta2 (`float`, *optional*, defaults to 0.999): The beta2 hyperparameter for the [`AdamW`] optimizer. adam_epsilon (`float`, *optional*, defaults to 1e-8): The epsilon hyperparameter for the [`AdamW`] optimizer. max_grad_norm (`float`, *optional*, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(`float`, *optional*, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (`int`, *optional*, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`. For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until `max_steps` is reached. lr_scheduler_type (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`): The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values. lr_scheduler_kwargs ('dict', *optional*, defaults to {}): The extra arguments for the lr_scheduler. See the documentation of each scheduler for possible values. warmup_ratio (`float`, *optional*, defaults to 0.0): Ratio of total training steps used for a linear warmup from 0 to `learning_rate`. warmup_steps (`int`, *optional*, defaults to 0): Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`. log_level (`str`, *optional*, defaults to `passive`): Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and keeps the current log level for the Transformers library (which will be `"warning"` by default). log_level_replica (`str`, *optional*, defaults to `"warning"`): Logger log level to use on replicas. Same choices as `log_level`" log_on_each_node (`bool`, *optional*, defaults to `True`): In multinode distributed training, whether to log using `log_level` once per node, or only on the main node. logging_dir (`str`, *optional*): [TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***. logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`): The logging strategy to adopt during training. Possible values are: - `"no"`: No logging is done during training. - `"epoch"`: Logging is done at the end of each epoch. - `"steps"`: Logging is done every `logging_steps`. logging_first_step (`bool`, *optional*, defaults to `False`): Whether to log the first `global_step` or not. logging_steps (`int` or `float`, *optional*, defaults to 500): Number of update steps between two logs if `logging_strategy="steps"`. Should be an integer or a float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps. logging_nan_inf_filter (`bool`, *optional*, defaults to `True`): Whether to filter `nan` and `inf` losses for logging. If set to `True` the loss of every step that is `nan` or `inf` is filtered and the average loss of the current logging window is taken instead. <Tip> `logging_nan_inf_filter` only influences the logging of loss values, it does not change the behavior the gradient is computed or applied to the model. </Tip> save_strategy (`str` or [`~trainer_utils.SaveStrategy`], *optional*, defaults to `"steps"`): The checkpoint save strategy to adopt during training. Possible values are: - `"no"`: No save is done during training. - `"epoch"`: Save is done at the end of each epoch. - `"steps"`: Save is done every `save_steps`. - `"best"`: Save is done whenever a new `best_metric` is achieved. If `"epoch"` or `"steps"` is chosen, saving will also be performed at the very end of training, always. save_steps (`int` or `float`, *optional*, defaults to 500): Number of updates steps before two checkpoint saves if `save_strategy="steps"`. Should be an integer or a float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps. save_total_limit (`int`, *optional*): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in `output_dir`. When `load_best_model_at_end` is enabled, the "best" checkpoint according to `metric_for_best_model` will always be retained in addition to the most recent ones. For example, for `save_total_limit=5` and `load_best_model_at_end`, the four last checkpoints will always be retained alongside the best model. When `save_total_limit=1` and `load_best_model_at_end`, it is possible that two checkpoints are saved: the last one and the best one (if they are different). save_safetensors (`bool`, *optional*, defaults to `True`): Use [safetensors](https://huggingface.co/docs/safetensors) saving and loading for state dicts instead of default `torch.load` and `torch.save`. save_on_each_node (`bool`, *optional*, defaults to `False`): When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one. This should not be activated when the different nodes use the same storage as the files will be saved with the same names for each node. save_only_model (`bool`, *optional*, defaults to `False`): When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state. Note that when this is true, you won't be able to resume training from checkpoint. This enables you to save storage by not storing the optimizer, scheduler & rng state. You can only load the model using `from_pretrained` with this option set to `True`. restore_callback_states_from_checkpoint (`bool`, *optional*, defaults to `False`): Whether to restore the callback states from the checkpoint. If `True`, will override callbacks passed to the `Trainer` if they exist in the checkpoint." use_cpu (`bool`, *optional*, defaults to `False`): Whether or not to use cpu. If set to False, we will use cuda or mps device if available. seed (`int`, *optional*, defaults to 42): Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the [`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters. data_seed (`int`, *optional*): Random seed to be used with data samplers. If not set, random generators for data sampling will use the same seed as `seed`. This can be used to ensure reproducibility of data sampling, independent of the model seed. jit_mode_eval (`bool`, *optional*, defaults to `False`): Whether or not to use PyTorch jit trace for inference. use_ipex (`bool`, *optional*, defaults to `False`): Use Intel extension for PyTorch when it is available. [IPEX installation](https://github.com/intel/intel-extension-for-pytorch). bf16 (`bool`, *optional*, defaults to `False`): Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. Requires Ampere or higher NVIDIA architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change. fp16 (`bool`, *optional*, defaults to `False`): Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training. fp16_opt_level (`str`, *optional*, defaults to 'O1'): For `fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the [Apex documentation](https://nvidia.github.io/apex/amp). fp16_backend (`str`, *optional*, defaults to `"auto"`): This argument is deprecated. Use `half_precision_backend` instead. half_precision_backend (`str`, *optional*, defaults to `"auto"`): The backend to use for mixed precision training. Must be one of `"auto", "apex", "cpu_amp"`. `"auto"` will use CPU/CUDA AMP or APEX depending on the PyTorch version detected, while the other choices will force the requested backend. bf16_full_eval (`bool`, *optional*, defaults to `False`): Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory but can harm metric values. This is an experimental API and it may change. fp16_full_eval (`bool`, *optional*, defaults to `False`): Whether to use full float16 evaluation instead of 32-bit. This will be faster and save memory but can harm metric values. tf32 (`bool`, *optional*): Whether to enable the TF32 mode, available in Ampere and newer GPU architectures. The default value depends on PyTorch's version default of `torch.backends.cuda.matmul.allow_tf32`. For more details please refer to the [TF32](https://huggingface.co/docs/transformers/perf_train_gpu_one#tf32) documentation. This is an experimental API and it may change. local_rank (`int`, *optional*, defaults to -1): Rank of the process during distributed training. ddp_backend (`str`, *optional*): The backend to use for distributed training. Must be one of `"nccl"`, `"mpi"`, `"ccl"`, `"gloo"`, `"hccl"`. tpu_num_cores (`int`, *optional*): When training on TPU, the number of TPU cores (automatically passed by launcher script). dataloader_drop_last (`bool`, *optional*, defaults to `False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (`int` or `float`, *optional*): Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps. dataloader_num_workers (`int`, *optional*, defaults to 0): Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. past_index (`int`, *optional*, defaults to -1): Some models like [TransformerXL](../model_doc/transformerxl) or [XLNet](../model_doc/xlnet) can make use of the past hidden states for their predictions. If this argument is set to a positive int, the `Trainer` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument `mems`. run_name (`str`, *optional*, defaults to `output_dir`): A descriptor for the run. Typically used for [wandb](https://www.wandb.com/), [mlflow](https://www.mlflow.org/) and [comet](https://www.comet.com/site) logging. If not specified, will be the same as `output_dir`. disable_tqdm (`bool`, *optional*): Whether or not to disable the tqdm progress bars and table of metrics produced by [`~notebook.NotebookTrainingTracker`] in Jupyter Notebooks. Will default to `True` if the logging level is set to warn or lower (default), `False` otherwise. remove_unused_columns (`bool`, *optional*, defaults to `True`): Whether or not to automatically remove the columns unused by the model forward method. label_names (`List[str]`, *optional*): The list of keys in your dictionary of inputs that correspond to the labels. Will eventually default to the list of argument names accepted by the model that contain the word "label", except if the model used is one of the `XxxForQuestionAnswering` in which case it will also include the `["start_positions", "end_positions"]` keys. load_best_model_at_end (`bool`, *optional*, defaults to `False`): Whether or not to load the best model found during training at the end of training. When this option is enabled, the best checkpoint will always be saved. See [`save_total_limit`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.save_total_limit) for more. <Tip> When set to `True`, the parameters `save_strategy` needs to be the same as `eval_strategy`, and in the case it is "steps", `save_steps` must be a round multiple of `eval_steps`. </Tip> metric_for_best_model (`str`, *optional*): Use in conjunction with `load_best_model_at_end` to specify the metric to use to compare two different models. Must be the name of a metric returned by the evaluation with or without the prefix `"eval_"`. If not specified, this will default to `"loss"` when either `load_best_model_at_end == True` or `lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU` (to use the evaluation loss). If you set this value, `greater_is_better` will default to `True` unless the name ends with "loss". Don't forget to set it to `False` if your metric is better when lower. greater_is_better (`bool`, *optional*): Use in conjunction with `load_best_model_at_end` and `metric_for_best_model` to specify if better models should have a greater metric or not. Will default to: - `True` if `metric_for_best_model` is set to a value that doesn't end in `"loss"`. - `False` if `metric_for_best_model` is not set, or set to a value that ends in `"loss"`. ignore_data_skip (`bool`, *optional*, defaults to `False`): When resuming training, whether or not to skip the epochs and batches to get the data loading at the same stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step can take a long time) but will not yield the same results as the interrupted training would have. fsdp (`bool`, `str` or list of [`~trainer_utils.FSDPOption`], *optional*, defaults to `''`): Use PyTorch Distributed Parallel Training (in distributed training only). A list of options along the following: - `"full_shard"`: Shard parameters, gradients and optimizer states. - `"shard_grad_op"`: Shard optimizer states and gradients. - `"hybrid_shard"`: Apply `FULL_SHARD` within a node, and replicate parameters across nodes. - `"hybrid_shard_zero2"`: Apply `SHARD_GRAD_OP` within a node, and replicate parameters across nodes. - `"offload"`: Offload parameters and gradients to CPUs (only compatible with `"full_shard"` and `"shard_grad_op"`). - `"auto_wrap"`: Automatically recursively wrap layers with FSDP using `default_auto_wrap_policy`. fsdp_config (`str` or `dict`, *optional*): Config to be used with fsdp (Pytorch Distributed Parallel Training). The value is either a location of fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`. A List of config and its options: - min_num_params (`int`, *optional*, defaults to `0`): FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `fsdp` field is passed). - transformer_layer_cls_to_wrap (`List[str]`, *optional*): List of transformer layer class names (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`, `T5Block` .... (useful only when `fsdp` flag is passed). - backward_prefetch (`str`, *optional*) FSDP's backward prefetch mode. Controls when to prefetch next set of parameters (useful only when `fsdp` field is passed). A list of options along the following: - `"backward_pre"` : Prefetches the next set of parameters before the current set of parameter's gradient computation. - `"backward_post"` : This prefetches the next set of parameters after the current set of parameter’s gradient computation. - forward_prefetch (`bool`, *optional*, defaults to `False`) FSDP's forward prefetch mode (useful only when `fsdp` field is passed). If `"True"`, then FSDP explicitly prefetches the next upcoming all-gather while executing in the forward pass. - limit_all_gathers (`bool`, *optional*, defaults to `False`) FSDP's limit_all_gathers (useful only when `fsdp` field is passed). If `"True"`, FSDP explicitly synchronizes the CPU thread to prevent too many in-flight all-gathers. - use_orig_params (`bool`, *optional*, defaults to `True`) If `"True"`, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres. Useful in cases such as parameter-efficient fine-tuning. Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019 - sync_module_states (`bool`, *optional*, defaults to `True`) If `"True"`, each individually wrapped FSDP unit will broadcast module parameters from rank 0 to ensure they are the same across all ranks after initialization - cpu_ram_efficient_loading (`bool`, *optional*, defaults to `False`) If `"True"`, only the first process loads the pretrained model checkpoint while all other processes have empty weights. When this setting as `"True"`, `sync_module_states` also must to be `"True"`, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training. - activation_checkpointing (`bool`, *optional*, defaults to `False`): If `"True"`, activation checkpointing is a technique to reduce memory usage by clearing activations of certain layers and recomputing them during a backward pass. Effectively, this trades extra computation time for reduced memory usage. - xla (`bool`, *optional*, defaults to `False`): Whether to use PyTorch/XLA Fully Sharded Data Parallel Training. This is an experimental feature and its API may evolve in the future. - xla_fsdp_settings (`dict`, *optional*) The value is a dictionary which stores the XLA FSDP wrapping parameters. For a complete list of options, please see [here]( https://github.com/pytorch/xla/blob/master/torch_xla/distributed/fsdp/xla_fully_sharded_data_parallel.py). - xla_fsdp_grad_ckpt (`bool`, *optional*, defaults to `False`): Will use gradient checkpointing over each nested XLA FSDP wrapped layer. This setting can only be used when the xla flag is set to true, and an auto wrapping policy is specified through fsdp_min_num_params or fsdp_transformer_layer_cls_to_wrap. deepspeed (`str` or `dict`, *optional*): Use [Deepspeed](https://github.com/deepspeedai/DeepSpeed). This is an experimental feature and its API may evolve in the future. The value is either the location of DeepSpeed json config file (e.g., `ds_config.json`) or an already loaded json file as a `dict`" <Tip warning={true}> If enabling any Zero-init, make sure that your model is not initialized until *after* initializing the `TrainingArguments`, else it will not be applied. </Tip> accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*): Config to be used with the internal `Accelerator` implementation. The value is either a location of accelerator json config file (e.g., `accelerator_config.json`), an already loaded json file as `dict`, or an instance of [`~trainer_pt_utils.AcceleratorConfig`]. A list of config and its options: - split_batches (`bool`, *optional*, defaults to `False`): Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set in your script multiplied by the number of processes. - dispatch_batches (`bool`, *optional*): If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose underlying dataset is an `IterableDataset`, `False` otherwise. - even_batches (`bool`, *optional*, defaults to `True`): If set to `True`, in cases where the total batch size across all processes does not exactly divide the dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among all workers. - use_seedable_sampler (`bool`, *optional*, defaults to `True`): Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures training results are fully reproducable using a different sampling technique. While seed-to-seed results may differ, on average the differences are neglible when using multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results. - use_configured_state (`bool`, *optional*, defaults to `False`): Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`. If `True`, an `Accelerator` or `PartialState` must be initialized. Note that by doing so, this could lead to issues with hyperparameter tuning. label_smoothing_factor (`float`, *optional*, defaults to 0.0): The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded labels are changed from 0s and 1s to `label_smoothing_factor/num_labels` and `1 - label_smoothing_factor + label_smoothing_factor/num_labels` respectively. debug (`str` or list of [`~debug_utils.DebugOption`], *optional*, defaults to `""`): Enable one or more debug features. This is an experimental feature. Possible options are: - `"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to the event - `"tpu_metrics_debug"`: print debug metrics on TPU The options should be separated by whitespaces. optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"`): The optimizer to use, such as "adamw_hf", "adamw_torch", "adamw_torch_fused", "adamw_apex_fused", "adamw_anyprecision", "adafactor". See `OptimizerNames` in [training_args.py](https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py) for a full list of optimizers. optim_args (`str`, *optional*): Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore. group_by_length (`bool`, *optional*, defaults to `False`): Whether or not to group together samples of roughly the same length in the training dataset (to minimize padding applied and be more efficient). Only useful if applying dynamic padding. length_column_name (`str`, *optional*, defaults to `"length"`): Column name for precomputed lengths. If the column exists, grouping by length will use these values rather than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an instance of `Dataset`. report_to (`str` or `List[str]`, *optional*, defaults to `"all"`): The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`, `"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"neptune"`, `"tensorboard"`, and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"` for no integrations. ddp_find_unused_parameters (`bool`, *optional*): When using distributed training, the value of the flag `find_unused_parameters` passed to `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise. ddp_bucket_cap_mb (`int`, *optional*): When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`. ddp_broadcast_buffers (`bool`, *optional*): When using distributed training, the value of the flag `broadcast_buffers` passed to `DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise. dataloader_pin_memory (`bool`, *optional*, defaults to `True`): Whether you want to pin memory in data loaders or not. Will default to `True`. dataloader_persistent_workers (`bool`, *optional*, defaults to `False`): If True, the data loader will not shut down the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will increase RAM usage. Will default to `False`. dataloader_prefetch_factor (`int`, *optional*): Number of batches loaded in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across all workers. skip_memory_metrics (`bool`, *optional*, defaults to `True`): Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows down the training and evaluation speed. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push the model to the Hub every time the model is saved. If this is activated, `output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content will be pushed each time a save is triggered (depending on your `save_strategy`). Calling [`~Trainer.save_model`] will also trigger a push. <Tip warning={true}> If `output_dir` exists, it needs to be a local clone of the repository to which the [`Trainer`] will be pushed. </Tip> resume_from_checkpoint (`str`, *optional*): The path to a folder with a valid checkpoint for your model. This argument is not directly used by [`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. hub_model_id (`str`, *optional*): The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in which case the model will be pushed in your namespace. Otherwise it should be the whole repository name, for instance `"user_name/model"`, which allows you to push to an organization you are a member of with `"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the name of `output_dir`. Will default to the name of `output_dir`. hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`): Defines the scope of what is pushed to the Hub and when. Possible values are: - `"end"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and a draft of a model card when the [`~Trainer.save_model`] method is called. - `"every_save"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and a draft of a model card each time there is a model save. The pushes are asynchronous to not block training, and in case the save are very frequent, a new push is only attempted if the previous one is finished. A last push is made with the final model at the end of training. - `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named last-checkpoint, allowing you to resume training easily with `trainer.train(resume_from_checkpoint="last-checkpoint")`. - `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output folder (so you will get one checkpoint folder per folder in your final repository) hub_token (`str`, *optional*): The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with `huggingface-cli login`. hub_private_repo (`bool`, *optional*): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. hub_always_push (`bool`, *optional*, defaults to `False`): Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished. gradient_checkpointing (`bool`, *optional*, defaults to `False`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`): Key word arguments to be passed to the `gradient_checkpointing_enable` method. include_inputs_for_metrics (`bool`, *optional*, defaults to `False`): This argument is deprecated. Use `include_for_metrics` instead, e.g, `include_for_metrics = ["inputs"]`. include_for_metrics (`List[str]`, *optional*, defaults to `[]`): Include additional data in the `compute_metrics` function if needed for metrics computation. Possible options to add to `include_for_metrics` list: - `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics. - `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics. eval_do_concat_batches (`bool`, *optional*, defaults to `True`): Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`, will instead store them as lists, with each batch kept separate. auto_find_batch_size (`bool`, *optional*, defaults to `False`) Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding CUDA Out-of-Memory errors. Requires accelerate to be installed (`pip install accelerate`) full_determinism (`bool`, *optional*, defaults to `False`) If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in distributed training. Important: this will negatively impact the performance, so only use it for debugging. torchdynamo (`str`, *optional*): If set, the backend compiler for TorchDynamo. Possible choices are `"eager"`, `"aot_eager"`, `"inductor"`, `"nvfuser"`, `"aot_nvfuser"`, `"aot_cudagraphs"`, `"ofi"`, `"fx2trt"`, `"onnxrt"` and `"ipex"`. ray_scope (`str`, *optional*, defaults to `"last"`): The scope to use when doing hyperparameter search with Ray. By default, `"last"` will be used. Ray will then use the last checkpoint of all trials, compare those, and select the best one. However, other options are also available. See the [Ray documentation]( https://docs.ray.io/en/latest/tune/api_docs/analysis.html#ray.tune.ExperimentAnalysis.get_best_trial) for more options. ddp_timeout (`int`, *optional*, defaults to 1800): The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when performing slow operations in distributed runnings. Please refer the [PyTorch documentation] (https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more information. use_mps_device (`bool`, *optional*, defaults to `False`): This argument is deprecated.`mps` device will be used if it is available similar to `cuda` device. torch_compile (`bool`, *optional*, defaults to `False`): Whether or not to compile the model using PyTorch 2.0 [`torch.compile`](https://pytorch.org/get-started/pytorch-2.0/). This will use the best defaults for the [`torch.compile` API](https://pytorch.org/docs/stable/generated/torch.compile.html?highlight=torch+compile#torch.compile). You can customize the defaults with the argument `torch_compile_backend` and `torch_compile_mode` but we don't guarantee any of them will work as the support is progressively rolled in in PyTorch. This flag and the whole compile API is experimental and subject to change in future releases. torch_compile_backend (`str`, *optional*): The backend to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`. Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions. This flag is experimental and subject to change in future releases. torch_compile_mode (`str`, *optional*): The mode to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`. Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions. This flag is experimental and subject to change in future releases. split_batches (`bool`, *optional*): Whether or not the accelerator should split the batches yielded by the dataloaders across the devices during distributed training. If set to `True`, the actual batch size used will be the same on any kind of distributed processes, but it must be a round multiple of the number of processes you are using (such as GPUs). include_tokens_per_second (`bool`, *optional*): Whether or not to compute the number of tokens per second per device for training speed metrics. This will iterate over the entire training dataloader once beforehand, and will slow down the entire process. include_num_input_tokens_seen (`bool`, *optional*): Whether or not to track the number of input tokens seen throughout training. May be slower in distributed training as gather operations must be called. neftune_noise_alpha (`Optional[float]`): If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance for instruction fine-tuning. Check out the [original paper](https://arxiv.org/abs/2310.05914) and the [original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also `PeftModel` from peft. The original paper used values in the range [5.0, 15.0]. optim_target_modules (`Union[str, List[str]]`, *optional*): The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm https://arxiv.org/abs/2403.03507 See: https://github.com/jiaweizzhao/GaLore for more details. You need to make sure to pass a valid GaloRe optimizer, e.g. one of: "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules only. batch_eval_metrics (`Optional[bool]`, defaults to `False`): If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global summary statistics from the batch-level summary statistics you've accumulated over the evaluation set. eval_on_start (`bool`, *optional*, defaults to `False`): Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly. eval_use_gather_object (`bool`, *optional*, defaults to `False`): Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch. use_liger_kernel (`bool`, *optional*, defaults to `False`): Whether enable [Liger](https://github.com/linkedin/Liger-Kernel) Kernel for LLM model training. It can effectively increase multi-GPU training throughput by ~20% and reduces memory usage by ~60%, works out of the box with flash attention, PyTorch FSDP, and Microsoft DeepSpeed. Currently, it supports llama, mistral, mixtral and gemma models. """ framework = "pt" output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) eval_strategy: Union[IntervalStrategy, str] = field( default="no", metadata={"help": "The evaluation strategy to use."}, ) prediction_loss_only: bool = field( default=False, metadata={"help": "When performing evaluation and predictions, only returns the loss."}, ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU/MPS/NPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU/MPS/NPU core/CPU for evaluation."} ) per_gpu_train_batch_size: Optional[int] = field( default=None, metadata={ "help": ( "Deprecated, the use of `--per_device_train_batch_size` is preferred. " "Batch size per GPU/TPU core/CPU for training." ) }, ) per_gpu_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": ( "Deprecated, the use of `--per_device_eval_batch_size` is preferred. " "Batch size per GPU/TPU core/CPU for evaluation." ) }, ) gradient_accumulation_steps: int = field( default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."}, ) eval_accumulation_steps: Optional[int] = field( default=None, metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."}, ) eval_delay: Optional[float] = field( default=0, metadata={ "help": ( "Number of epochs or steps to wait for before the first evaluation can be performed, depending on the" " eval_strategy." ) }, ) torch_empty_cache_steps: Optional[int] = field( default=None, metadata={ "help": "Number of steps to wait before calling `torch.<device>.empty_cache()`." "This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372)." "If left unset or set to None, cache will not be emptied." }, ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) max_steps: int = field( default=-1, metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."}, ) lr_scheduler_type: Union[SchedulerType, str] = field( default="linear", metadata={"help": "The scheduler type to use."}, ) lr_scheduler_kwargs: Optional[Union[dict, str]] = field( default_factory=dict, metadata={ "help": ( "Extra parameters for the lr_scheduler such as {'num_cycles': 1} for the cosine with hard restarts." ) }, ) warmup_ratio: float = field( default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."} ) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) log_level: Optional[str] = field( default="passive", metadata={ "help": ( "Logger log level to use on the main node. Possible choices are the log levels as strings: 'debug'," " 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and" " lets the application set the level. Defaults to 'passive'." ), "choices": trainer_log_levels.keys(), }, ) log_level_replica: Optional[str] = field( default="warning", metadata={ "help": "Logger log level to use on replica nodes. Same choices and defaults as ``log_level``", "choices": trainer_log_levels.keys(), }, ) log_on_each_node: bool = field( default=True, metadata={ "help": ( "When doing a multinode distributed training, whether to log once per node or just once on the main" " node." ) }, ) logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."}) logging_strategy: Union[IntervalStrategy, str] = field( default="steps", metadata={"help": "The logging strategy to use."}, ) logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"}) logging_steps: float = field( default=500, metadata={ "help": ( "Log every X updates steps. Should be an integer or a float in range `[0,1)`. " "If smaller than 1, will be interpreted as ratio of total training steps." ) }, ) logging_nan_inf_filter: bool = field(default=True, metadata={"help": "Filter nan and inf losses for logging."}) save_strategy: Union[SaveStrategy, str] = field( default="steps", metadata={"help": "The checkpoint save strategy to use."}, ) save_steps: float = field( default=500, metadata={ "help": ( "Save checkpoint every X updates steps. Should be an integer or a float in range `[0,1)`. " "If smaller than 1, will be interpreted as ratio of total training steps." ) }, ) save_total_limit: Optional[int] = field( default=None, metadata={ "help": ( "If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in" " `output_dir`. When `load_best_model_at_end` is enabled, the 'best' checkpoint according to" " `metric_for_best_model` will always be retained in addition to the most recent ones. For example," " for `save_total_limit=5` and `load_best_model_at_end=True`, the four last checkpoints will always be" " retained alongside the best model. When `save_total_limit=1` and `load_best_model_at_end=True`," " it is possible that two checkpoints are saved: the last one and the best one (if they are different)." " Default is unlimited checkpoints" ) }, ) save_safetensors: Optional[bool] = field( default=True, metadata={ "help": "Use safetensors saving and loading for state dicts instead of default torch.load and torch.save." }, ) save_on_each_node: bool = field( default=False, metadata={ "help": ( "When doing multi-node distributed training, whether to save models and checkpoints on each node, or" " only on the main one" ) }, ) save_only_model: bool = field( default=False, metadata={ "help": ( "When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state." "Note that when this is true, you won't be able to resume training from checkpoint." "This enables you to save storage by not storing the optimizer, scheduler & rng state." "You can only load the model using from_pretrained with this option set to True." ) }, ) restore_callback_states_from_checkpoint: bool = field( default=False, metadata={ "help": "Whether to restore the callback states from the checkpoint. If `True`, will override callbacks passed to the `Trainer` if they exist in the checkpoint." }, ) no_cuda: bool = field( default=False, metadata={"help": "This argument is deprecated. It will be removed in version 5.0 of 🤗 Transformers."}, ) use_cpu: bool = field( default=False, metadata={ "help": "Whether or not to use cpu. If set to False, we will use cuda/tpu/mps/npu device if available." }, ) use_mps_device: bool = field( default=False, metadata={ "help": "This argument is deprecated. `mps` device will be used if available similar to `cuda` device." " It will be removed in version 5.0 of 🤗 Transformers" }, ) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) data_seed: Optional[int] = field(default=None, metadata={"help": "Random seed to be used with data samplers."}) jit_mode_eval: bool = field( default=False, metadata={"help": "Whether or not to use PyTorch jit trace for inference"} ) use_ipex: bool = field( default=False, metadata={ "help": ( "Use Intel extension for PyTorch when it is available, installation:" " 'https://github.com/intel/intel-extension-for-pytorch'" ) }, ) bf16: bool = field( default=False, metadata={ "help": ( "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA" " architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change." ) }, ) fp16: bool = field( default=False, metadata={"help": "Whether to use fp16 (mixed) precision instead of 32-bit"}, ) fp16_opt_level: str = field( default="O1", metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) }, ) half_precision_backend: str = field( default="auto", metadata={ "help": "The backend to be used for half precision.", "choices": ["auto", "apex", "cpu_amp"], }, ) bf16_full_eval: bool = field( default=False, metadata={ "help": ( "Whether to use full bfloat16 evaluation instead of 32-bit. This is an experimental API and it may" " change." ) }, ) fp16_full_eval: bool = field( default=False, metadata={"help": "Whether to use full float16 evaluation instead of 32-bit"}, ) tf32: Optional[bool] = field( default=None, metadata={ "help": ( "Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental" " API and it may change." ) }, ) local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"}) ddp_backend: Optional[str] = field( default=None, metadata={ "help": "The backend to be used for distributed training", "choices": ["nccl", "gloo", "mpi", "ccl", "hccl", "cncl", "mccl"], }, ) tpu_num_cores: Optional[int] = field( default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"} ) tpu_metrics_debug: bool = field( default=False, metadata={ "help": ( "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics" ) }, ) debug: Union[str, List[DebugOption]] = field( default="", metadata={ "help": ( "Whether or not to enable debug mode. Current options: " "`underflow_overflow` (Detect underflow and overflow in activations and weights), " "`tpu_metrics_debug` (print debug metrics on TPU)." ) }, ) dataloader_drop_last: bool = field( default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."} ) eval_steps: Optional[float] = field( default=None, metadata={ "help": ( "Run an evaluation every X steps. Should be an integer or a float in range `[0,1)`. " "If smaller than 1, will be interpreted as ratio of total training steps." ) }, ) dataloader_num_workers: int = field( default=0, metadata={ "help": ( "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded" " in the main process." ) }, ) dataloader_prefetch_factor: Optional[int] = field( default=None, metadata={ "help": ( "Number of batches loaded in advance by each worker. " "2 means there will be a total of 2 * num_workers batches prefetched across all workers. " "Default is 2 for PyTorch < 2.0.0 and otherwise None." ) }, ) past_index: int = field( default=-1, metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."}, ) run_name: Optional[str] = field( default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb, mlflow and comet logging."}, ) disable_tqdm: Optional[bool] = field( default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."} ) remove_unused_columns: Optional[bool] = field( default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."} ) label_names: Optional[List[str]] = field( default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."} ) load_best_model_at_end: Optional[bool] = field( default=False, metadata={ "help": ( "Whether or not to load the best model found during training at the end of training. When this option" " is enabled, the best checkpoint will always be saved. See `save_total_limit` for more." ) }, ) metric_for_best_model: Optional[str] = field( default=None, metadata={"help": "The metric to use to compare two different models."} ) greater_is_better: Optional[bool] = field( default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."} ) ignore_data_skip: bool = field( default=False, metadata={ "help": ( "When resuming training, whether or not to skip the first epochs and batches to get to the same" " training data." ) }, ) fsdp: Optional[Union[List[FSDPOption], str]] = field( default="", metadata={ "help": ( "Whether or not to use PyTorch Fully Sharded Data Parallel (FSDP) training (in distributed training" " only). The base option should be `full_shard`, `shard_grad_op` or `no_shard` and you can add" " CPU-offload to `full_shard` or `shard_grad_op` like this: full_shard offload` or `shard_grad_op" " offload`. You can add auto-wrap to `full_shard` or `shard_grad_op` with the same syntax: full_shard" " auto_wrap` or `shard_grad_op auto_wrap`." ), }, ) fsdp_min_num_params: int = field( default=0, metadata={ "help": ( "This parameter is deprecated. FSDP's minimum number of parameters for Default Auto Wrapping. (useful" " only when `fsdp` field is passed)." ) }, ) fsdp_config: Optional[Union[dict, str]] = field( default=None, metadata={ "help": ( "Config to be used with FSDP (Pytorch Fully Sharded Data Parallel). The value is either a " "fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`." ) }, ) fsdp_transformer_layer_cls_to_wrap: Optional[str] = field( default=None, metadata={ "help": ( "This parameter is deprecated. Transformer layer class name (case-sensitive) to wrap, e.g," " `BertLayer`, `GPTJBlock`, `T5Block` .... (useful only when `fsdp` flag is passed)." ) }, ) accelerator_config: Optional[Union[dict, str]] = field( default=None, metadata={ "help": ( "Config to be used with the internal Accelerator object initializtion. The value is either a " "accelerator json config file (e.g., `accelerator_config.json`) or an already loaded json file as `dict`." ) }, ) deepspeed: Optional[Union[dict, str]] = field( default=None, metadata={ "help": ( "Enable deepspeed and pass the path to deepspeed json config file (e.g. `ds_config.json`) or an already" " loaded json file as a dict" ) }, ) label_smoothing_factor: float = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} ) default_optim = "adamw_torch" # XXX: enable when pytorch==2.0.1 comes out - we want to give it time to get all the bugs sorted out # if is_torch_available() and version.parse(version.parse(torch.__version__).base_version) >= version.parse("2.1.0"): # default_optim = "adamw_torch_fused" # and update the doc above to: # optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch_fused"` (for torch<2.1.0 `"adamw_torch"`): optim: Union[OptimizerNames, str] = field( default=default_optim, metadata={"help": "The optimizer to use."}, ) optim_args: Optional[str] = field(default=None, metadata={"help": "Optional arguments to supply to optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) group_by_length: bool = field( default=False, metadata={"help": "Whether or not to group samples of roughly the same length together when batching."}, ) length_column_name: Optional[str] = field( default="length", metadata={"help": "Column name with precomputed lengths to use when grouping by length."}, ) report_to: Union[None, str, List[str]] = field( default=None, metadata={"help": "The list of integrations to report the results and logs to."} ) ddp_find_unused_parameters: Optional[bool] = field( default=None, metadata={ "help": ( "When using distributed training, the value of the flag `find_unused_parameters` passed to " "`DistributedDataParallel`." ) }, ) ddp_bucket_cap_mb: Optional[int] = field( default=None, metadata={ "help": ( "When using distributed training, the value of the flag `bucket_cap_mb` passed to " "`DistributedDataParallel`." ) }, ) ddp_broadcast_buffers: Optional[bool] = field( default=None, metadata={ "help": ( "When using distributed training, the value of the flag `broadcast_buffers` passed to " "`DistributedDataParallel`." ) }, ) dataloader_pin_memory: bool = field( default=True, metadata={"help": "Whether or not to pin memory for DataLoader."} ) dataloader_persistent_workers: bool = field( default=False, metadata={ "help": "If True, the data loader will not shut down the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will increase RAM usage." }, ) skip_memory_metrics: bool = field( default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."} ) use_legacy_prediction_loop: bool = field( default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."} ) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) resume_from_checkpoint: Optional[str] = field( default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."}, ) hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_strategy: Union[HubStrategy, str] = field( default="every_save", metadata={"help": "The hub strategy to use when `--push_to_hub` is activated."}, ) hub_token: Optional[str] = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) hub_private_repo: Optional[bool] = field( default=None, metadata={ "help": "Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists." }, ) hub_always_push: bool = field( default=False, metadata={"help": "Unless `True`, the Trainer will skip pushes if the previous one wasn't finished yet."}, ) gradient_checkpointing: bool = field( default=False, metadata={ "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." }, ) gradient_checkpointing_kwargs: Optional[Union[dict, str]] = field( default=None, metadata={ "help": "Gradient checkpointing key word arguments such as `use_reentrant`. Will be passed to `torch.utils.checkpoint.checkpoint` through `model.gradient_checkpointing_enable`." }, ) include_inputs_for_metrics: bool = field( default=False, metadata={ "help": "This argument is deprecated and will be removed in version 5 of 🤗 Transformers. Use `include_for_metrics` instead." }, ) include_for_metrics: List[str] = field( default_factory=list, metadata={ "help": "List of strings to specify additional data to include in the `compute_metrics` function." "Options: 'inputs', 'loss'." }, ) eval_do_concat_batches: bool = field( default=True, metadata={ "help": "Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`, will instead store them as lists, with each batch kept separate." }, ) # Deprecated arguments fp16_backend: str = field( default="auto", metadata={ "help": "Deprecated. Use half_precision_backend instead", "choices": ["auto", "apex", "cpu_amp"], }, ) evaluation_strategy: Union[IntervalStrategy, str] = field( default=None, metadata={"help": "Deprecated. Use `eval_strategy` instead"}, ) push_to_hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository to which push the `Trainer`."} ) push_to_hub_organization: Optional[str] = field( default=None, metadata={"help": "The name of the organization in with to which push the `Trainer`."} ) push_to_hub_token: Optional[str] = field( default=None, metadata={"help": "The token to use to push to the Model Hub."} ) _n_gpu: int = field(init=False, repr=False, default=-1) mp_parameters: str = field( default="", metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"}, ) auto_find_batch_size: bool = field( default=False, metadata={ "help": ( "Whether to automatically decrease the batch size in half and rerun the training loop again each time" " a CUDA Out-of-Memory was reached" ) }, ) full_determinism: bool = field( default=False, metadata={ "help": ( "Whether to call enable_full_determinism instead of set_seed for reproducibility in distributed" " training. Important: this will negatively impact the performance, so only use it for debugging." ) }, ) torchdynamo: Optional[str] = field( default=None, metadata={ "help": "This argument is deprecated, use `--torch_compile_backend` instead.", }, ) ray_scope: Optional[str] = field( default="last", metadata={ "help": ( 'The scope to use when doing hyperparameter search with Ray. By default, `"last"` will be used. Ray' " will then use the last checkpoint of all trials, compare those, and select the best one. However," " other options are also available. See the Ray documentation" " (https://docs.ray.io/en/latest/tune/api_docs/analysis.html" "#ray.tune.ExperimentAnalysis.get_best_trial)" " for more options." ) }, ) ddp_timeout: Optional[int] = field( default=1800, metadata={ "help": "Overrides the default timeout for distributed training (value should be given in seconds)." }, ) torch_compile: bool = field( default=False, metadata={"help": "If set to `True`, the model will be wrapped in `torch.compile`."} ) torch_compile_backend: Optional[str] = field( default=None, metadata={ "help": "Which backend to use with `torch.compile`, passing one will trigger a model compilation.", }, ) torch_compile_mode: Optional[str] = field( default=None, metadata={ "help": "Which mode to use with `torch.compile`, passing one will trigger a model compilation.", }, ) dispatch_batches: Optional[bool] = field( default=None, metadata={"help": "Deprecated. Pass {'dispatch_batches':VALUE} to `accelerator_config`."}, ) split_batches: Optional[bool] = field( default=None, metadata={"help": "Deprecated. Pass {'split_batches':True} to `accelerator_config`."}, ) include_tokens_per_second: Optional[bool] = field( default=False, metadata={"help": "If set to `True`, the speed metrics will include `tgs` (tokens per second per device)."}, ) include_num_input_tokens_seen: Optional[bool] = field( default=False, metadata={ "help": "If set to `True`, will track the number of input tokens seen throughout training. (May be slower in distributed training)" }, ) neftune_noise_alpha: Optional[float] = field( default=None, metadata={ "help": "Activates neftune noise embeddings into the model. NEFTune has been proven to drastically improve model performances for instrcution fine-tuning. Check out the original paper here: https://arxiv.org/abs/2310.05914 and the original code here: https://github.com/neelsjain/NEFTune. Only supported for `PreTrainedModel` and `PeftModel` classes." }, ) optim_target_modules: Union[None, str, List[str]] = field( default=None, metadata={ "help": "Target modules for the optimizer defined in the `optim` argument. Only used for the GaLore optimizer at the moment." }, ) batch_eval_metrics: bool = field( default=False, metadata={"help": "Break eval metrics calculation into batches to save memory."}, ) eval_on_start: bool = field( default=False, metadata={ "help": "Whether to run through the entire `evaluation` step at the very beginning of training as a sanity check." }, ) use_liger_kernel: Optional[bool] = field( default=False, metadata={"help": "Whether or not to enable the Liger Kernel for model training."}, ) eval_use_gather_object: Optional[bool] = field( default=False, metadata={ "help": "Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices." }, ) average_tokens_across_devices: Optional[bool] = field( default=False, metadata={ "help": "Whether or not to average tokens across devices. If enabled, will use all_reduce to " "synchronize num_tokens_in_batch for precise loss calculation. Reference: " "https://github.com/huggingface/transformers/issues/34242" }, ) def __post_init__(self): # Parse in args that could be `dict` sent in from the CLI as a string for field in _VALID_DICT_FIELDS: passed_value = getattr(self, field) # We only want to do this if the str starts with a bracket to indiciate a `dict` # else its likely a filename if supported if isinstance(passed_value, str) and passed_value.startswith("{"): loaded_dict = json.loads(passed_value) # Convert str values to types if applicable loaded_dict = _convert_str_dict(loaded_dict) setattr(self, field, loaded_dict) # expand paths, if not os.makedirs("~/bar") will make directory # in the current directory instead of the actual home # see https://github.com/huggingface/transformers/issues/10628 if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) if self.logging_dir is None and self.output_dir is not None: self.logging_dir = os.path.join(self.output_dir, default_logdir()) if self.logging_dir is not None: self.logging_dir = os.path.expanduser(self.logging_dir) if self.disable_tqdm is None: self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN if self.evaluation_strategy is not None: warnings.warn( "`evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead", FutureWarning, ) self.eval_strategy = self.evaluation_strategy if isinstance(self.eval_strategy, EvaluationStrategy): warnings.warn( "using `EvaluationStrategy` for `eval_strategy` is deprecated and will be removed in version 5" " of 🤗 Transformers. Use `IntervalStrategy` instead", FutureWarning, ) # Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it. self.eval_strategy = self.eval_strategy.value if self.no_cuda: warnings.warn( "using `no_cuda` is deprecated and will be removed in version 5.0 of 🤗 Transformers. " "Use `use_cpu` instead", FutureWarning, ) self.use_cpu = self.no_cuda self.eval_strategy = IntervalStrategy(self.eval_strategy) self.logging_strategy = IntervalStrategy(self.logging_strategy) self.save_strategy = SaveStrategy(self.save_strategy) self.hub_strategy = HubStrategy(self.hub_strategy) self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type) if self.do_eval is False and self.eval_strategy != IntervalStrategy.NO: self.do_eval = True if self.torch_empty_cache_steps is not None: if not (isinstance(self.torch_empty_cache_steps, int) or self.torch_empty_cache_steps > 0): raise ValueError( f"`torch_empty_cache_steps` must be an integer bigger than 0, got {self.torch_empty_cache_steps}." ) # eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero if self.eval_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0): if self.logging_steps > 0: logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}") self.eval_steps = self.logging_steps else: raise ValueError( f"evaluation strategy {self.eval_strategy} requires either non-zero --eval_steps or" " --logging_steps" ) # logging_steps must be non-zero for logging_strategy that is other than 'no' if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0: raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps") if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps > 1: if self.logging_steps != int(self.logging_steps): raise ValueError(f"--logging_steps must be an integer if bigger than 1: {self.logging_steps}") self.logging_steps = int(self.logging_steps) if self.eval_strategy == IntervalStrategy.STEPS and self.eval_steps > 1: if self.eval_steps != int(self.eval_steps): raise ValueError(f"--eval_steps must be an integer if bigger than 1: {self.eval_steps}") self.eval_steps = int(self.eval_steps) if self.save_strategy == SaveStrategy.STEPS and self.save_steps > 1: if self.save_steps != int(self.save_steps): raise ValueError(f"--save_steps must be an integer if bigger than 1: {self.save_steps}") self.save_steps = int(self.save_steps) # Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible. if self.load_best_model_at_end and self.save_strategy != SaveStrategy.BEST: if self.eval_strategy != self.save_strategy: raise ValueError( "--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation " f"strategy: {self.eval_strategy}\n- Save strategy: {self.save_strategy}" ) if self.eval_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0: if self.eval_steps < 1 or self.save_steps < 1: if not (self.eval_steps < 1 and self.save_steps < 1): raise ValueError( "--load_best_model_at_end requires the saving steps to be a multiple of the evaluation " "steps, which cannot get guaranteed when mixing ratio and absolute steps for save_steps " f"{self.save_steps} and eval_steps {self.eval_steps}." ) # Work around floating point precision issues LARGE_MULTIPLIER = 1_000_000 if (self.save_steps * LARGE_MULTIPLIER) % (self.eval_steps * LARGE_MULTIPLIER) != 0: raise ValueError( "--load_best_model_at_end requires the saving steps to be a multiple of the evaluation " f"steps, but found {self.save_steps}, which is not a multiple of {self.eval_steps}." ) raise ValueError( "--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation " f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}." ) safetensors_available = is_safetensors_available() if self.save_safetensors and not safetensors_available: raise ValueError(f"--save_safetensors={self.save_safetensors} requires safetensors to be installed!") if not self.save_safetensors and safetensors_available: logger.info( f"Found safetensors installation, but --save_safetensors={self.save_safetensors}. " f"Safetensors should be a preferred weights saving format due to security and performance reasons. " f"If your model cannot be saved by safetensors please feel free to open an issue at " f"https://github.com/huggingface/safetensors!" ) if ( self.load_best_model_at_end or self.lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU ) and self.metric_for_best_model is None: self.metric_for_best_model = "loss" if self.greater_is_better is None and self.metric_for_best_model is not None: self.greater_is_better = not (self.metric_for_best_model.endswith("loss")) if self.run_name is None: self.run_name = self.output_dir if self.framework == "pt" and is_torch_available(): if self.fp16_backend and self.fp16_backend != "auto": warnings.warn( "`fp16_backend` is deprecated and will be removed in version 5 of 🤗 Transformers. Use" " `half_precision_backend` instead", FutureWarning, ) self.half_precision_backend = self.fp16_backend if self.bf16 or self.bf16_full_eval: if self.use_cpu and not is_torch_bf16_cpu_available() and not is_torch_xla_available(): # cpu raise ValueError("Your setup doesn't support bf16/(cpu, tpu, neuroncore). You need torch>=1.10") elif not self.use_cpu: if torch.cuda.is_available() and not is_torch_bf16_gpu_available(): # gpu raise ValueError( "Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0" ) if self.fp16 and self.bf16: raise ValueError("At most one of fp16 and bf16 can be True, but not both") if self.fp16_full_eval and self.bf16_full_eval: raise ValueError("At most one of fp16 and bf16 can be True for full eval, but not both") if self.bf16: if self.half_precision_backend == "apex": raise ValueError(" `--half_precision_backend apex`: GPU bf16 is not supported by apex.") if self.lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU: if self.eval_strategy == IntervalStrategy.NO: raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires an eval strategy") if not is_torch_available(): raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires torch>=0.2.0") self.optim = OptimizerNames(self.optim) if self.adafactor: warnings.warn( "`--adafactor` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--optim" " adafactor` instead", FutureWarning, ) self.optim = OptimizerNames.ADAFACTOR if self.optim == OptimizerNames.ADAMW_TORCH_FUSED and is_torch_available(): if version.parse(version.parse(torch.__version__).base_version) < version.parse("2.0.0"): raise ValueError("--optim adamw_torch_fused requires PyTorch 2.0 or higher") # there is a bug in fp16/AMP in pt-2.0.0 if version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.0") and self.fp16: raise ValueError("--optim adamw_torch_fused with --fp16 requires PyTorch>2.0") # We need to setup the accelerator config here *before* the first call to `self.device` if is_accelerate_available(): if not isinstance(self.accelerator_config, (AcceleratorConfig)): if self.accelerator_config is None: self.accelerator_config = AcceleratorConfig() elif isinstance(self.accelerator_config, dict): self.accelerator_config = AcceleratorConfig(**self.accelerator_config) # Check that a user didn't pass in the class instantiator # such as `accelerator_config = AcceleratorConfig` elif isinstance(self.accelerator_config, type): raise NotImplementedError( "Tried passing in a callable to `accelerator_config`, but this is not supported. " "Please pass in a fully constructed `AcceleratorConfig` object instead." ) else: self.accelerator_config = AcceleratorConfig.from_json_file(self.accelerator_config) if self.dispatch_batches is not None: warnings.warn( "Using `--dispatch_batches` is deprecated and will be removed in version 4.41 of 🤗 Transformers. Use" " `--accelerator_config {'dispatch_batches':VALUE} instead", FutureWarning, ) self.accelerator_config.dispatch_batches = self.dispatch_batches if self.split_batches is not None: warnings.warn( "Using `--split_batches` is deprecated and will be removed in version 4.41 of 🤗 Transformers. Use" " `--accelerator_config {'split_batches':VALUE} instead", FutureWarning, ) self.accelerator_config.split_batches = self.split_batches # Initialize device before we proceed if self.framework == "pt" and is_torch_available(): self.device # Disable average tokens when using single device if self.average_tokens_across_devices: try: if self.world_size == 1: logger.warning( "average_tokens_across_devices is set to True but it is invalid when world size is" "1. Turn it to False automatically." ) self.average_tokens_across_devices = False except ImportError as e: logger.warning(f"Can not specify world size due to {e}. Turn average_tokens_across_devices to False.") self.average_tokens_across_devices = False if self.torchdynamo is not None: warnings.warn( "`torchdynamo` is deprecated and will be removed in version 5 of 🤗 Transformers. Use" " `torch_compile_backend` instead", FutureWarning, ) self.torch_compile_backend = self.torchdynamo if (self.torch_compile_mode is not None or self.torch_compile_backend is not None) and not self.torch_compile: self.torch_compile = True if self.torch_compile and self.torch_compile_backend is None: self.torch_compile_backend = "inductor" # accelerate integration for torch compile if self.torch_compile: # set env vars for accelerate prefix = "ACCELERATE_DYNAMO_" os.environ[prefix + "BACKEND"] = self.torch_compile_backend if self.torch_compile_mode is not None: os.environ[prefix + "MODE"] = self.torch_compile_mode if self.framework == "pt" and is_torch_available() and self.torch_compile: if is_torch_tf32_available(): if self.tf32 is None and not self.fp16 or self.bf16: logger.info( "Setting TF32 in CUDA backends to speedup torch compile, you won't see any improvement" " otherwise." ) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True else: logger.warning( "The speedups for torchdynamo mostly come wih GPU Ampere or higher and which is not detected here." ) if self.framework == "pt" and is_torch_available() and self.tf32 is not None: if self.tf32: if is_torch_tf32_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True else: raise ValueError("--tf32 requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7") else: if is_torch_tf32_available(): torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False # no need to assert on else # if training args is specified, it will override the one specified in the accelerate config if self.half_precision_backend != "apex": mixed_precision_dtype = os.environ.get("ACCELERATE_MIXED_PRECISION", "no") if self.fp16: mixed_precision_dtype = "fp16" elif self.bf16: mixed_precision_dtype = "bf16" os.environ["ACCELERATE_MIXED_PRECISION"] = mixed_precision_dtype if self.report_to is None: logger.info( "The default value for the training argument `--report_to` will change in v5 (from all installed " "integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as " "now. You should start updating your code and make this info disappear :-)." ) self.report_to = "all" if self.report_to == "all" or self.report_to == ["all"]: # Import at runtime to avoid a circular import. from .integrations import get_available_reporting_integrations self.report_to = get_available_reporting_integrations() if "codecarbon" in self.report_to and torch.version.hip: logger.warning( "When using the Trainer, CodeCarbonCallback requires the `codecarbon` package, which is not compatible with AMD ROCm (https://github.com/mlco2/codecarbon/pull/490). Automatically disabling the codecarbon callback. Reference: https://huggingface.co/docs/transformers/v4.39.3/en/main_classes/trainer#transformers.TrainingArguments.report_to." ) self.report_to.remove("codecarbon") elif self.report_to == "none" or self.report_to == ["none"]: self.report_to = [] elif not isinstance(self.report_to, list): self.report_to = [self.report_to] if self.warmup_ratio < 0 or self.warmup_ratio > 1: raise ValueError("warmup_ratio must lie in range [0,1]") elif self.warmup_ratio > 0 and self.warmup_steps > 0: logger.info( "Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio" " during training" ) if not isinstance(self.warmup_steps, int) or self.warmup_steps < 0: raise ValueError("warmup_steps must be of type int and must be 0 or a positive integer.") if isinstance(self.fsdp, bool): self.fsdp = [FSDPOption.FULL_SHARD] if self.fsdp else "" if isinstance(self.fsdp, str): self.fsdp = [FSDPOption(s) for s in self.fsdp.split()] if self.fsdp == [FSDPOption.OFFLOAD]: raise ValueError( "`--fsdp offload` can't work on its own. It needs to be added to `--fsdp full_shard` or " '`--fsdp shard_grad_op`. For example, `--fsdp "full_shard offload"`.' ) elif FSDPOption.FULL_SHARD in self.fsdp and FSDPOption.SHARD_GRAD_OP in self.fsdp: raise ValueError("`--fsdp full_shard` is not compatible with `--fsdp shard_grad_op`.") if self.gradient_checkpointing and ( FSDPOption.FULL_SHARD in self.fsdp or FSDPOption.HYBRID_SHARD in self.fsdp ): logger.warning( "When using FSDP full shard, instead of using `gradient_checkpointing` in TrainingArguments, please" " use `activation_checkpointing` in `fsdp_config`. The former introduces a redundant AllGather" " operation in backward pass. Reference: https://github.com/huggingface/transformers/issues/30404" ) if self.fsdp_config is None: self.fsdp_config = {} if isinstance(self.fsdp_config, str): if len(self.fsdp) == 0: warnings.warn("`--fsdp_config` is useful only when `--fsdp` is specified.") with io.open(self.fsdp_config, "r", encoding="utf-8") as f: self.fsdp_config = json.load(f) for k in list(self.fsdp_config.keys()): if k.startswith("fsdp_"): v = self.fsdp_config.pop(k) self.fsdp_config[k[5:]] = v if self.fsdp_min_num_params > 0: warnings.warn("using `--fsdp_min_num_params` is deprecated. Use fsdp_config instead ", FutureWarning) self.fsdp_config["min_num_params"] = max(self.fsdp_config.get("min_num_params", 0), self.fsdp_min_num_params) # if fsdp_config["transformer_layer_cls_to_wrap"] is specified as a string, convert it to a list with a single object if isinstance(self.fsdp_config.get("transformer_layer_cls_to_wrap", None), str): self.fsdp_config["transformer_layer_cls_to_wrap"] = [self.fsdp_config["transformer_layer_cls_to_wrap"]] if self.fsdp_transformer_layer_cls_to_wrap is not None: warnings.warn( "using `--fsdp_transformer_layer_cls_to_wrap` is deprecated. Use fsdp_config instead ", FutureWarning ) self.fsdp_config["transformer_layer_cls_to_wrap"] = self.fsdp_config.get( "transformer_layer_cls_to_wrap", [] ) + [self.fsdp_transformer_layer_cls_to_wrap] if len(self.fsdp) == 0 and self.fsdp_config["min_num_params"] > 0: warnings.warn("`min_num_params` is useful only when `--fsdp` is specified.") if len(self.fsdp) == 0 and self.fsdp_config.get("transformer_layer_cls_to_wrap", None) is not None: warnings.warn("`transformer_layer_cls_to_wrap` is useful only when `--fsdp` is specified.") if ( len(self.fsdp) > 0 and self.fsdp_config["min_num_params"] > 0 and self.fsdp_config.get("transformer_layer_cls_to_wrap", None) is not None ): raise ValueError("`min_num_params` and `transformer_layer_cls_to_wrap` are mutually exclusive.") self.fsdp_config["xla"] = self.fsdp_config.get("xla", False) self.fsdp_config["xla_fsdp_v2"] = self.fsdp_config.get("xla_fsdp_v2", False) self.fsdp_config["xla_fsdp_grad_ckpt"] = self.fsdp_config.get("xla_fsdp_grad_ckpt", False) if self.fsdp_config["xla"]: if len(self.fsdp) > 0: # store XLA fsdp configuration parameters into a dictionary # Copy the config to avoid modifying the original config (which may be used for JSON serialization) self.xla_fsdp_config = self.fsdp_config.get("xla_fsdp_settings", {}).copy() # apply appropriate string to torch.dtype conversions for parameters if "compute_dtype" in self.xla_fsdp_config: self.xla_fsdp_config["compute_dtype"] = getattr(torch, self.xla_fsdp_config["compute_dtype"]) if "buffer_dtype" in self.xla_fsdp_config: self.xla_fsdp_config["buffer_dtype"] = getattr(torch, self.xla_fsdp_config["buffer_dtype"]) else: warnings.warn("XLA FSDP can be used only when `--fsdp` is specified.") else: if self.fsdp_config["xla_fsdp_grad_ckpt"]: warnings.warn("`--xla_fsdp_grad_ckpt` is useful only when `--xla` is set to true.") # accelerate integration for FSDP if len(self.fsdp) > 0 and not self.fsdp_config["xla"]: os.environ["ACCELERATE_USE_FSDP"] = "true" from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_SHARDING_STRATEGY, ) prefix = "FSDP_" for fsdp_option in self.fsdp: if fsdp_option.upper() in FSDP_SHARDING_STRATEGY: # set environment variable for FSDP sharding strategy os.environ[f"{prefix}SHARDING_STRATEGY"] = str( FSDP_SHARDING_STRATEGY.index(fsdp_option.upper()) + 1 ) elif fsdp_option == FSDPOption.OFFLOAD: os.environ[f"{prefix}OFFLOAD_PARAMS"] = "true" elif fsdp_option == FSDPOption.AUTO_WRAP: os.environ[f"{prefix}AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[0] if self.fsdp_config["min_num_params"] > 0: os.environ[f"{prefix}MIN_NUM_PARAMS"] = str(self.fsdp_config["min_num_params"]) os.environ[f"{prefix}AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[1] elif self.fsdp_config.get("transformer_layer_cls_to_wrap", None) is not None: os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"] = ",".join( self.fsdp_config["transformer_layer_cls_to_wrap"] ) prefetch_policy = self.fsdp_config.get("backward_prefetch", "NO_PREFETCH") os.environ[f"{prefix}BACKWARD_PREFETCH"] = prefetch_policy.upper() os.environ[f"{prefix}FORWARD_PREFETCH"] = str(self.fsdp_config.get("forward_prefetch", "false")).lower() sync_module_states = str(self.fsdp_config.get("sync_module_states", "true")).lower() cpu_ram_efficient_loading = str(self.fsdp_config.get("cpu_ram_efficient_loading", "false")).lower() if sync_module_states == "false" and cpu_ram_efficient_loading == "true": # In this case, all the processes except the main process would have random weights leading # to unexpected behaviour during training, thus throwing error here to prevent it. raise ValueError('`sync_module_states` must be `"True"` if `cpu_ram_efficient_loading` is `"True"`') os.environ[f"{prefix}SYNC_MODULE_STATES"] = sync_module_states os.environ[f"{prefix}CPU_RAM_EFFICIENT_LOADING"] = cpu_ram_efficient_loading os.environ[f"{prefix}USE_ORIG_PARAMS"] = str(self.fsdp_config.get("use_orig_params", "true")).lower() if self.tpu_metrics_debug: warnings.warn( "using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 🤗 Transformers. Use" " `--debug tpu_metrics_debug` instead", FutureWarning, ) if self.debug is None: self.debug = " tpu_metrics_debug" else: self.debug += " tpu_metrics_debug" self.tpu_metrics_debug = False if isinstance(self.debug, str): self.debug = [DebugOption(s) for s in self.debug.split()] elif self.debug is None: self.debug = [] self.deepspeed_plugin = None if self.deepspeed: # - must be run very last in arg parsing, since it will use a lot of these settings. # - must be run before the model is created. if not is_accelerate_available(): raise ValueError( f"--deepspeed requires Accelerate to be installed: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`." ) from transformers.integrations.deepspeed import HfTrainerDeepSpeedConfig # will be used later by the Trainer # note: leave self.deepspeed unmodified in case a user relies on it not to be modified) self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed) self.hf_deepspeed_config.trainer_config_process(self) # Accelerate DeepSpeed Plugin from accelerate.utils import DeepSpeedPlugin os.environ["ACCELERATE_USE_DEEPSPEED"] = "true" self.deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.hf_deepspeed_config) elif strtobool(os.environ.get("ACCELERATE_USE_DEEPSPEED", "false")): # Accelerate DeepSpeed Plugin from accelerate.utils import DeepSpeedPlugin self.deepspeed_plugin = DeepSpeedPlugin() mixed_precision = os.environ.get("ACCELERATE_MIXED_PRECISION", "no") self.deepspeed_plugin.set_mixed_precision(mixed_precision) self.deepspeed_plugin.set_deepspeed_weakref() if self.use_cpu: self.dataloader_pin_memory = False if self.dataloader_num_workers == 0 and self.dataloader_prefetch_factor is not None: raise ValueError( "--dataloader_prefetch_factor can only be set when data is loaded in a different process, i.e." " when --dataloader_num_workers > 1." ) if self.push_to_hub_token is not None: warnings.warn( "`--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use " "`--hub_token` instead.", FutureWarning, ) self.hub_token = self.push_to_hub_token if self.push_to_hub_model_id is not None: self.hub_model_id = get_full_repo_name( self.push_to_hub_model_id, organization=self.push_to_hub_organization, token=self.hub_token ) if self.push_to_hub_organization is not None: warnings.warn( "`--push_to_hub_model_id` and `--push_to_hub_organization` are deprecated and will be removed in " "version 5 of 🤗 Transformers. Use `--hub_model_id` instead and pass the full repo name to this " f"argument (in this case {self.hub_model_id}).", FutureWarning, ) else: warnings.warn( "`--push_to_hub_model_id` is deprecated and will be removed in version 5 of 🤗 Transformers. Use " "`--hub_model_id` instead and pass the full repo name to this argument (in this case " f"{self.hub_model_id}).", FutureWarning, ) elif self.push_to_hub_organization is not None: self.hub_model_id = f"{self.push_to_hub_organization}/{Path(self.output_dir).name}" warnings.warn( "`--push_to_hub_organization` is deprecated and will be removed in version 5 of 🤗 Transformers. Use " "`--hub_model_id` instead and pass the full repo name to this argument (in this case " f"{self.hub_model_id}).", FutureWarning, ) if self.eval_use_gather_object and not is_accelerate_available("0.30.0"): raise ValueError( "--eval_use_gather_object requires Accelerate to be version of `accelerate` > 0.30.0." "This is not supported and we recommend you to update your version." ) if self.data_seed is not None: if not is_accelerate_available("1.1.0"): raise NotImplementedError( "data_seed requires Accelerate version `accelerate` >= 1.1.0. " "This is not supported and we recommend you to update your version." ) if self.include_inputs_for_metrics: logger.warning( "Using `include_inputs_for_metrics` is deprecated and will be removed in version 5 of 🤗 Transformers. Please use `include_for_metrics` list argument instead." ) self.include_for_metrics.append("inputs") def __str__(self): self_as_dict = asdict(self) # Remove deprecated arguments. That code should be removed once # those deprecated arguments are removed from TrainingArguments. (TODO: v5) del self_as_dict["per_gpu_train_batch_size"] del self_as_dict["per_gpu_eval_batch_size"] self_as_dict = {k: f"<{k.upper()}>" if k.endswith("_token") else v for k, v in self_as_dict.items()} attrs_as_str = [f"{k}={v},\n" for k, v in sorted(self_as_dict.items())] return f"{self.__class__.__name__}(\n{''.join(attrs_as_str)})" __repr__ = __str__ @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from `per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size train_batch_size = per_device_batch_size * max(1, self.n_gpu) return train_batch_size @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from `per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size eval_batch_size = per_device_batch_size * max(1, self.n_gpu) return eval_batch_size @property def ddp_timeout_delta(self) -> timedelta: """ The actual timeout for torch.distributed.init_process_group since it expects a timedelta variable. """ return timedelta(seconds=self.ddp_timeout) @cached_property def _setup_devices(self) -> "torch.device": requires_backends(self, ["torch"]) logger.info("PyTorch: setting up devices") if not is_sagemaker_mp_enabled(): if not is_accelerate_available(): raise ImportError( f"Using the `Trainer` with `PyTorch` requires `accelerate>={ACCELERATE_MIN_VERSION}`: " f"Please run `pip install transformers[torch]` or `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) # We delay the init of `PartialState` to the end for clarity accelerator_state_kwargs = {"enabled": True, "use_configured_state": False} if isinstance(self.accelerator_config, AcceleratorConfig): accelerator_state_kwargs["use_configured_state"] = self.accelerator_config.pop( "use_configured_state", False ) if accelerator_state_kwargs["use_configured_state"]: if PartialState._shared_state == {}: raise ValueError( "Passing `'use_configured_state':True` to the AcceleratorConfig requires a pre-configured " "`AcceleratorState` or `PartialState` to be defined before calling `TrainingArguments`. " ) # We rely on `PartialState` to yell if there's issues here (which it will) self.distributed_state = PartialState(cpu=self.use_cpu) if self.deepspeed and self.distributed_state.distributed_type != DistributedType.DEEPSPEED: raise RuntimeError( "Tried to use an already configured `Accelerator` or `PartialState` that was not initialized for DeepSpeed, " "but also passed in a `deepspeed` configuration to the `TrainingArguments`. Please set " "`use_configured_state:False` instead or setup your `Accelerator` or `PartialState` properly." ) else: AcceleratorState._reset_state(reset_partial_state=True) self.distributed_state = None if not self.use_ipex and "ACCELERATE_USE_IPEX" not in os.environ: os.environ["ACCELERATE_USE_IPEX"] = "false" self._n_gpu = 1 if self.use_cpu or strtobool(os.environ.get("ACCELERATE_USE_CPU", "False")): accelerator_state_kwargs["cpu"] = True accelerator_state_kwargs["backend"] = self.ddp_backend self._n_gpu = 0 elif is_sagemaker_mp_enabled(): accelerator_state_kwargs["enabled"] = False local_rank = smp.local_rank() device = torch.device("cuda", local_rank) torch.cuda.set_device(device) elif is_sagemaker_dp_enabled(): accelerator_state_kwargs["_use_sagemaker_dp"] = True elif self.deepspeed: accelerator_state_kwargs["use_deepspeed"] = True accelerator_state_kwargs["timeout"] = timedelta(seconds=self.ddp_timeout) else: accelerator_state_kwargs["backend"] = self.ddp_backend accelerator_state_kwargs["timeout"] = timedelta(seconds=self.ddp_timeout) # Now we pop everything if accelerator_state_kwargs.pop("enabled", False) and not accelerator_state_kwargs.pop( "use_configured_state", False ): # We need to patch this env var when enabling to detect deepspeed use_deepspeed = accelerator_state_kwargs.pop("use_deepspeed", False) if use_deepspeed: os.environ["ACCELERATE_USE_DEEPSPEED"] = "true" self.distributed_state = PartialState(**accelerator_state_kwargs) if use_deepspeed: del os.environ["ACCELERATE_USE_DEEPSPEED"] if not is_sagemaker_mp_enabled(): device = self.distributed_state.device self.local_rank = self.distributed_state.local_process_index if dist.is_available() and dist.is_initialized() and self.parallel_mode != ParallelMode.DISTRIBUTED: logger.warning( "torch.distributed process group is initialized, but parallel_mode != ParallelMode.DISTRIBUTED. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if is_torch_xla_available(): device = self.distributed_state.device self._n_gpu = 0 elif is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled(): # Already set _n_gpu pass elif self.distributed_state.distributed_type == DistributedType.NO: if self.use_mps_device: warnings.warn( "`use_mps_device` is deprecated and will be removed in version 5.0 of 🤗 Transformers. " "`mps` device will be used by default if available similar to the way `cuda` device is used." "Therefore, no action from user is required. " ) if device.type != "mps": raise ValueError( "Either you do not have an MPS-enabled device on this machine or MacOS version is not 12.3+ " "or current PyTorch install was not built with MPS enabled." ) if self.use_cpu: device = torch.device("cpu") elif is_torch_mps_available(): device = torch.device("mps") elif is_torch_xpu_available(): if not is_ipex_available() and not is_accelerate_available("0.32.0.dev"): raise ImportError("Using the XPU PyTorch backend requires `accelerate>=0.32.0.dev`") device = torch.device("xpu:0") torch.xpu.set_device(device) elif is_torch_mlu_available(): device = torch.device("mlu:0") torch.mlu.set_device(device) elif is_torch_musa_available(): device = torch.device("musa:0") torch.musa.set_device(device) elif is_torch_npu_available(): device = torch.device("npu:0") torch.npu.set_device(device) else: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 device = torch.device( "cuda:0" if torch.cuda.is_available() else os.environ.get("ACCELERATE_TORCH_DEVICE", "cpu") ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. self._n_gpu = torch.cuda.device_count() if device.type == "cuda": torch.cuda.set_device(device) return device @property def device(self) -> "torch.device": """ The device used by this process. """ requires_backends(self, ["torch"]) return self._setup_devices @property def n_gpu(self): """ The number of GPUs used by this process. Note: This will only be greater than one when you have multiple GPUs available but are not using distributed training. For distributed training, it will always be 1. """ requires_backends(self, ["torch"]) # Make sure `self._n_gpu` is properly setup. if not hasattr(self, "_n_gpu"): _ = self._setup_devices return self._n_gpu @property def parallel_mode(self): """ The current mode used for parallelism if multiple GPUs/TPU cores are available. One of: - `ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU). - `ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses `torch.nn.DataParallel`). - `ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses `torch.nn.DistributedDataParallel`). - `ParallelMode.TPU`: several TPU cores. """ requires_backends(self, ["torch"]) if is_torch_xla_available(): return ParallelMode.TPU elif is_sagemaker_mp_enabled(): return ParallelMode.SAGEMAKER_MODEL_PARALLEL elif is_sagemaker_dp_enabled(): return ParallelMode.SAGEMAKER_DATA_PARALLEL elif ( self.distributed_state is not None and self.distributed_state.distributed_type != DistributedType.NO ) or (self.distributed_state is None and self.local_rank != -1): return ParallelMode.DISTRIBUTED elif self.n_gpu > 1: return ParallelMode.NOT_DISTRIBUTED else: return ParallelMode.NOT_PARALLEL @property def world_size(self): """ The number of processes used in parallel. """ requires_backends(self, ["torch"]) if self.distributed_state is not None: return self.distributed_state.num_processes elif is_sagemaker_mp_enabled(): return smp.dp_size() if not smp.state.cfg.prescaled_batch else smp.rdp_size() return 1 @property def process_index(self): """ The index of the current process used. """ requires_backends(self, ["torch"]) if self.distributed_state is not None: return self.distributed_state.process_index elif is_sagemaker_mp_enabled(): return smp.dp_rank() if not smp.state.cfg.prescaled_batch else smp.rdp_rank() return 0 @property def local_process_index(self): """ The index of the local process used. """ requires_backends(self, ["torch"]) if self.distributed_state is not None: return self.distributed_state.local_process_index elif is_sagemaker_mp_enabled(): return smp.local_rank() return 0 @property def should_log(self): """ Whether or not the current process should produce log. """ if self.log_on_each_node: return self.local_process_index == 0 else: if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.process_index == 0 @property def should_save(self): """ Whether or not the current process should write to disk, e.g., to save models and checkpoints. """ if self.save_on_each_node: return self.local_process_index == 0 else: if is_sagemaker_mp_enabled(): return smp.rank() == 0 else: return self.process_index == 0 def get_process_log_level(self): """ Returns the log level to be used depending on whether this process is the main process of node 0, main process of node non-0, or a non-main process. For the main process the log level defaults to the logging level set (`logging.WARNING` if you didn't do anything) unless overridden by `log_level` argument. For the replica processes the log level defaults to `logging.WARNING` unless overridden by `log_level_replica` argument. The choice between the main and replica process settings is made according to the return value of `should_log`. """ # convert to int log_level = trainer_log_levels[self.log_level] log_level_replica = trainer_log_levels[self.log_level_replica] log_level_main_node = logging.get_verbosity() if log_level == -1 else log_level log_level_replica_node = logging.get_verbosity() if log_level_replica == -1 else log_level_replica return log_level_main_node if self.should_log else log_level_replica_node @property def place_model_on_device(self): """ Can be subclassed and overridden for some specific integrations. """ return not is_sagemaker_mp_enabled() @property def _no_sync_in_gradient_accumulation(self): """ Whether or not to use no_sync for the gradients when doing gradient accumulation. """ return not ( self.deepspeed or is_sagemaker_dp_enabled() or is_sagemaker_mp_enabled() or is_torch_neuroncore_available() ) @contextlib.contextmanager def main_process_first(self, local=True, desc="work"): """ A context manager for torch distributed environment where on needs to do something on the main process, while blocking replicas, and when it's finished releasing the replicas. One such use is for `datasets`'s `map` feature which to be efficient should be run once on the main process, which upon completion saves a cached version of results and which then automatically gets loaded by the replicas. Args: local (`bool`, *optional*, defaults to `True`): if `True` first means process of rank 0 of each node if `False` first means process of rank 0 of node rank 0 In multi-node environment with a shared filesystem you most likely will want to use `local=False` so that only the main process of the first node will do the processing. If however, the filesystem is not shared, then the main process of each node will need to do the processing, which is the default behavior. desc (`str`, *optional*, defaults to `"work"`): a work description to be used in debug logs """ if is_torch_available() and self.world_size > 1: main_process_desc = "main local process" if local else "main process" if self.distributed_state is not None: is_main_process = ( self.distributed_state.is_local_main_process if local else self.distributed_state.is_main_process ) elif is_sagemaker_mp_enabled(): is_main_process = smp.rank() == 0 try: if not is_main_process: # tell all replicas to wait logger.debug(f"{self.process_index}: waiting for the {main_process_desc} to perform {desc}") if is_torch_xla_available(): xm.rendezvous(desc) else: dist.barrier() yield finally: if is_main_process: # the wait is over logger.debug(f"{self.process_index}: {main_process_desc} completed {desc}, releasing all replicas") if is_torch_xla_available(): xm.rendezvous(desc) else: dist.barrier() else: yield def get_warmup_steps(self, num_training_steps: int): """ Get number of steps used for a linear warmup. """ warmup_steps = ( self.warmup_steps if self.warmup_steps > 0 else math.ceil(num_training_steps * self.warmup_ratio) ) return warmup_steps def _dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None: """ Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None, converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"* string, which can then be stored in the json format. """ if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str): d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1] for value in d.values(): if isinstance(value, dict): self._dict_torch_dtype_to_str(value) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ # filter out fields that are defined as field(init=False) d = {field.name: getattr(self, field.name) for field in fields(self) if field.init} for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" # Handle the accelerator_config if passed if is_accelerate_available() and isinstance(v, AcceleratorConfig): d[k] = v.to_dict() self._dict_torch_dtype_to_str(d) return d def to_json_string(self): """ Serializes this instance to a JSON string. """ return json.dumps(self.to_dict(), indent=2) def to_sanitized_dict(self) -> Dict[str, Any]: """ Sanitized serialization to use with TensorBoard’s hparams """ d = self.to_dict() d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}} valid_types = [bool, int, float, str] if is_torch_available(): valid_types.append(torch.Tensor) return {k: v if type(v) in valid_types else str(v) for k, v in d.items()} # The following methods are there to simplify the instantiation of `TrainingArguments` def set_training( self, learning_rate: float = 5e-5, batch_size: int = 8, weight_decay: float = 0, num_epochs: float = 3, max_steps: int = -1, gradient_accumulation_steps: int = 1, seed: int = 42, gradient_checkpointing: bool = False, ): """ A method that regroups all basic arguments linked to the training. <Tip> Calling this method will automatically set `self.do_train` to `True`. </Tip> Args: learning_rate (`float`, *optional*, defaults to 5e-5): The initial learning rate for the optimizer. batch_size (`int` *optional*, defaults to 8): The batch size per device (GPU/TPU core/CPU...) used for training. weight_decay (`float`, *optional*, defaults to 0): The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in the optimizer. num_train_epochs(`float`, *optional*, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (`int`, *optional*, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`. For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until `max_steps` is reached. gradient_accumulation_steps (`int`, *optional*, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. <Tip warning={true}> When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples. </Tip> seed (`int`, *optional*, defaults to 42): Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the [`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters. gradient_checkpointing (`bool`, *optional*, defaults to `False`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_training(learning_rate=1e-4, batch_size=32) >>> args.learning_rate 1e-4 ``` """ self.do_train = True self.learning_rate = learning_rate self.per_device_train_batch_size = batch_size self.weight_decay = weight_decay self.num_train_epochs = num_epochs self.max_steps = max_steps self.gradient_accumulation_steps = gradient_accumulation_steps self.seed = seed self.gradient_checkpointing = gradient_checkpointing return self def set_evaluate( self, strategy: Union[str, IntervalStrategy] = "no", steps: int = 500, batch_size: int = 8, accumulation_steps: Optional[int] = None, delay: Optional[float] = None, loss_only: bool = False, jit_mode: bool = False, ): """ A method that regroups all arguments linked to evaluation. Args: strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`): The evaluation strategy to adopt during training. Possible values are: - `"no"`: No evaluation is done during training. - `"steps"`: Evaluation is done (and logged) every `steps`. - `"epoch"`: Evaluation is done at the end of each epoch. Setting a `strategy` different from `"no"` will set `self.do_eval` to `True`. steps (`int`, *optional*, defaults to 500): Number of update steps between two evaluations if `strategy="steps"`. batch_size (`int` *optional*, defaults to 8): The batch size per device (GPU/TPU core/CPU...) used for evaluation. accumulation_steps (`int`, *optional*): Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but requires more memory). delay (`float`, *optional*): Number of epochs or steps to wait for before the first evaluation can be performed, depending on the eval_strategy. loss_only (`bool`, *optional*, defaults to `False`): Ignores all outputs except the loss. jit_mode (`bool`, *optional*): Whether or not to use PyTorch jit trace for inference. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_evaluate(strategy="steps", steps=100) >>> args.eval_steps 100 ``` """ self.eval_strategy = IntervalStrategy(strategy) if self.eval_strategy == IntervalStrategy.STEPS and steps == 0: raise ValueError("Setting `strategy` as 'steps' requires a positive value for `steps`.") self.do_eval = self.eval_strategy != IntervalStrategy.NO self.eval_steps = steps self.per_device_eval_batch_size = batch_size self.eval_accumulation_steps = accumulation_steps self.eval_delay = delay self.prediction_loss_only = loss_only self.jit_mode_eval = jit_mode return self def set_testing( self, batch_size: int = 8, loss_only: bool = False, jit_mode: bool = False, ): """ A method that regroups all basic arguments linked to testing on a held-out dataset. <Tip> Calling this method will automatically set `self.do_predict` to `True`. </Tip> Args: batch_size (`int` *optional*, defaults to 8): The batch size per device (GPU/TPU core/CPU...) used for testing. loss_only (`bool`, *optional*, defaults to `False`): Ignores all outputs except the loss. jit_mode (`bool`, *optional*): Whether or not to use PyTorch jit trace for inference. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_testing(batch_size=32) >>> args.per_device_eval_batch_size 32 ``` """ self.do_predict = True self.per_device_eval_batch_size = batch_size self.prediction_loss_only = loss_only self.jit_mode_eval = jit_mode return self def set_save( self, strategy: Union[str, IntervalStrategy] = "steps", steps: int = 500, total_limit: Optional[int] = None, on_each_node: bool = False, ): """ A method that regroups all arguments linked to checkpoint saving. Args: strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`): The checkpoint save strategy to adopt during training. Possible values are: - `"no"`: No save is done during training. - `"epoch"`: Save is done at the end of each epoch. - `"steps"`: Save is done every `save_steps`. steps (`int`, *optional*, defaults to 500): Number of updates steps before two checkpoint saves if `strategy="steps"`. total_limit (`int`, *optional*): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in `output_dir`. on_each_node (`bool`, *optional*, defaults to `False`): When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one. This should not be activated when the different nodes use the same storage as the files will be saved with the same names for each node. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_save(strategy="steps", steps=100) >>> args.save_steps 100 ``` """ self.save_strategy = SaveStrategy(strategy) if self.save_strategy == SaveStrategy.STEPS and steps == 0: raise ValueError("Setting `strategy` as 'steps' requires a positive value for `steps`.") self.save_steps = steps self.save_total_limit = total_limit self.save_on_each_node = on_each_node return self def set_logging( self, strategy: Union[str, IntervalStrategy] = "steps", steps: int = 500, report_to: Union[str, List[str]] = "none", level: str = "passive", first_step: bool = False, nan_inf_filter: bool = False, on_each_node: bool = False, replica_level: str = "passive", ): """ A method that regroups all arguments linked to logging. Args: strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`): The logging strategy to adopt during training. Possible values are: - `"no"`: No logging is done during training. - `"epoch"`: Logging is done at the end of each epoch. - `"steps"`: Logging is done every `logging_steps`. steps (`int`, *optional*, defaults to 500): Number of update steps between two logs if `strategy="steps"`. level (`str`, *optional*, defaults to `"passive"`): Logger log level to use on the main process. Possible choices are the log levels as strings: `"debug"`, `"info"`, `"warning"`, `"error"` and `"critical"`, plus a `"passive"` level which doesn't set anything and lets the application set the level. report_to (`str` or `List[str]`, *optional*, defaults to `"all"`): The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`, `"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"neptune"`, `"tensorboard"`, and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"` for no integrations. first_step (`bool`, *optional*, defaults to `False`): Whether to log and evaluate the first `global_step` or not. nan_inf_filter (`bool`, *optional*, defaults to `True`): Whether to filter `nan` and `inf` losses for logging. If set to `True` the loss of every step that is `nan` or `inf` is filtered and the average loss of the current logging window is taken instead. <Tip> `nan_inf_filter` only influences the logging of loss values, it does not change the behavior the gradient is computed or applied to the model. </Tip> on_each_node (`bool`, *optional*, defaults to `True`): In multinode distributed training, whether to log using `log_level` once per node, or only on the main node. replica_level (`str`, *optional*, defaults to `"passive"`): Logger log level to use on replicas. Same choices as `log_level` Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_logging(strategy="steps", steps=100) >>> args.logging_steps 100 ``` """ self.logging_strategy = IntervalStrategy(strategy) if self.logging_strategy == IntervalStrategy.STEPS and steps == 0: raise ValueError("Setting `strategy` as 'steps' requires a positive value for `steps`.") self.logging_steps = steps self.report_to = report_to self.log_level = level self.logging_first_step = first_step self.logging_nan_inf_filter = nan_inf_filter self.log_on_each_node = on_each_node self.log_level_replica = replica_level return self def set_push_to_hub( self, model_id: str, strategy: Union[str, HubStrategy] = "every_save", token: Optional[str] = None, private_repo: Optional[bool] = None, always_push: bool = False, ): """ A method that regroups all arguments linked to synchronizing checkpoints with the Hub. <Tip> Calling this method will set `self.push_to_hub` to `True`, which means the `output_dir` will begin a git directory synced with the repo (determined by `model_id`) and the content will be pushed each time a save is triggered (depending on your `self.save_strategy`). Calling [`~Trainer.save_model`] will also trigger a push. </Tip> Args: model_id (`str`): The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in which case the model will be pushed in your namespace. Otherwise it should be the whole repository name, for instance `"user_name/model"`, which allows you to push to an organization you are a member of with `"organization_name/model"`. strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`): Defines the scope of what is pushed to the Hub and when. Possible values are: - `"end"`: push the model, its configuration, the processing_class e.g. tokenizer (if passed along to the [`Trainer`]) and a draft of a model card when the [`~Trainer.save_model`] method is called. - `"every_save"`: push the model, its configuration, the processing_class e.g. tokenizer (if passed along to the [`Trainer`]) and a draft of a model card each time there is a model save. The pushes are asynchronous to not block training, and in case the save are very frequent, a new push is only attempted if the previous one is finished. A last push is made with the final model at the end of training. - `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named last-checkpoint, allowing you to resume training easily with `trainer.train(resume_from_checkpoint="last-checkpoint")`. - `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output folder (so you will get one checkpoint folder per folder in your final repository) token (`str`, *optional*): The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with `huggingface-cli login`. private_repo (`bool`, *optional*, defaults to `False`): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. always_push (`bool`, *optional*, defaults to `False`): Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_push_to_hub("me/awesome-model") >>> args.hub_model_id 'me/awesome-model' ``` """ self.push_to_hub = True self.hub_model_id = model_id self.hub_strategy = HubStrategy(strategy) self.hub_token = token self.hub_private_repo = private_repo self.hub_always_push = always_push return self def set_optimizer( self, name: Union[str, OptimizerNames] = "adamw_torch", learning_rate: float = 5e-5, weight_decay: float = 0, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-8, args: Optional[str] = None, ): """ A method that regroups all arguments linked to the optimizer and its hyperparameters. Args: name (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"`): The optimizer to use: `"adamw_hf"`, `"adamw_torch"`, `"adamw_torch_fused"`, `"adamw_apex_fused"`, `"adamw_anyprecision"` or `"adafactor"`. learning_rate (`float`, *optional*, defaults to 5e-5): The initial learning rate. weight_decay (`float`, *optional*, defaults to 0): The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights. beta1 (`float`, *optional*, defaults to 0.9): The beta1 hyperparameter for the adam optimizer or its variants. beta2 (`float`, *optional*, defaults to 0.999): The beta2 hyperparameter for the adam optimizer or its variants. epsilon (`float`, *optional*, defaults to 1e-8): The epsilon hyperparameter for the adam optimizer or its variants. args (`str`, *optional*): Optional arguments that are supplied to AnyPrecisionAdamW (only useful when `optim="adamw_anyprecision"`). Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_optimizer(name="adamw_torch", beta1=0.8) >>> args.optim 'adamw_torch' ``` """ self.optim = OptimizerNames(name) self.learning_rate = learning_rate self.weight_decay = weight_decay self.adam_beta1 = beta1 self.adam_beta2 = beta2 self.adam_epsilon = epsilon self.optim_args = args return self def set_lr_scheduler( self, name: Union[str, SchedulerType] = "linear", num_epochs: float = 3.0, max_steps: int = -1, warmup_ratio: float = 0, warmup_steps: int = 0, ): """ A method that regroups all arguments linked to the learning rate scheduler and its hyperparameters. Args: name (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`): The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values. num_epochs(`float`, *optional*, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (`int`, *optional*, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`. For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until `max_steps` is reached. warmup_ratio (`float`, *optional*, defaults to 0.0): Ratio of total training steps used for a linear warmup from 0 to `learning_rate`. warmup_steps (`int`, *optional*, defaults to 0): Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_lr_scheduler(name="cosine", warmup_ratio=0.05) >>> args.warmup_ratio 0.05 ``` """ self.lr_scheduler_type = SchedulerType(name) self.num_train_epochs = num_epochs self.max_steps = max_steps self.warmup_ratio = warmup_ratio self.warmup_steps = warmup_steps return self def set_dataloader( self, train_batch_size: int = 8, eval_batch_size: int = 8, drop_last: bool = False, num_workers: int = 0, pin_memory: bool = True, persistent_workers: bool = False, prefetch_factor: Optional[int] = None, auto_find_batch_size: bool = False, ignore_data_skip: bool = False, sampler_seed: Optional[int] = None, ): """ A method that regroups all arguments linked to the dataloaders creation. Args: drop_last (`bool`, *optional*, defaults to `False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. num_workers (`int`, *optional*, defaults to 0): Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. pin_memory (`bool`, *optional*, defaults to `True`): Whether you want to pin memory in data loaders or not. Will default to `True`. persistent_workers (`bool`, *optional*, defaults to `False`): If True, the data loader will not shut down the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will increase RAM usage. Will default to `False`. prefetch_factor (`int`, *optional*): Number of batches loaded in advance by each worker. 2 means there will be a total of 2 * num_workers batches prefetched across all workers. auto_find_batch_size (`bool`, *optional*, defaults to `False`) Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding CUDA Out-of-Memory errors. Requires accelerate to be installed (`pip install accelerate`) ignore_data_skip (`bool`, *optional*, defaults to `False`): When resuming training, whether or not to skip the epochs and batches to get the data loading at the same stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step can take a long time) but will not yield the same results as the interrupted training would have. sampler_seed (`int`, *optional*): Random seed to be used with data samplers. If not set, random generators for data sampling will use the same seed as `self.seed`. This can be used to ensure reproducibility of data sampling, independent of the model seed. Example: ```py >>> from transformers import TrainingArguments >>> args = TrainingArguments("working_dir") >>> args = args.set_dataloader(train_batch_size=16, eval_batch_size=64) >>> args.per_device_train_batch_size 16 ``` """ self.per_device_train_batch_size = train_batch_size self.per_device_eval_batch_size = eval_batch_size self.dataloader_drop_last = drop_last self.dataloader_num_workers = num_workers self.dataloader_pin_memory = pin_memory self.dataloader_persistent_workers = persistent_workers self.dataloader_prefetch_factor = prefetch_factor self.auto_find_batch_size = auto_find_batch_size self.ignore_data_skip = ignore_data_skip self.data_seed = sampler_seed return self class ParallelMode(Enum): NOT_PARALLEL = "not_parallel" NOT_DISTRIBUTED = "not_distributed" DISTRIBUTED = "distributed" SAGEMAKER_MODEL_PARALLEL = "sagemaker_model_parallel" SAGEMAKER_DATA_PARALLEL = "sagemaker_data_parallel" TPU = "tpu"
transformers/src/transformers/training_args.py/0
{ "file_path": "transformers/src/transformers/training_args.py", "repo_id": "transformers", "token_count": 66982 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import ceil def assert_device_map(device_map, num_blocks): blocks = list(range(0, num_blocks)) device_map_blocks = [item for sublist in list(device_map.values()) for item in sublist] # Duplicate check duplicate_blocks = [] for i in device_map_blocks: if device_map_blocks.count(i) > 1 and i not in duplicate_blocks: duplicate_blocks.append(i) # Missing blocks missing_blocks = [i for i in blocks if i not in device_map_blocks] extra_blocks = [i for i in device_map_blocks if i not in blocks] if len(duplicate_blocks) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(duplicate_blocks) ) if len(missing_blocks) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(missing_blocks) ) if len(extra_blocks) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(extra_blocks) ) def get_device_map(n_layers, devices): """Returns a dictionary of layers distributed evenly across all devices.""" layers = list(range(n_layers)) n_blocks = int(ceil(n_layers / len(devices))) layers_list = [layers[i : i + n_blocks] for i in range(0, n_layers, n_blocks)] return dict(zip(devices, layers_list))
transformers/src/transformers/utils/model_parallel_utils.py/0
{ "file_path": "transformers/src/transformers/utils/model_parallel_utils.py", "repo_id": "transformers", "token_count": 778 }
# coding=utf-8 # Copyright 2023 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class BetterTransformerIntegrationTest(unittest.TestCase): # refer to the full test suite in Optimum library: # https://github.com/huggingface/optimum/tree/main/tests/bettertransformer def test_transform_and_reverse(self): r""" Classic tests to simply check if the conversion has been successfull. """ model_id = "hf-internal-testing/tiny-random-t5" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) inp = tokenizer("This is me", return_tensors="pt") model = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) output = model.generate(**inp) model = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules()) ) output_from_pretrained = model_reloaded.generate(**inp) torch.testing.assert_close(output, output_from_pretrained) def test_error_save_pretrained(self): r""" The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode. All should be good if the model is reversed. """ model_id = "hf-internal-testing/tiny-random-t5" model = AutoModelForSeq2SeqLM.from_pretrained(model_id) model = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(ValueError): model.save_pretrained(tmpdirname) model = model.reverse_bettertransformer() model.save_pretrained(tmpdirname)
transformers/tests/bettertransformer/test_integration.py/0
{ "file_path": "transformers/tests/bettertransformer/test_integration.py", "repo_id": "transformers", "token_count": 1114 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import datetime import gc import inspect import tempfile import unittest import warnings import numpy as np import pytest from packaging import version from parameterized import parameterized from transformers import AutoConfig, is_torch_available, pipeline from transformers.testing_utils import ( is_flaky, require_accelerate, require_flash_attn, require_optimum_quanto, require_torch, require_torch_accelerator, require_torch_gpu, require_torch_multi_accelerator, require_torch_multi_gpu, require_torch_sdpa, set_config_for_less_flaky_test, set_model_for_less_flaky_test, set_model_tester_for_less_flaky_test, slow, torch_device, ) from transformers.utils import is_ipex_available from ..test_modeling_common import floats_tensor, ids_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_torch_available(): import torch import torch.nn.functional as F from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, BartForCausalLM, BartForConditionalGeneration, BartTokenizer, GPT2LMHeadModel, GPT2Tokenizer, ImageGPTForCausalImageModeling, SpeechEncoderDecoderModel, T5ForConditionalGeneration, ) from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, QuantoQuantizedCache, StaticCache from transformers.generation import ( BeamSampleDecoderOnlyOutput, BeamSampleEncoderDecoderOutput, BeamSearchDecoderOnlyOutput, BeamSearchEncoderDecoderOutput, DisjunctiveConstraint, GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, GenerationConfig, GreedySearchDecoderOnlyOutput, GreedySearchEncoderDecoderOutput, LogitsProcessorList, MaxLengthCriteria, MinLengthLogitsProcessor, PhrasalConstraint, PromptLookupCandidateGenerator, SampleDecoderOnlyOutput, SampleEncoderDecoderOutput, StoppingCriteria, StoppingCriteriaList, SynthIDTextWatermarkingConfig, WatermarkDetector, WatermarkingConfig, ) from transformers.generation.candidate_generator import ( AssistedCandidateGenerator, AssistedCandidateGeneratorDifferentTokenizers, ) from transformers.generation.utils import _speculative_sampling from unittest.mock import patch from transformers.utils import is_sklearn_available class GenerationTesterMixin: input_name = "input_ids" model_tester = None all_generative_model_classes = () max_new_tokens = 3 def prepare_config_and_inputs_for_generate(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # We don't want a few model inputs in our model input dictionary for generation tests input_keys_to_ignore = [ # we don't want to mask attention heads "head_mask", "decoder_head_mask", "cross_attn_head_mask", # we don't want encoder-decoder models to start from filled decoder ids "decoder_input_ids", "decoder_attention_mask", # we'll set cache use in each test differently "use_cache", # Ignore labels if it is in the input dict "labels", # model-specific exceptions should overload/overwrite this function ] filtered_inputs_dict = { k: v[:batch_size, ...] if isinstance(v, torch.Tensor) else v for k, v in inputs_dict.items() if k not in input_keys_to_ignore } # It is important set `eos_token_id` to `None` to avoid early stopping (would break for length-based checks) text_gen_config = config.get_text_config(decoder=True) if text_gen_config.eos_token_id is not None and text_gen_config.pad_token_id is None: text_gen_config.pad_token_id = ( text_gen_config.eos_token_id if isinstance(text_gen_config.eos_token_id, int) else text_gen_config.eos_token_id[0] ) text_gen_config.eos_token_id = None text_gen_config.forced_eos_token_id = None return config, filtered_inputs_dict def _check_similar_generate_outputs(self, output_1, output_2, atol=1e-5, rtol=1e-5): """ Checks whether a pair of generate outputs are similar. Two `generate` call outputs are considered similar in the following siturations: 1. The sequences are the same 2. The sequences are different, but the scores up to (and including) the first mismatch are nearly identical """ # scores doesn't include data regarding decoder input tokens decoder_input_length = output_1.sequences.shape[1] - len(output_1.scores) output_matches = output_1.sequences == output_2.sequences has_matching_outputs = output_matches.all() has_matching_scores = None if not has_matching_outputs: for batch_idx in range(output_1.sequences.shape[0]): batch_matches = output_matches[batch_idx] if batch_matches.all(): continue first_mismatch_idx = batch_matches.int().argmin() # gets the index of the first False first_mismatch_idx -= decoder_input_length output_1_first_mismatch_scores = output_1.scores[first_mismatch_idx][batch_idx] output_2_first_mismatch_scores = output_2.scores[first_mismatch_idx][batch_idx] has_matching_scores = torch.allclose( output_1_first_mismatch_scores, output_2_first_mismatch_scores, rtol=atol, atol=rtol ) if not has_matching_scores: break self.assertTrue(has_matching_outputs or has_matching_scores) def _get_logits_processor_kwargs(self, do_sample=False, config=None): logits_processor_kwargs = { "bad_words_ids": [[1, 0]], "repetition_penalty": 1.2, "remove_invalid_values": True, } if do_sample: logits_processor_kwargs.update( { "top_k": 10, "top_p": 0.7, "temperature": 0.7, } ) # TODO (joao, raushan): see this comment for a long-term fix # https://github.com/huggingface/transformers/pull/33593#issuecomment-2361824264) # This is a band-aid for VLM models, to ensure they don't generate image/video tokens which would cause them # to crash. On pretrained models this isn't a risk, as they are trained to not generate these tokens. if config is not None: for key in [ "image_token_index", "image_token_id", "video_token_index", "video_token_id", "vision_start_token_id", ]: token_index = getattr(config, key, None) if token_index is None and hasattr(self, "model_tester"): token_index = getattr(self.model_tester, key, None) if token_index is not None and token_index < config.get_text_config().vocab_size: logits_processor_kwargs["bad_words_ids"].append([token_index]) return logits_processor_kwargs def _get_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, } return beam_kwargs def _get_diverse_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, "num_beam_groups": 2, # one beam per group "diversity_penalty": 2.0, } return beam_kwargs def _get_constrained_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": num_return_sequences * 4, "num_return_sequences": num_return_sequences, } return beam_kwargs def _greedy_generate( self, model, inputs_dict, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, num_beams=1, max_new_tokens=self.max_new_tokens, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, output_logits=output_logits, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _sample_generate( self, model, inputs_dict, num_return_sequences, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): torch.manual_seed(0) logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) output_generate = model.generate( do_sample=True, num_beams=1, max_new_tokens=self.max_new_tokens, num_return_sequences=num_return_sequences, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _beam_search_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _beam_sample_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): torch.manual_seed(0) logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) output_generate = model.generate( do_sample=True, max_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _group_beam_search_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _constrained_beam_search_generate( self, model, inputs_dict, constraints, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, constraints=constraints, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _contrastive_generate( self, model, inputs_dict, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): contrastive_search_kwargs = { "penalty_alpha": 0.6, "top_k": 5, } logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, num_beams=1, max_new_tokens=self.max_new_tokens, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, output_logits=output_logits, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **contrastive_search_kwargs, **inputs_dict, ) return output_generate @pytest.mark.generate def test_greedy_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate(model=model, inputs_dict=inputs_dict) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_greedy_generate_dict_outputs(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput) self._check_outputs(output_generate, model.config) @pytest.mark.generate def test_greedy_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]): self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes") config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self._check_outputs(output_generate, model.config, use_cache=True) @pytest.mark.generate def test_sample_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._sample_generate(model=model, inputs_dict=inputs_dict, num_return_sequences=1) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_sample_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._sample_generate( model=model, inputs_dict=inputs_dict, num_return_sequences=2, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, SampleEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, SampleDecoderOnlyOutput) self._check_outputs(output_generate, model.config, num_return_sequences=2) @pytest.mark.generate def test_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_search_generate(model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_beam_search_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]): self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes") model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self._check_outputs( output_generate, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @require_accelerate @require_torch_multi_accelerator @pytest.mark.generate def test_model_parallel_beam_search(self): if "xpu" in torch_device: if not (is_ipex_available("2.5") or version.parse(torch.__version__) >= version.parse("2.6")): self.skipTest(reason="device_map='auto' does not work with XPU devices") for model_class in self.all_generative_model_classes: if model_class._no_split_modules is None: continue config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).eval() with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) new_model = model_class.from_pretrained(tmp_dir, device_map="auto") new_model.generate( max_new_tokens=self.max_new_tokens, num_beams=2, **inputs_dict, ) @pytest.mark.generate def test_beam_sample_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_sample_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_beam_sample_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_sample_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput) self._check_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_generate_without_input_ids(self): config, _ = self.prepare_config_and_inputs_for_generate() # if no bos token id => cannot generate from None if config.bos_token_id is None: self.skipTest(reason="bos_token_id is None") # hack in case they are equal, otherwise the attn mask will be [0] if config.bos_token_id == config.pad_token_id: config.pad_token_id = None for model_class in self.all_generative_model_classes: model = model_class(config).to(torch_device) model.eval() output_ids_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True ) self.assertIsNotNone(output_ids_generate) @pytest.mark.generate def test_group_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() # check `generate()` and `group_beam_search()` are equal beam_kwargs = self._get_diverse_beam_kwargs() output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) # check `group_beam_search` for higher than 1 `num_return_sequences` num_return_sequences = 2 beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences) output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_group_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_diverse_beam_kwargs() output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) # TODO: @gante check why it is flaky @is_flaky() @pytest.mark.generate def test_constrained_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() # Sample constraints min_id = 3 max_id = config.get_text_config(decoder=True).vocab_size force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs() output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) for generation_output in output_generate: self._check_sequence_inside_sequence(force_tokens, generation_output) # check`constrained_beam_search` for higher than 1 `num_return_sequences` # Sample constraints force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2) output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) for generation_output in output_generate: self._check_sequence_inside_sequence(force_tokens, generation_output) @pytest.mark.generate def test_constrained_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() # Sample constraints min_id = 3 max_id = model.config.get_text_config(decoder=True).vocab_size force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs() output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_contrastive_generate(self): for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") # won't fix: FSMT and Reformer have a different cache variable type (and format). if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True # test old generation output for backwards compatibility model = model_class(config).to(torch_device).eval() output_generate = self._contrastive_generate( model=model, inputs_dict=inputs_dict, use_cache=True, # Enable cache ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1]) @pytest.mark.generate def test_contrastive_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") # won't fix: FSMT and Reformer have a different cache variable type (and format). if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._contrastive_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[-1] == self.max_new_tokens + inputs_dict["input_ids"].shape[-1] ) self._check_outputs(output_generate, model.config, use_cache=True) @pytest.mark.generate def test_contrastive_generate_low_memory(self): # Check that choosing 'low_memory' does not change the model output for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]): self.skipTest(reason="Won't fix: old model with different cache format") if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]): self.skipTest(reason="TODO: fix me") config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True # test output equality of low versus high memory model = model_class(config).to(torch_device).eval() low_output = model.generate( top_k=4, penalty_alpha=0.6, low_memory=True, max_new_tokens=self.max_new_tokens, **inputs_dict, use_cache=True, ) high_output = model.generate( top_k=4, penalty_alpha=0.6, low_memory=False, max_new_tokens=self.max_new_tokens, **inputs_dict, use_cache=True, ) self.assertListEqual(low_output.tolist(), high_output.tolist()) @pytest.mark.generate def test_beam_search_low_memory(self): # Check that choosing 'low_memory' does not change the model output for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="May fix in the future: need custom cache handling") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "ctrl", "gptbigcode", "transo_xl", "xlnet", "cpm", "jamba", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") set_model_tester_for_less_flaky_test(self) config, inputs_dict = self.prepare_config_and_inputs_for_generate() set_config_for_less_flaky_test(config) # batch_size=1 is ok, but batch_size>1 will cause non-identical output config.use_cache = True config.is_decoder = True # test output equality of low versus high memory model = model_class(config).to(torch_device).eval() set_model_for_less_flaky_test(model) logits_processor_kwargs = self._get_logits_processor_kwargs(config=model.config) low_output = model.generate( **inputs_dict, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True, use_cache=True, output_scores=True, output_logits=True, return_dict_in_generate=True, **logits_processor_kwargs, ) high_output = model.generate( **inputs_dict, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False, use_cache=True, output_scores=True, output_logits=True, return_dict_in_generate=True, **logits_processor_kwargs, ) # The two outputs must match and their shape must be as expected self._check_similar_generate_outputs(low_output, high_output) @pytest.mark.generate @parameterized.expand([("random",), ("same",)]) def test_assisted_decoding_matches_greedy_search(self, assistant_type): # This test ensures that the assisted generation does not introduce output changes over greedy search. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info. # NOTE: It breaks the pattern in the tests above, for multiple reasons: # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to # prepare the assistant encoder outputs in the main generate body); # - assisted_decoding does not support `use_cache = False` # - assisted_decoding does not support `batch_size > 1` for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class(config).to(torch_device).eval() # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of # the assistant model is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": False, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } logits_processor_kwargs = self._get_logits_processor_kwargs(config=model.config) output_greedy = model.generate(**generation_kwargs, **inputs_dict, **logits_processor_kwargs) # test with the same assistant model or randomly init one # in the first case all candidate tokens are accepted, in the second none is accepted # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :) if assistant_type == "random": assistant_model = model_class(config).to(torch_device).eval() else: assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 # see b) assistant_model.generation_config.num_assistant_tokens_schedule = "constant" # see b) generation_kwargs.update({"assistant_model": assistant_model}) output_assisted = model.generate(**generation_kwargs, **inputs_dict, **logits_processor_kwargs) # The two outputs must match and their shape must be as expected self._check_similar_generate_outputs(output_greedy, output_assisted) for output in (output_greedy, output_assisted): self._check_outputs(output, model.config, use_cache=True) @pytest.mark.generate def test_prompt_lookup_decoding_matches_greedy_search(self): # This test ensures that the prompt lookup generation does not introduce output changes over greedy search. # This test is mostly a copy of test_assisted_decoding_matches_greedy_search for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", "fuyu", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class(config).to(torch_device).eval() # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of # prompt lookup is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": False, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } output_greedy = model.generate(**generation_kwargs, **inputs_dict) generation_kwargs.update({"prompt_lookup_num_tokens": 2}) # see b) output_prompt_lookup = model.generate(**generation_kwargs, **inputs_dict) # The two outputs must match and their shape must be as expected self._check_similar_generate_outputs(output_greedy, output_prompt_lookup) for output in (output_greedy, output_prompt_lookup): self._check_outputs(output, model.config, use_cache=True) @pytest.mark.generate def test_dola_decoding_sample(self): # TODO (joao): investigate skips, try to reduce incompatibilities for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support DoLa decoding") if any(model_name in model_class.__name__.lower() for model_name in ["reformer"]): self.skipTest("Skip Reformer as the lm_head input size is 2 * hidden size, adopted from Rev Nets.") if any(model_name in model_class.__name__.lower() for model_name in ["marian", "mbart", "pegasus"]): self.skipTest("DoLa is not supported for models that don't return layerwise hidden states") if any(model_name == model_class.__name__ for model_name in ["LlavaNextVideoForConditionalGeneration"]): self.skipTest(f"DoLa is failing for {model_class.__name__}") # enable cache if the model is not openai-gpt, xlnet, cpm, or xlm config, inputs_dict = self.prepare_config_and_inputs_for_generate() # Encoder-decoder models are not supported if config.is_encoder_decoder: self.skipTest("DoLa is not supported for encoder-decoder models") config.is_decoder = True model = model_class(config).to(torch_device).eval() if model.get_output_embeddings() is None: self.skipTest("DoLa is not supported for models that don't have output embeddings") logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) # Sets dola generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see b) "num_beams": 1, "do_sample": True, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": getattr(config, "use_cache", False), # Some models don't support the cache "dola_layers": "low", } output_dola = model.generate(**generation_kwargs, **logits_processor_kwargs, **inputs_dict) self._check_outputs(output_dola, model.config, use_cache=getattr(config, "use_cache", False)) @pytest.mark.generate def test_assisted_decoding_sample(self): # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535). for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class(config).to(torch_device).eval() # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of # the assistant model is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 # see b) assistant_model.generation_config.num_assistant_tokens_schedule = "constant" # see b) generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": True, "assistant_model": assistant_model, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } output_assisted = model.generate(**generation_kwargs, **inputs_dict) self._check_outputs(output_assisted, config, use_cache=True) @pytest.mark.generate def test_prompt_lookup_decoding_stops_at_eos(self): # This test ensures that the prompt lookup generation stops at eos token and does not suggest more tokens # (see https://github.com/huggingface/transformers/pull/31301) # The main idea is to have an ngram (unigram in our case) that is repeated twice in the input ids. # First time at the very end, so input ends with the unigrams, and second any arbitrary location. # Also, we need an EOS token which will be injected just after the arbitrary located ngram. # We verify that PLD will not copy and propose candidated that contain an EOS token, even if there are overlapping ngrams # in input ids. Otherwise a proposed EOS along with the trailing (ngrams-1) tokens might be accepted by the target model. # That seems as if the model "generated" and EOS but didn't stop from user's perspective input_ids = torch.randint(1, 50, (1, 10), device=torch_device) # generate inputs in range from 1-50 arbitrary_ngram = 51 # this is the arbitrary ngram, specifically chosen OOV to prevent flaky tests input_ids[:, 3] = arbitrary_ngram # set pre-eos to arbitrary_ngram which is for sure not present in inputs input_ids[:, -1] = arbitrary_ngram # put arbitrary_ngram in the end for the necessary match to happen eos_token_id = torch.tensor([0], device=torch_device) input_ids[:, 4] = eos_token_id # inject eos-token-id in input ids so that it is located after arbitrary_ngram # init cand geenerator with max_matching_ngram_size=1 to match per-token candidate_generator = PromptLookupCandidateGenerator( eos_token_id=eos_token_id, num_output_tokens=4, max_matching_ngram_size=1 ) output_prompt_lookup = candidate_generator.get_candidates(input_ids)[0] # PLD shouldn't propose any new tokens based on eos-match self.assertTrue(output_prompt_lookup.shape[-1] == 10) @pytest.mark.generate def test_generate_with_head_masking(self): """Test designed for encoder-decoder models to ensure the attention head masking is used.""" attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() text_config = config.get_text_config() # We want to test only encoder-decoder models if not text_config.is_encoder_decoder: continue model = model_class(config).to(torch_device) head_masking = { "head_mask": torch.zeros( text_config.encoder_layers, text_config.encoder_attention_heads, device=torch_device ), "decoder_head_mask": torch.zeros( text_config.decoder_layers, text_config.decoder_attention_heads, device=torch_device ), "cross_attn_head_mask": torch.zeros( text_config.decoder_layers, text_config.decoder_attention_heads, device=torch_device ), } signature = inspect.signature(model.forward) # We want to test only models where encoder/decoder head masking is implemented if not set(head_masking.keys()) < {*signature.parameters.keys()}: continue for attn_name, (name, mask) in zip(attention_names, head_masking.items()): out = model.generate( num_beams=1, output_attentions=self.has_attentions, return_dict_in_generate=True, remove_invalid_values=True, **{name: mask}, **inputs_dict, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) @pytest.mark.generate def test_left_padding_compatibility(self): # NOTE: left-padding results in small numerical differences. This is expected. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 # First, filter out models that don't support left padding # - The model must have generative capabilities if len(self.all_generative_model_classes) == 0: self.skipTest(reason="No generative architecture available for this model.") # - The model must support padding if not self.has_attentions: self.skipTest(reason="This model doesn't support padding.") # - The model must be a decoder-only architecture (encoder-based architectures use right-padding) decoder_only_classes = [] for model_class in self.all_generative_model_classes: config, _ = self.prepare_config_and_inputs_for_generate() if config.is_encoder_decoder: continue else: decoder_only_classes.append(model_class) if len(decoder_only_classes) == 0: self.skipTest(reason="No decoder-only architecture available for this model.") # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't # added support for it yet. We skip these models for now. has_encoder_attributes = any( attr_name for attr_name in config.to_dict().keys() if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size" ) if has_encoder_attributes: self.skipTest( reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding." ) # Then, test left-padding def _prepare_model_kwargs(input_ids, attention_mask, signature): model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask} if "position_ids" in signature: position_ids = torch.cumsum(attention_mask, dim=-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) model_kwargs["position_ids"] = position_ids if "cache_position" in signature: cache_position = torch.arange(input_ids.shape[-1], device=torch_device) model_kwargs["cache_position"] = cache_position return model_kwargs for model_class in decoder_only_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict.get("attention_mask") if attention_mask is None: attention_mask = torch.ones_like(input_ids) model = model_class(config).to(torch_device).eval() signature = inspect.signature(model.forward).parameters.keys() # no cache as some models require special cache classes to be init outside forward model.generation_config.use_cache = False # Without padding model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature) next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :] # With left-padding (length 32) # can hardcode pad_token to be 0 as we'll do attn masking anyway pad_token_id = ( config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0 ) pad_size = (input_ids.shape[0], 32) padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id padded_input_ids = torch.cat((padding, input_ids), dim=1) padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1) model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature) next_logits_with_padding = model(**model_kwargs).logits[:, -1, :] # They should result in very similar logits torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5) @pytest.mark.generate def test_past_key_values_format(self): # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a # standard KV cache format is important for a consistent API (and for advanced generation methods). for model_class in self.all_generative_model_classes: config, inputs = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") model = model_class(config).to(torch_device) if "use_cache" not in inputs: inputs["use_cache"] = True outputs = model(**inputs) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") text_config = config.get_text_config() num_hidden_layers = ( getattr(text_config, "decoder_layers", None) or getattr(text_config, "num_decoder_layers", None) or text_config.num_hidden_layers ) num_attention_heads = getattr(text_config, "decoder_attention_heads", text_config.num_attention_heads) embed_dim = getattr(text_config, "d_model", text_config.hidden_size) per_head_embed_dim = embed_dim // num_attention_heads # some models have diffent num-head for query vs key/value so we need to assign correct value # BUT only after `per_head_embed_dim` is set num_attention_heads = ( text_config.num_key_value_heads if getattr(text_config, "num_key_value_heads", None) is not None else num_attention_heads ) past_kv = outputs["past_key_values"] self.assertEqual(len(past_kv), num_hidden_layers) # Encoder-Decoder checks if config.is_encoder_decoder: encoder_num_attention_heads = config.encoder_attention_heads encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads batch_size, seq_length = inputs["decoder_input_ids"].shape for i in range(num_hidden_layers): self.assertEqual(len(past_kv[i]), 4) # K V for the decoder + K V for the encoder = 4 self.assertEqual( past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) # The sequence length for the encoder K V depends on the model. Since it is not manipulated in # autoregressive generation, I'm keeping the test general and not checking the 3rd dim self.assertEqual( (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]), (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim), ) self.assertEqual( (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]), (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim), ) # Decoder-only checks else: # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other # tests use it) key = "input_ids" if "input_ids" in inputs else "pixel_values" batch_size, seq_length = inputs[key].shape for i in range(num_hidden_layers): self.assertEqual(len(past_kv[0]), 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @pytest.mark.generate @parameterized.expand([("greedy", 1), ("beam search", 2)]) def test_generate_from_inputs_embeds(self, _, num_beams): """Tests that we can generate from `inputs_embeds` instead of `input_ids` in LLMs, VLMs, etc""" # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids` # if fails, you should probably update the `prepare_inputs_for_generation` function for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the # decoder) if config.is_encoder_decoder: continue config.is_decoder = True # Skip models without explicit support model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): continue # There are a few exception patterns in this test: # 1 - Some models can't generate without `input_ids`, when `inputs_embeds` are passed requires_inputs_ids = any(model_name in model_class.__name__.lower() for model_name in ["idefics"]) # 2 - Complex `inputs_embeds` computation, i.e. the correct computation of inputs embeds is more complex # than calling the embedding layer with `input_ids`. Subcases of this exception: # 2.A - Ignore `scale_embedding`, if the model supports it (it is controlled by a model-dependent flag) if hasattr(config, "scale_embedding"): config.scale_embedding = False # 2.B - Some VLMs assume `inputs_embeds` and `pixel_values` are mutually exclusive AND fall in the # exception above (complex `inputs_embeds` computation). Popping `pixel_values` allow us to run the # checks without adding test complexity. Ditto for `pixel_values_videos` and `pixel_values_images` pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in ["llava", "idefics2", "idefics3", "mllama", "paligemma", "emu3", "gotocr2"] ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) # 2.C - No easy fix, let's skip the check that compares the outputs from `input_ids` and `inputs_embeds` has_complex_embeds_computation = any( model_name in model_class.__name__.lower() for model_name in ["moshi", "qwen2vl", "qwen2_5_vl"] ) # 3 - `inputs_dict` doesn't contain `attention_mask`. When `attention_mask` is not passed to generate, # we infer it from `input_ids`. The last test case will fail if there is a pad token in the original input. missing_attention_mask = "attention_mask" not in inputs_dict # Traditional way of generating text input_ids = inputs_dict.pop("input_ids") generation_kwargs = { "return_dict_in_generate": True, "output_scores": True, "num_beams": num_beams, "do_sample": False, "max_new_tokens": 5, "min_new_tokens": 5, # generate exactly 5 tokens } outputs_from_ids = model.generate(input_ids, **generation_kwargs, **inputs_dict) self.assertEqual(outputs_from_ids.sequences.shape, (input_ids.shape[0], input_ids.shape[1] + 5)) # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output). # The output of the two calls should be the same. inputs_embeds = model.get_input_embeddings()(input_ids) outputs_from_embeds = model.generate( input_ids, inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) if not has_complex_embeds_computation: self._check_similar_generate_outputs(outputs_from_ids, outputs_from_embeds) # If we pass different inputs_embeds, we should get different outputs (the output text may be the # same, but the logits will almost surely be different) random_embeds = torch.rand_like(inputs_embeds) outputs_from_rand_embeds = model.generate( input_ids, inputs_embeds=random_embeds, **generation_kwargs, **inputs_dict ) for i in range(len(outputs_from_rand_embeds.scores)): self.assertFalse(torch.allclose(outputs_from_embeds.scores[i], outputs_from_rand_embeds.scores[i])) # input_ids is not a required input on most models -- if we don't pass it, the newly generated tokens will # be the same if not (requires_inputs_ids or missing_attention_mask): outputs_from_embeds_wo_ids = model.generate( inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) outputs_from_embeds.sequences = outputs_from_embeds.sequences[:, inputs_embeds.shape[1] :] self._check_similar_generate_outputs(outputs_from_embeds_wo_ids, outputs_from_embeds) @pytest.mark.generate def test_generate_from_inputs_embeds_with_static_cache(self): """ Test that StaticCache can generate from inputs_embeds and calculates max_cache_length correctly in `generate()`. We force the model to not stop generation until max-length is reached to verify that the cache length is indeed set correctly and we don't run out of index when slicing the cache. """ for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if config.is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): self.skipTest(reason="This model does not support `inputs_embeds` in generation") # Some VLMs assume `inputs_embeds` and `pixel_values` are mutually exclusive AND fall in the # exception above (complex `inputs_embeds` computation). Popping `pixel_values` allow us to run the # checks without adding test complexity. Ditto for `pixel_values_videos` and `pixel_values_images` pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in ["llava", "idefics2", "idefics3", "mllama", "paligemma", "emu3"] ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) input_ids = inputs_dict.pop("input_ids") model.config.use_cache = True model.config.is_decoder = True batch_size = input_ids.shape[0] max_cache_len = 30 # here we force to not stop at eos and go until max-length model.generation_config.eos_token_id = model.config.get_text_config().eos_token_id = -1 generation_kwargs = { "max_length": max_cache_len, "cache_implementation": "static", "return_dict_in_generate": True, # Required to return `past_key_values` } text_config = model.config.get_text_config() head_dim = ( text_config.head_dim if hasattr(text_config, "head_dim") else text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers inputs_embeds = model.get_input_embeddings()(input_ids) max_cache_len += inputs_embeds.shape[1] outputs = model.generate(inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict) # we should get `max_length` in shape, not `max_length - embeds_length` cache_shape = (batch_size, num_key_value_heads, max_cache_len, head_dim) self.assertTrue(isinstance(outputs.past_key_values, StaticCache)) self.assertTrue(len(outputs.past_key_values.key_cache) == num_hidden_layers) self.assertTrue(outputs.past_key_values.key_cache[0].shape == cache_shape) @pytest.mark.generate def test_generate_continue_from_past_key_values(self): # Tests that we can continue generating from past key values, returned from a previous `generate` call for model_class in self.all_generative_model_classes: if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]): self.skipTest(reason="Won't fix: old model with unique inputs/caches/other") if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]): self.skipTest(reason="TODO: needs modeling or test input preparation fixes for compatibility") config, inputs = self.model_tester.prepare_config_and_inputs_for_common() if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") # Let's make it always: # 1. use cache (for obvious reasons) # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which # would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the # continuation would force it to generate beyond an EOS token) # 3. ignore `token_type_ids` for simplicity # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is # active by default on some models # 5. ignore `encoder_no_repeat_ngram_size`, which is set by default in some encoder-decoder models. When # we use their decoder as a stand-alone model, `encoder_no_repeat_ngram_size` actually prevents # repetition exclusively from the prompt. This test relies on comparing one call vs 2 calls # with cache, what is considered a prompt is different in the two cases. if "token_type_ids" in inputs: del inputs["token_type_ids"] model = model_class(config).to(torch_device) model.eval() model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1 model.generation_config.forced_eos_token_id = None model.generation_config.encoder_no_repeat_ngram_size = 0 model.generation_config.use_cache = True # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format) outputs = model(**inputs) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") # Traditional way of generating text, with `return_dict_in_generate` to return the past key values outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True) # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the # inputs may need to be tweaked across `generate` calls (like the attention mask). outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True) # Continue from the tokens generated above, preparing the inputs accordingly inputs["past_key_values"] = outputs_cached.past_key_values new_attention_len = outputs_cached.sequences.shape[-1] if config.is_encoder_decoder: inputs["decoder_input_ids"] = outputs_cached.sequences if "decoder_attention_mask" in inputs: inputs["decoder_attention_mask"] = torch.nn.functional.pad( inputs["decoder_attention_mask"], (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]), mode="constant", value=1, ) else: inputs["input_ids"] = outputs_cached.sequences if "attention_mask" in inputs: inputs["attention_mask"] = torch.nn.functional.pad( inputs["attention_mask"], (0, new_attention_len - inputs["attention_mask"].shape[1]), mode="constant", value=1, ) outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True) # The two sets of generated text and past kv should be equal to each other self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist()) for layer_idx in range(len(outputs_cached.past_key_values)): for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])): self.assertTrue( torch.allclose( outputs.past_key_values[layer_idx][kv_idx], outputs_cached.past_key_values[layer_idx][kv_idx], ) ) @pytest.mark.generate def test_generate_continue_from_inputs_embeds(self): """Tests that we can continue generation from `inputs_embeds` and past key values returned from a previous `generate` call.""" for model_class in self.all_generative_model_classes: if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]): self.skipTest(reason="Won't fix: old model with unique inputs/caches/other") if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]): self.skipTest(reason="TODO: needs modeling or test input preparation fixes for compatibility") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if "token_type_ids" in inputs_dict: del inputs_dict["token_type_ids"] if config.is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder") if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): self.skipTest(reason="This model does not support `inputs_embeds` in generation") # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format) outputs = model(**inputs_dict) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in ["llava", "idefics2", "idefics3", "mllama", "paligemma", "emu3"] ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) input_ids = inputs_dict.pop("input_ids") model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1 model.generation_config.forced_eos_token_id = None model.config.is_decoder = True model.generation_config.use_cache = True generation_kwargs = { "return_dict_in_generate": True, "do_sample": False, } # Traditional way of generating text, with `return_dict_in_generate` to return the past key values. input_embeds = model.get_input_embeddings()(input_ids) outputs = model.generate(inputs_embeds=input_embeds, max_new_tokens=4, **generation_kwargs) # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens) initial_output = model.generate(inputs_embeds=input_embeds, max_new_tokens=3, **generation_kwargs) continued_embeds = torch.cat([input_embeds, model.get_input_embeddings()(initial_output.sequences)], dim=1) cached_output = model.generate( inputs_embeds=continued_embeds, max_new_tokens=1, past_key_values=initial_output.past_key_values, **generation_kwargs, ) # Combine the (3 + 1) generated tokens and verify it matches with full generation. combined_output_sequences = torch.concat([initial_output.sequences, cached_output.sequences], axis=1) self.assertListEqual(outputs.sequences.tolist(), combined_output_sequences.tolist()) # The two sets of past kv should be equal to each other for layer_idx in range(len(cached_output.past_key_values)): for kv_idx in range(len(cached_output.past_key_values[layer_idx])): self.assertTrue( torch.allclose( outputs.past_key_values[layer_idx][kv_idx], cached_output.past_key_values[layer_idx][kv_idx], ) ) @parameterized.expand([("offloaded",)]) # ("offloaded_static",) TODO: @raushan fixme in some models (eg T5) @require_torch_gpu @pytest.mark.generate def test_offloaded_cache_implementation(self, cache_implementation): """Tests we can generate by indicating `cache_implementation` for each possible cache class""" for model_class in self.all_generative_model_classes: if not model_class._supports_cache_class: self.skipTest(reason="This model does not support the new cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() generation_kwargs = { "max_new_tokens": 5, "use_cache": True, "cache_implementation": cache_implementation, } legacy_results = model.generate(**generation_kwargs, **inputs_dict) # Most cache classes have their own tests except for some that are tested here # The ones here do not need special treatment when passing `cache_implementation` # and are not bound to specific models only new_results = model.generate(**generation_kwargs, **inputs_dict) self.assertListEqual(legacy_results.tolist(), new_results.tolist()) @pytest.mark.generate def test_generate_with_static_cache(self): """ Tests that generating with static cache give almost same results as with dynamic cache, and the output cache has the expected shapes """ set_model_tester_for_less_flaky_test(self) for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() set_config_for_less_flaky_test(config) main_input = inputs_dict[model_class.main_input_name] if config.is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") config.is_decoder = True batch_size = main_input.shape[0] seq_length = main_input.shape[-1] max_new_tokens = 20 for dtype in (torch.float32, torch.float16): model = model_class(config).to(torch_device).to(dtype).eval() inputs_dict = { k: v.to(dtype) if isinstance(v, torch.Tensor) and torch.is_floating_point(v) else v for k, v in inputs_dict.items() } set_model_for_less_flaky_test(model) generation_kwargs = { "max_new_tokens": max_new_tokens, "return_dict_in_generate": True, # Required to return `past_key_values` "output_scores": True, "use_cache": True, } static_cache_generation = model.generate( **generation_kwargs, **inputs_dict, cache_implementation="static" ) # Check 1: The cache shapes must match the expected shapes max_cache_len = seq_length + max_new_tokens text_config = config.text_config if hasattr(config, "text_config") else config head_dim = ( text_config.head_dim if hasattr(text_config, "head_dim") else text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers cache_shape = (batch_size, num_key_value_heads, max_cache_len, head_dim) self.assertTrue(isinstance(static_cache_generation.past_key_values, StaticCache)) self.assertTrue(len(static_cache_generation.past_key_values.key_cache) == num_hidden_layers) self.assertTrue(static_cache_generation.past_key_values.key_cache[0].shape == cache_shape) # Check 2: The outputs must be similar to the case with dynamic cache dynamic_cache_generation = model.generate(**generation_kwargs, **inputs_dict) self._check_similar_generate_outputs(dynamic_cache_generation, static_cache_generation) @require_optimum_quanto @pytest.mark.generate def test_generate_with_quant_cache(self): for model_class in self.all_generative_model_classes: if not model_class._supports_quantized_cache: self.skipTest(reason="This model does not support the quantized cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() config.is_decoder = True model = model_class(config).to(torch_device).eval() generation_kwargs = { "max_new_tokens": 5, "cache_implementation": "quantized", # careful with group size, should be divisor of model's hidden size "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128}, "return_dict_in_generate": True, # Required to return `past_key_values` "use_cache": True, } results = model.generate(**generation_kwargs, **inputs_dict) self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache)) # passing past key values of different type should raise Error with self.assertRaises(ValueError): model.generate(past_key_valyes=DynamicCache(), **generation_kwargs, **inputs_dict) # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128} with self.assertRaises(ValueError): model.generate(**generation_kwargs, **inputs_dict) @pytest.mark.generate def test_generate_compile_model_forward(self): """ Tests that `.generate` is compatible with torch.compile without graph breaks, keeping the same results. ⚠️ Runs two sequential generations to ensure the cache doesn't get stuck after the first compiled run! ⚠️ """ for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest("This model doesn't support static cache (= no expectations of compilation support)") config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=4) model = model_class(config).to(torch_device) model.eval() # otherwise `self.training` is `True` -- this flag is used at attn mask creation time main_input = inputs_dict[model.main_input_name].to(torch_device) # creates two sets of *different* inputs with the same shape half_batch_size = main_input.shape[0] // 2 input_1 = {} input_2 = {} for key, value in inputs_dict.items(): if isinstance(value, torch.Tensor): input_1[key] = value[:half_batch_size, :].to(torch_device) input_2[key] = value[half_batch_size : half_batch_size * 2, :].to(torch_device) else: input_1[key] = value input_2[key] = value model_input_sets = [input_1, input_2] self.assertTrue( model_input_sets[0][model.main_input_name].shape == model_input_sets[1][model.main_input_name].shape ) # compilation-specific setup torch.compiler.reset() # prevent cached compilation from being used in the test has_defined_cache_implementation = model.generation_config.cache_implementation is not None model.generation_config.compile_config._compile_all_devices = True # force compilation (e.g. fast CI, CPU) generation_kwargs = { "do_sample": False, "max_new_tokens": 5, "return_dict_in_generate": True, "output_scores": True, } # get eager + dynamic cache results for future comparison dynamic_outputs = [] for model_inputs in model_input_sets: gen_out = model.generate(**model_inputs, **generation_kwargs) dynamic_outputs.append(gen_out) # sanity checks for the default cache implementation if not has_defined_cache_implementation: decoder_cache = ( gen_out.past_key_values.self_attention_cache if config.is_encoder_decoder else gen_out.past_key_values ) self.assertTrue(isinstance(decoder_cache, DynamicCache)) self.assertFalse(decoder_cache.is_compileable) self.assertFalse(hasattr(model, "_compiled_call")) # our auto compile should NOT have been called # get compiled results -- relies on the automatic compilation triggered by specific "cache_implementation" if not has_defined_cache_implementation: generation_kwargs["cache_implementation"] = "static" compiled_outputs = [] for model_inputs in model_input_sets: gen_out = model.generate(**model_inputs, **generation_kwargs) compiled_outputs.append(gen_out) # sanity checks decoder_cache = ( gen_out.past_key_values.self_attention_cache if config.is_encoder_decoder else gen_out.past_key_values ) self.assertFalse(isinstance(decoder_cache, DynamicCache)) self.assertTrue(decoder_cache.is_compileable) self.assertTrue(hasattr(model, "_compiled_call")) # our auto compile should have been called for dynamic_result, compiled_result in zip(dynamic_outputs, compiled_outputs): self._check_similar_generate_outputs(dynamic_result, compiled_result) @pytest.mark.generate def test_generate_methods_with_logits_to_keep(self): for model_class in self.all_generative_model_classes: if "logits_to_keep" not in set(inspect.signature(model_class.forward).parameters.keys()): self.skipTest(reason="This model does not support `logits_to_keep` argument.") config, inputs_dict = self.prepare_config_and_inputs_for_generate() config.use_cache = True config.is_decoder = True model = model_class(config).to(torch_device).eval() # All generation methods (except assisted decoding) rely on always extracting the last token logits of the # full logits matrix, so testing out only greedy search and assisted decoding is enough (if it works, # other methods will work as well) generation_kwargs = { "max_new_tokens": 10, "do_sample": False, } # Setting logits_to_keep at 0 keeps all logits (old behavior) with_all_logits = model.generate(**generation_kwargs, **inputs_dict, logits_to_keep=0) # By default, logits_to_keep is automatically set to 1 if not provided (new behavior) without_all_logits = model.generate(**inputs_dict, **generation_kwargs) self.assertEqual(with_all_logits.tolist(), without_all_logits.tolist()) @pytest.mark.generate def test_assisted_decoding_with_logits_to_keep(self): for model_class in self.all_generative_model_classes: if "logits_to_keep" not in set(inspect.signature(model_class.forward).parameters.keys()): self.skipTest(reason="This model does not support `logits_to_keep` argument.") if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.use_cache = True config.is_decoder = True model = model_class(config).to(torch_device).eval() assistant_model = model # All generation methods (except assisted decoding) rely on always extracting the last token logits of the # full logits matrix, so testing out only greedy search and assisted decoding is enough (if it works, # other methods will work as well) generation_kwargs = { "max_new_tokens": 10, "do_sample": False, "assistant_model": assistant_model, "return_dict_in_generate": True, "output_scores": True, } # Setting logits_to_keep at 0 keeps all logits (old behavior) with_all_logits = model.generate(**generation_kwargs, **inputs_dict, logits_to_keep=0) # By default, logits_to_keep is automatically set to 1 if not provided (new behavior) without_all_logits = model.generate(**inputs_dict, **generation_kwargs) self._check_similar_generate_outputs(with_all_logits, without_all_logits) @pytest.mark.generate def test_inherits_generation_mixin(self): """ Tests that the model class directly inherits `GenerationMixin`, as opposed to relying on `PreTrainedModel` to inherit it. """ for model_class in self.all_generative_model_classes: self.assertTrue("GenerationMixin" in str(model_class.__bases__)) def _test_attention_implementation(self, attn_implementation): """ Compares the output of generate with the eager attention implementation against other implementations. NOTE: despite the test logic being the same, different implementations actually need diferent decorators, hence this separate function. """ max_new_tokens = 30 support_flag = { "sdpa": "_supports_sdpa", "flash_attention_2": "_supports_flash_attn_2", } for model_class in self.all_generative_model_classes: if not getattr(model_class, support_flag[attn_implementation]): self.skipTest(f"{model_class.__name__} does not support `attn_implementation={attn_implementation}`") config, original_inputs_dict = self.prepare_config_and_inputs_for_generate() inputs_dict = {} for input_name, input_data in original_inputs_dict.items(): if isinstance(input_data, torch.Tensor) and input_data.dtype in [torch.float32, torch.bfloat16]: inputs_dict[input_name] = input_data.to(torch.float16) else: inputs_dict[input_name] = input_data main_input = inputs_dict[model_class.main_input_name] # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + main_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) del model gc.collect() generate_kwargs = { "max_new_tokens": max_new_tokens, "do_sample": False, "return_dict_in_generate": True, "output_scores": True, "use_cache": True, } model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) res_eager = model_eager.generate(**inputs_dict, **generate_kwargs) del model_eager gc.collect() model_attn = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True, attn_implementation=attn_implementation, ).to(torch_device) res_attn = model_attn.generate(**inputs_dict, **generate_kwargs) del model_attn gc.collect() self._check_similar_generate_outputs(res_eager, res_attn, atol=1e-3, rtol=1e-3) @pytest.mark.generate @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): """Tests that generate has equivalent outputs with SDPA and eager attention implementations.""" self._test_attention_implementation("sdpa") @pytest.mark.flash_attn_test @require_flash_attn @require_torch_gpu @slow def test_eager_matches_fa2_generate(self): """Tests that generate has equivalent outputs with FA2 and eager attention implementations.""" # TODO (@joao @raushan) -- this test is failing the output checks on most models, investigate. After fixing, # check whether we still need the overwrites self._test_attention_implementation("flash_attention_2") def _check_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1): input_batch_size = int(output.sequences.shape[0] / num_return_sequences) internal_batch_size = ( input_batch_size * num_beams if num_beams > 1 else input_batch_size * num_return_sequences ) seq_length = getattr(self.model_tester, "seq_length", None) seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length) seq_length = getattr(self.model_tester, "text_seq_length", seq_length) config = config.text_config if hasattr(config, "text_config") else config gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # in some models we subsample the sequence length in inner layers if hasattr(self.model_tester, "get_subsampled_output_lengths"): seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) # scores self._check_scores(internal_batch_size, output.scores, length=gen_len, config=config) # unprocessed logits self._check_logits(internal_batch_size, output.logits, config=config) # Attentions if self.has_attentions: if config.is_encoder_decoder: # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, input_batch_size, config, seq_length ) # decoder self._check_attentions_for_generate( internal_batch_size, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) else: # if use_cache first input is equal to no use_cache, so skip here attentions = output.attentions if not use_cache else output.attentions[1:] min_length = seq_length if not use_cache else seq_length + 1 self._check_attentions_for_generate( internal_batch_size, attentions=attentions, min_length=min_length, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States if config.is_encoder_decoder: # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, input_batch_size, config, seq_length ) # decoder self._check_hidden_states_for_generate( internal_batch_size, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) else: # if use_cache first input is equal to no use_cache, so skip here hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:] min_length = seq_length if not use_cache else seq_length + 1 self._check_hidden_states_for_generate( internal_batch_size, hidden_states, min_length=min_length, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Past Key Value States -- a few notes here: # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1" # 2. We ignore models that have unique cache structures (e.g. mamba) or are in need of refatoring to match the # standard cache format (e.g.gptbigcode ) models_without_standard_cache = ( "bamba", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba", "mamba", "xlnet", "zamba", "zamba2", ) has_standard_cache = not any( model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache ) if has_standard_cache: if use_cache: past_key_values = output.past_key_values past_sequence_length = output.sequences.shape[-1] - 1 self._check_past_key_values_for_generate( internal_batch_size, past_key_values, seq_length=past_sequence_length, config=config, ) elif use_cache is False: self.assertTrue(output.past_key_values is None) def _check_scores(self, batch_size, scores, length, config): vocab_size = config.get_text_config(decoder=True).vocab_size expected_shape = (batch_size, vocab_size) self.assertIsInstance(scores, tuple) self.assertEqual(len(scores), length) self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) def _check_logits(self, batch_size, scores, config): vocab_size = config.get_text_config(decoder=True).vocab_size self.assertIsInstance(scores, tuple) self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores)) # vocabulary difference equal to one (imagegptmodel?) or zero (all other models) vocab_diff = vocab_size - scores[0].shape[-1] self.assertTrue(vocab_diff in [0, 1]) self.assertListEqual([vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores)) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 src_len = min_length + idx expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length): encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length) self.assertIsInstance(attentions, tuple) self.assertListEqual( [layer_attentions.shape for layer_attentions in attentions], [encoder_expected_shape] * len(attentions), ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx if not use_cache else 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length): encoder_expected_shape = (batch_size, seq_length, config.hidden_size) self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in hidden_states], [encoder_expected_shape] * len(hidden_states), ) def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1): self.assertIsInstance(past_key_values, (tuple, Cache)) # Encoder-decoder models: pull and verify the decoder cache if isinstance(past_key_values, EncoderDecoderCache): past_key_values = past_key_values.self_attention_cache # (batch, head, seq_length, head_features) expected_shape = ( batch_size * num_beam_groups, config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads, seq_length, config.hidden_size // config.num_attention_heads, ) if isinstance(past_key_values, Cache): self.assertListEqual( [key_tensor.shape for key_tensor in past_key_values.key_cache], [expected_shape] * len(past_key_values.key_cache), ) self.assertListEqual( [value_tensor.shape for value_tensor in past_key_values.value_cache], [expected_shape] * len(past_key_values.value_cache), ) # Legacy cache format checks. This branch should be removed when all models use `Cache` by default else: self.assertListEqual( [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values], [True] * len(past_key_values), ) # check shape key, value self.assertListEqual( [layer_past_key_values[0].shape for layer_past_key_values in past_key_values], [expected_shape] * len(past_key_values), ) self.assertListEqual( [layer_past_key_values[1].shape for layer_past_key_values in past_key_values], [expected_shape] * len(past_key_values), ) def _check_sequence_inside_sequence(self, tensor_1, tensor_2): # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1. # set to same device. we don't care what device. if not isinstance(tensor_1, list): tensor_1 = tensor_1.cpu().tolist() if not isinstance(tensor_2, list): tensor_2 = tensor_2.cpu().tolist() in_order = len(tensor_1) <= len(tensor_2) longer = tensor_2 if in_order else tensor_1 shorter = tensor_1 if in_order else tensor_2 flag = False chunk_size = len(shorter) for chunk_idx in range(len(longer) - chunk_size + 1): subseq = longer[chunk_idx : chunk_idx + chunk_size] if subseq == shorter: flag = True break self.assertTrue(flag) @require_torch class UtilsFunctionsTest(unittest.TestCase): def test_speculative_sampling(self): # assume vocab size 10, input length 5 + 3 generated candidates candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]]) # input tokens candidate_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 4 [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0], # generated 5 ] ] ) candidate_length = 3 inf = float("inf") new_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # accepts 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # accepts 4 [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf], # rejects 5, accepts 8 [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # N/A ] ] ) last_assistant_token_is_eos = False validated_tokens, n_matches = _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, last_assistant_token_is_eos, ) self.assertTrue(n_matches.item() == 2) self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8]) def test_speculative_sampling_target_distribution(self): """ Asserts that the target distribution is preserved. Should help with catching issues like #32867. """ # assume vocab size 10, input length 5 + 3 generated candidates candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]]) # input tokens candidate_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 4 [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0], # generated 5 ] ] ) candidate_length = 3 inf = float("inf") new_logits = torch.tensor( [ [ # accepts 1: [-inf, 10.0, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], # accepts 4: [-inf, -inf, -inf, -inf, 10.0, -inf, -inf, -inf, -inf, -inf], # most likely to be 1 or 8, less likely to be 3, then 7, and should never be any other value: [-inf, 2.0, -inf, 1.0, -inf, -inf, -inf, -0.01, 2.0, -inf], # N/A: [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], ] ] ) last_assistant_token_is_eos = False last_validated_token = [] for _ in range(10_000): validated_tokens, n_matches = _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, last_assistant_token_is_eos, ) self.assertTrue(n_matches.item() == 2) self.assertTrue(validated_tokens.tolist()[0][0] == 1) self.assertTrue(validated_tokens.tolist()[0][1] == 4) self.assertTrue(validated_tokens.tolist()[0][2] in [1, 3, 7, 8]) last_validated_token.append(validated_tokens.tolist()[0][2]) # check that the most likely tokens are selected more often than the less likely ones last_token_counts = collections.Counter(last_validated_token) self.assertTrue(last_token_counts[1] > last_token_counts[3] > last_token_counts[7] > 0) self.assertTrue(last_token_counts[8] > last_token_counts[3]) @pytest.mark.generate @require_torch class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_torch_available(): framework_dependent_parameters = { "AutoModelForCausalLM": AutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq, "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM, "AutoModelForVision2Seq": AutoModelForVision2Seq, "LogitsProcessorList": LogitsProcessorList, "MinLengthLogitsProcessor": MinLengthLogitsProcessor, "create_tensor_fn": torch.tensor, "floats_tensor": floats_tensor, "return_tensors": "pt", } @slow def test_diverse_beam_search(self): # PT-only test: TF doesn't have a diverse beam search implementation article = """Justin Timberlake and Jessica Biel, welcome to parenthood. The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People. "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports. The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both.""" bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) outputs = bart_model.generate( input_ids, num_beams=4, num_return_sequences=2, num_beam_groups=4, diversity_penalty=2.0, remove_invalid_values=True, ) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the" " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle" " name, as well as his father's first. It is the first baby for both of them.", "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the" " first child for both. The couple announced the pregnancy in January. The name Silas is the middle" " name of Timberlake's maternal grandfather. It's also his own middle name.", ], ) def test_max_length_if_input_embeds(self): # PT-only test: TF doesn't have StoppingCriteria article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) inputs_embeds = model.get_input_embeddings()(input_ids) max_length = 20 input_len = input_ids.shape[-1] out_gen = model.generate(input_ids=input_ids, max_length=max_length) out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length) self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1]) def test_min_length_if_input_embeds(self): # PT-only test: TF doesn't have StoppingCriteria article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) inputs_embeds = model.get_input_embeddings()(input_ids) min_length = 10 input_len = input_ids.shape[-1] out_gen = model.generate(input_ids=input_ids, min_length=min_length) out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length) self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1]) def test_custom_stopping_criteria_overload_error(self): # PT-only test: TF doesn't have StoppingCriteria article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) stopping_criteria = StoppingCriteriaList() stopping_criteria.append(MaxLengthCriteria(max_length=42)) with self.assertRaises(ValueError): bart_model.generate(input_ids, stopping_criteria=stopping_criteria) with self.assertRaises(ValueError): bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32) def test_custom_stopping_criteria(self): # PT-only test: TF doesn't have StoppingCriteria article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) class DummyCriteria(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: return input_ids.shape[-1] >= 20 stopping_criteria = StoppingCriteriaList() stopping_criteria.append(DummyCriteria()) self.assertEqual( list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape), [1, 20], ) self.assertEqual( list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape), [1, 18], ) # TODO (joao): replace `stop_sequence` in the pipeline by the more recent `generate` functionality def test_stop_sequence_stopping_criteria(self): # PT-only test: TF doesn't have StoppingCriteria prompt = """Hello I believe in""" generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart") output = generator(prompt) self.assertEqual( output, [{"generated_text": ("Hello I believe in we we we we we we we we we")}], ) output = generator(prompt, stop_sequence=" we") self.assertEqual(output, [{"generated_text": "Hello I believe in we"}]) def test_generate_non_nlp_input_ids_as_kwarg(self): # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input model = ImageGPTForCausalImageModeling.from_pretrained( "hf-internal-testing/tiny-random-imagegpt", max_length=10 ).to(torch_device) input_ids = ids_tensor((3, 5), vocab_size=10) output_sequences_kwargs = model.generate(input_ids=input_ids).cpu() output_sequences = model.generate(input_ids).cpu() self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) self.assertEqual(output_sequences.shape, (3, 10)) def test_generate_input_values_as_encoder_kwarg(self): # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input input_values = floats_tensor((2, 250)) model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder") model = model.to(torch_device) output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu() output_sequences = model.generate(input_values, max_length=5).cpu() self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) self.assertEqual(output_sequences.shape, (2, 5)) def test_transition_scores_group_beam_search_encoder_decoder(self): # PT-only test: TF doesn't have group beam search articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = BartForConditionalGeneration.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=2, num_beam_groups=2, num_return_sequences=2, diversity_penalty=1.0, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) model = model.to(torch_device) input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) transition_scores_sum = transition_scores.sum(-1) torch.testing.assert_close(transition_scores_sum, outputs.sequences_scores, rtol=1e-3, atol=1e-3) def test_beam_search_low_memory(self): tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id model_inputs = tokenizer("I", return_tensors="pt")["input_ids"] low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True) high_output = model.generate( model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False ) self.assertListEqual(low_output.tolist(), high_output.tolist()) @slow def test_green_red_watermark_generation(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device) input_len = model_inputs["input_ids"].shape[-1] # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :) watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash") _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15) # We will not check watermarked text, since we check it in `logits_processors` tests # Checking if generated ids are as expected fails on different hardware args = { "bias": 2.0, "context_width": 1, "seeding_scheme": "selfhash", "greenlist_ratio": 0.25, "hashing_key": 15485863, } output = model.generate(**model_inputs, do_sample=False, max_length=15) output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15) # Check that the detector is detecting watermarked text detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args) detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True) detection_out = detector(output[:, input_len:], return_dict=True) self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True]) self.assertListEqual(detection_out.prediction.tolist(), [False]) """Check the mean bias inserted by the watermarking algorithm.""" @slow def test_synthid_text_watermark_generation_mean_expected_bias(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device) input_len = 5 batch_size = 200 # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :) watermark_config = SynthIDTextWatermarkingConfig(keys=[10, 20], ngram_len=5, debug_mode=True) logits_processor = watermark_config.construct_processor(model.config.vocab_size, torch_device) mean_g_values_repeats = [] for _ in range(40): input_ids = torch.zeros( (batch_size, input_len), dtype=torch.int64, device=torch_device, ) model_inputs = { "input_ids": input_ids, "attention_mask": torch.ones_like(input_ids, device=torch_device), } output = model.generate( **model_inputs, watermarking_config=watermark_config, do_sample=True, max_length=500, top_k=1000 ) g_values = logits_processor.compute_g_values(input_ids=output[:, input_len:]) context_repetition_mask = logits_processor.compute_context_repetition_mask( input_ids=output[:, input_len:], ).unsqueeze(dim=2) mean_g_values = torch.masked.mean( g_values, mask=context_repetition_mask, dim=0, keepdim=True, dtype=torch.float64, ) mean_g_values_repeats.append(mean_g_values) mean_g_values = torch.concat(mean_g_values_repeats, dim=0).mean(dim=0) expected_mean_g_value = logits_processor.expected_mean_g_value( vocab_size=model.config.vocab_size, ) atol = 0.03 is_close = torch.isclose( mean_g_values, torch.tensor(expected_mean_g_value, dtype=torch.float64), atol=atol, rtol=0, ) self.assertTrue(torch.all(is_close)) @slow def test_beam_search_example_integration(self): # PT-only test: TF doesn't have a BeamSearchScorer # exactly the example provided in the docstrings of beam search, which previously # failed after directly copying from it. Refer to PR #15555 tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids # lets run beam search using 3 beams num_beams = 3 # define decoder start token ids input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long) input_ids = input_ids * model.config.decoder_start_token_id # add encoder_outputs to model keyword arguments model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)} outputs = model.generate( input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt bist du?"]) @slow def test_constrained_beam_search(self): # PT-only test: TF doesn't have constrained beam search model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids constraints = [ PhrasalConstraint(force_tokens), PhrasalConstraint(force_tokens_2), ] starting_text = ["The soldiers were not prepared and"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, constraints=constraints, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, max_length=30, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if" " the enemy attacked them, big weapons scared" ], ) @slow def test_constrained_beam_search_mixed(self): # PT-only test: TF doesn't have constrained beam search model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids flexible_phrases = tokenizer( ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False ).input_ids constraints = [ PhrasalConstraint(force_phrase), DisjunctiveConstraint(flexible_phrases), ] starting_text = ["The soldiers", "The child"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, constraints=constraints, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, # max_length=20, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers, who had been stationed at the base for more than a year before being evacuated" " screaming scared", "The child was taken to a local hospital where he died.\n 'I don't think screaming scared", ], ) @slow def test_constrained_beam_search_mixed_mixin(self): # PT-only test: TF doesn't have constrained beam search model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_word = "scared" force_flexible = ["scream", "screams", "screaming", "screamed"] force_words_ids = [ tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids, tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids, ] starting_text = ["The soldiers", "The child"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers, who had been stationed at the base for more than a year before being evacuated" " screaming scared", "The child was taken to a local hospital where he died.\n 'I don't think screaming scared", ], ) @slow def test_cfg_mixin(self): model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True) input["input_ids"] = input["input_ids"].to(torch_device) input["attention_mask"] = input["attention_mask"].to(torch_device) outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited " 'that they had to leave the city.\n\n"We\'re going to Paris!"\n' ], ) neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True) neg["input_ids"] = neg["input_ids"].to(torch_device) neg["attention_mask"] = neg["attention_mask"].to(torch_device) outputs = model.generate( **input, max_new_tokens=32, guidance_scale=1.5, negative_prompt_ids=neg["input_ids"], negative_prompt_attention_mask=neg["attention_mask"], ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ 'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"' 'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n' ], ) @slow def test_constrained_beam_search_example_translation_mixin(self): # PT-only test: TF doesn't have constrained beam search tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" force_words = ["sind"] input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids outputs = model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt sind Sie?"]) @slow def test_constrained_beam_search_example_integration(self): # PT-only test: TF doesn't have constrained beam search tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids # lets run beam search using 5 beams num_beams = 5 # define decoder start token ids input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long) input_ids = input_ids * model.config.decoder_start_token_id # add encoder_outputs to model keyword arguments model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)} constraint_str = "sind" constraint_token_ids = tokenizer.encode(constraint_str)[:-1] # remove eos token outputs = model.generate( input_ids, num_beams=num_beams, force_words_ids=[constraint_token_ids], min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs, ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt sind Sie?"]) @slow def test_per_row_stopping_criteria(self): text = [ "They completed the challenging puzzle, revealing the hidden", "Today a dragon flew over France", "The aroma of freshly baked pizza filled the kitchen", ] stop_strings = ["secrets"] model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") tokenizer.padding_side = "left" tokenizer.pad_token_id = tokenizer.eos_token_id input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to( torch_device ) # normal generation with one stopping criteria out = model.generate(input_ids, max_length=15) out_text = tokenizer.batch_decode(out) expected_out = [ "They completed the challenging puzzle, revealing the hidden secrets of the world.\n", "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced", "The aroma of freshly baked pizza filled the kitchen with a sense of freshness", ] self.assertListEqual(out_text, expected_out) # generation should stop at "secrets" for first batch only, filling the rest with eos tokens out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer) out_text = tokenizer.batch_decode(out) expected_out = [ "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>", "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced", "The aroma of freshly baked pizza filled the kitchen with a sense of freshness", ] self.assertListEqual(out_text, expected_out) def test_constrained_beam_search_mixin_type_checks(self): # PT-only test: TF doesn't have constrained beam search tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random") model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random") encoder_input_str = "translate English to German: How old are you?" input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids with self.assertRaises(ValueError): force_words = ["sind"] force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) with self.assertRaises(ValueError): force_words = ["sind"] force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids] model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[]) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[[-1]]) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[[[-1]]]) def test_batched_decoder_start_id(self): # PT-only test: TF doesn't support batched_decoder_start_id articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) decoder_start_token_id = bart_model.generation_config.decoder_start_token_id decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0] outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id) outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch) self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist()) def test_decoder_start_id_from_config(self): # Refer to: (#30899) articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) decoder_start_token_id = bart_model.generation_config.decoder_start_token_id # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False)) # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config bart_model.generation_config.decoder_start_token_id = None bart_model.generation_config.bos_token_id = None outputs_with_user_id = bart_model.generate( input_ids, generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id), ) self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist()) with self.assertRaises(ValueError): outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False)) def test_contrastive_search_batched(self): # PT-only test: TF doesn't have constrained beam search # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs) articles = ["Foo", "Bar Baz"] tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) model.config.eos_token_id = None input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device) input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device) output_sequences_batched = model.generate( input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True ) output_sequences = model.generate( input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True ) batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True) out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True) self.assertEqual(batched_out, out) # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max() self.assertTrue(max_score_diff < 1e-5) def test_logits_processor_not_inplace(self): # PT-only test: TF fixes were not made article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True) out_with_temp = model.generate( input_ids, temperature=0.5, do_sample=True, output_logits=True, output_scores=True, return_dict_in_generate=True, ) # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist()) self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist()) def test_eos_token_id_int_and_list_top_k_top_sampling(self): # Has TF equivalent: this test relies on random sampling generation_kwargs = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } expectation = 20 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors="pt").to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) # Only some seeds will work both on CPU/GPU for a fixed `expectation` value. # The selected seed is not guaranteed to work on all torch versions. torch.manual_seed(1) eos_token_id = 846 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) torch.manual_seed(1) eos_token_id = [846, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_model_kwarg_encoder_signature_filtering(self): # Has TF equivalent: ample use of framework-specific code bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Hugging Face is a technology company based in New York and Paris.""" input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) output = bart_model.generate(input_ids).cpu().numpy() # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and # saves the day. class FakeBart(BartForConditionalGeneration): def forward(self, input_ids, foo=None, **kwargs): return super().forward(input_ids, **kwargs) bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy() self.assertTrue(np.array_equal(output, fake_output)) # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail # because it doesn't do signature filtering. class FakeEncoder(bart_model.model.encoder.__class__): def forward(self, input_ids, **kwargs): return super().forward(input_ids, **kwargs) fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device) bart_model.model.encoder = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) fake_output = bart_model.generate(input_ids).cpu().numpy() with self.assertRaises(TypeError): # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo" bart_model.generate(input_ids, foo="bar") def test_default_max_length_warning(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Default generation config value of 20 -> emits warning with self.assertWarns(UserWarning): model.generate(input_ids) # Explicitly setting max_length to 20 -> no warning with warnings.catch_warnings(record=True) as warning_list: model.generate(input_ids, max_length=20) self.assertEqual(len(warning_list), 0) # Generation config max_length != 20 -> no warning with warnings.catch_warnings(record=True) as warning_list: # generation_config is modified -> legacy mode is disabled = generation_config takes precedence model.generation_config.max_length = 10 model.generate(input_ids) self.assertEqual(len(warning_list), 0) def test_length_warning_assisted_generation(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id assistant.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # This should not raise any warning that min length is not feasible in candidate generation with warnings.catch_warnings(record=True) as warning_list: model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, max_length=20, ) self.assertEqual(len(warning_list), 0) def test_default_assisted_generation(self): # Initialize the GenerationConfig object config = GenerationConfig() # Check the default values self.assertEqual(config.num_assistant_tokens, 20) self.assertEqual(config.num_assistant_tokens_schedule, "constant") self.assertEqual(config.assistant_confidence_threshold, 0.4) self.assertEqual(config.is_assistant, False) def test_generated_length_assisted_generation(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id assistant.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, max_new_tokens=20, ) self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length)) out = model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, ) self.assertTrue((input_length + 10) <= out.shape[-1]) out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=7, ) self.assertTrue(out.shape[-1] <= (input_length + 7)) def test_model_kwarg_assisted_decoding_decoder_only(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Traditional way of generating text outputs_normal = model.generate(input_ids) self.assertEqual(outputs_normal.shape, (1, 20)) # Should be different with token_type_ids outputs_tti = model.generate( input_ids, token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device), ) with self.assertRaises(AssertionError): self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist()) # Assistant model assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant.config.pad_token_id = tokenizer.eos_token_id # If assisted generation passes model_kwargs correctly, should be same as previous outputs_assisted = model.generate( input_ids, token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device), assistant_model=assistant, ) self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist()) def test_model_kwarg_assisted_decoding_encoder_decoder(self): """ Tests that the following scenario is compatible with assisted generation: 1. encoder-decoder main model 2. encoder-decoder assistant model 3. both have a custom input (e.g. Whisper) """ # PT-only test: TF doesn't support assisted decoding yet. # Bart subclass with a kwarg that distorts the output class FakeBart(BartForConditionalGeneration): def forward(self, input_ids, past_key_values, foo=False, **kwargs): outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs) if foo: outs["logits"][:, :, :] = 0.0 return outs def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs): kwargs["encoder_outputs"] = encoder_outputs inputs = super().prepare_inputs_for_generation(*args, **kwargs) inputs["foo"] = foo return inputs model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to( torch_device ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Traditional way of generating text outputs_normal = model.generate(input_ids) self.assertEqual(outputs_normal.shape, (1, 20)) # Should be different with foo outputs_foo = model.generate(input_ids, foo=True) with self.assertRaises(AssertionError): self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist()) # Assistant model assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to( torch_device ) # If assisted generation passes model_kwargs correctly, should be same as previous outputs_assisted = model.generate( input_ids, foo=True, assistant_model=assistant, ) self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist()) # Check that passing encoder_outputs directly also works as expected encoder_outputs = assistant.get_encoder()(input_ids) outputs_assisted = model.generate( foo=True, assistant_model=assistant, encoder_outputs=encoder_outputs, assistant_encoder_outputs=encoder_outputs, ) self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist()) def test_assisted_decoding_encoder_decoder_shared_encoder(self): """ Tests that the following scenario is compatible with assisted generation: 1. encoder-decoder main model 2. decoder-only assistant model 3. both have a custom input (e.g. DistilWhisper) """ # PT-only test: TF doesn't support assisted decoding yet. # Bart subclass with a kwarg called foo that distorts the output class FakeBartSeq2Seq(BartForConditionalGeneration): def forward(self, input_ids, foo=False, **kwargs): outs = super().forward(input_ids, **kwargs) if foo: outs["logits"][:, :, :] = 0.0 return outs def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs): kwargs["encoder_outputs"] = encoder_outputs inputs = super().prepare_inputs_for_generation(*args, **kwargs) inputs["foo"] = foo return inputs class FakeBartCausalLM(BartForCausalLM): def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs): outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs) if foo: outs["logits"][:, :, :] = 0.0 return outs def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs): kwargs["encoder_outputs"] = encoder_outputs inputs = super().prepare_inputs_for_generation(*args, **kwargs) inputs["foo"] = foo return inputs model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to( torch_device ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Traditional way of generating text outputs_normal = model.generate(input_ids) self.assertEqual(outputs_normal.shape, (1, 20)) # Should be different with foo outputs_foo = model.generate(input_ids, foo=True) with self.assertRaises(AssertionError): self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist()) # Assistant model assistant = FakeBartCausalLM.from_pretrained( "hf-internal-testing/tiny-random-BartForConditionalGeneration" ).to(torch_device) # If assisted generation passes model_kwargs correctly, should be same as previous outputs_assisted = model.generate( input_ids, foo=True, assistant_model=assistant, ) self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist()) # Check that passing encoder_outputs directly also works as expected encoder_outputs = model.get_encoder()(input_ids) outputs_assisted = model.generate( foo=True, assistant_model=assistant, encoder_outputs=encoder_outputs, ) self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist()) def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self): # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly. prompt = "Alice and Bob" checkpoint = "EleutherAI/pythia-160m-deduped" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(checkpoint) assistant_model = model assistant_model.generation_config.num_assistant_tokens = 5 assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic" generation_kwargs = { "eos_token_id": -1, "max_new_tokens": 5, "do_sample": False, "assistant_model": assistant_model, } model.generate(**inputs, **generation_kwargs) # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7 self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7)) def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self): # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly. prompt = "Alice and Bob" checkpoint = "EleutherAI/pythia-160m-deduped" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(checkpoint) assistant_model = model assistant_model.generation_config.num_assistant_tokens = 5 assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient" generation_kwargs = { "eos_token_id": -1, "max_new_tokens": 5, "do_sample": False, "assistant_model": assistant_model, } model.generate(**inputs, **generation_kwargs) # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5 self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5) @slow def test_validate_assistant(self): # Generate a random sample: inputs = np.random.rand(160000) # Load a main encoder-decoder model: model_id = "openai/whisper-large-v2" processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, low_cpu_mem_usage=True, use_safetensors=True, ) model.to(torch_device) # process the input: features = processor(inputs, return_tensors="pt").to(torch_device) # Load an encoder-decoder assistant with same encoder as the main model: assistant_distil_model_id = "distil-whisper/distil-large-v2" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum()) # Load its decoder only version: assistant_causal_lm = AutoModelForCausalLM.from_pretrained( assistant_distil_model_id, low_cpu_mem_usage=True, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum()) # Load an encoder-decoder assistant with a different encoder than the main model: assistant_distil_model_id = "openai/whisper-tiny" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum()) # Load its decoder only version: assistant_causal_lm = AutoModelForCausalLM.from_pretrained( assistant_distil_model_id, low_cpu_mem_usage=True, use_safetensors=True, ).to(torch_device) # It will raise an error as the encoder of the main and assistant model are not compatible: with self.assertRaises(ValueError): model.generate(**features, assistant_model=assistant_causal_lm) # Load an encoder-decoder model with a different tokenizer than the main model: assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, ).to(torch_device) # This should raise an error as the main and assistant model don't use the same tokenizer: with self.assertRaises(ValueError): model.generate(**features, assistant_model=assistant_seq_to_seq) def test_compare_unprocessed_logit_scores(self): # Get unprocessed logit scores back from model generate function. # Assert that unprocessed logits from generate() are same as those from modal eval() # tell model to generate text and return unprocessed/unwarped logit scores tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = "generate yes or no: " input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) with torch.no_grad(): # Get logits for the next token from fwd pass logits_fwd = model(input_ids).logits[:, -1, :][0] # Get logits for the next token from generate function outputs = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=1, do_sample=True, ) logits_gen = outputs.logits[0][0] # assert that unprocessed logits from generate() are same as those from modal eval() self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist()) def test_return_unprocessed_logit_scores(self): # tell model to generate text and return unprocessed/unwarped logit scores tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = "generate yes or no: " input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) outputs = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3 ) # perform dummy check if unpreprocessed logits make sense. # do preselection on high probabilities; find scores of y and n tokens probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1) indices = torch.argwhere(probs_all > 0.001) indices = indices[:, -1] tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True) probs_max = probs_all[probs_all > 0.001] self.assertTrue(len(indices) >= 2) next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)} self.assertTrue("n" in next_token_dict) self.assertTrue("y" in next_token_dict) y_prob = next_token_dict["y"] n_prob = next_token_dict["n"] self.assertTrue(y_prob > 0.001 and n_prob > 0.001) self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0) @slow @require_torch_multi_gpu def test_assisted_decoding_in_different_gpu(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to("cuda:0") assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( "cuda:1" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model.config.pad_token_id = tokenizer.eos_token_id assistant.config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=20, ) self.assertTrue(input_length <= out.shape[-1] <= input_length + 20) @slow @require_torch_accelerator def test_assisted_decoding_model_in_gpu_assistant_in_cpu(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( torch_device ) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( "cpu" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model.config.pad_token_id = tokenizer.eos_token_id assistant.config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=20, ) self.assertTrue(input_length <= out.shape[-1] <= input_length + 20) def test_special_tokens_fall_back_to_model_default(self): # PT-only test: TF doesn't support assisted decoding yet. model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( torch_device ) test_bos_id = 50 # Sanity-check: the model has a BOS token set, and the first generated token is a BOS token gen_output = model.generate() self.assertTrue(model.generation_config.bos_token_id is not None) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) # If we pass a generation config **with** a BOS token, `generate` will use it generation_config = GenerationConfig(bos_token_id=test_bos_id) gen_output = model.generate(generation_config=generation_config) self.assertFalse(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(test_bos_id == gen_output[0, 0]) # If we pass a generation config **without** a BOS token, `generate` will fetch the BOS token from # `model.generation_config` generation_config = GenerationConfig(bos_token_id=None) gen_output = model.generate(generation_config=generation_config) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertFalse(test_bos_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id is None) # Changing `model.generation_config` will affect fallback behavior model.generation_config.bos_token_id = test_bos_id gen_output = model.generate(generation_config=generation_config) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(test_bos_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id is None) def test_speculative_decoding_equals_regular_decoding(self): draft_name = "double7/vicuna-68m" target_name = "Qwen/Qwen2-0.5B-Instruct" draft_model = AutoModelForCausalLM.from_pretrained(draft_name) target_model = AutoModelForCausalLM.from_pretrained(target_name) assistant_tokenizer = AutoTokenizer.from_pretrained(draft_name) target_tokenizer = AutoTokenizer.from_pretrained(target_name) prompt_size = torch.randint(low=20, high=100, size=(1,)) max_new_tokens = torch.randint(low=10, high=50, size=(1,)) input_ids = (torch.rand(1, prompt_size[0]) * 100).to(int) + 50 max_new_tokens_item = max_new_tokens[0].item() expected_out = target_model.generate(input_ids, do_sample=False, max_new_tokens=max_new_tokens_item) predicted_out = target_model.generate( input_ids, do_sample=False, max_new_tokens=max_new_tokens_item, assistant_model=draft_model, tokenizer=target_tokenizer, assistant_tokenizer=assistant_tokenizer, ) self.assertEqual(expected_out.shape, predicted_out.shape) self.assertTrue((expected_out == predicted_out).all().item()) @pytest.mark.generate @require_torch_multi_gpu def test_generate_with_static_cache_multi_gpu(self): """ Tests if the static cache has been set correctly and if generate works correctly when we are using multi-gpus. """ # need to split manually as auto doesn't work well with unbalanced model device_map = {"model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 1, "model.norm": 1, "lm_head": 0} model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map=device_map ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) generation_kwargs = { "max_new_tokens": 20, "cache_implementation": "static", "return_dict_in_generate": True, # Required to return `past_key_values` } results = model.generate(input_ids, **generation_kwargs) self.assertTrue(isinstance(results.past_key_values, StaticCache)) # check device of each layer key_cache_0 = results.past_key_values.key_cache[0] value_cache_0 = results.past_key_values.value_cache[0] self.assertTrue(key_cache_0.device == value_cache_0.device == torch.device(0)) key_cache_1 = results.past_key_values.key_cache[1] value_cache_1 = results.past_key_values.value_cache[1] self.assertTrue(key_cache_1.device == value_cache_1.device == torch.device(1)) @pytest.mark.generate @require_torch_multi_gpu def test_init_static_cache_multi_gpu(self): """ Tests if the static cache has been set correctly when we initialize it manually in a multi-gpu setup. """ # need to split manually as auto doesn't work well with unbalanced model device_map = {"model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 1, "model.norm": 1, "lm_head": 0} model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map=device_map ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) generation_kwargs = { "max_new_tokens": 20, "return_dict_in_generate": True, # Required to return `past_key_values` } # TODO: We need to raise a warning in case the cache is not set correctly # with self.assertRaisesRegex(ValueError, "If you are manually initializing the cache"): # past_key_values = StaticCache( # config=model.config, batch_size=1, max_cache_len=30, device=torch_device, dtype=model.dtype # ) # results = model.generate(input_ids, past_key_values=past_key_values, **generation_kwargs) # deduced from the device_map : layer 0 on device 0 and layer 1 on device 1 layer_device_map = {0: 0, 1: 1} past_key_values = StaticCache( config=model.config, batch_size=1, max_cache_len=30, device=torch_device, dtype=model.dtype, layer_device_map=layer_device_map, ) results = model.generate(input_ids, past_key_values=past_key_values, **generation_kwargs) # check device of each layer key_cache_0 = results.past_key_values.key_cache[0] value_cache_0 = results.past_key_values.value_cache[0] self.assertTrue(key_cache_0.device == value_cache_0.device == torch.device(0)) key_cache_1 = results.past_key_values.key_cache[1] value_cache_1 = results.past_key_values.value_cache[1] self.assertTrue(key_cache_1.device == value_cache_1.device == torch.device(1)) @slow def test_padding_input_contrastive_search_gpt2(self): # Load the pre-trained GPT-2 model and tokenizer model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", clean_up_tokenization_spaces=True) # Set the tokenizer to left-pad the sequences tokenizer.padding_side = "left" # Define the PAD token as the EOS token tokenizer.pad_token = tokenizer.eos_token model.generation_config.pad_token_id = model.generation_config.eos_token_id # Define the input prompt prompt_text = "The whispered legends of the haunted mansion spoke" # Tokenize the input prompt encoded_prompt = tokenizer(prompt_text, return_tensors="pt", padding=True) input_ids = encoded_prompt.input_ids.to(torch_device) attention_mask = encoded_prompt.attention_mask.to(torch_device) # Define the contrastive search params penalty_alpha = 0.6 top_k = 4 # Define the padding length to add to the input IDs and attention mask padding_length = 10 # Generate text without padding outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_no_padding = tokenizer.decode(outputs[0], skip_special_tokens=True) # Pad the input IDs and attention mask on the left padded_input_ids = F.pad( input_ids, (padding_length, 0), "constant", value=model.generation_config.pad_token_id ) padded_attention_mask = F.pad(attention_mask, (padding_length, 0), "constant", value=0) # Generate text with padded inputs outputs_with_padding = model.generate( input_ids=padded_input_ids, attention_mask=padded_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_with_padding = tokenizer.decode(outputs_with_padding[0], skip_special_tokens=True) # Assert that the generated texts are identical for padded and non-padded inputs self.assertEqual(generated_text_no_padding, generated_text_with_padding) self.assertEqual( generated_text_with_padding, 'The whispered legends of the haunted mansion spoke of the "souls of the dead" who were "falling ' 'out of the sky" and "falling into the sea."\n\nThe ghostly apparitions were said to have been ' 'created by the spirits of the dead, who were "falling out of the sky" and "falling into the sea', ) @slow def test_padding_input_contrastive_search_t5(self): # Load the pre-trained T5 model and tokenizer model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small", clean_up_tokenization_spaces=True) # Define the input prompt prompt_text = "translate English to German: I need to finish this task before the end of the day." # Tokenize the input prompt encoded_prompt = tokenizer(prompt_text, return_tensors="pt") input_ids = encoded_prompt.input_ids.to(torch_device) attention_mask = encoded_prompt.attention_mask.to(torch_device) # Define the decoder prompt decoder_prompt_text = "Ich muss diese Aufgabe" encoded_decoder_prompt = tokenizer(decoder_prompt_text, add_special_tokens=False, return_tensors="pt") decoder_input_ids = encoded_decoder_prompt.input_ids.to(torch_device) decoder_attention_mask = encoded_decoder_prompt.attention_mask.to(torch_device) # Define the contrastive search params penalty_alpha = 0.6 top_k = 4 # Generate text without padding outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_no_padding = tokenizer.decode(outputs[0], skip_special_tokens=True) # Define the padding length to add to the input IDs and attention mask padding_length = 10 # Pad the decoder input IDs and attention mask on the left padded_decoder_input_ids = F.pad( decoder_input_ids, (padding_length, 0), "constant", value=model.generation_config.pad_token_id ) padded_decoder_attention_mask = F.pad(decoder_attention_mask, (padding_length, 0), "constant", value=0) # Since the decoder_start_token_id is the same as the pad_token_id, # the last padded token represents the decoder start token. # Set the attention mask for the decoder_start_token_id to True (1). padded_decoder_attention_mask[:, padding_length - 1] = 1 # Generate text with padded inputs outputs_with_padding = model.generate( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=padded_decoder_input_ids, decoder_attention_mask=padded_decoder_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_with_padding = tokenizer.decode(outputs_with_padding[0], skip_special_tokens=True) # Assert that the generated texts are identical for padded and non-padded inputs self.assertEqual(generated_text_no_padding, generated_text_with_padding) self.assertEqual(generated_text_no_padding, "Ich muss diese Aufgabe vor Ende des Tages beenden.") def test_prepare_inputs_for_generation_decoder_llm(self): """Tests GenerationMixin.prepare_inputs_for_generation against expected usage with decoder-only llms.""" config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") model = model.to(torch_device) # 1. Sanity check: the model's `prepare_inputs_for_generation` comes from `GenerationMixin` self.assertTrue("GenerationMixin" in str(model.prepare_inputs_for_generation)) # 2. If we pass input ids by themselves, we should get back the same input ids input_ids = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(input_ids) self.assertTrue(torch.all(model_inputs["input_ids"] == input_ids)) # 3. If we pass the attention mask too, we will get back the attention mask and position ids built from it attention_mask = torch.tensor([[1, 1, 1], [1, 1, 1]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(input_ids, attention_mask=attention_mask) self.assertTrue(torch.all(model_inputs["attention_mask"] == attention_mask)) self.assertTrue(model_inputs["position_ids"].shape == input_ids.shape) # 4. `use_cache` (and other kwargs) are forwarded self.assertFalse("use_cache" in model_inputs) # From the previous input, there is no `use_cache` model_inputs = model.prepare_inputs_for_generation(input_ids, use_cache=True, foo="bar") self.assertTrue(model_inputs["use_cache"] is True) self.assertTrue(model_inputs["foo"] == "bar") # 5. When we pass a cache, we discard data related to already seen tokens in some tensors. We are now also # forced to pass a correctly prepared `cache_positions` to slice the data accordingly. init_input_ids = input_ids[:, :2] dynamic_cache = DynamicCache() dynamic_cache = model(init_input_ids, past_key_values=dynamic_cache).past_key_values with self.assertRaises(AttributeError): # past_key_values + no cache_position -> exception model_inputs = model.prepare_inputs_for_generation(input_ids, past_key_values=dynamic_cache) cache_position = torch.arange(input_ids.shape[-1], dtype=torch.long).to(torch_device) cache_position = cache_position[dynamic_cache.get_seq_length() :] model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=dynamic_cache, cache_position=cache_position, attention_mask=attention_mask ) self.assertTrue("past_key_values" in model_inputs) self.assertTrue(torch.all(model_inputs["cache_position"] == cache_position)) self.assertTrue(model_inputs["input_ids"].shape[-1] == 1) # 1 = 3 fed tokens - 2 tokens in the cache self.assertTrue(model_inputs["position_ids"].shape[-1] == 1) self.assertTrue(model_inputs["attention_mask"].shape[-1] == 3) # we still need the full attention mask! # 6. If we pass a `static_cache`, the attention mask will be prepared as a static shape 4D mask max_cache_len = 10 batch_size = 2 query_length = input_ids.shape[-1] - init_input_ids.shape[-1] static_cache = StaticCache( config=config, batch_size=batch_size, max_cache_len=max_cache_len, device=torch_device, dtype=torch.float32 ) static_cache = model(init_input_ids, past_key_values=static_cache).past_key_values model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=static_cache, cache_position=cache_position, attention_mask=attention_mask ) self.assertTrue("past_key_values" in model_inputs) self.assertTrue(list(model_inputs["attention_mask"].shape) == [batch_size, 1, query_length, max_cache_len]) # 7. We can also pass `inputs_embeds` as the embedded prompt. Because `generate` will append its result to # `input_ids` and the models will only accept one of the two inputs (`input_ids` or `inputs_embeds`), we # a) must use the cache b) must expect `input_ids` after the prompt is processed init_inputs_embeds = model.get_input_embeddings()(init_input_ids) init_cache_positions = torch.arange(init_input_ids.shape[-1], dtype=torch.long).to(torch_device) empty_cache = DynamicCache() # Prompt processing model_inputs = model.prepare_inputs_for_generation( init_input_ids, past_key_values=empty_cache, inputs_embeds=init_inputs_embeds, cache_position=init_cache_positions, ) self.assertTrue(model_inputs["input_ids"] is None) self.assertTrue(model_inputs["inputs_embeds"] is not None) # After prompt processing model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=dynamic_cache, inputs_embeds=init_inputs_embeds, cache_position=cache_position ) self.assertTrue(model_inputs["input_ids"] is not None) self.assertTrue(model_inputs["inputs_embeds"] is None) def test_prepare_inputs_for_generation_encoder_decoder_llm(self): """ Same as `test_prepare_inputs_for_generation_decoder_llm` but for encoder-decoder models. Main difference: we should look for `decoder_input_ids`, instead of `input_ids`. """ model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") model = model.to(torch_device) # 1. Sanity check: the model's `prepare_inputs_for_generation` comes from `GenerationMixin` self.assertTrue("GenerationMixin" in str(model.prepare_inputs_for_generation)) # 2. If we pass input ids by themselves, we should get back the same input ids -- with the encoder-decoder key decoder_input_ids = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(decoder_input_ids) self.assertTrue(torch.all(model_inputs["decoder_input_ids"] == decoder_input_ids)) # 3. If we pass the attention mask too, we will get back the attention mask. Encoder-decoder models usually # don't use `position_ids` decoder_attention_mask = torch.tensor([[1, 1, 1], [1, 1, 1]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation( decoder_input_ids, decoder_attention_mask=decoder_attention_mask ) self.assertTrue(torch.all(model_inputs["decoder_attention_mask"] == decoder_attention_mask)) self.assertTrue("position_ids" not in model_inputs) # 4. `use_cache` (and other kwargs, like the encoder outputs) are forwarded self.assertFalse("use_cache" in model_inputs) # From the previous input, there is no `use_cache` model_inputs = model.prepare_inputs_for_generation(decoder_input_ids, use_cache=True, encoder_outputs="foo") self.assertTrue(model_inputs["use_cache"] is True) self.assertTrue(model_inputs["encoder_outputs"] == "foo") # See the decoder-only test for more corner cases. The code is the same, so we don't repeat it here. def test_generate_compile_fullgraph_tiny(self): """ Tests that we can call end-to-end generation with a tiny model (i.e. doesn't crash) NOTE: this test is quite slow (~20s on a consumer desktop), but it is important that we keep it as part of the non-slow tests to prevent regressions! """ model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-LlamaForCausalLM", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") # compile generate compiled_generate = torch.compile(model.generate, fullgraph=True, mode="reduce-overhead") # compiled generate does NOT accept parameterization except a) model inputs b) a generation config generation_config = copy.deepcopy(model.generation_config) generation_config.pad_token_id = model.config.eos_token_id model_inputs = tokenizer(["Write a poem about the market crashing in summer"], return_tensors="pt") model_inputs = model_inputs.to(model.device) gen_out = compiled_generate(**model_inputs, generation_config=generation_config) self.assertTrue(gen_out.shape[1] > model_inputs["input_ids"].shape[1]) # some text was generated def test_assisted_generation_early_exit(self): """ Tests that assisted generation with early exit works as expected. Under the hood, this has complex cache manipulation, which will cause the test to fail if something goes wrong there. """ expected_output = "Alice and Bob are playing a game of poker. Alice has a pair of 8s and Bob has a pair" prompt = "Alice and Bob" checkpoint = "facebook/layerskip-llama3.2-1B" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt").to(torch_device) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(torch_device) original_outputs = model.generate(**inputs, do_sample=False, max_new_tokens=20) original_decoded = tokenizer.batch_decode(original_outputs, skip_special_tokens=True) self.assertEqual(original_decoded, [expected_output]) outputs_assisted = model.generate(**inputs, assistant_early_exit=4, do_sample=False, max_new_tokens=20) decoded_assisted = tokenizer.batch_decode(outputs_assisted, skip_special_tokens=True) self.assertEqual(decoded_assisted, [expected_output]) @slow def test_max_time(self): tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) MAX_TIME = 0.1 MAX_LENGTH = 64 # sampling on start = datetime.datetime.now() model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # sampling off start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # beam search start = datetime.datetime.now() model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # sanity check: no time limit start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=None, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) @require_torch class TokenHealingTestCase(unittest.TestCase): @parameterized.expand( [ ("url", 'The link is <a href="http:', 'The link is <a href="http://'), # aggressive_healing: "http" shouldn't be replaced with "https" ("aggressive_healing", 'The link is <a href="http', 'The link is <a href="http'), ("trailing_whitespace", "I read a book about ", "I read a book about"), ("nothing_to_heal", "I read a book about", "I read a book about"), ("single_token", "I", "I"), ("empty_prompt", "", ""), ] ) def test_prompts(self, name, input, expected): model_name_or_path = "distilbert/distilgpt2" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) completion_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, device_map="auto", trust_remote_code=False, revision="main", use_cache=True, ) """ tokenizer.pad_token value can be empty but it is required in the latter codes so assigned it here with eos_token """ tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer(input, return_tensors="pt").input_ids.to(completion_model.device) healed_ids = completion_model.heal_tokens(input_ids, tokenizer=tokenizer) predicted = tokenizer.decode(healed_ids[0], skip_special_tokens=True) self.assertEqual(predicted, expected) def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self): article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) inputs_embeds = model.get_input_embeddings()(input_ids) model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None) # bos_token_id is required when no input ids nor inputs_embeds is passed with self.assertRaises(ValueError): model.generate(max_length=20, bos_token_id=None) class TestAssistedCandidateGeneratorDifferentTokenizers(unittest.TestCase): def test_no_intersection(self): prompt = np.array([[1, 2, 3]]) prompt_plus_new_tokens = np.array([[4, 5, 6]]) result = AssistedCandidateGeneratorDifferentTokenizers._get_tokens_diag(prompt, prompt_plus_new_tokens) self.assertEqual(result, (None, None, None)) def test_complete_overlap(self): prompt = np.array([[1, 2, 3]]) prompt_plus_new_tokens = np.array([[1, 2, 3, 4, 5]]) discrep_length, new_tokens_only, discrep_only = AssistedCandidateGeneratorDifferentTokenizers._get_tokens_diag( prompt, prompt_plus_new_tokens ) self.assertEqual(discrep_length, 0) np.testing.assert_array_equal(new_tokens_only, np.array([[4, 5]])) np.testing.assert_array_equal(discrep_only, np.array([[]])) def test_partial_overlap(self): prompt = np.array([[1, 2, 3]]) prompt_plus_new_tokens = np.array([[2, 3, 4, 5]]) discrep_length, new_tokens_only, discrep_only = AssistedCandidateGeneratorDifferentTokenizers._get_tokens_diag( prompt, prompt_plus_new_tokens ) self.assertEqual(discrep_length, 0) np.testing.assert_array_equal(new_tokens_only, np.array([[4, 5]])) np.testing.assert_array_equal(discrep_only, np.array([[]])) def test_no_new_tokens(self): prompt = np.array([[1, 2, 3]]) prompt_plus_new_tokens = np.array([[1, 2, 3]]) discrep_length, new_tokens_only, discrep_only = AssistedCandidateGeneratorDifferentTokenizers._get_tokens_diag( prompt, prompt_plus_new_tokens ) self.assertEqual(discrep_length, 0) np.testing.assert_array_equal(new_tokens_only, np.array([[]])) np.testing.assert_array_equal(discrep_only, np.array([[]])) class TestAssistedCandidateGeneratorUpdateStrategy(unittest.TestCase): def setUp(self): checkpoint = "EleutherAI/pythia-160m-deduped" self.assistant_model = AutoModelForCausalLM.from_pretrained(checkpoint) self.assistant_model.generation_config.assistant_confidence_threshold = 0.4 self.model_kwargs = {} self.input_ids = torch.randint(1, 10, (1, 9)) self.candidate_generator = AssistedCandidateGenerator( input_ids=self.input_ids, assistant_model=self.assistant_model, generation_config=self.assistant_model.generation_config, model_kwargs=self.model_kwargs, ) self.candidate_generator.probs = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] self.original_probs = self.candidate_generator.probs self.original_threshold = self.assistant_model.generation_config.assistant_confidence_threshold def assert_no_sklearn(self): with patch("transformers.utils.import_utils._sklearn_available", False): self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, self.original_matches) self.assertEqual(self.candidate_generator.probs, self.original_probs) self.assertEqual( self.assistant_model.generation_config.assistant_confidence_threshold, self.original_threshold ) @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_no_matches_short(self, sklearn_available): print("test_update_candidate_strategy_no_matches_short") self.original_matches = [] self.candidate_generator.matches = self.original_matches self.num_matches = 0 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [0]) self.assertEqual(self.candidate_generator.probs, [0.9]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.4) else: self.assert_no_sklearn() @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_with_mix_matches_3(self, sklearn_available): self.original_matches = [1, 0, 1, 0, 1] self.candidate_generator.matches = self.original_matches self.num_matches = 3 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [1, 0, 1, 0, 1, 1, 1, 1, 0]) self.assertEqual(self.candidate_generator.probs, [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.2) else: self.assert_no_sklearn() @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_with_matches_4(self, sklearn_available): self.original_matches = [1, 1, 1, 1, 1] self.candidate_generator.matches = self.original_matches self.num_matches = 4 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [1, 1, 1, 1, 1, 1, 1, 1, 1]) self.assertEqual(self.candidate_generator.probs, [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.4) else: self.assert_no_sklearn() @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_with_matches_3(self, sklearn_available): self.original_matches = [1, 1, 1, 1, 1] self.candidate_generator.matches = self.original_matches self.num_matches = 3 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [1, 1, 1, 1, 1, 1, 1, 1, 0]) self.assertEqual(self.candidate_generator.probs, [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.2) else: self.assert_no_sklearn() @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_with_matches_2(self, sklearn_available): self.original_matches = [1, 1, 1, 1, 1] self.candidate_generator.matches = self.original_matches self.num_matches = 2 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [1, 1, 1, 1, 1, 1, 1, 0]) self.assertEqual(self.candidate_generator.probs, [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.3) else: self.assert_no_sklearn() @parameterized.expand([(is_sklearn_available(),), (False,)]) def test_update_candidate_strategy_with_matches_1(self, sklearn_available): self.original_matches = [1, 1, 1, 1, 1] self.candidate_generator.matches = self.original_matches self.num_matches = 1 if sklearn_available: self.candidate_generator.update_candidate_strategy(self.input_ids, None, self.num_matches) self.assertEqual(self.candidate_generator.matches, [1, 1, 1, 1, 1, 1, 0]) self.assertEqual(self.candidate_generator.probs, [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]) self.assertEqual(self.assistant_model.generation_config.assistant_confidence_threshold, 0.4) else: self.assert_no_sklearn()
transformers/tests/generation/test_utils.py/0
{ "file_path": "transformers/tests/generation/test_utils.py", "repo_id": "transformers", "token_count": 99404 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from io import BytesIO from typing import Optional import numpy as np import requests from transformers import AriaProcessor from transformers.models.auto.processing_auto import AutoProcessor from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from PIL import Image @require_torch @require_vision class AriaProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = AriaProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() processor = AriaProcessor.from_pretrained("m-ric/Aria_hf_2", image_seq_len=2) processor.save_pretrained(cls.tmpdirname) cls.image1 = Image.open( BytesIO( requests.get( "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" ).content ) ) cls.image2 = Image.open( BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content) ) cls.image3 = Image.open( BytesIO( requests.get( "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg" ).content ) ) cls.bos_token = "<|im_start|>" cls.eos_token = "<|im_end|>" cls.image_token = processor.tokenizer.image_token cls.fake_image_token = "o" cls.global_img_token = "<|img|>" cls.bos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.bos_token) cls.eos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.eos_token) cls.image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.image_token) cls.fake_image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.fake_image_token) cls.global_img_tokens_id = processor.tokenizer(cls.global_img_token, add_special_tokens=False)["input_ids"] cls.padding_token_id = processor.tokenizer.pad_token_id cls.image_seq_len = 256 def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs) @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname) def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["image_processor"] = self.get_component( "image_processor", do_rescale=True, rescale_factor=1 ) processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(**processor_components) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) def test_process_interleaved_images_prompts_image_splitting(self): processor = self.get_processor() processor.image_processor.split_image = True # Test that a single image is processed correctly inputs = processor(images=self.image1, text="Ok<|img|>", images_kwargs={"split_image": True}) self.assertEqual(np.array(inputs["pixel_values"]).shape, (2, 3, 980, 980)) self.assertEqual(np.array(inputs["pixel_mask"]).shape, (2, 980, 980)) def test_process_interleaved_images_prompts_no_image_splitting(self): processor = self.get_processor() processor.image_processor.split_image = False # Test that a single image is processed correctly inputs = processor(images=self.image1, text="Ok<|img|>") image1_expected_size = (980, 980) self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 3, *image1_expected_size)) self.assertEqual(np.array(inputs["pixel_mask"]).shape, (1, *image1_expected_size)) # fmt: on # Test a single sample with image and text image_str = "<|img|>" text_str = "In this image, we see" text = image_str + text_str inputs = processor(text=text, images=self.image1) # fmt: off tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False) expected_input_ids = [[self.image_token_id] * self.image_seq_len + tokenized_sentence["input_ids"]] # self.assertEqual(len(inputs["input_ids"]), len(expected_input_ids)) self.assertEqual(inputs["input_ids"], expected_input_ids) self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])]) self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 3, *image1_expected_size)) self.assertEqual(np.array(inputs["pixel_mask"]).shape, (1, *image1_expected_size)) # fmt: on # Test that batch is correctly processed image_str = "<|img|>" text_str_1 = "In this image, we see" text_str_2 = "In this image, we see" text = [ image_str + text_str_1, image_str + image_str + text_str_2, ] images = [[self.image1], [self.image2, self.image3]] inputs = processor(text=text, images=images, padding=True) # fmt: off tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False) tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False) image_tokens = [self.image_token_id] * self.image_seq_len expected_input_ids_1 = image_tokens + tokenized_sentence_1["input_ids"] expected_input_ids_2 = 2 * image_tokens + tokenized_sentence_2["input_ids"] # Pad the first input to match the second input pad_len = len(expected_input_ids_2) - len(expected_input_ids_1) expected_attention_mask = [[0] * pad_len + [1] * len(expected_input_ids_1), [1] * (len(expected_input_ids_2))] self.assertEqual( inputs["attention_mask"], expected_attention_mask ) self.assertEqual(np.array(inputs['pixel_values']).shape, (3, 3, 980, 980)) self.assertEqual(np.array(inputs['pixel_mask']).shape, (3, 980, 980)) # fmt: on def test_non_nested_images_with_batched_text(self): processor = self.get_processor() processor.image_processor.do_image_splitting = False image_str = "<|img|>" text_str_1 = "In this image, we see" text_str_2 = "In this image, we see" text = [ image_str + text_str_1, image_str + image_str + text_str_2, ] images = [self.image1, self.image2, self.image3] inputs = processor(text=text, images=images, padding=True) self.assertEqual(np.array(inputs["pixel_values"]).shape, (3, 3, 980, 980)) self.assertEqual(np.array(inputs["pixel_mask"]).shape, (3, 980, 980)) def test_apply_chat_template(self): # Message contains content which a mix of lists with images and image urls and string messages = [ { "role": "user", "content": [ {"type": "text", "text": "What do these images show?"}, {"type": "image"}, {"type": "image"}, "What do these images show?", ], }, { "role": "assistant", "content": [ { "type": "text", "text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.", } ], }, {"role": "user", "content": [{"type": "text", "text": "And who is that?"}]}, ] processor = self.get_processor() # Make short sequence length to test that the fake tokens are added correctly rendered = processor.apply_chat_template(messages, add_generation_prompt=True) print(rendered) expected_rendered = """<|im_start|>user What do these images show?<fim_prefix><|img|><fim_suffix><fim_prefix><|img|><fim_suffix><|im_end|> <|im_start|>assistant The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<|im_end|> <|im_start|>user And who is that?<|im_end|> <|im_start|>assistant """ self.assertEqual(rendered, expected_rendered) # Override as AriaProcessor needs image tokens in prompts def prepare_text_inputs(self, batch_size: Optional[int] = None): if batch_size is None: return "lower newer <|img|>" if batch_size < 1: raise ValueError("batch_size must be greater than 0") if batch_size == 1: return ["lower newer <|img|>"] return ["lower newer <|img|>", "<|img|> upper older longer string"] + ["<|img|> lower newer"] * ( batch_size - 2 ) # Override tests as inputs_ids padded dimension is the second one but not the last one @require_vision @require_torch def test_kwargs_overrides_default_tokenizer_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer", max_length=30) processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=30) self.assertEqual(len(inputs["input_ids"][0]), 30) @require_torch @require_vision def test_structured_kwargs_nested(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality inputs = processor( text=input_str, images=image_input, common_kwargs={"return_tensors": "pt"}, images_kwargs={"max_image_size": 980}, text_kwargs={"padding": "max_length", "max_length": 120, "truncation": "longest_first"}, ) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["pixel_values"].shape[3], 980) self.assertEqual(len(inputs["input_ids"][0]), 120) @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"max_image_size": 980}, "text_kwargs": {"padding": "max_length", "max_length": 120, "truncation": "longest_first"}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["pixel_values"].shape[3], 980) self.assertEqual(len(inputs["input_ids"][0]), 120) @require_vision @require_torch def test_tokenizer_defaults_preserved_by_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer", max_length=30) processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertEqual(len(inputs["input_ids"][0]), 30) @require_torch @require_vision def test_unstructured_kwargs_batched(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs(batch_size=2) image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", padding="longest", max_length=76, truncation=True, max_image_size=980, ) self.assertEqual(inputs["pixel_values"].shape[1], 3) self.assertEqual(inputs["pixel_values"].shape[3], 980) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_unstructured_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_image_size=980, padding="max_length", max_length=120, truncation="longest_first", ) self.assertEqual(inputs["pixel_values"].shape[3], 980) self.assertEqual(len(inputs["input_ids"][0]), 120)
transformers/tests/models/aria/test_processor_aria.py/0
{ "file_path": "transformers/tests/models/aria/test_processor_aria.py", "repo_id": "transformers", "token_count": 6972 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch BEiT model.""" import inspect import tempfile import unittest import numpy as np from datasets import load_dataset from packaging import version from parameterized import parameterized from transformers import BeitConfig from transformers.testing_utils import ( require_torch, require_torch_multi_gpu, require_torch_sdpa, require_vision, slow, torch_device, ) from transformers.utils import ( cached_property, is_torch_available, is_torch_bf16_available_on_device, is_torch_fp16_available_on_device, is_vision_available, ) from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, sdpa_kernel from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( BeitBackbone, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class BeitModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=4, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[1, 2, 3, 4], out_features=["stage1", "stage2", "stage3", "stage4"], attn_implementation="eager", mask_ratio=0.5, ): self.parent = parent self.vocab_size = vocab_size self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.out_features = out_features self.num_labels = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 self.num_masks = int(mask_ratio * self.seq_length) self.attn_implementation = attn_implementation def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, out_features=self.out_features, attn_implementation=self.attn_implementation, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = BeitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_backbone(self, config, pixel_values, labels, pixel_labels): model = BeitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) expected_height = expected_width = self.image_size // config.patch_size self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width] ) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = BeitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width] ) # verify channels self.parent.assertEqual(len(model.channels), 1) def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels): model = BeitForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = BeitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = BeitForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = BeitForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = BeitModelTester(self) self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds") def test_inputs_embeds(self): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="BEiT does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(), "BeitForMaskedImageModeling", ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class.__name__ in [ *MODEL_MAPPING_NAMES.values(), *MODEL_FOR_BACKBONE_MAPPING_NAMES.values(), "BeitForMaskedImageModeling", ] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def test_model_from_pretrained(self): model_name = "microsoft/beit-base-patch16-224" model = BeitModel.from_pretrained(model_name) self.assertIsNotNone(model) @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) @require_torch_sdpa def test_eager_matches_sdpa_inference(self, torch_dtype: str): # The common test modifies the num_hidden_layers to be 1. However, for Beit we want to # avoid that because the num_hidden_layers is generally assumed to be 4. Also, the code # related to attention masks in the original common tests is not required as the Beit # model does not handle attention masks. Furthermore, some extra code like modifying # the norm layers eps values for specialized configs and checking for the 'noise' # has been omitted to simply the test. if not self.has_attentions: self.skipTest(reason="Model architecture does not support attentions") if not self.all_model_classes[0]._supports_sdpa: self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device): self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)") if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device): self.skipTest( f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)" ) # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead. if torch_dtype == "float16": torch_dtype = torch.float16 elif torch_dtype == "bfloat16": torch_dtype = torch.bfloat16 elif torch_dtype == "float32": torch_dtype = torch.float32 atols = { ("cpu", False, torch.float32): 1e-6, ("cpu", False, torch.float16): 5e-3, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 1e-6, ("cpu", True, torch.float16): 5e-3, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 1e-6, ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 1e-6, ("cuda", True, torch.bfloat16): 1e-2, ("cuda", True, torch.float16): 5e-3, } rtols = { ("cpu", False, torch.float32): 1e-4, ("cpu", False, torch.float16): 5e-3, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 1e-4, ("cpu", True, torch.float16): 5e-3, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 1e-4, ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 1e-4, ("cuda", True, torch.bfloat16): 3e-2, ("cuda", True, torch.float16): 5e-3, } def get_mean_reldiff(failcase, x, ref, atol, rtol): return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}" for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.rms_norm_eps = 1.0 config.layer_norm_eps = 1.0 config.norm_eps = 1.0 config.norm_epsilon = 1.0 config.layer_norm_epsilon = 1.0 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype, use_mask_token=True) model_sdpa = model_sdpa.eval().to(torch_device, dtype=torch_dtype) model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch_dtype, attn_implementation="eager", use_mask_token=True, ) model_eager = model_eager.eval().to(torch_device, dtype=torch_dtype) # Another way to make sure norm layers have desired epsilon. (Some models don't set it from its config.) for x in model_eager.modules(): if isinstance(x, (nn.LayerNorm, nn.GroupNorm)): x.eps = 1.0 for x in model_sdpa.modules(): if isinstance(x, (nn.LayerNorm, nn.GroupNorm)): x.eps = 1.0 # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model, # but it would be nicer to have an efficient way to use parameterized.expand fail_cases = [] for padding_side in ["left", "right"]: for use_mask in [False, True]: for output_attentions in [True, False]: can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters if not (self.has_attentions and can_output_attn) and output_attentions: continue # TODO: if we can also check with `batch_size=1` without being flaky? for batch_size in [7]: dummy_input = inputs_dict[model.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: dummy_input = dummy_input.to(torch_dtype) dummy_input = dummy_input[:batch_size] for enable_kernels in [False, True]: failcase = f"padding_side={padding_side}, use_mask={use_mask}, enable_kernels={enable_kernels}" processed_inputs = { model.main_input_name: dummy_input, "output_hidden_states": True, } if ( self.has_attentions and "output_attentions" in inspect.signature(model_sdpa.forward).parameters ): processed_inputs["output_attentions"] = output_attentions if "bool_masked_pos" in inspect.signature(model_eager.forward).parameters: dummy_mask = torch.ones((self.model_tester.num_masks,)) mask_length = self.model_tester.seq_length - 1 - dummy_mask.size(0) dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)]) dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool() processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device) with torch.no_grad(): with sdpa_kernel( enable_flash=enable_kernels, enable_math=True, enable_mem_efficient=enable_kernels, ): prepared_inputs = self._prepare_for_class(processed_inputs, model_class) outputs_eager = model_eager(**prepared_inputs) outputs_sdpa = model_sdpa(**prepared_inputs) logits_eager = outputs_eager.hidden_states[-1] logits_sdpa = outputs_sdpa.hidden_states[-1] if torch_device in ["cpu", "cuda"]: atol = atols[torch_device, enable_kernels, torch_dtype] rtol = rtols[torch_device, enable_kernels, torch_dtype] elif torch_device == "xpu": # As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH # which is implemented on PyTorch level using aten operators and is # device agnostic with respect to implementation of each aten operator. atol = atols["cuda", False, torch_dtype] rtol = rtols["cuda", False, torch_dtype] else: atol = 1e-7 rtol = 1e-4 # Masked tokens output slightly deviates - we don't mind that. if use_mask: _logits_sdpa = torch.zeros_like(input=logits_sdpa) _logits_eager = torch.zeros_like(input=logits_eager) _logits_sdpa[:-1] = logits_sdpa[:-1] _logits_eager[:-1] = logits_eager[:-1] if padding_side == "left": _logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:] _logits_eager[-1:, 2:] = logits_eager[-1:, 2:] elif padding_side == "right": _logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2] _logits_eager[-1:, 2:] = logits_eager[-1:, :-2] logits_sdpa = _logits_sdpa logits_eager = _logits_eager results = [ torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol) for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager) ] # If 80% batch elements have matched results, it's fine if np.mean(results) < 0.8: fail_cases.append( get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol) ) self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases)) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BeitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def test_inference_masked_image_modeling_head(self): model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device) image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device) # prepare bool_masked_pos bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 196, 8192)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(torch_device) torch.testing.assert_close(logits[bool_masked_pos][:3, :3], expected_slice, rtol=1e-2, atol=1e-2) @slow def test_inference_image_classification_head_imagenet_1k(self): model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device) torch.testing.assert_close(logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4) expected_class_idx = 281 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_image_classification_head_imagenet_22k(self): model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 21841)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device) torch.testing.assert_close(logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4) expected_class_idx = 2396 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_semantic_segmentation(self): model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") model = model.to(torch_device) image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image = Image.open(ds[0]["file"]) inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 150, 160, 160)) self.assertEqual(logits.shape, expected_shape) is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_9: expected_slice = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ], device=torch_device, ) else: expected_slice = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ], device=torch_device, ) torch.testing.assert_close(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_post_processing_semantic_segmentation(self): model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") model = model.to(torch_device) image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True) image = Image.open(ds[0]["file"]) inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((160, 160)) self.assertEqual(segmentation[0].shape, expected_shape) @slow def test_inference_interpolate_pos_encoding(self): model_name = "microsoft/beit-base-patch16-224-pt22k" model = BeitModel.from_pretrained(model_name, **{"use_absolute_position_embeddings": True}).to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") processor = BeitImageProcessor.from_pretrained(model_name) inputs = processor(images=image, return_tensors="pt", size={"height": 480, "width": 480}) pixel_values = inputs.pixel_values.to(torch_device) # with interpolate_pos_encoding being False an exception should be raised with higher resolution # images than what the model supports. self.assertFalse(processor.do_center_crop) with torch.no_grad(): with self.assertRaises(ValueError, msg="doesn't match model"): model(pixel_values, interpolate_pos_encoding=False) # with interpolate_pos_encoding being True the model should process the higher resolution image # successfully and produce the expected output. with torch.no_grad(): outputs = model(pixel_values, interpolate_pos_encoding=True) expected_shape = torch.Size((1, 1801, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) @require_torch class BeitBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (BeitBackbone,) if is_torch_available() else () config_class = BeitConfig def setUp(self): self.model_tester = BeitModelTester(self)
transformers/tests/models/beit/test_modeling_beit.py/0
{ "file_path": "transformers/tests/models/beit/test_modeling_beit.py", "repo_id": "transformers", "token_count": 16756 }
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import BloomConfig, BloomTokenizerFast, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax.numpy as jnp from transformers import FlaxBloomForCausalLM, FlaxBloomModel def prepare_bloom_inputs_dict(config, input_ids, attention_mask=None): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_flax class FlaxBloomModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, n_layer=2, n_head=4, hidden_act="gelu", hidden_dropout=0.1, attention_probs_dropout_prob=0.1, eos_token_id=2, pad_token_id=1, bos_token_id=0, initializer_range=0.02, apply_residual_connection_post_layernorm=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = n_layer self.num_attention_heads = n_head self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_probs_dropout_prob = attention_probs_dropout_prob self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.initializer_range = initializer_range self.is_encoder_decoder = False self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) config = BloomConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_probs_dropout_prob, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=False, use_cache=False, ) inputs_dict = prepare_bloom_inputs_dict(config, input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids = inputs_dict["input_ids"] attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4") past_key_values = model.init_cache(input_ids.shape[0], max_length) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, ) outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_length = 20 model = model_class_name(config) input_ids, attention_mask = ( inputs_dict["input_ids"], inputs_dict["attention_mask"], ) attention_mask_cache = jnp.concatenate( [ attention_mask, jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_length) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, ) outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxBloomModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): all_model_classes = (FlaxBloomModel, FlaxBloomForCausalLM) if is_flax_available() else () all_generative_model_classes = () if is_flax_available() else () def setUp(self): self.model_tester = FlaxBloomModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("bigscience/bloom-560m") input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @slow @require_flax class FlaxBloomGenerationTest(unittest.TestCase): all_model_classes = (FlaxBloomForCausalLM,) if is_flax_available() else () all_generative_model_classes = () if is_flax_available() else () def setUp(self): self.model_id = "bigscience/bloom-560m" self.tokenizer = BloomTokenizerFast.from_pretrained(self.model_id, padding_side="left") self.model_tester = FlaxBloomModelTester(self) self.model = FlaxBloomForCausalLM.from_pretrained(self.model_id, from_pt=True, revision="gs555750") def test_model_batched_gen(self): # tests if the model outputs the same generation for the same batched input input_sentences = [ "Hello there is this string is definitely longer I believe that", "Hello there is this string is definitely longer I believe that", ] inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True) sequences_fx = self.model.generate(**inputs, max_length=20).sequences self.assertEqual(sequences_fx[0].tolist(), sequences_fx[1].tolist()) def test_model_batched_padding_left(self): # tests if the model outputs the same generation for an input that is part of a batch # and a single input input_sentences_batch = [ "Hello there is this string is definitely longer I believe that", "Hi I want to order", ] inputs = self.tokenizer(input_sentences_batch, return_tensors="np", padding=True, truncation=True) sequences_fx_batch = self.model.generate(**inputs, max_length=20).sequences input_sentence_simple = "Hi I want to order" inputs_simple = self.tokenizer(input_sentence_simple, return_tensors="np") sequences_fx_simple = self.model.generate(**inputs_simple, max_length=20).sequences self.assertEqual(sequences_fx_batch[1][6:].tolist(), sequences_fx_simple[0][:-6].tolist()) def test_batch_generated_text(self): input_sentences = [ "Hello what is", "Running a quick test with the", ] inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True) generated_ids = self.model.generate(**inputs, max_length=20).sequences generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # these generations match those of the PyTorch model, ensuring correctness EXPECTED_GENERATIONS = [ "Hello what is the best way to get the data from the server? I have tried", "Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2", ] self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
transformers/tests/models/bloom/test_modeling_flax_bloom.py/0
{ "file_path": "transformers/tests/models/bloom/test_modeling_flax_bloom.py", "repo_id": "transformers", "token_count": 4307 }
# coding=utf-8 # Copyright 2021 Google AI and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "nielsr/canine-s" tokenizer_class = CanineTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def canine_tokenizer(self): return CanineTokenizer.from_pretrained("google/canine-s") def get_tokenizer(self, **kwargs) -> CanineTokenizer: tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) tokenizer._unicode_vocab_size = 1024 return tokenizer @require_torch def test_prepare_batch_integration(self): tokenizer = self.canine_tokenizer src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: skip batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 39), batch.input_ids.shape) self.assertEqual((2, 39), batch.attention_mask.shape) @require_torch def test_encoding_keys(self): tokenizer = self.canine_tokenizer src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertIn("token_type_ids", batch) @require_torch def test_max_length_integration(self): tokenizer = self.canine_tokenizer tgt_text = [ "What's the weater?", "It's about 25 degrees.", ] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1]) # cannot use default save_and_load_tokenizer test method because tokenizer has no vocab def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00e9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00e9d,running" additional_special_tokens = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: new_additional_special_token = chr(0xE007) additional_special_tokens.append(new_additional_special_token) tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) # a special token for Canine can be defined as follows: SPECIAL_TOKEN = 0xE005 special_token = chr(SPECIAL_TOKEN) tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_tokenize_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = chr(0xE005) SPECIAL_TOKEN_2 = chr(0xE006) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) @require_tokenizers def test_added_token_serializable(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token = chr(NEW_TOKEN) new_token = AddedToken(new_token, lstrip=True) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token_1 = chr(NEW_TOKEN) special_tokens_map["additional_special_tokens"] = [new_token_1] tokenizer_config["additional_special_tokens"] = [new_token_1] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_1], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) ), ) NEW_TOKEN = 0xE007 new_token_2 = chr(NEW_TOKEN) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken(new_token_2, lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 ) self.assertIn(new_token_2, tokenizer.additional_special_tokens) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) ) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input = "hello world" if self.space_between_special_tokens: output = "[CLS] hello world [SEP]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] token_to_test_setters = "a" token_id_to_test_setters = ord(token_to_test_setters) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) additional_special_token_id = 0xE006 additional_special_token = chr(additional_special_token_id) setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) @unittest.skip(reason="tokenizer has a fixed vocab_size (namely all possible unicode code points)") def test_add_tokens_tokenizer(self): pass # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point # ("b" and "B" for example have different Unicode code points) @unittest.skip(reason="CanineTokenizer does not support do_lower_case = True") def test_added_tokens_do_lower_case(self): pass @unittest.skip(reason="CanineModel does not support the get_input_embeddings nor the get_vocab method") def test_np_encode_plus_sent_to_model(self): pass @unittest.skip(reason="CanineModel does not support the get_input_embeddings nor the get_vocab method") def test_torch_encode_plus_sent_to_model(self): pass @unittest.skip(reason="CanineTokenizer does not have vocabulary") def test_get_vocab(self): pass @unittest.skip(reason="inputs cannot be pretokenized since ids depend on whole input string") def test_pretokenized_inputs(self): pass @unittest.skip(reason="CanineTokenizer does not have vocabulary") def test_conversion_reversible(self): pass
transformers/tests/models/canine/test_tokenization_canine.py/0
{ "file_path": "transformers/tests/models/canine/test_tokenization_canine.py", "repo_id": "transformers", "token_count": 7173 }
import inspect import tempfile import unittest import numpy as np import transformers from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.clip.modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPTextModel, FlaxCLIPTextModelWithProjection, FlaxCLIPVisionModel, ) if is_torch_available(): import torch class FlaxCLIPVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = CLIPVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxCLIPVisionModelTest(FlaxModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (FlaxCLIPVisionModel,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxCLIPVisionModelTester(self) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs).to_tuple() with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict) self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) # CLIP has a different seq_length image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) # FlaxCLIPVisionModel does not have any base model def test_save_load_from_base(self): pass # FlaxCLIPVisionModel does not have any base model def test_save_load_to_base(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_from_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_to_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): pass @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) class FlaxCLIPTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = CLIPTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_flax class FlaxCLIPTextModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxCLIPTextModel, FlaxCLIPTextModelWithProjection) if is_flax_available() else () def setUp(self): self.model_tester = FlaxCLIPTextModelTester(self) # FlaxCLIPTextModel does not have any base model def test_save_load_from_base(self): pass # FlaxCLIPVisionModel does not have any base model def test_save_load_to_base(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_from_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_to_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): pass @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) class FlaxCLIPModelTester: def __init__(self, parent, is_training=True): self.parent = parent self.text_model_tester = FlaxCLIPTextModelTester(parent) self.vision_model_tester = FlaxCLIPVisionModelTester(parent) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = CLIPConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) return config, input_ids, attention_mask, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_flax class FlaxCLIPModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxCLIPModel,) if is_flax_available() else () test_attention_outputs = False def setUp(self): self.model_tester = FlaxCLIPModelTester(self) # hidden_states are tested in individual model tests def test_hidden_states_output(self): pass def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_ids, pixel_values, **kwargs): return model(input_ids=input_ids, pixel_values=pixel_values, **kwargs).to_tuple() with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict) self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs[:4], outputs[:4]): self.assertEqual(jitted_output.shape, output.shape) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_ids", "pixel_values", "attention_mask", "position_ids"] self.assertListEqual(arg_names[:4], expected_arg_names) def test_get_image_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = FlaxCLIPModel(config) @jax.jit def model_jitted(pixel_values): return model.get_image_features(pixel_values=pixel_values) with self.subTest("JIT Enabled"): jitted_output = model_jitted(inputs_dict["pixel_values"]) with self.subTest("JIT Disabled"): with jax.disable_jit(): output = model_jitted(inputs_dict["pixel_values"]) self.assertEqual(jitted_output.shape, output.shape) self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) def test_get_text_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = FlaxCLIPModel(config) @jax.jit def model_jitted(input_ids, attention_mask, **kwargs): return model.get_text_features(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_output = model_jitted(**inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): output = model_jitted(**inputs_dict) self.assertEqual(jitted_output.shape, output.shape) self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(input_ids=np.ones((1, 1)), pixel_values=np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test def test_from_pretrained_save_pretrained(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class.__name__ != "FlaxBertModel": continue with self.subTest(model_class.__name__): model = model_class(config) prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) outputs = model(**prepared_inputs_dict).to_tuple() # verify that normal save_pretrained works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3) # verify that save_pretrained for distributed training # with `params=params` works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=model.params) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3)
transformers/tests/models/clip/test_modeling_flax_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_modeling_flax_clip.py", "repo_id": "transformers", "token_count": 11160 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch CvT model.""" import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class CvtConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "embed_dim")) self.parent.assertTrue(hasattr(config, "num_heads")) class CvtModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, embed_dim=[16, 32, 48], num_heads=[1, 2, 3], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], stride_kv=[2, 2, 2], cls_token=[False, False, True], attention_drop_rate=[0.0, 0.0, 0.0], initializer_range=0.02, layer_norm_eps=1e-12, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.num_channels = num_channels self.embed_dim = embed_dim self.num_heads = num_heads self.stride_kv = stride_kv self.depth = depth self.cls_token = cls_token self.attention_drop_rate = attention_drop_rate self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = CvtModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for i in range(len(self.depth)): height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = CvtForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = CvtModelTester(self) self.config_tester = ConfigTester( self, config_class=CvtConfig, has_text_modality=False, hidden_size=37, common_properties=["hidden_size", "num_channels"], ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Cvt does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Cvt does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Cvt does not support input and output embeddings") def test_model_get_set_embeddings(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depth) self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "microsoft/cvt-13" model = CvtModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class CvtModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("microsoft/cvt-13") @slow def test_inference_image_classification_head(self): model = CvtForImageClassification.from_pretrained("microsoft/cvt-13").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
transformers/tests/models/cvt/test_modeling_cvt.py/0
{ "file_path": "transformers/tests/models/cvt/test_modeling_cvt.py", "repo_id": "transformers", "token_count": 4144 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import DebertaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, ) class TFDebertaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.relative_attention = False self.max_relative_positions = -1 self.position_biased_input = True self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, max_relative_positions=self.max_relative_positions, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFDebertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDebertaModel, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFDebertaModel, "fill-mask": TFDebertaForMaskedLM, "question-answering": TFDebertaForQuestionAnswering, "text-classification": TFDebertaForSequenceClassification, "token-classification": TFDebertaForTokenClassification, "zero-shot": TFDebertaForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") self.assertIsNotNone(model) @unittest.skip("This test was broken by the refactor in #22105, TODO @ArthurZucker") def test_pt_tf_model_equivalence(self): pass @require_tf class TFDeBERTaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_slice = tf.constant( [ [ [-0.59855896, -0.80552566, -0.8462135], [1.4484025, -0.93483794, -0.80593085], [0.3122741, 0.00316059, -1.4131377], ] ] ) tf.debugging.assert_near(output[:, 1:4, 1:4], expected_slice, atol=1e-4)
transformers/tests/models/deberta/test_modeling_tf_deberta.py/0
{ "file_path": "transformers/tests/models/deberta/test_modeling_tf_deberta.py", "repo_id": "transformers", "token_count": 5026 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Depth Anything model.""" import unittest from transformers import DepthAnythingConfig, Dinov2Config from transformers.file_utils import is_torch_available, is_vision_available from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4 from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DepthAnythingForDepthEstimation if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class DepthAnythingModelTester: # Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.__init__ def __init__( self, parent, batch_size=2, num_channels=3, image_size=32, patch_size=16, use_labels=True, num_labels=3, is_training=True, hidden_size=4, num_hidden_layers=2, num_attention_heads=2, intermediate_size=8, out_features=["stage1", "stage2"], apply_layernorm=False, reshape_hidden_states=False, neck_hidden_sizes=[2, 2], fusion_hidden_size=6, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.out_features = out_features self.apply_layernorm = apply_layernorm self.reshape_hidden_states = reshape_hidden_states self.use_labels = use_labels self.num_labels = num_labels self.is_training = is_training self.neck_hidden_sizes = neck_hidden_sizes self.fusion_hidden_size = fusion_hidden_size # DPT's sequence length self.seq_length = (self.image_size // self.patch_size) ** 2 + 1 # Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return DepthAnythingConfig( backbone_config=self.get_backbone_config(), reassemble_hidden_size=self.hidden_size, patch_size=self.patch_size, neck_hidden_sizes=self.neck_hidden_sizes, fusion_hidden_size=self.fusion_hidden_size, ) # Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.get_backbone_config def get_backbone_config(self): return Dinov2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, is_training=self.is_training, out_features=self.out_features, reshape_hidden_states=self.reshape_hidden_states, ) # Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.create_and_check_for_depth_estimation with DPT->DepthAnything def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DepthAnythingForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) # Copied from tests.models.dpt.test_modeling_dpt_auto_backbone.DPTModelTester.prepare_config_and_inputs_for_common def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class DepthAnythingModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Depth Anything does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (DepthAnythingForDepthEstimation,) if is_torch_available() else () pipeline_model_mapping = {"depth-estimation": DepthAnythingForDepthEstimation} if is_torch_available() else {} test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DepthAnythingModelTester(self) self.config_tester = ConfigTester( self, config_class=DepthAnythingConfig, has_text_modality=False, hidden_size=37, common_properties=["patch_size"], ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings") def test_inputs_embeds(self): pass def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) @unittest.skip(reason="Depth Anything does not support training yet") def test_training(self): pass @unittest.skip(reason="Depth Anything does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model and hence no input_embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Depth Anything with AutoBackbone does not have a base model") def test_save_load_fast_init_to_base(self): pass @unittest.skip( reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seems to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): model_name = "LiheYoung/depth-anything-small-hf" model = DepthAnythingForDepthEstimation.from_pretrained(model_name) self.assertIsNotNone(model) def test_backbone_selection(self): def _validate_backbone_init(): for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() # Confirm out_indices propogated to backbone self.assertEqual(len(model.backbone.out_indices), 2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Load a timm backbone config.backbone = "resnet18" config.use_pretrained_backbone = True config.use_timm_backbone = True config.backbone_config = None # For transformer backbones we can't set the out_indices or just return the features config.backbone_kwargs = {"out_indices": (-2, -1)} _validate_backbone_init() # Load a HF backbone config.backbone = "facebook/dinov2-small" config.use_pretrained_backbone = True config.use_timm_backbone = False config.backbone_config = None config.backbone_kwargs = {"out_indices": [-2, -1]} _validate_backbone_init() # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class DepthAnythingModelIntegrationTest(unittest.TestCase): def test_inference(self): # -- `relative` depth model -- image_processor = DPTImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") model = DepthAnythingForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size([1, 518, 686]) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[8.8223, 8.6483, 8.6216], [8.3332, 8.6047, 8.7545], [8.6547, 8.6885, 8.7472]], ).to(torch_device) torch.testing.assert_close(predicted_depth[0, :3, :3], expected_slice, rtol=1e-6, atol=1e-6) # -- `metric` depth model -- image_processor = DPTImageProcessor.from_pretrained("depth-anything/depth-anything-V2-metric-indoor-small-hf") model = DepthAnythingForDepthEstimation.from_pretrained( "depth-anything/depth-anything-V2-metric-indoor-small-hf" ).to(torch_device) inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size([1, 518, 686]) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[1.3349, 1.2947, 1.2802], [1.2794, 1.2338, 1.2901], [1.2630, 1.2219, 1.2478]], ).to(torch_device) torch.testing.assert_close(predicted_depth[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) def test_export(self): for strict in [True, False]: with self.subTest(strict=strict): if not is_torch_greater_or_equal_than_2_4: self.skipTest(reason="This test requires torch >= 2.4 to run.") model = ( DepthAnythingForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") .to(torch_device) .eval() ) image_processor = DPTImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) exported_program = torch.export.export( model, args=(inputs["pixel_values"],), strict=strict, ) with torch.no_grad(): eager_outputs = model(**inputs) exported_outputs = exported_program.module().forward(inputs["pixel_values"]) self.assertEqual(eager_outputs.predicted_depth.shape, exported_outputs.predicted_depth.shape) self.assertTrue( torch.allclose(eager_outputs.predicted_depth, exported_outputs.predicted_depth, atol=1e-4) )
transformers/tests/models/depth_anything/test_modeling_depth_anything.py/0
{ "file_path": "transformers/tests/models/depth_anything/test_modeling_depth_anything.py", "repo_id": "transformers", "token_count": 5384 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class TFDistilBertModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = False self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_distilbert_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDistilBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_distilbert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDistilBertForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_distilbert_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDistilBertForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_distilbert_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDistilBertForSequenceClassification(config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_distilbert_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFDistilBertForMultipleChoice(config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_distilbert_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDistilBertForTokenClassification(config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFDistilBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) pipeline_model_mapping = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDistilBertModelTester(self) self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) def test_config(self): self.config_tester.run_common_tests() def test_distilbert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "distilbert/distilbert-base-cased" model = TFDistilBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFDistilBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 768] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/distilbert/test_modeling_tf_distilbert.py/0
{ "file_path": "transformers/tests/models/distilbert/test_modeling_tf_distilbert.py", "repo_id": "transformers", "token_count": 4494 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch DPT model.""" import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class DPTModelTester: def __init__( self, parent, batch_size=2, image_size=32, patch_size=16, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=4, backbone_out_indices=[0, 1, 2, 3], num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, backbone_featmap_shape=[1, 32, 24, 24], neck_hidden_sizes=[16, 16, 32, 32], is_hybrid=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.backbone_out_indices = backbone_out_indices self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.backbone_featmap_shape = backbone_featmap_shape self.scope = scope self.is_hybrid = is_hybrid self.neck_hidden_sizes = neck_hidden_sizes # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [16, 16, 32, 32], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, fusion_hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=backbone_config, backbone=None, backbone_featmap_shape=self.backbone_featmap_shape, neck_hidden_sizes=self.neck_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): model = DPTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DPTForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = DPTForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () pipeline_model_mapping = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = DPTModelTester(self) self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) def test_training(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ in MODEL_MAPPING_NAMES.values(): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing: continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) # Skip the check for the backbone backbone_params = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def test_model_from_pretrained(self): model_name = "Intel/dpt-hybrid-midas" model = DPTModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_raise_readout_type(self): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type config, _ = self.model_tester.prepare_config_and_inputs_for_common() config.readout_type = "add" with self.assertRaises(ValueError): _ = DPTForDepthEstimation(config) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class DPTModelIntegrationTest(unittest.TestCase): def test_inference_depth_estimation(self): image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # verify the predicted depth expected_shape = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(torch_device) torch.testing.assert_close(outputs.predicted_depth[:3, :3, :3] / 100, expected_slice, rtol=1e-4, atol=1e-4)
transformers/tests/models/dpt/test_modeling_dpt_hybrid.py/0
{ "file_path": "transformers/tests/models/dpt/test_modeling_dpt_hybrid.py", "repo_id": "transformers", "token_count": 5774 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer from transformers.testing_utils import slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin # using a different tiny model than the one used for default params defined in init to ensure proper testing FSMT_TINY2 = "stas/tiny-wmt19-en-ru" class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "stas/tiny-wmt19-en-de" tokenizer_class = FSMTTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.langs = ["en", "ru"] config = { "langs": self.langs, "src_vocab_size": 10, "tgt_vocab_size": 20, } self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"]) self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"]) config_file = os.path.join(self.tmpdirname, "tokenizer_config.json") self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) with open(config_file, "w") as fp: fp.write(json.dumps(config)) @cached_property def tokenizer_ru_en(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en") @cached_property def tokenizer_en_ru(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru") def test_online_tokenizer_config(self): """this just tests that the online tokenizer files get correctly fetched and loaded via its tokenizer_config.json and it's not slow so it's run by normal CI """ tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2) self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"]) self.assertEqual(tokenizer.src_vocab_size, 21) self.assertEqual(tokenizer.tgt_vocab_size, 21) def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_ru_en text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == text + [2] assert encoded_pair == text + [2] + text_2 + [2] @slow def test_match_encode_decode(self): tokenizer_enc = self.tokenizer_en_ru tokenizer_dec = self.tokenizer_ru_en targets = [ [ "Here's a little song I wrote. Don't worry, be happy.", [2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2], ], ["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]], ] # if data needs to be recreated or added, run: # import torch # model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe") # for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""") for src_text, tgt_input_ids in targets: encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None) self.assertListEqual(encoded_ids, tgt_input_ids) # and decode backward, using the reversed languages model decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True) self.assertEqual(decoded_text, src_text) @slow def test_tokenizer_lower(self): tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True) tokens = tokenizer.tokenize("USA is United States of America") expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"] self.assertListEqual(tokens, expected) @unittest.skip(reason="FSMTConfig.__init__ requires non-optional args") def test_torch_encode_plus_sent_to_model(self): pass @unittest.skip(reason="FSMTConfig.__init__ requires non-optional args") def test_np_encode_plus_sent_to_model(self): pass
transformers/tests/models/fsmt/test_tokenization_fsmt.py/0
{ "file_path": "transformers/tests/models/fsmt/test_tokenization_fsmt.py", "repo_id": "transformers", "token_count": 2974 }
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from huggingface_hub import hf_hub_download from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel if is_vision_available(): from PIL import Image class GitVisionModelTester: def __init__( self, parent, batch_size=12, image_size=32, patch_size=16, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return GitVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = GitVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GitVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (GitVisionModel,) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = GitVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="GIT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip def test_training(self): pass @unittest.skip def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "microsoft/git-base" model = GitVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class GitModelTester: def __init__( self, parent, num_channels=3, image_size=32, patch_size=16, batch_size=13, text_seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.batch_size = batch_size self.text_seq_length = text_seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope # make sure the BOS, EOS and PAD tokens are within the vocab self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 # for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, input_ids, input_mask, pixel_values def get_config(self): """ Returns a tiny configuration by default. """ return GitConfig( vision_config={ "num_channels": self.num_channels, "image_size": self.image_size, "patch_size": self.patch_size, "hidden_size": self.hidden_size, "projection_dim": 32, "num_hidden_layers": self.num_hidden_layers, "num_attention_heads": self.num_attention_heads, }, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, ) def create_and_check_model(self, config, input_ids, input_mask, pixel_values): model = GitModel(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # inference with pixel values result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # inference without pixel values result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size)) # training result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertTrue(result.loss.item() > 0) def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids, attention_mask=input_mask, pixel_values=pixel_values, do_sample=False, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def _test_batched_generate_captioning(self, config, input_ids, input_mask, pixel_values): model = GitForCausalLM(config=config) model.to(torch_device) model.eval() # generate generated_ids = model.generate( input_ids=None, # captioning -> no input_ids attention_mask=None, pixel_values=pixel_values, do_sample=False, min_length=20, max_length=20, num_beams=2, num_return_sequences=2, ) self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, pixel_values, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else () all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GitModel, "image-to-text": GitForCausalLM, "text-generation": GitForCausalLM, "image-text-to-text": GitForCausalLM, } if is_torch_available() else {} ) fx_compatible = False test_torchscript = False # special case for GitForCausalLM model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = GitModelTester(self) self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_beam_search_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_beam_search_generate(*config_and_inputs) def test_batched_generate_captioning(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester._test_batched_generate_captioning(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): # GIT attention shape depends on image inputs, overwrite self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) image_length = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx + image_length if not use_cache else 1 src_len = min_length + idx + image_length expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): # GIT attention shape depends on image inputs, overwrite self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) image_length = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx + image_length if not use_cache else 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @slow def test_model_from_pretrained(self): model_name = "microsoft/git-base" model = GitModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="GIT has pixel values as additional input") def test_beam_search_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_contrastive_generate_low_memory(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_greedy_generate_dict_outputs_use_cache(self): pass @unittest.skip(reason="GIT has pixel values as additional input") def test_dola_decoding_sample(self): pass @require_torch @require_vision @slow class GitModelIntegrationTest(unittest.TestCase): def test_forward_pass(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, 201, 30522)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]], device=torch_device, ) torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) def test_inference_image_captioning(self): processor = GitProcessor.from_pretrained("microsoft/git-base") model = GitForCausalLM.from_pretrained("microsoft/git-base") model.to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) outputs = model.generate( pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True ) generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 9)) self.assertEqual(outputs.sequences.shape, expected_shape) self.assertEqual(generated_caption, "two cats laying on a pink blanket") self.assertTrue(outputs.scores[-1].shape, expected_shape) expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device) torch.testing.assert_close(outputs.scores[-1][0, :3], expected_slice, rtol=1e-4, atol=1e-4) def test_visual_question_answering(self): processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa") model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa") model.to(torch_device) # prepare image file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") image = Image.open(file_path).convert("RGB") inputs = processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # prepare question question = "what does the front of the bus say at the top?" input_ids = processor(text=question, add_special_tokens=False).input_ids input_ids = [processor.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] expected_shape = torch.Size((1, 15)) self.assertEqual(generated_ids.shape, expected_shape) self.assertEqual(generated_caption, "what does the front of the bus say at the top? special") def test_batched_generation(self): processor = GitProcessor.from_pretrained("microsoft/git-base-coco") model = GitForCausalLM.from_pretrained("microsoft/git-base-coco") model.to(torch_device) # create batch of size 2 image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=[image, image], return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # we have to prepare `input_ids` with the same batch size as `pixel_values` start_token_id = model.config.bos_token_id input_ids = torch.tensor([[start_token_id], [start_token_id]], device=torch_device) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2) @slow def test_inference_interpolate_pos_encoding(self): # CLIP family models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = GitModel.from_pretrained("microsoft/git-base").to(torch_device) processor = GitProcessor.from_pretrained( "microsoft/git-base", size={"height": 180, "width": 180}, crop_size={"height": 180, "width": 180} ) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device) # interpolate_pos_encodiung false should return value error with self.assertRaises(ValueError, msg="doesn't match model"): with torch.no_grad(): model(**inputs, interpolate_pos_encoding=False) # forward pass with torch.no_grad(): outputs = model(**inputs, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 130, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-1.0296, 2.5960, 0.8703], [1.7027, 1.3302, -0.4543], [-1.4932, -0.1084, 0.0502]] ).to(torch_device) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
transformers/tests/models/git/test_modeling_git.py/0
{ "file_path": "transformers/tests/models/git/test_modeling_git.py", "repo_id": "transformers", "token_count": 11420 }
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPT2LMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpt2 import TFGPT2Tokenizer TOKENIZER_CHECKPOINTS = ["openai-community/gpt2"] TINY_MODEL_CHECKPOINT = "openai-community/gpt2" if is_tf_available(): class ModelToSave(tf.Module): def __init__(self, tokenizer): super().__init__() self.tokenizer = tokenizer config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT) self.model = TFGPT2LMHeadModel.from_config(config) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name="text"),)) def serving(self, text): tokenized = self.tokenizer(text) input_ids_dense = tokenized["input_ids"].to_tensor() input_mask = tf.cast(input_ids_dense > 0, tf.int32) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) outputs = self.model(input_ids=input_ids_dense, attention_mask=input_mask)["logits"] return outputs @require_tf @require_keras_nlp class GPTTokenizationTest(unittest.TestCase): # The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints, # so that's what we focus on here. def setUp(self): super().setUp() self.tokenizers = [GPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in (TOKENIZER_CHECKPOINTS)] self.tf_tokenizers = [TFGPT2Tokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) self.test_sentences = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00e9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1])) def test_output_equivalence(self): for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in self.test_sentences: python_outputs = tokenizer([test_inputs], return_tensors="tf") tf_outputs = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors python_outputs_values = python_outputs[key].numpy() tf_outputs_values = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs_values, tf.int64) == tf_outputs_values)) @slow def test_graph_mode(self): for tf_tokenizer in self.tf_tokenizers: compiled_tokenizer = tf.function(tf_tokenizer) for test_inputs in self.test_sentences: test_inputs = tf.constant(test_inputs) compiled_outputs = compiled_tokenizer(test_inputs) eager_outputs = tf_tokenizer(test_inputs) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def test_saved_model(self): for tf_tokenizer in self.tf_tokenizers: model = ModelToSave(tokenizer=tf_tokenizer) test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = model.serving(test_inputs) # Build model with some sample inputs with TemporaryDirectory() as tempdir: save_path = Path(tempdir) / "saved.model" tf.saved_model.save(model, save_path, signatures={"serving_default": model.serving}) loaded_model = tf.saved_model.load(save_path) loaded_output = loaded_model.signatures["serving_default"](test_inputs)["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def test_from_config(self): for tf_tokenizer in self.tf_tokenizers: test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = tf_tokenizer(test_inputs) # Build model with some sample inputs config = tf_tokenizer.get_config() model_from_config = TFGPT2Tokenizer.from_config(config) from_config_output = model_from_config(test_inputs) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def test_padding(self): for tf_tokenizer in self.tf_tokenizers: # for the test to run tf_tokenizer.pad_token_id = 123123 for max_length in [3, 5, 1024]: test_inputs = tf.convert_to_tensor([self.test_sentences[0]]) out = tf_tokenizer(test_inputs, max_length=max_length) out_length = out["input_ids"].numpy().shape[1] assert out_length == max_length
transformers/tests/models/gpt2/test_tokenization_gpt2_tf.py/0
{ "file_path": "transformers/tests/models/gpt2/test_tokenization_gpt2_tf.py", "repo_id": "transformers", "token_count": 2530 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import AutoTokenizer, GPTJConfig, is_tf_available from transformers.testing_utils import require_tf, slow, tooslow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.gptj.modeling_tf_gptj import ( TFGPTJForCausalLM, TFGPTJForQuestionAnswering, TFGPTJForSequenceClassification, TFGPTJModel, shape_list, ) class TFGPTJModelTester: def __init__(self, parent): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.rotary_dim = 4 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJModel(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gptj_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPTJModel(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gptj_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPTJModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past_key_values, )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gptj_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPTJForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPTJForCausalLM, TFGPTJForSequenceClassification, TFGPTJForQuestionAnswering, TFGPTJModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPTJForCausalLM,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFGPTJModel, "question-answering": TFGPTJForQuestionAnswering, "text-classification": TFGPTJForSequenceClassification, "text-generation": TFGPTJForCausalLM, "zero-shot": TFGPTJForSequenceClassification, } if is_tf_available() else {} ) test_onnx = False test_pruning = False test_missing_keys = False test_head_masking = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if ( pipeline_test_case_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = TFGPTJModelTester(self) self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gptj_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model(*config_and_inputs) def test_gptj_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_past(*config_and_inputs) def test_gptj_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs) def test_gptj_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs) def test_gptj_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs) @slow @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) > 0, "skip testing on GPU for now to avoid GPU OOM.", ) def test_model_from_pretrained(self): model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) self.assertIsNotNone(model) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def test_resize_token_embeddings(self): super().test_resize_token_embeddings() @require_tf @tooslow # Marked as @tooslow due to GPU OOM -- but still useful to run locally. Requires ~39GB of RAM. class TFGPTJModelLanguageGenerationTest(unittest.TestCase): def test_lm_generate_gptj(self): model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog # The dog is a man's best friend. It is a loyal companion, and it is a friend expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545] # fmt: skip output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) def test_gptj_sample(self): tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) tokenized = tokenizer("Today is a nice day and", return_tensors="tf") # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(**tokenized, do_sample=True, seed=[42, 0]) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = "Today is a nice day and I’m going to go for a walk. I’" self.assertEqual(output_str, EXPECTED_OUTPUT_STR) def _get_beam_search_test_objects(self): model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] expected_output_sentences = [ "Hello, my dog is a little over a year old and has been diagnosed with hip dysplasia", "Today, I’m going to be talking about a topic that’", ] return model, tokenizer, sentences, expected_output_sentences def test_batch_beam_search(self): # Confirms that we get the expected results with left-padded beam search model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) outputs = model.generate(**inputs, do_sample=False, num_beams=2) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(expected_output_sentences, batch_out_sentence) def test_batch_left_padding(self): # Confirms that left-padding is working properly model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) inputs_non_padded = tokenizer(sentences[0], return_tensors="tf") output_non_padded = model.generate(**inputs_non_padded, do_sample=False, num_beams=2) num_paddings = ( shape_list(inputs_non_padded["input_ids"])[-1] - tf.reduce_sum(tf.cast(inputs["attention_mask"][-1], tf.int64)).numpy() ) inputs_padded = tokenizer(sentences[1], return_tensors="tf") output_padded = model.generate( **inputs_padded, do_sample=False, num_beams=2, max_length=model.config.max_length - num_paddings ) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) self.assertListEqual(expected_output_sentences, [non_padded_sentence, padded_sentence]) def test_xla_beam_search(self): # Confirms that XLA is working properly model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() inputs = tokenizer(sentences, return_tensors="tf", padding=True) xla_generate = tf.function(model.generate, jit_compile=True) outputs_xla = xla_generate(**inputs, do_sample=False, num_beams=2) xla_sentence = tokenizer.batch_decode(outputs_xla, skip_special_tokens=True) self.assertListEqual(expected_output_sentences, xla_sentence)
transformers/tests/models/gptj/test_modeling_tf_gptj.py/0
{ "file_path": "transformers/tests/models/gptj/test_modeling_tf_gptj.py", "repo_id": "transformers", "token_count": 8924 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch InstructBlipVideo model.""" import inspect import tempfile import unittest import numpy as np import pytest from huggingface_hub import hf_hub_download from parameterized import parameterized from transformers import ( CONFIG_MAPPING, InstructBlipVideoConfig, InstructBlipVideoProcessor, InstructBlipVideoQFormerConfig, InstructBlipVideoVisionConfig, ) from transformers.testing_utils import ( require_accelerate, require_bitsandbytes, require_torch, require_torch_sdpa, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask, ) if is_torch_available(): import torch from torch import nn from transformers import InstructBlipVideoForConditionalGeneration, InstructBlipVideoVisionModel class InstructBlipVideoVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, frames=4, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.frames = frames self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size * self.frames, self.num_channels, self.image_size, self.image_size] ) config = self.get_config() return config, pixel_values def get_config(self): return InstructBlipVideoVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = InstructBlipVideoVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size * self.frames, num_patches + 1, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.frames, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class InstructBlipVideoVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as InstructBlipVideo's vision encoder does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (InstructBlipVideoVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = InstructBlipVideoVisionModelTester(self) common_properties = ["num_query_tokens", "video_token_index"] self.config_tester = ConfigTester( self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="InstructBlipVideo's vision encoder does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="InstructBlipVideo's vision encoder is an nn.Embeddings layer") def test_model_get_set_embeddings(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip( reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training" ) def test_training(self): pass @unittest.skip( reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="InstructBlipVideoVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "Salesforce/instructblip-vicuna-7b" model = InstructBlipVideoVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class InstructBlipVideoQFormerModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask def get_config(self): return InstructBlipVideoQFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) # this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py class InstructBlipVideoTextModelDecoderOnlyTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, num_labels=3, word_embed_proj_dim=16, type_sequence_label_size=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.num_labels = num_labels self.type_sequence_label_size = type_sequence_label_size self.word_embed_proj_dim = word_embed_proj_dim self.is_encoder_decoder = False def prepare_config_and_inputs(self): config = self.get_config() input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3) input_ids[:, -1] = self.eos_token_id # Eos Token attention_mask = input_ids.ne(self.pad_token_id) return config, input_ids, attention_mask def get_config(self): return CONFIG_MAPPING["opt"]( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, is_encoder_decoder=False, word_embed_proj_dim=self.word_embed_proj_dim, ) # this model tester uses a decoder-only language model (OPT) class InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester: def __init__( self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10, video_token_index=4, ): if vision_kwargs is None: vision_kwargs = {} if qformer_kwargs is None: qformer_kwargs = {} if text_kwargs is None: text_kwargs = {} self.parent = parent self.vision_model_tester = InstructBlipVideoVisionModelTester(parent, **vision_kwargs) self.qformer_model_tester = InstructBlipVideoQFormerModelTester(parent, **qformer_kwargs) self.text_model_tester = InstructBlipVideoTextModelDecoderOnlyTester(parent, **text_kwargs) self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test self.frames = self.vision_model_tester.frames # need seq_length for common tests self.seq_length = self.text_model_tester.seq_length + (num_query_tokens * self.frames) self.is_training = is_training self.num_query_tokens = num_query_tokens self.video_token_index = video_token_index def prepare_config_and_inputs(self): _, pixel_values = self.vision_model_tester.prepare_config_and_inputs() _, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs() _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() _, c, h, w = pixel_values.shape pixel_values = pixel_values.reshape(-1, self.frames, c, h, w) vision_tokens = ( torch.ones( (input_ids.shape[0], self.num_query_tokens * self.frames), device=torch_device, dtype=input_ids.dtype ) * self.video_token_index ) input_ids[input_ids == self.video_token_index] = self.text_model_tester.pad_token_id input_ids = torch.cat([vision_tokens, input_ids], dim=-1) vision_attention_mask = torch.ones_like(vision_tokens) attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1) config = self.get_config() return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values def get_config(self): return InstructBlipVideoConfig.from_vision_qformer_text_configs( vision_config=self.vision_model_tester.get_config(), qformer_config=self.qformer_model_tester.get_config(), text_config=self.text_model_tester.get_config(), num_query_tokens=self.num_query_tokens, video_token_index=self.video_token_index, ) def create_and_check_for_conditional_generation( self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values ): model = InstructBlipVideoForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model( pixel_values, input_ids=input_ids, attention_mask=attention_mask, qformer_input_ids=qformer_input_ids, qformer_attention_mask=qformer_attention_mask, ) expected_seq_length = ( self.num_query_tokens * self.vision_model_tester.frames ) + self.text_model_tester.seq_length self.parent.assertEqual( result.logits.shape, (self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "qformer_input_ids": qformer_input_ids, "qformer_attention_mask": qformer_attention_mask, "labels": input_ids, } return config, inputs_dict @require_torch class InstructBlipVideoForConditionalGenerationDecoderOnlyTest( ModelTesterMixin, GenerationTesterMixin, unittest.TestCase ): all_model_classes = (InstructBlipVideoForConditionalGeneration,) if is_torch_available() else () all_generative_model_classes = (InstructBlipVideoForConditionalGeneration,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = True test_attention_outputs = False test_torchscript = False _is_composite = True def setUp(self): self.model_tester = InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester(self) common_properties = ["num_query_tokens", "video_token_index"] self.config_tester = ConfigTester( self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties ) def test_for_conditional_generation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="InstructBlipVideoForConditionalGeneration doesn't support inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Tied weights are tested in individual model tests") def test_tied_weights_keys(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="InstructBlipVideoModel does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="There's no base InstructBlipVideoModel") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="There's no base InstructBlipVideoModel") def test_save_load_fast_init_to_base(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_vision_qformer_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = InstructBlipVideoVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save InstructBlipVideoConfig and check if we can load InstructBlipVideoQFormerConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) qformer_config = InstructBlipVideoQFormerConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict()) @slow def test_model_from_pretrained(self): model_name = "Salesforce/instructblip-vicuna-7b" model = InstructBlipVideoForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) # overwrite because InstructBLIPVideo internally calls LM.generate() with embeds thus it cannot operate in no cache format def _check_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1): use_cache = True # force this to be True in case False is passed input_batch_size = int(output.sequences.shape[0] / num_return_sequences) internal_batch_size = ( input_batch_size * num_beams if num_beams > 1 else input_batch_size * num_return_sequences ) seq_length = getattr(self.model_tester, "seq_length", None) seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length) seq_length = getattr(self.model_tester, "text_seq_length", seq_length) config = config.text_config if hasattr(config, "text_config") else config gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # in some models we subsample the sequence length in inner layers if hasattr(self.model_tester, "get_subsampled_output_lengths"): seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) # scores self._check_scores(internal_batch_size, output.scores, length=gen_len, config=config) # unprocessed logits self._check_logits(internal_batch_size, output.logits, config=config) # Attentions if self.has_attentions: if config.is_encoder_decoder: # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, input_batch_size, config, seq_length ) # decoder self._check_attentions_for_generate( internal_batch_size, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) else: # if use_cache first input is equal to no use_cache, so skip here attentions = output.attentions if not use_cache else output.attentions[1:] min_length = seq_length if not use_cache else seq_length + 1 self._check_attentions_for_generate( internal_batch_size, attentions=attentions, min_length=min_length, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States if config.is_encoder_decoder: # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, input_batch_size, config, seq_length ) # decoder self._check_hidden_states_for_generate( internal_batch_size, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) else: # if use_cache first input is equal to no use_cache, so skip here hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:] min_length = seq_length if not use_cache else seq_length + 1 self._check_hidden_states_for_generate( internal_batch_size, hidden_states, min_length=min_length, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Past Key Value States if use_cache: past_key_values = output.past_key_values past_sequence_length = output.sequences.shape[-1] - 1 self._check_past_key_values_for_generate( internal_batch_size, past_key_values, seq_length=past_sequence_length, config=config, ) # overwrite because InstructBLIPVideo cannot generate only from input ids, and requires `pixel` values and `qformer_input_ids` in all cases to be present @pytest.mark.generate def test_left_padding_compatibility(self): # NOTE: left-padding results in small numerical differences. This is expected. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 # First, filter out models that don't support left padding # - The model must have generative capabilities if len(self.all_generative_model_classes) == 0: self.skipTest(reason="No generative architecture available for this model.") # - The model must support padding if not self.has_attentions: self.skipTest(reason="This model doesn't support padding.") # - The model must be a decoder-only architecture (encoder-based architectures use right-padding) decoder_only_classes = [] for model_class in self.all_generative_model_classes: config, _ = self.prepare_config_and_inputs_for_generate() if config.is_encoder_decoder: continue else: decoder_only_classes.append(model_class) if len(decoder_only_classes) == 0: self.skipTest(reason="No decoder-only architecture available for this model.") # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't # added support for it yet. We skip these models for now. has_encoder_attributes = any( attr_name for attr_name in config.to_dict().keys() if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size" ) if has_encoder_attributes: self.skipTest( reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding." ) # Then, test left-padding def _prepare_model_kwargs(input_ids, attention_mask, signature): model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask} if "position_ids" in signature: position_ids = torch.cumsum(attention_mask, dim=-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) model_kwargs["position_ids"] = position_ids if "cache_position" in signature: cache_position = torch.arange(input_ids.shape[-1], device=torch_device) model_kwargs["cache_position"] = cache_position return model_kwargs for model_class in decoder_only_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict.get("attention_mask") pixel_values = inputs_dict["pixel_values"] qformer_input_ids = inputs_dict["qformer_input_ids"] if attention_mask is None: attention_mask = torch.ones_like(input_ids) model = model_class(config).to(torch_device).eval() signature = inspect.signature(model.forward).parameters.keys() # no cache as some models require special cache classes to be init outside forward model.generation_config.use_cache = False # Without padding model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature) next_logits_wo_padding = model( **model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids ).logits[:, -1, :] # With left-padding (length 32) # can hardcode pad_token to be 0 as we'll do attn masking anyway pad_token_id = ( config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0 ) pad_size = (input_ids.shape[0], 32) padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id padded_input_ids = torch.cat((padding, input_ids), dim=1) padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1) model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature) next_logits_with_padding = model( **model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids ).logits[:, -1, :] # They should result in very similar logits torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5) @unittest.skip( "InstructBLIPVideo cannot generate only from input ids, and requires pixel values in all cases to be present" ) @parameterized.expand([("greedy", 1), ("beam search", 2)]) def test_generate_from_inputs_embeds(self, _, num_beams): pass @require_torch_sdpa def test_sdpa_can_dispatch_composite_models(self): """ Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model. This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention". In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model is loaded, because we manually replicate requested attn implementation on each sub-config when loading. See https://github.com/huggingface/transformers/pull/32238 for more info The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model that has a different set of sub-configs has to overwrite this test. """ if not self.has_attentions: self.skipTest(reason="Model architecture does not support attentions") if not self._is_composite: self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained(tmpdirname) model_sdpa = model_sdpa.eval().to(torch_device) text_attn = "sdpa" if model.language_model._supports_sdpa else "eager" vision_attn = "sdpa" if model.vision_model._supports_sdpa else "eager" qformer_attn = "sdpa" if model.qformer._supports_sdpa else "eager" # `None` as it is the requested one which will be assigned to each sub-config # Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present) self.assertTrue(model.language_model.config._attn_implementation == text_attn) self.assertTrue(model.vision_model.config._attn_implementation == vision_attn) self.assertTrue(model.qformer.config._attn_implementation == qformer_attn) model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager") model_eager = model_eager.eval().to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") self.assertTrue(model_eager.language_model.config._attn_implementation == "eager") self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager") self.assertTrue(model_eager.qformer.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: has_sdpa = True break if not has_sdpa and any( module_attn == "sdpa" for module_attn in [text_attn, vision_attn, qformer_attn] ): raise ValueError("The SDPA model should have SDPA attention layers") # We will verify our results on an image of cute cats def prepare_video(): video_file = hf_hub_download( repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset" ) video = np.load(video_file)[::2] # sample every 2nd frame to get 4 frames total return video @require_vision @require_torch @require_bitsandbytes @require_accelerate @slow class InstructBlipVideoModelIntegrationTest(unittest.TestCase): def test_inference_vicuna_7b(self): processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") model = InstructBlipVideoForConditionalGeneration.from_pretrained( "Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True ) clip = prepare_video() prompt = "Explain what is happening in this short video." inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, torch.float16) # verify generation outputs = model.generate(**inputs, max_new_tokens=30) generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() self.assertEqual( generated_text, "Explain what is happening in this short video. a baby girl wearing glasses is reading a book on the bed 1080p", ) def test_expansion_in_processing(self): processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") model = InstructBlipVideoForConditionalGeneration.from_pretrained( "Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True ) clip = prepare_video() prompt = "Explain what is happening in this short video." # Make sure we will go the legacy path by setting these args to None processor.num_query_tokens = None model.config.video_token_index = None inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Add args to the config to trigger new logic when inputs are expanded in processing file processor.num_query_tokens = model.config.num_query_tokens processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<video>"]}) model.config.video_token_index = len(processor.tokenizer) - 1 model.resize_token_embeddings(len(processor.tokenizer), pad_to_multiple_of=64) # Generate again with new inputs inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15) generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip() self.assertTrue(generated_text_expanded == generated_text)
transformers/tests/models/instructblipvideo/test_modeling_instructblipvideo.py/0
{ "file_path": "transformers/tests/models/instructblipvideo/test_modeling_instructblipvideo.py", "repo_id": "transformers", "token_count": 16702 }
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple from transformers import AddedToken, LukeTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt") SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "studio-ousia/luke-base" tokenizer_class = LukeTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} def get_tokenizer(self, task=None, **kwargs): kwargs.update(self.special_tokens_map) tokenizer = LukeTokenizer( vocab_file=SAMPLE_VOCAB, merges_file=SAMPLE_MERGE_FILE, entity_vocab_file=SAMPLE_ENTITY_VOCAB, task=task, **kwargs, ) return tokenizer def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertEqual(encoded_sentence, encoded_text_from_decode) self.assertEqual(encoded_pair, encoded_pair_from_decode) def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: txt = "Beyonce lives in Los Angeles" ids = tokenizer.encode(txt, add_special_tokens=False) return txt, ids def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) @unittest.skip def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_padding_entity_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) pad_id = tokenizer.entity_vocab["[PAD]"] mask_id = tokenizer.entity_vocab["[MASK]"] encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) # test with a sentence with no entity encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(15, 34)] entities = ["East Asian language"] with self.assertRaises(ValueError): tokenizer(sentence, entities=tuple(entities), entity_spans=spans) with self.assertRaises(TypeError): tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) with self.assertRaises(ValueError): tokenizer(sentence, entities=[0], entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=[0]) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[span, span]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0]) def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_pair_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0]) def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_span_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0, 0]) @slow @require_torch class LukeTokenizerIntegrationTests(unittest.TestCase): tokenizer_class = LukeTokenizer from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() def test_single_text_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_single_text_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] ] ) # fmt: on def test_single_text_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer( sentence, entities=entities, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_text_pair_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_entity_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) # test words self.assertEqual(len(encoding["input_ids"]), 42) self.assertEqual(len(encoding["attention_mask"]), 42) self.assertEqual(len(encoding["token_type_ids"]), 42) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous" " netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>" ) # test entities self.assertEqual(encoding["entity_ids"], [2]) self.assertEqual(encoding["entity_attention_mask"], [1]) self.assertEqual(encoding["entity_token_type_ids"], [0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_entity_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True ) sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) # entity information span = (39, 42) encoding = tokenizer( sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 512)) self.assertEqual(encoding["attention_mask"].shape, (1, 512)) self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 1)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_pair_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False), "<ent> Ana Ivanovic<ent>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>" ) self.assertEqual(encoding["entity_ids"], [2, 3]) self.assertEqual(encoding["entity_attention_mask"], [1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_entity_pair_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 2)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_span_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual(encoding["entity_ids"], [2, 2, 2]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on self.assertEqual(encoding["entity_start_positions"], [1, 3, 9]) self.assertEqual(encoding["entity_end_positions"], [2, 5, 9]) def test_entity_span_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
transformers/tests/models/luke/test_tokenization_luke.py/0
{ "file_path": "transformers/tests/models/luke/test_tokenization_luke.py", "repo_id": "transformers", "token_count": 14112 }
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class TFMBartModelTester: config_cls = MBartConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMBartModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() past_key_values = past_key_values[1] def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if pipeline_test_case_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def setUp(self): self.model_tester = TFMBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @require_sentencepiece @require_tokenizers @require_tf class TFMBartModelIntegrationTest(unittest.TestCase): src_text = [ " UN Chief Says There Is No Military Solution in Syria", ] expected_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] model_name = "facebook/mbart-large-en-ro" @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @slow def test_batch_generation_en_ro(self): self._assert_generated_batch_equal_expected()
transformers/tests/models/mbart/test_modeling_tf_mbart.py/0
{ "file_path": "transformers/tests/models/mbart/test_modeling_tf_mbart.py", "repo_id": "transformers", "token_count": 3803 }
# coding=utf-8 # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Mistral model.""" import gc import unittest import pytest from packaging import version from transformers import AutoTokenizer, MistralConfig, is_torch_available, set_seed from transformers.testing_utils import ( backend_empty_cache, cleanup, require_bitsandbytes, require_flash_attn, require_read_token, require_torch, require_torch_accelerator, require_torch_gpu, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MistralForCausalLM, MistralForQuestionAnswering, MistralForSequenceClassification, MistralForTokenClassification, MistralModel, ) class MistralModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device)) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MistralConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mistral def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MistralModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mistral def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = MistralModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mistral def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = MistralForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mistral def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = MistralForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MistralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MistralModel, MistralForCausalLM, MistralForSequenceClassification, MistralForTokenClassification, MistralForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (MistralForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": MistralModel, "text-classification": MistralForSequenceClassification, "token-classification": MistralForTokenClassification, "text-generation": MistralForCausalLM, "zero-shot": MistralForSequenceClassification, "question-answering": MistralForQuestionAnswering, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False fx_compatible = False # Broken by attention refactor cc @Cyrilvallez # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): return True def setUp(self): self.model_tester = MistralModelTester(self) self.config_tester = ConfigTester(self, config_class=MistralConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_torch_fx_output_loss(self): super().test_torch_fx_output_loss() def test_Mistral_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() print(config) config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = MistralForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Mistral_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = MistralForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Mistral_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = MistralForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->Mistral,llama->Mistral def test_Mistral_token_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels) model = MistralForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=token_labels) self.assertEqual( result.logits.shape, (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels), ) @unittest.skip(reason="Mistral buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Mistral uses GQA on all models so the KV cache is a non standard format") def test_past_key_values_format(self): pass @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest(reason="Mistral flash attention does not support right padding") @require_torch_accelerator class MistralIntegrationTest(unittest.TestCase): # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations cuda_compute_capability_major_version = None @classmethod def setUpClass(cls): if is_torch_available() and torch.cuda.is_available(): # 8 is for A100 / A10 and 7 for T4 cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] def tearDown(self): cleanup(torch_device, gc_collect=True) @slow def test_model_7b_logits(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map="auto", torch_dtype=torch.float16 ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) with torch.no_grad(): out = model(input_ids).logits.float().cpu() # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]]) torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2) # Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4. # # Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s, # considering differences in hardware processing and potential deviations in output. EXPECTED_SLICE = { 7: torch.tensor([-5.8828, -5.8633, -0.1042, -4.7266, -5.8828, -5.8789, -5.8789, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -1.0801, 1.7598, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828, -5.8828]), 8: torch.tensor([-5.8711, -5.8555, -0.1050, -4.7148, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -1.0781, 1.7568, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711]), 9: torch.tensor([-5.8750, -5.8594, -0.1047, -4.7188, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -1.0781, 1.7578, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750, -5.8750]), } # fmt: skip torch.testing.assert_close( out[0, 0, :30], EXPECTED_SLICE[self.cuda_compute_capability_major_version], atol=1e-4, rtol=1e-4 ) @slow @require_bitsandbytes def test_model_7b_generation(self): EXPECTED_TEXT_COMPLETION = "My favourite condiment is 100% ketchup. I’m not a fan of mustard, mayo," prompt = "My favourite condiment is " tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False) model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map={"": torch_device}, load_in_4bit=True ) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) @slow def test_model_7b_dola_generation(self): # ground truth text generated with dola_layers="low", repetition_penalty=1.2 EXPECTED_TEXT_COMPLETION = ( """My favourite condiment is 100% ketchup. I love it on everything, and I’m not ash""" ) prompt = "My favourite condiment is " tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False) model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map="auto", torch_dtype=torch.float16 ) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate( input_ids, max_new_tokens=20, temperature=0, dola_layers="low", repetition_penalty=1.2 ) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) del model backend_empty_cache(torch_device) gc.collect() @require_flash_attn @require_bitsandbytes @slow @pytest.mark.flash_attn_test def test_model_7b_long_prompt(self): EXPECTED_OUTPUT_TOKEN_IDS = [306, 338] # An input with 4097 tokens that is above the size of the sliding window input_ids = [1] + [306, 338] * 2048 model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map={"": torch_device}, load_in_4bit=True, attn_implementation="flash_attention_2", ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) # Assisted generation assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 assistant_model.generation_config.num_assistant_tokens_schedule = "constant" generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) @slow @require_torch_sdpa def test_model_7b_long_prompt_sdpa(self): EXPECTED_OUTPUT_TOKEN_IDS = [306, 338] # An input with 4097 tokens that is above the size of the sliding window input_ids = [1] + [306, 338] * 2048 model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map="auto", attn_implementation="sdpa", torch_dtype=torch.float16 ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) # Assisted generation assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 assistant_model.generation_config.num_assistant_tokens_schedule = "constant" generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) del assistant_model backend_empty_cache(torch_device) gc.collect() EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I’m not a big""" prompt = "My favourite condiment is " tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) @slow def test_speculative_generation(self): EXPECTED_TEXT_COMPLETION = "My favourite condiment is 100% ketchup. I love it on everything. I’m not a big" prompt = "My favourite condiment is " tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False) model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map="auto", torch_dtype=torch.float16 ) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs set_seed(0) generated_ids = model.generate( input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=model ) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) @slow @require_read_token def test_compile_static_cache(self): # `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2 # work as intended. See https://github.com/pytorch/pytorch/issues/121943 if version.parse(torch.__version__) < version.parse("2.3.0"): self.skipTest(reason="This test requires torch >= 2.3 to run.") if self.cuda_compute_capability_major_version == 7: self.skipTest(reason="This test is failing (`torch.compile` fails) on Nvidia T4 GPU.") NUM_TOKENS_TO_GENERATE = 40 EXPECTED_TEXT_COMPLETION = [ "My favourite condiment is 100% ketchup. I love it on everything. " "I’m not a big fan of mustard, mayo, or relish. I’m not a fan of pickles" ] prompts = ["My favourite condiment is "] tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False) tokenizer.pad_token = tokenizer.eos_token model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", device_map=torch_device, torch_dtype=torch.float16 ) inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device) # Dynamic Cache generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False) dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text) # Static Cache generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static" ) static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text) # Sliding Window Cache generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="sliding_window" ) static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text) # Static Cache + compile forward_function = model.forward model.forward = torch.compile(forward_function, mode="reduce-overhead", fullgraph=True) generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static" ) static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text) # Sliding Window Cache + compile torch._dynamo.reset() model.forward = torch.compile(forward_function, mode="reduce-overhead", fullgraph=True) generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="sliding_window" ) static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text) @slow @require_torch_accelerator class Mask4DTestHard(unittest.TestCase): model_name = "mistralai/Mistral-7B-v0.1" _model = None def tearDown(self): cleanup(torch_device, gc_collect=True) @property def model(self): if self.__class__._model is None: self.__class__._model = MistralForCausalLM.from_pretrained( self.model_name, torch_dtype=self.model_dtype ).to(torch_device) return self.__class__._model def setUp(self): self.model_dtype = torch.float16 self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False) def get_test_data(self): template = "my favorite {}" items = ("pet is a", "artist plays a", "name is L") # same number of tokens in each item batch_separate = [template.format(x) for x in items] # 3 separate lines batch_shared_prefix = template.format(" ".join(items)) # 1 line with options concatenated input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device) input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device) mask_shared_prefix = torch.tensor( [ [ [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1], ] ] ], device=torch_device, ) position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device) # building custom positions ids based on custom mask position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1) # effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device) # inverting the mask min_dtype = torch.finfo(self.model_dtype).min mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix def test_stacked_causal_mask(self): ( input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix, ) = self.get_test_data() # regular batch logits = self.model.forward(input_ids, position_ids=position_ids).logits logits_last = logits[:, -1, :] # last tokens in each batch line decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)] # single forward run with 4D custom mask logits_shared_prefix = self.model.forward( input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix ).logits logits_shared_prefix_last = logits_shared_prefix[ 0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], : ] # last three tokens decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)] self.assertEqual(decoded, decoded_shared_prefix) def test_partial_stacked_causal_mask(self): # Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks ( input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix, ) = self.get_test_data() # regular batch logits = self.model.forward(input_ids, position_ids=position_ids).logits logits_last = logits[:, -1, :] # last tokens in each batch line decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)] # 2 forward runs with custom 4D masks part_a = 3 # split point input_1a = input_ids_shared_prefix[:, :part_a] position_ids_1a = position_ids_shared_prefix[:, :part_a] mask_1a = mask_shared_prefix[:, :, :part_a, :part_a] outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a) past_key_values_a = outs_1a["past_key_values"] # Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len]) input_1b = input_ids_shared_prefix[:, part_a:] position_ids_1b = position_ids_shared_prefix[:, part_a:] mask_1b = mask_shared_prefix[:, :, part_a:, :] outs_1b = self.model.forward( input_1b, attention_mask=mask_1b, position_ids=position_ids_1b, past_key_values=past_key_values_a ) decoded_1b = [ self.tokenizer.decode(t) for t in outs_1b.logits.argmax(-1)[ 0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a ] ] self.assertEqual(decoded, decoded_1b)
transformers/tests/models/mistral/test_modeling_mistral.py/0
{ "file_path": "transformers/tests/models/mistral/test_modeling_mistral.py", "repo_id": "transformers", "token_count": 15547 }
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch MobileNetV1 model.""" import unittest from transformers import MobileNetV1Config from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetV1ForImageClassification, MobileNetV1Model if is_vision_available(): from PIL import Image from transformers import MobileNetV1ImageProcessor class MobileNetV1ConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "tf_padding")) self.parent.assertTrue(hasattr(config, "depth_multiplier")) class MobileNetV1ModelTester: def __init__( self, parent, batch_size=13, num_channels=3, image_size=32, depth_multiplier=0.25, min_depth=8, tf_padding=True, last_hidden_size=1024, output_stride=32, hidden_act="relu6", classifier_dropout_prob=0.1, initializer_range=0.02, is_training=True, use_labels=True, num_labels=10, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.min_depth = min_depth self.tf_padding = tf_padding self.last_hidden_size = int(last_hidden_size * depth_multiplier) self.output_stride = output_stride self.hidden_act = hidden_act self.classifier_dropout_prob = classifier_dropout_prob self.use_labels = use_labels self.is_training = is_training self.num_labels = num_labels self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return MobileNetV1Config( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = MobileNetV1Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileNetV1ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MobileNetV1ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV1 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (MobileNetV1Model, MobileNetV1ForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": MobileNetV1Model, "image-classification": MobileNetV1ForImageClassification} if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = MobileNetV1ModelTester(self) self.config_tester = MobileNetV1ConfigTester(self, config_class=MobileNetV1Config, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="MobileNetV1 does not output attentions") def test_attention_outputs(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_stages = 26 self.assertEqual(len(hidden_states), expected_num_stages) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "google/mobilenet_v1_1.0_224" model = MobileNetV1Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class MobileNetV1ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( MobileNetV1ImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = MobileNetV1ForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-4.1739, -1.1233, 3.1205]).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
transformers/tests/models/mobilenet_v1/test_modeling_mobilenet_v1.py/0
{ "file_path": "transformers/tests/models/mobilenet_v1/test_modeling_mobilenet_v1.py", "repo_id": "transformers", "token_count": 3760 }
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import pickle import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, AutoTokenizer, PreTrainedTokenizerFast, SpecialTokensMixin, ) from transformers.convert_slow_tokenizer import MoshiConverter from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import SMALL_TRAINING_CORPUS, TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class MoshiTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = ["kmhf/hf-moshiko"] rust_tokenizer_class = PreTrainedTokenizerFast test_slow_tokenizer = False test_rust_tokenizer = True from_pretrained_kwargs = {} def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = PreTrainedTokenizerFast( tokenizer_object=MoshiConverter(vocab_file=SAMPLE_VOCAB).converted(), bos_token="<s>", unk_token="<unk>", eos_token="</s>", ) tokenizer.pad_token = tokenizer.eos_token tokenizer.save_pretrained(self.tmpdirname) def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) @unittest.skip(reason="No slow tokenizer") def test_added_tokens_serialization(self): pass @unittest.skip(reason="PreTrainedTokenizerFast doesn't have tokenizer_file in its signature") def test_rust_tokenizer_signature(self): pass @unittest.skip(reason="No slow tokenizer") def test_encode_decode_with_spaces(self): pass def test_full_tokenizer(self): tokenizer = PreTrainedTokenizerFast( tokenizer_object=MoshiConverter(vocab_file=SAMPLE_VOCAB).converted(), bos_token="<s>", unk_token="<unk>", eos_token="</s>", ) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) r_output = tokenizer_r.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertTrue(special_token_id in r_output) def test_picklable(self): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SAMPLE_VOCAB, f.name) tokenizer = PreTrainedTokenizerFast( tokenizer_object=MoshiConverter(vocab_file=f.name).converted(), bos_token="<s>", unk_token="<unk>", eos_token="</s>", ) pickled_tokenizer = pickle.dumps(tokenizer) pickle.loads(pickled_tokenizer) def test_training_new_tokenizer(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: self.skipTest(reason="test_rust_tokenizer is set to False") tokenizer = self.get_rust_tokenizer() new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" self.assertEqual(expected_result, decoded_input) # We check that the parameters of the tokenizer remained the same # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) # Assert the set of special tokens match as we didn't ask to change them self.assertSequenceEqual( tokenizer.all_special_tokens_extended, new_tokenizer.all_special_tokens_extended, ) self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) def test_training_new_tokenizer_with_special_tokens_change(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: self.skipTest(reason="test_rust_tokenizer is set to False") tokenizer = self.get_rust_tokenizer() # Test with a special tokens map class_signature = inspect.signature(tokenizer.__class__) if "cls_token" in class_signature.parameters: new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"} ) cls_id = new_tokenizer.get_vocab()["<cls>"] self.assertEqual(new_tokenizer.cls_token, "<cls>") self.assertEqual(new_tokenizer.cls_token_id, cls_id) # Create a new mapping from the special tokens defined in the original tokenizer special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() special_tokens_list.remove("additional_special_tokens") special_tokens_map = {} for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, token) is not None: special_token = getattr(tokenizer, token) special_tokens_map[special_token] = f"{special_token}a" # Train new tokenizer new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map ) # Check the changes for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, token) is None: continue special_token = getattr(tokenizer, token) if special_token in special_tokens_map: new_special_token = getattr(new_tokenizer, token) self.assertEqual(special_tokens_map[special_token], new_special_token) new_id = new_tokenizer.get_vocab()[new_special_token] self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id) # Check if the AddedToken / string format has been kept for special_token in tokenizer.all_special_tokens_extended: if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) elif isinstance(special_token, AddedToken): # The special token must appear in the list of the new tokenizer as an object of type AddedToken with # the same parameters as the old AddedToken except the content that the user has requested to change. special_token_str = special_token.content new_special_token_str = special_tokens_map[special_token_str] find = False for candidate in new_tokenizer.all_special_tokens_extended: if ( isinstance(candidate, AddedToken) and candidate.content == new_special_token_str and candidate.lstrip == special_token.lstrip and candidate.rstrip == special_token.rstrip and candidate.normalized == special_token.normalized and candidate.single_word == special_token.single_word ): find = True break special_token.content = new_special_token_str self.assertTrue( find, f"'{special_token.__repr__()}' should appear as an `AddedToken` in the all_special_tokens_extended = " f"{[k for k in new_tokenizer.all_special_tokens_extended if str(k)==new_special_token_str]} but it is missing" ", this means that the new tokenizers did not keep the `rstrip`, `lstrip`, `normalized` etc attributes.", ) elif special_token not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token.__repr__()}' should be in {new_tokenizer.all_special_tokens_extended}", ) else: # The special token must appear in the list of the new tokenizer as an object of type string. self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" self.assertEqual(expected_result, decoded_input) def test_alignement_methods(self): # TODO: @ArthurZucker - alignment is broken pass def test_added_tokens_do_lower_case(self): # TODO: @ArthurZucker pass @require_torch @require_sentencepiece @require_tokenizers class MoshiIntegrationTest(unittest.TestCase): @classmethod def setUpClass(cls): checkpoint_name = "kmhf/hf-moshiko" cls.rust_tokenizer = AutoTokenizer.from_pretrained(checkpoint_name) return cls @require_torch def integration_tests(self): inputs = self.tokenizer( ["The following string should be properly encoded: Hello.", "But ird and ปี ird ด"], return_tensors="pt", ) long_attention_mask = [1] * 21 # fmt: off self.assertEqual( nested_simplify(inputs), { "input_ids": [ [287, 547, 2359, 457, 297, 3708, 11488, 279, 11725, 263], [588, 478, 1442, 267, 260, 228, 188, 159, 228, 188, 185, 260, 260, 478, 1442, 260, 260, 260, 228, 188, 152], ], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], long_attention_mask], }, ) # fmt: on def test_fast_special_tokens(self): fast_tokenizer = self.rust_tokenizer fast_tokenizer.add_eos_token = False fast = fast_tokenizer.encode("A sample test", add_special_tokens=True) assert fast == [318, 1145, 694] fast_tokenizer.add_eos_token = True fast = fast_tokenizer.encode("A sample test", add_special_tokens=True) assert fast == [318, 1145, 694] self.rust_tokenizer.add_eos_token = False def test_simple_encode_decode(self): rust_tokenizer = self.rust_tokenizer self.assertEqual(rust_tokenizer.encode("This is a test"), [353, 275, 272, 694]) self.assertEqual(rust_tokenizer.decode([353, 275, 272, 694], skip_special_tokens=True), "This is a test") # bytefallback showcase bytefallback_tokens = [260, 235, 152, 163, 234, 184, 191, 13340, 235, 160, 163, 236, 180, 159, 234, 156, 179] # fmt: skip self.assertEqual(rust_tokenizer.encode("生活的真谛是"), bytefallback_tokens) self.assertEqual( rust_tokenizer.decode(bytefallback_tokens, skip_special_tokens=True), "生活的真谛是", ) # Inner spaces showcase self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2769, 260, 11725]) self.assertEqual(rust_tokenizer.decode([2769, 260, 11725], skip_special_tokens=True), "Hi Hello") self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2769, 260, 260, 11725]) self.assertEqual(rust_tokenizer.decode([2769, 260, 260, 11725], skip_special_tokens=True), "Hi Hello") # TODO: @ArthurZucker # self.assertEqual(rust_tokenizer.encode(""), []) # self.assertEqual(rust_tokenizer.encode(" "), [260, 260]) # self.assertEqual(rust_tokenizer.encode(" "), [260, 260, 260]) # self.assertEqual(rust_tokenizer.encode(" Hello"), [260, 11725]) # self.assertEqual(rust_tokenizer.encode("<s>"), [607, 266, 578]) def test_no_differences_decode(self): rust_tokenizer = self.rust_tokenizer self.assertEqual(rust_tokenizer.decode([869]), "levels") self.assertEqual(rust_tokenizer.decode([30112, 869]), "unanswered levels") @require_sentencepiece @require_tokenizers class CommonSpmIntegrationTests(unittest.TestCase): """ A class that regroups important test to make sure that we properly handle the special tokens. """ def test_edge_case_tabulation(self): fast_tokenizer = AutoTokenizer.from_pretrained("kmhf/hf-moshiko") input_text = "Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61" EXPECTED_IDS = [11510, 934, 4451, 266, 578, 263, 260, 13, 13, 260, 14, 14, 5209, 260, 260, 1202, 260, 527, 1322, 244, 163, 156, 140, 260, 260, 244, 163, 168, 155, 430, 1047, 261, 260, 265, 270, 278, 281, 260, 265, 280, 260, 280, 261, 285, 265] # fmt: skip EXPECTED_TOKENS = ['▁Hey', '<', 'eo', 's', '>', '.', '▁', '<0x09>', '<0x09>', '▁', '<0x0A>', '<0x0A>', 'you', '▁', '▁', 'é', '▁', '▁@', '#', '<0xF0>', '<0x9F>', '<0x98>', '<0x88>', '▁', '▁', '<0xF0>', '<0x9F>', '<0xA4>', '<0x97>', '!', '▁▁▁▁▁▁▁', ',', '▁', '1', '2', '3', '4', '▁', '1', '5', '▁', '5', ',', '6', '1'] # fmt: skip tokens = fast_tokenizer.tokenize(input_text) with self.subTest("test fast edge case fast"): self.assertEqual(tokens, EXPECTED_TOKENS) input_ids = fast_tokenizer.encode(input_text) with self.subTest("test fast edge case fast"): self.assertEqual(input_ids, EXPECTED_IDS) text = fast_tokenizer.decode(EXPECTED_IDS) with self.subTest("test fast edge case fast"): self.assertEqual(text, "Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61") input_text = "\t\t\t\t \n\n61" EXPECTED_IDS = [260, 13, 13, 13, 13, 260, 14, 14, 285, 265] EXPECTED_TOKENS = ["▁", "<0x09>", "<0x09>", "<0x09>", "<0x09>", "▁", "<0x0A>", "<0x0A>", "6", "1"] tokens = fast_tokenizer.tokenize(input_text) with self.subTest("test fast edge case fast"): self.assertEqual(tokens, EXPECTED_TOKENS) input_ids = fast_tokenizer.encode(input_text) with self.subTest("test fast edge case fast"): self.assertEqual(input_ids, EXPECTED_IDS) text = fast_tokenizer.decode(EXPECTED_IDS) with self.subTest("test fast edge case fast"): self.assertEqual(text, "\t\t\t\t \n\n61")
transformers/tests/models/moshi/test_tokenization_moshi.py/0
{ "file_path": "transformers/tests/models/moshi/test_tokenization_moshi.py", "repo_id": "transformers", "token_count": 8933 }
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import NougatImageProcessor class NougatImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_crop_margin=True, do_resize=True, size=None, do_thumbnail=True, do_align_long_axis: bool = False, do_pad=True, do_normalize: bool = True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"height": 20, "width": 20} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_crop_margin = do_crop_margin self.do_resize = do_resize self.size = size self.do_thumbnail = do_thumbnail self.do_align_long_axis = do_align_long_axis self.do_pad = do_pad self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "do_crop_margin": self.do_crop_margin, "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_long_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_dummy_image(self): filepath = hf_hub_download( repo_id="hf-internal-testing/fixtures_docvqa", filename="nougat_pdf.png", repo_type="dataset" ) image = Image.open(filepath).convert("RGB") return image def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class NougatImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = NougatImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = NougatImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() @cached_property def image_processor(self): return self.image_processing_class(**self.image_processor_dict) def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 20, "width": 20}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_expected_output(self): dummy_image = self.image_processor_tester.prepare_dummy_image() image_processor = self.image_processor inputs = image_processor(dummy_image, return_tensors="pt") torch.testing.assert_close(inputs["pixel_values"].mean(), torch.tensor(0.4906), rtol=1e-3, atol=1e-3) def test_crop_margin_all_white(self): image = np.uint8(np.ones((100, 100, 3)) * 255) image_processor = self.image_processor cropped_image = image_processor.crop_margin(image) self.assertTrue(np.array_equal(image, cropped_image)) def test_crop_margin_centered_black_square(self): image = np.ones((100, 100, 3), dtype=np.uint8) * 255 image[45:55, 45:55, :] = 0 image_processor = self.image_processor cropped_image = image_processor.crop_margin(image) expected_cropped = image[45:55, 45:55, :] self.assertTrue(np.array_equal(expected_cropped, cropped_image)) def test_align_long_axis_no_rotation(self): image = np.uint8(np.ones((100, 200, 3)) * 255) image_processor = self.image_processor size = {"height": 200, "width": 300} aligned_image = image_processor.align_long_axis(image, size) self.assertEqual(image.shape, aligned_image.shape) def test_align_long_axis_with_rotation(self): image = np.uint8(np.ones((200, 100, 3)) * 255) image_processor = self.image_processor size = {"height": 300, "width": 200} aligned_image = image_processor.align_long_axis(image, size) self.assertEqual((200, 100, 3), aligned_image.shape) def test_align_long_axis_data_format(self): image = np.uint8(np.ones((100, 200, 3)) * 255) data_format = "channels_first" size = {"height": 200, "width": 300} image_processor = self.image_processor aligned_image = image_processor.align_long_axis(image, size, data_format=data_format) self.assertEqual((3, 100, 200), aligned_image.shape) def prepare_dummy_np_image(self): filepath = hf_hub_download( repo_id="hf-internal-testing/fixtures_docvqa", filename="nougat_pdf.png", repo_type="dataset" ) image = Image.open(filepath).convert("RGB") return np.array(image) def test_crop_margin_equality_cv2_python(self): image = self.prepare_dummy_np_image() image_processor = self.image_processor image_cropped_python = image_processor.crop_margin(image) self.assertEqual(image_cropped_python.shape, (850, 685, 3)) self.assertEqual(image_cropped_python.mean(), 237.43881150708458)
transformers/tests/models/nougat/test_image_processing_nougat.py/0
{ "file_path": "transformers/tests/models/nougat/test_image_processing_nougat.py", "repo_id": "transformers", "token_count": 3136 }
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import CLIPTokenizer, OneFormerImageProcessor, OneFormerProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def prepare_metadata(class_info_file, repo_path="shi-labs/oneformer_demo"): with open(hf_hub_download(repo_path, class_info_file, repo_type="dataset"), "r") as f: class_info = json.load(f) metadata = {} class_names = [] thing_ids = [] for key, info in class_info.items(): metadata[key] = info["name"] class_names.append(info["name"]) if info["isthing"]: thing_ids.append(int(key)) metadata["thing_ids"] = thing_ids metadata["class_names"] = class_names return metadata class OneFormerProcessorTester: def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, size=None, do_resize=True, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], num_labels=10, do_reduce_labels=False, ignore_index=255, max_seq_length=77, task_seq_length=77, model_repo="shi-labs/oneformer_ade20k_swin_tiny", class_info_file="ade20k_panoptic.json", num_text=10, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.max_seq_length = max_seq_length self.task_seq_length = task_seq_length self.class_info_file = class_info_file self.metadata = prepare_metadata(class_info_file) self.num_text = num_text self.model_repo = model_repo # for the post_process_functions self.batch_size = 2 self.num_queries = 10 self.num_classes = 10 self.height = 3 self.width = 4 self.num_labels = num_labels self.do_reduce_labels = do_reduce_labels self.ignore_index = ignore_index def prepare_processor_dict(self): image_processor_dict = { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } image_processor = OneFormerImageProcessor(**image_processor_dict) tokenizer = CLIPTokenizer.from_pretrained(self.model_repo) return { "image_processor": image_processor, "tokenizer": tokenizer, "max_seq_length": self.max_seq_length, "task_seq_length": self.task_seq_length, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to OneFormerProcessor, assuming do_resize is set to True with a scalar size. It also provides the expected sequence length for the task_inputs and text_list_input. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size elif isinstance(image, np.ndarray): h, w = image.shape[0], image.shape[1] else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width, expected_sequence_length = self.get_expected_values([image]) expected_values.append((expected_height, expected_width, expected_sequence_length)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] expected_sequence_length = self.max_seq_length return expected_height, expected_width, expected_sequence_length def get_fake_oneformer_outputs(self): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)), ) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class OneFormerProcessingTest(unittest.TestCase): processing_class = OneFormerProcessor if (is_vision_available() and is_torch_available()) else None # only for test_feat_extracttion_common.test_feat_extract_to_json_string feature_extraction_class = processing_class def setUp(self): self.processing_tester = OneFormerProcessorTester(self) @property def processor_dict(self): return self.processing_tester.prepare_processor_dict() def test_feat_extract_properties(self): processor = self.processing_class(**self.processor_dict) self.assertTrue(hasattr(processor, "image_processor")) self.assertTrue(hasattr(processor, "tokenizer")) self.assertTrue(hasattr(processor, "max_seq_length")) self.assertTrue(hasattr(processor, "task_seq_length")) @unittest.skip def test_batch_feature(self): pass def test_call_pil(self): # Initialize processor processor = self.processing_class(**self.processor_dict) # create random PIL images image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs ) self.assertEqual( encoded_images.shape, (1, self.processing_tester.num_channels, expected_height, expected_width), ) tokenized_task_inputs = processor(image_inputs[0], ["semantic"], return_tensors="pt").task_inputs self.assertEqual( tokenized_task_inputs.shape, (1, expected_sequence_length), ) # Test batched expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs, batched=True ) encoded_images = processor(image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.processing_tester.batch_size, self.processing_tester.num_channels, expected_height, expected_width, ), ) tokenized_task_inputs = processor( image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt" ).task_inputs self.assertEqual( tokenized_task_inputs.shape, (self.processing_tester.batch_size, expected_sequence_length), ) def test_call_numpy(self): # Initialize processor processor = self.processing_class(**self.processor_dict) # create random numpy tensors image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs ) self.assertEqual( encoded_images.shape, (1, self.processing_tester.num_channels, expected_height, expected_width), ) tokenized_task_inputs = processor(image_inputs[0], ["semantic"], return_tensors="pt").task_inputs self.assertEqual( tokenized_task_inputs.shape, (1, expected_sequence_length), ) # Test batched expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs, batched=True ) encoded_images = processor(image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.processing_tester.batch_size, self.processing_tester.num_channels, expected_height, expected_width, ), ) tokenized_task_inputs = processor( image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt" ).task_inputs self.assertEqual( tokenized_task_inputs.shape, (self.processing_tester.batch_size, expected_sequence_length), ) def test_call_pytorch(self): # Initialize processor processor = self.processing_class(**self.processor_dict) # create random PyTorch tensors image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs ) self.assertEqual( encoded_images.shape, (1, self.processing_tester.num_channels, expected_height, expected_width), ) tokenized_task_inputs = processor(image_inputs[0], ["semantic"], return_tensors="pt").task_inputs self.assertEqual( tokenized_task_inputs.shape, (1, expected_sequence_length), ) # Test batched expected_height, expected_width, expected_sequence_length = self.processing_tester.get_expected_values( image_inputs, batched=True ) encoded_images = processor(image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.processing_tester.batch_size, self.processing_tester.num_channels, expected_height, expected_width, ), ) tokenized_task_inputs = processor( image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt" ).task_inputs self.assertEqual( tokenized_task_inputs.shape, (self.processing_tester.batch_size, expected_sequence_length), ) def comm_get_processor_inputs(self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np"): processor = self.processing_class(**self.processor_dict) # prepare image and target num_labels = self.processing_tester.num_labels annotations = None instance_id_to_semantic_id = None image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False) if with_segmentation_maps: high = num_labels if is_instance_map: labels_expanded = list(range(num_labels)) * 2 instance_id_to_semantic_id = dict(enumerate(labels_expanded)) annotations = [ np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs ] if segmentation_type == "pil": annotations = [Image.fromarray(annotation) for annotation in annotations] inputs = processor( image_inputs, ["semantic"] * len(image_inputs), annotations, return_tensors="pt", instance_id_to_semantic_id=instance_id_to_semantic_id, pad_and_return_pixel_mask=True, ) return inputs @unittest.skip def test_init_without_params(self): pass def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: feat_extract_first.save_pretrained(tmpdirname) check_json_file_has_correct_format(os.path.join(tmpdirname, "preprocessor_config.json")) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) self.assertEqual(feat_extract_second.image_processor.to_dict(), feat_extract_first.image_processor.to_dict()) self.assertIsInstance(feat_extract_first.image_processor, OneFormerImageProcessor) self.assertIsInstance(feat_extract_first.tokenizer, CLIPTokenizer) def test_call_with_segmentation_maps(self): def common(is_instance_map=False, segmentation_type=None): inputs = self.comm_get_processor_inputs( with_segmentation_maps=True, is_instance_map=is_instance_map, segmentation_type=segmentation_type ) mask_labels = inputs["mask_labels"] class_labels = inputs["class_labels"] pixel_values = inputs["pixel_values"] text_inputs = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(mask_labels, class_labels, text_inputs): self.assertEqual(mask_label.shape[0], class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:]) self.assertEqual(text_input.shape[0], self.processing_tester.num_text) common() common(is_instance_map=True) common(is_instance_map=False, segmentation_type="pil") common(is_instance_map=True, segmentation_type="pil") def test_integration_semantic_segmentation(self): # load 2 images and corresponding panoptic annotations from the hub dataset = load_dataset("nielsr/ade20k-panoptic-demo") image1 = dataset["train"][0]["image"] image2 = dataset["train"][1]["image"] segments_info1 = dataset["train"][0]["segments_info"] segments_info2 = dataset["train"][1]["segments_info"] annotation1 = dataset["train"][0]["label"] annotation2 = dataset["train"][1]["label"] def rgb_to_id(color): if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def create_panoptic_map(annotation, segments_info): annotation = np.array(annotation) # convert RGB to segment IDs per pixel # 0 is the "ignore" label, for which we don't need to make binary masks panoptic_map = rgb_to_id(annotation) # create mapping between segment IDs and semantic classes inst2class = {segment["id"]: segment["category_id"] for segment in segments_info} return panoptic_map, inst2class panoptic_map1, inst2class1 = create_panoptic_map(annotation1, segments_info1) panoptic_map2, inst2class2 = create_panoptic_map(annotation2, segments_info2) image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) # prepare the images and annotations pixel_values_list = [np.moveaxis(np.array(image1), -1, 0), np.moveaxis(np.array(image2), -1, 0)] inputs = processor.encode_inputs( pixel_values_list, ["semantic", "semantic"], [panoptic_map1, panoptic_map2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values, task inputs, text inputs and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 711)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 711)) self.assertEqual(inputs["task_inputs"].shape, (2, 77)) self.assertEqual(inputs["text_inputs"].shape, (2, self.processing_tester.num_text, 77)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) expected_class_labels = torch.tensor([4, 17, 32, 42, 12, 3, 5, 0, 43, 96, 104, 31, 125, 138, 87, 149]) # noqa: E231 # fmt: skip torch.testing.assert_close(inputs["class_labels"][0], expected_class_labels) expected_class_labels = torch.tensor([19, 67, 82, 17, 12, 42, 3, 14, 5, 0, 115, 43, 8, 138, 125, 143]) # noqa: E231 # fmt: skip torch.testing.assert_close(inputs["class_labels"][1], expected_class_labels) # verify the task inputs self.assertEqual(len(inputs["task_inputs"]), 2) self.assertEqual(inputs["task_inputs"][0].sum().item(), 141082) self.assertEqual(inputs["task_inputs"][0].sum().item(), inputs["task_inputs"][1].sum().item()) # verify the text inputs self.assertEqual(len(inputs["text_inputs"]), 2) self.assertEqual(inputs["text_inputs"][0].sum().item(), 1095752) self.assertEqual(inputs["text_inputs"][1].sum().item(), 1062468) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (16, 512, 711)) self.assertEqual(inputs["mask_labels"][1].shape, (16, 512, 711)) self.assertEqual(inputs["mask_labels"][0].sum().item(), 315193.0) self.assertEqual(inputs["mask_labels"][1].sum().item(), 350747.0) def test_integration_instance_segmentation(self): # load 2 images and corresponding panoptic annotations from the hub dataset = load_dataset("nielsr/ade20k-panoptic-demo") image1 = dataset["train"][0]["image"] image2 = dataset["train"][1]["image"] segments_info1 = dataset["train"][0]["segments_info"] segments_info2 = dataset["train"][1]["segments_info"] annotation1 = dataset["train"][0]["label"] annotation2 = dataset["train"][1]["label"] def rgb_to_id(color): if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def create_panoptic_map(annotation, segments_info): annotation = np.array(annotation) # convert RGB to segment IDs per pixel # 0 is the "ignore" label, for which we don't need to make binary masks panoptic_map = rgb_to_id(annotation) # create mapping between segment IDs and semantic classes inst2class = {segment["id"]: segment["category_id"] for segment in segments_info} return panoptic_map, inst2class panoptic_map1, inst2class1 = create_panoptic_map(annotation1, segments_info1) panoptic_map2, inst2class2 = create_panoptic_map(annotation2, segments_info2) image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) # prepare the images and annotations pixel_values_list = [np.moveaxis(np.array(image1), -1, 0), np.moveaxis(np.array(image2), -1, 0)] inputs = processor.encode_inputs( pixel_values_list, ["instance", "instance"], [panoptic_map1, panoptic_map2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values, task inputs, text inputs and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 711)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 711)) self.assertEqual(inputs["task_inputs"].shape, (2, 77)) self.assertEqual(inputs["text_inputs"].shape, (2, self.processing_tester.num_text, 77)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) expected_class_labels = torch.tensor([32, 42, 42, 42, 42, 42, 42, 42, 32, 12, 12, 12, 12, 12, 42, 42, 12, 12, 12, 42, 12, 12, 12, 12, 12, 12, 12, 12, 12, 42, 42, 42, 12, 42, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 43, 43, 43, 43, 104, 43, 31, 125, 31, 125, 138, 87, 125, 149, 138, 125, 87, 87]) # fmt: skip torch.testing.assert_close(inputs["class_labels"][0], expected_class_labels) expected_class_labels = torch.tensor([19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 67, 82, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 12, 12, 42, 12, 12, 12, 12, 14, 12, 12, 12, 12, 12, 12, 12, 12, 14, 12, 12, 115, 43, 43, 115, 43, 43, 43, 8, 8, 8, 138, 138, 125, 143]) # fmt: skip torch.testing.assert_close(inputs["class_labels"][1], expected_class_labels) # verify the task inputs self.assertEqual(len(inputs["task_inputs"]), 2) self.assertEqual(inputs["task_inputs"][0].sum().item(), 144985) self.assertEqual(inputs["task_inputs"][0].sum().item(), inputs["task_inputs"][1].sum().item()) # verify the text inputs self.assertEqual(len(inputs["text_inputs"]), 2) self.assertEqual(inputs["text_inputs"][0].sum().item(), 1037040) self.assertEqual(inputs["text_inputs"][1].sum().item(), 1044078) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (73, 512, 711)) self.assertEqual(inputs["mask_labels"][1].shape, (57, 512, 711)) self.assertEqual(inputs["mask_labels"][0].sum().item(), 35040.0) self.assertEqual(inputs["mask_labels"][1].sum().item(), 98228.0) def test_integration_panoptic_segmentation(self): # load 2 images and corresponding panoptic annotations from the hub dataset = load_dataset("nielsr/ade20k-panoptic-demo") image1 = dataset["train"][0]["image"] image2 = dataset["train"][1]["image"] segments_info1 = dataset["train"][0]["segments_info"] segments_info2 = dataset["train"][1]["segments_info"] annotation1 = dataset["train"][0]["label"] annotation2 = dataset["train"][1]["label"] def rgb_to_id(color): if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def create_panoptic_map(annotation, segments_info): annotation = np.array(annotation) # convert RGB to segment IDs per pixel # 0 is the "ignore" label, for which we don't need to make binary masks panoptic_map = rgb_to_id(annotation) # create mapping between segment IDs and semantic classes inst2class = {segment["id"]: segment["category_id"] for segment in segments_info} return panoptic_map, inst2class panoptic_map1, inst2class1 = create_panoptic_map(annotation1, segments_info1) panoptic_map2, inst2class2 = create_panoptic_map(annotation2, segments_info2) image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) # prepare the images and annotations pixel_values_list = [np.moveaxis(np.array(image1), -1, 0), np.moveaxis(np.array(image2), -1, 0)] inputs = processor.encode_inputs( pixel_values_list, ["panoptic", "panoptic"], [panoptic_map1, panoptic_map2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values, task inputs, text inputs and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 711)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 711)) self.assertEqual(inputs["task_inputs"].shape, (2, 77)) self.assertEqual(inputs["text_inputs"].shape, (2, self.processing_tester.num_text, 77)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) expected_class_labels = torch.tensor([4, 17, 32, 42, 42, 42, 42, 42, 42, 42, 32, 12, 12, 12, 12, 12, 42, 42, 12, 12, 12, 42, 12, 12, 12, 12, 12, 3, 12, 12, 12, 12, 42, 42, 42, 12, 42, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 5, 12, 12, 12, 12, 12, 12, 12, 0, 43, 43, 43, 96, 43, 104, 43, 31, 125, 31, 125, 138, 87, 125, 149, 138, 125, 87, 87]) # fmt: skip torch.testing.assert_close(inputs["class_labels"][0], expected_class_labels) expected_class_labels = torch.tensor([19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 67, 82, 19, 19, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 12, 12, 42, 12, 12, 12, 12, 3, 14, 12, 12, 12, 12, 12, 12, 12, 12, 14, 5, 12, 12, 0, 115, 43, 43, 115, 43, 43, 43, 8, 8, 8, 138, 138, 125, 143]) # fmt: skip torch.testing.assert_close(inputs["class_labels"][1], expected_class_labels) # verify the task inputs self.assertEqual(len(inputs["task_inputs"]), 2) self.assertEqual(inputs["task_inputs"][0].sum().item(), 136240) self.assertEqual(inputs["task_inputs"][0].sum().item(), inputs["task_inputs"][1].sum().item()) # verify the text inputs self.assertEqual(len(inputs["text_inputs"]), 2) self.assertEqual(inputs["text_inputs"][0].sum().item(), 1048653) self.assertEqual(inputs["text_inputs"][1].sum().item(), 1067160) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (79, 512, 711)) self.assertEqual(inputs["mask_labels"][1].shape, (61, 512, 711)) self.assertEqual(inputs["mask_labels"][0].sum().item(), 315193.0) self.assertEqual(inputs["mask_labels"][1].sum().item(), 350747.0) def test_binary_mask_to_rle(self): fake_binary_mask = np.zeros((20, 50)) fake_binary_mask[0, 20:] = 1 fake_binary_mask[1, :15] = 1 fake_binary_mask[5, :10] = 1 rle = binary_mask_to_rle(fake_binary_mask) self.assertEqual(len(rle), 4) self.assertEqual(rle[0], 21) self.assertEqual(rle[1], 45) def test_post_process_semantic_segmentation(self): image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) outputs = self.processing_tester.get_fake_oneformer_outputs() segmentation = processor.post_process_semantic_segmentation(outputs) self.assertEqual(len(segmentation), self.processing_tester.batch_size) self.assertEqual( segmentation[0].shape, ( self.processing_tester.height, self.processing_tester.width, ), ) target_sizes = [(1, 4) for i in range(self.processing_tester.batch_size)] segmentation = processor.post_process_semantic_segmentation(outputs, target_sizes=target_sizes) self.assertEqual(segmentation[0].shape, target_sizes[0]) def test_post_process_instance_segmentation(self): image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) outputs = self.processing_tester.get_fake_oneformer_outputs() segmentation = processor.post_process_instance_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(el["segmentation"].shape, (self.processing_tester.height, self.processing_tester.width)) def test_post_process_panoptic_segmentation(self): image_processor = OneFormerImageProcessor( do_reduce_labels=True, ignore_index=0, size=(512, 512), class_info_file="ade20k_panoptic.json", num_text=self.processing_tester.num_text, ) tokenizer = CLIPTokenizer.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") processor = OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, max_seq_length=77, task_seq_length=77, ) outputs = self.processing_tester.get_fake_oneformer_outputs() segmentation = processor.post_process_panoptic_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(el["segmentation"].shape, (self.processing_tester.height, self.processing_tester.width))
transformers/tests/models/oneformer/test_processor_oneformer.py/0
{ "file_path": "transformers/tests/models/oneformer/test_processor_oneformer.py", "repo_id": "transformers", "token_count": 15475 }
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import pytest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, Pix2StructImageProcessor, Pix2StructProcessor, PreTrainedTokenizerFast, T5Tokenizer, ) @require_vision @require_torch class Pix2StructProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Pix2StructProcessor text_input_name = "decoder_input_ids" images_input_name = "flattened_patches" def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = Pix2StructImageProcessor() tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") processor = Pix2StructProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_additional_features(self): processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Pix2StructProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_max_patches(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) max_patches = [512, 1024, 2048, 4096] expected_hidden_size = [770, 770, 770, 770] # with text for i, max_patch in enumerate(max_patches): inputs = processor(text=input_str, images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) # without text input for i, max_patch in enumerate(max_patches): inputs = processor(images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) inputs = processor(text=input_str) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) @require_torch @require_vision def test_image_processor_defaults_preserved_by_image_kwargs(self): # Rewrite as pix2struct processor return "flattened_patches" and not "pixel_values" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", max_patches=1024, patch_size={"height": 8, "width": 8}) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertEqual(len(inputs["flattened_patches"][0][0]), 194) @require_torch @require_vision def test_kwargs_overrides_default_image_processor_kwargs(self): # Rewrite as pix2struct processor return "flattened_patches" and not "pixel_values" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", max_patches=4096) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, max_patches=1024) self.assertEqual(len(inputs["flattened_patches"][0]), 1024) @require_torch @require_vision def test_unstructured_kwargs(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_patches=1024, padding="max_length", max_length=76, ) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76) @require_torch @require_vision def test_unstructured_kwargs_batched(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs(batch_size=2) image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_patches=1024, padding="longest", max_length=76, ) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 5) @require_torch @require_vision def test_structured_kwargs_nested(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"max_patches": 1024}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76) @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): # Rewrite as pix2struct processor return "decoder_input_ids" and not "input_ids" if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"max_patches": 1024}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["flattened_patches"].shape[1], 1024) self.assertEqual(len(inputs["decoder_input_ids"][0]), 76)
transformers/tests/models/pix2struct/test_processor_pix2struct.py/0
{ "file_path": "transformers/tests/models/pix2struct/test_processor_pix2struct.py", "repo_id": "transformers", "token_count": 5452 }
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Qwen2Audio model.""" import tempfile import unittest from io import BytesIO from urllib.request import urlopen import librosa from transformers import ( AutoProcessor, Qwen2AudioConfig, Qwen2AudioForConditionalGeneration, is_torch_available, ) from transformers.testing_utils import ( cleanup, require_torch, require_torch_sdpa, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch class Qwen2AudioModelTester: def __init__( self, parent, ignore_index=-100, audio_token_index=0, seq_length=25, feat_seq_length=60, text_config={ "model_type": "qwen2", "intermediate_size": 36, "initializer_range": 0.02, "hidden_size": 32, "max_position_embeddings": 52, "num_hidden_layers": 2, "num_attention_heads": 4, "num_key_value_heads": 2, "use_labels": True, "use_mrope": False, "vocab_size": 99, }, is_training=True, audio_config={ "model_type": "qwen2_audio_encoder", "d_model": 16, "encoder_attention_heads": 4, "encoder_ffn_dim": 16, "encoder_layers": 2, "num_mel_bins": 80, "max_source_positions": 30, "initializer_range": 0.02, }, ): self.parent = parent self.ignore_index = ignore_index self.audio_token_index = audio_token_index self.text_config = text_config self.audio_config = audio_config self.seq_length = seq_length self.feat_seq_length = feat_seq_length self.num_hidden_layers = text_config["num_hidden_layers"] self.vocab_size = text_config["vocab_size"] self.hidden_size = text_config["hidden_size"] self.num_attention_heads = text_config["num_attention_heads"] self.is_training = is_training self.batch_size = 3 self.encoder_seq_length = seq_length def get_config(self): return Qwen2AudioConfig( text_config=self.text_config, audio_config=self.audio_config, ignore_index=self.ignore_index, audio_token_index=self.audio_token_index, ) def prepare_config_and_inputs(self): input_features_values = floats_tensor( [ self.batch_size, self.audio_config["num_mel_bins"], self.feat_seq_length, ] ) config = self.get_config() feature_attention_mask = torch.ones([self.batch_size, self.feat_seq_length], dtype=torch.long).to(torch_device) return config, input_features_values, feature_attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_features_values, feature_attention_mask = config_and_inputs input_length = (input_features_values.shape[-1] - 1) // 2 + 1 num_audio_tokens = (input_length - 2) // 2 + 1 input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1 attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device) attention_mask[:, :1] = 0 # we are giving 3 audios let's make sure we pass in 3 audios tokens input_ids[:, 1 : 1 + num_audio_tokens] = config.audio_token_index inputs_dict = { "input_features": input_features_values, "feature_attention_mask": feature_attention_mask, "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict def create_and_check_qwen2audio_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask): model = Qwen2AudioForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.autocast(device_type="cuda", dtype=torch.float16): logits = model( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values.to(torch.bfloat16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) @require_torch class Qwen2AudioForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase): """ Model tester for `Qwen2AudioForConditionalGeneration`. """ all_model_classes = (Qwen2AudioForConditionalGeneration,) if is_torch_available() else () test_pruning = False test_head_masking = False _is_composite = True def setUp(self): self.model_tester = Qwen2AudioModelTester(self) self.config_tester = ConfigTester(self, config_class=Qwen2AudioConfig, has_text_modality=False) @unittest.skip(reason="Compile not yet supported because in Qwen2Audio models") def test_sdpa_can_compile_dynamic(self): pass @unittest.skip(reason="Compile not yet supported because in Qwen2Audio models") def test_sdpa_can_dispatch_on_flash(self): pass @require_torch_sdpa def test_sdpa_can_dispatch_composite_models(self): # overwrite because Qwen2 is audio+text model (not vision+text) if not self.has_attentions: self.skipTest(reason="Model architecture does not support attentions") if not self._is_composite: self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained(tmpdirname) model_sdpa = model_sdpa.eval().to(torch_device) text_attn = "sdpa" if model.language_model._supports_sdpa else "eager" vision_attn = "sdpa" if model.audio_tower._supports_sdpa else "eager" # `None` as it is the requested one which will be assigned to each sub-config # Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") self.assertTrue(model.language_model.config._attn_implementation == text_attn) self.assertTrue(model.audio_tower.config._attn_implementation == vision_attn) model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager") model_eager = model_eager.eval().to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") self.assertTrue(model_eager.language_model.config._attn_implementation == "eager") self.assertTrue(model_eager.audio_tower.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: raise ValueError("The eager model should not have SDPA attention layers") @require_torch class Qwen2AudioForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") def tearDown(self): cleanup(torch_device, gc_collect=True) @slow def test_small_model_integration_test_single(self): # Let' s make sure we test the preprocessing to replace what is used model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3" messages = [ { "role": "user", "content": [ {"type": "audio", "audio_url": url}, {"type": "text", "text": "What's that sound?"}, ], } ] raw_audio, _ = librosa.load(BytesIO(urlopen(url).read()), sr=self.processor.feature_extractor.sampling_rate) formatted_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True) inputs = self.processor(text=formatted_prompt, audios=[raw_audio], return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=32) # fmt: off EXPECTED_INPUT_IDS = torch.tensor([[ 151644, 8948, 198, 2610, 525, 264, 10950, 17847, 13, 151645, 198, 151644, 872, 198, 14755, 220, 16, 25, 220, 151647, *[151646] * 101, 151648, 198, 3838, 594, 429, 5112, 30, 151645, 198, 151644, 77091, 198, ]]) # fmt: on self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS)) EXPECTED_DECODED_TEXT = ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nAudio 1: <|audio_bos|>" + "<|AUDIO|>" * 101 + "<|audio_eos|>\nWhat's that sound?<|im_end|>\n<|im_start|>assistant\nIt is the sound of glass breaking.<|im_end|>" ) self.assertEqual( self.processor.decode(output[0], skip_special_tokens=False), EXPECTED_DECODED_TEXT, ) # test the error when incorrect number of audio tokens # fmt: off inputs["input_ids"] = torch.tensor([[ 151644, 8948, 198, 2610, 525, 264, 10950, 17847, 13, 151645, 198, 151644, 872, 198, 14755, 220, 16, 25, 220, 151647, *[151646] * 200, 151648, 198, 3838, 594, 429, 5112, 30, 151645, 198, 151644, 77091, 198, ]]) # fmt: on with self.assertRaisesRegex( ValueError, "Audio features and audio tokens do not match: tokens: 200, features 101" ): model.generate(**inputs, max_new_tokens=32) @slow def test_small_model_integration_test_batch(self): # Let' s make sure we test the preprocessing to replace what is used model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") conversation1 = [ { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3", }, {"type": "text", "text": "What's that sound?"}, ], }, {"role": "assistant", "content": "It is the sound of glass shattering."}, { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav", }, {"type": "text", "text": "What can you hear?"}, ], }, ] conversation2 = [ { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac", }, {"type": "text", "text": "What does the person say?"}, ], }, ] conversations = [conversation1, conversation2] text = [ self.processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) for conversation in conversations ] audios = [] for conversation in conversations: for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": audios.append( librosa.load( BytesIO(urlopen(ele["audio_url"]).read()), sr=self.processor.feature_extractor.sampling_rate, )[0] ) inputs = self.processor(text=text, audios=audios, return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=32) EXPECTED_DECODED_TEXT = [ "system\nYou are a helpful assistant.\nuser\nAudio 1: \nWhat's that sound?\nassistant\nIt is the sound of glass shattering.\nuser\nAudio 2: \nWhat can you hear?\nassistant\ncough and throat clearing.", "system\nYou are a helpful assistant.\nuser\nAudio 1: \nWhat does the person say?\nassistant\nThe original content of this audio is: 'Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.'", ] self.assertEqual( self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow def test_small_model_integration_test_multiturn(self): # Let' s make sure we test the preprocessing to replace what is used model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3", }, {"type": "text", "text": "What's that sound?"}, ], }, {"role": "assistant", "content": "It is the sound of glass shattering."}, { "role": "user", "content": [ { "type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav", }, {"type": "text", "text": "How about this one?"}, ], }, ] formatted_prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True) audios = [] for message in messages: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": audios.append( librosa.load( BytesIO(urlopen(ele["audio_url"]).read()), sr=self.processor.feature_extractor.sampling_rate, )[0] ) inputs = self.processor(text=formatted_prompt, audios=audios, return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=32, top_k=1) EXPECTED_DECODED_TEXT = [ "system\nYou are a helpful assistant.\nuser\nAudio 1: \nWhat's that sound?\nassistant\nIt is the sound of glass shattering.\nuser\nAudio 2: \nHow about this one?\nassistant\nThroat clearing.", ] self.assertEqual( self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT, )
transformers/tests/models/qwen2_audio/test_modeling_qwen2_audio.py/0
{ "file_path": "transformers/tests/models/qwen2_audio/test_modeling_qwen2_audio.py", "repo_id": "transformers", "token_count": 7995 }
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ReformerConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, require_torch_multi_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerModel, ReformerModelWithLMHead, ReformerTokenizer, ) from transformers.models.reformer.modeling_reformer import ReformerLayer class ReformerModelTester: def __init__( self, parent, batch_size=13, seq_length=32, text_seq_length=None, is_training=True, is_decoder=True, use_input_mask=True, use_labels=True, vocab_size=32, attention_head_size=16, hidden_size=32, num_attention_heads=2, local_attn_chunk_length=4, local_num_chunks_before=1, local_num_chunks_after=0, num_buckets=None, num_hashes=1, lsh_attn_chunk_length=None, lsh_num_chunks_before=None, lsh_num_chunks_after=None, chunk_size_lm_head=0, chunk_size_feed_forward=0, feed_forward_size=32, hidden_act="gelu", hidden_dropout_prob=0.1, local_attention_probs_dropout_prob=0.1, lsh_attention_probs_dropout_prob=None, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 16], attn_layers=["local", "local", "local", "local"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.is_decoder = is_decoder self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = len(attn_layers) if attn_layers is not None else 0 self.local_attn_chunk_length = local_attn_chunk_length self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.num_hashes = num_hashes self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.chunk_size_feed_forward = chunk_size_feed_forward self.scope = scope self.attn_layers = attn_layers self.pad_token_id = pad_token_id self.hash_seed = hash_seed self.text_seq_length = text_seq_length or seq_length attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0) self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length self.chunk_length = attn_chunk_length self.num_labels = num_labels def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) choice_labels = None if self.use_labels: choice_labels = ids_tensor([self.batch_size], 2) config = self.get_config() return ( config, input_ids, input_mask, choice_labels, ) def get_config(self): return ReformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, feed_forward_size=self.feed_forward_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob, lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=self.is_decoder, axial_pos_embds=self.axial_pos_embds, axial_pos_shape=self.axial_pos_shape, axial_pos_embds_dim=self.axial_pos_embds_dim, local_attn_chunk_length=self.local_attn_chunk_length, local_num_chunks_after=self.local_num_chunks_after, local_num_chunks_before=self.local_num_chunks_before, num_hashes=self.num_hashes, num_buckets=self.num_buckets, lsh_attn_chunk_length=self.lsh_attn_chunk_length, lsh_num_chunks_after=self.lsh_num_chunks_after, lsh_num_chunks_before=self.lsh_num_chunks_before, attn_layers=self.attn_layers, pad_token_id=self.pad_token_id, hash_seed=self.hash_seed, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 100 config.max_position_embeddings = 100 config.axial_pos_shape = (4, 25) config.is_decoder = False return config def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) # 2 * hidden_size because we use reversible resnet layers self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size) ) def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels): config.is_decoder = False config.lsh_num_chunks_after = 1 model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"] loss.backward() def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels): config.lsh_num_chunks_after = 0 config.is_decoder = True model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels): config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_model_with_attn_mask( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): # no special position embeddings config.axial_pos_embds = False config.is_decoder = is_decoder if self.lsh_attn_chunk_length is not None: # need to set chunk length equal sequence length to be certain that chunking works config.lsh_attn_chunk_length = self.seq_length model = ReformerModel(config=config) model.to(torch_device) model.eval() # set all position encodings to zero so that postions don't matter with torch.no_grad(): embedding = model.embeddings.position_embeddings.embedding embedding.weight = nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device)) embedding.weight.requires_grad = False half_seq_len = self.seq_length // 2 roll = self.chunk_length half_input_ids = input_ids[:, :half_seq_len] # normal padded attn_mask = torch.cat( [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)], dim=-1, ) input_ids_padded = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) # shifted padded input_ids_roll = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1) attn_mask_roll = torch.roll(attn_mask, roll, dims=-1) output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len] output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll] self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3)) def create_and_check_reformer_layer_dropout_seed( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): config.is_decoder = is_decoder layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize # get random tensors hidden_states = floats_tensor(shape) prev_attn_output = floats_tensor(shape) # now the random seeds for attention and feed forward is initialized # forward tensors with dropout layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask) next_attn_output = layer_outputs.attn_output next_hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) attn_outputs = layer.attention(hidden_states, attention_mask=input_mask) self.parent.assertTrue( torch.allclose( prev_attn_output + attn_outputs.hidden_states, next_attn_output, atol=1e-3, ) ) torch.manual_seed(layer.feed_forward_seed) feed_forward_hidden_states = layer.feed_forward(next_attn_output) self.parent.assertTrue( torch.allclose( next_hidden_states, hidden_states + feed_forward_hidden_states, atol=1e-3, ) ) def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels): # disable dropout config.hidden_dropout_prob = 0 config.local_attention_probs_dropout_prob = 0 config.lsh_attention_probs_dropout_prob = 0 config.lsh_num_chunks_after = 1 config.is_decoder = False torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_no_chunk.backward() grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] config.chunk_size_lm_head = 1 config.chunk_size_feed_forward = 1 torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_chunk.backward() grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3)) self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3)) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3) ) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3) ) def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels): layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize hidden_states = floats_tensor(shape) attn_output = floats_tensor(shape) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) seeds.append(layer.attention_seed) self.parent.assertGreater(len(set(seeds)), 70) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.feed_forward_seed) seeds.append(layer.feed_forward_seed) self.parent.assertGreater(len(set(seeds)), 70) def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.half() model.eval() output = model(input_ids, attention_mask=input_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 config.bos_token_id = 0 config.eos_token_id = None config.max_length = 20 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() output = model.generate() self.parent.assertIsNotNone(output) def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.half() model.eval() # only use last 10 inputs for generation output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False) self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels): # force chunk length to be bigger than input_ids config.lsh_attn_chunk_length = 2 * input_ids.shape[-1] config.local_attn_chunk_length = 2 * input_ids.shape[-1] config.lsh_num_chunks_after = 1 config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() output_logits = model(input_ids, attention_mask=input_mask)["logits"] self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1]) def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels): model = ReformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=choice_labels, end_positions=choice_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_before = 1 config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() input_ids_first = input_ids[:, :-1] input_ids_second = input_ids[:, -1:] # return saved cache past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"] # calculate last output with and without cache outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"] outputs_without_cache = model(input_ids)["logits"][:, -1] # select random slice idx random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item() # outputs should be similar within range self.parent.assertTrue( torch.allclose( outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2 ) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict def create_and_check_reformer_for_sequence_classification( self, config, input_ids, input_mask, choice_labels, is_decoder ): config.is_decoder = is_decoder sequence_labels = ids_tensor([self.batch_size], config.num_labels) model = ReformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) class ReformerTesterMixin: """ Reformer Local and Reformer LSH run essentially the same tests """ def test_config(self): self.config_tester.run_common_tests() def test_reformer_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model(*config_and_inputs) def test_reformer_lm_model_backward(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs) def test_reformer_model_attn_masking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False) def test_reformer_with_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs) def test_reformer_with_mlm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs) def test_reformer_layer_training_dropout(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False) def test_reformer_chunking_backward_equality(self): if not self.model_tester.is_training: self.skipTest(reason="model_tester.is_training is set to False") config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs) def test_reformer_no_chunking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs) def test_reformer_qa_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs) def test_reformer_cached_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_past_buckets_states(*config_and_inputs) def test_reformer_cached_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs) @slow def test_dropout_random_seed_is_changing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs) @require_torch_multi_gpu @unittest.skip( reason=( "Reformer does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False) @unittest.skip(reason="Reformer cannot keep gradients in attentions or hidden states") def test_retain_grad_hidden_states_attentions(self): return @unittest.skip(reason="Reformer cannot resize embeddings that easily") def test_resize_embeddings_untied(self): return @require_torch class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, ModelTesterMixin, unittest.TestCase): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () test_pruning = False test_headmasking = False test_torchscript = False test_sequence_classification_problem_types = True def setUp(self): self.model_tester = ReformerModelTester(self, text_seq_length=16) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) @slow def test_model_from_pretrained(self): model_name = "google/reformer-crime-and-punishment" model = ReformerModelWithLMHead.from_pretrained(model_name) self.assertIsNotNone(model) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.local_attn_chunk_length + (tgt_len % config.local_attn_chunk_length != 0) tgt_chunk_len = config.local_attn_chunk_length src_chunk_len = config.local_attn_chunk_length * ( 1 + config.local_num_chunks_after + config.local_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, min_length // config.local_attn_chunk_length + 1 + idx, ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx seq_len = config.local_attn_chunk_length * ( seq_len // config.local_attn_chunk_length + (seq_len % config.local_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip(reason="The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass def prepare_config_and_inputs_for_generate(self, *args, **kwargs): # override because overwise we hit max possible seq length for model (4*8=32) # decreasing the seq_length in tester causes errors for "training_tests", those need exactly max seq length # NOTE: seq_length has to be multiple of 4, otherwise it fails for other tests original_sequence_length = self.model_tester.seq_length self.model_tester.seq_length = self.model_tester.text_seq_length test_inputs = super().prepare_config_and_inputs_for_generate(*args, **kwargs) self.model_tester.seq_length = original_sequence_length return test_inputs @require_torch class ReformerLSHAttnModelTest( ReformerTesterMixin, ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase ): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": ReformerModel, "fill-mask": ReformerForMaskedLM, "question-answering": ReformerForQuestionAnswering, "text-classification": ReformerForSequenceClassification, "text-generation": ReformerModelWithLMHead, "zero-shot": ReformerForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): if ( pipeline_test_case_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = ReformerModelTester( self, batch_size=13, seq_length=13, use_input_mask=True, use_labels=True, is_training=False, is_decoder=True, vocab_size=32, attention_head_size=16, hidden_size=64, num_attention_heads=2, num_buckets=2, num_hashes=4, lsh_attn_chunk_length=4, lsh_num_chunks_before=1, lsh_num_chunks_after=0, chunk_size_lm_head=5, chunk_size_feed_forward=6, feed_forward_size=32, hidden_act="relu", hidden_dropout_prob=0.1, lsh_attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 48], # sanotheu # attn_layers=[lsh,lsh,lsh,lsh], attn_layers=["lsh"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.lsh_attn_chunk_length + (tgt_len % config.lsh_attn_chunk_length != 0) tgt_chunk_len = config.lsh_attn_chunk_length src_chunk_len = config.lsh_attn_chunk_length * ( 1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, config.num_hashes, tgt_len, config.num_hashes * (1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before), ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks * config.num_hashes, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx if not use_cache else 1 seq_len = config.lsh_attn_chunk_length * ( seq_len // config.lsh_attn_chunk_length + (seq_len % config.lsh_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip(reason="Fails because the sequence length is not a multiple of 4") def test_problem_types(self): pass @unittest.skip(reason="Fails because the sequence length is not a multiple of 4") def test_past_key_values_format(self): pass @unittest.skip(reason="The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass @require_torch @require_sentencepiece @require_tokenizers class ReformerIntegrationTests(unittest.TestCase): """ These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "lsh" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`. """ def _get_basic_config_and_input(self): config = { "vocab_size": 320, "attention_head_size": 8, "hidden_size": 16, "num_attention_heads": 2, "num_buckets": 2, "num_hashes": 4, "lsh_attn_chunk_length": 4, "local_attn_chunk_length": 4, "lsh_num_chunks_before": 1, "lsh_num_chunks_after": 0, "local_num_chunks_before": 1, "local_num_chunks_after": 0, "chunk_size_lm_head": 0, "chunk_size_feed_forward": 0, "feed_forward_size": 32, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "lsh_attention_probs_dropout_prob": 0.0, "local_attention_probs_dropout_prob": 0.0, "max_position_embeddings": 32, "initializer_range": 0.02, "axial_norm_std": 1.0, "layer_norm_eps": 1e-12, "sinusoidal_pos_embds": False, "axial_pos_embds": True, "axial_pos_shape": [4, 8], "axial_pos_embds_dim": [8, 8], "hash_seed": 0, "is_decoder": True, } return config def _get_hidden_states(self): return torch.tensor( [ [ [ 1.90826353e00, -1.45999730e00, -6.20405462e-01, 1.52503433e00, -3.64464232e-01, -8.27359235e-01, 8.39670803e-01, 2.44492178e-01, 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -2.66374286e-02, 4.33497576e-01, 3.10386309e-01, 5.46039944e-01, -2.47292666e-04, -7.52305019e-01, 2.39162103e-01, 7.25216186e-01, -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ 1.85247482e-01, 7.07046037e-01, -6.77089715e-01, -2.24209655e00, -3.75307980e-02, -8.59380874e-01, -2.81027884e00, 1.01276376e00, -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 9.46069193e-01, 1.53417623e-01, -9.58686996e-01, 1.18126669e-01, 1.75967724e00, 1.62194590e00, -5.74108159e-01, 6.79920443e-01, 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=torch.float32, device=torch_device, ) def _get_attn_mask(self): return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device) def _get_input_ids_and_mask(self): mask = torch.tensor( [ [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0], ], dtype=torch.long, device=torch_device, ) input_ids = torch.tensor( [ [ 89, 279, 286, 84, 194, 316, 182, 28, 283, 37, 169, 7, 253, 267, 107, 250, 44, 7, 102, 62, 3, 243, 171, 265, 302, 48, 164, 264, 148, 229, 280, 150, ], [ 9, 192, 66, 112, 163, 83, 135, 70, 224, 96, 31, 80, 196, 80, 63, 22, 85, 100, 47, 283, 0, 163, 126, 143, 195, 82, 53, 82, 18, 27, 182, 52, ], ], dtype=torch.long, device=torch_device, ) return input_ids, mask def test_lsh_layer_forward(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6879, -1.3083, -0.4708, 1.3555, -0.6292], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_lsh_layer_forward_complex(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["num_buckets"] = [2, 4] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states.clone(), hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6439, -1.2306, -0.5108, 1.3006, -0.6537], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_local_layer_forward(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4212, -2.0576, -0.9688, 1.4599, -0.1344], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_local_layer_forward_complex(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states, hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4750, -2.0235, -0.9743, 1.4463, -0.1269], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_lsh_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["num_buckets"] = [2, 4] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_local_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_lm_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"] config["num_buckets"] = [2, 4] config["is_decoder"] = False torch.manual_seed(0) model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[1, -1, :5] expected_output_slice = torch.tensor( [0.1018, -0.2026, 0.2116, 0.0270, -0.1233], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(output_slice, expected_output_slice, rtol=1e-3, atol=1e-3) def test_local_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] config["hidden_dropout_prob"] = 0.0 config["local_attention_probs_dropout_prob"] = 0.0 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] torch.testing.assert_close( loss, torch.tensor(5.8019, dtype=torch.float, device=torch_device), rtol=1e-3, atol=1e-3 ) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [-0.0005, -0.0001, -0.0002, -0.0006, -0.0006], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.5235, 0.5704, 0.0922, -0.3140, 0.9928], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [1.7960, 1.7668, 0.5593, 0.0907, 1.8342], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(grad_slice_word, expected_grad_slice_word, rtol=1e-3, atol=1e-3) torch.testing.assert_close(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, rtol=1e-3, atol=1e-3) torch.testing.assert_close(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, rtol=1e-3, atol=1e-3) def test_lsh_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["hidden_dropout_prob"] = 0.0 config["lsh_attention_probs_dropout_prob"] = 0.0 config["num_buckets"] = [2, 4] config["num_hashes"] = 6 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] torch.testing.assert_close( loss, torch.tensor(5.7854, dtype=torch.float, device=torch_device), rtol=1e-3, atol=1e-3 ) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [0.0004, 0.0003, 0.0006, -0.0004, 0.0002], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.3792, 0.5593, -1.6993, 0.2033, 0.4131], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [-1.4212, -0.3201, -1.1944, 0.1258, 0.2856], dtype=torch.float, device=torch_device, ) torch.testing.assert_close(grad_slice_word, expected_grad_slice_word, rtol=1e-3, atol=1e-3) torch.testing.assert_close(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, rtol=1e-3, atol=1e-3) torch.testing.assert_close(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, rtol=1e-3, atol=1e-3) @slow def test_pretrained_generate_crime_and_punish(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids = model.generate( input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8 ) output = tokenizer.decode(output_ids[0]) self.assertEqual( output, "A few months later state expression in his ideas, at the first entrance. He was positively for an inst", ) @slow def test_pretrained_generate_use_cache_equality(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False) output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True) output_with_cache = tokenizer.decode(output_ids_with_cache[0]) output_without_cache = tokenizer.decode(output_ids_without_cache[0]) self.assertEqual(output_with_cache, output_without_cache)
transformers/tests/models/reformer/test_modeling_reformer.py/0
{ "file_path": "transformers/tests/models/reformer/test_modeling_reformer.py", "repo_id": "transformers", "token_count": 27453 }
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AutoTokenizer, RobertaConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.models.roberta.modeling_roberta import ( RobertaEmbeddings, create_position_ids_from_input_ids, ) from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4 ROBERTA_TINY = "sshleifer/tiny-distilroberta-base" class RobertaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RobertaForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaForCausalLM, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaForMultipleChoice, RobertaForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RobertaModel, "fill-mask": RobertaForMaskedLM, "question-answering": RobertaForQuestionAnswering, "text-classification": RobertaForSequenceClassification, "text-generation": RobertaForCausalLM, "token-classification": RobertaForTokenClassification, "zero-shot": RobertaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True model_split_percents = [0.5, 0.8, 0.9] def setUp(self): self.model_tester = RobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "FacebookAI/roberta-base" model = RobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained("FacebookAI/roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_no_head(self): model = RobertaModel.from_pretrained("FacebookAI/roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach() torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4) @slow def test_inference_classification_head(self): model = RobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-large-mnli") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # roberta.eval() # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach() torch.testing.assert_close(output, expected_tensor, rtol=1e-4, atol=1e-4) @slow def test_export(self): if not is_torch_greater_or_equal_than_2_4: self.skipTest(reason="This test requires torch >= 2.4 to run.") roberta_model = "FacebookAI/roberta-base" device = "cpu" attn_implementation = "sdpa" max_length = 512 tokenizer = AutoTokenizer.from_pretrained(roberta_model) inputs = tokenizer( "The goal of life is <mask>.", return_tensors="pt", padding="max_length", max_length=max_length, ) model = RobertaForMaskedLM.from_pretrained( roberta_model, device_map=device, attn_implementation=attn_implementation, use_cache=True, ) logits = model(**inputs).logits eager_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices) self.assertEqual(eager_predicted_mask.split(), ["happiness", "love", "peace", "freedom", "simplicity"]) exported_program = torch.export.export( model, args=(inputs["input_ids"],), kwargs={"attention_mask": inputs["attention_mask"]}, strict=True, ) result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"]) exported_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices) self.assertEqual(eager_predicted_mask, exported_predicted_mask)
transformers/tests/models/roberta/test_modeling_roberta.py/0
{ "file_path": "transformers/tests/models/roberta/test_modeling_roberta.py", "repo_id": "transformers", "token_count": 11177 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import unittest import requests from transformers.testing_utils import require_torch, require_torch_gpu, require_torchvision, require_vision, slow from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from PIL import Image from transformers import RTDetrImageProcessor, RTDetrImageProcessorFast if is_torch_available(): import torch class RTDetrImageProcessingTester: def __init__( self, parent, batch_size=4, num_channels=3, do_resize=True, size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=False, do_pad=False, return_tensors="pt", ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.do_resize = do_resize self.size = size if size is not None else {"height": 640, "width": 640} self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_pad = do_pad self.return_tensors = return_tensors def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "do_pad": self.do_pad, "return_tensors": self.return_tensors, } def get_expected_values(self): return self.size["height"], self.size["width"] def expected_output_image_shape(self, images): height, width = self.get_expected_values() return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=30, max_resolution=400, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class RtDetrImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = RTDetrImageProcessor if is_vision_available() else None fast_image_processing_class = RTDetrImageProcessorFast if is_torchvision_available() else None def setUp(self): super().setUp() self.image_processor_tester = RTDetrImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): for image_processing_class in self.image_processor_list: image_processing = image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "return_tensors")) def test_image_processor_from_dict_with_kwargs(self): for image_processing_class in self.image_processor_list: image_processor = image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 640, "width": 640}) def test_valid_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) params = {"image_id": 39769, "annotations": target} for image_processing_class in self.image_processor_list: # encode them image_processing = image_processing_class.from_pretrained("PekingU/rtdetr_r50vd") # legal encodings (single image) _ = image_processing(images=image, annotations=params, return_tensors="pt") _ = image_processing(images=image, annotations=[params], return_tensors="pt") # legal encodings (batch of one image) _ = image_processing(images=[image], annotations=params, return_tensors="pt") _ = image_processing(images=[image], annotations=[params], return_tensors="pt") # legal encoding (batch of more than one image) n = 5 _ = image_processing(images=[image] * n, annotations=[params] * n, return_tensors="pt") # example of an illegal encoding (missing the 'image_id' key) with self.assertRaises(ValueError) as e: image_processing(images=image, annotations={"annotations": target}, return_tensors="pt") self.assertTrue(str(e.exception).startswith("Invalid COCO detection annotations")) # example of an illegal encoding (unequal lengths of images and annotations) with self.assertRaises(ValueError) as e: image_processing(images=[image] * n, annotations=[params] * (n - 1), return_tensors="pt") self.assertTrue(str(e.exception) == "The number of images (5) and annotations (4) do not match.") @slow def test_call_pytorch_with_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"image_id": 39769, "annotations": target} for image_processing_class in self.image_processor_list: # encode them image_processing = image_processing_class.from_pretrained("PekingU/rtdetr_r50vd") encoding = image_processing(images=image, annotations=target, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 640, 640]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.5490, 0.5647, 0.5725]) torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-4, atol=1e-4) # verify area expected_area = torch.tensor([2827.9883, 5403.4761, 235036.7344, 402070.2188, 71068.8281, 79601.2812]) torch.testing.assert_close(encoding["labels"][0]["area"], expected_area) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) torch.testing.assert_close(encoding["labels"][0]["boxes"][0], expected_boxes_slice, rtol=1e-3, atol=1e-3) # verify image_id expected_image_id = torch.tensor([39769]) torch.testing.assert_close(encoding["labels"][0]["image_id"], expected_image_id) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) torch.testing.assert_close(encoding["labels"][0]["iscrowd"], expected_is_crowd) # verify class_labels expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) torch.testing.assert_close(encoding["labels"][0]["class_labels"], expected_class_labels) # verify orig_size expected_orig_size = torch.tensor([480, 640]) torch.testing.assert_close(encoding["labels"][0]["orig_size"], expected_orig_size) # verify size expected_size = torch.tensor([640, 640]) torch.testing.assert_close(encoding["labels"][0]["size"], expected_size) @slow def test_image_processor_outputs(self): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") for image_processing_class in self.image_processor_list: image_processing = image_processing_class(**self.image_processor_dict) encoding = image_processing(images=image, return_tensors="pt") # verify pixel values: shape expected_shape = torch.Size([1, 3, 640, 640]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) # verify pixel values: output values expected_slice = torch.tensor([0.5490196347236633, 0.5647059082984924, 0.572549045085907]) torch.testing.assert_close(encoding["pixel_values"][0, 0, 0, :3], expected_slice, rtol=1e-5, atol=1e-5) def test_multiple_images_processor_outputs(self): images_urls = [ "http://images.cocodataset.org/val2017/000000000139.jpg", "http://images.cocodataset.org/val2017/000000000285.jpg", "http://images.cocodataset.org/val2017/000000000632.jpg", "http://images.cocodataset.org/val2017/000000000724.jpg", "http://images.cocodataset.org/val2017/000000000776.jpg", "http://images.cocodataset.org/val2017/000000000785.jpg", "http://images.cocodataset.org/val2017/000000000802.jpg", "http://images.cocodataset.org/val2017/000000000872.jpg", ] images = [] for url in images_urls: image = Image.open(requests.get(url, stream=True).raw) images.append(image) for image_processing_class in self.image_processor_list: # apply image processing image_processing = image_processing_class(**self.image_processor_dict) encoding = image_processing(images=images, return_tensors="pt") # verify if pixel_values is part of the encoding self.assertIn("pixel_values", encoding) # verify pixel values: shape expected_shape = torch.Size([8, 3, 640, 640]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) # verify pixel values: output values expected_slices = torch.tensor( [ [0.5333333611488342, 0.5568627715110779, 0.5647059082984924], [0.5372549295425415, 0.4705882668495178, 0.4274510145187378], [0.3960784673690796, 0.35686275362968445, 0.3686274588108063], [0.20784315466880798, 0.1882353127002716, 0.15294118225574493], [0.364705890417099, 0.364705890417099, 0.3686274588108063], [0.8078432083129883, 0.8078432083129883, 0.8078432083129883], [0.4431372880935669, 0.4431372880935669, 0.4431372880935669], [0.19607844948768616, 0.21176472306251526, 0.3607843220233917], ] ) torch.testing.assert_close(encoding["pixel_values"][:, 1, 0, :3], expected_slices, rtol=1e-5, atol=1e-5) @slow def test_batched_coco_detection_annotations(self): image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800)) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) annotations_0 = {"image_id": 39769, "annotations": target} annotations_1 = {"image_id": 39769, "annotations": target} # Adjust the bounding boxes for the resized image w_0, h_0 = image_0.size w_1, h_1 = image_1.size for i in range(len(annotations_1["annotations"])): coords = annotations_1["annotations"][i]["bbox"] new_bbox = [ coords[0] * w_1 / w_0, coords[1] * h_1 / h_0, coords[2] * w_1 / w_0, coords[3] * h_1 / h_0, ] annotations_1["annotations"][i]["bbox"] = new_bbox images = [image_0, image_1] annotations = [annotations_0, annotations_1] for image_processing_class in self.image_processor_list: image_processing = image_processing_class() encoding = image_processing( images=images, annotations=annotations, return_segmentation_masks=True, return_tensors="pt", # do_convert_annotations=True ) # Check the pixel values have been padded postprocessed_height, postprocessed_width = 640, 640 expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) # Check the bounding boxes have been adjusted for padded images self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) expected_boxes_0 = torch.tensor( [ [0.6879, 0.4609, 0.0755, 0.3691], [0.2118, 0.3359, 0.2601, 0.1566], [0.5011, 0.5000, 0.9979, 1.0000], [0.5010, 0.5020, 0.9979, 0.9959], [0.3284, 0.5944, 0.5884, 0.8112], [0.8394, 0.5445, 0.3213, 0.9110], ] ) expected_boxes_1 = torch.tensor( [ [0.5503, 0.2765, 0.0604, 0.2215], [0.1695, 0.2016, 0.2080, 0.0940], [0.5006, 0.4933, 0.9977, 0.9865], [0.5008, 0.5002, 0.9983, 0.9955], [0.2627, 0.5456, 0.4707, 0.8646], [0.7715, 0.4115, 0.4570, 0.7161], ] ) torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1e-3, rtol=1e-3) torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1e-3, rtol=1e-3) # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height # format and not in the range [0, 1] encoding = image_processing( images=images, annotations=annotations, return_segmentation_masks=True, do_convert_annotations=False, return_tensors="pt", ) self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4])) self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4])) # Convert to absolute coordinates unnormalized_boxes_0 = torch.vstack( [ expected_boxes_0[:, 0] * postprocessed_width, expected_boxes_0[:, 1] * postprocessed_height, expected_boxes_0[:, 2] * postprocessed_width, expected_boxes_0[:, 3] * postprocessed_height, ] ).T unnormalized_boxes_1 = torch.vstack( [ expected_boxes_1[:, 0] * postprocessed_width, expected_boxes_1[:, 1] * postprocessed_height, expected_boxes_1[:, 2] * postprocessed_width, expected_boxes_1[:, 3] * postprocessed_height, ] ).T # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max expected_boxes_0 = torch.vstack( [ unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2, unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2, unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2, ] ).T expected_boxes_1 = torch.vstack( [ unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2, unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2, unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2, ] ).T torch.testing.assert_close(encoding["labels"][0]["boxes"], expected_boxes_0, atol=1, rtol=1) torch.testing.assert_close(encoding["labels"][1]["boxes"], expected_boxes_1, atol=1, rtol=1) @slow @require_torch_gpu @require_torchvision # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_fast_processor_equivalence_cpu_gpu_coco_detection_annotations def test_fast_processor_equivalence_cpu_gpu_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"image_id": 39769, "annotations": target} processor = self.image_processor_list[1]() # 1. run processor on CPU encoding_cpu = processor(images=image, annotations=target, return_tensors="pt", device="cpu") # 2. run processor on GPU encoding_gpu = processor(images=image, annotations=target, return_tensors="pt", device="cuda") # verify pixel values self.assertEqual(encoding_cpu["pixel_values"].shape, encoding_gpu["pixel_values"].shape) self.assertTrue( torch.allclose( encoding_cpu["pixel_values"][0, 0, 0, :3], encoding_gpu["pixel_values"][0, 0, 0, :3].to("cpu"), atol=1e-4, ) ) # verify area torch.testing.assert_close(encoding_cpu["labels"][0]["area"], encoding_gpu["labels"][0]["area"].to("cpu")) # verify boxes self.assertEqual(encoding_cpu["labels"][0]["boxes"].shape, encoding_gpu["labels"][0]["boxes"].shape) self.assertTrue( torch.allclose( encoding_cpu["labels"][0]["boxes"][0], encoding_gpu["labels"][0]["boxes"][0].to("cpu"), atol=1e-3 ) ) # verify image_id torch.testing.assert_close( encoding_cpu["labels"][0]["image_id"], encoding_gpu["labels"][0]["image_id"].to("cpu") ) # verify is_crowd torch.testing.assert_close( encoding_cpu["labels"][0]["iscrowd"], encoding_gpu["labels"][0]["iscrowd"].to("cpu") ) # verify class_labels self.assertTrue( torch.allclose( encoding_cpu["labels"][0]["class_labels"], encoding_gpu["labels"][0]["class_labels"].to("cpu") ) ) # verify orig_size torch.testing.assert_close( encoding_cpu["labels"][0]["orig_size"], encoding_gpu["labels"][0]["orig_size"].to("cpu") ) # verify size torch.testing.assert_close(encoding_cpu["labels"][0]["size"], encoding_gpu["labels"][0]["size"].to("cpu"))
transformers/tests/models/rt_detr/test_image_processing_rt_detr.py/0
{ "file_path": "transformers/tests/models/rt_detr/test_image_processing_rt_detr.py", "repo_id": "transformers", "token_count": 9503 }