content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
from typing import List import argparse import chart_studio.plotly as py import plotly.express as px import pandas as pd class TokyoCovid19Stat: """Holds Tokyo Covid-19 stat data.""" def __init__(self, csv_file_path: str = None): self.csv_file_path = csv_file_path self._df = None self.area_list = [] def update(self) -> None: df = pd.read_csv(self.csv_file_path, parse_dates=['Date']) for area in df['Area']: if area in self.area_list: break self.area_list.append(area) df = df.pivot(index='Date', columns='Area', values='New Cases') self._df = df[self.area_list] @property def df(self) -> pd.DataFrame: if self._df is None: self.update() return self._df @property def cases_by_area(self) -> pd.DataFrame: return self.df @property def cases(self) -> pd.DataFrame: return pd.DataFrame({'Cases': self.cases_by_area.sum(axis=1)}) def sma(df: pd.DataFrame, days: int = 7) -> pd.DataFrame: return df.rolling(days).mean() def with_date(orig_df: pd.DataFrame) -> pd.DataFrame: df = orig_df.copy() df['Date'] = df.index.to_list() return df def melt(orig_df: pd.DataFrame, value_columns: List[str], var_name: str, value_name: str = 'Cases') -> pd.DataFrame: """Unpivot the given DataFrame to be used with Plotly.""" df = with_date(orig_df) df = df[['Date'] + value_columns] return df.melt(id_vars=['Date'], value_vars=value_columns, var_name=var_name, value_name=value_name) def main(): parser = argparse.ArgumentParser() parser.add_argument('--csv_file_path') args = parser.parse_args() if args.csv_file_path is None: return st = TokyoCovid19Stat(args.csv_file_path) cases_by_area = melt(st.cases_by_area, value_columns=st.area_list, var_name='Area') sma_by_area = melt(sma(st.cases_by_area), value_columns=st.area_list, var_name='Area') # title = 'Tokyo Covid-19 New Cases By Area' # fig = px.area(cases_by_area, x='Date', y='Cases', color='Area', title=title) # py.plot(fig, filename=title, auto_open=False) title = '[TEST] Tokyo Covid-19 New Cases 7-day Moving Average By Area' fig = px.line(sma_by_area, x='Date', y='Cases', color='Area', title=title) fig.add_bar(x=st.cases.index, y=st.cases['Cases'], name='Raw Total', marker=dict(color='#dddddd')) py.plot(fig, filename=title, auto_open=False) if __name__ == '__main__': main()
28.628866
82
0.593806
[ "MIT" ]
kazush/tokyo_covid19_stat
stat_by_area.py
2,777
Python
import os import librosa.display as lbd import matplotlib.pyplot as plt import sounddevice import soundfile import torch from InferenceInterfaces.InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator from InferenceInterfaces.InferenceArchitectures.InferenceTacotron2 import Tacotron2 from Preprocessing.TextFrontend import TextFrontend class Nancy_Tacotron2(torch.nn.Module): def __init__(self, device="cpu", speaker_embedding=None): super().__init__() self.speaker_embedding = None self.device = device self.text2phone = TextFrontend(language="en", use_word_boundaries=False, use_explicit_eos=False, inference=True) self.phone2mel = Tacotron2(path_to_weights=os.path.join("Models", "Tacotron2_Nancy", "best.pt"), idim=166, odim=80, spk_embed_dim=None, reduction_factor=1).to(torch.device(device)) self.mel2wav = HiFiGANGenerator(path_to_weights=os.path.join("Models", "HiFiGAN_combined", "best.pt")).to(torch.device(device)) self.phone2mel.eval() self.mel2wav.eval() self.to(torch.device(device)) def forward(self, text, view=False): with torch.no_grad(): phones = self.text2phone.string_to_tensor(text).squeeze(0).long().to(torch.device(self.device)) mel = self.phone2mel(phones, speaker_embedding=self.speaker_embedding).transpose(0, 1) wave = self.mel2wav(mel) if view: fig, ax = plt.subplots(nrows=2, ncols=1) ax[0].plot(wave.cpu().numpy()) lbd.specshow(mel.cpu().numpy(), ax=ax[1], sr=16000, cmap='GnBu', y_axis='mel', x_axis='time', hop_length=256) ax[0].set_title(self.text2phone.get_phone_string(text)) ax[0].yaxis.set_visible(False) ax[1].yaxis.set_visible(False) plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0) plt.show() return wave def read_to_file(self, text_list, file_location, silent=False): """ :param silent: Whether to be verbose about the process :param text_list: A list of strings to be read :param file_location: The path and name of the file it should be saved to """ wav = None silence = torch.zeros([24000]) for text in text_list: if text.strip() != "": if not silent: print("Now synthesizing: {}".format(text)) if wav is None: wav = self(text).cpu() wav = torch.cat((wav, silence), 0) else: wav = torch.cat((wav, self(text).cpu()), 0) wav = torch.cat((wav, silence), 0) soundfile.write(file=file_location, data=wav.cpu().numpy(), samplerate=48000) def read_aloud(self, text, view=False, blocking=False): if text.strip() == "": return wav = self(text, view).cpu() wav = torch.cat((wav, torch.zeros([24000])), 0) if not blocking: sounddevice.play(wav.numpy(), samplerate=48000) else: sounddevice.play(torch.cat((wav, torch.zeros([12000])), 0).numpy(), samplerate=48000) sounddevice.wait() def plot_attention(self, sentence): sentence_tensor = self.text2phone.string_to_tensor(sentence).squeeze(0).long().to(torch.device(self.device)) att = self.phone2mel(text=sentence_tensor, speaker_embedding=self.speaker_embedding, return_atts=True) fig, axes = plt.subplots(nrows=1, ncols=1) axes.imshow(att.detach().numpy(), interpolation='nearest', aspect='auto', origin="lower") axes.set_title("{}".format(sentence)) axes.xaxis.set_visible(False) axes.yaxis.set_visible(False) plt.tight_layout() plt.show()
44.793103
135
0.622274
[ "Apache-2.0" ]
DigitalPhonetics/IMS-Toucan
InferenceInterfaces/Nancy_Tacotron2.py
3,897
Python
# -*- coding: UTF-8 -*- # Copyright 2002-2019 Rumma & Ko Ltd # License: BSD (see file COPYING for details) """ See :ref:`lino` for non-technical documentation. The :mod:`lino` package itself is the first plugin for all Lino applications, added automatically to your :setting:`INSTALLED_APPS`. It defines no models, but some template files, django admin commands, translation messages and the core :xfile:`help_texts.py` file. The :mod:`lino` package is the root for the subpackages that define core functionalites: .. autosummary:: :toctree: core hello api utils mixins projects modlib sphinxcontrib management.commands """ # from __future__ import unicode_literals # from __future__ import absolute_import # from builtins import str import sys import os from os.path import join, dirname from .setup_info import SETUP_INFO __version__ = SETUP_INFO['version'] intersphinx_urls = dict(docs="http://core.lino-framework.org") srcref_url = 'https://github.com/lino-framework/lino/blob/master/%s' # srcref_url = 'https://github.com/lino-framework/lino/tree/master/%s' doc_trees = ['docs'] if sys.version_info[0] > 2: PYAFTER26 = True elif sys.version_info[0] == 2 and sys.version_info[1] > 6: PYAFTER26 = True else: PYAFTER26 = False import warnings warnings.filterwarnings( "error", "DateTimeField .* received a naive datetime (.*) while time zone support is active.", RuntimeWarning, "django.db.models.fields") from django.conf import settings from django.apps import AppConfig # def setup_project(settings_module): # os.environ['DJANGO_SETTINGS_MODULE'] = settings_module # from lino.api.shell import settings DJANGO_DEFAULT_LANGUAGE = 'en-us' def assert_django_code(django_code): if '_' in django_code: raise Exception("Invalid language code %r. " "Use values like 'en' or 'en-us'." % django_code) from django import VERSION AFTER17 = True AFTER18 = True DJANGO2 = True if VERSION[0] == 1: DJANGO2 = False if VERSION[1] < 10: raise Exception("Unsupported Django version %s" % VERSION) # if VERSION[1] > 6: # AFTER17 = True # if VERSION[1] > 8: # AFTER18 = True elif VERSION[0] == 2: AFTER17 = True AFTER18 = True else: raise Exception("Unsupported Django version %s" % VERSION) def startup(settings_module=None): """ Start up Django and Lino. Optional `settings_module` is the name of a Django settings module. If this is specified, set the :envvar:`DJANGO_SETTINGS_MODULE` environment variable. This is called automatically when a process is invoked by an *admin command*. In a document to be tested using :cmd:`doctest` you need to call it manually using e.g.: >>> import lino >>> lino.startup('my.project.settings') Above two lines are recommended over the old-style method (the only one only until Django 1.6):: >>> import os >>> os.environ['DJANGO_SETTINGS_MODULE'] = 'my.project.settings' """ if settings_module: os.environ['DJANGO_SETTINGS_MODULE'] = settings_module import django django.setup() class AppConfig(AppConfig): """This is the only :class:`django.apps.AppConfig` object used by Lino. Lino applications use the :class:`lino.core.plugins.Plugin` because it has some additional functionality. """ name = 'lino' def ready(self): if False: settings.SITE.startup() else: try: settings.SITE.startup() except ImportError as e: import traceback # traceback.print_exc(e) # sys.exit(-1) raise Exception("ImportError during startup:\n" + traceback.format_exc(e)) except Exception as e: print(e) raise default_app_config = 'lino.AppConfig' # deprecated use, only for backwards compat: from django.utils.translation import ugettext_lazy as _
25.670886
98
0.66716
[ "BSD-2-Clause" ]
NewRGB/lino
lino/__init__.py
4,056
Python
import decimal from threading import local from django.db import DEFAULT_DB_ALIAS from django.db.backends import util from django.utils import datetime_safe from django.utils.importlib import import_module class BaseDatabaseWrapper(local): """ Represents a database connection. """ ops = None def __init__(self, settings_dict, alias=DEFAULT_DB_ALIAS): # `settings_dict` should be a dictionary containing keys such as # NAME, USER, etc. It's called `settings_dict` instead of `settings` # to disambiguate it from Django settings modules. self.connection = None self.queries = [] self.settings_dict = settings_dict self.alias = alias def __eq__(self, other): return self.settings_dict == other.settings_dict def __ne__(self, other): return not self == other def _commit(self): if self.connection is not None: return self.connection.commit() def _rollback(self): if self.connection is not None: return self.connection.rollback() def _enter_transaction_management(self, managed): """ A hook for backend-specific changes required when entering manual transaction handling. """ pass def _leave_transaction_management(self, managed): """ A hook for backend-specific changes required when leaving manual transaction handling. Will usually be implemented only when _enter_transaction_management() is also required. """ pass def _savepoint(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_create_sql(sid)) def _savepoint_rollback(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_rollback_sql(sid)) def _savepoint_commit(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_commit_sql(sid)) def close(self): if self.connection is not None: self.connection.close() self.connection = None def cursor(self): from django.conf import settings cursor = self._cursor() if settings.DEBUG: return self.make_debug_cursor(cursor) return cursor def make_debug_cursor(self, cursor): return util.CursorDebugWrapper(cursor, self) class BaseDatabaseFeatures(object): allows_group_by_pk = False # True if django.db.backend.utils.typecast_timestamp is used on values # returned from dates() calls. needs_datetime_string_cast = True empty_fetchmany_value = [] update_can_self_select = True interprets_empty_strings_as_nulls = False can_use_chunked_reads = True can_return_id_from_insert = False uses_autocommit = False uses_savepoints = False # If True, don't use integer foreign keys referring to, e.g., positive # integer primary keys. related_fields_match_type = False class BaseDatabaseOperations(object): """ This class encapsulates all backend-specific differences, such as the way a backend performs ordering or calculates the ID of a recently-inserted row. """ compiler_module = "django.db.models.sql.compiler" def __init__(self): self._cache = {} def autoinc_sql(self, table, column): """ Returns any SQL needed to support auto-incrementing primary keys, or None if no SQL is necessary. This SQL is executed when a table is created. """ return None def date_extract_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that extracts a value from the given date field field_name. """ raise NotImplementedError() def date_trunc_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that truncates the given date field field_name to a DATE object with only the given specificity. """ raise NotImplementedError() def datetime_cast_sql(self): """ Returns the SQL necessary to cast a datetime value so that it will be retrieved as a Python datetime object instead of a string. This SQL should include a '%s' in place of the field's name. """ return "%s" def deferrable_sql(self): """ Returns the SQL necessary to make a constraint "initially deferred" during a CREATE TABLE statement. """ return '' def drop_foreignkey_sql(self): """ Returns the SQL command that drops a foreign key. """ return "DROP CONSTRAINT" def drop_sequence_sql(self, table): """ Returns any SQL necessary to drop the sequence for the given table. Returns None if no SQL is necessary. """ return None def fetch_returned_insert_id(self, cursor): """ Given a cursor object that has just performed an INSERT...RETURNING statement into a table that has an auto-incrementing ID, returns the newly created ID. """ return cursor.fetchone()[0] def field_cast_sql(self, db_type): """ Given a column type (e.g. 'BLOB', 'VARCHAR'), returns the SQL necessary to cast it before using it in a WHERE statement. Note that the resulting string should contain a '%s' placeholder for the column being searched against. """ return '%s' def force_no_ordering(self): """ Returns a list used in the "ORDER BY" clause to force no ordering at all. Returning an empty list means that nothing will be included in the ordering. """ return [] def fulltext_search_sql(self, field_name): """ Returns the SQL WHERE clause to use in order to perform a full-text search of the given field_name. Note that the resulting string should contain a '%s' placeholder for the value being searched against. """ raise NotImplementedError('Full-text search is not implemented for this database backend') def last_executed_query(self, cursor, sql, params): """ Returns a string of the query last executed by the given cursor, with placeholders replaced with actual values. `sql` is the raw query containing placeholders, and `params` is the sequence of parameters. These are used by default, but this method exists for database backends to provide a better implementation according to their own quoting schemes. """ from django.utils.encoding import smart_unicode, force_unicode # Convert params to contain Unicode values. to_unicode = lambda s: force_unicode(s, strings_only=True, errors='replace') if isinstance(params, (list, tuple)): u_params = tuple([to_unicode(val) for val in params]) else: u_params = dict([(to_unicode(k), to_unicode(v)) for k, v in params.items()]) return smart_unicode(sql) % u_params def last_insert_id(self, cursor, table_name, pk_name): """ Given a cursor object that has just performed an INSERT statement into a table that has an auto-incrementing ID, returns the newly created ID. This method also receives the table name and the name of the primary-key column. """ return cursor.lastrowid def lookup_cast(self, lookup_type): """ Returns the string to use in a query when performing lookups ("contains", "like", etc). The resulting string should contain a '%s' placeholder for the column being searched against. """ return "%s" def max_name_length(self): """ Returns the maximum length of table and column names, or None if there is no limit. """ return None def no_limit_value(self): """ Returns the value to use for the LIMIT when we are wanting "LIMIT infinity". Returns None if the limit clause can be omitted in this case. """ raise NotImplementedError def pk_default_value(self): """ Returns the value to use during an INSERT statement to specify that the field should use its default value. """ return 'DEFAULT' def process_clob(self, value): """ Returns the value of a CLOB column, for backends that return a locator object that requires additional processing. """ return value def return_insert_id(self): """ For backends that support returning the last insert ID as part of an insert query, this method returns the SQL and params to append to the INSERT query. The returned fragment should contain a format string to hold the appropriate column. """ pass def compiler(self, compiler_name): """ Returns the SQLCompiler class corresponding to the given name, in the namespace corresponding to the `compiler_module` attribute on this backend. """ if compiler_name not in self._cache: self._cache[compiler_name] = getattr( import_module(self.compiler_module), compiler_name ) return self._cache[compiler_name] def quote_name(self, name): """ Returns a quoted version of the given table, index or column name. Does not quote the given name if it's already been quoted. """ raise NotImplementedError() def random_function_sql(self): """ Returns a SQL expression that returns a random value. """ return 'RANDOM()' def regex_lookup(self, lookup_type): """ Returns the string to use in a query when performing regular expression lookups (using "regex" or "iregex"). The resulting string should contain a '%s' placeholder for the column being searched against. If the feature is not supported (or part of it is not supported), a NotImplementedError exception can be raised. """ raise NotImplementedError def savepoint_create_sql(self, sid): """ Returns the SQL for starting a new savepoint. Only required if the "uses_savepoints" feature is True. The "sid" parameter is a string for the savepoint id. """ raise NotImplementedError def savepoint_commit_sql(self, sid): """ Returns the SQL for committing the given savepoint. """ raise NotImplementedError def savepoint_rollback_sql(self, sid): """ Returns the SQL for rolling back the given savepoint. """ raise NotImplementedError def sql_flush(self, style, tables, sequences): """ Returns a list of SQL statements required to remove all data from the given database tables (without actually removing the tables themselves). The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ raise NotImplementedError() def sequence_reset_sql(self, style, model_list): """ Returns a list of the SQL statements required to reset sequences for the given models. The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ return [] # No sequence reset required by default. def start_transaction_sql(self): """ Returns the SQL statement required to start a transaction. """ return "BEGIN;" def tablespace_sql(self, tablespace, inline=False): """ Returns the SQL that will be appended to tables or rows to define a tablespace. Returns '' if the backend doesn't use tablespaces. """ return '' def prep_for_like_query(self, x): """Prepares a value for use in a LIKE query.""" from django.utils.encoding import smart_unicode return smart_unicode(x).replace("\\", "\\\\").replace("%", "\%").replace("_", "\_") # Same as prep_for_like_query(), but called for "iexact" matches, which # need not necessarily be implemented using "LIKE" in the backend. prep_for_iexact_query = prep_for_like_query def value_to_db_date(self, value): """ Transform a date value to an object compatible with what is expected by the backend driver for date columns. """ if value is None: return None return datetime_safe.new_date(value).strftime('%Y-%m-%d') def value_to_db_datetime(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. """ if value is None: return None return unicode(value) def value_to_db_time(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for time columns. """ if value is None: return None return unicode(value) def value_to_db_decimal(self, value, max_digits, decimal_places): """ Transform a decimal.Decimal value to an object compatible with what is expected by the backend driver for decimal (numeric) columns. """ if value is None: return None return util.format_number(value, max_digits, decimal_places) def year_lookup_bounds(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a field value using a year lookup `value` is an int, containing the looked-up year. """ first = '%s-01-01 00:00:00' second = '%s-12-31 23:59:59.999999' return [first % value, second % value] def year_lookup_bounds_for_date_field(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a DateField value using a year lookup `value` is an int, containing the looked-up year. By default, it just calls `self.year_lookup_bounds`. Some backends need this hook because on their DB date fields can't be compared to values which include a time part. """ return self.year_lookup_bounds(value) def convert_values(self, value, field): """Coerce the value returned by the database backend into a consistent type that is compatible with the field type. """ internal_type = field.get_internal_type() if internal_type == 'DecimalField': return value elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField': return int(value) elif internal_type in ('DateField', 'DateTimeField', 'TimeField'): return value # No field, or the field isn't known to be a decimal or integer # Default to a float return float(value) def check_aggregate_support(self, aggregate_func): """Check that the backend supports the provided aggregate This is used on specific backends to rule out known aggregates that are known to have faulty implementations. If the named aggregate function has a known problem, the backend should raise NotImplemented. """ pass def combine_expression(self, connector, sub_expressions): """Combine a list of subexpressions into a single expression, using the provided connecting operator. This is required because operators can vary between backends (e.g., Oracle with %% and &) and between subexpression types (e.g., date expressions) """ conn = ' %s ' % connector return conn.join(sub_expressions) class BaseDatabaseIntrospection(object): """ This class encapsulates all backend-specific introspection utilities """ data_types_reverse = {} def __init__(self, connection): self.connection = connection def get_field_type(self, data_type, description): """Hook for a database backend to use the cursor description to match a Django field type to a database column. For Oracle, the column data_type on its own is insufficient to distinguish between a FloatField and IntegerField, for example.""" return self.data_types_reverse[data_type] def table_name_converter(self, name): """Apply a conversion to the name for the purposes of comparison. The default table name converter is for case sensitive comparison. """ return name def table_names(self): "Returns a list of names of all tables that exist in the database." cursor = self.connection.cursor() return self.get_table_list(cursor) def django_table_names(self, only_existing=False): """ Returns a list of all table names that have associated Django models and are in INSTALLED_APPS. If only_existing is True, the resulting list will only include the tables that actually exist in the database. """ from django.db import models, router tables = set() for app in models.get_apps(): for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue tables.add(model._meta.db_table) tables.update([f.m2m_db_table() for f in model._meta.local_many_to_many]) if only_existing: tables = [t for t in tables if self.table_name_converter(t) in self.table_names()] return tables def installed_models(self, tables): "Returns a set of all models represented by the provided list of table names." from django.db import models, router all_models = [] for app in models.get_apps(): for model in models.get_models(app): if router.allow_syncdb(self.connection.alias, model): all_models.append(model) return set([m for m in all_models if self.table_name_converter(m._meta.db_table) in map(self.table_name_converter, tables) ]) def sequence_list(self): "Returns a list of information about all DB sequences for all models in all apps." from django.db import models, router apps = models.get_apps() sequence_list = [] for app in apps: for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue for f in model._meta.local_fields: if isinstance(f, models.AutoField): sequence_list.append({'table': model._meta.db_table, 'column': f.column}) break # Only one AutoField is allowed per model, so don't bother continuing. for f in model._meta.local_many_to_many: # If this is an m2m using an intermediate table, # we don't need to reset the sequence. if f.rel.through is None: sequence_list.append({'table': f.m2m_db_table(), 'column': None}) return sequence_list class BaseDatabaseClient(object): """ This class encapsulates all backend-specific methods for opening a client shell. """ # This should be a string representing the name of the executable # (e.g., "psql"). Subclasses must override this. executable_name = None def __init__(self, connection): # connection is an instance of BaseDatabaseWrapper. self.connection = connection def runshell(self): raise NotImplementedError() class BaseDatabaseValidation(object): """ This class encapsualtes all backend-specific model validation. """ def __init__(self, connection): self.connection = connection def validate_field(self, errors, opts, f): "By default, there is no backend-specific validation" pass
35.82069
102
0.639632
[ "BSD-3-Clause" ]
t11e/django
django/db/backends/__init__.py
20,776
Python
import os import subprocess import requests import re import sys esports_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, esports_dir) from utils import key, check_exists_other, analyze_subtitles root_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) data_directory_pattern = r'D:\Data\speech\esports\valorant\{}\game_changers' raw_data_directory = data_directory_pattern.format('raw') other_places = [data_directory_pattern.format(x) for x in ['cleaned', 'segmented', 'to_transcribe', 'transcribed']] os.makedirs(raw_data_directory, exist_ok=True) channel_id = 'Raidiant' playlist_ids = [ 'PL51yT_X4kWdt1xpelG89oepg_db7J3bso', ] playlist_names = { 'PL51yT_X4kWdt1xpelG89oepg_db7J3bso': 'Game Changers NA', } def download_audios(): for playlist_id in playlist_ids: cursor = None while True: if not cursor: url = 'https://www.googleapis.com/youtube/v3/playlistItems?key={}&playlistId={}&part=snippet,id&order=date&maxResults=50'.format( key, playlist_id) else: url = 'https://www.googleapis.com/youtube/v3/playlistItems?key={}&playlistId={}&part=snippet,id&order=date&maxResults=50&pageToken={}'.format( key, playlist_id, cursor) response = requests.get(url) data = response.json() print(data) for item in data['items']: try: v_id = item['snippet']['resourceId']['videoId'] except KeyError: continue url = 'https://www.youtube.com/watch?v=' + v_id if item['snippet']['title'].lower().startswith('overwatch league 2021'): continue d = item['snippet']['publishedAt'].split('T')[0] title = re.sub(r'[^-\w _]', '', item['snippet']['title']) new_id = '{} - {}'.format(playlist_names[playlist_id], title).replace('|', '-').replace(' ', '_') out_template = '{}.%(ext)s'.format(new_id) audio_file = '{}.flac'.format(new_id) if check_exists_other(audio_file, other_places): continue audio_path = os.path.join(raw_data_directory, audio_file) if not os.path.exists(audio_path): video_path = os.path.join(raw_data_directory, '{}.m4a'.format(new_id)) subprocess.call(['youtube-dl', "-f 140", '--write-auto-sub', '--sub-format', 'vtt', '--sub-lang', 'en', '-o', out_template, url, ], cwd=raw_data_directory) subprocess.call(['ffmpeg', '-i', video_path, '-vn', '-map_channel', '0.0.0', '-c:a', 'flac', '-sample_fmt', 's16', '-ar', '16000', audio_path]) if os.path.exists(video_path): os.remove(video_path) vtt_path = os.path.join(raw_data_directory, '{}.en.vtt'.format(new_id)) tg_path = vtt_path.replace('.en.vtt', '.TextGrid') if not os.path.exists(tg_path): if not os.path.exists(vtt_path): subprocess.call(['youtube-dl', '--write-auto-sub', '--skip-download', '--sub-format', 'vtt', '--sub-lang', 'en', '-o', out_template, url, ], cwd=raw_data_directory) if os.path.exists(vtt_path): analyze_subtitles(vtt_path) try: cursor = data['nextPageToken'] except KeyError: break if __name__ == '__main__': download_audios()
46.392857
163
0.537336
[ "CC0-1.0" ]
mmcauliffe/corpus-creation-scripts
esports/valorant/scrape_game_changers.py
3,897
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .thing import Thing class CreativeWork(Thing): """The most generic kind of creative work, including books, movies, photographs, software programs, etc. You probably want to use the sub-classes and not this class directly. Known sub-classes are: Action, MediaObject, Recipe Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param _type: Required. Constant filled by server. :type _type: str :ivar id: A String identifier. :vartype id: str :ivar read_link: The URL that returns this resource. To use the URL, append query parameters as appropriate and include the Ocp-Apim-Subscription-Key header. :vartype read_link: str :ivar web_search_url: The URL to Bing's search result for this item. :vartype web_search_url: str :ivar name: The name of the thing represented by this object. :vartype name: str :ivar url: The URL to get more information about the thing represented by this object. :vartype url: str :ivar image: An image of the item. :vartype image: ~azure.cognitiveservices.search.visualsearch.models.ImageObject :ivar description: A short description of the item. :vartype description: str :ivar alternate_name: An alias for the item. :vartype alternate_name: str :ivar bing_id: An ID that uniquely identifies this item. :vartype bing_id: str :ivar thumbnail_url: The URL to a thumbnail of the item. :vartype thumbnail_url: str :ivar provider: The source of the creative work. :vartype provider: list[~azure.cognitiveservices.search.visualsearch.models.Thing] :ivar date_published: The date on which the CreativeWork was published. :vartype date_published: str :ivar text: Text content of this creative work. :vartype text: str """ _validation = { '_type': {'required': True}, 'id': {'readonly': True}, 'read_link': {'readonly': True}, 'web_search_url': {'readonly': True}, 'name': {'readonly': True}, 'url': {'readonly': True}, 'image': {'readonly': True}, 'description': {'readonly': True}, 'alternate_name': {'readonly': True}, 'bing_id': {'readonly': True}, 'thumbnail_url': {'readonly': True}, 'provider': {'readonly': True}, 'date_published': {'readonly': True}, 'text': {'readonly': True}, } _attribute_map = { '_type': {'key': '_type', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'read_link': {'key': 'readLink', 'type': 'str'}, 'web_search_url': {'key': 'webSearchUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'image': {'key': 'image', 'type': 'ImageObject'}, 'description': {'key': 'description', 'type': 'str'}, 'alternate_name': {'key': 'alternateName', 'type': 'str'}, 'bing_id': {'key': 'bingId', 'type': 'str'}, 'thumbnail_url': {'key': 'thumbnailUrl', 'type': 'str'}, 'provider': {'key': 'provider', 'type': '[Thing]'}, 'date_published': {'key': 'datePublished', 'type': 'str'}, 'text': {'key': 'text', 'type': 'str'}, } _subtype_map = { '_type': {'Action': 'Action', 'MediaObject': 'MediaObject', 'Recipe': 'Recipe'} } def __init__(self, **kwargs) -> None: super(CreativeWork, self).__init__(**kwargs) self.thumbnail_url = None self.provider = None self.date_published = None self.text = None self._type = 'CreativeWork'
39.074766
87
0.604162
[ "MIT" ]
AlexanderYukhanov/azure-sdk-for-python
azure-cognitiveservices-search-visualsearch/azure/cognitiveservices/search/visualsearch/models/creative_work_py3.py
4,181
Python
from fastapi import FastAPI, Request from fastapi.responses import JSONResponse class UnicornException(Exception): def __init__(self, name: str): self.name = name app = FastAPI() @app.exception_handler(UnicornException) async def unicorn_exception_handler(request: Request, exc: UnicornException): return JSONResponse( status_code=418, content={"message": f"Oops! {exc.name} did something. There goes a rainbow..."}, ) @app.get("/unicorns/{name}") async def read_unicorn(name: str): if name == "yolo": raise UnicornException(name=name) return {"unicorn_name": name}
24.076923
88
0.699681
[ "MIT" ]
0417taehyun/fastapi
docs_src/handling_errors/tutorial003.py
626
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This is very different to AboutModules in Ruby Koans # Our AboutMultipleInheritance class is a little more comparable # from runner.koan import * # # Package hierarchy of Python Koans project: # # contemplate_koans.py # koans/ # __init__.py # about_asserts.py # about_attribute_access.py # about_class_attributes.py # about_classes.py # ... # a_package_folder/ # __init__.py # a_module.py class AboutPackages(Koan): def test_subfolders_can_form_part_of_a_module_package(self): # Import ./a_package_folder/a_module.py from a_package_folder.a_module import Duck duck = Duck() self.assertEqual("Donald", duck.name) def test_subfolders_become_modules_if_they_have_an_init_module(self): # Import ./a_package_folder/__init__.py from a_package_folder import an_attribute self.assertEqual(1984, an_attribute) def test_subfolders_without_an_init_module_are_not_part_of_the_package(self): # Import ./a_normal_folder/ try: import a_normal_folder except ImportError as ex: self.assertMatch('normal', ex[0]) # ------------------------------------------------------------------ def test_use_absolute_imports_to_import_upper_level_modules(self): # Import /contemplate_koans.py import contemplate_koans self.assertEqual('contemplate_koans', contemplate_koans.__name__) # contemplate_koans.py is the root module in this package because its # the first python module called in koans. # # If contemplate_koan.py was based in a_package_folder that would be # the root folder, which would make reaching the koans folder # almost impossible. So always leave the starting python script in # a folder which can reach everything else. def test_import_a_module_in_a_subfolder_using_an_absolute_path(self): # Import contemplate_koans.py/koans/a_package_folder/a_module.py from koans.a_package_folder.a_module import Duck self.assertEqual('koans.a_package_folder.a_module', Duck.__module__)
31.942029
81
0.687387
[ "MIT" ]
nitinnain/python_koans
python2/koans/about_packages.py
2,204
Python
""" python site scraping tool """ import xml.etree.ElementTree as ET from StringIO import StringIO import unicodedata import re import requests from BuildItParser import BuildItParser def http_get(url): """ simple wrapper around http get """ try: request = requests.get(url) # not concerned with returning nice utf-8, as only the urls count text = unicodedata.normalize('NFKD', request.text ).encode('ascii', 'ignore') return (text, 200) except requests.HTTPError as http_error: if request.status_code == 404: print "{} not found: {}".format(url, http_error) return ("", 404) else: # simplify all other errors as 500's print "error retrieving {}: {}".format(url, http_error) return ("", 500) def process_html(html_page, this_parser): """ extract links from an html page """ this_parser.feed(html_page) return { "int_links": this_parser.int_links, "ext_links": this_parser.ext_links, "static_links": this_parser.static_links } def process_xml(xml_sitemap, regex): """ extract links from xml """ site_map_paths = set([]) url_paths = set([]) try: # need to strip namespaces ns_stripped = ET.iterparse(StringIO(xml_sitemap)) for _, element in ns_stripped: if '}' in element.tag: element.tag = element.tag.split('}', 1)[1] xml_root = ns_stripped.root for found_sitemap in xml_root.findall('sitemap'): sitemap_loc = found_sitemap.find('loc') new_sitemap = sitemap_loc.text new_path = regex.search(new_sitemap) if new_path is not None: site_map_paths.add(new_path.group(1)) for found_url in xml_root.findall('url'): url_loc = found_url.find('loc') new_url = url_loc.text new_path = regex.search(new_url) if new_path is not None: new_path = new_path.group(1) url_paths.add(new_path) except Exception as XML_Error: print "Exception trying to parse sitemap: {}".format(XML_Error) raise XML_Error return (site_map_paths, url_paths) def main(): """ main function """ site = "http://wiprodigital.com" site_regex = re.compile(r"{}(.+)$".format(site)) site_structure = [] paths_to_visit = set(["index.html", "index.php"]) paths_visited = set([]) sitemaps = set(["sitemap.xml"]) sitemaps_still_to_process = True while sitemaps_still_to_process: # print "Processing paths..." num_sitemaps = len(sitemaps) for sitemap in sitemaps: sitemap_url = "{}/{}".format(site, sitemap) # print "sitemap: {}".format(sitemap_url) (xml, http_code) = http_get(sitemap_url) (sitemap_paths, url_paths) = process_xml(xml, site_regex) new_sitemaps = set([]) for sitemap_path in sitemap_paths: new_sitemaps.add(sitemap_path) for url_path in url_paths: paths_to_visit.add(url_path) sitemaps = sitemaps.union(new_sitemaps) if num_sitemaps == len(sitemaps): sitemaps_still_to_process = False html_parser = BuildItParser(site_regex) paths_still_to_process = True while paths_still_to_process: num_paths = len(paths_to_visit) new_paths = set([]) # print "Processing paths..." for path in paths_to_visit: if path not in paths_visited: page_url = "{}/{}".format(site, path) # print "page: {}".format(page_url) (page, code) = http_get(page_url) if code == 200: new_page = process_html(page, html_parser) new_page["path"] = path site_structure.append(new_page) for internal_link in new_page["int_links"]: if internal_link not in paths_visited: new_paths.add(internal_link) paths_visited.add(path) paths_to_visit = paths_to_visit.union(new_paths) if num_paths == len(paths_to_visit): # no new paths added paths_still_to_process = False print "SITE: {}".format(site) for page in sorted(site_structure, key=lambda p: p["path"]): print "PAGE: {}".format(page["path"]) for int_link in page["int_links"]: print " internal link: {}".format(int_link) for ext_link in page["ext_links"]: print " external link: {}".format(ext_link) for static_link in page["static_links"]: print " static link: {}".format(static_link) if __name__ == "__main__": main()
35.532847
73
0.588537
[ "MIT" ]
PhilipHarries/bi_scraper
scraper.py
4,868
Python
from django.contrib.auth.decorators import permission_required from django.conf import settings from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from catalog import models as cmod from django_mako_plus import view_function, jscontext import requests import json # @permission_required('manager') @view_function def process_request (request): category_name = request.GET.get('category') product_name = request.GET.get('name') max_price = request.GET.get('max_price') page = request.GET.get('page') if page is not None: pnum = int(page) else: pnum = 1 products = [] qry = cmod.Product.objects.all() if product_name: qry = qry.filter(name__icontains=product_name) if max_price: qry = qry.filter(price__lte=max_price) if category_name: qry = qry.filter(category__name__icontains=category_name) qry = qry.order_by('category','name') for p in qry: item = { 'category': p.category.name, 'name': p.name, 'price': p.price, } products.append(item) products = products[(pnum - 1)*6:pnum*6] return JsonResponse(products, safe=False)
33.108108
72
0.665306
[ "Apache-2.0" ]
whitneyann/INTEX2
catalog/views/search.py
1,225
Python
import os import scipy.misc as misc import shutil import cv2 import Constants import numpy as np from skimage import morphology def extract_each_layer(image, threshold): """ This image processing funtion is designed for the OCT image post processing. It can remove the small regions and find the OCT layer boundary under the specified threshold. :param image: :param threshold: :return: """ # convert the output to the binary image ret, binary = cv2.threshold(image, threshold, 1, cv2.THRESH_BINARY) bool_binary = np.array(binary, bool) # remove the small object remove_binary = morphology.remove_small_objects(bool_binary, min_size=25000, connectivity=2, in_place=False) c = np.multiply(bool_binary, remove_binary) final_binary = np.zeros(shape=np.shape(binary)) final_binary[c == True] = 1 binary_image = cv2.filter2D(final_binary, -1, np.array([[-1], [1]])) layer_one = np.zeros(shape=[1, np.shape(binary_image)[1]]) for i in range(np.shape(binary_image)[1]): location_point = np.where(binary_image[:, i] > 0)[0] # print(location_point) if len(location_point) == 1: layer_one[0, i] = location_point elif len(location_point) == 0: layer_one[0, i] = layer_one[0, i-1] else: layer_one[0, i] = location_point[0] return layer_one if __name__ == '__main__': image_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-images/' \ 'oct202.png' gt_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-gt/' \ 'oct202.png' image = cv2.imread(image_path) gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) cv2.imwrite('gt.png', gt) print(np.max(image), np.shape(image)) print(np.max(gt), np.shape(gt))
34.22807
98
0.618145
[ "Apache-2.0" ]
TobyLing/Comparative-Study-of-Deep-Learning-Models-for-Segmentation-of-Corpus-Callosum
image_utils.py
1,951
Python
class ModelNotFoundException(Exception): pass class UnknownFunctionException(Exception): pass
14.857143
42
0.788462
[ "MIT" ]
paul-wolf/djaq
djaq/exceptions.py
104
Python
# qubit number=3 # total number=31 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[2]) # number=28 prog.cz(input_qubit[0],input_qubit[2]) # number=29 prog.h(input_qubit[2]) # number=30 prog.x(input_qubit[2]) # number=12 prog.h(input_qubit[2]) # number=25 prog.cz(input_qubit[0],input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=27 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[2],input_qubit[1]) # number=8 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=18 prog.cz(input_qubit[2],input_qubit[1]) # number=19 prog.h(input_qubit[1]) # number=20 prog.y(input_qubit[1]) # number=14 prog.h(input_qubit[1]) # number=22 prog.cz(input_qubit[2],input_qubit[1]) # number=23 prog.h(input_qubit[1]) # number=24 prog.z(input_qubit[2]) # number=3 prog.x(input_qubit[1]) # number=17 prog.y(input_qubit[2]) # number=5 prog.x(input_qubit[2]) # number=21 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit166.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('qasm_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
29.99
140
0.631044
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
data/p3BR/R2/benchmark/startQiskit166.py
5,998
Python
# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import json import os from urlparse import parse_qsl, urlparse from django.conf import settings from django.http import HttpResponse from django.test.client import Client, RequestFactory from django.test.utils import override_settings from django.utils import simplejson from funfactory.urlresolvers import reverse from mock import ANY, call, Mock, patch from nose.tools import eq_, ok_ from pyquery import PyQuery as pq from bedrock.firefox import views as fx_views from bedrock.firefox.firefox_details import FirefoxDetails, MobileDetails from bedrock.firefox.utils import product_details from bedrock.mozorg.tests import TestCase TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), 'test_data') PROD_DETAILS_DIR = os.path.join(TEST_DATA_DIR, 'product_details_json') GOOD_PLATS = {'Windows': {}, 'OS X': {}, 'Linux': {}} with patch.object(settings, 'PROD_DETAILS_DIR', PROD_DETAILS_DIR): firefox_details = FirefoxDetails() mobile_details = MobileDetails() class TestInstallerHelp(TestCase): def setUp(self): self.button_mock = Mock() self.patcher = patch.dict('jingo.env.globals', download_firefox=self.button_mock) self.patcher.start() self.view_name = 'firefox.installer-help' with self.activate('en-US'): self.url = reverse(self.view_name) def tearDown(self): self.patcher.stop() def test_buttons_use_lang(self): """ The buttons should use the lang from the query parameter. """ self.client.get(self.url, { 'installer_lang': 'fr' }) self.button_mock.assert_has_calls([ call(force_direct=True, force_full_installer=True, locale='fr'), call('beta', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale='fr'), call('aurora', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale='fr'), ]) def test_buttons_ignore_non_lang(self): """ The buttons should ignore an invalid lang. """ self.client.get(self.url, { 'installer_lang': 'not-a-locale' }) self.button_mock.assert_has_calls([ call(force_direct=True, force_full_installer=True, locale=None), call('beta', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale=None), call('aurora', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale=None), ]) def test_invalid_channel_specified(self): """ All buttons should show when channel is invalid. """ self.client.get(self.url, { 'channel': 'dude', }) self.button_mock.assert_has_calls([ call(force_direct=True, force_full_installer=True, locale=None), call('beta', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale=None), call('aurora', small=ANY, force_direct=True, force_full_installer=True, icon=ANY, locale=None), ]) def test_one_button_when_channel_specified(self): """ There should be only one button when the channel is given. """ self.client.get(self.url, { 'channel': 'beta', }) self.button_mock.assert_called_once_with('beta', force_direct=True, force_full_installer=True, locale=None) @patch.object(fx_views, 'firefox_details', firefox_details) class TestFirefoxDetails(TestCase): def test_get_download_url(self): url = firefox_details.get_download_url('OS X', 'pt-BR', '17.0.1') self.assertListEqual(parse_qsl(urlparse(url).query), [('product', 'firefox-17.0.1-SSL'), ('os', 'osx'), ('lang', 'pt-BR')]) # Linux 64-bit url = firefox_details.get_download_url('Linux 64', 'en-US', '17.0.1') self.assertListEqual(parse_qsl(urlparse(url).query), [('product', 'firefox-17.0.1-SSL'), ('os', 'linux64'), ('lang', 'en-US')]) @patch.dict(firefox_details.firefox_versions, FIREFOX_AURORA='28.0a2') def test_get_download_url_aurora(self): """The Aurora version should give us an FTP url.""" url = firefox_details.get_download_url('OS X', 'en-US', '28.0a2') self.assertIn('ftp.mozilla.org', url) self.assertIn('latest-mozilla-aurora/firefox-28.0a2.en-US.mac.dmg', url) @patch.dict(firefox_details.firefox_versions, FIREFOX_AURORA='28.0a2') def test_get_download_url_aurora_l10n(self): """Aurora non en-US should have a slightly different path.""" url = firefox_details.get_download_url('Linux', 'pt-BR', '28.0a2') self.assertIn('ftp.mozilla.org', url) self.assertIn('latest-mozilla-aurora-l10n/firefox-28.0a2.pt-BR.linux-i686.tar.bz2', url) @override_settings(STUB_INSTALLER_LOCALES={'win': settings.STUB_INSTALLER_ALL}) def get_download_url_ssl(self): """ SSL-enabled links should always be used except Windows stub installers. """ # SSL-enabled links won't be used for Windows builds (but SSL download # is enabled by default for stub installers) url = firefox_details.get_download_url('Windows', 'pt-BR', '27.0') self.assertListEqual(parse_qsl(urlparse(url).query), [('product', 'firefox-27.0'), ('os', 'win'), ('lang', 'pt-BR')]) # SSL-enabled links will be used for OS X builds url = firefox_details.get_download_url('OS X', 'pt-BR', '27.0') self.assertListEqual(parse_qsl(urlparse(url).query), [('product', 'firefox-27.0-SSL'), ('os', 'osx'), ('lang', 'pt-BR')]) # SSL-enabled links will be used for Linux builds url = firefox_details.get_download_url('Linux', 'pt-BR', '27.0') self.assertListEqual(parse_qsl(urlparse(url).query), [('product', 'firefox-27.0-SSL'), ('os', 'linux'), ('lang', 'pt-BR')]) def test_filter_builds_by_locale_name(self): # search english builds = firefox_details.get_filtered_full_builds( firefox_details.latest_version('release'), 'ujara' ) eq_(len(builds), 1) eq_(builds[0]['name_en'], 'Gujarati') # search native builds = firefox_details.get_filtered_full_builds( firefox_details.latest_version('release'), u'જરા' ) eq_(len(builds), 1) eq_(builds[0]['name_en'], 'Gujarati') # with a space builds = firefox_details.get_filtered_full_builds( firefox_details.latest_version('release'), 'british english' ) eq_(len(builds), 1) eq_(builds[0]['name_en'], 'English (British)') # with a comma builds = firefox_details.get_filtered_full_builds( firefox_details.latest_version('release'), u'French, Français' ) eq_(len(builds), 1) eq_(builds[0]['name_en'], 'French') def test_linux64_build(self): builds = firefox_details.get_filtered_full_builds( firefox_details.latest_version('release') ) url = builds[0]['platforms']['Linux 64']['download_url'] eq_(parse_qsl(urlparse(url).query)[1], ('os', 'linux64')) @patch.dict(firefox_details.firefox_versions, FIREFOX_ESR='24.2') def test_esr_major_versions(self): """ESR versions should be dynamic based on data.""" eq_(firefox_details.esr_major_versions, [24]) @patch.dict(firefox_details.firefox_versions, FIREFOX_ESR='24.6.0', FIREFOX_ESR_NEXT='31.0.0') def test_esr_major_versions_prev(self): """ESR versions should show previous when available.""" eq_(firefox_details.esr_major_versions, [24, 31]) @patch.dict(firefox_details.firefox_versions, LATEST_FIREFOX_VERSION='Phoenix', FIREFOX_ESR='Albuquerque') def test_esr_major_versions_no_latest(self): """ESR versions should not blow up if current version is broken.""" eq_(firefox_details.esr_major_versions, []) @patch.dict(firefox_details.firefox_versions, LATEST_FIREFOX_VERSION='18.0.1') def test_latest_major_version(self): """latest_major_version should return an int of the major version.""" eq_(firefox_details.latest_major_version('release'), 18) @patch.dict(firefox_details.firefox_versions, LATEST_FIREFOX_VERSION='Phoenix') def test_latest_major_version_no_int(self): """latest_major_version should return 0 when no int.""" eq_(firefox_details.latest_major_version('release'), 0) @patch.object(fx_views, 'mobile_details', mobile_details) class TestMobileDetails(TestCase): @patch.dict(mobile_details.mobile_details, version='22.0.1') def test_latest_release_version(self): """latest_version should return the latest release version.""" eq_(mobile_details.latest_version('release'), '22.0.1') @patch.dict(mobile_details.mobile_details, beta_version='23.0') def test_latest_beta_version(self): """latest_version should return the latest beta version.""" eq_(mobile_details.latest_version('beta'), '23.0') @patch.object(fx_views, 'firefox_details', firefox_details) class TestFirefoxAll(TestCase): def setUp(self): with self.activate('en-US'): self.url = reverse('firefox.all') def test_no_search_results(self): """ Tables should be gone and not-found message should be shown when there are no search results. """ resp = self.client.get(self.url + '?q=DOES_NOT_EXIST') doc = pq(resp.content) ok_(not doc('table.build-table')) ok_(not doc('.not-found.hide')) def test_no_search_query(self): """ When not searching all builds should show. """ resp = self.client.get(self.url) doc = pq(resp.content) eq_(len(doc('.build-table')), 2) eq_(len(doc('.not-found.hide')), 2) release = firefox_details.latest_version('release') num_builds = len(firefox_details.get_filtered_full_builds(release)) num_builds += len(firefox_details.get_filtered_test_builds(release)) eq_(len(doc('tr[data-search]')), num_builds) def test_no_locale_details(self): """ When a localized build has been added to the Firefox details while the locale details are not updated yet, the filtered build list should not include the localized build. """ release = firefox_details.latest_version('release') builds = firefox_details.get_filtered_full_builds(release) ok_('uz' in firefox_details.firefox_primary_builds) ok_('uz' not in firefox_details.languages) eq_(len([build for build in builds if build['locale'] == 'uz']), 0) class TestFirefoxPartners(TestCase): @patch('bedrock.firefox.views.settings.DEBUG', True) def test_js_bundle_files_debug_true(self): """ When DEBUG is on the bundle should return the individual files with the MEDIA_URL. """ bundle = 'partners_desktop' files = settings.MINIFY_BUNDLES['js'][bundle] files = [settings.MEDIA_URL + f for f in files] self.assertEqual(files, json.loads(fx_views.get_js_bundle_files(bundle))) @patch('bedrock.firefox.views.settings.DEBUG', False) def test_js_bundle_files_debug_false(self): """ When DEBUG is off the bundle should return a single minified filename. """ bundle = 'partners_desktop' filename = '%sjs/%s-min.js?build=' % (settings.MEDIA_URL, bundle) bundle_file = json.loads(fx_views.get_js_bundle_files(bundle)) self.assertEqual(len(bundle_file), 1) self.assertTrue(bundle_file[0].startswith(filename)) @patch('bedrock.mozorg.views.requests.post') def test_sf_form_proxy_error_response(self, post_patch): """An error response from SF should be returned.""" new_mock = Mock() new_mock.status_code = 400 post_patch.return_value = new_mock with self.activate('en-US'): url = reverse('mozorg.partnerships') resp = self.client.post(url, { 'first_name': 'The', 'last_name': 'Dude', 'company': 'Urban Achievers', 'email': '[email protected]', }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(resp.status_code, 400) # decode JSON response resp_data = simplejson.loads(resp.content) self.assertEqual(resp_data['msg'], 'bad_request') self.assertTrue(post_patch.called) @patch('bedrock.mozorg.views.requests.post') def test_sf_form_proxy_invalid_form(self, post_patch): """A form error should result in a 400 response.""" with self.activate('en-US'): url = reverse('mozorg.partnerships') resp = self.client.post(url, { 'first_name': 'Dude' * 20, }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(resp.status_code, 400) # decode JSON response resp_data = simplejson.loads(resp.content) self.assertEqual(resp_data['msg'], 'Form invalid') self.assertFalse(post_patch.called) @patch('bedrock.mozorg.views.requests.post') def test_sf_form_proxy(self, post_patch): new_mock = Mock() new_mock.status_code = 200 post_patch.return_value = new_mock with self.activate('en-US'): url = reverse('mozorg.partnerships') resp = self.client.post(url, { 'first_name': 'The', 'last_name': 'Dude', 'title': 'Abider of things', 'company': 'Urban Achievers', 'email': '[email protected]', }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(resp.status_code, 200) # decode JSON response resp_data = simplejson.loads(resp.content) self.assertEqual(resp_data['msg'], 'ok') post_patch.assert_called_once_with(ANY, { 'first_name': u'The', 'last_name': u'Dude', 'description': u'', 'retURL': 'http://www.mozilla.org/en-US/about/' 'partnerships?success=1', 'title': u'Abider of things', 'URL': u'', 'company': u'Urban Achievers', 'oid': '00DU0000000IrgO', 'phone': u'', 'street': u'', 'zip': u'', 'city': u'', 'state': u'', 'country': u'', 'mobile': u'', '00NU0000002pDJr': [], 'email': u'[email protected]', 'lead_source': 'www.mozilla.org/about/partnerships/', }) def test_sf_form_csrf_status(self): """Test that CSRF checks return 200 with token and 403 without.""" csrf_client = Client(enforce_csrf_checks=True) response = csrf_client.get(reverse('firefox.partners.index')) post_url = reverse('mozorg.partnerships') response = csrf_client.post(post_url, { 'first_name': "Partner", 'csrfmiddlewaretoken': response.cookies['csrftoken'].value, }) self.assertEqual(response.status_code, 200) response = csrf_client.post(post_url, {'first_name': "Partner"}) self.assertEqual(response.status_code, 403) none_mock = Mock() none_mock.return_value = None @patch.object(fx_views.WhatsnewView, 'redirect_to', none_mock) @patch('bedrock.firefox.views.l10n_utils.render', return_value=HttpResponse()) class TestWhatsNew(TestCase): def setUp(self): self.view = fx_views.WhatsnewView.as_view() self.rf = RequestFactory(HTTP_USER_AGENT='Firefox') @override_settings(DEV=True) def test_can_post(self, render_mock): """Home page must accept post for newsletter signup.""" req = self.rf.post('/en-US/firefox/whatsnew/') self.view(req) # would return 405 before calling render otherwise render_mock.assert_called_once_with(req, ['firefox/whatsnew.html'], ANY) @patch.object(fx_views.WhatsnewView, 'fxos_locales', ['de']) @override_settings(DEV=True) def test_fxos_locales(self, render_mock): """Should use a different template for fxos locales.""" req = self.rf.get('/de/firefox/whatsnew/') req.locale = 'de' self.view(req) template = render_mock.call_args[0][1] ctx = render_mock.call_args[0][2] ok_('locales_with_video' not in ctx) eq_(template, ['firefox/whatsnew-fxos.html']) @override_settings(DEV=True) def test_fx_australis_29(self, render_mock): """Should use australis template for 29.0.""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='29.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_australis_29_0_1(self, render_mock): """Should use australis template for 29.0.1""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='29.0.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_30(self, render_mock): """Should use australis template for 30.0.""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='30.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_31(self, render_mock): """Should use australis template for 31.0.""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='31.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_33_0(self, render_mock): """Should use australis template for 33.0.""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='33.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_33_0_1(self, render_mock): """Should use australis template for 33.0.1""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='33.0.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_33_1(self, render_mock): """Should use privacy tour template for 33.1""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='33.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/privacy_tour/no-tour.html']) @override_settings(DEV=True) def test_fx_34_0(self, render_mock): """Should use search tour template for 34.0""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/search_tour/no-tour.html']) @override_settings(DEV=True) def test_fx_34_0_1(self, render_mock): """Should use search tour template for 34.0.1""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='34.0.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/search_tour/no-tour.html']) @override_settings(DEV=True) def test_fx_34_1(self, render_mock): """Should use search tour template for 34.1""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='34.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/search_tour/no-tour.html']) @override_settings(DEV=True) def test_fx_34_0_locale(self, render_mock): """Should use australis template for 34.0 non en-US locales""" req = self.rf.get('/de/firefox/whatsnew/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_fx_35_0(self, render_mock): """Should use search tour template for 35.0""" req = self.rf.get('/en-US/firefox/whatsnew/') self.view(req, version='35.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/search_tour/no-tour.html']) @override_settings(DEV=True) def test_fx_35_0_locale(self, render_mock): """Should use australis template for 35.0 non en-US locales""" req = self.rf.get('/de/firefox/whatsnew/') req.locale = 'de' self.view(req, version='35.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/whatsnew-no-tour.html']) @override_settings(DEV=True) def test_rv_prefix(self, render_mock): """Prefixed oldversion shouldn't impact version sniffing.""" req = self.rf.get('/en-US/firefox/whatsnew/?oldversion=rv:10.0') self.view(req, version='33.1') template = render_mock.call_args[0][1] eq_(template, ['firefox/privacy_tour/tour.html']) @override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): """Should redirect to https: for 29.0.""" url = '/en-US/firefox/whatsnew/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], 'https://testserver' + url) @override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): """Should not redirect to https: in DEV mode.""" url = '/en-US/firefox/whatsnew/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): """Should not redirect to https: when already secure.""" url = '/en-US/firefox/whatsnew/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @patch.object(fx_views.TourView, 'redirect_to', none_mock) @patch('bedrock.firefox.views.l10n_utils.render', return_value=HttpResponse()) class TestTourView(TestCase): def setUp(self): self.view = fx_views.TourView.as_view() self.rf = RequestFactory(HTTP_USER_AGENT='Firefox') @override_settings(DEV=True) def test_fx_tour_template(self, render_mock): """Should use firstrun tour template""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='29.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html']) @override_settings(DEV=True) def test_fx_dev_browser_35_0_a2(self, render_mock): """Should use dev browser firstrun template for 35.0a2""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='35.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_35_1_a2(self, render_mock): """Should use dev browser firstrun template for 35.1a2""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='35.1a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): """Should use dev browser firstrun template for 36.0a2""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): """Should use standard firstrun template for older aurora""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): """Should use search tour template for 34.0""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): """Should use search tour template for 34.0.5""" req = self.rf.get('/en-US/firefox/tour/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-34-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): """Should use australis template for 34.0 non en-US locales""" req = self.rf.get('/en-US/firefox/tour/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/help-menu-tour.html']) @override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): """Should redirect to https""" url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], 'https://testserver' + url) @override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): """Should not redirect to https: in DEV mode.""" url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): """Should not redirect to https: when already secure.""" url = '/en-US/firefox/tour/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @patch.object(fx_views.FirstrunView, 'redirect_to', none_mock) @patch('bedrock.firefox.views.l10n_utils.render', return_value=HttpResponse()) class TestFirstRun(TestCase): def setUp(self): self.view = fx_views.FirstrunView.as_view() self.rf = RequestFactory() @override_settings(DEV=True) def test_can_post(self, render_mock): """Home page must accept post for newsletter signup.""" req = self.rf.post('/en-US/firefox/firstrun/') self.view(req) # would return 405 before calling render otherwise render_mock.assert_called_once_with(req, ['firefox/australis/firstrun-tour.html'], ANY) @override_settings(DEV=True) def test_fx_australis_29(self, render_mock): """Should use firstrun tour template""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='29.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html']) @override_settings(DEV=True) def test_fx_dev_browser_35_0_a2(self, render_mock): """Should use dev browser firstrun template for 35.0a2""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_35_1_a2(self, render_mock): """Should use dev browser firstrun template for 35.1a2""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='35.1a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_36_0_a2(self, render_mock): """Should use dev browser firstrun template for 36.0a2""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='36.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/dev-firstrun.html']) @override_settings(DEV=True) def test_fx_dev_browser_34_0_a2(self, render_mock): """Should use standard firstrun template for older aurora""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0a2') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0(self, render_mock): """Should use search tour template for 34.0""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0_5(self, render_mock): """Should use search tour template for 34.0.5""" req = self.rf.get('/en-US/firefox/firstrun/') self.view(req, version='34.0.5') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-34-tour.html']) @override_settings(DEV=True) def test_fx_search_tour_34_0_locales(self, render_mock): """Should use australis template for 34.0 non en-US locales""" req = self.rf.get('/en-US/firefox/firstrun/') req.locale = 'de' self.view(req, version='34.0') template = render_mock.call_args[0][1] eq_(template, ['firefox/australis/firstrun-tour.html']) @override_settings(DEV=False) def test_fx_australis_secure_redirect(self, render_mock): """Should redirect to https:""" url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp['location'], 'https://testserver' + url) @override_settings(DEV=True) def test_fx_australis_secure_redirect_not_dev(self, render_mock): """Should not redirect to https: in DEV mode.""" url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=False): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @override_settings(DEV=True) def test_fx_australis_secure_redirect_secure(self, render_mock): """Should not redirect to https: when already secure.""" url = '/en-US/firefox/firstrun/' req = self.rf.get(url) with patch.object(req, 'is_secure', return_value=True): resp = self.view(req, version='29.0') eq_(resp.status_code, 200) @patch.object(fx_views, 'firefox_details', firefox_details) class FxVersionRedirectsMixin(object): @override_settings(DEV=True) # avoid https redirects def assert_ua_redirects_to(self, ua, url_name, status_code=301): response = self.client.get(self.url, HTTP_USER_AGENT=ua) eq_(response.status_code, status_code) eq_(response['Vary'], 'User-Agent') eq_(response['Location'], 'http://testserver%s' % reverse(url_name)) # An additional redirect test with a query string query = '?ref=getfirefox' response = self.client.get(self.url + query, HTTP_USER_AGENT=ua) eq_(response.status_code, status_code) eq_(response['Vary'], 'User-Agent') eq_(response['Location'], 'http://testserver%s' % reverse(url_name) + query) def test_non_firefox(self): """ Any non-Firefox user agents should be permanently redirected to /firefox/new/. """ user_agent = 'random' self.assert_ua_redirects_to(user_agent, 'firefox.new') @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='13.0.5') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('13.0.5', GOOD_PLATS)) def test_current_minor_version_firefox(self, latest_mock): """ Should show current even if behind by a patch version """ user_agent = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:13.0) ' 'Gecko/20100101 Firefox/13.0') response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent') @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='25.0', FIREFOX_ESR='24.1') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('25.0', GOOD_PLATS)) def test_esr_firefox(self, latest_mock): """ Currently released ESR firefoxen should not redirect. At present that is 24.0.x. """ user_agent = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:24.0) ' 'Gecko/20100101 Firefox/24.0') response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent') @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_current_firefox(self, latest_mock): """ Currently released firefoxen should not redirect. """ user_agent = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:16.0) ' 'Gecko/20100101 Firefox/16.0') response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent') @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') @patch('bedrock.mozorg.helpers.download_buttons.latest_version', return_value=('16.0', GOOD_PLATS)) def test_future_firefox(self, latest_mock): """ Pre-release firefoxen should not redirect. """ user_agent = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:18.0) ' 'Gecko/20100101 Firefox/18.0') response = self.client.get(self.url, HTTP_USER_AGENT=user_agent) eq_(response.status_code, 200) eq_(response['Vary'], 'User-Agent') class TestWhatsnewRedirect(FxVersionRedirectsMixin, TestCase): def setUp(self): self.user_agent = ('Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:29.0) ' 'Gecko/20100101 Firefox/29.0') self.expected = 'data-has-tour="True"' self.url = reverse('firefox.whatsnew', args=['33.1']) @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_tour_oldversion(self): """Should not show tour if upgrading from 33.1 onwards.""" # sanity check that it should show for other values of "oldversion" response = self.client.get(self.url + '?oldversion=28.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=27.0.1', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=4.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=rv:10.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.0.1', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.1', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.1.1', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=34.0', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=35.0', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) # if there's no oldversion parameter, show no tour response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) @override_settings(DEV=True) @patch.dict(product_details.firefox_versions, LATEST_FIREFOX_VERSION='16.0') def test_whatsnew_search_tour_oldversion(self): """Should not show tour if upgrading from 34.0 onwards.""" self.url = reverse('firefox.whatsnew', args=['34.1']) # sanity check that it should show for other values of "oldversion" response = self.client.get(self.url + '?oldversion=28.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=27.0.1', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=4.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=rv:10.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.0', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=33.0.1', HTTP_USER_AGENT=self.user_agent) self.assertIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=34.0', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=34.0.1', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=34.1', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) response = self.client.get(self.url + '?oldversion=35.0', HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content) # if there's no oldversion parameter, show no tour response = self.client.get(self.url, HTTP_USER_AGENT=self.user_agent) self.assertNotIn(self.expected, response.content)
41.935583
101
0.635238
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
MozFux/bedrock
bedrock/firefox/tests/test_base.py
41,020
Python
from tkinter import * # import math # https://www.youtube.com/watch?v=r5EQCSW_rLQ pyramid math formulas TIME=3:55 class Pyramid: # contants BLOCK_HEIGHT = 1.5 # meters BLOCK_WIDTH = 2 # meters BLOCK_LENGTH = 2.5 # meters BLOCK_WEIGHT = 15000 # kg # __init__ is Python's constructor method def __init__(self, pyramidSideLength, pyramidHeight): self.pyramidSideLength = pyramidSideLength self.pyramidHeight = pyramidHeight # processing def calculateBlockVolume(self, height, width, length): return height * width * length def calculateGroundArea(self, length): return length ** 2 def calculatePyramidVolume(self, groundArea, height): return round((groundArea / 3) * height) def countBlocks(self, pyramidVolume, blockVolume): return round(pyramidVolume / blockVolume) def calculateMass(self, blocks, weight): return blocks * weight # this type of function might not be suitable for inside a class, but going with it for now def createNewPyramid(self): # create superscript for displaying exponents superscript = str.maketrans("0123456789", "⁰¹²³⁴⁵⁶⁷⁸⁹") displayMetersSquared = 'm2'.translate(superscript) displayMetersCubed = 'm3'.translate(superscript) # storing function output in variables for program readability blockVolume = self.calculateBlockVolume(Pyramid.BLOCK_HEIGHT, Pyramid.BLOCK_WIDTH, Pyramid.BLOCK_LENGTH) groundAreaCovered = self.calculateGroundArea(self.pyramidSideLength) pyramidVolume = self.calculatePyramidVolume(groundAreaCovered, self.pyramidHeight) countOfBlocks = self.countBlocks(pyramidVolume, blockVolume) mass = self.calculateMass(countOfBlocks, Pyramid.BLOCK_WEIGHT) # build nicely formatted answer for display displayAnswer = '\n' + \ 'Ground Area Covered = {:,} {}'.format(groundAreaCovered, displayMetersSquared) + '\n' + \ 'Pyramid Volume = {:,.0f} {}'.format(pyramidVolume, displayMetersCubed) + '\n' + \ 'Blocks = {:,}'.format(countOfBlocks) + '\n' + \ 'Mass = {:,} kg'.format(mass) + '\n\n' + \ '*Pyramid is not to scale.' return displayAnswer class GridLines: def __init__(self, canvas, canvas_width, canvas_height, grid_space): self.canvas = canvas self.canvas_width = canvas_width self.canvas_height = canvas_height self.grid_space = grid_space def __vertical_lines__(self): for i in range(0, self.canvas_height, self.grid_space): self.canvas.create_line(i, 0, i, self.canvas_height, fill='thistle1') def __horizontal_lines__(self): for i in range(0, self.canvas_width, self.grid_space): self.canvas.create_line(0, i, self.canvas_width, i, fill='CadetBlue1') def create_grid(self): self.__vertical_lines__() self.__horizontal_lines__() def createPyramid(apex, base, height): canvas_width = 400 canvas_height = 400 canvas = Canvas(root, width=canvas_width, height=canvas_height) canvas.grid(row=5, column=0, columnspan=2, sticky=E) canvas.configure(background='white') grid = GridLines(canvas, canvas_width, canvas_height, 20) GridLines.create_grid(grid) x_center = apex[0] y_top = apex[1] y_bottom = y_top + height y_middle = y_top + height / 1.6 half_base = base / 2 x_left = (x_center - (half_base)) x_right = x_center + (half_base) right_offset = ((base * .6) - base) x_right_rear = x_right + right_offset left_offset = ((base * 1.1) - half_base) x_left_rear = x_center - left_offset # facing triangle points = [[x_left,y_bottom], [x_right,y_bottom], apex] canvas.create_polygon(points, outline='black', fill='Gray95') # left side shadow points3 = [apex, [x_left_rear,y_middle], [x_left,y_bottom]] canvas.create_polygon(points3, outline='black', fill='Gray85') # triangle lines canvas.create_line(x_center, y_top, x_right_rear, y_middle, fill='thistle3', dash=(4,4)) # back right canvas.create_line(x_right_rear, y_middle, x_left_rear, y_middle, fill='CadetBlue3', dash=(4,4)) # back middle canvas.create_line(x_right_rear, y_middle, x_left, y_bottom, fill='PaleGreen3', dash=(4,4)) # cross positive canvas.create_line(x_left_rear, y_middle, x_right, y_bottom, fill='PaleGreen3', dash=(4,4)) # cross negative canvas.create_line(x_right_rear, y_middle, x_right, y_bottom, fill='CadetBlue3', dash=(4,4)) # right connector def clickFunction(): apex = [200,100] pyramid_base = int(widthText.get()) pyramid_height = int(heightText.get()) # build instance of Pyramid new_pyramid = Pyramid(pyramid_base, pyramid_height) # display results of instance (outputs calculated data) pyramid_dimensions_output = Pyramid.createNewPyramid(new_pyramid) responseLabel = Label(root, text=pyramid_dimensions_output, justify=LEFT) responseLabel.grid(row=4, column=0, columnspan=2, ipadx='110', sticky=W) # outputs 3D graphic of pyramid (not to scale) createPyramid(apex, pyramid_base, pyramid_height) root = Tk() APP_NAME = 'Pyramid Builder' root.iconbitmap('pyramid.ico') root.title(APP_NAME) root.geometry("600x700+1100+200") header = Label(root, text=APP_NAME, font='Helvetica 18 bold') header.grid(row=0, column=0, columnspan=2, pady='10') # width entry widthLabel = Label(root, text="Enter Base (in meters):") widthLabel.grid(row=1, column=0, ipadx='30', sticky=W) widthText = Entry(root) widthText.grid(row=1, column=1, ipadx="100") widthText.focus() # height entry heightLabel = Label(root, text="Enter Height (in meters):") heightLabel.grid(row=2, column=0, ipadx='30', sticky=W) heightText = Entry(root) heightText.grid(row=2, column=1, ipadx="100") # buttons buttonFrame = Frame(root) buttonFrame.grid(row=3, column=1, sticky=E) submitButton = Button(buttonFrame, text="Submit", command=clickFunction) closeButton = Button(buttonFrame, text='Close', command=root.destroy) submitButton.pack(side='left', padx='2') closeButton.pack(side='left', padx='2') # root.grid_columnconfigure(0, minsize=80) # root.grid_rowconfigure(0, pad=5) root.mainloop() # automated tests (would normally be in separate file just for testing) print('\nrunning automated tests...') import unittest # would use "import Pyramid" here if in separate file class TestPyramid(unittest.TestCase): # "self" is not normally required in: ClassName.methodCall(self), but needed because class is in same file as unit test def test_calculateBlockVolume(self): # only one test for block size (not supposed to change) self.assertEqual(Pyramid.calculateBlockVolume(self, 1.5, 2, 2.5), 7.5) def test_calculateGroundArea(self): self.assertEqual(Pyramid.calculateGroundArea(self, 80), 6400) self.assertEqual(Pyramid.calculateGroundArea(self, 236), 55696) def test_calculatePyramidVolume(self): self.assertEqual(Pyramid.calculatePyramidVolume(self, 6400, 64), 136533) self.assertEqual(Pyramid.calculatePyramidVolume(self, 55696, 138), 2562016) def test_countBlocks(self): self.assertEqual(Pyramid.countBlocks(self, 136533, 7.5), 18204) self.assertEqual(Pyramid.countBlocks(self, 2562016, 7.5), 341602) def test_calculateMass(self): self.assertEqual(Pyramid.calculateMass(self, 18204, 15000), 273060000) self.assertEqual(Pyramid.calculateMass(self, 341602, 15000), 5124030000) # Runs the unit tests automatically in the current file if __name__ == '__main__': unittest.main() # =========================================== # Visual of correct output for 2 test cases: # results agree with automated unit testing # and hand calculations (in MS Excel). # =================================== # input data: # pyramid side length = 80 meters; # pyramid height = 64 meters # ======== # results: # ground area covered = 6,400 m² # pyramid volume = 136,533 m³ # blocks = 18,204 # mass = 273,060,000 kg # =================================== # input data: # pyramid side length = 236 meters; # pyramid height = 138 meters # ======== # results: # ground area covered = 55,696 m² # pyramid volume = 2,562,016 m³ # blocks = 341,602 # mass = 5,124,030,000 kg # ===========================================
35.809322
123
0.681694
[ "MIT" ]
justinclark-dev/CSC110
assignments/assignment-2-pyramid-builder-gui.py
8,472
Python
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. import typing from cryptography import x509 from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import ( dsa, ec, ed25519, ed448, rsa, ) from cryptography.hazmat.primitives.asymmetric.types import ( PRIVATE_KEY_TYPES, ) _ALLOWED_PKCS12_TYPES = typing.Union[ rsa.RSAPrivateKey, dsa.DSAPrivateKey, ec.EllipticCurvePrivateKey, ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey, ] class PKCS12Certificate: def __init__( self, cert: x509.Certificate, friendly_name: typing.Optional[bytes], ): if not isinstance(cert, x509.Certificate): raise TypeError("Expecting x509.Certificate object") if friendly_name is not None and not isinstance(friendly_name, bytes): raise TypeError("friendly_name must be bytes or None") self._cert = cert self._friendly_name = friendly_name @property def friendly_name(self) -> typing.Optional[bytes]: return self._friendly_name @property def certificate(self) -> x509.Certificate: return self._cert def __eq__(self, other: object) -> bool: if not isinstance(other, PKCS12Certificate): return NotImplemented return ( self.certificate == other.certificate and self.friendly_name == other.friendly_name ) def __hash__(self) -> int: return hash((self.certificate, self.friendly_name)) def __repr__(self) -> str: return "<PKCS12Certificate({}, friendly_name={!r})>".format( self.certificate, self.friendly_name ) class PKCS12KeyAndCertificates: def __init__( self, key: typing.Optional[PRIVATE_KEY_TYPES], cert: typing.Optional[PKCS12Certificate], additional_certs: typing.List[PKCS12Certificate], ): if key is not None and not isinstance( key, ( rsa.RSAPrivateKey, dsa.DSAPrivateKey, ec.EllipticCurvePrivateKey, ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey, ), ): raise TypeError( "Key must be RSA, DSA, EllipticCurve, ED25519, or ED448" " private key, or None." ) if cert is not None and not isinstance(cert, PKCS12Certificate): raise TypeError("cert must be a PKCS12Certificate object or None") if not all( isinstance(add_cert, PKCS12Certificate) for add_cert in additional_certs ): raise TypeError( "all values in additional_certs must be PKCS12Certificate" " objects" ) self._key = key self._cert = cert self._additional_certs = additional_certs @property def key(self) -> typing.Optional[PRIVATE_KEY_TYPES]: return self._key @property def cert(self) -> typing.Optional[PKCS12Certificate]: return self._cert @property def additional_certs(self) -> typing.List[PKCS12Certificate]: return self._additional_certs def __eq__(self, other: object) -> bool: if not isinstance(other, PKCS12KeyAndCertificates): return NotImplemented return ( self.key == other.key and self.cert == other.cert and self.additional_certs == other.additional_certs ) def __hash__(self) -> int: return hash((self.key, self.cert, tuple(self.additional_certs))) def __repr__(self) -> str: fmt = ( "<PKCS12KeyAndCertificates(key={}, cert={}, additional_certs={})>" ) return fmt.format(self.key, self.cert, self.additional_certs) def load_key_and_certificates( data: bytes, password: typing.Optional[bytes], backend: typing.Any = None, ) -> typing.Tuple[ typing.Optional[PRIVATE_KEY_TYPES], typing.Optional[x509.Certificate], typing.List[x509.Certificate], ]: from cryptography.hazmat.backends.openssl.backend import backend as ossl return ossl.load_key_and_certificates_from_pkcs12(data, password) def load_pkcs12( data: bytes, password: typing.Optional[bytes], backend: typing.Any = None, ) -> PKCS12KeyAndCertificates: from cryptography.hazmat.backends.openssl.backend import backend as ossl return ossl.load_pkcs12(data, password) _PKCS12_CAS_TYPES = typing.Union[ x509.Certificate, PKCS12Certificate, ] def serialize_key_and_certificates( name: typing.Optional[bytes], key: typing.Optional[_ALLOWED_PKCS12_TYPES], cert: typing.Optional[x509.Certificate], cas: typing.Optional[typing.Iterable[_PKCS12_CAS_TYPES]], encryption_algorithm: serialization.KeySerializationEncryption, ) -> bytes: if key is not None and not isinstance( key, ( rsa.RSAPrivateKey, dsa.DSAPrivateKey, ec.EllipticCurvePrivateKey, ed25519.Ed25519PrivateKey, ed448.Ed448PrivateKey, ), ): raise TypeError( "Key must be RSA, DSA, EllipticCurve, ED25519, or ED448" " private key, or None." ) if cert is not None and not isinstance(cert, x509.Certificate): raise TypeError("cert must be a certificate or None") if cas is not None: cas = list(cas) if not all( isinstance( val, ( x509.Certificate, PKCS12Certificate, ), ) for val in cas ): raise TypeError("all values in cas must be certificates") if not isinstance( encryption_algorithm, serialization.KeySerializationEncryption ): raise TypeError( "Key encryption algorithm must be a " "KeySerializationEncryption instance" ) if key is None and cert is None and not cas: raise ValueError("You must supply at least one of key, cert, or cas") from cryptography.hazmat.backends.openssl.backend import backend return backend.serialize_key_and_certificates_to_pkcs12( name, key, cert, cas, encryption_algorithm )
29.459091
79
0.632773
[ "MIT" ]
ianmota/WebScrappingBimCollab
venv/Lib/site-packages/cryptography/hazmat/primitives/serialization/pkcs12.py
6,481
Python
"""Classification Report""" # Authors: Jeffrey Wang # License: BSD 3 clause import numpy as np from sleepens.analysis import multiconfusion_matrix def calculate_statistics(Y_hat, Y, beta=1, average=None): """ Calculate the precisions, recalls, F-beta scores, and supports for each class in `targets`. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. average : {'micro', 'macro', 'weighted', None}, default=None The type of averaging to perform on statistics. Must be one of: - None : Do not perform averaging, statistics for each class are returned. - 'micro' : Calculate globally, counting total true positives, false negatives, and false positives. - 'macro' : Calculate per class an unweighted mean. - 'weighted' : Calculate per class the mean weighted by support. Returns ------- precisions : float or dict Dictionary of precisions for each class if `average` is None. Averaged precision based on averaging method if provided. recalls : float or dict Dictionary of recalls for each class if `average` is None. Averaged recall based on averaging method if provided. fscores : float or dict Dictionary of fscores for each class if `average` is None. Averaged fscore based on averaging method if provided. supports : float or dict Dictionary of supports for each class if `average` is None. Total support (number of classes) if averaging method is provided. """ if beta < 0: raise ValueError("Beta must be non-negative") matrix = multiconfusion_matrix(Y_hat, Y) matrix_labels = list(matrix.keys()) matrix = np.array([matrix[l] for l in matrix_labels]) tp_sum = matrix[:,1,1] label_sum = tp_sum + matrix[:,0,1] target_sum = tp_sum + matrix[:,1,0] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) label_sum = np.array([label_sum.sum()]) target_sum = np.array([target_sum.sum()]) with np.errstate(divide='ignore', invalid='ignore'): precisions = np.divide(tp_sum, label_sum, out=np.zeros(tp_sum.shape, dtype=float), where=label_sum!=0) recalls = np.divide(tp_sum, target_sum, out=np.zeros(tp_sum.shape, dtype=float), where=target_sum!=0) if np.isposinf(beta): fscores = recalls else: beta2 = beta ** 2 denom = beta2 * precisions + recalls valid = np.where(denom != 0)[0] fscores = np.zeros_like(denom) fscores[valid] = (1 + beta2) * precisions[valid] * recalls[valid] / denom[valid] if average == 'weighted': weights = target_sum if target_sum.sum() == 0: return 0, 0, 0, target_sum.sum() else: weights = None if average is not None: precisions = np.average(precisions, weights=weights) recalls = np.average(recalls, weights=weights) fscores = np.average(fscores, weights=weights) supports = target_sum.sum() else: precisions = {matrix_labels[k]: precisions[k] for k in range(len(matrix_labels))} recalls = {matrix_labels[k]: recalls[k] for k in range(len(matrix_labels))} fscores = {matrix_labels[k]: fscores[k] for k in range(len(matrix_labels))} supports = {matrix_labels[k]: target_sum[k] for k in range(len(matrix_labels))} return precisions, recalls, fscores, supports def classification_report(Y_hat, Y, beta=1): """ Create a report on classification statistics. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. Returns ------- report : dict Dictionary containing classification statistics in the following structure: - 'label': { 'precision':0.5, 'recall':1.0, 'f-score':0.67, 'support':1 }, ... - 'beta': 1, - 'support': 5, - 'accuracy': 0.8, - 'macro avg': { 'precision':0.6, 'recall':0.9, 'f-score':0.67, }, - 'weighted avg': { 'precision':0.67, 'recall':0.9, 'f-score':0.67, } """ stats = calculate_statistics(Y_hat, Y, beta=beta) _, _, accuracy, total = calculate_statistics(Y_hat, Y, beta=beta, average='micro') macro = calculate_statistics(Y_hat, Y, beta=beta, average='macro') weighted = calculate_statistics(Y_hat, Y, beta=beta, average='weighted') h = ['precision', 'recall', 'f-score', 'support'] report = { 'beta': beta, 'support': total, 'accuracy': accuracy, 'macro avg': {h[i]: macro[i] for i in range(len(h))}, 'weighted avg': {h[i]: weighted[i] for i in range(len(h))} } classes = set(stats[0].keys()) for c in classes: report[c] = {h[i]: stats[i][c] for i in range(len(h))} return report
32.051613
84
0.652979
[ "BSD-3-Clause" ]
paradoxysm/sleepens
sleepens/analysis/_report.py
4,968
Python
import numpy as np try: from cs231n.im2col_cython import col2im_cython, im2col_cython from cs231n.im2col_cython import col2im_6d_cython except ImportError: print ('run the following from the cs231n directory and try again:') print ('python setup.py build_ext --inplace') print ('You may also need to restart your iPython kernel') from cs231n.im2col import * def conv_forward_im2col(x, w, b, conv_param): """ A fast implementation of the forward pass for a convolutional layer based on im2col and col2im. """ N, C, H, W = x.shape num_filters, _, filter_height, filter_width = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - filter_width) % stride == 0, 'width does not work' assert (H + 2 * pad - filter_height) % stride == 0, 'height does not work' # Create output out_height = (H + 2 * pad - filter_height) / stride + 1 out_width = (W + 2 * pad - filter_width) / stride + 1 out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) # x_cols = im2col_indices(x, w.shape[2], w.shape[3], pad, stride) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = w.reshape((w.shape[0], -1)).dot(x_cols) + b.reshape(-1, 1) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_forward_strides(x, w, b, conv_param): N, C, H, W = x.shape F, _, HH, WW = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - WW) % stride == 0, 'width does not work' assert (H + 2 * pad - HH) % stride == 0, 'height does not work' # Pad the input p = pad x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') # Figure out output dimensions H += 2 * pad W += 2 * pad out_h = (H - HH) / stride + 1 out_w = (W - WW) / stride + 1 # Perform an im2col operation by picking clever strides shape = (C, HH, WW, N, out_h, out_w) strides = (H * W, W, 1, C * H * W, stride * W, stride) strides = x.itemsize * np.array(strides) x_stride = np.lib.stride_tricks.as_strided(x_padded, shape=shape, strides=strides) x_cols = np.ascontiguousarray(x_stride) x_cols.shape = (C * HH * WW, N * out_h * out_w) # Now all our convolutions are a big matrix multiply res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1) # Reshape the output res.shape = (F, N, out_h, out_w) out = res.transpose(1, 0, 2, 3) # Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np.ascontiguousarray(out) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_backward_strides(dout, cache): x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, out_h, out_w = dout.shape db = np.sum(dout, axis=(0, 2, 3)) dout_reshaped = dout.transpose(1, 0, 2, 3).reshape(F, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(F, -1).T.dot(dout_reshaped) dx_cols.shape = (C, HH, WW, N, out_h, out_w) dx = col2im_6d_cython(dx_cols, N, C, H, W, HH, WW, pad, stride) return dx, dw, db def conv_backward_im2col(dout, cache): """ A fast implementation of the backward pass for a convolutional layer based on im2col and col2im. """ x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] db = np.sum(dout, axis=(0, 2, 3)) num_filters, _, filter_height, filter_width = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, -1).T.dot(dout_reshaped) # dx = col2im_indices(dx_cols, x.shape, filter_height, filter_width, pad, stride) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return dx, dw, db conv_forward_fast = conv_forward_strides conv_backward_fast = conv_backward_strides def max_pool_forward_fast(x, pool_param): """ A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] same_size = pool_height == pool_width == stride tiles = H % pool_height == 0 and W % pool_width == 0 if same_size and tiles: out, reshape_cache = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: out, im2col_cache = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return out, cache def max_pool_backward_fast(dout, cache): """ A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache. """ method, real_cache = cache if method == 'reshape': return max_pool_backward_reshape(dout, real_cache) elif method == 'im2col': return max_pool_backward_im2col(dout, real_cache) else: raise ValueError('Unrecognized method "%s"' % method) def max_pool_forward_reshape(x, pool_param): """ A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert pool_height == pool_width == stride, 'Invalid pool params' assert H % pool_height == 0 assert W % pool_height == 0 x_reshaped = x.reshape(N, C, H / pool_height, pool_height, W / pool_width, pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return out, cache def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx def max_pool_forward_im2col(x, pool_param): """ An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert (H - pool_height) % stride == 0, 'Invalid height' assert (W - pool_width) % stride == 0, 'Invalid width' out_height = (H - pool_height) / stride + 1 out_width = (W - pool_width) / stride + 1 x_split = x.reshape(N * C, 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[x_cols_argmax, np.arange(x_cols.shape[1])] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return out, cache def max_pool_backward_im2col(dout, cache): """ An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ x, x_cols, x_cols_argmax, pool_param = cache N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped dx = col2im_indices(dx_cols, (N * C, 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
34.295203
83
0.689585
[ "MIT" ]
anandsaha/cs231n.assignments
2016winter/assignment2/cs231n/fast_layers.py
9,294
Python
#----------------------------------------------------------------------------- # Copyright (c) 2014, Ryan Volz # All rights reserved. # # Distributed under the terms of the BSD 3-Clause ("BSD New") license. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- import numpy as np import os import glob import fnmatch from echolect.core.indexing import (find_index, slice_by_value, wrap_check_start, wrap_check_stop) from . import raw_parsing __all__ = ['file_times', 'find_files', 'find_files_recursive', 'map_file_blocks', 'read_voltage', 'voltage_reader'] #******** See raw_parsing.py for details on Jicamarca raw data format *************** def find_files(fdir, pattern='D*.r'): files = glob.glob(os.path.join(fdir, pattern)) files.sort() return np.asarray(files) def find_files_recursive(fdir, pattern='D*.r'): files = [] for dirpath, dirnames, filenames in os.walk(fdir): for filename in fnmatch.filter(filenames, pattern): files.append(os.path.join(dirpath, filename)) files.sort() return np.asarray(files) def file_times(files): file_times = [] # find time that begins each file for fpath in files: with open(fpath, 'rb') as f: h = raw_parsing.read_first_header(f) time = raw_parsing.parse_time(h) file_times.append(time) return np.asarray(file_times) def map_file_blocks(fpath): # read all of the headers, block times, and location for start of each data block headers = [] block_times = [] data_start_bytes = [] with open(fpath, 'rb') as f: # get necesary info from first header h = raw_parsing.read_first_header(f) headers.append(h) time = raw_parsing.parse_time(h) block_times.append(time) data_start_bytes.append(f.tell()) block_size = h['nSizeOfDataBlock'] while True: # skip over the previous block of data f.seek(block_size, 1) # read the block's header try: h = raw_parsing.read_basic_header(f) except EOFError: break time = raw_parsing.parse_time(h) # check validity of header # assume that if time is 0, the subsequent block was # not written and hence EOF has been reached if time == 0: break headers.append(h) block_times.append(time) data_start_bytes.append(f.tell()) headers = np.asarray(headers) block_times = np.asarray(block_times) data_start_bytes = np.asarray(data_start_bytes) return headers, block_times, data_start_bytes class voltage_reader(object): def __init__(self, fpath): self.fpath = fpath headers, block_times, data_start_bytes = map_file_blocks(fpath) self.headers = headers self.block_times = block_times self.data_start_bytes = data_start_bytes h = headers[0] raw_dtype, dtype = raw_parsing.parse_dtype(h) self.raw_dtype = raw_dtype self.dtype = dtype block_shape = raw_parsing.parse_block_shape(h) self.block_shape = block_shape self.nprofiles_per_block = block_shape[0] self.nsamples_per_profile = block_shape[1] self.nchannels = block_shape[2] self.nitems_per_profile = block_shape[1]*block_shape[2] self.nblocks = len(block_times) self.nprofiles = self.nblocks*block_shape[0] self.profile_bytes = self.nitems_per_profile*self.raw_dtype.itemsize self.shape = (self.nprofiles, self.nchannels, self.nsamples_per_profile) self.ts = raw_parsing.parse_ts(h) self.ipp = raw_parsing.parse_ipp(h) self.r = raw_parsing.parse_range_index(h) def __getitem__(self, key): if not isinstance(key, tuple): pidx = key cidx = slice(None) sidx = slice(None) else: lkey = len(key) if lkey < 1 or lkey > 3: raise IndexError('Wrong number of indices') elif lkey == 1: pidx = key[0] cidx = slice(None) sidx = slice(None) elif lkey == 2: pidx = key[0] cidx = key[1] sidx = slice(None) else: pidx = key[0] cidx = key[1] sidx = key[2] if isinstance(pidx, int): return self.read_voltage(pidx, chan_idx=cidx, sample_idx=sidx) # pidx must be a slice object start, stop, step = pidx.indices(self.shape[0]) return self.read_voltage(start, stop, step, cidx, sidx) def _read_from_block(self, block_num, start, stop, step, chan_idx, sample_idx): num = stop - start # so we drop dimension when num == 1 if num == 1: prof_idx = 0 else: prof_idx = slice(0, num, step) fstart = self.data_start_bytes[block_num] + self.profile_bytes*start with open(self.fpath, 'rb') as f: f.seek(fstart) vlt_raw = np.fromfile(f, self.raw_dtype, num*self.nitems_per_profile) # data arranged by channel, then sample, then profile try: vlt_raw = vlt_raw.reshape(num, self.nsamples_per_profile, self.nchannels) except ValueError: # we didn't get the number of samples we expected, reshape fails raise EOFError('End of file reached. Could not read requested data.') # swap axes so it matches what we want, and slice as desired vlt_raw = vlt_raw.swapaxes(1, 2)[prof_idx, chan_idx, sample_idx] vlt = np.empty(vlt_raw.shape, dtype=self.dtype) vlt.real = vlt_raw['real'] vlt.imag = vlt_raw['imag'] return vlt def read_from_block(self, block_num, start, stop=None, step=1, nframes=1, chan_idx=slice(None), sample_idx=slice(None)): start = wrap_check_start(self.nprofiles_per_block, start) if stop is None: stop = start + step*nframes else: stop = wrap_check_stop(self.nprofiles_per_block, stop) ## change ints to lists so that we don't lose dimensions when indexing #if isinstance(chan_idx, int): #chan_idx = [chan_idx] #if isinstance(sample_idx, int): #sample_idx = [sample_idx] return self._read_from_block(block_num, start, stop, step, chan_idx, sample_idx) def _read_from_blocks(self, blocknumstart, blockstart, blocknumend, blockstop, step, chan_idx, sample_idx): if blocknumstart == blocknumend: return self.read_from_block(blocknumstart, blockstart, blockstop, step, chan_idx, sample_idx) start = blockstart vlt_all = [] for bnum in xrange(blocknumstart, blocknumend + 1): if bnum == blocknumend: vlt_all.append(self.read_from_block(bnum, start, blockstop, step, chan_idx, sample_idx)) else: vlt_all.append(self.read_from_block(bnum, start, self.nprofiles_per_block, step, chan_idx, sample_idx)) # set start for (possibly != 0) based on step # step - ((nprofiles - start) % step) == (start - nprofiles) % step start = (start - self.nprofiles_per_block) % step return np.concatenate(vlt_all, axis=0) def read_voltage(self, start, stop=None, step=1, nframes=1, chan_idx=slice(None), sample_idx=slice(None)): start = wrap_check_start(self.shape[0], start) if stop is None: stop = start + step*nframes else: stop = wrap_check_stop(self.shape[0], stop) ## change ints to lists so that we don't lose dimensions when indexing #if isinstance(chan_idx, int): #chan_idx = [chan_idx] #if isinstance(sample_idx, int): #sample_idx = [sample_idx] # find blocks for start and stop bstart, strt = divmod(start, self.nprofiles_per_block) # want block of last profile to include, hence profile number end = stop - 1 end = stop - 1 bend, nend = divmod(end, self.nprofiles_per_block) stp = nend + 1 return self._read_from_blocks(bstart, strt, bend, stp, step, chan_idx, sample_idx) def read_voltage(fpath, key=slice(None)): vlt_r = voltage_reader(fpath) return vlt_r[key]
37.712446
96
0.589393
[ "BSD-3-Clause" ]
ryanvolz/echolect
echolect/jicamarca/read_raw.py
8,787
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 23 18:18:48 2020 @author: tsuyogbasnet """ import os import sys import pickle from tqdm import tqdm from scipy.io import wavfile from python_speech_features import mfcc from keras.models import load_model import pandas as pd from sklearn.metrics import accuracy_score import numpy as np def build_predictions(audio_dir): y_true = [] y_pred = [] fn_prob = {} if len(os.listdir(audio_dir)) == 0: print("No files found for classification") return False, False, False print("Extracting feature from audio files") for file in tqdm(os.listdir(audio_dir)): try: rate, signal = wavfile.read(os.path.join(audio_dir, file)) label = filename_to_class[file] c = classes.index(label) y_prob = [] print("Classifying audio files") for i in tqdm(range(0, signal.shape[0]-config.step, config.step)): sample = signal[i:i+config.step] x = mfcc(sample, rate, numcep=config.nfeat, nfilt=config.nfilt, nfft=config.nfft) x = (x-config._min) / (config._max - config._min) if config.mode == 'conv': x = x.reshape(1, x.shape[0], x.shape[1], 1) elif config.mode == 'time': x = np.expand_dims(x, axis=0) y_hat = model.predict(x) y_prob.append(y_hat) y_pred.append(np.argmax(y_hat)) y_true.append(c) fn_prob[file] = np.mean(y_prob, axis=0).flatten() except: print("Something went wrong some files", sys.exc_info()[0]) return y_true, y_pred, fn_prob data_frame = pd.read_csv('instruments.csv') classes = list(np.unique(data_frame.label)) filename_to_class = dict(zip(data_frame.fname,data_frame.label)) p_path = os.path.join('pickles','conv.p') with open(p_path, 'rb') as handle: config = pickle.load(handle) model = load_model(config.model_path) y_true, y_pred, fn_prob = build_predictions('testcleanfiles') if(y_true and y_pred and fn_prob): acc_score = accuracy_score(y_true=y_true, y_pred=y_pred) y_probs = [] for i, row in data_frame.iterrows(): y_prob = fn_prob[row.fname] y_probs.append(y_prob) for c, p in zip(classes, y_prob): data_frame.at[i,c] = p y_pred = [classes[np.argmax(y)] for y in y_probs] data_frame['y_pred'] = y_pred data_frame.to_csv('prediction.csv', index=False)
28.451613
97
0.597884
[ "MIT" ]
pvsnp9/audio_classification_using_deep_learning
predict.py
2,646
Python
# Copyright (c) 2009-2018 Stefan Marr <http://www.stefan-marr.de/> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from . import value_with_optional_details from .benchmark import Benchmark from .benchmark_suite import BenchmarkSuite from .exp_run_details import ExpRunDetails from .exp_variables import ExpVariables from .reporting import Reporting class Experiment(object): @classmethod def compile(cls, name, exp, configurator): description = exp.get('description') desc = exp.get('desc') data_file = exp.get('data_file') or configurator.data_file reporting = Reporting.compile(exp.get('reporting', {}), configurator.reporting, configurator.options, configurator.ui) run_details = ExpRunDetails.compile(exp, configurator.run_details) variables = ExpVariables.compile(exp, ExpVariables.empty()) executions = exp.get('executions') suites = exp.get('suites') return Experiment(name, description or desc, data_file, reporting, run_details, variables, configurator, executions, suites) def __init__(self, name, description, data_file, reporting, run_details, variables, configurator, executions, suites): self.name = name self._description = description self._data_file = data_file self._run_details = run_details self._variables = variables self._reporting = reporting self._data_store = configurator.data_store self._persistence = self._data_store.get(data_file, configurator) self._suites = self._compile_executors_and_benchmark_suites( executions, suites, configurator) self._benchmarks = self._compile_benchmarks() self.runs = self._compile_runs(configurator) def _compile_runs(self, configurator): runs = set() # pylint: disable-next=too-many-nested-blocks for bench in self._benchmarks: if not configurator.run_filter.applies_to_bench(bench): continue variables = bench.variables for cores in variables.cores: for input_size in variables.input_sizes: for var_val in variables.variable_values: for machine in variables.machines: if not configurator.run_filter.applies_to_machine(machine): continue run = self._data_store.create_run_id( bench, cores, input_size, var_val, machine) bench.add_run(run) runs.add(run) run.add_reporting(self._reporting) run.add_persistence(self._persistence) return runs def _compile_executors_and_benchmark_suites(self, executions, suites, configurator): # we now assemble the executors and the benchmark suites results = [] for executor_cfg in executions: executor_name, executor_details = value_with_optional_details(executor_cfg) run_details = self._run_details variables = self._variables if executor_details: run_details = ExpRunDetails.compile(executor_details, run_details) variables = ExpVariables.compile(executor_details, variables) suites_for_executor = executor_details.get('suites', suites) else: suites_for_executor = suites executor = configurator.get_executor(executor_name, run_details, variables) for suite_name in suites_for_executor: suite = BenchmarkSuite.compile( suite_name, configurator.get_suite(suite_name), executor, configurator.build_commands) results.append(suite) return results def _compile_benchmarks(self): bench_cfgs = [] for suite in self._suites: for bench in suite.benchmarks_config: bench_cfgs.append(Benchmark.compile( bench, suite, self._data_store)) return bench_cfgs
43.380165
88
0.658602
[ "MIT" ]
Joshaa1999/ReBench
rebench/model/experiment.py
5,249
Python
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import fire import json import jsonpickle import random import ast from typing import Any, Union from magma.common.redis.client import get_default_client from magma.common.redis.serializers import get_json_deserializer, \ get_proto_deserializer from magma.mobilityd.serialize_utils import deserialize_ip_block, \ deserialize_ip_desc from lte.protos.keyval_pb2 import IPDesc from lte.protos.policydb_pb2 import PolicyRule, InstalledPolicies from lte.protos.oai.mme_nas_state_pb2 import MmeNasState, UeContext from lte.protos.oai.spgw_state_pb2 import SpgwState, S11BearerContext from lte.protos.oai.s1ap_state_pb2 import S1apState, UeDescription def _deserialize_session_json(serialized_json_str: bytes) -> str: """ Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str """ res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped def _deserialize_generic_json( element: Union[str, dict, list])-> Union[str, dict, list]: """ Helper function to deserialize dictionaries or list with nested json strings :param element """ if isinstance(element, str): # try to deserialize as json string try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: # in case it is neither of the know elements, just return as is return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element class StateCLI(object): """ CLI for debugging current Magma services state and displaying it in readable manner. """ STATE_DESERIALIZERS = { 'assigned_ip_blocks': deserialize_ip_block, 'ip_states': deserialize_ip_desc, 'sessions': _deserialize_session_json, 'rule_names': get_json_deserializer(), 'rule_ids': get_json_deserializer(), 'rule_versions': get_json_deserializer(), } STATE_PROTOS = { 'mme_nas_state': MmeNasState, 'spgw_state': SpgwState, 's1ap_state': S1apState, 'mme': UeContext, 'spgw': S11BearerContext, 's1ap': UeDescription, 'mobilityd_ipdesc_record': IPDesc, 'rules': PolicyRule, 'installed': InstalledPolicies, } def __init__(self): self.client = get_default_client() def keys(self, redis_key: str): """ Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys """ for k in self.client.keys(pattern="{}*".format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key) def parse(self, key: str): """ Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis """ redis_type = self.client.type(key).decode('utf-8') key_type = key if ":" in key: key_type = key.split(":")[1] if redis_type == 'hash': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif redis_type == 'set': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) # Try parsing as json first, if there's decoding error, parse proto try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value) def corrupt(self, key): """ Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis """ rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print('Corrupted %s in redis' % key) def _parse_state_json(self, value): if value: deserializer = get_json_deserializer() value = json.loads(jsonpickle.encode(deserializer(value))) print(json.dumps(value, indent=2, sort_keys=True)) else: raise AttributeError('Key not found on redis') def _parse_state_proto(self, key_type, value): proto = self.STATE_PROTOS.get(key_type.lower()) if proto: deserializer = get_proto_deserializer(proto) print(deserializer(value)) else: raise AttributeError('Key not found on redis') def _parse_set_type(self, deserializer, key): set_values = self.client.smembers(key) for value in set_values: print(deserializer(value)) def _parse_hash_type(self, deserializer, key): value = self.client.hgetall(key) for key, val in value.items(): print(key.decode('utf-8')) print(deserializer(val)) if __name__ == "__main__": state_cli = StateCLI() try: fire.Fire(state_cli) except Exception as e: print('Error: {}'.format(e))
31.852041
80
0.645363
[ "BSD-3-Clause" ]
Rajpratik71/magma
lte/gateway/python/scripts/state_cli.py
6,243
Python
''' Created on May 11, 2017 @author: optas ''' import numpy as np import tensorflow as tf from tflearn.layers.normalization import batch_normalization from tflearn.layers.core import fully_connected, dropout from . encoders_decoders import encoder_with_convs_and_symmetry, decoder_with_fc_only from . tf_utils import leaky_relu from . tf_utils import expand_scope_by_name def mlp_discriminator(in_signal, non_linearity=tf.nn.relu, reuse=False, scope=None, b_norm=True, dropout_prob=None): ''' used in nips submission. ''' encoder_args = {'n_filters': [64, 128, 256, 256, 512], 'filter_sizes': [1, 1, 1, 1, 1], 'strides': [1, 1, 1, 1, 1]} encoder_args['reuse'] = reuse encoder_args['scope'] = scope encoder_args['non_linearity'] = non_linearity encoder_args['dropout_prob'] = dropout_prob encoder_args['b_norm'] = b_norm layer = encoder_with_convs_and_symmetry(in_signal, **encoder_args) name = 'decoding_logits' scope_e = expand_scope_by_name(scope, name) d_logit = decoder_with_fc_only(layer, layer_sizes=[128, 64, 1], b_norm=b_norm, reuse=reuse, scope=scope_e) d_prob = tf.nn.sigmoid(d_logit) return d_prob, d_logit def point_cloud_generator(z, pc_dims, layer_sizes=[64, 128, 512, 1024], non_linearity=tf.nn.relu, b_norm=False, b_norm_last=False, dropout_prob=None): ''' used in nips submission. ''' n_points, dummy = pc_dims if (dummy != 3): raise ValueError() out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm) out_signal = non_linearity(out_signal) if dropout_prob is not None: out_signal = dropout(out_signal, dropout_prob) if b_norm_last: out_signal = batch_normalization(out_signal) out_signal = fully_connected(out_signal, np.prod([n_points, 3]), activation='linear', weights_init='xavier') out_signal = tf.reshape(out_signal, [-1, n_points, 3]) return out_signal def convolutional_discriminator(in_signal, non_linearity=tf.nn.relu, encoder_args={'n_filters': [128, 128, 256, 512], 'filter_sizes': [40, 20, 10, 10], 'strides': [1, 2, 2, 1]}, decoder_layer_sizes=[128, 64, 1], reuse=False, scope=None): encoder_args['reuse'] = reuse encoder_args['scope'] = scope encoder_args['non_linearity'] = non_linearity layer = encoder_with_convs_and_symmetry(in_signal, **encoder_args) name = 'decoding_logits' scope_e = expand_scope_by_name(scope, name) d_logit = decoder_with_fc_only(layer, layer_sizes=decoder_layer_sizes, non_linearity=non_linearity, reuse=reuse, scope=scope_e) d_prob = tf.nn.sigmoid(d_logit) return d_prob, d_logit def latent_code_generator(z, out_dim, layer_sizes=[64, 128], b_norm=False): layer_sizes = layer_sizes + out_dim out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, b_norm=b_norm) out_signal = tf.nn.relu(out_signal) return out_signal def latent_code_discriminator(in_singnal, layer_sizes=[64, 128, 256, 256, 512], b_norm=False, non_linearity=tf.nn.relu, reuse=False, scope=None): layer_sizes = layer_sizes + [1] d_logit = decoder_with_fc_only(in_singnal, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm, reuse=reuse, scope=scope) d_prob = tf.nn.sigmoid(d_logit) return d_prob, d_logit def latent_code_discriminator_two_layers(in_signal, layer_sizes=[256, 512], b_norm=False, non_linearity=tf.nn.relu, reuse=False, scope=None): ''' Used in ICML submission. ''' layer_sizes = layer_sizes + [1] d_logit = decoder_with_fc_only(in_signal, layer_sizes=layer_sizes, non_linearity=non_linearity, b_norm=b_norm, reuse=reuse, scope=scope) d_prob = tf.nn.sigmoid(d_logit) return d_prob, d_logit def latent_code_generator_two_layers(z, out_dim, layer_sizes=[128], b_norm=False): ''' Used in ICML submission. ''' layer_sizes = layer_sizes + out_dim out_signal = decoder_with_fc_only(z, layer_sizes=layer_sizes, b_norm=b_norm) out_signal = tf.nn.relu(out_signal) return out_signal
40
150
0.717067
[ "MIT" ]
15034458181/latent_3d_points
src/generators_discriminators.py
4,160
Python
s = "Ellis" vowel_count = 0 i = 0 while i < len(s): if s[i]in ('a', 'e', 'i', 'o', 'u') vowel_count += 1 i += 1 print(vowel_count)
11.5
36
0.514493
[ "Unlicense" ]
EllisBarnes00/COP-1000
Chapter 08 - More About Strings/MPL Extra Loops and Strings/51005.py
138
Python
''' 07 - March 29, throughout a decade Daylight Saving rules are complicated: they're different in different places, they change over time, and they usually start on a Sunday (and so they move around the calendar). For example, in the United Kingdom, as of the time this lesson was written, Daylight Saving begins on the last Sunday in March. Let's look at the UTC offset for March 29, at midnight, for the years 2000 to 2010. Instructions - Using tz, set the timezone for dt to be 'Europe/London'. - Within the for loop: - Use the .replace() method to change the year for dt to be y. - Call .isoformat() on the result to observe the results. ''' # Import datetime and tz from datetime import datetime from dateutil import tz # Create starting date dt = datetime(2000, 3, 29, tzinfo=tz.gettz('Europe/London')) # Loop over the dates, replacing the year, and print the ISO timestamp for y in range(2000, 2011): print(dt.replace(year=y).isoformat()) ''' As you can see, the rules for Daylight Saving are not trivial. When in doubt, always use tz instead of hand-rolling timezones, so it will catch the Daylight Saving rules (and rule changes!) for you. <script.py> output: 2000-03-29T00:00:00+01:00 2001-03-29T00:00:00+01:00 2002-03-29T00:00:00+00:00 2003-03-29T00:00:00+00:00 2004-03-29T00:00:00+01:00 2005-03-29T00:00:00+01:00 2006-03-29T00:00:00+01:00 2007-03-29T00:00:00+01:00 2008-03-29T00:00:00+00:00 2009-03-29T00:00:00+00:00 2010-03-29T00:00:00+01:00 '''
31.666667
79
0.719079
[ "MIT" ]
mohd-faizy/CAREER-TRACK-Data-Scientist-with-Python
18_Working with Dates and Times in Python/03_Time Zones and Daylight Saving/07_March 29, throughout a decade.py
1,520
Python
# Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def maxDepth(self, root: TreeNode) -> int: if root is None: return 0 return 1 + max(self.maxDepth(root.left), self.maxDepth(root.right))
26.357143
75
0.612466
[ "MIT" ]
anishLearnsToCode/leetcode-algorithms
python/maximum_depth_of_binary_tree.py
369
Python
"""Add genres back Revision ID: 1d393bb338a4 Revises: 126ecfb9a15e Create Date: 2020-08-23 12:21:59.354200 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1d393bb338a4' down_revision = '126ecfb9a15e' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('artists', sa.Column('genres', sa.ARRAY(sa.String(length=30)), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('artists', 'genres') # ### end Alembic commands ###
23.241379
96
0.692878
[ "MIT" ]
pavponn/fyyur
migrations/versions/1d393bb338a4_add_genres_back.py
674
Python
import decimal from graphene.types import Scalar from graphql.language import ast # See: https://github.com/graphql-python/graphene-django/issues/91#issuecomment-305542169 class Decimal(Scalar): """ The `Decimal` scalar type represents a python Decimal. """ @staticmethod def serialize(dec): assert isinstance(dec, decimal.Decimal), ( 'Received not compatible Decimal "{}"'.format(repr(dec)) ) return str(dec) @staticmethod def parse_value(value): return decimal.Decimal(value) @classmethod def parse_literal(cls, node): if isinstance(node, ast.StringValue): return cls.parse_value(node.value)
26.846154
89
0.669054
[ "MIT" ]
abdulwahed-dev/travel-expense-manager
backend/backend/core/graphql/scalars.py
698
Python
# Generated by Django 2.0.2 on 2018-02-24 04:48 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Food', fields=[ ('ndb_no', models.CharField(max_length=10, primary_key=True, serialize=False)), ('description', models.CharField(max_length=69)), ('water', models.FloatField(blank=True, null=True)), ('kcal', models.FloatField(blank=True, null=True)), ('protein', models.FloatField(blank=True, null=True)), ('fat', models.FloatField(blank=True, null=True)), ('carbohydrates', models.FloatField(blank=True, null=True)), ('fiber', models.FloatField(blank=True, null=True)), ('sugar', models.FloatField(blank=True, null=True)), ('calcium', models.FloatField(blank=True, null=True)), ('iron', models.FloatField(blank=True, null=True)), ('magnesium', models.FloatField(blank=True, null=True)), ('potassium', models.FloatField(blank=True, null=True)), ('sodium', models.FloatField(blank=True, null=True)), ('zinc', models.FloatField(blank=True, null=True)), ('folate', models.FloatField(blank=True, null=True)), ('vitamin_b12', models.FloatField(blank=True, null=True)), ('vitamin_a', models.FloatField(blank=True, null=True)), ('vitamin_c', models.FloatField(blank=True, null=True)), ('vitamin_d', models.FloatField(blank=True, null=True)), ], ), ]
43.7
95
0.565217
[ "MIT" ]
lukebiggerstaff/usda-food-viz
foodviz/search/migrations/0001_initial.py
1,748
Python
class Solution: def maxNumber(self, nums1, nums2, k): """ :type nums1: List[int] :type nums2: List[int] :type k: int :rtype: List[int] """ def prep(nums, k): dr = len(nums) - k # 要删除的数目 stay = [] # 保留的list for num in nums: # 删除的空间 dr # 删除的必要 stay[-1] < num 即 堆栈法:上升就替换,下降就保留。 while dr and stay and stay[-1] < num: stay.pop() dr -= 1 stay.append(num) return stay[:k] def merge(x, y): return [max(x, y).pop(0) for _ in x + y] l1 = len(nums1) l2 = len(nums2) #dr = l1 + l2 -k r = [0] for i in range(k + 1): # 遍历所有可能并比较大小 if i <= l1 and k-i <= l2: r = max(merge(prep(nums1, i), prep(nums2, k - i)), r) return r if __name__ == "__main__": n1 = [3, 4, 6, 5] n2 = [9, 1, 2, 5, 8, 3] k = 5 so = Solution() res = so.maxNumber(n1, n2, k) print(res)
24.931818
69
0.403829
[ "MIT" ]
wisesky/LeetCode-Practice
src/321. Create Maximum Number.py
1,191
Python
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
29.21317
112
0.570162
[ "CC0-1.0" ]
jc-umana/regolith
regolith/tools.py
26,175
Python
""" This module is for performance testing of EDA module in github action. """ from functools import partial import pandas as pd from typing import Any from ...datasets import load_dataset from ...eda import create_report def report_func(df: pd.DataFrame, **kwargs: Any) -> None: """ Create report function, used for performance testing. """ create_report(df, **kwargs) def test_create_report(benchmark: Any) -> None: """ Performance test of create report on titanic dataset. """ df = load_dataset("titanic") benchmark(partial(report_func), df)
24.375
70
0.705983
[ "MIT" ]
Bowen0729/dataprep
dataprep/tests/benchmarks/eda.py
585
Python
async def donut_handler(args): print('This is where we would configure things to properly handle a .donut file request.') return '', ''
36
94
0.708333
[ "Apache-2.0" ]
zaphodef/stockpile
app/donut.py
144
Python
import time import tensorflow as tf physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) from absl import app, flags, logging from absl.flags import FLAGS import core.utils as utils from core.yolov4 import filter_boxes from tensorflow.python.saved_model import tag_constants from PIL import Image import cv2 import numpy as np from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession flags.DEFINE_string('framework', 'tf', '(tf, tflite, trt') flags.DEFINE_string('weights', './checkpoints/yolov4-416', 'path to weights file') flags.DEFINE_integer('size', 416, 'resize images to') flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4') flags.DEFINE_string('video', './data/road.mp4', 'path to input video') flags.DEFINE_float('iou', 0.45, 'iou threshold') flags.DEFINE_float('score', 0.25, 'score threshold') flags.DEFINE_string('output', None, 'path to output video') flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file') flags.DEFINE_boolean('dis_cv2_window', False, 'disable cv2 window during the process') # this is good for the .ipynb flags.DEFINE_string('class_file_name', './data/classes/coco.names', 'file contain the class names') def main(_argv): config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS) input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path ) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) else: saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) frame_id = 0 while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: if frame_id == vid.get(cv2.CAP_PROP_FRAME_COUNT): print("Video processing complete") break raise ValueError("No image! Try with another video format") frame_size = frame.shape[:2] image_data = cv2.resize(frame, (input_size, input_size)) image_data = image_data / 255. image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tflite': interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] if FLAGS.model == 'yolov3' and FLAGS.tiny == True: boxes, pred_conf = filter_boxes(pred[1], pred[0], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([input_size, input_size])) else: batch_data = tf.constant(image_data) pred_bbox = infer(batch_data) for key, value in pred_bbox.items(): boxes = value[:, :, 0:4] pred_conf = value[:, :, 4:] boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)), scores=tf.reshape( pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])), max_output_size_per_class=50, max_total_size=50, iou_threshold=FLAGS.iou, score_threshold=FLAGS.score ) pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()] image = utils.draw_bbox(frame, pred_bbox,class_file_name=FLAGS.class_file_name)) curr_time = time.time() exec_time = curr_time - prev_time result = np.asarray(image) info = "time: %.2f ms" %(1000*exec_time) print(info) result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if not FLAGS.dis_cv2_window: cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) cv2.imshow("result", result) if cv2.waitKey(1) & 0xFF == ord('q'): break if FLAGS.output: out.write(result) frame_id += 1 if __name__ == '__main__': try: app.run(main) except SystemExit: pass
42.449612
116
0.646092
[ "MIT" ]
gaowei0518/tensorflow-yolov4-tflite
detectvideo.py
5,476
Python
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import math import dace import polybench N = dace.symbol('N') #datatypes = [dace.float64, dace.int32, dace.float32] datatype = dace.float64 # Dataset sizes sizes = [{N: 30}, {N: 90}, {N: 250}, {N: 1300}, {N: 2800}] args = [([N, N], datatype), ([N, N], datatype), ([N], datatype), ([N], datatype), ([N], datatype), ([1], datatype), ([1], datatype)] outputs = [(4, 'y')] def init_array(A, B, tmp, x, y, alpha, beta): n = N.get() alpha[0] = datatype(1.5) beta[0] = datatype(1.2) for i in range(n): x[i] = datatype(i % n) / n for j in range(n): A[i, j] = datatype((i * j + 1) % n) / n B[i, j] = datatype((i * j + 2) % n) / n @dace.program(datatype[N, N], datatype[N, N], datatype[N], datatype[N], datatype[N], datatype[1], datatype[1]) def gesummv(A, B, tmp, x, y, alpha, beta): @dace.map def compute_ty(i: _[0:N], j: _[0:N]): ia << A[i, j] ib << B[i, j] ix << x[j] ot >> tmp(1, lambda a, b: a + b, 0)[i] oy >> y(1, lambda a, b: a + b, 0)[i] ot = ia * ix oy = ib * ix @dace.map def update_y(i: _[0:N]): iy << y[i] ialpha << alpha ibeta << beta it << tmp[i] oy >> y[i] oy = ialpha * it + ibeta * iy if __name__ == '__main__': polybench.main(sizes, args, outputs, init_array, gesummv)
25.137931
115
0.508916
[ "BSD-3-Clause" ]
Berke-Ates/dace
samples/polybench/gesummv.py
1,458
Python
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 unga <[email protected]> # # Distributed under terms of the MIT license. """ Monitor a set of parameters in a background thread stream output over websocket To start monitor, run this file, or if qcodes is installed as a module: ``% python -m qcodes.monitor.monitor`` Add parameters to monitor in your measurement by creating a new monitor with a list of parameters to monitor: ``monitor = qcodes.Monitor(param1, param2, param3, ...)`` """ import sys import logging import os import time import json from contextlib import suppress from typing import Dict, Union, Any, Optional, Sequence, Callable, Awaitable from collections import defaultdict import asyncio from asyncio import CancelledError from threading import Thread, Event import socketserver import webbrowser import websockets from qcodes.instrument.parameter import Parameter if sys.version_info < (3, 7): all_tasks = asyncio.Task.all_tasks else: all_tasks = asyncio.all_tasks WEBSOCKET_PORT = 5678 SERVER_PORT = 3000 log = logging.getLogger(__name__) def _get_metadata(*parameters: Parameter) -> Dict[str, Any]: """ Return a dictionary that contains the parameter metadata grouped by the instrument it belongs to. """ metadata_timestamp = time.time() # group metadata by instrument metas: dict = defaultdict(list) for parameter in parameters: # Get the latest value from the parameter, # respecting the max_val_age parameter meta: Dict[str, Optional[Union[float, str]]] = {} meta["value"] = str(parameter.get_latest()) timestamp = parameter.get_latest.get_timestamp() if timestamp is not None: meta["ts"] = timestamp.timestamp() else: meta["ts"] = None meta["name"] = parameter.label or parameter.name meta["unit"] = parameter.unit # find the base instrument that this parameter belongs to baseinst = parameter.root_instrument if baseinst is None: metas["Unbound Parameter"].append(meta) else: metas[str(baseinst)].append(meta) # Create list of parameters, grouped by instrument parameters_out = [] for instrument in metas: temp = {"instrument": instrument, "parameters": metas[instrument]} parameters_out.append(temp) state = {"ts": metadata_timestamp, "parameters": parameters_out} return state def _handler(parameters: Sequence[Parameter], interval: float) \ -> Callable[[websockets.WebSocketServerProtocol, str], Awaitable[None]]: """ Return the websockets server handler. """ async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: """ Create a websockets handler that sends parameter values to a listener every "interval" seconds. """ while True: try: # Update the parameter values try: meta = _get_metadata(*parameters) except ValueError: log.exception("Error getting parameters") break log.debug("sending.. to %r", websocket) await websocket.send(json.dumps(meta)) # Wait for interval seconds and then send again await asyncio.sleep(interval) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug("Got CancelledError or ConnectionClosed", exc_info=True) break log.debug("Closing websockets connection") return server_func class Monitor(Thread): """ QCodes Monitor - WebSockets server to monitor qcodes parameters. """ running = None def __init__(self, *parameters: Parameter, interval: float = 1): """ Monitor qcodes parameters. Args: *parameters: Parameters to monitor. interval: How often one wants to refresh the values. """ super().__init__() # Check that all values are valid parameters for parameter in parameters: if not isinstance(parameter, Parameter): raise TypeError(f"We can only monitor QCodes " f"Parameters, not {type(parameter)}") self.loop: Optional[asyncio.AbstractEventLoop] = None self.server: Optional[websockets.WebSocketServer] = None self._parameters = parameters self.loop_is_closed = Event() self.server_is_started = Event() self.handler = _handler(parameters, interval=interval) log.debug("Start monitoring thread") if Monitor.running: # stop the old server log.debug("Stopping and restarting server") Monitor.running.stop() self.start() # Wait until the loop is running self.server_is_started.wait(timeout=5) if not self.server_is_started.is_set(): raise RuntimeError("Failed to start server") Monitor.running = self def run(self) -> None: """ Start the event loop and run forever. """ log.debug("Running Websocket server") self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) try: server_start = websockets.serve(self.handler, '127.0.0.1', WEBSOCKET_PORT, close_timeout=1) self.server = self.loop.run_until_complete(server_start) self.server_is_started.set() self.loop.run_forever() except OSError: # The code above may throw an OSError # if the socket cannot be bound log.exception("Server could not be started") finally: log.debug("loop stopped") log.debug("Pending tasks at close: %r", all_tasks(self.loop)) self.loop.close() log.debug("loop closed") self.loop_is_closed.set() def update_all(self) -> None: """ Update all parameters in the monitor. """ for parameter in self._parameters: # call get if it can be called without arguments with suppress(TypeError): parameter.get() def stop(self) -> None: """ Shutdown the server, close the event loop and join the thread. Setting active Monitor to ``None``. """ self.join() Monitor.running = None async def __stop_server(self) -> None: log.debug("asking server %r to close", self.server) if self.server is not None: self.server.close() log.debug("waiting for server to close") if self.loop is not None and self.server is not None: await self.loop.create_task(self.server.wait_closed()) log.debug("stopping loop") if self.loop is not None: log.debug("Pending tasks at stop: %r", all_tasks(self.loop)) self.loop.stop() def join(self, timeout: Optional[float] = None) -> None: """ Overwrite ``Thread.join`` to make sure server is stopped before joining avoiding a potential deadlock. """ log.debug("Shutting down server") if not self.is_alive(): # we run this check before trying to run to prevent a cryptic # error message log.debug("monitor is dead") return try: if self.loop is not None: asyncio.run_coroutine_threadsafe(self.__stop_server(), self.loop) except RuntimeError: # the above may throw a runtime error if the loop is already # stopped in which case there is nothing more to do log.exception("Could not close loop") self.loop_is_closed.wait(timeout=5) if not self.loop_is_closed.is_set(): raise RuntimeError("Failed to join loop") log.debug("Loop reported closed") super().join(timeout=timeout) log.debug("Monitor Thread has joined") @staticmethod def show() -> None: """ Overwrite this method to show/raise your monitor GUI F.ex. :: import webbrowser url = "localhost:3000" # Open URL in new window, raising the window if possible. webbrowser.open_new(url) """ webbrowser.open("http://localhost:{}".format(SERVER_PORT)) if __name__ == "__main__": import http.server # If this file is run, create a simple webserver that serves a simple # website that can be used to view monitored parameters. STATIC_DIR = os.path.join(os.path.dirname(__file__), 'dist') os.chdir(STATIC_DIR) try: log.info("Starting HTTP Server at http://localhost:%i", SERVER_PORT) with socketserver.TCPServer(("", SERVER_PORT), http.server.SimpleHTTPRequestHandler) as httpd: log.debug("serving directory %s", STATIC_DIR) webbrowser.open("http://localhost:{}".format(SERVER_PORT)) httpd.serve_forever() except KeyboardInterrupt: log.info("Shutting Down HTTP Server")
33.967509
89
0.610054
[ "MIT" ]
Akshita07/Qcodes
qcodes/monitor/monitor.py
9,410
Python
#!/usr/bin/env python3 # Copyright (c) 2019 The TradePlus_Coin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # -*- coding: utf-8 -*- from io import BytesIO from struct import pack from random import randint, choice import time from test_framework.authproxy import JSONRPCException from test_framework.blocktools import create_coinbase, create_block from test_framework.key import CECKey from test_framework.messages import CTransaction, CTxOut, CTxIn, COIN, msg_block from test_framework.mininode import network_thread_start from test_framework.test_framework import BitcoinTestFramework from test_framework.script import CScript, OP_CHECKSIG from test_framework.util import hash256, bytes_to_hex_str, hex_str_to_bytes, connect_nodes_bi, p2p_port from .util import TestNode, create_transaction, utxo_to_stakingPrevOuts, dir_size ''' ------------------------------------------------------------------------- TradePlus_Coin_FakeStakeTest CLASS ---------------------------------------------------- General Test Class to be extended by individual tests for each attack test ''' class TradePlus_Coin_FakeStakeTest(BitcoinTestFramework): def set_test_params(self): ''' Setup test environment :param: :return: ''' self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [['-staking=1', '-debug=net']]*self.num_nodes def setup_network(self): ''' Can't rely on syncing all the nodes when staking=1 :param: :return: ''' self.setup_nodes() for i in range(self.num_nodes - 1): for j in range(i+1, self.num_nodes): connect_nodes_bi(self.nodes, i, j) def init_test(self): ''' Initializes test parameters :param: :return: ''' title = "*** Starting %s ***" % self.__class__.__name__ underline = "-" * len(title) self.log.info("\n\n%s\n%s\n%s\n", title, underline, self.description) # Global Test parameters (override in run_test) self.DEFAULT_FEE = 0.1 # Spam blocks to send in current test self.NUM_BLOCKS = 30 # Setup the p2p connections and start up the network thread. self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(TestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) network_thread_start() # Start up network handling in another thread self.node = self.nodes[0] # Let the test nodes get in sync for i in range(self.num_nodes): self.test_nodes[i].wait_for_verack() def run_test(self): ''' Performs the attack of this test - run init_test first. :param: :return: ''' self.description = "" self.init_test() return def create_spam_block(self, hashPrevBlock, stakingPrevOuts, height, fStakeDoubleSpent=False, fZPoS=False, spendingPrevOuts={}): ''' creates a block to spam the network with :param hashPrevBlock: (hex string) hash of previous block stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints (to be used as staking inputs) to amount, block_time, nStakeModifier, hashStake height: (int) block height fStakeDoubleSpent: (bool) spend the coinstake input inside the block fZPoS: (bool) stake the block with zerocoin spendingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints (to be used as tx inputs) to amount, block_time, nStakeModifier, hashStake :return block: (CBlock) generated block ''' # If not given inputs to create spam txes, use a copy of the staking inputs if len(spendingPrevOuts) == 0: spendingPrevOuts = dict(stakingPrevOuts) # Get current time current_time = int(time.time()) nTime = current_time & 0xfffffff0 # Create coinbase TX # Even if PoS blocks have empty coinbase vout, the height is required for the vin script coinbase = create_coinbase(height) coinbase.vout[0].nValue = 0 coinbase.vout[0].scriptPubKey = b"" coinbase.nTime = nTime coinbase.rehash() # Create Block with coinbase block = create_block(int(hashPrevBlock, 16), coinbase, nTime) # Find valid kernel hash - Create a new private key used for block signing. if not block.solve_stake(stakingPrevOuts): raise Exception("Not able to solve for any prev_outpoint") # Sign coinstake TX and add it to the block signed_stake_tx = self.sign_stake_tx(block, stakingPrevOuts[block.prevoutStake][0], fZPoS) block.vtx.append(signed_stake_tx) # Remove coinstake input prevout unless we want to try double spending in the same block. # Skip for zPoS as the spendingPrevouts are just regular UTXOs if not fZPoS and not fStakeDoubleSpent: del spendingPrevOuts[block.prevoutStake] # remove a random prevout from the list # (to randomize block creation if the same height is picked two times) if len(spendingPrevOuts) > 0: del spendingPrevOuts[choice(list(spendingPrevOuts))] # Create spam for the block. Sign the spendingPrevouts for outPoint in spendingPrevOuts: value_out = int(spendingPrevOuts[outPoint][0] - self.DEFAULT_FEE * COIN) tx = create_transaction(outPoint, b"", value_out, nTime, scriptPubKey=CScript([self.block_sig_key.get_pubkey(), OP_CHECKSIG])) # sign txes signed_tx_hex = self.node.signrawtransaction(bytes_to_hex_str(tx.serialize()))['hex'] signed_tx = CTransaction() signed_tx.deserialize(BytesIO(hex_str_to_bytes(signed_tx_hex))) block.vtx.append(signed_tx) # Get correct MerkleRoot and rehash block block.hashMerkleRoot = block.calc_merkle_root() block.rehash() # Sign block with coinstake key and return it block.sign_block(self.block_sig_key) return block def spend_utxo(self, utxo, address_list): ''' spend amount from previously unspent output to a provided address :param utxo: (JSON) returned from listunspent used as input addresslist: (string) destination address :return: txhash: (string) tx hash if successful, empty string otherwise ''' try: inputs = [{"txid":utxo["txid"], "vout":utxo["vout"]}] out_amount = (float(utxo["amount"]) - self.DEFAULT_FEE)/len(address_list) outputs = {} for address in address_list: outputs[address] = out_amount spendingTx = self.node.createrawtransaction(inputs, outputs) spendingTx_signed = self.node.signrawtransaction(spendingTx) if spendingTx_signed["complete"]: txhash = self.node.sendrawtransaction(spendingTx_signed["hex"]) return txhash else: self.log.warning("Error: %s" % str(spendingTx_signed["errors"])) return "" except JSONRPCException as e: self.log.error("JSONRPCException: %s" % str(e)) return "" def spend_utxos(self, utxo_list, address_list = []): ''' spend utxos to provided list of addresses or 10 new generate ones. :param utxo_list: (JSON list) returned from listunspent used as input address_list: (string list) [optional] recipient TradePlus_Coin addresses. if not set, 10 new addresses will be generated from the wallet for each tx. :return: txHashes (string list) tx hashes ''' txHashes = [] # If not given, get 10 new addresses from self.node wallet if address_list == []: for i in range(10): address_list.append(self.node.getnewaddress()) for utxo in utxo_list: try: # spend current utxo to provided addresses txHash = self.spend_utxo(utxo, address_list) if txHash != "": txHashes.append(txHash) except JSONRPCException as e: self.log.error("JSONRPCException: %s" % str(e)) continue return txHashes def stake_amplification_step(self, utxo_list, address_list = []): ''' spends a list of utxos providing the list of new outputs :param utxo_list: (JSON list) returned from listunspent used as input address_list: (string list) [optional] recipient TradePlus_Coin addresses. :return: new_utxos: (JSON list) list of new (valid) inputs after the spends ''' self.log.info("--> Stake Amplification step started with %d UTXOs", len(utxo_list)) txHashes = self.spend_utxos(utxo_list, address_list) num_of_txes = len(txHashes) new_utxos = [] if num_of_txes> 0: self.log.info("Created %d transactions...Mining 2 blocks to include them..." % num_of_txes) self.node.generate(2) time.sleep(2) new_utxos = self.node.listunspent() self.log.info("Amplification step produced %d new \"Fake Stake\" inputs:" % len(new_utxos)) return new_utxos def stake_amplification(self, utxo_list, iterations, address_list = []): ''' performs the "stake amplification" which gives higher chances at finding fake stakes :param utxo_list: (JSON list) returned from listunspent used as input iterations: (int) amount of stake amplification steps to perform address_list: (string list) [optional] recipient TradePlus_Coin addresses. :return: all_inputs: (JSON list) list of all spent inputs ''' self.log.info("** Stake Amplification started with %d UTXOs", len(utxo_list)) valid_inputs = utxo_list all_inputs = [] for i in range(iterations): all_inputs = all_inputs + valid_inputs old_inputs = valid_inputs valid_inputs = self.stake_amplification_step(old_inputs, address_list) self.log.info("** Stake Amplification ended with %d \"fake\" UTXOs", len(all_inputs)) return all_inputs def sign_stake_tx(self, block, stake_in_value, fZPoS=False): ''' signs a coinstake transaction :param block: (CBlock) block with stake to sign stake_in_value: (int) staked amount fZPoS: (bool) zerocoin stake :return: stake_tx_signed: (CTransaction) signed tx ''' self.block_sig_key = CECKey() if fZPoS: self.log.info("Signing zPoS stake...") # Create raw zerocoin stake TX (signed) raw_stake = self.node.createrawzerocoinstake(block.prevoutStake) stake_tx_signed_raw_hex = raw_stake["hex"] # Get stake TX private key to sign the block with stake_pkey = raw_stake["private-key"] self.block_sig_key.set_compressed(True) self.block_sig_key.set_secretbytes(bytes.fromhex(stake_pkey)) else: # Create a new private key and get the corresponding public key self.block_sig_key.set_secretbytes(hash256(pack('<I', 0xffff))) pubkey = self.block_sig_key.get_pubkey() # Create the raw stake TX (unsigned) scriptPubKey = CScript([pubkey, OP_CHECKSIG]) outNValue = int(stake_in_value + 2*COIN) stake_tx_unsigned = CTransaction() stake_tx_unsigned.nTime = block.nTime stake_tx_unsigned.vin.append(CTxIn(block.prevoutStake)) stake_tx_unsigned.vin[0].nSequence = 0xffffffff stake_tx_unsigned.vout.append(CTxOut()) stake_tx_unsigned.vout.append(CTxOut(outNValue, scriptPubKey)) # Sign the stake TX stake_tx_signed_raw_hex = self.node.signrawtransaction(bytes_to_hex_str(stake_tx_unsigned.serialize()))['hex'] # Deserialize the signed raw tx into a CTransaction object and return it stake_tx_signed = CTransaction() stake_tx_signed.deserialize(BytesIO(hex_str_to_bytes(stake_tx_signed_raw_hex))) return stake_tx_signed def get_prevouts(self, utxo_list, blockHeight, zpos=False): ''' get prevouts (map) for each utxo in a list :param utxo_list: <if zpos=False> (JSON list) utxos returned from listunspent used as input <if zpos=True> (JSON list) mints returned from listmintedzerocoins used as input blockHeight: (int) height of the previous block zpos: (bool) type of utxo_list :return: stakingPrevOuts: ({COutPoint --> (int, int, int, str)} dictionary) map outpoints to amount, block_time, nStakeModifier, hashStake ''' zerocoinDenomList = [1, 5, 10, 50, 100, 500, 1000, 5000] stakingPrevOuts = {} for utxo in utxo_list: if zpos: # get mint checkpoint checkpointHeight = blockHeight - 200 checkpointBlock = self.node.getblock(self.node.getblockhash(checkpointHeight), True) checkpoint = int(checkpointBlock['acc_checkpoint'], 16) # parse checksum and get checksumblock pos = zerocoinDenomList.index(utxo['denomination']) checksum = (checkpoint >> (32 * (len(zerocoinDenomList) - 1 - pos))) & 0xFFFFFFFF checksumBlock = self.node.getchecksumblock(hex(checksum), utxo['denomination'], True) # get block hash and block time txBlockhash = checksumBlock['hash'] txBlocktime = checksumBlock['time'] else: # get raw transaction for current input utxo_tx = self.node.getrawtransaction(utxo['txid'], 1) # get block hash and block time txBlocktime = utxo_tx['blocktime'] txBlockhash = utxo_tx['blockhash'] # get Stake Modifier stakeModifier = int(self.node.getblock(txBlockhash)['modifier'], 16) # assemble prevout object utxo_to_stakingPrevOuts(utxo, stakingPrevOuts, txBlocktime, stakeModifier, zpos) return stakingPrevOuts def log_data_dir_size(self): ''' Prints the size of the '/regtest/blocks' directory. :param: :return: ''' init_size = dir_size(self.node.datadir + "/regtest/blocks") self.log.info("Size of data dir: %s kilobytes" % str(init_size)) def test_spam(self, name, staking_utxo_list, fRandomHeight=False, randomRange=0, randomRange2=0, fDoubleSpend=False, fMustPass=False, fZPoS=False, spending_utxo_list=[]): ''' General method to create, send and test the spam blocks :param name: (string) chain branch (usually either "Main" or "Forked") staking_utxo_list: (string list) utxos to use for staking fRandomHeight: (bool) send blocks at random height randomRange: (int) if fRandomHeight=True, height is >= current-randomRange randomRange2: (int) if fRandomHeight=True, height is < current-randomRange2 fDoubleSpend: (bool) if true, stake input is double spent in block.vtx fMustPass: (bool) if true, the blocks must be stored on disk fZPoS: (bool) stake the block with zerocoin spending_utxo_list: (string list) utxos to use for spending :return: err_msgs: (string list) reports error messages from the test or an empty list if test is successful ''' # Create empty error messages list err_msgs = [] # Log initial datadir size self.log_data_dir_size() # Get latest block number and hash block_count = self.node.getblockcount() pastBlockHash = self.node.getblockhash(block_count) randomCount = block_count self.log.info("Current height: %d" % block_count) for i in range(0, self.NUM_BLOCKS): if i !=0: self.log.info("Sent %d blocks out of %d" % (i, self.NUM_BLOCKS)) # if fRandomHeight=True get a random block number (in range) and corresponding hash if fRandomHeight: randomCount = randint(block_count - randomRange, block_count - randomRange2) pastBlockHash = self.node.getblockhash(randomCount) # Get spending prevouts and staking prevouts for the height of current block current_block_n = randomCount + 1 stakingPrevOuts = self.get_prevouts(staking_utxo_list, randomCount, zpos=fZPoS) spendingPrevOuts = self.get_prevouts(spending_utxo_list, randomCount) # Create the spam block block = self.create_spam_block(pastBlockHash, stakingPrevOuts, current_block_n, fStakeDoubleSpent=fDoubleSpend, fZPoS=fZPoS, spendingPrevOuts=spendingPrevOuts) # Log time and size of the block block_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(block.nTime)) block_size = len(block.serialize())/1000 self.log.info("Sending block %d [%s...] - nTime: %s - Size (kb): %.2f", current_block_n, block.hash[:7], block_time, block_size) # Try submitblock var = self.node.submitblock(bytes_to_hex_str(block.serialize())) time.sleep(1) if (not fMustPass and var not in [None, "bad-txns-invalid-ztdps"]) or (fMustPass and var != "inconclusive"): self.log.error("submitblock [fMustPass=%s] result: %s" % (str(fMustPass), str(var))) err_msgs.append("submitblock %d: %s" % (current_block_n, str(var))) # Try sending the message block msg = msg_block(block) try: self.test_nodes[0].handle_connect() self.test_nodes[0].send_message(msg) time.sleep(2) block_ret = self.node.getblock(block.hash) if not fMustPass and block_ret is not None: self.log.error("Error, block stored in %s chain" % name) err_msgs.append("getblock %d: result not None" % current_block_n) if fMustPass: if block_ret is None: self.log.error("Error, block NOT stored in %s chain" % name) err_msgs.append("getblock %d: result is None" % current_block_n) else: self.log.info("Good. Block IS stored on disk.") except JSONRPCException as e: exc_msg = str(e) if exc_msg == "Can't read block from disk (-32603)": if fMustPass: self.log.warning("Bad! Block was NOT stored to disk.") err_msgs.append(exc_msg) else: self.log.info("Good. Block was not stored on disk.") else: self.log.warning(exc_msg) err_msgs.append(exc_msg) except Exception as e: exc_msg = str(e) self.log.error(exc_msg) err_msgs.append(exc_msg) self.log.info("Sent all %s blocks." % str(self.NUM_BLOCKS)) # Log final datadir size self.log_data_dir_size() # Return errors list return err_msgs
46.678899
138
0.602201
[ "MIT" ]
tdpsdevextreme/TradePlusCoin
test/functional/fake_stake/base_test.py
20,352
Python
import asyncio import sys import pytest from aws_lambda_powertools.event_handler import AppSyncResolver from aws_lambda_powertools.event_handler.appsync import Router from aws_lambda_powertools.utilities.data_classes import AppSyncResolverEvent from aws_lambda_powertools.utilities.typing import LambdaContext from tests.functional.utils import load_event def test_direct_resolver(): # Check whether we can handle an example appsync direct resolver mock_event = load_event("appSyncDirectResolver.json") app = AppSyncResolver() @app.resolver(field_name="createSomething") def create_something(id: str): # noqa AA03 VNE003 assert app.lambda_context == {} return id # Call the implicit handler result = app(mock_event, {}) assert result == "my identifier" def test_amplify_resolver(): # Check whether we can handle an example appsync resolver mock_event = load_event("appSyncResolverEvent.json") app = AppSyncResolver() @app.resolver(type_name="Merchant", field_name="locations") def get_location(page: int, size: int, name: str): assert app.current_event is not None assert isinstance(app.current_event, AppSyncResolverEvent) assert page == 2 assert size == 1 return name def handler(event, context): # Call the explicit resolve function return app.resolve(event, context) result = handler(mock_event, {}) assert result == "value" def test_resolver_no_params(): # GIVEN app = AppSyncResolver() @app.resolver(type_name="Query", field_name="noParams") def no_params(): return "no_params has no params" event = {"typeName": "Query", "fieldName": "noParams", "arguments": {}} # WHEN result = app.resolve(event, LambdaContext()) # THEN assert result == "no_params has no params" def test_resolver_value_error(): # GIVEN no defined field resolver app = AppSyncResolver() # WHEN with pytest.raises(ValueError) as exp: event = {"typeName": "type", "fieldName": "field", "arguments": {}} app.resolve(event, LambdaContext()) # THEN assert exp.value.args[0] == "No resolver found for 'type.field'" def test_resolver_yield(): # GIVEN app = AppSyncResolver() mock_event = {"typeName": "Customer", "fieldName": "field", "arguments": {}} @app.resolver(field_name="field") def func_yield(): yield "value" # WHEN mock_context = LambdaContext() result = app.resolve(mock_event, mock_context) # THEN assert next(result) == "value" def test_resolver_multiple_mappings(): # GIVEN app = AppSyncResolver() @app.resolver(field_name="listLocations") @app.resolver(field_name="locations") def get_locations(name: str, description: str = ""): return name + description # WHEN mock_event1 = {"typeName": "Query", "fieldName": "listLocations", "arguments": {"name": "value"}} mock_event2 = { "typeName": "Merchant", "fieldName": "locations", "arguments": {"name": "value2", "description": "description"}, } result1 = app.resolve(mock_event1, LambdaContext()) result2 = app.resolve(mock_event2, LambdaContext()) # THEN assert result1 == "value" assert result2 == "value2description" @pytest.mark.skipif(sys.version_info < (3, 8), reason="only for python versions that support asyncio.run") def test_resolver_async(): # GIVEN app = AppSyncResolver() mock_event = {"typeName": "Customer", "fieldName": "field", "arguments": {}} @app.resolver(field_name="field") async def get_async(): await asyncio.sleep(0.0001) return "value" # WHEN mock_context = LambdaContext() result = app.resolve(mock_event, mock_context) # THEN assert asyncio.run(result) == "value" def test_resolve_custom_data_model(): # Check whether we can handle an example appsync direct resolver mock_event = load_event("appSyncDirectResolver.json") class MyCustomModel(AppSyncResolverEvent): @property def country_viewer(self): return self.request_headers.get("cloudfront-viewer-country") app = AppSyncResolver() @app.resolver(field_name="createSomething") def create_something(id: str): # noqa AA03 VNE003 return id # Call the implicit handler result = app(event=mock_event, context=LambdaContext(), data_model=MyCustomModel) assert result == "my identifier" assert app.current_event.country_viewer == "US" def test_resolver_include_resolver(): # GIVEN app = AppSyncResolver() router = Router() @router.resolver(type_name="Query", field_name="listLocations") def get_locations(name: str): return "get_locations#" + name @app.resolver(field_name="listLocations2") def get_locations2(name: str): return "get_locations2#" + name app.include_router(router) # WHEN mock_event1 = {"typeName": "Query", "fieldName": "listLocations", "arguments": {"name": "value"}} mock_event2 = {"typeName": "Query", "fieldName": "listLocations2", "arguments": {"name": "value"}} result1 = app.resolve(mock_event1, LambdaContext()) result2 = app.resolve(mock_event2, LambdaContext()) # THEN assert result1 == "get_locations#value" assert result2 == "get_locations2#value"
28.314136
106
0.67659
[ "Apache-2.0", "MIT-0" ]
BVMiko/aws-lambda-powertools-python
tests/functional/event_handler/test_appsync.py
5,408
Python
#-*- coding: utf-8 -*- # Import the extension import isce3.extensions.isceextension as isceextension # Import the wrappers def crossmul(**kwds): """A factory for Crossmul""" from .Crossmul import Crossmul return Crossmul(**kwds) # end of file
18.5
54
0.698842
[ "Apache-2.0" ]
piyushrpt/isce3
python/packages/isce3/signal/__init__.py
259
Python
from IPython.display import display, Latex display(Latex('$ d[mRNA_{nuc}]/dt = k_t - k_{exp} * [mRNA_{nuc}]$')) print("and") display(Latex('$ d[mRNA_{cyt}]/dt = k_{exp} * [mRNA_{nuc}] - k_{deg} * [mRNA_{cyt}]$')) print("No. This is because mRNAs are continuously produced (and degraded) at independent rates in the model, so there is no particular reason why their number should be conserved.")
50.75
182
0.682266
[ "MIT" ]
oercompbiomed/CBM101
K_Mathematical_Modeling/Section 2/solutionODEsExercise3.py
406
Python
import can from threading import Thread import asyncio import settings class ThreadModuleAbstract: thread = None bus: can.ThreadSafeBus = None loop: asyncio.AbstractEventLoop = None _can_filters: [] = None def __init__(self): self.bus = self._can = can.ThreadSafeBus( channel=settings.CAN_INTERFACE, bustype='socketcan_ctypes', can_filters=self._can_filters ) self.__register_notifier() self.loop = asyncio.new_event_loop() def run(self): self.thread = Thread(target=self.execute) self.thread.daemon = True self.thread.start() def execute(self): pass def _on_message(self, msg: can.Message): pass def __register_notifier(self): self._notifier = can.Notifier(self.bus, [ self._on_message ], loop=self.loop)
23.918919
49
0.630508
[ "MIT" ]
Exus1/alfa-blue-me
module/ThreadModuleAbstract.py
885
Python
name = 'codebench'
9.5
18
0.684211
[ "MIT" ]
li-boxuan/codebench
codebench/__init__.py
19
Python
import pytest from aiohttp import web from app import pochta @pytest.fixture def app(aiohttp_client): app = web.Application() app.router.add_get('/pochta', pochta) return aiohttp_client(app) async def test_work(aiohttp_client, loop, app): client = app() resp = await client.get('/pochta?from_city=москва&from_street=алтуфьевское&to_city=уфа&to_street=парковая') assert resp.status == 200 text = await resp.text() assert '{"pochta": 259.34}' == text async def test_not_work(aiohttp_client, loop, app): client = app() resp = await client.get('/pochta?from_city=москва&from_street=алтуфьевское&to_city=уфа') assert resp.status == 200 text = await resp.text() assert '{"pochta": null}' == text
25.862069
111
0.698667
[ "MIT" ]
postman17/lks-delivery
test-aiohttp.py
800
Python
import random import pytest import numpy as np from eight_mile.utils import calc_nfeats def test_use_nfeats(): filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] input_nfeat = random.randint(1, 100) gold_nfeats = [input_nfeat] * len(filtsz) _, nfeat = calc_nfeats(filtsz, None, None, nfeats=input_nfeat) assert nfeat == gold_nfeats def test_use_nfeats_filtsz_unchanged(): gold_filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] nfeat = random.randint(1, 100) filtsz, _ = calc_nfeats(gold_filtsz, None, None, nfeats=nfeat) assert filtsz == gold_filtsz def test_use_nfeats_none(): filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] with pytest.raises(AssertionError): calc_nfeats(filtsz) def test_use_nfeats_list(): filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] nfeats = [random.randint(1, 10) for _ in range(len(filtsz))] with pytest.raises(AssertionError): _, nfeat = calc_nfeats(filtsz, None, None, nfeats=nfeats) def test_extract_tuple(): filt_feat = [(random.randint(1, 10), random.randint(10, 20)) for _ in range(random.randint(2, 6))] gold_filtsz = tuple(filter_and_size[0] for filter_and_size in filt_feat) gold_nfeats = tuple(filter_and_size[1] for filter_and_size in filt_feat) filtsz, nfeats = calc_nfeats(filt_feat) assert filtsz == gold_filtsz assert nfeats == gold_nfeats def test_feat_factor_manual(): gold_filtsz = [1, 2, 3, 4, 5] feat_factor = 10 gold_nfeats = [10, 20, 30, 40, 50] filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, float("Infinity")) assert filtsz == gold_filtsz assert nfeats == gold_nfeats def test_feat_factor_capped(): gold_filtsz = [1, 2, 3, 4, 5] feat_factor = 10 gold_nfeats = [10, 20, 30, 30, 30] filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, 30) assert filtsz == gold_filtsz assert nfeats == gold_nfeats def test_feat_factor(): gold_filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] feat_factor = random.randint(10, 25) max_feat = random.randint(30, 40) gold_nfeats = np.minimum(np.array(gold_filtsz) * feat_factor, max_feat) filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, max_feat) np.testing.assert_equal(filtsz, gold_filtsz) np.testing.assert_equal(nfeats, gold_nfeats) def test_feat_factor_max_none(): filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))] feat_factor = 10 with pytest.raises(AssertionError): calc_nfeats(filtsz, nfeat_factor=feat_factor, max_feat=None)
34.597403
102
0.703829
[ "Apache-2.0" ]
blester125/baseline
tests/test_calc_feats.py
2,664
Python
from typing import List, Tuple import pytest from returns.io import IOFailure, IOResult, IOSuccess from returns.pipeline import managed from returns.result import Failure, Result, Success _acquire_success = IOSuccess('acquire success') _acquire_failure = IOFailure('acquire failure') def _use_success(inner_value: str) -> IOResult[str, str]: return IOSuccess('use success') def _use_failure(inner_value: str) -> IOResult[str, str]: return IOFailure('use failure') class _ReleaseSuccess(object): def __init__(self, logs: List[Tuple[str, Result[str, str]]]) -> None: self._logs = logs def __call__( self, inner_value: str, use_result: Result[str, str], ) -> IOResult[None, str]: self._logs.append((inner_value, use_result)) return IOSuccess(None) class _ReleaseFailure(object): def __init__(self, logs: List[Tuple[str, Result[str, str]]]) -> None: self._logs = logs def __call__( self, inner_value: str, use_result: Result[str, str], ) -> IOResult[None, str]: return IOFailure('release failure') @pytest.mark.parametrize(('acquire', 'use', 'release', 'final_result', 'log'), [ # Acquire success: ( _acquire_success, _use_success, _ReleaseSuccess, IOSuccess('use success'), [('acquire success', Success('use success'))], ), ( _acquire_success, _use_success, _ReleaseFailure, IOFailure('release failure'), [], ), ( _acquire_success, _use_failure, _ReleaseSuccess, IOFailure('use failure'), [('acquire success', Failure('use failure'))], ), ( _acquire_success, _use_failure, _ReleaseFailure, IOFailure('release failure'), [], ), # Acquire failure: ( _acquire_failure, _use_success, _ReleaseSuccess, IOFailure('acquire failure'), [], ), ( _acquire_failure, _use_failure, _ReleaseSuccess, IOFailure('acquire failure'), [], ), ( _acquire_failure, _use_success, _ReleaseFailure, IOFailure('acquire failure'), [], ), ( _acquire_failure, _use_failure, _ReleaseFailure, IOFailure('acquire failure'), [], ), ]) def test_all_success(acquire, use, release, final_result, log): """Ensures that managed works as intended.""" pipeline_logs: List[Tuple[str, Result[str, str]]] = [] pipeline_result = managed( use, release(pipeline_logs), )(acquire) assert pipeline_result == final_result assert pipeline_logs == log def test_full_typing(): """This test is here to be a case for typing.""" logs: List[Tuple[str, Result[str, str]]] = [] pipeline_result = managed( _use_success, _ReleaseSuccess(logs), )(_acquire_success) assert pipeline_result == IOSuccess('use success') assert logs == [('acquire success', Success('use success'))]
24.217054
80
0.601472
[ "BSD-2-Clause" ]
CucumisSativus/returns
tests/test_pipeline/test_managed/test_managed_ioresult.py
3,124
Python
# -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ split_long_utter_to_short.py ] # Synopsis [ preprocess long audio / speech to shorter versions ] # Author [ Andy T. Liu (Andi611) ] # Copyright [ Copyleft(c), Speech Lab, NTU, Taiwan ] """*********************************************************************************************""" ############### # IMPORTATION # ############### import os import torch import argparse import torchaudio from tqdm import tqdm from pathlib import Path from joblib import Parallel, delayed torchaudio.set_audio_backend("sox_io") ############################# # PREPROCESS CONFIGURATIONS # ############################# def get_preprocess_args(): parser = argparse.ArgumentParser(description='preprocess arguments for any dataset.') parser.add_argument('-i', '--input_path', default='/livingrooms/public/LibriLight/', type=str, help='Path to your LibriSpeech directory', required=False) parser.add_argument('-o', '--output_path', default='/livingrooms/public/LibriLight/', type=str, help='Path to store output', required=False) parser.add_argument('-s', '--split_size', default=60, type=int, help='Split size in seconds', required=False) parser.add_argument('-a', '--audio_extension', default='.flac', type=str, help='audio file type (.wav / .flac / .mp3 / etc)', required=False) parser.add_argument('-n', '--name', default='-splitted', type=str, help='Name to append on the original directory', required=False) parser.add_argument('--n_jobs', default=-1, type=int, help='Number of jobs used for computation', required=False) args = parser.parse_args() return args ################## # SPLIT AND SAVE # ################## def split_and_save(input_file, current_split, args): wav, sr = torchaudio.load(input_file) # compute the size of each chunk chunk_size = args.split_size*sr quotient, remainder = divmod(wav.size(1), chunk_size) sections = [chunk_size for _ in range(quotient)] sections.append(remainder) # the remainder is the last chunk splitted_wav = torch.split(wav, split_size_or_sections=sections, dim=1) check_sum = 0 for i, w in enumerate(splitted_wav): check_sum += w.size(1) file_name = os.path.basename(input_file).split('.')[0] new_file_name = file_name.replace(file_name, file_name+'-'+str(i)) new_file_path = input_file.replace(current_split, current_split+args.name) new_file_path = new_file_path.replace(file_name, new_file_name) if args.input_path != args.output_path: new_file_path = new_file_path.replace(args.input_path, args.output_path) os.makedirs((os.path.dirname(new_file_path)), exist_ok=True) torchaudio.save(new_file_path, w, sr) assert check_sum == wav.size(1) ################### # GENERATE SPLITS # ################### def generate_splits(args, tr_set, audio_extension): for i, s in enumerate(tr_set): if os.path.isdir(os.path.join(args.input_path, s.lower())): s = s.lower() elif os.path.isdir(os.path.join(args.input_path, s.upper())): s = s.upper() else: assert NotImplementedError print('') todo = list(Path(os.path.join(args.input_path, s)).rglob('*' + audio_extension)) # '*.flac' print(f'Preprocessing data in: {s}, {len(todo)} audio files found.') print('Splitting audio to shorter length...', flush=True) Parallel(n_jobs=args.n_jobs)(delayed(split_and_save)(str(file), s, args) for file in tqdm(todo)) print('All done, saved at', args.output_path, 'exit.') ######## # MAIN # ######## def main(): # get arguments args = get_preprocess_args() if 'librilight' in args.input_path.lower(): SETS = ['small', 'medium', 'large'] elif 'librispeech' in args.input_path.lower(): SETS = ['train-clean-100', 'train-clean-360', 'train-other-500', 'dev-clean', 'dev-other', 'test-clean', 'test-other'] elif 'timit' in args.input_path.lower(): SETS = ['TRAIN', 'TEST'] else: raise NotImplementedError # change the SETS list to match your dataset, for example: # SETS = ['train', 'dev', 'test'] # SETS = ['TRAIN', 'TEST'] # SETS = ['train-clean-100', 'train-clean-360', 'train-other-500', 'dev-clean', 'dev-other', 'test-clean', 'test-other'] # Select data sets for idx, s in enumerate(SETS): print('\t', idx, ':', s) tr_set = input('Please enter the index of splits you wish to use preprocess. (seperate with space): ') tr_set = [SETS[int(t)] for t in tr_set.split(' ')] # Run split generate_splits(args, tr_set, args.audio_extension) if __name__ == '__main__': main()
38.354331
157
0.607678
[ "MIT" ]
Ethan07902050/s3prl
s3prl/preprocess/split_long_utter_to_short.py
4,871
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC HTTP basics.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import http.client import urllib.parse class HTTPBasicsTest (BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 def setup_network(self): self.setup_nodes() def run_test(self): ################################################# # lowlevel check for http persistent connection # ################################################# url = urllib.parse.urlparse(self.nodes[0].url) authpair = url.username + ':' + url.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock!=None) #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #must also response with a correct json-rpc message assert(conn.sock!=None) #according to http/1.1 connection must still be open! conn.close() #same should be if we add keep-alive because this should be the std. behaviour headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection": "keep-alive"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock!=None) #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #must also response with a correct json-rpc message assert(conn.sock!=None) #according to http/1.1 connection must still be open! conn.close() #now do the same with "Connection: close" headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection":"close"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock==None) #now the connection must be closed after the response #node1 (2nd node) is running with disabled keep-alive option urlNode1 = urllib.parse.urlparse(self.nodes[1].url) authpair = urlNode1.username + ':' + urlNode1.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode1.hostname, urlNode1.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) #node2 (third node) is running with standard keep-alive parameters which means keep-alive is on urlNode2 = urllib.parse.urlparse(self.nodes[2].url) authpair = urlNode2.username + ':' + urlNode2.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert(b'"error":null' in out1) assert(conn.sock!=None) #connection must be closed because ttmd should use keep-alive by default # Check excessive request size conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*1000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.NOT_FOUND) conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*10000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.BAD_REQUEST) if __name__ == '__main__': HTTPBasicsTest ().main ()
43.862385
104
0.632922
[ "MIT" ]
mytitanium/Titanium-Core-1.0
test/functional/interface_http.py
4,781
Python
import time, sys, os from database_check import database_check from link_processor import get_link from link_generator import alphabets_generator, random_address_generator, linear_address_generator, last_link_read_linear_address, mutation_address_generator def program_exit(link, work_mode): if work_mode == '1': # 1 = linear print('Saving last linear link position') open('last_link', 'w').write(link) # if work_mode == '3': # print('Mutation variations of the link ended') print('Script stoped') sys.exit(0) def start_link(): n_letters = input('How many letters in the link might be (at least 5): ') start_point = 'a' + '1'*(int(n_letters)-1) open('last_link', 'w').write(start_point) database_check() def main(): parser_type = input('''What type of content do you want to parse (input several numbers, if you want to parse any combination of the possible content): 1 - All (Groups/Channel/Users 2 - Channels 3 - Groups 4 - Users Your choise: ''')[:2].lower() work_mode = input('''What type of parsing you want to use: 1 - Linear parsing 2 - Random parsing 3 - Mutation parsing Your choise: ''')[0].lower() turbo_mode = input('Turn on turbo mod(y/n): ')[0].lower() # work mode with/out delay output = input('''What type of output do you want: 1 - All output (not False will be only the content, that was choosed to parse) 2 - If something found 3 - No output Your choise: ''')[0].lower() alphabet, alphabet1 = alphabets_generator() if work_mode == '1': try: # LINK Checking open('last_link').read() change_start = input('Do you want to change number of letters in link(y/n): ')[0].lower() if change_start == 'y': start_link() except: print('Initial setup!') start_link() linear_letter_link_ids_array = last_link_read_linear_address(alphabet, alphabet1) if work_mode == '3': try: os.remove('mutated') except: pass mutated_initial_link = input('Input initial word to mutate (length of the word is greater than 5 letters): ').lower() mutated_array = mutation_address_generator(mutated_initial_link) total_mutated_rows = len(mutated_array) print('Total mutation created: ',total_mutated_rows) mutated_word_id = 0 try: print('Parser is started!') while True: if work_mode =='1': # 1 = linear link = linear_address_generator(alphabet, alphabet1, linear_letter_link_ids_array) open('last_link', 'w').write(link) elif work_mode == '2': # 2 = random link = random_address_generator(alphabet, alphabet1) elif work_mode == '3': # 3 = mutation if total_mutated_rows > mutated_word_id +1: link = mutated_array[mutated_word_id] mutated_word_id += 1 else: program_exit(link, work_mode) url_get_status = get_link(link, output, parser_type) if url_get_status == 'connection_error': program_exit(link, work_mode) if turbo_mode != 'y': time.sleep(1.5) else: continue except KeyboardInterrupt: if work_mode == '3': print('Mutation checking keyboard interupted') program_exit(link, work_mode) main()
38.468085
157
0.600111
[ "Apache-2.0" ]
flexagoon/telegram_parser
telegram_parser_console/main.py
3,616
Python
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
31.460697
110
0.607281
[ "Apache-2.0" ]
XZH950926/meizitu
fang/Twisted-18.4.0/src/twisted/test/test_failure.py
31,618
Python
from sendbee_api.models import Model from sendbee_api.fields import TextField, BooleanField class RateLimitError(Model): """Data model for rate limit error""" _detail = TextField(index='detail', desc='Message detail') _error = BooleanField(index='error', desc='Error or not') _type = TextField(index='type', desc='Message type')
31.636364
62
0.729885
[ "MIT" ]
sendbee/sendbee-python-client
sendbee_api/rate_limit/models.py
348
Python
# Generated by Django 3.1 on 2020-10-07 00:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resources', '0016_job_auth_token'), ] operations = [ migrations.AlterField( model_name='report', name='logs', field=models.CharField(max_length=16384), ), ]
20.157895
53
0.597911
[ "MIT" ]
Quving/jobby
api/resources/migrations/0017_auto_20201007_0022.py
383
Python
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
39.029973
120
0.507121
[ "Apache-2.0" ]
DTTerastar/appdaemon
appdaemon/events.py
14,324
Python
""" Test lldb breakpoint setting by source regular expression. This test just tests the source file & function restrictions. """ from __future__ import print_function import os import time import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestSourceRegexBreakpoints(TestBase): mydir = TestBase.compute_mydir(__file__) def test_location(self): self.build() self.source_regex_locations() def test_restrictions(self): self.build() self.source_regex_restrictions() def source_regex_locations(self): """ Test that restricting source expressions to files & to functions. """ # Create a target by the debugger. exe = os.path.join(os.getcwd(), "a.out") target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # First look just in main: target_files = lldb.SBFileSpecList() target_files.Append(lldb.SBFileSpec("a.c")) func_names = lldb.SBStringList() func_names.AppendString("a_func") source_regex = "Set . breakpoint here" main_break = target.BreakpointCreateBySourceRegex( source_regex, lldb.SBFileSpecList(), target_files, func_names) num_locations = main_break.GetNumLocations() self.assertTrue( num_locations == 1, "a.c in a_func should give one breakpoint, got %d." % (num_locations)) loc = main_break.GetLocationAtIndex(0) self.assertTrue(loc.IsValid(), "Got a valid location.") address = loc.GetAddress() self.assertTrue( address.IsValid(), "Got a valid address from the location.") a_func_line = line_number("a.c", "Set A breakpoint here") line_entry = address.GetLineEntry() self.assertTrue(line_entry.IsValid(), "Got a valid line entry.") self.assertTrue(line_entry.line == a_func_line, "Our line number matches the one lldbtest found.") def source_regex_restrictions(self): """ Test that restricting source expressions to files & to functions. """ # Create a target by the debugger. exe = os.path.join(os.getcwd(), "a.out") target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # First look just in main: target_files = lldb.SBFileSpecList() target_files.Append(lldb.SBFileSpec("main.c")) source_regex = "Set . breakpoint here" main_break = target.BreakpointCreateBySourceRegex( source_regex, lldb.SBFileSpecList(), target_files, lldb.SBStringList()) num_locations = main_break.GetNumLocations() self.assertTrue( num_locations == 2, "main.c should have 2 matches, got %d." % (num_locations)) # Now look in both files: target_files.Append(lldb.SBFileSpec("a.c")) main_break = target.BreakpointCreateBySourceRegex( source_regex, lldb.SBFileSpecList(), target_files, lldb.SBStringList()) num_locations = main_break.GetNumLocations() self.assertTrue( num_locations == 4, "main.c and a.c should have 4 matches, got %d." % (num_locations)) # Now restrict it to functions: func_names = lldb.SBStringList() func_names.AppendString("main_func") main_break = target.BreakpointCreateBySourceRegex( source_regex, lldb.SBFileSpecList(), target_files, func_names) num_locations = main_break.GetNumLocations() self.assertTrue( num_locations == 2, "main_func in main.c and a.c should have 2 matches, got %d." % (num_locations))
35.588785
83
0.645221
[ "Apache-2.0" ]
Polidea/SiriusObfuscator
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/functionalities/breakpoint/source_regexp/TestSourceRegexBreakpoints.py
3,808
Python
import queue from ..workers import Worker from ..codes import WORKER_PROPERTIES class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class SocketHandler(metaclass=Singleton): """ Socket Handler is a sigleton class used to handle/manage websocket connections. """ def __init__(self): self.connections = {} def new_connection(self, workerId: str, socket): """ Create a mapping structure to establish a bond between a workerId and a socket descriptor. Args: workerId: UUID string used to identify workers. socket: Socket descriptor that will be used to send/receive messages from this client. Returns: Worker: a worker instance with the corresponding workerId """ if workerId not in self.connections: self.connections[workerId] = Worker(workerId, socket) else: worker = self.connections[workerId] if worker.status == WORKER_PROPERTIES.OFFLINE: worker._socket = socket return self.connections[workerId] def send_msg(self, workerId: str, message: str): """ Find the socket descriptor mapped by workerId and send them a message. Args: workerId: UUID string used to identify and retrieve a worker. message: Message to be send. """ socket = self.connections.get(workerId, None) if socket: socket.send(message) def get(self, query): """Retrieve a worker by its UUID string or its socket descriptor.""" if isinstance(query, str): return self.connections.get(query, None) else: return self.__retrieve_worker_by_socket(query) def remove(self, socket) -> str: """ Remove a socket descriptor from mapping structure. It will be used when the socket connection is closed. Args: socket: socket descriptor used to send/receive messages. Returns: workerId: Worker id linked to that connection. """ worker = self.__retrieve_worker_by_socket(socket) if worker: self.connections[worker._id]._socket = None self.connections[worker._id].connected_nodes = [] return worker._id def __retrieve_worker_by_socket(self, socket): for worker_id, worker in self.connections.items(): if worker._socket == socket: return self.connections[worker_id] @property def nodes(self) -> list: """Return all the connected nodes as a list of tuples of (worker_id, worker)""" return list(self.connections.items()) def __len__(self) -> int: """ Number of connections handled by this server. Returns: length: number of connections handled by this server. """ return len(self.connections)
34.666667
116
0.620192
[ "Apache-2.0" ]
kuronosec/PyGridNetwork
gridnetwork/events/socket_handler.py
3,120
Python
from polyphony import testbench def fib(n): if n <= 0: return 0 if n == 1: return 1 r0 = 0 r1 = 1 for i in range(n-1): prev_r1 = r1 r1 = r0 + r1 r0 = prev_r1 return r1 @testbench def test(): expect = [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610] for i in range(len(expect)): result = fib(i) assert expect[i] == result print(i, "=>", result) test()
18.782609
59
0.518519
[ "MIT" ]
ryos36/polyphony-tutorial
Tutorial_2/fib.py
432
Python
# <pep8-80 compliant> # ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### __author__ = "Nutti <[email protected]>" __status__ = "production" __version__ = "6.0" __date__ = "26 Jan 2019" import math from math import atan2, cos, sqrt, sin, fabs import bpy from bpy.props import BoolProperty import bmesh from mathutils import Vector from .. import common from ..utils.bl_class_registry import BlClassRegistry from ..utils.property_class_registry import PropertyClassRegistry from ..utils import compatibility as compat def _get_vco(verts_orig, loop): """ Get vertex original coordinate from loop """ for vo in verts_orig: if vo["vidx"] == loop.vert.index and vo["moved"] is False: return vo["vco"] return loop.vert.co def _get_link_loops(vert): """ Get loop linked to vertex """ link_loops = [] for f in vert.link_faces: adj_loops = [] for loop in f.loops: # self loop if loop.vert == vert: l = loop # linked loop else: for e in loop.vert.link_edges: if e.other_vert(loop.vert) == vert: adj_loops.append(loop) if len(adj_loops) < 2: return None link_loops.append({"l": l, "l0": adj_loops[0], "l1": adj_loops[1]}) return link_loops def _get_ini_geom(link_loop, uv_layer, verts_orig, v_orig): """ Get initial geometory (Get interior angle of face in vertex/UV space) """ u = link_loop["l"][uv_layer].uv v0 = _get_vco(verts_orig, link_loop["l0"]) u0 = link_loop["l0"][uv_layer].uv v1 = _get_vco(verts_orig, link_loop["l1"]) u1 = link_loop["l1"][uv_layer].uv # get interior angle of face in vertex space v0v1 = v1 - v0 v0v = v_orig["vco"] - v0 v1v = v_orig["vco"] - v1 theta0 = v0v1.angle(v0v) theta1 = v0v1.angle(-v1v) if (theta0 + theta1) > math.pi: theta0 = v0v1.angle(-v0v) theta1 = v0v1.angle(v1v) # get interior angle of face in UV space u0u1 = u1 - u0 u0u = u - u0 u1u = u - u1 phi0 = u0u1.angle(u0u) phi1 = u0u1.angle(-u1u) if (phi0 + phi1) > math.pi: phi0 = u0u1.angle(-u0u) phi1 = u0u1.angle(u1u) # get direction of linked UV coordinate # this will be used to judge whether angle is more or less than 180 degree dir0 = u0u1.cross(u0u) > 0 dir1 = u0u1.cross(u1u) > 0 return { "theta0": theta0, "theta1": theta1, "phi0": phi0, "phi1": phi1, "dir0": dir0, "dir1": dir1} def _get_target_uv(link_loop, uv_layer, verts_orig, v, ini_geom): """ Get target UV coordinate """ v0 = _get_vco(verts_orig, link_loop["l0"]) lo0 = link_loop["l0"] v1 = _get_vco(verts_orig, link_loop["l1"]) lo1 = link_loop["l1"] # get interior angle of face in vertex space v0v1 = v1 - v0 v0v = v.co - v0 v1v = v.co - v1 theta0 = v0v1.angle(v0v) theta1 = v0v1.angle(-v1v) if (theta0 + theta1) > math.pi: theta0 = v0v1.angle(-v0v) theta1 = v0v1.angle(v1v) # calculate target interior angle in UV space phi0 = theta0 * ini_geom["phi0"] / ini_geom["theta0"] phi1 = theta1 * ini_geom["phi1"] / ini_geom["theta1"] uv0 = lo0[uv_layer].uv uv1 = lo1[uv_layer].uv # calculate target vertex coordinate from target interior angle tuv0, tuv1 = _calc_tri_vert(uv0, uv1, phi0, phi1) # target UV coordinate depends on direction, so judge using direction of # linked UV coordinate u0u1 = uv1 - uv0 u0u = tuv0 - uv0 u1u = tuv0 - uv1 dir0 = u0u1.cross(u0u) > 0 dir1 = u0u1.cross(u1u) > 0 if (ini_geom["dir0"] != dir0) or (ini_geom["dir1"] != dir1): return tuv1 return tuv0 def _calc_tri_vert(v0, v1, angle0, angle1): """ Calculate rest coordinate from other coordinates and angle of end """ angle = math.pi - angle0 - angle1 alpha = atan2(v1.y - v0.y, v1.x - v0.x) d = (v1.x - v0.x) / cos(alpha) a = d * sin(angle0) / sin(angle) b = d * sin(angle1) / sin(angle) s = (a + b + d) / 2.0 if fabs(d) < 0.0000001: xd = 0 yd = 0 else: r = s * (s - a) * (s - b) * (s - d) if r < 0: xd = 0 yd = 0 else: xd = (b * b - a * a + d * d) / (2 * d) yd = 2 * sqrt(r) / d x1 = xd * cos(alpha) - yd * sin(alpha) + v0.x y1 = xd * sin(alpha) + yd * cos(alpha) + v0.y x2 = xd * cos(alpha) + yd * sin(alpha) + v0.x y2 = xd * sin(alpha) - yd * cos(alpha) + v0.y return Vector((x1, y1)), Vector((x2, y2)) def _is_valid_context(context): obj = context.object # only edit mode is allowed to execute if obj is None: return False if obj.type != 'MESH': return False if context.object.mode != 'EDIT': return False # only 'VIEW_3D' space is allowed to execute for space in context.area.spaces: if space.type == 'VIEW_3D': break else: return False return True @PropertyClassRegistry() class _Properties: idname = "texture_lock" @classmethod def init_props(cls, scene): class Props(): verts_orig = None scene.muv_props.texture_lock = Props() def get_func(_): return MUV_OT_TextureLock_Intr.is_running(bpy.context) def set_func(_, __): pass def update_func(_, __): bpy.ops.uv.muv_ot_texture_lock_intr('INVOKE_REGION_WIN') scene.muv_texture_lock_enabled = BoolProperty( name="Texture Lock Enabled", description="Texture Lock is enabled", default=False ) scene.muv_texture_lock_lock = BoolProperty( name="Texture Lock Locked", description="Texture Lock is locked", default=False, get=get_func, set=set_func, update=update_func ) scene.muv_texture_lock_connect = BoolProperty( name="Connect UV", default=True ) @classmethod def del_props(cls, scene): del scene.muv_props.texture_lock del scene.muv_texture_lock_enabled del scene.muv_texture_lock_lock del scene.muv_texture_lock_connect @BlClassRegistry() class MUV_OT_TextureLock_Lock(bpy.types.Operator): """ Operation class: Lock Texture """ bl_idname = "uv.muv_ot_texture_lock_lock" bl_label = "Lock Texture" bl_description = "Lock Texture" bl_options = {'REGISTER', 'UNDO'} @classmethod def poll(cls, context): # we can not get area/space/region from console if common.is_console_mode(): return True return _is_valid_context(context) @classmethod def is_ready(cls, context): sc = context.scene props = sc.muv_props.texture_lock if props.verts_orig: return True return False def execute(self, context): props = context.scene.muv_props.texture_lock obj = bpy.context.active_object bm = bmesh.from_edit_mesh(obj.data) if common.check_version(2, 73, 0) >= 0: bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() if not bm.loops.layers.uv: self.report({'WARNING'}, "Object must have more than one UV map") return {'CANCELLED'} props.verts_orig = [ {"vidx": v.index, "vco": v.co.copy(), "moved": False} for v in bm.verts if v.select] return {'FINISHED'} @BlClassRegistry() @compat.make_annotations class MUV_OT_TextureLock_Unlock(bpy.types.Operator): """ Operation class: Unlock Texture """ bl_idname = "uv.muv_ot_texture_lock_unlock" bl_label = "Unlock Texture" bl_description = "Unlock Texture" bl_options = {'REGISTER', 'UNDO'} connect = BoolProperty( name="Connect UV", default=True ) @classmethod def poll(cls, context): # we can not get area/space/region from console if common.is_console_mode(): return True sc = context.scene props = sc.muv_props.texture_lock if not props.verts_orig: return False if not MUV_OT_TextureLock_Lock.is_ready(context): return False if not _is_valid_context(context): return False return True def execute(self, context): sc = context.scene props = sc.muv_props.texture_lock obj = bpy.context.active_object bm = bmesh.from_edit_mesh(obj.data) if common.check_version(2, 73, 0) >= 0: bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() if not bm.loops.layers.uv: self.report({'WARNING'}, "Object must have more than one UV map") return {'CANCELLED'} uv_layer = bm.loops.layers.uv.verify() verts = [v.index for v in bm.verts if v.select] verts_orig = props.verts_orig # move UV followed by vertex coordinate for vidx, v_orig in zip(verts, verts_orig): if vidx != v_orig["vidx"]: self.report({'ERROR'}, "Internal Error") return {"CANCELLED"} v = bm.verts[vidx] link_loops = _get_link_loops(v) result = [] for ll in link_loops: ini_geom = _get_ini_geom(ll, uv_layer, verts_orig, v_orig) target_uv = _get_target_uv( ll, uv_layer, verts_orig, v, ini_geom) result.append({"l": ll["l"], "uv": target_uv}) # connect other face's UV if self.connect: ave = Vector((0.0, 0.0)) for r in result: ave = ave + r["uv"] ave = ave / len(result) for r in result: r["l"][uv_layer].uv = ave else: for r in result: r["l"][uv_layer].uv = r["uv"] v_orig["moved"] = True bmesh.update_edit_mesh(obj.data) props.verts_orig = None return {'FINISHED'} @BlClassRegistry() class MUV_OT_TextureLock_Intr(bpy.types.Operator): """ Operation class: Texture Lock (Interactive mode) """ bl_idname = "uv.muv_ot_texture_lock_intr" bl_label = "Texture Lock (Interactive mode)" bl_description = "Internal operation for Texture Lock (Interactive mode)" __timer = None @classmethod def poll(cls, context): # we can not get area/space/region from console if common.is_console_mode(): return False return _is_valid_context(context) @classmethod def is_running(cls, _): return 1 if cls.__timer else 0 @classmethod def handle_add(cls, ops_obj, context): if cls.__timer is None: cls.__timer = context.window_manager.event_timer_add( 0.10, window=context.window) context.window_manager.modal_handler_add(ops_obj) @classmethod def handle_remove(cls, context): if cls.__timer is not None: context.window_manager.event_timer_remove(cls.__timer) cls.__timer = None def __init__(self): self.__intr_verts_orig = [] self.__intr_verts = [] def __sel_verts_changed(self, context): obj = context.active_object bm = bmesh.from_edit_mesh(obj.data) if common.check_version(2, 73, 0) >= 0: bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() prev = set(self.__intr_verts) now = set([v.index for v in bm.verts if v.select]) return prev != now def __reinit_verts(self, context): obj = context.active_object bm = bmesh.from_edit_mesh(obj.data) if common.check_version(2, 73, 0) >= 0: bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() self.__intr_verts_orig = [ {"vidx": v.index, "vco": v.co.copy(), "moved": False} for v in bm.verts if v.select] self.__intr_verts = [v.index for v in bm.verts if v.select] def __update_uv(self, context): """ Update UV when vertex coordinates are changed """ obj = context.active_object bm = bmesh.from_edit_mesh(obj.data) if common.check_version(2, 73, 0) >= 0: bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() if not bm.loops.layers.uv: self.report({'WARNING'}, "Object must have more than one UV map") return uv_layer = bm.loops.layers.uv.verify() verts = [v.index for v in bm.verts if v.select] verts_orig = self.__intr_verts_orig for vidx, v_orig in zip(verts, verts_orig): if vidx != v_orig["vidx"]: self.report({'ERROR'}, "Internal Error") return v = bm.verts[vidx] link_loops = _get_link_loops(v) result = [] for ll in link_loops: ini_geom = _get_ini_geom(ll, uv_layer, verts_orig, v_orig) target_uv = _get_target_uv( ll, uv_layer, verts_orig, v, ini_geom) result.append({"l": ll["l"], "uv": target_uv}) # UV connect option is always true, because it raises # unexpected behavior ave = Vector((0.0, 0.0)) for r in result: ave = ave + r["uv"] ave = ave / len(result) for r in result: r["l"][uv_layer].uv = ave v_orig["moved"] = True bmesh.update_edit_mesh(obj.data) common.redraw_all_areas() self.__intr_verts_orig = [ {"vidx": v.index, "vco": v.co.copy(), "moved": False} for v in bm.verts if v.select] def modal(self, context, event): if not _is_valid_context(context): MUV_OT_TextureLock_Intr.handle_remove(context) return {'FINISHED'} if not MUV_OT_TextureLock_Intr.is_running(context): return {'FINISHED'} if context.area: context.area.tag_redraw() if event.type == 'TIMER': if self.__sel_verts_changed(context): self.__reinit_verts(context) else: self.__update_uv(context) return {'PASS_THROUGH'} def invoke(self, context, _): if not _is_valid_context(context): return {'CANCELLED'} if not MUV_OT_TextureLock_Intr.is_running(context): MUV_OT_TextureLock_Intr.handle_add(self, context) return {'RUNNING_MODAL'} else: MUV_OT_TextureLock_Intr.handle_remove(context) if context.area: context.area.tag_redraw() return {'FINISHED'}
29.702602
78
0.584293
[ "Unlicense" ]
byteinc/Phasor
engine/2.80/scripts/addons/magic_uv/op/texture_lock.py
15,980
Python
from LAMARCK_ML.models.interface import ModellUtil class DataSaverInterface(ModellUtil): def __init__(self, **kwargs): super(DataSaverInterface, self).__init__(**kwargs) def get_individual_by_name(self, name): raise NotImplementedError() def get_ancestry_for_ind(self, ind_name): raise NotImplementedError() def get_ancestries(self): raise NotImplementedError() def get_individual_names(self): raise NotImplementedError()
25.388889
54
0.770241
[ "Apache-2.0", "BSD-3-Clause" ]
JonasDHomburg/LAMARCK
LAMARCK_ML/utils/dataSaver/interface.py
457
Python
# Original code from https://github.com/araffin/robotics-rl-srl # Authors: Antonin Raffin, René Traoré, Ashley Hill import argparse import cv2 # pytype: disable=import-error import numpy as np from ae.autoencoder import Autoencoder def create_figure_and_sliders(name, state_dim): """ Creating a window for the latent space visualization, and another one for the sliders to control it. :param name: name of model (str) :param state_dim: (int) :return: """ # opencv gui setup cv2.namedWindow(name, cv2.WINDOW_NORMAL) cv2.resizeWindow(name, 500, 500) cv2.namedWindow("slider for " + name) # add a slider for each component of the latent space for i in range(state_dim): # the sliders MUST be between 0 and max, so we placed max at 100, and start at 50 # So that when we substract 50 and divide 10 we get [-5,5] for each component cv2.createTrackbar(str(i), "slider for " + name, 50, 100, (lambda a: None)) def main(): parser = argparse.ArgumentParser(description="latent space enjoy") parser.add_argument("--log-dir", default="", type=str, help="directory to load model") parser.add_argument("-ae", "--ae-path", help="Path to saved AE", type=str, default="") args = parser.parse_args() autoencoder = Autoencoder.load(args.ae_path) fig_name = "Decoder for the AE" # TODO: load data to infer bounds bound_min = -10 bound_max = 10 create_figure_and_sliders(fig_name, autoencoder.z_size) should_exit = False while not should_exit: # stop if escape is pressed k = cv2.waitKey(1) & 0xFF if k == 27: break state = [] for i in range(autoencoder.z_size): state.append(cv2.getTrackbarPos(str(i), "slider for " + fig_name)) # Rescale the values to fit the bounds of the representation state = (np.array(state) / 100) * (bound_max - bound_min) + bound_min reconstructed_image = autoencoder.decode(state[None])[0] # stop if user closed a window if (cv2.getWindowProperty(fig_name, 0) < 0) or (cv2.getWindowProperty("slider for " + fig_name, 0) < 0): should_exit = True break cv2.imshow(fig_name, reconstructed_image) # gracefully close cv2.destroyAllWindows() if __name__ == "__main__": main()
31.6
112
0.656962
[ "MIT" ]
araffin/aae-train-donkeycar
ae/enjoy_latent.py
2,372
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
39.44958
94
0.582242
[ "Apache-2.0" ]
gbstack/PaddleDetection
ppdet/modeling/post_process.py
28,167
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ResourceProviderOperationDefinition(Model): """Describes the Resource Provider Operation. :param name: Resource provider operation name. :type name: str :param display: Resource provider display properties. :type display: ~microsoft.vsonline.models.ResourceProviderOperationDisplay """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display': {'key': 'display', 'type': 'ResourceProviderOperationDisplay'}, } def __init__(self, **kwargs): super(ResourceProviderOperationDefinition, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.display = kwargs.get('display', None)
36.363636
82
0.618333
[ "MIT" ]
MyronFanQiu/azure-cli-extensions
src/codespaces/azext_codespaces/vendored_sdks/vsonline/models/resource_provider_operation_definition.py
1,200
Python
JONG_COMP = { 'ㄱ': { 'ㄱ': 'ㄲ', 'ㅅ': 'ㄳ', }, 'ㄴ': { 'ㅈ': 'ㄵ', 'ㅎ': 'ㄶ', }, 'ㄹ': { 'ㄱ': 'ㄺ', 'ㅁ': 'ㄻ', 'ㅂ': 'ㄼ', 'ㅅ': 'ㄽ', 'ㅌ': 'ㄾ', 'ㅍ': 'ㄿ', 'ㅎ': 'ㅀ', } } DEFAULT_COMPOSE_SEPARATOR = u'ᴥ' ################################################################################ # Hangul Automata functions by [email protected] ################################################################################ def decompose(text, latin_filter=True, separator=DEFAULT_COMPOSE_SEPARATOR): from . import letter result = "" for c in list(text): if letter.is_hangul(c): result += "".join(letter.decompose(c)) + separator else: result = result + c return result STATUS_CHO = 0 STATUS_JOONG = 1 STATUS_JONG1 = 2 STATUS_JONG2 = 3 def compose(text, compose_code=DEFAULT_COMPOSE_SEPARATOR): from .const import ONSET, NUCLEUS, CODA from . import letter res_text = "" status = STATUS_CHO for c in text: if status == STATUS_CHO: if c in ONSET: chosung = c status = STATUS_JOONG else: if c != compose_code: res_text = res_text + c elif status == STATUS_JOONG: if c != compose_code and c in NUCLEUS: joongsung = c status = STATUS_JONG1 else: res_text = res_text + chosung if c in ONSET: chosung = c status = STATUS_JOONG else: if c != compose_code: res_text = res_text + c status = STATUS_CHO elif status == STATUS_JONG1: if c != compose_code and c in CODA: jongsung = c if c in JONG_COMP: status = STATUS_JONG2 else: res_text = res_text + letter.compose(chosung, joongsung, jongsung) status = STATUS_CHO else: res_text = res_text + letter.compose(chosung, joongsung) if c in ONSET: chosung = c status = STATUS_JOONG else: if c != compose_code: res_text = res_text + c status = STATUS_CHO elif status == STATUS_JONG2: if c != compose_code and c in JONG_COMP[jongsung]: jongsung = JONG_COMP[jongsung][c] c = compose_code # 종성째 출력 방지 res_text = res_text + letter.compose(chosung, joongsung, jongsung) if c != compose_code: res_text = res_text + c status = STATUS_CHO return res_text
24.294118
86
0.439294
[ "Apache-2.0" ]
CodePsy-2001/hanshift
hanshift/text.py
2,957
Python
import curses import time # only for debugging stdscr = curses.initscr() class Listdisplay: def __init__(self, lst, start_x, start_y, height, width, headers=None) -> None: """Lst is 2-d. i th list in lst is content of i+1 tab Each string in lst should not be of more length than width scroling is available only in vertical direction """ self.start_x = start_x self.start_y = start_y self.height = height self.width = width self.currentpos = 0 self.currenttab = 0 self.lst = lst curses.curs_set(0) newwin = curses.newwin(height, width, start_y, start_x) newwin.border(0) newwin.refresh() self.display() def display(self, tab=0): self.pad = curses.newpad(1 + len(self.lst[tab]) + 1, self.width) for n in range(len(self.lst[tab])): self.pad.addstr(n, 1, self.lst[tab][n]) self.refresh_pad() def scrollup(self): self.currentpos += 1 self.currentpos = min( len(self.lst[self.currenttab]) - self.height + 3, self.currentpos ) self.refresh_pad() def scrolldown(self): self.currentpos -= 1 self.currentpos = max(0, self.currentpos) self.refresh_pad() def switchtab_right(self): self.currentpos = 0 self.currenttab += 1 self.currenttab = min(len(self.lst), self.currenttab) self.pad.erase() self.refresh_pad() self.display(self.currenttab) def switchtab_left(self): self.currentpos = 0 self.currenttab -= 1 self.currenttab = max(0, self.currenttab) self.pad.erase() self.refresh_pad() self.display(self.currenttab) def refresh_pad(self): self.pad.refresh( self.currentpos, 0, self.start_y + 1, self.start_x + 1, self.height - 1, self.width - 1, ) def main(stdscr): curses.init_color(1, 0, 0, 0) lst = [ ["hii", "hello", "dkfjalkfjkjlkjlkj", "lajdflkdf"], ["tab2", "tambs"], ] # for debugging stdscr.clear() a = Listdisplay(lst, 1, 1, 5, 10) time.sleep(2) a.scrollup() time.sleep(2) a.scrollup() time.sleep(2) a.scrolldown() time.sleep(2) a.switchtab_right() time.sleep(2) a.switchtab_left() time.sleep(2) if __name__ == "__main__": curses.wrapper(main)
25.680412
83
0.570454
[ "MIT" ]
Tubular-Terriers/code-jam
src/client/ui/widget/displaylist.py
2,491
Python
from django.conf.urls import url from django.contrib.auth import login from django.contrib.auth.models import User from django.http import HttpResponse from django.views.decorators.cache import cache_page from django.urls import include, path, re_path from .. import views def repath_view(request): return HttpResponse(status=200) def path_view(request): return HttpResponse(status=200) def authenticated_view(request): """ This view can be used to test requests with an authenticated user. Create a user with a default username, save it and then use this user to log in. Always returns a 200. """ user = User(username="Jane Doe") user.save() login(request, user) return HttpResponse(status=200) urlpatterns = [ url(r"^$", views.index), url(r"^simple/$", views.BasicView.as_view()), url(r"^users/$", views.UserList.as_view(), name="users-list"), url(r"^cached-template/$", views.TemplateCachedUserList.as_view(), name="cached-template-list"), url(r"^cached-users/$", cache_page(60)(views.UserList.as_view()), name="cached-users-list"), url(r"^fail-view/$", views.ForbiddenView.as_view(), name="forbidden-view"), url(r"^authenticated/$", authenticated_view, name="authenticated-view"), url(r"^static-method-view/$", views.StaticMethodView.as_view(), name="static-method-view"), url(r"^fn-view/$", views.function_view, name="fn-view"), url(r"^feed-view/$", views.FeedView(), name="feed-view"), url(r"^partial-view/$", views.partial_view, name="partial-view"), url(r"^lambda-view/$", views.lambda_view, name="lambda-view"), url(r"^error-500/$", views.error_500, name="error-500"), re_path(r"re-path.*/", repath_view), path("path/", path_view), path("include/", include("tests.contrib.django.django_app.extra_urls")), ]
36.68
100
0.694656
[ "Apache-2.0", "BSD-3-Clause" ]
AlexandreYang/dd-trace-py
tests/contrib/django/django_app/urls.py
1,834
Python
import requests import csv import sys import os import json from time_converter import date_weather_format, current_day_weather def get_all_json_keys(keys_array, json): for key in json.keys(): if not isinstance(json[key], str): _ = get_all_json_keys(keys_array, json[key][0]) else: keys_array.append(key) return keys_array def get_all_json_values(values_array, json): for key in json.keys(): if not isinstance(json[key], str): _ = get_all_json_values(values_array, json[key][0]) else: values_array.append(json[key]) return values_array # CONSTRUCTS THE API URL def url_constructor(system): request_url = url request_url += "&q=" + system['lat_long'] request_url += "&format=json" request_url += "&date=" + system['start_date'] request_url += "&enddate=" + current_day_weather() request_url += "&includelocation=yes" request_url += "&tp=24" return request_url if len(sys.argv) < 2: print("Please, inform the data path. EX: san_francisco") exit() location_dir = sys.argv[1] if not os.path.exists(location_dir+'/weathers'): os.mkdir(location_dir+'/weathers') # RETRIEVES INFORMATION OF ALL FAVORITE SYSTEMS system_list = [] with open(location_dir+"/favorite_systems.csv", "r") as systems: reader = csv.reader(systems, delimiter=",") next(reader) for line in reader: system_dict = {} system_dict['id'] = line[0] system_dict['start_date'] = date_weather_format(line[13]) system_dict['end_date'] = "&enddate=" + current_day_weather() system_dict['lat_long'] = line[14] + "," + line[15] system_list.append(system_dict) # ARRAY TO USE IN CASE PROGRAM FAILS IN THE MIDDLE BC OF LIMITED REQUESTS ignore = ['52375', '29577', '55722', '70687', '8438', '41397', '13255', '54158', '72735', '65154', '176', '52412', '72288', '48885', '32239', '55434', '70830', '38742', '76398', '70775', '66542', '64779', '71919', '41921'] # BASE WEATHER API URL url = "http://api.worldweatheronline.com/premium/v1/past-weather.ashx?" url += "key=912ce443276a4e86811154829220904" for system in system_list: if system['id'] in ignore: continue print("Fetching weather data for system:", system['id']) weather_list = [] while system['start_date'] != current_day_weather(): request_url = url_constructor(system) response = requests.get(request_url) if response.status_code != 200: print(response.content) print(ignore) exit() content = response.content content = content.decode() content = json.loads(content) # REVERSES THE RESULT TO NEWST RECORDS ON TOP weather_list.insert(0, reversed(content['data']['weather'])) system['start_date'] = content['data']['weather'][-1]['date'] ignore.append(system['id']) # SAVES DATA INTO A FILE REFERING WITH THE SYSTEM ID file_name = location_dir + "/weathers/system_" + system['id'] + ".csv" with open(file_name, 'w') as test_daily: # FLAT THE JSON HEADERS header = ','.join(get_all_json_keys([], content['data']['weather'][0])) print(header, file=test_daily) # FLAT THE JSON VALUES for data_pack in weather_list: for daily_data in data_pack: row = ','.join(get_all_json_values([], daily_data)) print(row, file=test_daily)
31.657658
79
0.63432
[ "Apache-2.0" ]
lucio-lpf/SEPA
data/weather_data.py
3,514
Python
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OpenAI GPT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import json import logging import math import os import sys from io import open import numpy as np import tensorflow as tf from .modeling_tf_utils import (TFPreTrainedModel, TFConv1D, TFSharedEmbeddings, TFSequenceSummary, shape_list, get_initializer) from .configuration_openai import OpenAIGPTConfig from .file_utils import add_start_docstrings logger = logging.getLogger(__name__) TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-tf_model.h5"} def gelu(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh( (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def swish(x): return x * tf.math.sigmoid(x) ACT_FNS = {"gelu": tf.keras.layers.Activation(gelu), "relu": tf.keras.activations.relu, "swish": tf.keras.layers.Activation(swish)} class TFAttention(tf.keras.layers.Layer): def __init__(self, nx, n_ctx, config, scale=False, **kwargs): super(TFAttention, self).__init__(**kwargs) self.output_attentions = config.output_attentions n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.n_ctx = n_ctx self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name='c_attn') self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name='c_proj') self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): pass @staticmethod def causal_attention_mask(nd, ns, dtype): """1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:,None] j = tf.range(ns) m = i >= j - ns + nd return tf.cast(m, dtype) def _attn(self, inputs, training=False): q, k, v, attention_mask, head_mask = inputs # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) if self.scale: dk = tf.cast(shape_list(k)[-1], tf.float32) # scale attention_scores w = w / tf.math.sqrt(dk) # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = self.causal_attention_mask(nd, ns, dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w * b - 1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = tf.nn.softmax(w, axis=-1) w = self.attn_dropout(w, training=training) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [tf.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = tf.transpose(x, [0, 2, 1, 3]) x_shape = shape_list(x) new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] return tf.reshape(x, new_x_shape) def split_heads(self, x): x_shape = shape_list(x) new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) def call(self, inputs, training=False): x, attention_mask, head_mask = inputs x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) key = self.split_heads(key) value = self.split_heads(value) attn_outputs = self._attn([query, key, value, attention_mask, head_mask], training=training) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a, training=training) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) class TFMLP(tf.keras.layers.Layer): def __init__(self, n_state, config, **kwargs): super(TFMLP, self).__init__(**kwargs) nx = config.n_embd self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name='c_fc') self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name='c_proj') self.act = gelu self.dropout = tf.keras.layers.Dropout(config.resid_pdrop) def call(self, x, training=False): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) h2 = self.dropout(h2, training=training) return h2 class TFBlock(tf.keras.layers.Layer): def __init__(self, n_ctx, config, scale=False, **kwargs): super(TFBlock, self).__init__(**kwargs) nx = config.n_embd self.attn = TFAttention(nx, n_ctx, config, scale, name='attn') self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1') self.mlp = TFMLP(4 * nx, config, name='mlp') self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2') def call(self, inputs, training=False): x, attention_mask, head_mask = inputs output_attn = self.attn([x, attention_mask, head_mask], training=training) a = output_attn[0] # output_attn: a, (attentions) n = self.ln_1(x + a) m = self.mlp(n, training=training) h = self.ln_2(n + m) outputs = [h] + output_attn[1:] return outputs # x, (attentions) class TFOpenAIGPTMainLayer(tf.keras.layers.Layer): def __init__(self, config, *inputs, **kwargs): super(TFOpenAIGPTMainLayer, self).__init__(config, *inputs, **kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.num_hidden_layers = config.n_layer self.vocab_size = config.vocab_size self.n_embd = config.n_embd self.tokens_embed = TFSharedEmbeddings(config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name='tokens_embed') self.positions_embed = tf.keras.layers.Embedding(config.n_positions, config.n_embd, embeddings_initializer=get_initializer(config.initializer_range), name='positions_embed') self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config.n_ctx, config, scale=True, name='h_._{}'.format(i)) for i in range(config.n_layer)] def get_input_embeddings(self): return self.tokens_embed def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds assert len(inputs) <= 6, "Too many inputs." elif isinstance(inputs, dict): input_ids = inputs.get('input_ids') attention_mask = inputs.get('attention_mask', attention_mask) token_type_ids = inputs.get('token_type_ids', token_type_ids) position_ids = inputs.get('position_ids', position_ids) head_mask = inputs.get('head_mask', head_mask) inputs_embeds = inputs.get('inputs_embeds', inputs_embeds) assert len(inputs) <= 6, "Too many inputs." else: input_ids = inputs if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: position_ids = tf.range(input_shape[-1], dtype=tf.int32)[tf.newaxis, :] if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = tf.cast(attention_mask, tf.float32) attention_mask = (1.0 - attention_mask) * -10000.0 else: attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if not head_mask is None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: inputs_embeds = self.tokens_embed(input_ids, mode='embedding') position_embeds = self.positions_embed(position_ids) if token_type_ids is not None: token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) token_type_embeds = self.tokens_embed(token_type_ids, mode='embedding') else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states, training=training) output_shape = input_shape + [shape_list(hidden_states)[-1]] all_attentions = [] all_hidden_states = () for i, block in enumerate(self.h): if self.output_hidden_states: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = block([hidden_states, attention_mask, head_mask[i]], training=training) hidden_states = outputs[0] if self.output_attentions: all_attentions.append(outputs[1]) hidden_states = tf.reshape(hidden_states, output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, (all hidden_states), (attentions) class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = OpenAIGPTConfig pretrained_model_archive_map = TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "transformer" OPENAI_GPT_START_DOCSTRING = r""" OpenAI GPT model was proposed in `Improving Language Understanding by Generative Pre-Training`_ by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It's a causal (unidirectional) transformer pre-trained using language modeling on a large corpus will long range dependencies, the Toronto Book Corpus. This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. _`Improving Language Understanding by Generative Pre-Training`: https://openai.com/blog/language-unsupervised/ .. _`tf.keras.Model`: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model Note on the model inputs: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: `model(inputs_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associaed to the input names given in the docstring: `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ OPENAI_GPT_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using :class:`transformers.BPT2Tokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. **token_type_ids**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices) **position_ids**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. **head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **inputs_embeds**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, embedding_dim)``: Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. """ @add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.", OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING) class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the last layer of the model. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import OpenAIGPTTokenizer, TFOpenAIGPTModel tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') model = TFOpenAIGPTModel.from_pretrained('openai-gpt') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config, *inputs, **kwargs): super(TFOpenAIGPTModel, self).__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name='transformer') def call(self, inputs, **kwargs): outputs = self.transformer(inputs, **kwargs) return outputs @add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING) class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import OpenAIGPTTokenizer, TFOpenAIGPTLMHeadModel tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') model = TFOpenAIGPTLMHeadModel.from_pretrained('openai-gpt') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) logits = outputs[0] """ def __init__(self, config, *inputs, **kwargs): super(TFOpenAIGPTLMHeadModel, self).__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name='transformer') def get_output_embeddings(self): return self.transformer.tokens_embed def call(self, inputs, **kwargs): transformer_outputs = self.transformer(inputs, **kwargs) hidden_states = transformer_outputs[0] lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") outputs = (lm_logits,) + transformer_outputs[1:] return outputs # lm_logits, (all hidden_states), (attentions) @add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING) class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): r""" **mc_token_ids**: (`optional`, default to index of the last token of the input) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, num_choices)``: Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import OpenAIGPTTokenizer, TFOpenAIGPTDoubleHeadsModel tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') model = TFOpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt') # Add a [CLS] to the vocabulary (we should train it also!) # This option is currently not implemented in TF 2.0 raise NotImplementedError tokenizer.add_special_tokens({'cls_token': '[CLS]'}) model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] input_ids = tf.constant([tokenizer.encode(s) for s in choices])[None, :] # Batch size 1, 2 choices mc_token_ids = tf.constant([input_ids.size(-1), input_ids.size(-1)])[None, :] # Batch size 1 outputs = model(input_ids, mc_token_ids=mc_token_ids) lm_prediction_scores, mc_prediction_scores = outputs[:2] """ def __init__(self, config, *inputs, **kwargs): super(TFOpenAIGPTDoubleHeadsModel, self).__init__(config, *inputs, **kwargs) config.num_labels = 1 self.transformer = TFOpenAIGPTMainLayer(config, name='transformer') self.multiple_choice_head = TFSequenceSummary(config, initializer_range=config.initializer_range, name='multiple_choice_head') def get_output_embeddings(self): return self.transformer.tokens_embed def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, training=False): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds mc_token_ids = inputs[6] if len(inputs) > 6 else mc_token_ids assert len(inputs) <= 7, "Too many inputs." elif isinstance(inputs, dict): input_ids = inputs.get('input_ids') attention_mask = inputs.get('attention_mask', attention_mask) token_type_ids = inputs.get('token_type_ids', token_type_ids) position_ids = inputs.get('position_ids', position_ids) head_mask = inputs.get('head_mask', head_mask) inputs_embeds = inputs.get('inputs_embeds', inputs_embeds) mc_token_ids = inputs.get('mc_token_ids', mc_token_ids) assert len(inputs) <= 7, "Too many inputs." else: input_ids = inputs if input_ids is not None: input_shapes = shape_list(input_ids) else: input_shapes = shape_list(inputs_embeds)[:-1] seq_length = input_shapes[-1] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds] transformer_outputs = self.transformer(flat_inputs, training=training) hidden_states = transformer_outputs[0] hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") mc_logits = self.multiple_choice_head([hidden_states, mc_token_ids], training=training) mc_logits = tf.squeeze(mc_logits, axis=-1) outputs = (lm_logits, mc_logits) + transformer_outputs[1:] return outputs # lm logits, mc logits, (all hidden_states), (attentions)
50.586265
193
0.668675
[ "MIT" ]
richardbaihe/semantic_unwritten
transformers/modeling_tf_openai.py
30,200
Python
from singlecellmultiomics.bamProcessing.pileup import pileup_truncated def get_pileup_vect(alignments, contig, pos, ref, alt): """Create feature vector for selected variant Args: alignments(pysam.AlignmentFile) : Handle to alignmentfile contig(str) : contig to perform pileup pos(int) : zeros based position of variant to pileup ref(str) : reference base alt(str) : alternative base Returns total(int) : Total amount of bases overlapping with selected location ref_calls : Total amount of bases matching ref alt_calls : Total amount of bases matching alt other_calls : Total amount of bases matching neither ref nor alt """ total = 0 ref_calls = 0 alt_calls = 0 other_calls = 0 start=pos stop = pos+1 for pileupcolumn in pileup_truncated(alignments,contig,start,stop,stepper='all'): for i,pileupread in enumerate(pileupcolumn.pileups): if not pileupread.is_del and not pileupread.is_refskip: call = pileupread.alignment.query_sequence[pileupread.query_position] if call==ref: ref_calls += 1 elif call==alt: alt_calls += 1 else: other_calls += 1 other_calls+=1 return total, ref_calls, alt_calls, other_calls # Create mapping quality feature vector: def get_mapping_q_vect(alignments_handle, contig, pos, radius=150): """Obtain histogram of mapping qualties, clipped at 60 Args: alignments(pysam.AlignmentFile) : Handle to alignmentfile contig(str) : contig pos(int) : zeros based position of location to check mapping qualties radius(int) : radius to check around selected location Returns: mapping_qualities(list) : Histogram with 7 bins (0 to highest mapping quality) """ mapping_qualities = [0]*7 for read in alignments_handle.fetch(contig, pos-radius, pos+radius): mapping_qualities[min(60,int(read.mapping_quality/10))]+=1 return mapping_qualities
37.192982
86
0.659434
[ "MIT" ]
BuysDB/SingleCellMultiOmics
singlecellmultiomics/bamProcessing/bamFeatures.py
2,120
Python
#============================================================================= # Copyright 2017 FLIR Integrated Imaging Solutions, Inc. All Rights Reserved. # # This software is the confidential and proprietary information of FLIR # Integrated Imaging Solutions, Inc. ('Confidential Information'). You # shall not disclose such Confidential Information and shall use it only in # accordance with the terms of the license agreement you entered into # with FLIR Integrated Imaging Solutions, Inc. (FLIR). # # FLIR MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE # SOFTWARE, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE, OR NON-INFRINGEMENT. FLIR SHALL NOT BE LIABLE FOR ANY DAMAGES # SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING # THIS SOFTWARE OR ITS DERIVATIVES. #============================================================================= import PyCapture2 def print_build_info(): lib_ver = PyCapture2.getLibraryVersion() print('PyCapture2 library version: %d %d %d %d' % (lib_ver[0], lib_ver[1], lib_ver[2], lib_ver[3])) print() def print_camera_info(cam): cam_info = cam.getCameraInfo() print('\n*** CAMERA INFORMATION ***\n') print('Serial number - %d' % cam_info.serialNumber) print('Camera model - %s' % cam_info.modelName) print('Camera vendor - %s' % cam_info.vendorName) print('Sensor - %s' % cam_info.sensorInfo) print('Resolution - %s' % cam_info.sensorResolution) print('Firmware version - %s' % cam_info.firmwareVersion) print('Firmware build time - %s' % cam_info.firmwareBuildTime) print() def enable_embedded_timestamp(cam, enable_timestamp): embedded_info = cam.getEmbeddedImageInfo() if embedded_info.available.timestamp: cam.setEmbeddedImageInfo(timestamp = enable_timestamp) if enable_timestamp : print('\nTimeStamp is enabled.\n') else: print('\nTimeStamp is disabled.\n') def grab_images(cam, num_images_to_grab): prev_ts = None for i in range(num_images_to_grab): try: image = cam.retrieveBuffer() except PyCapture2.Fc2error as fc2Err: print('Error retrieving buffer : %s' % fc2Err) continue ts = image.getTimeStamp() if prev_ts: diff = (ts.cycleSeconds - prev_ts.cycleSeconds) * 8000 + (ts.cycleCount - prev_ts.cycleCount) print('Timestamp [ %d %d ] - %d' % (ts.cycleSeconds, ts.cycleCount, diff)) prev_ts = ts newimg = image.convert(PyCapture2.PIXEL_FORMAT.BGR) print('Saving the last image to fc2TestImage.png') newimg.save('fc2TestImage.png'.encode('utf-8'), PyCapture2.IMAGE_FILE_FORMAT.PNG) # # Example Main # # Print PyCapture2 Library Information print_build_info() # Ensure sufficient cameras are found bus = PyCapture2.BusManager() num_cams = bus.getNumOfCameras() print('Number of cameras detected: ', num_cams) if not num_cams: print('Insufficient number of cameras. Exiting...') exit() # Select camera on 0th index c = PyCapture2.Camera() uid = bus.getCameraFromIndex(0) c.connect(uid) print_camera_info(c) # Enable camera embedded timestamp enable_embedded_timestamp(c, True) print('Starting image capture...') c.startCapture() grab_images(c, 100) c.stopCapture() # Disable camera embedded timestamp enable_embedded_timestamp(c, False) c.disconnect() input('Done! Press Enter to exit...\n')
36.897959
106
0.663717
[ "MIT" ]
sjtu-automatic-maritime-system/PengZhenghao
PyCapture2-2.13.31/examples/python3/FlyCapture2Test.py
3,616
Python
import json def process_data(data): member_dict = {} def process_post(post): if 'comments' in post: for comment in post['comments']['data']: commenter_id = comment['from']['id'] if commenter_id not in member_dict: member_dict[commenter_id] = comment['from'] member_dict[commenter_id]['comment_count'] = 1 member_dict[commenter_id]['like_count'] = comment['like_count'] else: member_dict[commenter_id]['comment_count'] += 1 member_dict[commenter_id]['like_count'] += comment['like_count'] process_post(comment) for post in data: process_post(post) activity_dict = {} for member_id in member_dict: member = member_dict[member_id] activity_score = 0 if 'comment_count' in member: activity_score += member['comment_count'] if 'like_count' in member: activity_score += 2 * member['like_count'] activity_dict[member['id']] = { 'facebook_id': member_id, 'activity_score': activity_score, 'name': member['name'], 'like_count': member['like_count'], 'comment_count': member['comment_count'], } return activity_dict def top_k_active_members(data, k): members_list = [value for (key, value) in data.items()] members_list.sort(key=lambda x: x['activity_score'], reverse=True) return members_list[:k] def read_files(files): combined_data = [] for file in files: with open('./data/' + file + '.json') as data_file: data = json.load(data_file) combined_data.extend(data['data']) return combined_data def process(): combined_data = read_files(['2015-05-04', '2015-05-05', '2015-05-06', '2015-05-07', '2015-05-08', '2015-05-09', '2015-05-10']) activity_dict = process_data(combined_data) active_members = top_k_active_members(activity_dict, 50) open('./leaderboard/may.json', 'w').write(json.dumps(active_members)) process()
30.171875
128
0.662351
[ "MIT" ]
yangshun/nuswhispers-leaderboard
process-whispers.py
1,931
Python
# Generated by Django 2.2.7 on 2019-11-21 01:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0004_remove_user_register_time'), ] operations = [ migrations.AlterField( model_name='user', name='username', field=models.CharField(max_length=100, primary_key=True, serialize=False), ), ]
22.421053
86
0.622066
[ "MIT" ]
darkliang/JudeeBE
user/migrations/0005_auto_20191121_0120.py
426
Python
# Copyright (c) 2022 RWTH Aachen - Werkzeugmaschinenlabor (WZL) # Contact: Simon Cramer, [email protected] from sherpa import Client from sherpa.schedulers import Scheduler, _JobStatus import requests import json import logging as logg import numpy as np import socket from time import sleep import os from absl import logging from s3_smart_open import read_json, to_s3, get_filenames, generate_s3_strings, generate_s3_session, delete_s3_objects logger = logg.getLogger(__name__) class ArgoScheduler(Scheduler): """Argo Scheduler submit, update, kill jobs and send metrics for sherpa hpo Args: Scheduler (class): shepra.schedulers """ def __init__(self, default_parameter,trial_run_parameter,lower_is_better,objective,filename_objective,argo_ip,argo_port,k8_namespace,storage_strategy='keep',output_dir=''): """Set init values Args: default_parameter (dict): Parameter that will be submitted with the argo workflow in a kind of input flags. rebuild_parameter (dict): Parameter that were genereted when creating the hp for sherpa. lower_is_better (bool): whether to minimize or maximize the objective objective (str): Name of the objective that will be optimized for. Must be a key/name from the metrics that were generated within a trial run. filename_objective (str): Filename of the file that contains the objective value which was created within a trial run. argo_ip (str): Argo server ip argp_port (str): Argo server port k8_namespace (str): Name of the kubernetes namespace where the trial container should be executed. storage_strategy (str, optional): wether to keep all, delete all or keep the files from the best run. Defaults to 'keep'. output_dir (str): needed for sherpa api """ # Load Argo Api Token from env variable (set by k8 secret) if 'api_exec_token' in os.environ: api_token = 'Bearer ' + os.environ['api_exec_token'] else: logging.error('No Authorization Token detected. Check Kubernetes Secrets and Argo Template!') logging.info('Default Parameter: {}'.format(default_parameter)) self.submit_url = 'https://' + argo_ip + ':' + argo_port + '/api/v1/workflows/' + k8_namespace + '/submit' self.status_url = 'https://' + argo_ip + ':' + argo_port + '/api/v1/workflows/' + k8_namespace + '/' self.delete_url = self.status_url self.client = Client() self.best_metric = {"job_id": None, "metric": None} self.headers = {'Authorization': api_token } self.killed_jobs = [] self.output_dir = output_dir self.default_parameter = default_parameter self.trial_run_parameter = trial_run_parameter self.storage_strategy = storage_strategy self.hostname = socket.gethostname() self.trials = {} self.run_name = self.default_parameter['run_name'] self.metrics_filename = filename_objective self.objective = objective self.lower_is_better = lower_is_better self.output_path = self.default_parameter['output_path'] self.decode_status = {'Succeeded': _JobStatus.finished, 'Running': _JobStatus.running, 'Pending': _JobStatus.queued, 'Failed': _JobStatus.failed, 'Stopped': _JobStatus.killed, 'Other': _JobStatus.other} def make_request(self,request,data,max_wait=600,step=5,wait=0): """Sends a get, post or delete request every step seconds until the request was successful or wait exceeds max_wait. Args: request (str): Define which kind of request to execute. data (str): Submit information or sherpas job_id for a status request or job_id for deleting a trial. max_wait (int, optional): Time in seconds after which the requests repetition will be stopped. Defaults to 600. step (int, optional): Time in seconds after which a faulty request is repeated. Defaults to 5. wait (int, optional): Variable to which the step time is added and compared to max_wait. Defaults to 0. Returns: [class]: Response """ proxies = {"http": None, "https": None} if request == 'GET': response = requests.get(self.status_url+data, headers=self.headers, proxies=proxies, verify=False) elif request == 'POST': response = requests.post(self.submit_url, headers=self.headers, data=data, proxies=proxies, verify=False) elif request == 'DELETE': response = requests.delete(self.status_url+data, headers=self.headers, proxies=proxies, verify=False) else: logging.error('Request argument is none of ["GET","POST","DELETE"].') if response.status_code == 200 or wait > max_wait: if wait > max_wait: logging.warning("Request has failed for {} seconds with status code: {}:{}".format(max_wait, response.status_code, response.reason)) return response else: sleep(step) logging.error("Request has failed for {} times with reason {}:{}".format(1+int((max_wait/step)-((max_wait/step)-(wait/step))), response.status_code, response.reason)) return self.make_request(request=request,data=data,max_wait=max_wait,step=step,wait=wait+step) def file_strategy(self,job_id,metrics): """Delete all trial files which were generated through a hpo trial It deletes all files in the output_path related to the job_id Args: job_id (str): Sherpa Job_ID / Argo trial workflow name metrics (dict): metrics to compare """ if job_id in self.trials: trial = self.trials[job_id] if 'output_path' in trial: if self.storage_strategy == 'delete': delete_s3_objects(trial['output_path']) elif self.storage_strategy == 'best': if self.best_metric['metric'] == None: self.best_metric['metric'] = metrics[self.objective] self.best_metric['job_id'] = job_id elif self.lower_is_better == True and metrics[self.objective] < self.best_metric['metric']: delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path']) self.best_metric['metric'] = metrics[self.objective] self.best_metric['job_id'] = job_id logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric'])) elif self.lower_is_better == False and metrics[self.objective] > self.best_metric['metric']: delete_s3_objects(self.trials[self.best_metric['job_id']]['output_path']) self.best_metric['metric'] = metrics[self.objective] self.best_metric['job_id'] = job_id logging.info('New best trial {} with metric {}'.format(self.best_metric['job_id'], self.best_metric['metric'])) else: delete_s3_objects(trial['output_path']) def submit_job(self,command, env={}, job_name=''): """Submits a new hpo trial to argo in order to start a workflow template Args: command (list[str]): List that contains ['Argo WorkflowTemplate','Entrypoint of that Argo WorkflowTemplate] env (dict, optional): Dictionary that contains env variables, mainly the sherpa_trial_id. Defaults to {}. job_name (str, optional): Not needed for Argo scheduler. Defaults to ''. Returns: [str]: Sherpa Job_ID / Name of the workflow that was started by Argo """ os.environ['SHERPA_TRIAL_ID'] = env['SHERPA_TRIAL_ID'] # Get new trial from the DB trial = self.client.get_trial() tp = trial.parameters WorkflowTemplate = command[0] entrypoint = command[1] # Set output path for next trial by using sherpa trial ID, Trial ID --> 0,1,...max_num_trials-1 or trial parameters 'save_to', 'load_from' for PBT and ASHA. default_parameter = self.default_parameter if 'save_to' in tp: default_parameter['output_path'] = os.path.join(self.output_path,str(tp['save_to']),'') else: default_parameter['output_path'] = os.path.join(self.output_path,str(env['SHERPA_TRIAL_ID']),'') if 'load_from' in tp and tp['load_from'] != '': default_parameter['model_input_path'] = os.path.join(self.output_path,str(tp['load_from']),'') WorkflowTemplate = eval(self.trial_run_parameter)['WorkflowTemplateContinue'] entrypoint = eval(self.trial_run_parameter)['EntrypointContinue'] else: default_parameter['model_input_path'] = '' # Merge trial parameter with the default parameter dict # Eval trial_run_parameter string merged_parameter = eval(self.trial_run_parameter) for k, v in default_parameter.items(): merged_parameter[k] = v # Get epochs to save them in trials in order to load epochs when sending metrics to the DB (self.get_status()) epochs = merged_parameter.get('epochs',0) # Convert the parameter dictionary to a list format for the input parameter for argo parameters_list = [] for key, val in merged_parameter.items(): parameters_list.append("{}={}".format(key,val)) # The data that will be submitted to argo. The Label will make it easier to filter the workflows matching to the sherpa Workflow data = json.dumps( {"resourceKind": "WorkflowTemplate", "resourceName": WorkflowTemplate, "submitOptions": {"entrypoint": entrypoint, "labels" : "sherpa_run="+self.hostname+",run_name="+self.run_name, "parameters" : parameters_list }}) # Submits the WorkflowTemplate with the data to Argo response_submit = self.make_request(request='POST',data=data) # A successfully submitted workflow will have a response_status_code == 200 if response_submit.status_code == 200: job_id = json.loads(response_submit.content)['metadata']['name'] logging.info('Submitted trial {} with job_id {}'.format(env['SHERPA_TRIAL_ID'],job_id)) else: job_id = 'failed_trial_id_' + str(env['SHERPA_TRIAL_ID']) logging.warning('Failed to sumbit job with Trial_ID {} to argo.'.format(env['SHERPA_TRIAL_ID'])) # Save some trial information which is needed in self.get_status self.trials[job_id] = {'trial': trial,'epochs':epochs,'output_path':default_parameter['output_path'],'model_input_path':default_parameter['model_input_path'],'status':0,'finished':False} # return the Argo workflow name to sherpa return job_id def get_status(self, job_id): """Obtains the current status of the job. Sends objective values/metrics to the DB when a trial succeeded. Compares objective values and decides wether to delete or keep files. Args: job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo Returns: sherpa.schedulers._JobStatus: the job-status. """ response_status = self.make_request(request='GET',data=job_id) if response_status.status_code == 200: status = json.loads(response_status.content)['status']['phase'] # sends metric to DB when dag has finished if status == 'Succeeded': # When Argo trial dag has succeeded load metrics and keep/delete files in s3 storage. Set finished flag to true afterwards in order to return Succeeded Status to shera in the next runner_loop() if self.trials[job_id]['finished'] == True: logging.info('Set status to finished for trial : {}'.format(self.trials[job_id]['trial'].id)) else: filename = self.metrics_filename input_path = self.trials[job_id]['output_path'] metrics = read_json(input_path,filename) logging.info('Send metrics for trial: {}'.format(self.trials[job_id]['trial'].id)) self.client.send_metrics(trial=self.trials[job_id]['trial'], iteration=self.trials[job_id]['epochs'],objective=metrics[self.objective],context=metrics) status = 'Running' # Set finished Flag to true after client send metrics to the DB self.trials[job_id]['finished'] = True # Delete all files / keep all files / keep the files of the best run in s3 storage self.file_strategy(job_id,metrics) elif status == 'Failed': delete_s3_objects(self.trials[job_id]['output_path']) elif job_id in self.killed_jobs: status = 'Stopped' else: status = 'Other' # Decode Job status s = self.decode_status.get(status, _JobStatus.other) # info when job status has changed if s != self.trials[job_id]['status']: logging.info('Jobstatus: {} for Job {}'.format(status,job_id)) self.trials[job_id]['status'] = s return s def kill_job(self, job_id): """Kill a job by deleting the argo workflow completly Args: job_id (str): Sherpa Job_ID / Name of the workflow that was started by Argo """ # Delete Argo Trial Dag / Workflow response_kill = self.make_request(request='DELETE',data=job_id) if response_kill.status_code == 200: # Append killed workflows job_id to list in order to return Status killed in get status because the request will not succeed (workflow does not exsist anymore) self.killed_jobs.append(str(job_id))
53.767528
209
0.620891
[ "MIT" ]
predictive-quality/ml-pipeline-blocks-hpo-sherpa
argo_scheduler.py
14,571
Python
# Generated by Django 2.2.7 on 2020-01-10 19:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('chatapp', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='profile', name='id', ), migrations.AlterField( model_name='message', name='receiver', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='receiver', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='message', name='sender', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='sender', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL), ), ]
32.057143
148
0.63369
[ "MIT" ]
milad-r/django_project
ChatProject/chatapp/migrations/0002_auto_20200110_2253.py
1,122
Python
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General utilities""" import importlib import operator import platform import sys from importlib.util import find_spec import torch from packaging.version import Version from pkg_resources import DistributionNotFound def _module_available(module_path: str) -> bool: """ Check if a path is available in your environment >>> _module_available('os') True >>> _module_available('bla.bla') False """ try: return find_spec(module_path) is not None except AttributeError: # Python 3.6 return False except ModuleNotFoundError: # Python 3.7+ return False def _compare_version(package: str, op, version) -> bool: """ Compare package version with some requirements >>> _compare_version("torch", operator.ge, "0.1") True """ try: pkg = importlib.import_module(package) except (ModuleNotFoundError, DistributionNotFound): return False try: pkg_version = Version(pkg.__version__) except TypeError: # this is mock by sphinx, so it shall return True ro generate all summaries return True return op(pkg_version, Version(version)) _IS_WINDOWS = platform.system() == "Windows" _IS_INTERACTIVE = hasattr(sys, "ps1") # https://stackoverflow.com/a/64523765 _TORCH_LOWER_EQUAL_1_4 = _compare_version("torch", operator.le, "1.5.0") _TORCH_GREATER_EQUAL_1_6 = _compare_version("torch", operator.ge, "1.6.0") _TORCH_GREATER_EQUAL_1_7 = _compare_version("torch", operator.ge, "1.7.0") _TORCH_GREATER_EQUAL_1_8 = _compare_version("torch", operator.ge, "1.8.0") _TORCH_GREATER_EQUAL_1_8_1 = _compare_version("torch", operator.ge, "1.8.1") _TORCH_GREATER_EQUAL_1_9 = _compare_version("torch", operator.ge, "1.9.0") _APEX_AVAILABLE = _module_available("apex.amp") _BOLTS_AVAILABLE = _module_available('pl_bolts') _DEEPSPEED_AVAILABLE = not _IS_WINDOWS and _module_available('deepspeed') _FAIRSCALE_AVAILABLE = _TORCH_GREATER_EQUAL_1_6 and not _IS_WINDOWS and _module_available('fairscale.nn') _FAIRSCALE_PIPE_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.le, "0.1.3") _GROUP_AVAILABLE = not _IS_WINDOWS and _module_available('torch.distributed.group') _HOROVOD_AVAILABLE = _module_available("horovod.torch") _HYDRA_AVAILABLE = _module_available("hydra") _HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental") _KINETO_AVAILABLE = _TORCH_GREATER_EQUAL_1_8_1 and torch.profiler.kineto_available() _NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast") _OMEGACONF_AVAILABLE = _module_available("omegaconf") _RPC_AVAILABLE = not _IS_WINDOWS and _module_available('torch.distributed.rpc') _TORCH_QUANTIZE_AVAILABLE = bool([eg for eg in torch.backends.quantized.supported_engines if eg != 'none']) _TORCHTEXT_AVAILABLE = _module_available("torchtext") _TORCHVISION_AVAILABLE = _module_available('torchvision') _TORCHMETRICS_LOWER_THAN_0_3 = _compare_version("torchmetrics", operator.lt, "0.3.0") _TORCHMETRICS_GREATER_EQUAL_0_3 = _compare_version("torchmetrics", operator.ge, "0.3.0") _XLA_AVAILABLE = _module_available("torch_xla") from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402 _TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
40.416667
107
0.765206
[ "Apache-2.0" ]
Queuecumber/pytorch-lightning
pytorch_lightning/utilities/imports.py
3,880
Python
from ._ffmpeg_normalize import FFmpegNormalize from ._media_file import MediaFile from ._version import __version__
23.4
46
0.863248
[ "MIT" ]
MCeddy/ffmpeg-normalize
ffmpeg_normalize/__init__.py
117
Python
#!/usr/bin/env python from setuptools import setup with open("README.md", "r") as fh: long_description = fh.read() setup( name="Taerbit", version="0.0.1", author="Finn Torbet", author_email="[email protected]", description="Package to process images through interpretability methods and then measure them against a binary mask segmentation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Taerbit/EXP", packages=['src'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', zip_safe=False, install_requires=['cv2', 'numpy', 'keras', 'pandas', 'matplotlib', 'seaborn', 'shap', 'pathlib'])
34.875
134
0.669056
[ "MIT" ]
Taerbit/EXP
setup.py
837
Python
import _plotly_utils.basevalidators class RangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__(self, plotly_name="range", parent_name="layout.xaxis", **kwargs): super(RangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, anim=kwargs.pop("anim", True), edit_type=kwargs.pop("edit_type", "axrange"), implied_edits=kwargs.pop("implied_edits", {"autorange": False}), items=kwargs.pop( "items", [ { "anim": True, "editType": "axrange", "impliedEdits": {"^autorange": False}, "valType": "any", }, { "anim": True, "editType": "axrange", "impliedEdits": {"^autorange": False}, "valType": "any", }, ], ), **kwargs )
35.419355
82
0.435337
[ "MIT" ]
AWS-BugBust-054/plotly.py
packages/python/plotly/plotly/validators/layout/xaxis/_range.py
1,098
Python
""" Copyright (C) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from mo.front.common.replacement import FrontReplacementOp from mo.graph.graph import Graph, Node from extensions.ops.MatMul import MatMul from extensions.ops.elementwise import Add class Linear(FrontReplacementOp): op = 'Linear' enabled = True def replace_op(self, graph: Graph, node: Node): matmul = MatMul(graph, dict(name=node.name, transpose_b=True)).create_node([node.in_node(0), node.in_node(1)]) # Bias if len(node.in_nodes()) > 2: matmul = Add(graph, dict(name=node.name + '/bias')).create_node([matmul, node.in_node(2)]) return [matmul.id]
33.805556
118
0.727198
[ "Apache-2.0" ]
IvanNovoselov/openvino_contrib
modules/mo_pytorch/mo_extensions/front/pytorch/linear.py
1,217
Python
#@+leo-ver=5-thin #@+node:ekr.20160928073518.1: * @file ../plugins/pyplot_backend.py ''' A helper for the viewrendered plugin. This is *NOT* a real plugin. ''' #@+<< pyplot_backend imports >> #@+node:ekr.20160928074801.1: ** << pyplot_backend imports >> from leo.core import leoGlobals as g from leo.plugins import viewrendered as vr from leo.core.leoQt import isQt5, isQt6, QtCore, QtWidgets try: if isQt5 or isQt6: import matplotlib.backends.backend_qt5agg as backend_qt5agg FigureCanvasQTAgg = backend_qt5agg.FigureCanvasQTAgg else: import matplotlib.backends.backend_qt4agg as backend_qt4agg FigureCanvasQTAgg = backend_qt4agg.FigureCanvasQTAgg # Common imports import matplotlib.backends.backend_qt5 as backend_qt5 import matplotlib.backend_bases as backend_bases from matplotlib.figure import Figure FigureManagerBase = backend_bases.FigureManagerBase except ImportError: g.es_exception() #@-<< pyplot_backend imports >> #@+others #@+node:ekr.20160928073605.1: ** init def init(): '''Return True if the plugin has loaded successfully.''' g.trace('pyplot_backend.py is not a plugin.') return False #@+node:ekr.20160928082006.1: ** Leo backend #@+node:ekr.20160928074615.2: *3* new_figure_manager def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) #@+node:ekr.20160928074615.3: *3* new_figure_manager_given_figure def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasQTAgg(figure) return LeoFigureManagerQT(canvas, num) #@+node:ekr.20160929050151.1: *3* class LeoFigureManagerQT # From backend_qt5.py # pylint: disable=no-member # matplotlib.backends.backend_qt5.FigureManager probably does exist. See: # https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/backends/backend_qt5.py class LeoFigureManagerQT(backend_qt5.FigureManager): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The qt.QToolBar window : The qt.QMainWindow (not set) """ #@+others #@+node:ekr.20160929050151.2: *4* __init__ (LeoFigureManagerQt) # Do NOT call the base class ctor. It creates a Qt MainWindow. # pylint: disable=super-init-not-called # pylint: disable=non-parent-init-called def __init__(self, canvas, num): '''Ctor for the LeoFigureManagerQt class.''' self.c = c = g.app.log.c super().__init__(canvas, num) self.canvas = canvas # New code for Leo: embed the canvas in the viewrendered area. self.vr_controller = vc = vr.controllers.get(c.hash()) self.splitter = c.free_layout.get_top_splitter() self.frame = w = QtWidgets.QFrame() w.setLayout(QtWidgets.QVBoxLayout()) w.layout().addWidget(self.canvas) if vc: vc.embed_widget(w) class DummyWindow: def __init__(self, c): self.c = c self._destroying = None def windowTitle(self): return self.c.p.h self.window = DummyWindow(c) # See comments in the base class ctor, in backend_qt5.py. FocusPolicy = QtCore.Qt.FocusPolicy if isQt6 else QtCore.Qt self.canvas.setFocusPolicy(FocusPolicy.StrongFocus) self.canvas.setFocus() self.canvas._destroying = False self.toolbar = self._get_toolbar(self.canvas, self.frame) if self.toolbar is not None: # The toolbar is a backend_qt5.NavigationToolbar2QT. layout = self.frame.layout() layout.addWidget(self.toolbar) # add text label to status bar self.statusbar_label = QtWidgets.QLabel() layout.addWidget(self.statusbar_label) # pylint: disable=no-member if isQt5 or isQt6: pass # The status bar doesn't work yet. else: self.toolbar.message.connect(self._show_message) self.canvas.draw_idle() def notify_axes_change(fig): # This will be called whenever the current axes is changed if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) #@+node:ekr.20160929083114.1: *4* destroy def destroy(self, *args): # Causes problems. # self.frame.deleteLater() self.frame = None #@-others #@-others #@@language python #@-leo
35.139706
97
0.663109
[ "MIT" ]
ATikhonov2/leo-editor
leo/plugins/pyplot_backend.py
4,779
Python
import sys import os import errno import time import json import glob from base64 import b64decode from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class Handler(FileSystemEventHandler): def __init__(self, provider): self.provider = provider def on_created(self, event): self.handle_event(event) def on_modified(self, event): self.handle_event(event) def handle_event(self, event): # Check if it's a JSON file if not event.is_directory and event.src_path.endswith('.json'): print('Certificate storage changed (' + os.path.basename(event.src_path) + ')') self.handle_file(event.src_path) def handle_file(self, file, provider): # Read JSON file data = json.loads(open(file).read()) print('Using provider: ' + self.provider) # Determine ACME version try: acme_version = 2 if 'acme-v02' in data[self.provider]['Account']['Registration']['uri'] else 1 except TypeError: if 'DomainsCertificate' in data: acme_version = 1 else: acme_version = 2 # Find certificates if acme_version == 1: certs = data['DomainsCertificate']['Certs'] elif acme_version == 2: certs = data[self.provider]['Certificates'] print('Certificate storage contains ' + str(len(certs)) + ' certificates') # Loop over all certificates for c in certs: if acme_version == 1: name = c['Certificate']['Domain'] privatekey = c['Certificate']['PrivateKey'] fullchain = c['Certificate']['Certificate'] sans = c['Domains']['SANs'] elif acme_version == 2: name = c['domain']['main'] privatekey = c['key'] fullchain = c['certificate'] sans = c['domain']['sans'] if 'sans' in c['domain'].keys() else None # Decode private key, certificate and chain privatekey = b64decode(privatekey).decode('utf-8') fullchain = b64decode(fullchain).decode('utf-8') start = fullchain.find('-----BEGIN CERTIFICATE-----', 1) cert = fullchain[0:start] chain = fullchain[start:] # Create domain directory if it doesn't exist directory = 'certs/' + name + '/' try: os.makedirs(directory) except OSError as error: if error.errno != errno.EEXIST: raise # Write private key, certificate and chain to file with open(directory + 'privkey.pem', 'w') as f: f.write(privatekey) with open(directory + 'cert.pem', 'w') as f: f.write(cert) with open(directory + 'chain.pem', 'w') as f: f.write(chain) with open(directory + 'fullchain.pem', 'w') as f: f.write(fullchain) # Write private key, certificate and chain to flat files directory = 'certs_flat/' with open(directory + name + '.key', 'w') as f: f.write(privatekey) with open(directory + name + '.crt', 'w') as f: f.write(fullchain) with open(directory + name + '.chain.pem', 'w') as f: f.write(chain) if sans: for name in sans: with open(directory + name + '.key', 'w') as f: f.write(privatekey) with open(directory + name + '.crt', 'w') as f: f.write(fullchain) with open(directory + name + '.chain.pem', 'w') as f: f.write(chain) print('Extracted certificate for: ' + name + (', ' + ', '.join(sans) if sans else '')) if __name__ == "__main__": # Determine path to watch path = sys.argv[1] if len(sys.argv) > 1 else './data' provider = sys.argv[2] if len(sys.argv) > 2 else 'default' # Create output directories if it doesn't exist try: os.makedirs('certs') except OSError as error: if error.errno != errno.EEXIST: raise try: os.makedirs('certs_flat') except OSError as error: if error.errno != errno.EEXIST: raise # Create event handler and observer event_handler = Handler(provider) observer = Observer() # Extract certificates from current file(s) before watching files = glob.glob(os.path.join(path, '*.json')) try: for file in files: print('Certificate storage found (' + os.path.basename(file) + ')') event_handler.handle_file(file, provider) except Exception as e: print(e) # Register the directory to watch observer.schedule(event_handler, path, provider) # Main loop to watch the directory observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
33.934211
106
0.551764
[ "MIT" ]
GuyKh/traefik-certificate-extractor
extractor.py
5,158
Python
#! /usr/bin/env python3 """camera.py - Adding a camera for bigger levels.""" import collections import time import arcade from arcade import key # Constraints SCREEN_WIDTH = 1000 SCREEN_HEIGHT = 650 SCREEN_TITLE = "Platformer" # Scale sprites from original size. 1 is original. CHARACTER_SCALING = 1 TILE_SCALING = 0.5 COIN_SCALING = 0.5 SPRITE_PIXEL_SIZE = 128 GRID_PIXEL_SIZE = SPRITE_PIXEL_SIZE * TILE_SCALING PLAYER_MOVEMENT_SPEED = 5 GRAVITY = 1 PLAYER_JUMP_SPEED = 20 # Player starting position PLAYER_START_X = 64 PLAYER_START_Y = 225 # Layer names from our TileMap LAYER_NAME_PLATFORMS = "Platforms" LAYER_NAME_COINS = "Coins" LAYER_NAME_FOREGROUND = "Foreground" LAYER_NAME_BACKGROUND = "Background" LAYER_NAME_DONT_TOUCH = "Don't Touch" class FPSCounter: """A class to detect frames per second.""" def __init__(self): self.time = time.perf_counter() self.frame_times = collections.deque(maxlen=60) def tick(self): """Determine tick amount.""" t_1 = time.perf_counter() dt = t_1 - self.time self.time = t_1 self.frame_times.append(dt) def get_fps(self) -> float: """Return FPS as a float.""" total_time = sum(self.frame_times) if total_time == 0: return 0 return len(self.frame_times) / sum(self.frame_times) class Player(arcade.Sprite): """A class to encapsulate the player sprite.""" def update(self): """ Move the player""" # Check for out of bounds self.left = max(self.left, 0) class MyGame(arcade.Window): """ Main application class. """ def __init__(self): """Call the parent class and set up the window.""" super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) # Initialize Scene and player self.scene, self.player_sprite = None, None # Initialize physics engine self.physics_engine = None # Track current state of key press self.left_pressed = False self.right_pressed = False # Set cameras. Separate needed due to scrolling issues. self.camera = None self.gui_camera = None # Game information self.score = 0 self.lives_left = 0 self.timer = 0 self.fps = FPSCounter() # Keys are set as a tuple for easier access self.up = (key.UP, key.W) self.down = (key.DOWN, key.S) self.left = (key.LEFT, key.A) self.right = (key.RIGHT, key.D) # Our TileMap Object self.tile_map = None # Right edge of the map self.end_of_map = 0 self.level = 1 # Load sounds self.collect_coin_sound = arcade.load_sound(":resources:sounds/coin1.wav") self.jump_sound = arcade.load_sound(":resources:sounds/jump1.wav") self.game_over_sound = arcade.load_sound(":resources:sounds/gameover1.wav") arcade.set_background_color(arcade.csscolor.CORNFLOWER_BLUE) def setup(self): """Set-up the game here. Call this function to restart the game.""" # Setup the Cameras self.camera = arcade.Camera(self.width, self.height) self.gui_camera = arcade.Camera(self.width, self.height) # Name of map file to load map_name = f":resources:tiled_maps/map2_level_{self.level}.json" # Layer specific options are defined on Layer names in a dictionary # Doing this will make the SpriteList for the platforms layer # use spatial hashing for detection. layer_options = { LAYER_NAME_PLATFORMS: { "use_spatial_hash": True, }, LAYER_NAME_COINS: { "use_spatial_hash": True, }, LAYER_NAME_DONT_TOUCH: { "use_spatial_hash": True, }, } # Read in tiled map self.tile_map = arcade.load_tilemap(map_name, TILE_SCALING, layer_options) # Initialize Scene # Automatically adds all layers as SpriteLists in proper order. self.scene = arcade.Scene.from_tilemap(self.tile_map) # Player setup # Adding sprite list after means that the foreground will be rendered # after the Player, meaning it will appear to be in front or over the top. # Doing this before add_sprite means the draw order is possible, otherwise # it is not possible to do. self.scene.add_sprite_list_after("Player", LAYER_NAME_FOREGROUND) image_source = ":resources:images" \ "/animated_characters/female_adventurer" \ "/femaleAdventurer_idle.png" self.player_sprite = Player(image_source, CHARACTER_SCALING) self.player_sprite.center_x = PLAYER_START_X self.player_sprite.center_y = PLAYER_START_Y self.scene.add_sprite("Player", self.player_sprite) # Create the physics engine self.physics_engine = arcade.PhysicsEnginePlatformer( self.player_sprite, gravity_constant=GRAVITY, walls=self.scene["Platforms"] ) # Set up game information for GUI self.score = 0 self.lives_left = 5 # --- Other stuff # Set the background color if self.tile_map.background_color: arcade.set_background_color(self.tile_map.background_color) # Calculate the right edge of the my_map in pixels self.end_of_map = self.tile_map.width * GRID_PIXEL_SIZE @property def current_fps(self) -> float: """Determine current fps.""" return self.fps.get_fps() @property def coins_left(self) -> int: """Determine coins remaining.""" return len(self.scene["Coins"]) @staticmethod def gui_label(text: str, var: any, x: int, y: int): """ Simplify arcade.draw_text. Keyword arguments: text -- This is the label. var -- This is the variable value. x -- This is the percent point of the screen's x x that it will start at. y -- This is the percent point of the screen's y it will start at. """ x, y = x / 100, y / 100 arcade.draw_text( text=f"{text}: {var}", start_x=SCREEN_WIDTH * x, start_y=SCREEN_HEIGHT * y, color=arcade.csscolor.WHITE, font_size=18, ) def display_gui_info(self): """Display GUI information.""" arcade.draw_rectangle_filled(center_x=SCREEN_WIDTH / 14, center_y=SCREEN_HEIGHT - SCREEN_HEIGHT / 10, width=SCREEN_WIDTH / 7, height=SCREEN_HEIGHT / 4, color=arcade.color.IRRESISTIBLE, ) self.gui_label("Score", self.score, 0, 95) self.gui_label("Coins Left", self.coins_left, 0, 90) self.gui_label("Time", round(self.timer), 0, 85) self.gui_label("Lives", self.lives_left, 0, 80) self.gui_label("FPS", round(self.current_fps), 90, 95) def on_draw(self): """Render the screen.""" # Clears screen to the background color arcade.start_render() # Activate our Camera self.camera.use() # Draw scene self.scene.draw() # Activate GUI camera before elements. self.gui_camera.use() # Draw score while scrolling it along the screen. self.display_gui_info() self.fps.tick() def on_key_press(self, button: int, modifiers: int): """Called whenever a key is pressed.""" if button in self.up and self.physics_engine.can_jump(): self.player_sprite.change_y = PLAYER_JUMP_SPEED arcade.play_sound(self.jump_sound) elif button in self.left: self.left_pressed = True elif button in self.right: self.right_pressed = True def on_key_release(self, button: int, modifiers: int): """Called when the user releases a key.""" if button in self.left: self.left_pressed = False elif button in self.right: self.right_pressed = False def update_player_velocity(self): """Update velocity based on key state.""" if self.left_pressed and not self.right_pressed: self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED elif self.right_pressed and not self.left_pressed: self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED else: self.player_sprite.change_x = 0 def center_camera_to_player(self): """Ensure the camera is centered on the player.""" screen_center_x = self.player_sprite.center_x - ( self.camera.viewport_width / 2) screen_center_y = self.player_sprite.center_y - ( self.camera.viewport_height / 2) # Don't let camera travel past 0 if screen_center_x < 0: screen_center_x = 0 if screen_center_y < 0: screen_center_y = 0 player_centered = screen_center_x, screen_center_y self.camera.move_to(player_centered) def player_coin_collision(self): """ Detects player collision with coins, then removes the coin sprite. This will play a sound and add 1 to the score. """ # Detect coin collision coin_hit_list = arcade.check_for_collision_with_list( self.player_sprite, self.scene["Coins"] ) # Loop through each coin we hit and remove it for coin in coin_hit_list: # Remove the coin and add to score coin.remove_from_sprite_lists() arcade.play_sound(self.collect_coin_sound) self.score += 1 def reset_player(self): """Reset's player to start position.""" self.player_sprite.center_x = PLAYER_START_X self.player_sprite.center_y = PLAYER_START_Y def stop_player(self): """Stop player movement.""" self.player_sprite.change_x = 0 self.player_sprite.change_y = 0 def game_over(self): """Sets game over and resets position.""" self.stop_player() self.reset_player() self.lives_left -= 1 arcade.play_sound(self.game_over_sound) def fell_off_map(self): """Detect if the player fell off the map and then reset position if so.""" if self.player_sprite.center_y < -100: self.game_over() def touched_dont_touch(self): """Detect collision on Don't Touch layer. Reset player if collision.""" if arcade.check_for_collision_with_list( self.player_sprite, self.scene[LAYER_NAME_DONT_TOUCH] ): self.game_over() def at_end_of_level(self): """Checks if player at end of level, and if so, load the next level.""" if self.player_sprite.center_x >= self.end_of_map: self.level += 1 # Load the next level self.setup() def on_update(self, delta_time: float): """Movement and game logic.""" # Move the player with the physics engine self.timer += delta_time self.update_player_velocity() self.player_sprite.update() self.physics_engine.update() # Detect collisions and level state self.player_coin_collision() self.fell_off_map() self.touched_dont_touch() self.at_end_of_level() # Position the camera self.center_camera_to_player() def main(): """Main program code.""" window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
32.008174
87
0.616583
[ "MIT" ]
casadina/py_arcade
multiple_levels.py
11,747
Python
# -*- coding: utf-8 -*- """ werkzeug.formparser ~~~~~~~~~~~~~~~~~~~ This module implements the form parsing. It supports url-encoded forms as well as non-nested multipart uploads. :copyright: (c) 2011 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import re from cStringIO import StringIO from tempfile import TemporaryFile from itertools import chain, repeat, tee from functools import update_wrapper from werkzeug._internal import _decode_unicode, _empty_stream from werkzeug.urls import url_decode_stream from werkzeug.wsgi import LimitedStream, make_line_iter from werkzeug.exceptions import RequestEntityTooLarge from werkzeug.datastructures import Headers, FileStorage, MultiDict from werkzeug.http import parse_options_header #: an iterator that yields empty strings _empty_string_iter = repeat('') #: a regular expression for multipart boundaries _multipart_boundary_re = re.compile('^[ -~]{0,200}[!-~]$') #: supported http encodings that are also available in python we support #: for multipart messages. _supported_multipart_encodings = frozenset(['base64', 'quoted-printable']) def default_stream_factory(total_content_length, filename, content_type, content_length=None): """The stream factory that is used per default.""" if total_content_length > 1024 * 500: return TemporaryFile('wb+') return StringIO() def parse_form_data(environ, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True): """Parse the form data in the environ and return it as tuple in the form ``(stream, form, files)``. You should only call this method if the transport method is `POST`, `PUT`, or `PATCH`. If the mimetype of the data transmitted is `multipart/form-data` the files multidict will be filled with `FileStorage` objects. If the mimetype is unknown the input stream is wrapped and returned as first argument, else the stream is empty. This is a shortcut for the common usage of :class:`FormDataParser`. Have a look at :ref:`dealing-with-request-data` for more details. .. versionadded:: 0.5 The `max_form_memory_size`, `max_content_length` and `cls` parameters were added. .. versionadded:: 0.5.1 The optional `silent` flag was added. :param environ: the WSGI environment to be used for parsing. :param stream_factory: An optional callable that returns a new read and writeable file descriptor. This callable works the same as :meth:`~BaseResponse._get_file_stream`. :param charset: The character set for URL and url encoded form data. :param errors: The encoding error behavior. :param max_form_memory_size: the maximum number of bytes to be accepted for in-memory stored form data. If the data exceeds the value specified an :exc:`~exceptions.RequestEntityTooLarge` exception is raised. :param max_content_length: If this is provided and the transmitted data is longer than this value an :exc:`~exceptions.RequestEntityTooLarge` exception is raised. :param cls: an optional dict class to use. If this is not specified or `None` the default :class:`MultiDict` is used. :param silent: If set to False parsing errors will not be caught. :return: A tuple in the form ``(stream, form, files)``. """ return FormDataParser(stream_factory, charset, errors, max_form_memory_size, max_content_length, cls, silent).parse_from_environ(environ) def exhaust_stream(f): """Helper decorator for methods that exhausts the stream on return.""" def wrapper(self, stream, *args, **kwargs): try: return f(self, stream, *args, **kwargs) finally: stream.exhaust() return update_wrapper(wrapper, f) class FormDataParser(object): """This class implements parsing of form data for Werkzeug. By itself it can parse multipart and url encoded form data. It can be subclassed and extended but for most mimetypes it is a better idea to use the untouched stream and expose it as separate attributes on a request object. .. versionadded:: 0.8 :param stream_factory: An optional callable that returns a new read and writeable file descriptor. This callable works the same as :meth:`~BaseResponse._get_file_stream`. :param charset: The character set for URL and url encoded form data. :param errors: The encoding error behavior. :param max_form_memory_size: the maximum number of bytes to be accepted for in-memory stored form data. If the data exceeds the value specified an :exc:`~exceptions.RequestEntityTooLarge` exception is raised. :param max_content_length: If this is provided and the transmitted data is longer than this value an :exc:`~exceptions.RequestEntityTooLarge` exception is raised. :param cls: an optional dict class to use. If this is not specified or `None` the default :class:`MultiDict` is used. :param silent: If set to False parsing errors will not be caught. """ def __init__(self, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True): if stream_factory is None: stream_factory = default_stream_factory self.stream_factory = stream_factory self.charset = charset self.errors = errors self.max_form_memory_size = max_form_memory_size self.max_content_length = max_content_length if cls is None: cls = MultiDict self.cls = cls self.silent = silent def get_parse_func(self, mimetype, options): return self.parse_functions.get(mimetype) def parse_from_environ(self, environ): """Parses the information from the environment as form data. :param environ: the WSGI environment to be used for parsing. :return: A tuple in the form ``(stream, form, files)``. """ content_type = environ.get('CONTENT_TYPE', '') mimetype, options = parse_options_header(content_type) try: content_length = int(environ['CONTENT_LENGTH']) except (KeyError, ValueError): content_length = 0 stream = environ['wsgi.input'] return self.parse(stream, mimetype, content_length, options) def parse(self, stream, mimetype, content_length, options=None): """Parses the information from the given stream, mimetype, content length and mimetype parameters. :param stream: an input stream :param mimetype: the mimetype of the data :param content_length: the content length of the incoming data :param options: optional mimetype parameters (used for the multipart boundary for instance) :return: A tuple in the form ``(stream, form, files)``. """ if self.max_content_length is not None and \ content_length > self.max_content_length: raise RequestEntityTooLarge() if options is None: options = {} input_stream = LimitedStream(stream, content_length) parse_func = self.get_parse_func(mimetype, options) if parse_func is not None: try: return parse_func(self, input_stream, mimetype, content_length, options) except ValueError: if not self.silent: raise return input_stream, self.cls(), self.cls() @exhaust_stream def _parse_multipart(self, stream, mimetype, content_length, options): parser = MultiPartParser(self.stream_factory, self.charset, self.errors, max_form_memory_size=self.max_form_memory_size, cls=self.cls) form, files = parser.parse(stream, options.get('boundary'), content_length) return _empty_stream, form, files @exhaust_stream def _parse_urlencoded(self, stream, mimetype, content_length, options): if self.max_form_memory_size is not None and \ content_length > self.max_form_memory_size: raise RequestEntityTooLarge() form = url_decode_stream(stream, self.charset, errors=self.errors, cls=self.cls) return _empty_stream, form, self.cls() #: mapping of mimetypes to parsing functions parse_functions = { 'multipart/form-data': _parse_multipart, 'application/x-www-form-urlencoded': _parse_urlencoded, 'application/x-url-encoded': _parse_urlencoded } def is_valid_multipart_boundary(boundary): """Checks if the string given is a valid multipart boundary.""" return _multipart_boundary_re.match(boundary) is not None def _line_parse(line): """Removes line ending characters and returns a tuple (`stripped_line`, `is_terminated`). """ if line[-2:] == '\r\n': return line[:-2], True elif line[-1:] in '\r\n': return line[:-1], True return line, False def parse_multipart_headers(iterable): """Parses multipart headers from an iterable that yields lines (including the trailing newline symbol). The iterable has to be newline terminated. The iterable will stop at the line where the headers ended so it can be further consumed. :param iterable: iterable of strings that are newline terminated """ result = [] for line in iterable: line, line_terminated = _line_parse(line) if not line_terminated: raise ValueError('unexpected end of line in multipart header') if not line: break elif line[0] in ' \t' and result: key, value = result[-1] result[-1] = (key, value + '\n ' + line[1:]) else: parts = line.split(':', 1) if len(parts) == 2: result.append((parts[0].strip(), parts[1].strip())) # we link the list to the headers, no need to create a copy, the # list was not shared anyways. return Headers.linked(result) _begin_form = intern('begin_form') _begin_file = intern('begin_file') _cont = intern('cont') _end = intern('end') class MultiPartParser(object): def __init__(self, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, cls=None, buffer_size=10 * 1024): self.stream_factory = stream_factory self.charset = charset self.errors = errors self.max_form_memory_size = max_form_memory_size if stream_factory is None: stream_factory = default_stream_factory if cls is None: cls = MultiDict self.cls = cls # make sure the buffer size is divisible by four so that we can base64 # decode chunk by chunk assert buffer_size % 4 == 0, 'buffer size has to be divisible by 4' # also the buffer size has to be at least 1024 bytes long or long headers # will freak out the system assert buffer_size >= 1024, 'buffer size has to be at least 1KB' self.buffer_size = buffer_size def _fix_ie_filename(self, filename): """Internet Explorer 6 transmits the full file name if a file is uploaded. This function strips the full path if it thinks the filename is Windows-like absolute. """ if filename[1:3] == ':\\' or filename[:2] == '\\\\': return filename.split('\\')[-1] return filename def _find_terminator(self, iterator): """The terminator might have some additional newlines before it. There is at least one application that sends additional newlines before headers (the python setuptools package). """ for line in iterator: if not line: break line = line.strip() if line: return line return '' def fail(self, message): raise ValueError(message) def get_part_encoding(self, headers): transfer_encoding = headers.get('content-transfer-encoding') if transfer_encoding is not None and \ transfer_encoding in _supported_multipart_encodings: return transfer_encoding def get_part_charset(self, headers): # Figure out input charset for current part content_type = headers.get('content-type') if content_type: mimetype, ct_params = parse_options_header(content_type) return ct_params.get('charset', self.charset) return self.charset def start_file_streaming(self, filename, headers, total_content_length): filename = _decode_unicode(filename, self.charset, self.errors) filename = self._fix_ie_filename(filename) content_type = headers.get('content-type') try: content_length = int(headers['content-length']) except (KeyError, ValueError): content_length = 0 container = self.stream_factory(total_content_length, content_type, filename, content_length) return filename, container def in_memory_threshold_reached(self, bytes): raise RequestEntityTooLarge() def validate_boundary(self, boundary): if not boundary: self.fail('Missing boundary') if not is_valid_multipart_boundary(boundary): self.fail('Invalid boundary: %s' % boundary) if len(boundary) > self.buffer_size: # pragma: no cover # this should never happen because we check for a minimum size # of 1024 and boundaries may not be longer than 200. The only # situation when this happens is for non debug builds where # the assert is skipped. self.fail('Boundary longer than buffer size') def parse_lines(self, file, boundary, content_length): """Generate parts of ``('begin_form', (headers, name))`` ``('begin_file', (headers, name, filename))`` ``('cont', bytestring)`` ``('end', None)`` Always obeys the grammar parts = ( begin_form cont* end | begin_file cont* end )* """ next_part = '--' + boundary last_part = next_part + '--' iterator = chain(make_line_iter(file, limit=content_length, buffer_size=self.buffer_size), _empty_string_iter) terminator = self._find_terminator(iterator) if terminator != next_part: self.fail('Expected boundary at start of multipart data') while terminator != last_part: headers = parse_multipart_headers(iterator) disposition = headers.get('content-disposition') if disposition is None: self.fail('Missing Content-Disposition header') disposition, extra = parse_options_header(disposition) transfer_encoding = self.get_part_encoding(headers) name = extra.get('name') filename = extra.get('filename') # if no content type is given we stream into memory. A list is # used as a temporary container. if filename is None: yield _begin_form, (headers, name) # otherwise we parse the rest of the headers and ask the stream # factory for something we can write in. else: yield _begin_file, (headers, name, filename) buf = '' for line in iterator: if not line: self.fail('unexpected end of stream') if line[:2] == '--': terminator = line.rstrip() if terminator in (next_part, last_part): break if transfer_encoding is not None: try: line = line.decode(transfer_encoding) except Exception: self.fail('could not decode transfer encoded chunk') # we have something in the buffer from the last iteration. # this is usually a newline delimiter. if buf: yield _cont, buf buf = '' # If the line ends with windows CRLF we write everything except # the last two bytes. In all other cases however we write # everything except the last byte. If it was a newline, that's # fine, otherwise it does not matter because we will write it # the next iteration. this ensures we do not write the # final newline into the stream. That way we do not have to # truncate the stream. However we do have to make sure that # if something else than a newline is in there we write it # out. if line[-2:] == '\r\n': buf = '\r\n' cutoff = -2 else: buf = line[-1] cutoff = -1 yield _cont, line[:cutoff] else: # pragma: no cover raise ValueError('unexpected end of part') # if we have a leftover in the buffer that is not a newline # character we have to flush it, otherwise we will chop of # certain values. if buf not in ('', '\r', '\n', '\r\n'): yield _cont, buf yield _end, None def parse_parts(self, file, boundary, content_length): """Generate `('file', (name, val))` and `('form', (name ,val))` parts. """ in_memory = 0 for ellt, ell in self.parse_lines(file, boundary, content_length): if ellt == _begin_file: headers, name, filename = ell is_file = True guard_memory = False filename, container = self.start_file_streaming( filename, headers, content_length) _write = container.write elif ellt == _begin_form: headers, name = ell is_file = False container = [] _write = container.append guard_memory = self.max_form_memory_size is not None elif ellt == _cont: _write(ell) # if we write into memory and there is a memory size limit we # count the number of bytes in memory and raise an exception if # there is too much data in memory. if guard_memory: in_memory += len(ell) if in_memory > self.max_form_memory_size: self.in_memory_threshold_reached(in_memory) elif ellt == _end: if is_file: container.seek(0) yield ('file', (name, FileStorage(container, filename, name, headers=headers))) else: part_charset = self.get_part_charset(headers) yield ('form', (name, _decode_unicode(''.join(container), part_charset, self.errors))) def parse(self, file, boundary, content_length): formstream, filestream = tee( self.parse_parts(file, boundary, content_length), 2) form = (p[1] for p in formstream if p[0] == 'form') files = (p[1] for p in filestream if p[0] == 'file') return self.cls(form), self.cls(files)
41.224
81
0.598389
[ "BSD-3-Clause" ]
Chitrank-Dixit/werkzeug
werkzeug/formparser.py
20,612
Python
#!/usr/bin/env python # coding: utf-8 import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') import sys import os import pandas as pd from scipy import stats HEADERS = ['device', 'layout', 'enc_type', 'n_states', 'sim_type', 'shots', 'optimizer', 'energy', 'meas_mit'] df = pd.DataFrame(columns = HEADERS) diagonalized_values = [ (0, 0), (1, -0.43658111), (2, -1.749160), (3, -2.045671), (4, -2.1439810), (5, -2.183592), (6, -2.201568), (7, -2.210416), (8, -2.215038), (16, -2.221059) ] for filename in os.listdir("."): if "bkp" in filename: continue if "energies.npy" not in filename: continue if "8_states" not in filename: continue if 'yorktown' in filename: device_name = 'yorktown' elif 'vigo' in filename: device_name = 'vigo' elif 'no_device' in filename: device_name = 'no device' else: continue print(filename) enc_type = 'Gray code' if 'gray_code' in filename else 'Jordan-Wigner' optimizer = 'SPSA' if 'SPSA' in filename else 'Nelder-Mead' sim_type = 'QASM' if 'qasm' in filename else statevector meas_mit = 'True' if 'mit_meas' in filename else 'False' if device_name == 'no device': meas_mit = 'None' if device_name == 'no device': layout = 'None' circ = 'None' else: if 'layout-4-2-3' in filename: layout = '{4,2,3}' circ = 'True' elif 'layout-4-2-1' in filename: layout = '{4,2,1}' circ = 'False' elif 'layout_None' in filename: layout = 'None' circ = 'None' elif 'layout-0-1-2' in filename: layout = '{0,1,2}' circ = 'False' else: continue #raise ValueError #layout = 'None' #circ = 'None' n_shots = 10000 n_states = 8 base_dict = {'device' : device_name, 'layout' : layout, 'enc_type' : enc_type, 'n_states' : n_states, 'sim_type' : sim_type, 'shots' : n_shots, 'optimizer' : optimizer, 'meas_mit' : meas_mit, 'circ' : circ } print(base_dict) data = np.load(f"./{filename}") for energy in data: next_dict = base_dict next_dict['energy'] = energy df = df.append(next_dict, ignore_index=True) print(df.groupby(['device','layout','enc_type','sim_type','n_states','shots','optimizer','meas_mit']).describe()) #colours = {"True" : "tab:blue", "False" : "tab:orange", "None" : "tab:gray"} colours = {'vigo' : 'tab:blue', 'yorktown' : 'tab:orange', 'no device' : 'tab:gray'} linestyles = {('True','vigo') : (0,(1,1)), ('False','vigo') : (0,(5,1)), ('None','no device') : '-.', ('True','yorktown') : (0,(1,5)), ('False','yorktown') : (0,(5,5))} fig, ax = plt.subplots(figsize=(8,5)) for key, grp in df.groupby(['circ','meas_mit','enc_type','layout','device']): if key[2] == 'Jordan-Wigner': continue if key[1] == 'False': continue if key[0] == 'True': label = f'Loop: {key[3]}' elif key[0] == 'False': label = f'Line: {key[3]}' else: label = 'No noise' if key[4] == 'vigo': label = label + ' (V)' elif key[4] == 'yorktown': label = label + ' (Y)' sns.kdeplot(grp['energy'],bw='scott',label=f"{label}",color=colours[key[4]],linestyle=linestyles[(key[0],key[4])],ax=ax) ax.axvline(x=diagonalized_values[8][1], color='black', label='True value (N = 8)', alpha=0.8) handles, labels = ax.get_legend_handles_labels() order = [0,1,3,2,4] handles, labels = [handles[i] for i in order], [labels[i] for i in order] ax.legend(handles,labels,fontsize=14) ax.set_xlabel("Energy", fontsize=16) #ax.set_xlim(-3,10) #plt.ylim(0,20) #plt.xticks(fontsize=16) #plt.yticks(fontsize=16) ax.tick_params(labelsize=16) #title_string = f"Yorktown, meas_mit={key[1]}" #plt.title(title_string, fontsize=20) fig.tight_layout() plt.savefig(f"./8_states_yorktown.pdf") plt.show()
27.111842
168
0.568794
[ "MIT" ]
aemccoy/GrayCode-QubitEncoding
paper-data/noise/8state_layout_comparison.py
4,121
Python
""" The file preprocesses the files/train.txt and files/test.txt files. I requires the dependency based embeddings by Levy et al.. Download them from his website and change the embeddingsPath variable in the script to point to the unzipped deps.words file. """ from __future__ import print_function import numpy as np import gzip import os import sys if (sys.version_info > (3, 0)): import pickle as pkl else: #Python 2.7 imports import cPickle as pkl outputFilePath = 'pkl/sem-relations.pkl.gz' #We download English word embeddings from here https://www.cs.york.ac.uk/nlp/extvec/ embeddingsPath = 'embeddings/wiki_extvec.gz' folder = 'files/' files = [folder+'train.txt', folder+'test.txt'] #Mapping of the labels to integers labelsMapping = {'Other':0, 'Message-Topic(e1,e2)':1, 'Message-Topic(e2,e1)':2, 'Product-Producer(e1,e2)':3, 'Product-Producer(e2,e1)':4, 'Instrument-Agency(e1,e2)':5, 'Instrument-Agency(e2,e1)':6, 'Entity-Destination(e1,e2)':7, 'Entity-Destination(e2,e1)':8, 'Cause-Effect(e1,e2)':9, 'Cause-Effect(e2,e1)':10, 'Component-Whole(e1,e2)':11, 'Component-Whole(e2,e1)':12, 'Entity-Origin(e1,e2)':13, 'Entity-Origin(e2,e1)':14, 'Member-Collection(e1,e2)':15, 'Member-Collection(e2,e1)':16, 'Content-Container(e1,e2)':17, 'Content-Container(e2,e1)':18} words = {} maxSentenceLen = [0,0] distanceMapping = {'PADDING': 0, 'LowerMin': 1, 'GreaterMax': 2} minDistance = -30 maxDistance = 30 for dis in range(minDistance,maxDistance+1): distanceMapping[dis] = len(distanceMapping) def createMatrices(file, word2Idx, maxSentenceLen=100): """Creates matrices for the events and sentence for the given file""" labels = [] positionMatrix1 = [] positionMatrix2 = [] tokenMatrix = [] for line in open(file): splits = line.strip().split('\t') label = splits[0] pos1 = splits[1] pos2 = splits[2] sentence = splits[3] tokens = sentence.split(" ") tokenIds = np.zeros(maxSentenceLen) positionValues1 = np.zeros(maxSentenceLen) positionValues2 = np.zeros(maxSentenceLen) for idx in range(0, min(maxSentenceLen, len(tokens))): tokenIds[idx] = getWordIdx(tokens[idx], word2Idx) distance1 = idx - int(pos1) distance2 = idx - int(pos2) if distance1 in distanceMapping: positionValues1[idx] = distanceMapping[distance1] elif distance1 <= minDistance: positionValues1[idx] = distanceMapping['LowerMin'] else: positionValues1[idx] = distanceMapping['GreaterMax'] if distance2 in distanceMapping: positionValues2[idx] = distanceMapping[distance2] elif distance2 <= minDistance: positionValues2[idx] = distanceMapping['LowerMin'] else: positionValues2[idx] = distanceMapping['GreaterMax'] tokenMatrix.append(tokenIds) positionMatrix1.append(positionValues1) positionMatrix2.append(positionValues2) labels.append(labelsMapping[label]) return np.array(labels, dtype='int32'), np.array(tokenMatrix, dtype='int32'), np.array(positionMatrix1, dtype='int32'), np.array(positionMatrix2, dtype='int32'), def getWordIdx(token, word2Idx): """Returns from the word2Idex table the word index for a given token""" if token in word2Idx: return word2Idx[token] elif token.lower() in word2Idx: return word2Idx[token.lower()] return word2Idx["UNKNOWN_TOKEN"] for fileIdx in range(len(files)): file = files[fileIdx] for line in open(file): splits = line.strip().split('\t') label = splits[0] sentence = splits[3] tokens = sentence.split(" ") maxSentenceLen[fileIdx] = max(maxSentenceLen[fileIdx], len(tokens)) for token in tokens: words[token.lower()] = True print("Max Sentence Lengths: ", maxSentenceLen) # :: Read in word embeddings :: # :: Read in word embeddings :: word2Idx = {} wordEmbeddings = [] # :: Downloads the embeddings from the York webserver :: if not os.path.isfile(embeddingsPath): basename = os.path.basename(embeddingsPath) if basename == 'wiki_extvec.gz': print("Start downloading word embeddings for English using wget ...") #os.system("wget https://www.cs.york.ac.uk/nlp/extvec/"+basename+" -P embeddings/") os.system("wget https://public.ukp.informatik.tu-darmstadt.de/reimers/2017_english_embeddings/"+basename+" -P embeddings/") else: print(embeddingsPath, "does not exist. Please provide pre-trained embeddings") exit() # :: Load the pre-trained embeddings file :: fEmbeddings = gzip.open(embeddingsPath, "r") if embeddingsPath.endswith('.gz') else open(embeddingsPath, encoding="utf8") print("Load pre-trained embeddings file") for line in fEmbeddings: split = line.decode('utf-8').strip().split(" ") word = split[0] if len(word2Idx) == 0: #Add padding+unknown word2Idx["PADDING_TOKEN"] = len(word2Idx) vector = np.zeros(len(split)-1) #Zero vector vor 'PADDING' word wordEmbeddings.append(vector) word2Idx["UNKNOWN_TOKEN"] = len(word2Idx) vector = np.random.uniform(-0.25, 0.25, len(split)-1) wordEmbeddings.append(vector) if word.lower() in words: vector = np.array([float(num) for num in split[1:]]) wordEmbeddings.append(vector) word2Idx[word] = len(word2Idx) wordEmbeddings = np.array(wordEmbeddings) print("Embeddings shape: ", wordEmbeddings.shape) print("Len words: ", len(words)) # :: Create token matrix :: train_set = createMatrices(files[0], word2Idx, max(maxSentenceLen)) test_set = createMatrices(files[1], word2Idx, max(maxSentenceLen)) data = {'wordEmbeddings': wordEmbeddings, 'word2Idx': word2Idx, 'train_set': train_set, 'test_set': test_set} f = gzip.open(outputFilePath, 'wb') pkl.dump(data, f) f.close() print("Data stored in pkl folder")
32.179104
165
0.621212
[ "Apache-2.0" ]
BhuvaneshwaranK/deeplearning4nlp-tutorial
2017-07_Seminar/Session 3 - Relation CNN/code/preprocess.py
6,468
Python
import os RESOURCE_DIR = os.path.join(os.path.dirname(__file__), 'resources') FONT_FILE_PATH = os.path.join(RESOURCE_DIR, 'DejaVuSans.ttf')
23.666667
67
0.767606
[ "MIT" ]
alok1974/minescrubber
src/minescrubber/conf.py
142
Python
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
39.722623
95
0.622215
[ "MIT" ]
tuandnvn/ecat_learning
igraph/clustering.py
66,025
Python
# Copyright 2018 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for hts_verbose.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys if 'google' in sys.modules and 'google.protobuf' not in sys.modules: del sys.modules['google'] from absl.testing import absltest from third_party.nucleus.io.python import hts_verbose class HtsVerbose(absltest.TestCase): def test_set(self): hts_verbose.set(hts_verbose.htsLogLevel.HTS_LOG_TRACE) level = hts_verbose.get() self.assertEqual(level, hts_verbose.htsLogLevel.HTS_LOG_TRACE) hts_verbose.set(hts_verbose.htsLogLevel.HTS_LOG_INFO) level = hts_verbose.get() self.assertEqual(level, hts_verbose.htsLogLevel.HTS_LOG_INFO) hts_verbose.set(hts_verbose.htsLogLevel['HTS_LOG_DEBUG']) level = hts_verbose.get() self.assertEqual(level, hts_verbose.htsLogLevel.HTS_LOG_DEBUG) if __name__ == '__main__': absltest.main()
38.746032
78
0.781237
[ "BSD-3-Clause" ]
Abzollo/deepvariant
third_party/nucleus/io/python/hts_verbose_test.py
2,441
Python
"""Tests for the sensor drivers.""" import pytest import mock from pytest_lazyfixture import lazy_fixture # type: ignore[import] from unittest.mock import patch from mock.mock import AsyncMock from tests.conftest import MockCanMessageNotifier from opentrons_hardware.sensors import fdc1004, hdc2080, mmr920C04, sensor_abc from opentrons_hardware.firmware_bindings import ArbitrationId, ArbitrationIdParts from opentrons_hardware.firmware_bindings.constants import SensorType, SensorId, NodeId from opentrons_hardware.drivers.can_bus.can_messenger import ( CanMessenger, ) from opentrons_hardware.firmware_bindings.utils import ( UInt8Field, UInt16Field, UInt32Field, Int32Field, ) from opentrons_hardware.firmware_bindings.messages.message_definitions import ( BaselineSensorRequest, ReadFromSensorRequest, SetSensorThresholdRequest, WriteToSensorRequest, ReadFromSensorResponse, SensorThresholdResponse, BindSensorOutputRequest, PeripheralStatusRequest, PeripheralStatusResponse, ) from opentrons_hardware.firmware_bindings.messages.messages import MessageDefinition from opentrons_hardware.firmware_bindings.messages.payloads import ( BaselineSensorRequestPayload, ReadFromSensorRequestPayload, WriteToSensorRequestPayload, ReadFromSensorResponsePayload, SensorThresholdResponsePayload, BindSensorOutputRequestPayload, PeripheralStatusResponsePayload, ) from opentrons_hardware.firmware_bindings.messages.fields import ( SensorTypeField, SensorIdField, SensorOutputBindingField, ) from opentrons_hardware.sensors.utils import SensorDataType from opentrons_hardware.firmware_bindings.constants import SensorOutputBinding @pytest.fixture def pressure_sensor() -> mmr920C04.PressureSensor: """Fixture for pressure sensor driver.""" return mmr920C04.PressureSensor() @pytest.fixture def capacitive_sensor() -> fdc1004.CapacitiveSensor: """Fixture for capacitive sensor driver.""" return fdc1004.CapacitiveSensor() @pytest.fixture def temperature_sensor() -> hdc2080.EnvironmentSensor: """Fixture for temperature sensor driver.""" return hdc2080.EnvironmentSensor(SensorType.temperature) @pytest.fixture def humidity_sensor() -> hdc2080.EnvironmentSensor: """Fixture for humidity sensor driver.""" return hdc2080.EnvironmentSensor(SensorType.humidity) @pytest.mark.parametrize( argnames=["sensor", "node", "message"], argvalues=[ [ lazy_fixture("pressure_sensor"), NodeId.pipette_left, BaselineSensorRequest( payload=BaselineSensorRequestPayload( sensor=SensorTypeField(SensorType.pressure), sensor_id=SensorIdField(SensorId.S0), sample_rate=UInt16Field(10), ) ), ], [ lazy_fixture("capacitive_sensor"), NodeId.pipette_left, BaselineSensorRequest( payload=BaselineSensorRequestPayload( sensor=SensorTypeField(SensorType.capacitive), sensor_id=SensorIdField(SensorId.S0), sample_rate=UInt16Field(10), ) ), ], ], ) async def test_polling( sensor: sensor_abc.AbstractAdvancedSensor, node: NodeId, message: MessageDefinition ) -> None: """Test that a polling function sends the expected message.""" messenger = mock.AsyncMock(spec=CanMessenger) await sensor.get_baseline(messenger, node, 10, 10) messenger.send.assert_called_once_with(node_id=node, message=message) @pytest.mark.parametrize( argnames=["sensor"], argvalues=[ [lazy_fixture("pressure_sensor")], [lazy_fixture("capacitive_sensor")], ], ) async def test_receive_data_polling( sensor: sensor_abc.AbstractAdvancedSensor, mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, ) -> None: """Test that data is received from the polling function.""" def responder(node_id: NodeId, message: MessageDefinition) -> None: """Message responder.""" can_message_notifier.notify( ReadFromSensorResponse( payload=ReadFromSensorResponsePayload( sensor_data=Int32Field(256), sensor_id=SensorIdField(SensorId.S0), sensor=SensorTypeField(sensor._sensor_type), ) ), ArbitrationId( parts=ArbitrationIdParts( message_id=ReadFromSensorResponse.message_id, node_id=NodeId.host, function_code=0, originating_node_id=node_id, ) ), ) mock_messenger.send.side_effect = responder return_data = await sensor.get_baseline(mock_messenger, NodeId.pipette_left, 10, 10) assert return_data == SensorDataType.build([0x0, 0x1, 0x0]) @pytest.mark.parametrize( argnames=["sensor", "node", "message"], argvalues=[ [ lazy_fixture("pressure_sensor"), NodeId.pipette_left, WriteToSensorRequest( payload=WriteToSensorRequestPayload( sensor=SensorTypeField(SensorType.pressure), sensor_id=SensorIdField(SensorId.S0), data=UInt32Field(SensorDataType.build([0x2, 0x2, 0x0, 0x0]).to_int), reg_address=UInt8Field(0x0), ) ), ], [ lazy_fixture("capacitive_sensor"), NodeId.pipette_left, WriteToSensorRequest( payload=WriteToSensorRequestPayload( sensor=SensorTypeField(SensorType.capacitive), sensor_id=SensorIdField(SensorId.S0), data=UInt32Field(SensorDataType.build([0x2, 0x2, 0x0, 0x0]).to_int), reg_address=UInt8Field(0x0), ) ), ], [ lazy_fixture("temperature_sensor"), NodeId.pipette_left, WriteToSensorRequest( payload=WriteToSensorRequestPayload( sensor=SensorTypeField(SensorType.temperature), sensor_id=SensorIdField(SensorId.S0), data=UInt32Field(SensorDataType.build([0x2, 0x2, 0x0, 0x0]).to_int), reg_address=UInt8Field(0x0), ) ), ], [ lazy_fixture("humidity_sensor"), NodeId.pipette_left, WriteToSensorRequest( payload=WriteToSensorRequestPayload( sensor=SensorTypeField(SensorType.humidity), sensor_id=SensorIdField(SensorId.S0), data=UInt32Field(SensorDataType.build([0x2, 0x2, 0x0, 0x0]).to_int), reg_address=UInt8Field(0x0), ) ), ], ], ) async def test_write( sensor: sensor_abc.AbstractAdvancedSensor, node: NodeId, message: MessageDefinition ) -> None: """Check that writing sensor data is successful.""" data = SensorDataType.build([0x2, 0x2, 0x0, 0x0]) messenger = mock.AsyncMock(spec=CanMessenger) await sensor.write(messenger, NodeId.pipette_left, data) messenger.send.assert_called_once_with(node_id=node, message=message) @pytest.mark.parametrize( argnames=["sensor", "node", "message"], argvalues=[ [ lazy_fixture("pressure_sensor"), NodeId.pipette_left, ReadFromSensorRequest( payload=ReadFromSensorRequestPayload( sensor=SensorTypeField(SensorType.pressure), sensor_id=SensorIdField(SensorId.S0), offset_reading=UInt8Field(False), ) ), ], [ lazy_fixture("capacitive_sensor"), NodeId.pipette_left, ReadFromSensorRequest( payload=ReadFromSensorRequestPayload( sensor=SensorTypeField(SensorType.capacitive), sensor_id=SensorIdField(SensorId.S0), offset_reading=UInt8Field(False), ) ), ], [ lazy_fixture("temperature_sensor"), NodeId.pipette_left, ReadFromSensorRequest( payload=ReadFromSensorRequestPayload( sensor=SensorTypeField(SensorType.temperature), sensor_id=SensorIdField(SensorId.S0), offset_reading=UInt8Field(False), ) ), ], [ lazy_fixture("humidity_sensor"), NodeId.pipette_left, ReadFromSensorRequest( payload=ReadFromSensorRequestPayload( sensor=SensorTypeField(SensorType.humidity), sensor_id=SensorIdField(SensorId.S0), offset_reading=UInt8Field(False), ) ), ], ], ) async def test_read( sensor: sensor_abc.AbstractAdvancedSensor, node: NodeId, message: MessageDefinition ) -> None: """Test that a read function sends the expected message.""" messenger = mock.AsyncMock(spec=CanMessenger) await sensor.read(messenger, node, False) messenger.send.assert_called_once_with(node_id=node, message=message) @pytest.mark.parametrize( argnames=["sensor"], argvalues=[ [lazy_fixture("pressure_sensor")], [lazy_fixture("capacitive_sensor")], [lazy_fixture("temperature_sensor")], [lazy_fixture("humidity_sensor")], ], ) async def test_receive_data_read( sensor: sensor_abc.AbstractAdvancedSensor, mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, ) -> None: """Test that data is received from the read function.""" def responder(node_id: NodeId, message: MessageDefinition) -> None: """Message responder.""" can_message_notifier.notify( ReadFromSensorResponse( payload=ReadFromSensorResponsePayload( sensor_data=Int32Field(256), sensor_id=SensorIdField(SensorId.S0), sensor=SensorTypeField(sensor._sensor_type), ) ), ArbitrationId( parts=ArbitrationIdParts( message_id=ReadFromSensorResponse.message_id, node_id=NodeId.host, function_code=0, originating_node_id=node_id, ) ), ) mock_messenger.send.side_effect = responder return_data = await sensor.read(mock_messenger, NodeId.pipette_left, False, 10) assert return_data == SensorDataType.build([0x0, 0x1, 0x0]) @pytest.mark.parametrize( argnames=["sensor"], argvalues=[[lazy_fixture("pressure_sensor")], [lazy_fixture("capacitive_sensor")]], ) async def test_threshold( sensor: sensor_abc.AbstractAdvancedSensor, mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, ) -> None: """Test that data is received from the threshold function.""" def responder(node_id: NodeId, message: MessageDefinition) -> None: """Message responder.""" if isinstance(message, SetSensorThresholdRequest): can_message_notifier.notify( SensorThresholdResponse( payload=SensorThresholdResponsePayload( threshold=message.payload.threshold, sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), mode=message.payload.mode, ) ), ArbitrationId( parts=ArbitrationIdParts( message_id=ReadFromSensorResponse.message_id, node_id=NodeId.host, function_code=0, originating_node_id=node_id, ) ), ) threshold = SensorDataType.build([0x0, 0x5]) mock_messenger.send.side_effect = responder return_data = await sensor.send_zero_threshold( mock_messenger, NodeId.pipette_left, threshold, 10 ) assert return_data == threshold @pytest.mark.parametrize( argnames=["node_id", "timeout", "sensor"], argvalues=[ [NodeId.pipette_left, 1, lazy_fixture("pressure_sensor")], [NodeId.pipette_left, 5, lazy_fixture("capacitive_sensor")], ], ) async def test_bind_to_sync( mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, sensor: sensor_abc.AbstractAdvancedSensor, node_id: NodeId, timeout: int, ) -> None: """Test for bind_to_sync. Tests that bind_to_sync does in fact send out a BindSensorOutputRequest. """ async with sensor.bind_output( mock_messenger, node_id, SensorOutputBinding.sync, ): mock_messenger.send.assert_called_with( node_id=node_id, message=BindSensorOutputRequest( payload=BindSensorOutputRequestPayload( sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), binding=SensorOutputBindingField(SensorOutputBinding.sync), ) ), ) mock_messenger.send.assert_called_with( node_id=node_id, message=BindSensorOutputRequest( payload=BindSensorOutputRequestPayload( sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), binding=SensorOutputBindingField(SensorOutputBinding.none), ) ), ) @pytest.mark.parametrize( argnames=["sensor", "node_id", "timeout"], argvalues=[ [lazy_fixture("capacitive_sensor"), NodeId.pipette_right, 10], [lazy_fixture("pressure_sensor"), NodeId.pipette_left, 2], ], ) async def test_get_baseline( mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, sensor: sensor_abc.AbstractAdvancedSensor, node_id: NodeId, timeout: int, ) -> None: """Test for get_baseline. Tests that a BaselineSensorRequest gets sent, and reads ReadFromSensorResponse message containing the correct information. """ def responder(node_id: NodeId, message: MessageDefinition) -> None: """Message responder.""" if isinstance(message, BaselineSensorRequest): can_message_notifier.notify( ReadFromSensorResponse( payload=ReadFromSensorResponsePayload( sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), sensor_data=Int32Field(50), ) ), ArbitrationId( parts=ArbitrationIdParts( message_id=ReadFromSensorResponse.message_id, node_id=node_id, function_code=0, originating_node_id=node_id, ) ), ) mock_messenger.send.side_effect = responder baseline = await sensor.get_baseline(mock_messenger, node_id, 100, timeout) assert baseline == SensorDataType.build(Int32Field(50)) @pytest.mark.parametrize( argnames=["sensor", "node_id", "timeout"], argvalues=[ [lazy_fixture("capacitive_sensor"), NodeId.pipette_left, 2], [lazy_fixture("pressure_sensor"), NodeId.pipette_right, 3], ], ) async def test_debug_poll( mock_messenger: mock.AsyncMock, sensor: sensor_abc.AbstractAdvancedSensor, node_id: NodeId, timeout: int, ) -> None: """Test for debug poll.""" async with sensor.bind_output(mock_messenger, node_id, SensorOutputBinding.report): for i in range(2): with patch.object( sensor._scheduler, "_wait_for_response", new=AsyncMock(return_value=SensorDataType.build(50)), ): data = await sensor.get_report(node_id, mock_messenger, timeout) assert data == SensorDataType.build(Int32Field(50)) mock_messenger.send.assert_called_with( node_id=node_id, message=BindSensorOutputRequest( payload=BindSensorOutputRequestPayload( sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), binding=SensorOutputBindingField(SensorOutputBinding.none), ) ), ) @pytest.mark.parametrize( argnames=["sensor", "node_id", "timeout"], argvalues=[ [lazy_fixture("capacitive_sensor"), NodeId.pipette_left, 2], [lazy_fixture("pressure_sensor"), NodeId.pipette_right, 3], [lazy_fixture("temperature_sensor"), NodeId.pipette_left, 2], [lazy_fixture("humidity_sensor"), NodeId.pipette_right, 2], ], ) async def test_peripheral_status( mock_messenger: mock.AsyncMock, can_message_notifier: MockCanMessageNotifier, sensor: sensor_abc.AbstractAdvancedSensor, node_id: NodeId, timeout: int, ) -> None: """Test for getting peripheral device status.""" def responder(node_id: NodeId, message: MessageDefinition) -> None: """Message responder.""" if isinstance(message, PeripheralStatusRequest): can_message_notifier.notify( PeripheralStatusResponse( payload=PeripheralStatusResponsePayload( sensor=SensorTypeField(sensor._sensor_type), sensor_id=SensorIdField(SensorId.S0), status=UInt8Field(0x1), ) ), ArbitrationId( parts=ArbitrationIdParts( message_id=ReadFromSensorResponse.message_id, node_id=node_id, function_code=0, originating_node_id=node_id, ) ), ) mock_messenger.send.side_effect = responder status = await sensor.get_device_status(mock_messenger, node_id, timeout) assert status
35.263757
88
0.619727
[ "Apache-2.0" ]
Opentrons/protocol_framework
hardware/tests/opentrons_hardware/sensors/test_sensor_drivers.py
18,584
Python
import pytest def test_load_module(): __import__("modules.core.disk")
12.666667
35
0.736842
[ "MIT" ]
Aliuakbar/bumblebee-status
tests/modules/core/test_disk.py
76
Python
""" Common functions for tests """ __author__ = "Dan Gunter <[email protected]>" __date__ = "10/29/13" # Stdlib import json import logging import os import subprocess import sys import tempfile import traceback import unittest # Third-party from mongomock import MongoClient import pymongo # Package from pymatgen.db.query_engine import QueryEngine from pymatgen.db.builders.incr import CollectionTracker _log = logging.getLogger("pymatgen.db.tests") TEST_FILES_DIR = os.path.join( os.path.dirname(os.path.abspath(__file__)), "..", "..", "..", "test_files", ) def has_mongo(): """Determine if MongoDB is up and usable""" if os.environ.get("MP_FAKEMONGO"): mongo = False else: try: pymongo.MongoClient() mongo = True except: mongo = False return mongo class MockQueryEngine(QueryEngine): """Mock (fake) QueryEngine, unless a real connection works. You can disable the attempt to do a real connection by setting MP_FAKEMONGO to anything """ def __init__( self, host="127.0.0.1", port=27017, database="vasp", user=None, password=None, collection="tasks", aliases_config=None, default_properties=None, ): if has_mongo(): try: QueryEngine.__init__( self, host=host, port=port, database=database, user=user, password=password, collection=collection, aliases_config=aliases_config, default_properties=default_properties, ) _log.warning("Connected to real MongoDB at {}:{}".format(host, port)) return # actully connected! not mocked.. except: _log.debug( "Connection to real MongoDB at {}:{} failed. " "This is normal; using mock.".format(host, port) ) self.connection = MongoClient(host, port) self.db = self.connection[database] self._user, self._password = user, password self.host = host self.port = port self.database_name = database # colllection name is now a @property. the setter will set "self.collection" internally self.collection_name = collection self.set_aliases_and_defaults( aliases_config=aliases_config, default_properties=default_properties ) # ----------------------------------- # Component test classes / functions # ----------------------------------- def get_component_logger(name, strm=sys.stdout): log = logging.getLogger(name) if "TEST_DEBUG" in os.environ: log.setLevel(logging.DEBUG) else: log.setLevel(logging.INFO) _h = logging.StreamHandler(strm) log.addHandler(_h) return log class ComponentTest(unittest.TestCase): DB = "testdb" SRC = "source" DST = "dest" MGBUILD_CMD = ["mgbuild", "run"] def setUp(self): self.db = self.connect(True) self.src, self.dst = self.db[self.SRC], self.db[self.DST] self.src_conf, self.dst_conf = self.create_configs() def mgbuild(self, args): try: s = subprocess.check_output( self.MGBUILD_CMD + args, stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as err: print("ERROR: {}".format(err.output)) raise return s def connect(self, clear=False): """Connect to Mongo DB :return: pymongo Database """ c = pymongo.MongoClient() db = c[self.DB] if clear: for coll in self.SRC, self.DST: db[coll].remove() tcoll = coll + "." + CollectionTracker.TRACKING_NAME db[tcoll].remove() # remove tracking as well return db def get_record(self, i): return {"number": i, "data": [1, 2, 3], "name": "mp-{:d}".format(i)} def add_records(self, coll, n): for i in range(n): coll.insert_one(self.get_record(i)) def create_configs(self): base = { "host": "localhost", "port": 27017, "database": self.DB, "collection": None, } files = [] for coll in (self.SRC, self.DST): f = tempfile.NamedTemporaryFile(suffix=".json") base["collection"] = coll json.dump(base, f) f.flush() files.append(f) return files def tearDown(self): pass def run_command(self, args, options): """Run the command-line given by the list in `args`, adding the dictionary given by options as long-form --{key}=value pairs. """ for key, value in options: args.append("--{}".format(key)) if value: args.append(value) return subprocess.call(args)
27.690217
95
0.556232
[ "MIT" ]
chc273/pymatgen-db
pymatgen/db/tests/common.py
5,095
Python
# ------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- from azure.storage.common._common_conversion import _to_str class Container(object): ''' Blob container class. :ivar str name: The name of the container. :ivar metadata: A dict containing name-value pairs associated with the container as metadata. This var is set to None unless the include=metadata param was included for the list containers operation. If this parameter was specified but the container has no metadata, metadata will be set to an empty dictionary. :vartype metadata: dict(str, str) :ivar ContainerProperties properties: System properties for the container. ''' def __init__(self, name=None, props=None, metadata=None): self.name = name self.properties = props or ContainerProperties() self.metadata = metadata class ContainerProperties(object): ''' Blob container's properties class. :ivar datetime last_modified: A datetime object representing the last time the container was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar LeaseProperties lease: Stores all the lease information for the container. ''' def __init__(self): self.last_modified = None self.etag = None self.lease = LeaseProperties() self.public_access = None class Blob(object): ''' Blob class. :ivar str name: Name of blob. :ivar str snapshot: A DateTime value that uniquely identifies the snapshot. The value of this header indicates the snapshot version, and may be used in subsequent requests to access the snapshot. :ivar content: Blob content. :vartype content: str or bytes :ivar BlobProperties properties: Stores all the system properties for the blob. :ivar metadata: Name-value pairs associated with the blob as metadata. ''' def __init__(self, name=None, snapshot=None, content=None, props=None, metadata=None): self.name = name self.snapshot = snapshot self.content = content self.properties = props or BlobProperties() self.metadata = metadata class BlobProperties(object): ''' Blob Properties :ivar str blob_type: String indicating this blob's type. :ivar datetime last_modified: A datetime object representing the last time the blob was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar int content_length: The length of the content returned. If the entire blob was requested, the length of blob in bytes. If a subset of the blob was requested, the length of the returned subset. :ivar str content_range: Indicates the range of bytes returned in the event that the client requested a subset of the blob. :ivar int append_blob_committed_block_count: (For Append Blobs) Number of committed blocks in the blob. :ivar int page_blob_sequence_number: (For Page Blobs) Sequence number for page blob used for coordinating concurrent writes. :ivar bool server_encrypted: Set to true if the blob is encrypted on the server. :ivar ~azure.storage.blob.models.CopyProperties copy: Stores all the copy properties for the blob. :ivar ~azure.storage.blob.models.ContentSettings content_settings: Stores all the content settings for the blob. :ivar ~azure.storage.blob.models.LeaseProperties lease: Stores all the lease information for the blob. :ivar StandardBlobTier blob_tier: Indicates the access tier of the blob. The hot tier is optimized for storing data that is accessed frequently. The cool storage tier is optimized for storing data that is infrequently accessed and stored for at least a month. The archive tier is optimized for storing data that is rarely accessed and stored for at least six months with flexible latency requirements. :ivar datetime blob_tier_change_time: Indicates when the access tier was last changed. :ivar bool blob_tier_inferred: Indicates whether the access tier was inferred by the service. If false, it indicates that the tier was set explicitly. ''' def __init__(self): self.blob_type = None self.last_modified = None self.etag = None self.content_length = None self.content_range = None self.append_blob_committed_block_count = None self.page_blob_sequence_number = None self.server_encrypted = None self.copy = CopyProperties() self.content_settings = ContentSettings() self.lease = LeaseProperties() self.blob_tier = None self.blob_tier_change_time = None self.blob_tier_inferred = False class ContentSettings(object): ''' Used to store the content settings of a blob. :ivar str content_type: The content type specified for the blob. If no content type was specified, the default content type is application/octet-stream. :ivar str content_encoding: If the content_encoding has previously been set for the blob, that value is stored. :ivar str content_language: If the content_language has previously been set for the blob, that value is stored. :ivar str content_disposition: content_disposition conveys additional information about how to process the response payload, and also can be used to attach additional metadata. If content_disposition has previously been set for the blob, that value is stored. :ivar str cache_control: If the cache_control has previously been set for the blob, that value is stored. :ivar str content_md5: If the content_md5 has been set for the blob, this response header is stored so that the client can check for message content integrity. ''' def __init__( self, content_type=None, content_encoding=None, content_language=None, content_disposition=None, cache_control=None, content_md5=None): self.content_type = content_type self.content_encoding = content_encoding self.content_language = content_language self.content_disposition = content_disposition self.cache_control = cache_control self.content_md5 = content_md5 def _to_headers(self): return { 'x-ms-blob-cache-control': _to_str(self.cache_control), 'x-ms-blob-content-type': _to_str(self.content_type), 'x-ms-blob-content-disposition': _to_str(self.content_disposition), 'x-ms-blob-content-md5': _to_str(self.content_md5), 'x-ms-blob-content-encoding': _to_str(self.content_encoding), 'x-ms-blob-content-language': _to_str(self.content_language), } class CopyProperties(object): ''' Blob Copy Properties. :ivar str id: String identifier for the last attempted Copy Blob operation where this blob was the destination blob. This header does not appear if this blob has never been the destination in a Copy Blob operation, or if this blob has been modified after a concluded Copy Blob operation using Set Blob Properties, Put Blob, or Put Block List. :ivar str source: URL up to 2 KB in length that specifies the source blob used in the last attempted Copy Blob operation where this blob was the destination blob. This header does not appear if this blob has never been the destination in a Copy Blob operation, or if this blob has been modified after a concluded Copy Blob operation using Set Blob Properties, Put Blob, or Put Block List. :ivar str status: State of the copy operation identified by Copy ID, with these values: success: Copy completed successfully. pending: Copy is in progress. Check copy_status_description if intermittent, non-fatal errors impede copy progress but don't cause failure. aborted: Copy was ended by Abort Copy Blob. failed: Copy failed. See copy_status_description for failure details. :ivar str progress: Contains the number of bytes copied and the total bytes in the source in the last attempted Copy Blob operation where this blob was the destination blob. Can show between 0 and Content-Length bytes copied. :ivar datetime completion_time: Conclusion time of the last attempted Copy Blob operation where this blob was the destination blob. This value can specify the time of a completed, aborted, or failed copy attempt. :ivar str status_description: only appears when x-ms-copy-status is failed or pending. Describes cause of fatal or non-fatal copy operation failure. ''' def __init__(self): self.id = None self.source = None self.status = None self.progress = None self.completion_time = None self.status_description = None class LeaseProperties(object): ''' Blob Lease Properties. :ivar str status: The lease status of the blob. Possible values: locked|unlocked :ivar str state: Lease state of the blob. Possible values: available|leased|expired|breaking|broken :ivar str duration: When a blob is leased, specifies whether the lease is of infinite or fixed duration. ''' def __init__(self): self.status = None self.state = None self.duration = None class BlobPrefix(object): ''' BlobPrefix objects may potentially returned in the blob list when :func:`~azure.storage.blob.baseblobservice.BaseBlobService.list_blobs` is used with a delimiter. Prefixes can be thought of as virtual blob directories. :ivar str name: The name of the blob prefix. ''' def __init__(self): self.name = None class BlobBlockState(object): '''Block blob block types.''' Committed = 'Committed' '''Committed blocks.''' Latest = 'Latest' '''Latest blocks.''' Uncommitted = 'Uncommitted' '''Uncommitted blocks.''' class BlobBlock(object): ''' BlockBlob Block class. :ivar str id: Block id. :ivar str state: Block state. Possible valuse: committed|uncommitted :ivar int size: Block size in bytes. ''' def __init__(self, id=None, state=BlobBlockState.Latest): self.id = id self.state = state def _set_size(self, size): self.size = size class BlobBlockList(object): ''' Blob Block List class. :ivar committed_blocks: List of committed blocks. :vartype committed_blocks: list(:class:`~azure.storage.blob.models.BlobBlock`) :ivar uncommitted_blocks: List of uncommitted blocks. :vartype uncommitted_blocks: list(:class:`~azure.storage.blob.models.BlobBlock`) ''' def __init__(self): self.committed_blocks = list() self.uncommitted_blocks = list() class PageRange(object): ''' Page Range for page blob. :ivar int start: Start of page range in bytes. :ivar int end: End of page range in bytes. :ivar bool is_cleared: Indicates if a page range is cleared or not. Only applicable for get_page_range_diff API. ''' def __init__(self, start=None, end=None, is_cleared=False): self.start = start self.end = end self.is_cleared = is_cleared class ResourceProperties(object): ''' Base response for a resource request. :ivar str etag: Opaque etag value that can be used to check if resource has been modified. :ivar datetime last_modified: Datetime for last time resource was modified. ''' def __init__(self): self.last_modified = None self.etag = None class AppendBlockProperties(ResourceProperties): ''' Response for an append block request. :ivar int append_offset: Position to start next append. :ivar int committed_block_count: Number of committed append blocks. ''' def __init__(self): super(ResourceProperties, self).__init__() self.append_offset = None self.committed_block_count = None class PageBlobProperties(ResourceProperties): ''' Response for a page request. :ivar int sequence_number: Identifer for page blobs to help handle concurrent writes. ''' def __init__(self): super(ResourceProperties, self).__init__() self.sequence_number = None class PublicAccess(object): ''' Specifies whether data in the container may be accessed publicly and the level of access. ''' OFF = 'off' ''' Specifies that there is no public read access for both the container and blobs within the container. Clients cannot enumerate the containers within the storage account as well as the blobs within the container. ''' Blob = 'blob' ''' Specifies public read access for blobs. Blob data within this container can be read via anonymous request, but container data is not available. Clients cannot enumerate blobs within the container via anonymous request. ''' Container = 'container' ''' Specifies full public read access for container and blob data. Clients can enumerate blobs within the container via anonymous request, but cannot enumerate containers within the storage account. ''' class DeleteSnapshot(object): ''' Required if the blob has associated snapshots. Specifies how to handle the snapshots. ''' Include = 'include' ''' Delete the base blob and all of its snapshots. ''' Only = 'only' ''' Delete only the blob's snapshots and not the blob itself. ''' class BlockListType(object): ''' Specifies whether to return the list of committed blocks, the list of uncommitted blocks, or both lists together. ''' All = 'all' '''Both committed and uncommitted blocks.''' Committed = 'committed' '''Committed blocks.''' Uncommitted = 'uncommitted' '''Uncommitted blocks.''' class SequenceNumberAction(object): '''Sequence number actions.''' Increment = 'increment' ''' Increments the value of the sequence number by 1. If specifying this option, do not include the x-ms-blob-sequence-number header. ''' Max = 'max' ''' Sets the sequence number to be the higher of the value included with the request and the value currently stored for the blob. ''' Update = 'update' '''Sets the sequence number to the value included with the request.''' class _LeaseActions(object): '''Actions for a lease.''' Acquire = 'acquire' '''Acquire the lease.''' Break = 'break' '''Break the lease.''' Change = 'change' '''Change the lease ID.''' Release = 'release' '''Release the lease.''' Renew = 'renew' '''Renew the lease.''' class _BlobTypes(object): '''Blob type options.''' AppendBlob = 'AppendBlob' '''Append blob type.''' BlockBlob = 'BlockBlob' '''Block blob type.''' PageBlob = 'PageBlob' '''Page blob type.''' class Include(object): ''' Specifies the datasets to include in the blob list response. :ivar ~azure.storage.blob.models.Include Include.COPY: Specifies that metadata related to any current or previous Copy Blob operation should be included in the response. :ivar ~azure.storage.blob.models.Include Include.METADATA: Specifies that metadata be returned in the response. :ivar ~azure.storage.blob.models.Include Include.SNAPSHOTS: Specifies that snapshots should be included in the enumeration. :ivar ~azure.storage.blob.models.Include Include.UNCOMMITTED_BLOBS: Specifies that blobs for which blocks have been uploaded, but which have not been committed using Put Block List, be included in the response. ''' def __init__(self, snapshots=False, metadata=False, uncommitted_blobs=False, copy=False, _str=None): ''' :param bool snapshots: Specifies that snapshots should be included in the enumeration. :param bool metadata: Specifies that metadata be returned in the response. :param bool uncommitted_blobs: Specifies that blobs for which blocks have been uploaded, but which have not been committed using Put Block List, be included in the response. :param bool copy: Specifies that metadata related to any current or previous Copy Blob operation should be included in the response. :param str _str: A string representing the includes. ''' if not _str: _str = '' components = _str.split(',') self.snapshots = snapshots or ('snapshots' in components) self.metadata = metadata or ('metadata' in components) self.uncommitted_blobs = uncommitted_blobs or ('uncommittedblobs' in components) self.copy = copy or ('copy' in components) def __or__(self, other): return Include(_str=str(self) + str(other)) def __add__(self, other): return Include(_str=str(self) + str(other)) def __str__(self): include = (('snapshots,' if self.snapshots else '') + ('metadata,' if self.metadata else '') + ('uncommittedblobs,' if self.uncommitted_blobs else '') + ('copy,' if self.copy else '')) return include.rstrip(',') Include.COPY = Include(copy=True) Include.METADATA = Include(metadata=True) Include.SNAPSHOTS = Include(snapshots=True) Include.UNCOMMITTED_BLOBS = Include(uncommitted_blobs=True) class BlobPermissions(object): ''' BlobPermissions class to be used with :func:`~azure.storage.blob.baseblobservice.BaseBlobService.generate_blob_shared_access_signature` API. :ivar BlobPermissions BlobPermissions.ADD: Add a block to an append blob. :ivar BlobPermissions BlobPermissions.CREATE: Write a new blob, snapshot a blob, or copy a blob to a new blob. :ivar BlobPermissions BlobPermissions.DELETE: Delete the blob. :ivar BlobPermissions BlobPermissions.READ: Read the content, properties, metadata and block list. Use the blob as the source of a copy operation. :ivar BlobPermissions BlobPermissions.WRITE: Create or write content, properties, metadata, or block list. Snapshot or lease the blob. Resize the blob (page blob only). Use the blob as the destination of a copy operation within the same account. ''' def __init__(self, read=False, add=False, create=False, write=False, delete=False, _str=None): ''' :param bool read: Read the content, properties, metadata and block list. Use the blob as the source of a copy operation. :param bool add: Add a block to an append blob. :param bool create: Write a new blob, snapshot a blob, or copy a blob to a new blob. :param bool write: Create or write content, properties, metadata, or block list. Snapshot or lease the blob. Resize the blob (page blob only). Use the blob as the destination of a copy operation within the same account. :param bool delete: Delete the blob. :param str _str: A string representing the permissions. ''' if not _str: _str = '' self.read = read or ('r' in _str) self.add = add or ('a' in _str) self.create = create or ('c' in _str) self.write = write or ('w' in _str) self.delete = delete or ('d' in _str) def __or__(self, other): return BlobPermissions(_str=str(self) + str(other)) def __add__(self, other): return BlobPermissions(_str=str(self) + str(other)) def __str__(self): return (('r' if self.read else '') + ('a' if self.add else '') + ('c' if self.create else '') + ('w' if self.write else '') + ('d' if self.delete else '')) BlobPermissions.ADD = BlobPermissions(add=True) BlobPermissions.CREATE = BlobPermissions(create=True) BlobPermissions.DELETE = BlobPermissions(delete=True) BlobPermissions.READ = BlobPermissions(read=True) BlobPermissions.WRITE = BlobPermissions(write=True) class ContainerPermissions(object): ''' ContainerPermissions class to be used with :func:`~azure.storage.blob.baseblobservice.BaseBlobService.generate_container_shared_access_signature` API and for the AccessPolicies used with :func:`~azure.storage.blob.baseblobservice.BaseBlobService.set_container_acl`. :ivar ContainerPermissions ContainerPermissions.DELETE: Delete any blob in the container. Note: You cannot grant permissions to delete a container with a container SAS. Use an account SAS instead. :ivar ContainerPermissions ContainerPermissions.LIST: List blobs in the container. :ivar ContainerPermissions ContainerPermissions.READ: Read the content, properties, metadata or block list of any blob in the container. Use any blob in the container as the source of a copy operation. :ivar ContainerPermissions ContainerPermissions.WRITE: For any blob in the container, create or write content, properties, metadata, or block list. Snapshot or lease the blob. Resize the blob (page blob only). Use the blob as the destination of a copy operation within the same account. Note: You cannot grant permissions to read or write container properties or metadata, nor to lease a container, with a container SAS. Use an account SAS instead. ''' def __init__(self, read=False, write=False, delete=False, list=False, _str=None): ''' :param bool read: Read the content, properties, metadata or block list of any blob in the container. Use any blob in the container as the source of a copy operation. :param bool write: For any blob in the container, create or write content, properties, metadata, or block list. Snapshot or lease the blob. Resize the blob (page blob only). Use the blob as the destination of a copy operation within the same account. Note: You cannot grant permissions to read or write container properties or metadata, nor to lease a container, with a container SAS. Use an account SAS instead. :param bool delete: Delete any blob in the container. Note: You cannot grant permissions to delete a container with a container SAS. Use an account SAS instead. :param bool list: List blobs in the container. :param str _str: A string representing the permissions. ''' if not _str: _str = '' self.read = read or ('r' in _str) self.write = write or ('w' in _str) self.delete = delete or ('d' in _str) self.list = list or ('l' in _str) def __or__(self, other): return ContainerPermissions(_str=str(self) + str(other)) def __add__(self, other): return ContainerPermissions(_str=str(self) + str(other)) def __str__(self): return (('r' if self.read else '') + ('w' if self.write else '') + ('d' if self.delete else '') + ('l' if self.list else '')) ContainerPermissions.DELETE = ContainerPermissions(delete=True) ContainerPermissions.LIST = ContainerPermissions(list=True) ContainerPermissions.READ = ContainerPermissions(read=True) ContainerPermissions.WRITE = ContainerPermissions(write=True) class PremiumPageBlobTier(object): ''' Specifies the page blob tier to set the blob to. This is only applicable to page blobs on premium storage accounts. Please take a look at https://docs.microsoft.com/en-us/azure/storage/storage-premium-storage#scalability-and-performance-targets for detailed information on the corresponding IOPS and throughtput per PageBlobTier. ''' P4 = 'P4' ''' P4 Tier ''' P6 = 'P6' ''' P6 Tier ''' P10 = 'P10' ''' P10 Tier ''' P20 = 'P20' ''' P20 Tier ''' P30 = 'P30' ''' P30 Tier ''' P40 = 'P40' ''' P40 Tier ''' P50 = 'P50' ''' P50 Tier ''' P60 = 'P60' ''' P60 Tier ''' class StandardBlobTier(object): ''' Specifies the blob tier to set the blob to. This is only applicable for block blobs on standard storage accounts. ''' Archive = 'Archive' ''' Archive ''' Cool = 'Cool' ''' Cool ''' Hot = 'Hot' ''' Hot '''
35.038874
149
0.655457
[ "Apache-2.0" ]
RobertoPrevato/azure-storage-python
azure/storage/blob/models.py
26,141
Python
import numpy import matplotlib.pyplot as plt import threading import multiprocessing from scipy import stats class TestHist: def hist(self, parameter_list): x = numpy.random.uniform(0.0, 5.0, 100000) plt.hist(x, 100) plt.show() y = numpy.random.normal(0.0, 5.0, 100000) plt.hist(y, 100) plt.show() class TestScatter: def scatter(self, parameter_list): a = numpy.random.normal(5.0, 1.0, 1000) b = numpy.random.normal(10.0, 2.0, 1000) plt.scatter(a, b) plt.show() class TestLinearRegression: def linear(self): a = numpy.random.uniform(5.0, 1.0, 1000) b = numpy.random.uniform(10.0, 2.0, 1000) slope, intercept, r, p, std_err = stats.linregress(a, b) print(slope, intercept, r, p, std_err ) mymodel = list(map(lambda xa : self.myfunc(xa,slope,intercept),a)) plt.scatter(a, b ) plt.plot(a, mymodel) plt.show() def myfunc(self,x, slope, intercept): """ input, slope, intercept """ return slope * x + intercept linear =TestLinearRegression() linear.linear() # numpy.random.seed(12345678) # x = numpy.random.random(10) # y = 1.6*x + numpy.random.random(10) # from scipy import stats # x = [5,7,8,7,2,17,2,9,4,11,12,9,6] # y = [99,86,87,88,111,86,103,87,94,78,77,85,86] # slope, intercept, r, p, std_err = stats.linregress(x, y) # def myfunc(x): # return slope * x + intercept # speed = myfunc(10) # print(slope, intercept, r, p, std_err) # print(speed)
22.444444
74
0.584777
[ "MIT" ]
badpaybad/mypython
helloword/ml.py
1,616
Python
from rest_framework import permissions from django_otp import user_has_device from .utils import otp_is_verified class IsOtpVerified(permissions.BasePermission): """ If user has verified TOTP device, require TOTP OTP. """ message = "You do not have permission to perform this action until you verify your OTP device." def has_permission(self, request, view): if request.user.is_two_factor_enabled and user_has_device(request.user): return otp_is_verified(request) else: return True
32.058824
99
0.726606
[ "MIT" ]
frankfern/django_rest_totp
accounts/permissions.py
545
Python
class HsvFilter: def __init__(self, hMin=None, sMin=None, vMin=None, hMax=None, sMax=None, vMax=None, sAdd=None, sSub=None, vAdd=None, vSub=None): self.hMin = hMin self.sMin = sMin self.vMin = vMin self.hMax = hMax self.sMax = sMax self.vMax = vMax self.sAdd = sAdd self.sSub = sSub self.vAdd = vAdd self.vSub = vSub
26.4375
88
0.541371
[ "MIT" ]
gulyhan/CryptOfTheNecroDancerBot
computer_vision/hsv_filter.py
423
Python
class Solution: def solve(self, a, b, lower, upper): a = [x**2 for x in a] a.sort() b = [x**2 for x in b] b.sort() ans = 0 for i in range(len(a)): l,r = 0,len(b)-1 ans1 = -1 while l<=r: mid = (l+r)//2 if a[i] + b[mid] >= lower: ans1 = mid r = mid-1 else: l = mid+1 l,r = 0,len(b)-1 ans2 = -1 while l<=r: mid = (l+r)//2 if a[i] + b[mid] <= upper: ans2 = mid l = mid+1 else: r = mid-1 if -1 in [ans1,ans2]: continue ans += ans2-ans1+1 return ans
21.684211
42
0.300971
[ "MIT" ]
MdAbedin/binarysearch
0981 Bounded Square Sums.py
824
Python
# a simple python AES decrypter. Do not remember why I needed this, but nice to have. :) pw = [255,155,28,115,214,107,206,49,172,65,62,174,19,27,70,79,88,47,108,226,209,225,243,218,126,141,55,107,38,57,78,91] pw1 = b'' for i in pw: pw1 += i.to_bytes(1, 'little') import sys, hexdump, binascii from Crypto.Cipher import AES class AESCipher: def __init__(self, key): self.key = key def decrypt(self, iv, data): self.cipher = AES.new(self.key, AES.MODE_CBC, iv) return self.cipher.decrypt(data) key = binascii.unhexlify("0602000000a400005253413100040000") iv = binascii.unhexlify("0100010067244F436E6762F25EA8D704") raw_un = AESCipher(key).decrypt(iv, pw1) print(hexdump.hexdump(raw_un)) password = raw_un.decode('utf-16') print(password)
27.857143
119
0.703846
[ "MIT" ]
fjank/htb
htb/remote/decoder.py
780
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class GalleryImagesOperations: """GalleryImagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2019_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, gallery_name: str, gallery_image_name: str, gallery_image: "_models.GalleryImage", **kwargs ) -> "_models.GalleryImage": cls = kwargs.pop('cls', None) # type: ClsType["_models.GalleryImage"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), 'galleryImageName': self._serialize.url("gallery_image_name", gallery_image_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(gallery_image, 'GalleryImage') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('GalleryImage', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('GalleryImage', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('GalleryImage', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images/{galleryImageName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, gallery_name: str, gallery_image_name: str, gallery_image: "_models.GalleryImage", **kwargs ) -> AsyncLROPoller["_models.GalleryImage"]: """Create or update a gallery Image Definition. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gallery_name: The name of the Shared Image Gallery in which the Image Definition is to be created. :type gallery_name: str :param gallery_image_name: The name of the gallery Image Definition to be created or updated. The allowed characters are alphabets and numbers with dots, dashes, and periods allowed in the middle. The maximum length is 80 characters. :type gallery_image_name: str :param gallery_image: Parameters supplied to the create or update gallery image operation. :type gallery_image: ~azure.mgmt.compute.v2019_03_01.models.GalleryImage :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either GalleryImage or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2019_03_01.models.GalleryImage] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.GalleryImage"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, gallery_name=gallery_name, gallery_image_name=gallery_image_name, gallery_image=gallery_image, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GalleryImage', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), 'galleryImageName': self._serialize.url("gallery_image_name", gallery_image_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images/{galleryImageName}'} # type: ignore async def get( self, resource_group_name: str, gallery_name: str, gallery_image_name: str, **kwargs ) -> "_models.GalleryImage": """Retrieves information about a gallery Image Definition. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gallery_name: The name of the Shared Image Gallery from which the Image Definitions are to be retrieved. :type gallery_name: str :param gallery_image_name: The name of the gallery Image Definition to be retrieved. :type gallery_image_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GalleryImage, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2019_03_01.models.GalleryImage :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.GalleryImage"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), 'galleryImageName': self._serialize.url("gallery_image_name", gallery_image_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('GalleryImage', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images/{galleryImageName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, gallery_name: str, gallery_image_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), 'galleryImageName': self._serialize.url("gallery_image_name", gallery_image_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images/{galleryImageName}'} # type: ignore async def begin_delete( self, resource_group_name: str, gallery_name: str, gallery_image_name: str, **kwargs ) -> AsyncLROPoller[None]: """Delete a gallery image. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gallery_name: The name of the Shared Image Gallery in which the Image Definition is to be deleted. :type gallery_name: str :param gallery_image_name: The name of the gallery Image Definition to be deleted. :type gallery_image_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, gallery_name=gallery_name, gallery_image_name=gallery_image_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), 'galleryImageName': self._serialize.url("gallery_image_name", gallery_image_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images/{galleryImageName}'} # type: ignore def list_by_gallery( self, resource_group_name: str, gallery_name: str, **kwargs ) -> AsyncIterable["_models.GalleryImageList"]: """List gallery Image Definitions in a gallery. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param gallery_name: The name of the Shared Image Gallery from which Image Definitions are to be listed. :type gallery_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either GalleryImageList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2019_03_01.models.GalleryImageList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.GalleryImageList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_gallery.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'galleryName': self._serialize.url("gallery_name", gallery_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('GalleryImageList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_gallery.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/galleries/{galleryName}/images'} # type: ignore
50.043182
212
0.671193
[ "MIT" ]
Darkstar1t/azure-sdk-for-python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2019_03_01/aio/operations/_gallery_images_operations.py
22,019
Python
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # TODO(robinson): We should just make these methods all "pure-virtual" and move # all implementation out, into reflection.py for now. """Contains an abstract base class for protocol messages.""" __author__ = '[email protected] (Will Robinson)' class Error(Exception): """Base error type for this module.""" pass class DecodeError(Error): """Exception raised when deserializing messages.""" pass class EncodeError(Error): """Exception raised when serializing messages.""" pass class Message(object): """Abstract base class for protocol messages. Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below. """ # TODO(robinson): Link to an HTML document here. # TODO(robinson): Document that instances of this class will also # have an Extensions attribute with __getitem__ and __setitem__. # Again, not sure how to best convey this. # TODO(robinson): Document that the class must also have a static # RegisterExtension(extension_field) method. # Not sure how to best express at this point. # TODO(robinson): Document these fields and methods. __slots__ = [] #: The :class:`google.protobuf.descriptor.Descriptor` for this message type. DESCRIPTOR = None def __deepcopy__(self, memo=None): clone = type(self)() clone.MergeFrom(self) return clone def __eq__(self, other_msg): """Recursively compares two messages by value and structure.""" raise NotImplementedError def __ne__(self, other_msg): # Can't just say self != other_msg, since that would infinitely recurse. :) return not self == other_msg def __hash__(self): raise TypeError('unhashable object') def __str__(self): """Outputs a human-readable representation of the message.""" raise NotImplementedError def __unicode__(self): """Outputs a human-readable representation of the message.""" raise NotImplementedError def MergeFrom(self, other_msg): """Merges the contents of the specified message into current message. This method merges the contents of the specified message into the current message. Singular fields that are set in the specified message overwrite the corresponding fields in the current message. Repeated fields are appended. Singular sub-messages and groups are recursively merged. Args: other_msg (Message): A message to merge into the current message. """ raise NotImplementedError def CopyFrom(self, other_msg): """Copies the content of the specified message into the current message. The method clears the current message and then merges the specified message using MergeFrom. Args: other_msg (Message): A message to copy into the current one. """ if self is other_msg: return self.Clear() self.MergeFrom(other_msg) def Clear(self): """Clears all data that was set in the message.""" raise NotImplementedError def SetInParent(self): """Mark this as present in the parent. This normally happens automatically when you assign a field of a sub-message, but sometimes you want to make the sub-message present while keeping it empty. If you find yourself using this, you may want to reconsider your design. """ raise NotImplementedError def IsInitialized(self): """Checks if the message is initialized. Returns: bool: The method returns True if the message is initialized (i.e. all of its required fields are set). """ raise NotImplementedError # TODO(robinson): MergeFromString() should probably return None and be # implemented in terms of a helper that returns the # of bytes read. Our # deserialization routines would use the helper when recursively # deserializing, but the end user would almost always just want the no-return # MergeFromString(). def MergeFromString(self, serialized): """Merges serialized protocol buffer data into this message. When we find a field in `serialized` that is already present in this message: - If it's a "repeated" field, we append to the end of our list. - Else, if it's a scalar, we overwrite our field. - Else, (it's a nonrepeated composite), we recursively merge into the existing composite. Args: serialized (bytes): Any object that allows us to call ``memoryview(serialized)`` to access a string of bytes using the buffer interface. Returns: int: The number of bytes read from `serialized`. For non-group messages, this will always be `len(serialized)`, but for messages which are actually groups, this will generally be less than `len(serialized)`, since we must stop when we reach an ``END_GROUP`` tag. Note that if we *do* stop because of an ``END_GROUP`` tag, the number of bytes returned does not include the bytes for the ``END_GROUP`` tag information. Raises: DecodeError: if the input cannot be parsed. """ # TODO(robinson): Document handling of unknown fields. # TODO(robinson): When we switch to a helper, this will return None. raise NotImplementedError def ParseFromString(self, serialized): """Parse serialized protocol buffer data into this message. Like :func:`MergeFromString()`, except we clear the object first. """ self.Clear() return self.MergeFromString(serialized) def SerializeToString(self, **kwargs): """Serializes the protocol message to a binary string. Keyword Args: deterministic (bool): If true, requests deterministic serialization of the protobuf, with predictable ordering of map keys. Returns: A binary string representation of the message if all of the required fields in the message are set (i.e. the message is initialized). Raises: EncodeError: if the message isn't initialized (see :func:`IsInitialized`). """ raise NotImplementedError def SerializePartialToString(self, **kwargs): """Serializes the protocol message to a binary string. This method is similar to SerializeToString but doesn't check if the message is initialized. Keyword Args: deterministic (bool): If true, requests deterministic serialization of the protobuf, with predictable ordering of map keys. Returns: bytes: A serialized representation of the partial message. """ raise NotImplementedError # TODO(robinson): Decide whether we like these better # than auto-generated has_foo() and clear_foo() methods # on the instances themselves. This way is less consistent # with C++, but it makes reflection-type access easier and # reduces the number of magically autogenerated things. # # TODO(robinson): Be sure to document (and test) exactly # which field names are accepted here. Are we case-sensitive? # What do we do with fields that share names with Python keywords # like 'lambda' and 'yield'? # # nnorwitz says: # """ # Typically (in python), an underscore is appended to names that are # keywords. So they would become lambda_ or yield_. # """ def ListFields(self): """Returns a list of (FieldDescriptor, value) tuples for present fields. A message field is non-empty if HasField() would return true. A singular primitive field is non-empty if HasField() would return true in proto2 or it is non zero in proto3. A repeated field is non-empty if it contains at least one element. The fields are ordered by field number. Returns: list[tuple(FieldDescriptor, value)]: field descriptors and values for all fields in the message which are not empty. The values vary by field type. """ raise NotImplementedError def HasField(self, field_name): """Checks if a certain field is set for the message. For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor, :exc:`ValueError` will be raised. Args: field_name (str): The name of the field to check for presence. Returns: bool: Whether a value has been set for the named field. Raises: ValueError: if the `field_name` is not a member of this message. """ raise NotImplementedError def ClearField(self, field_name): """Clears the contents of a given field. Inside a oneof group, clears the field set. If the name neither refers to a defined field or oneof group, :exc:`ValueError` is raised. Args: field_name (str): The name of the field to check for presence. Raises: ValueError: if the `field_name` is not a member of this message. """ raise NotImplementedError def WhichOneof(self, oneof_group): """Returns the name of the field that is set inside a oneof group. If no field is set, returns None. Args: oneof_group (str): the name of the oneof group to check. Returns: str or None: The name of the group that is set, or None. Raises: ValueError: no group with the given name exists """ raise NotImplementedError def HasExtension(self, extension_handle): """Checks if a certain extension is present for this message. Extensions are retrieved using the :attr:`Extensions` mapping (if present). Args: extension_handle: The handle for the extension to check. Returns: bool: Whether the extension is present for this message. Raises: KeyError: if the extension is repeated. Similar to repeated fields, there is no separate notion of presence: a "not present" repeated extension is an empty list. """ raise NotImplementedError def ClearExtension(self, extension_handle): """Clears the contents of a given extension. Args: extension_handle: The handle for the extension to clear. """ raise NotImplementedError def UnknownFields(self): """Returns the UnknownFieldSet. Returns: UnknownFieldSet: The unknown fields stored in this message. """ raise NotImplementedError def DiscardUnknownFields(self): """Clears all fields in the :class:`UnknownFieldSet`. This operation is recursive for nested message. """ raise NotImplementedError def ByteSize(self): """Returns the serialized size of this message. Recursively calls ByteSize() on all contained messages. Returns: int: The number of bytes required to serialize this message. """ raise NotImplementedError @classmethod def FromString(cls, s): raise NotImplementedError @staticmethod def RegisterExtension(extension_handle): raise NotImplementedError def _SetListener(self, message_listener): """Internal method used by the protocol message implementation. Clients should not call this directly. Sets a listener that this message will call on certain state transitions. The purpose of this method is to register back-edges from children to parents at runtime, for the purpose of setting "has" bits and byte-size-dirty bits in the parent and ancestor objects whenever a child or descendant object is modified. If the client wants to disconnect this Message from the object tree, she explicitly sets callback to None. If message_listener is None, unregisters any existing listener. Otherwise, message_listener must implement the MessageListener interface in internal/message_listener.py, and we discard any listener registered via a previous _SetListener() call. """ raise NotImplementedError def __getstate__(self): """Support the pickle protocol.""" return dict(serialized=self.SerializePartialToString()) def __setstate__(self, state): """Support the pickle protocol.""" self.__init__() serialized = state['serialized'] # On Python 3, using encoding='latin1' is required for unpickling # protos pickled by Python 2. if not isinstance(serialized, bytes): serialized = serialized.encode('latin1') self.ParseFromString(serialized) def __reduce__(self): message_descriptor = self.DESCRIPTOR if message_descriptor.containing_type is None: return type(self), (), self.__getstate__() # the message type must be nested. # Python does not pickle nested classes; use the symbol_database on the # receiving end. container = message_descriptor return (_InternalConstructMessage, (container.full_name,), self.__getstate__()) def _InternalConstructMessage(full_name): """Constructs a nested message.""" from google.protobuf import symbol_database # pylint:disable=g-import-not-at-top return symbol_database.Default().GetSymbol(full_name)()
35.246445
84
0.699543
[ "MIT" ]
JustinACoder/H22-GR3-UnrealAI
Plugins/UnrealEnginePython/Binaries/Win64/Lib/site-packages/google/protobuf/message.py
14,874
Python
# coding: utf-8 # flake8: noqa """ Design feeds APIs Various design feeds.<BR />[Endpoint] https://api.apitore.com/api/32 # noqa: E501 OpenAPI spec version: 0.0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into model package from swagger_client.models.feed_entry_entity import FeedEntryEntity from swagger_client.models.feed_response_entity import FeedResponseEntity
23.8
86
0.756303
[ "Apache-2.0" ]
apitore/apitore-sdk-python
32/swagger_client/models/__init__.py
476
Python
"""Build Environment used for isolation during sdist building """ import os from distutils.sysconfig import get_python_lib from sysconfig import get_paths from pip._internal.utils.temp_dir import TempDirectory class BuildEnvironment(object): """Creates and manages an isolated environment to install build deps """ def __init__(self, no_clean): self._temp_dir = TempDirectory(kind="build-env") self._no_clean = no_clean @property def path(self): return self._temp_dir.path def __enter__(self): self._temp_dir.create() self.save_path = os.environ.get('PATH', None) self.save_pythonpath = os.environ.get('PYTHONPATH', None) self.save_nousersite = os.environ.get('PYTHONNOUSERSITE', None) install_scheme = 'nt' if (os.name == 'nt') else 'posix_prefix' install_dirs = get_paths(install_scheme, vars={ 'base': self.path, 'platbase': self.path, }) scripts = install_dirs['scripts'] if self.save_path: os.environ['PATH'] = scripts + os.pathsep + self.save_path else: os.environ['PATH'] = scripts + os.pathsep + os.defpath # Note: prefer distutils' sysconfig to get the # library paths so PyPy is correctly supported. purelib = get_python_lib(plat_specific=0, prefix=self.path) platlib = get_python_lib(plat_specific=1, prefix=self.path) if purelib == platlib: lib_dirs = purelib else: lib_dirs = purelib + os.pathsep + platlib if self.save_pythonpath: os.environ['PYTHONPATH'] = lib_dirs + os.pathsep + \ self.save_pythonpath else: os.environ['PYTHONPATH'] = lib_dirs os.environ['PYTHONNOUSERSITE'] = '1' return self.path def __exit__(self, exc_type, exc_val, exc_tb): if not self._no_clean: self._temp_dir.cleanup() def restore_var(varname, old_value): if old_value is None: os.environ.pop(varname, None) else: os.environ[varname] = old_value restore_var('PATH', self.save_path) restore_var('PYTHONPATH', self.save_pythonpath) restore_var('PYTHONNOUSERSITE', self.save_nousersite) def cleanup(self): self._temp_dir.cleanup() class NoOpBuildEnvironment(BuildEnvironment): """A no-op drop-in replacement for BuildEnvironment """ def __init__(self, no_clean): pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def cleanup(self): pass
28.827957
72
0.624767
[ "MIT" ]
0915318/PietonFunktie
inter/Lib/site-packages/pip-10.0.1-py3.7.egg/pip/_internal/build_env.py
2,681
Python
# Copyright 2022 Aleksandr Soloshenko # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from django.conf import settings from storages.backends.azure_storage import AzureStorage # Create your models here. class PhotoStorage(AzureStorage): account_name = os.getenv("AZURE_ACCOUNT_NAME") account_key = os.getenv("AZURE_ACCOUNT_KEY") azure_container = os.getenv("AZURE_CONTAINER") expiration_secs = None photoStorage = PhotoStorage()
34.178571
74
0.772205
[ "Apache-2.0" ]
capcom6/django-bread
recipes/storage.py
957
Python
from flask import render_template from. import main @main.app_errorhandler(404) def four_ow_four(error): return render_template('404.html')
21.285714
42
0.771812
[ "Unlicense" ]
suad7/News-highlight
app/main/errors.py
149
Python