content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import datetime import os import shutil import subprocess import urllib.request from contextlib import closing import numpy as np import pandas as pd import requests import wbml.out __all__ = [ "DependencyError", "resource", "dependency", "asserted_dependency", "split_df", "data_path", "date_to_decimal_year", ] class DependencyError(AssertionError): """Exception raised in case of an erroneous dependency.""" def resource(target, url, post=False, **kw_args): """Specify a dependency on an online resource. Further takes in keyword arguments that are passed to the appropriate method from :mod:`requests` or :mod:`urllib`. Args: target (str): Target file. url (str): Source URL. post (bool, optional): Make a POST request instead of a GET request. Only applicable if the URL starts with "http" or "https". Defaults to `False`. """ if not os.path.exists(target): with wbml.out.Section("Downloading file"): wbml.out.kv("Source", url) wbml.out.kv("Target", target) # Ensure that all directories in the path exist. make_dirs(target) # If the URL starts with "ftp", use the :mod:`urllib` library. if url.startswith("ftp"): with closing(urllib.request.urlopen(url, **kw_args)) as r: with open(target, "wb") as f: shutil.copyfileobj(r, f) # By default, use the :mod:`requests` library. else: request = requests.post if post else requests.get with request(url, stream=True, **kw_args) as r: with open(target, "wb") as f: shutil.copyfileobj(r.raw, f) def dependency(target, source, commands): """Specify a dependency that is generated from an existing file. Args: target (str): Target file. source (str): Source file. commands (list[str]): List of commands to generate target file. """ if not os.path.exists(target): with wbml.out.Section("Generating file"): wbml.out.kv("Source", source) wbml.out.kv("Target", target) # Check that the source exists. if not os.path.exists(source): raise DependencyError( f'Source "{source}" asserted to exist, but it does not.' ) # Save current working directory. current_wd = os.getcwd() # Ensure that all directories in the path exist. make_dirs(target) # Perform commands. for command in commands: wbml.out.out(command) # Change working directory to directory of target file, run # command, and restore working directory afterwards. os.chdir(os.path.dirname(target)) subprocess.call(command, shell=True) os.chdir(current_wd) def asserted_dependency(target): """Specify a dependency that cannot be fetched. Args: target (str): Target file. """ if not os.path.exists(target): raise DependencyError( f'Dependency "{target}" is asserted to exist, ' f"but it does not, and it cannot be " f"automatically fetched. Please put the file " f"into place manually." ) def make_dirs(path): """Make the directories in the path of a file. Args: path (url): Path of a file. """ os.makedirs(os.path.dirname(path), exist_ok=True) def data_path(*xs): """Get the path of a data file. Args: *xs (str): Parts of the path. Returns: str: Absolute path. """ return os.path.abspath( os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, "data", *xs) ) def split_df(df, index_range, columns, iloc=False): """Split a data frame by selecting from columns a particular range. Args: df (:class:`pd.DataFrame`): Data frame to split. index_range (tuple): Tuple containing lower and upper limit of the range to split the index by. If `index_range = (a, b)`, then `[a, b)` is taken. columns (list[object]): Columns to select. iloc (bool, optional): The index range is the integer location instead of the index value. Defaults to `False`. Returns: tuple[:class:`pd.DataFrame`]: Selected rows from selected columns and the remainder. """ if iloc: inds = np.arange(df.shape[0]) rows = (inds >= index_range[0]) & (inds < index_range[1]) else: rows = (df.index >= index_range[0]) & (df.index < index_range[1]) selected = pd.DataFrame([df[name][rows] for name in columns]).T remainder = pd.DataFrame( [df[name][~rows] for name in columns] + [df[name] for name in set(df.columns) - set(columns)] ).T # Fix order of columns. selected_inds = [i for i, c in enumerate(df.columns) if c in columns] selected = selected.reindex(df.columns[np.array(selected_inds)], axis=1) remainder = remainder.reindex(df.columns, axis=1) return selected, remainder def date_to_decimal_year(date, format=None): """Convert a date to decimal year. Args: date (str): Date as a string. format (str, optional): Format of the date if a conversion is needed. Returns: float: Decimal year corresponding to the date. """ if format: date = datetime.datetime.strptime(date, format) start = datetime.date(date.year, 1, 1).toordinal() year_length = datetime.date(date.year + 1, 1, 1).toordinal() - start # Account for subday time. subday_time = 0 if hasattr(date, "hour"): subday_time += date.hour / year_length / 24 if hasattr(date, "minute"): subday_time += date.minute / year_length / 24 / 60 if hasattr(date, "second"): subday_time += date.second / year_length / 24 / 60 / 60 return date.year + float(date.toordinal() - start) / year_length + subday_time
31.176768
82
0.599708
[ "MIT" ]
wesselb/wbml
wbml/data/data.py
6,173
Python
#! /usr/bin/env python # coding utf-8 import sys from sys import exit import os import socket import requests import smtplib import ssl import dns.resolver """ Python script to monitor list of url (https/http/ns/mx) and send mail if down""" __author__ = "Benjamin Kittler" __copyright__ = "Copyright 2021, KITTLER" __credits__ = ["Benjamin Kittler"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Benjamin Kittler" __email__ = "kittler @T. gmail. com" __status__ = "integration" """ ############################################################ # Please complete these variable before the first launch # ############################################################ """ # mail provider : TO BE MODIFIED smtp_address = 'smtp.gmail.com' smtp_port = 465 # email address and password : TO BE MODIFIED email_address = '[email protected]' email_password = 'PASSWORD' """ Python script to monitor list of url (https/http/ns/mx) and send mail if down""" def check(file_to_check, testmode, debug): """ Function open file, read each line and complete a dictionnary For each entry, launch check url : http/https or launch resolution then ping for MX/NS entry If one url not respond, launch email to alert Parameters ---------- file_to_check : string This is the name of the fillethat contain list of url must be checked and mail for alert testmode : string This value is 0 by defaut and is to 1 if user launchscript on test mode: print enabled and no mail send debug : string This value is 0 by defaut and is to 1 if user launchscript on debug mode: more print enabled and no mail send Returns ------- None. """ try: file = open(file_to_check, "r") except: exit('open file failed') # lines contain all line of file lines = file.readlines() # close the file after read all lines file.close() # create dict of url url_dict = {} # add each element on dict for line in lines: # clean end of line contain \n line = line.replace("\n", "") # clean line contain multiple space line = line.replace(" ", "\t") # clean line contain multiple \t line = line.replace("\t\t\t", "\t") line = line.replace("\t\t", "\t") # clean line contain http:// or https:// line = line.replace("http://", "") line = line.replace("https://", "") element = line.split("\t") cle = element[0] data = element[1] url_dict[cle] = data if debug == 1: print("Url dict : \n", url_dict) if testmode == 1: print("Check :") for url, mail in url_dict.items(): # check http or https entry if "ns://" not in url and "mx://" not in url and "ping://" not in url: availability = str(request_url(url)) # import pdb; pdb.set_trace() if (availability == ("200") or (availability == "301") or (availability == "302")): request_url_result = "UP" else: request_url_result = "DOWN" if testmode == 1: print("url : ", url, " -> mail : ", mail, " Result :", request_url_result) else: if request_url_result == "DOWN": # print("mail :", mail) alert_mail(mail, request_url_result, url) # check ns entry elif "ns://" in url: request_url_result = ping_name(url, "NS") if testmode == 1: print("url : ", url, " -> mail : ", mail, " Result NS :", request_url_result) else: if request_url_result == "DOWN": # print("mail :", mail) alert_mail(mail, request_url_result, url) # check mx entry elif "mx://" in url: request_url_result = ping_name(url, "MX") if testmode == 1: print("url : ", url, " -> mail : ", mail, " Result MX :", request_url_result) else: if request_url_result == "DOWN": # print("mail :", mail) alert_mail(mail, request_url_result, url) # check ping entry elif "ping://" in url: url = url.replace("ping://", "") request_url_result = ping_ip(url) if testmode == 1: print("url : ", url, " -> mail : ", mail, " Result Ping :", request_url_result) else: if request_url_result == "DOWN": # print("mail :", mail) alert_mail(mail, request_url_result, url) # ignore entry else: if testmode == 1: print("url : ", url, " -> mail : ", mail, "ignored") exit() def request_url(url): """ Function to send https or http request to this url and return code result. Parameters ---------- url : string This variable contain url must be checked Returns ------- status_code : int Code result """ try: url = "https://" + format(url) response = requests.head(url, allow_redirects=True, timeout=10) except: try: url = "http://" + format(url) response = requests.head(url, allow_redirects=True, timeout=10) except: return "404" # print("Request failed") if response.status_code: return response.status_code else: return "404" def ping_name(name, dns_type): """ Function to resolve name and ping this host. print the result of ping Parameters ---------- name : string This variable contain the name (host) must be checked dns_type : string This variable contain the DNS type : A, NS, MX Returns ------- status : String Status result : UP or DOWN """ # clean name host name = name.replace("ns://", "") name = name.replace("mx://", "") # make resolution if dns_type == "A": try: addr1 = socket.gethostbyname_ex(name) print("Resolution -> {}".format(addr1[2])) name = addr1[2] except: print("Resolution failed") # make resolution if dns_type == "MX": try: answers = dns.resolver.resolve(name, 'MX') for rdata in answers: # import pdb; pdb.set_trace() #print('Mail exchange:',rdata.exchange) addr1 = socket.gethostbyname_ex(str(rdata.exchange)) #print("Resolution -> {}".format(addr1[2])) name = addr1[2] if ping_ip(name) == "UP": return "UP" return ping_ip(name) except: print("Resolution failed") return "DOWN" # make resolution if dns_type == "NS": try: answers = dns.resolver.resolve(name, 'NS') for rdata in answers: #import pdb; pdb.set_trace() #print('Mail exchange:',rdata.exchange) addr1 = socket.gethostbyname_ex(str(rdata.target)) #print("Resolution -> {}".format(addr1[2])) name = addr1[2] for srv in name: if ping_ip(srv) == "UP": return "UP" return ping_ip(name) except: print("Resolution failed") return "DOWN" def ping_ip(name): """ Function to ping name. return the result of ping Parameters ---------- name : string This variable is IP address Returns ------- status : String Status result : UP or DOWN """ try: # import pdb; pdb.set_trace() name = str(name).strip('[]') name = str(name).strip("''") hostname = format(name) response = os.system("ping -c 1 " + hostname + " > /dev/null 2>&1") # import pdb; pdb.set_trace() if response == 0: return "UP" # print("Response ping : OK") else: return "DOWN" # print("Response ping : KO") except requests.ConnectionError: return "DOWN" # print("Response ping : failed to connect") return "DOWN" def alert_mail(email_receiver, service_status, url): """ Function to send email Alert Parameters ---------- email_receiver : string destination email for alert service_status : string service status url : string url concertned by alert Returns ------- None. """ # create subject service_status = "Subject:{}\n\n".format(service_status) + "Server :{} \n".format(url) # create connexion context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_address, smtp_port, context=context) as server: # account connexion server.login(email_address, email_password) # sending mail server.sendmail(email_address, email_receiver, service_status) def main(argv, testmode, debug): """ Print the fileopened and lauchn the check of file with testmode / debug value Parameters ---------- file_to_check : string This is the name of the fillethat contain list of url must be checked and mail for alert testmode : string This value is 0 by defaut and is to 1 if user launchscript on test mode: print enabled and no mail send debug : string This value is 0 by defaut and is to 1 if user launchscript on debug mode: more print enabled and no mail send Returns ------- None. """ # print argument for verification if testmode == 1: print("Import file: {}".format(argv[0])) file = str(argv[0]) # launch check file entry check(file, testmode, debug) if __name__ == "__main__": """ Get arguments from command line and fixe value : testmode : This value is 0 by defaut and is to 1 if user launchscript on test mode: print enabled and no mail send debug : This value is 0 by defaut and is to 1 if user launchscript on debug mode: more print enabled and no mail send call main with arguments """ # pretrieve argument, seach test mode and launch main if "-t" in sys.argv: testmode = 1 debug = 0 elif "--test" in sys.argv: testmode = 1 debug = 0 elif "--debug" in sys.argv: testmode = 1 debug = 1 else: testmode = 0 debug = 0 matching = [cmd for cmd in sys.argv if ".txt" in cmd] main(matching, testmode, debug)
29.096257
96
0.541996
[ "MIT" ]
bkittler/monitor2mail
monitor2mail.py
10,882
Python
from fuzzconfig import FuzzConfig import nonrouting import nets import pytrellis import re import fuzzloops jobs = [ { "cfg": FuzzConfig(job="BANKREF8", family="ECP5", device="LFE5U-45F", ncl="empty.ncl", tiles=["MIB_R71C3:BANKREF8"]), "side": "B", "pin": "R1" }, ] def main(): pytrellis.load_database("../../../database") for job in jobs: cfg = job["cfg"] side = job["side"] pin = job["pin"] cfg.setup() empty_bitfile = cfg.build_design(cfg.ncl, {}) cfg.ncl = "pio.v" def get_substs(iomode, vcc, extracfg=None): if iomode == "NONE": iodir, type = "NONE", "" else: iodir, type = iomode.split("_", 1) substs = { "dir": iodir, "io_type": type, "loc": pin, "extra_attrs": "", "vcc": vcc } if extracfg is not None: substs["extra_attrs"] = '(* {}="{}" *)'.format(extracfg[0], extracfg[1]) return substs vcco_opts = { "1V2": "OUTPUT_LVCMOS12", "1V5": "OUTPUT_LVCMOS15", "1V8": "OUTPUT_LVCMOS18", "2V5": "OUTPUT_LVCMOS25", "3V3": "OUTPUT_LVCMOS33", "NONE": "INPUT_LVCMOS12", } nonrouting.fuzz_enum_setting(cfg, "BANK.VCCIO", list(sorted(vcco_opts.keys())), lambda x: get_substs(iomode=vcco_opts[x], vcc=x.replace("V", ".") if x != "NONE" else "2.5"), empty_bitfile) if __name__ == "__main__": main()
26.984127
130
0.468235
[ "ISC" ]
AndresNavarro82/prjtrellis
fuzzers/ECP5/143-bankref8/fuzzer.py
1,700
Python
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import warnings from copy import deepcopy from mmdet.datasets.builder import PIPELINES from mmdet.datasets.pipelines import Compose @PIPELINES.register_module() class MultiScaleFlipAug3D(object): """Test-time augmentation with multiple scales and flipping. Args: transforms (list[dict]): Transforms to apply in each augmentation. img_scale (tuple | list[tuple]: Images scales for resizing. pts_scale_ratio (float | list[float]): Points scale ratios for resizing. flip (bool): Whether apply flip augmentation. Defaults to False. flip_direction (str | list[str]): Flip augmentation directions for images, options are "horizontal" and "vertical". If flip_direction is list, multiple flip augmentations will be applied. It has no effect when ``flip == False``. Defaults to "horizontal". pcd_horizontal_flip (bool): Whether apply horizontal flip augmentation to point cloud. Defaults to True. Note that it works only when 'flip' is turned on. pcd_vertical_flip (bool): Whether apply vertical flip augmentation to point cloud. Defaults to True. Note that it works only when 'flip' is turned on. """ def __init__(self, transforms, img_scale, pts_scale_ratio, flip=False, flip_direction='horizontal', pcd_horizontal_flip=False, pcd_vertical_flip=False): self.transforms = Compose(transforms) self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale] self.pts_scale_ratio = pts_scale_ratio \ if isinstance(pts_scale_ratio, list) else[float(pts_scale_ratio)] assert mmcv.is_list_of(self.img_scale, tuple) assert mmcv.is_list_of(self.pts_scale_ratio, float) self.flip = flip self.pcd_horizontal_flip = pcd_horizontal_flip self.pcd_vertical_flip = pcd_vertical_flip self.flip_direction = flip_direction if isinstance( flip_direction, list) else [flip_direction] assert mmcv.is_list_of(self.flip_direction, str) if not self.flip and self.flip_direction != ['horizontal']: warnings.warn( 'flip_direction has no effect when flip is set to False') if (self.flip and not any([(t['type'] == 'RandomFlip3D' or t['type'] == 'RandomFlip') for t in transforms])): warnings.warn( 'flip has no effect when RandomFlip is not in transforms') def __call__(self, results): """Call function to augment common fields in results. Args: results (dict): Result dict contains the data to augment. Returns: dict: The result dict contains the data that is augmented with \ different scales and flips. """ aug_data = [] # modified from `flip_aug = [False, True] if self.flip else [False]` # to reduce unnecessary scenes when using double flip augmentation # during test time flip_aug = [True] if self.flip else [False] pcd_horizontal_flip_aug = [False, True] \ if self.flip and self.pcd_horizontal_flip else [False] pcd_vertical_flip_aug = [False, True] \ if self.flip and self.pcd_vertical_flip else [False] for scale in self.img_scale: for pts_scale_ratio in self.pts_scale_ratio: for flip in flip_aug: for pcd_horizontal_flip in pcd_horizontal_flip_aug: for pcd_vertical_flip in pcd_vertical_flip_aug: for direction in self.flip_direction: # results.copy will cause bug # since it is shallow copy _results = deepcopy(results) _results['scale'] = scale _results['flip'] = flip _results['pcd_scale_factor'] = \ pts_scale_ratio _results['flip_direction'] = direction _results['pcd_horizontal_flip'] = \ pcd_horizontal_flip _results['pcd_vertical_flip'] = \ pcd_vertical_flip data = self.transforms(_results) aug_data.append(data) # list of dict to dict of list aug_data_dict = {key: [] for key in aug_data[0]} for data in aug_data: for key, val in data.items(): aug_data_dict[key].append(val) return aug_data_dict def __repr__(self): """str: Return a string that describes the module.""" repr_str = self.__class__.__name__ repr_str += f'(transforms={self.transforms}, ' repr_str += f'img_scale={self.img_scale}, flip={self.flip}, ' repr_str += f'pts_scale_ratio={self.pts_scale_ratio}, ' repr_str += f'flip_direction={self.flip_direction})' return repr_str
45.033058
78
0.576436
[ "Apache-2.0" ]
Comverser/mmdetection3d
mmdet3d/datasets/pipelines/test_time_aug.py
5,449
Python
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", comEnergy = cms.double(13000.0), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'ParticleDecays:limitTau0 = off', 'ParticleDecays:tau0Max = 10000000', 'HiddenValley:ffbar2Zv = on', 'HiddenValley:Ngauge = 3', '4900023:mWidth = 0.01', 'HiddenValley:pTminFSR = .1', 'HiddenValley:alphaFSR = .8', 'HiddenValley:FSR = on', 'HiddenValley:fragment = on', 'HiddenValley:probVector = 0', 'PartonLevel:MPI = on', 'PartonLevel:ISR = on', 'PartonLevel:FSR = on', 'HadronLevel:Hadronize = on', '4900023:onMode = off', '4900023:onIfAny = 4900101', '4900023:m0 = 300', #Z' mass '4900101:m0 = .5', '4900111:m0 = 20', #Dark Pion Mass '4900111:mayDecay = on', '4900111:addChannel 1 1. 0 22 22', #force dark pion to decay to diphotons '4900111:tau0 = 500', #Dark pion lifetime in mm '4900211:mayDecay = off', '-4900211:mayDecay = off' ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
44.065217
93
0.513567
[ "MIT" ]
jking79/Timing
GEN_SIM/Configuration/GenProduction/python/ThirteenTeV/HVDS/HVDS_MZP300_MDP20_Ctau500mm_Pythia8_13TeV_cff.py
2,027
Python
# code is based on https://github.com/katerakelly/pytorch-maml import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import torch from torch.utils.data import DataLoader,Dataset import random import os from PIL import Image import matplotlib.pyplot as plt import numpy as np from torch.utils.data.sampler import Sampler def imshow(img): npimg = img.numpy() plt.axis("off") plt.imshow(np.transpose(npimg,(1,2,0))) plt.show() class Rotate(object): def __init__(self, angle): self.angle = angle def __call__(self, x, mode="reflect"): x = x.rotate(self.angle) return x def mini_imagenet_folders(): train_folder = './train' test_folder = './test' metatrain_folders = [os.path.join(train_folder, label) \ for label in os.listdir(train_folder) \ if os.path.isdir(os.path.join(train_folder, label)) \ ] metatest_folders = [os.path.join(test_folder, label) \ for label in os.listdir(test_folder) \ if os.path.isdir(os.path.join(test_folder, label)) \ ] random.seed(1) random.shuffle(metatrain_folders) random.shuffle(metatest_folders) return metatrain_folders,metatest_folders class MiniImagenetTask(object): def __init__(self, character_folders, num_classes, train_num,test_num): self.character_folders = character_folders self.num_classes = num_classes self.train_num = train_num self.test_num = test_num class_folders = random.sample(self.character_folders,self.num_classes) labels = np.array(range(len(class_folders))) labels = dict(zip(class_folders, labels)) samples = dict() self.train_roots = [] self.test_roots = [] for c in class_folders: temp = [os.path.join(c, x) for x in os.listdir(c)] samples[c] = random.sample(temp, len(temp)) random.shuffle(samples[c]) self.train_roots += samples[c][:train_num] self.test_roots += samples[c][train_num:train_num+test_num] self.train_labels = [labels[self.get_class(x)] for x in self.train_roots] self.test_labels = [labels[self.get_class(x)] for x in self.test_roots] def get_class(self, sample): return os.path.join(*sample.split('/')[:-1]) class FewShotDataset(Dataset): def __init__(self, task, split='train', transform=None, target_transform=None): self.transform = transform # Torch operations on the input image self.target_transform = target_transform self.task = task self.split = split self.image_roots = self.task.train_roots if self.split == 'train' else self.task.test_roots self.labels = self.task.train_labels if self.split == 'train' else self.task.test_labels def __len__(self): return len(self.image_roots) def __getitem__(self, idx): raise NotImplementedError("This is an abstract class. Subclass this class for your particular dataset.") class MiniImagenet(FewShotDataset): def __init__(self, *args, **kwargs): super(MiniImagenet, self).__init__(*args, **kwargs) def __getitem__(self, idx): image_root = self.image_roots[idx] image = Image.open(image_root) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) label = self.labels[idx] if self.target_transform is not None: label = self.target_transform(label) return image, label, image_root class ClassBalancedSampler(Sampler): ''' Samples 'num_inst' examples each from 'num_cl' pools of examples of size 'num_per_class' ''' def __init__(self, num_per_class, num_cl, num_inst,shuffle=True): self.num_per_class = num_per_class self.num_cl = num_cl self.num_inst = num_inst self.shuffle = shuffle def __iter__(self): # return a single list of indices, assuming that items will be grouped by class if self.shuffle: batch = [[i+j*self.num_inst for i in torch.randperm(self.num_inst)[:self.num_per_class]] for j in range(self.num_cl)] else: batch = [[i+j*self.num_inst for i in range(self.num_inst)[:self.num_per_class]] for j in range(self.num_cl)] batch = [item for sublist in batch for item in sublist] if self.shuffle: random.shuffle(batch) return iter(batch) def __len__(self): return 1 def get_mini_imagenet_data_loader(task, num_per_class=1, split='train',shuffle = False): normalize = transforms.Normalize(mean=[0.92206, 0.92206, 0.92206], std=[0.08426, 0.08426, 0.08426]) dataset = MiniImagenet(task,split=split,transform=transforms.Compose([transforms.ToTensor(),normalize])) if split == 'train': sampler = ClassBalancedSampler(num_per_class, task.num_classes, task.train_num,shuffle=shuffle) else: sampler = ClassBalancedSampler(num_per_class, task.num_classes, task.test_num,shuffle=shuffle) loader = DataLoader(dataset, batch_size=num_per_class*task.num_classes, sampler=sampler) return loader
34.761589
129
0.668508
[ "MIT" ]
WendyBaiYunwei/FSL
miniimgnet/KD-gan/task_generator.py
5,249
Python
# coding: utf-8 """ Seldon Deploy API API to interact and manage the lifecycle of your machine learning models deployed through Seldon Deploy. # noqa: E501 OpenAPI spec version: v1alpha1 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import seldon_deploy_sdk from seldon_deploy_sdk.models.cinder_volume_source import CinderVolumeSource # noqa: E501 from seldon_deploy_sdk.rest import ApiException class TestCinderVolumeSource(unittest.TestCase): """CinderVolumeSource unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCinderVolumeSource(self): """Test CinderVolumeSource""" # FIXME: construct object with mandatory attributes with example values # model = seldon_deploy_sdk.models.cinder_volume_source.CinderVolumeSource() # noqa: E501 pass if __name__ == '__main__': unittest.main()
24.756098
122
0.730049
[ "Apache-2.0" ]
RafalSkolasinski/seldon-deploy-client
python/test/test_cinder_volume_source.py
1,015
Python
import whois def get_whois(domain): try: query = whois.query(domain) assert isinstance(query, whois._3_adjust.Domain) return query.__dict__ except: pass return None def get_scans(domain): url = "http://" + domain urls = [url] scans = vt.get_url_reports([url])[url]['scans'] positive, negative = [], [] for key, val in scans.items(): if val["detected"]: negative.append(key) else: positive.append(key) return positive, negative, len(positive), len(negative) if __name__ == '__main__': # print('test domain: microsoft.com') # print(get_whois('microsoft.com')) # print(get_scans('pxxfmjhosgqqs.com')) pass
22.90625
59
0.601637
[ "MIT" ]
sudo-rushil/CNN-LSTM_Domain_Classifier
intel_query.py
733
Python
# Generated file, please do not change!!! import typing from ...models.error import ErrorResponse from ...models.shipping_method import ShippingMethodPagedQueryResponse if typing.TYPE_CHECKING: from ...base_client import BaseClient class ByProjectKeyShippingMethodsMatchingCartRequestBuilder: _client: "BaseClient" _project_key: str def __init__( self, project_key: str, client: "BaseClient", ): self._project_key = project_key self._client = client def get( self, *, cart_id: str, expand: typing.List["str"] = None, headers: typing.Dict[str, str] = None, options: typing.Dict[str, typing.Any] = None, ) -> typing.Optional["ShippingMethodPagedQueryResponse"]: headers = {} if headers is None else headers response = self._client._get( endpoint=f"/{self._project_key}/shipping-methods/matching-cart", params={"cartId": cart_id, "expand": expand}, headers=headers, options=options, ) if response.status_code == 200: return ShippingMethodPagedQueryResponse.deserialize(response.json()) elif response.status_code in (400, 401, 403, 500, 503): obj = ErrorResponse.deserialize(response.json()) raise self._client._create_exception(obj, response) elif response.status_code == 404: return None raise ValueError("Unhandled status code %s", response.status_code)
32.510638
80
0.643979
[ "MIT" ]
lime-green/commercetools-python-sdk
src/commercetools/platform/client/matching_cart/by_project_key_shipping_methods_matching_cart_request_builder.py
1,528
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model from msrest.exceptions import HttpOperationError class SubResource(Model): """Reference to another subresource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :vartype name: str :ivar type: Resource type :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, **kwargs): super(SubResource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class AgentPool(SubResource): """Agent Pool. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource ID. :vartype id: str :ivar name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :vartype name: str :ivar type: Resource type :vartype type: str :param count: Required. Number of agents (VMs) to host docker containers. Allowed values must be in the range of 1 to 100 (inclusive). The default value is 1. . Default value: 1 . :type count: int :param vm_size: Required. Size of agent VMs. Possible values include: 'Standard_A1', 'Standard_A10', 'Standard_A11', 'Standard_A1_v2', 'Standard_A2', 'Standard_A2_v2', 'Standard_A2m_v2', 'Standard_A3', 'Standard_A4', 'Standard_A4_v2', 'Standard_A4m_v2', 'Standard_A5', 'Standard_A6', 'Standard_A7', 'Standard_A8', 'Standard_A8_v2', 'Standard_A8m_v2', 'Standard_A9', 'Standard_B2ms', 'Standard_B2s', 'Standard_B4ms', 'Standard_B8ms', 'Standard_D1', 'Standard_D11', 'Standard_D11_v2', 'Standard_D11_v2_Promo', 'Standard_D12', 'Standard_D12_v2', 'Standard_D12_v2_Promo', 'Standard_D13', 'Standard_D13_v2', 'Standard_D13_v2_Promo', 'Standard_D14', 'Standard_D14_v2', 'Standard_D14_v2_Promo', 'Standard_D15_v2', 'Standard_D16_v3', 'Standard_D16s_v3', 'Standard_D1_v2', 'Standard_D2', 'Standard_D2_v2', 'Standard_D2_v2_Promo', 'Standard_D2_v3', 'Standard_D2s_v3', 'Standard_D3', 'Standard_D32_v3', 'Standard_D32s_v3', 'Standard_D3_v2', 'Standard_D3_v2_Promo', 'Standard_D4', 'Standard_D4_v2', 'Standard_D4_v2_Promo', 'Standard_D4_v3', 'Standard_D4s_v3', 'Standard_D5_v2', 'Standard_D5_v2_Promo', 'Standard_D64_v3', 'Standard_D64s_v3', 'Standard_D8_v3', 'Standard_D8s_v3', 'Standard_DS1', 'Standard_DS11', 'Standard_DS11_v2', 'Standard_DS11_v2_Promo', 'Standard_DS12', 'Standard_DS12_v2', 'Standard_DS12_v2_Promo', 'Standard_DS13', 'Standard_DS13-2_v2', 'Standard_DS13-4_v2', 'Standard_DS13_v2', 'Standard_DS13_v2_Promo', 'Standard_DS14', 'Standard_DS14-4_v2', 'Standard_DS14-8_v2', 'Standard_DS14_v2', 'Standard_DS14_v2_Promo', 'Standard_DS15_v2', 'Standard_DS1_v2', 'Standard_DS2', 'Standard_DS2_v2', 'Standard_DS2_v2_Promo', 'Standard_DS3', 'Standard_DS3_v2', 'Standard_DS3_v2_Promo', 'Standard_DS4', 'Standard_DS4_v2', 'Standard_DS4_v2_Promo', 'Standard_DS5_v2', 'Standard_DS5_v2_Promo', 'Standard_E16_v3', 'Standard_E16s_v3', 'Standard_E2_v3', 'Standard_E2s_v3', 'Standard_E32-16s_v3', 'Standard_E32-8s_v3', 'Standard_E32_v3', 'Standard_E32s_v3', 'Standard_E4_v3', 'Standard_E4s_v3', 'Standard_E64-16s_v3', 'Standard_E64-32s_v3', 'Standard_E64_v3', 'Standard_E64s_v3', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_F1', 'Standard_F16', 'Standard_F16s', 'Standard_F16s_v2', 'Standard_F1s', 'Standard_F2', 'Standard_F2s', 'Standard_F2s_v2', 'Standard_F32s_v2', 'Standard_F4', 'Standard_F4s', 'Standard_F4s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_F8', 'Standard_F8s', 'Standard_F8s_v2', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5', 'Standard_GS1', 'Standard_GS2', 'Standard_GS3', 'Standard_GS4', 'Standard_GS4-4', 'Standard_GS4-8', 'Standard_GS5', 'Standard_GS5-16', 'Standard_GS5-8', 'Standard_H16', 'Standard_H16m', 'Standard_H16mr', 'Standard_H16r', 'Standard_H8', 'Standard_H8m', 'Standard_L16s', 'Standard_L32s', 'Standard_L4s', 'Standard_L8s', 'Standard_M128-32ms', 'Standard_M128-64ms', 'Standard_M128ms', 'Standard_M128s', 'Standard_M64-16ms', 'Standard_M64-32ms', 'Standard_M64ms', 'Standard_M64s', 'Standard_NC12', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC24', 'Standard_NC24r', 'Standard_NC24rs_v2', 'Standard_NC24rs_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC6', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_ND12s', 'Standard_ND24rs', 'Standard_ND24s', 'Standard_ND6s', 'Standard_NV12', 'Standard_NV24', 'Standard_NV6' :type vm_size: str or ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceVMSizeTypes :param os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :type os_disk_size_gb: int :param vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :type vnet_subnet_id: str :param max_pods: Maximum number of pods that can run on a node. :type max_pods: int :param os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Possible values include: 'Linux', 'Windows'. Default value: "Linux" . :type os_type: str or ~azure.mgmt.containerservice.v2019_02_01.models.OSType :param max_count: Maximum number of nodes for auto-scaling :type max_count: int :param min_count: Minimum number of nodes for auto-scaling :type min_count: int :param enable_auto_scaling: Whether to enable auto-scaler :type enable_auto_scaling: bool :param agent_pool_type: AgentPoolType represents types of an agent pool. Possible values include: 'VirtualMachineScaleSets', 'AvailabilitySet' :type agent_pool_type: str or ~azure.mgmt.containerservice.v2019_02_01.models.AgentPoolType :param orchestrator_version: Version of orchestrator specified when creating the managed cluster. :type orchestrator_version: str :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :param availability_zones: (PREVIEW) Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :type availability_zones: list[str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'count': {'required': True, 'maximum': 100, 'minimum': 1}, 'vm_size': {'required': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'count': {'key': 'properties.count', 'type': 'int'}, 'vm_size': {'key': 'properties.vmSize', 'type': 'str'}, 'os_disk_size_gb': {'key': 'properties.osDiskSizeGB', 'type': 'int'}, 'vnet_subnet_id': {'key': 'properties.vnetSubnetID', 'type': 'str'}, 'max_pods': {'key': 'properties.maxPods', 'type': 'int'}, 'os_type': {'key': 'properties.osType', 'type': 'str'}, 'max_count': {'key': 'properties.maxCount', 'type': 'int'}, 'min_count': {'key': 'properties.minCount', 'type': 'int'}, 'enable_auto_scaling': {'key': 'properties.enableAutoScaling', 'type': 'bool'}, 'agent_pool_type': {'key': 'properties.type', 'type': 'str'}, 'orchestrator_version': {'key': 'properties.orchestratorVersion', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'availability_zones': {'key': 'properties.availabilityZones', 'type': '[str]'}, } def __init__(self, **kwargs): super(AgentPool, self).__init__(**kwargs) self.count = kwargs.get('count', 1) self.vm_size = kwargs.get('vm_size', None) self.os_disk_size_gb = kwargs.get('os_disk_size_gb', None) self.vnet_subnet_id = kwargs.get('vnet_subnet_id', None) self.max_pods = kwargs.get('max_pods', None) self.os_type = kwargs.get('os_type', "Linux") self.max_count = kwargs.get('max_count', None) self.min_count = kwargs.get('min_count', None) self.enable_auto_scaling = kwargs.get('enable_auto_scaling', None) self.agent_pool_type = kwargs.get('agent_pool_type', None) self.orchestrator_version = kwargs.get('orchestrator_version', None) self.provisioning_state = None self.availability_zones = kwargs.get('availability_zones', None) class CloudError(Model): """An error response from the Container service. :param error: Details about the error. :type error: ~azure.mgmt.containerservice.v2019_02_01.models.CloudErrorBody """ _attribute_map = { 'error': {'key': 'error', 'type': 'CloudErrorBody'}, } def __init__(self, **kwargs): super(CloudError, self).__init__(**kwargs) self.error = kwargs.get('error', None) class CloudErrorException(HttpOperationError): """Server responsed with exception of type: 'CloudError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, deserialize, response, *args): super(CloudErrorException, self).__init__(deserialize, response, 'CloudError', *args) class CloudErrorBody(Model): """An error response from the Container service. :param code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :type code: str :param message: A message describing the error, intended to be suitable for display in a user interface. :type message: str :param target: The target of the particular error. For example, the name of the property in error. :type target: str :param details: A list of additional details about the error. :type details: list[~azure.mgmt.containerservice.v2019_02_01.models.CloudErrorBody] """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[CloudErrorBody]'}, } def __init__(self, **kwargs): super(CloudErrorBody, self).__init__(**kwargs) self.code = kwargs.get('code', None) self.message = kwargs.get('message', None) self.target = kwargs.get('target', None) self.details = kwargs.get('details', None) class ContainerServiceDiagnosticsProfile(Model): """Profile for diagnostics on the container service cluster. All required parameters must be populated in order to send to Azure. :param vm_diagnostics: Required. Profile for diagnostics on the container service VMs. :type vm_diagnostics: ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceVMDiagnostics """ _validation = { 'vm_diagnostics': {'required': True}, } _attribute_map = { 'vm_diagnostics': {'key': 'vmDiagnostics', 'type': 'ContainerServiceVMDiagnostics'}, } def __init__(self, **kwargs): super(ContainerServiceDiagnosticsProfile, self).__init__(**kwargs) self.vm_diagnostics = kwargs.get('vm_diagnostics', None) class ContainerServiceLinuxProfile(Model): """Profile for Linux VMs in the container service cluster. All required parameters must be populated in order to send to Azure. :param admin_username: Required. The administrator username to use for Linux VMs. :type admin_username: str :param ssh: Required. SSH configuration for Linux-based VMs running on Azure. :type ssh: ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceSshConfiguration """ _validation = { 'admin_username': {'required': True, 'pattern': r'^[A-Za-z][-A-Za-z0-9_]*$'}, 'ssh': {'required': True}, } _attribute_map = { 'admin_username': {'key': 'adminUsername', 'type': 'str'}, 'ssh': {'key': 'ssh', 'type': 'ContainerServiceSshConfiguration'}, } def __init__(self, **kwargs): super(ContainerServiceLinuxProfile, self).__init__(**kwargs) self.admin_username = kwargs.get('admin_username', None) self.ssh = kwargs.get('ssh', None) class ContainerServiceMasterProfile(Model): """Profile for the container service master. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param count: Number of masters (VMs) in the container service cluster. Allowed values are 1, 3, and 5. The default value is 1. Default value: 1 . :type count: int :param dns_prefix: Required. DNS prefix to be used to create the FQDN for the master pool. :type dns_prefix: str :param vm_size: Required. Size of agent VMs. Possible values include: 'Standard_A1', 'Standard_A10', 'Standard_A11', 'Standard_A1_v2', 'Standard_A2', 'Standard_A2_v2', 'Standard_A2m_v2', 'Standard_A3', 'Standard_A4', 'Standard_A4_v2', 'Standard_A4m_v2', 'Standard_A5', 'Standard_A6', 'Standard_A7', 'Standard_A8', 'Standard_A8_v2', 'Standard_A8m_v2', 'Standard_A9', 'Standard_B2ms', 'Standard_B2s', 'Standard_B4ms', 'Standard_B8ms', 'Standard_D1', 'Standard_D11', 'Standard_D11_v2', 'Standard_D11_v2_Promo', 'Standard_D12', 'Standard_D12_v2', 'Standard_D12_v2_Promo', 'Standard_D13', 'Standard_D13_v2', 'Standard_D13_v2_Promo', 'Standard_D14', 'Standard_D14_v2', 'Standard_D14_v2_Promo', 'Standard_D15_v2', 'Standard_D16_v3', 'Standard_D16s_v3', 'Standard_D1_v2', 'Standard_D2', 'Standard_D2_v2', 'Standard_D2_v2_Promo', 'Standard_D2_v3', 'Standard_D2s_v3', 'Standard_D3', 'Standard_D32_v3', 'Standard_D32s_v3', 'Standard_D3_v2', 'Standard_D3_v2_Promo', 'Standard_D4', 'Standard_D4_v2', 'Standard_D4_v2_Promo', 'Standard_D4_v3', 'Standard_D4s_v3', 'Standard_D5_v2', 'Standard_D5_v2_Promo', 'Standard_D64_v3', 'Standard_D64s_v3', 'Standard_D8_v3', 'Standard_D8s_v3', 'Standard_DS1', 'Standard_DS11', 'Standard_DS11_v2', 'Standard_DS11_v2_Promo', 'Standard_DS12', 'Standard_DS12_v2', 'Standard_DS12_v2_Promo', 'Standard_DS13', 'Standard_DS13-2_v2', 'Standard_DS13-4_v2', 'Standard_DS13_v2', 'Standard_DS13_v2_Promo', 'Standard_DS14', 'Standard_DS14-4_v2', 'Standard_DS14-8_v2', 'Standard_DS14_v2', 'Standard_DS14_v2_Promo', 'Standard_DS15_v2', 'Standard_DS1_v2', 'Standard_DS2', 'Standard_DS2_v2', 'Standard_DS2_v2_Promo', 'Standard_DS3', 'Standard_DS3_v2', 'Standard_DS3_v2_Promo', 'Standard_DS4', 'Standard_DS4_v2', 'Standard_DS4_v2_Promo', 'Standard_DS5_v2', 'Standard_DS5_v2_Promo', 'Standard_E16_v3', 'Standard_E16s_v3', 'Standard_E2_v3', 'Standard_E2s_v3', 'Standard_E32-16s_v3', 'Standard_E32-8s_v3', 'Standard_E32_v3', 'Standard_E32s_v3', 'Standard_E4_v3', 'Standard_E4s_v3', 'Standard_E64-16s_v3', 'Standard_E64-32s_v3', 'Standard_E64_v3', 'Standard_E64s_v3', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_F1', 'Standard_F16', 'Standard_F16s', 'Standard_F16s_v2', 'Standard_F1s', 'Standard_F2', 'Standard_F2s', 'Standard_F2s_v2', 'Standard_F32s_v2', 'Standard_F4', 'Standard_F4s', 'Standard_F4s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_F8', 'Standard_F8s', 'Standard_F8s_v2', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5', 'Standard_GS1', 'Standard_GS2', 'Standard_GS3', 'Standard_GS4', 'Standard_GS4-4', 'Standard_GS4-8', 'Standard_GS5', 'Standard_GS5-16', 'Standard_GS5-8', 'Standard_H16', 'Standard_H16m', 'Standard_H16mr', 'Standard_H16r', 'Standard_H8', 'Standard_H8m', 'Standard_L16s', 'Standard_L32s', 'Standard_L4s', 'Standard_L8s', 'Standard_M128-32ms', 'Standard_M128-64ms', 'Standard_M128ms', 'Standard_M128s', 'Standard_M64-16ms', 'Standard_M64-32ms', 'Standard_M64ms', 'Standard_M64s', 'Standard_NC12', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC24', 'Standard_NC24r', 'Standard_NC24rs_v2', 'Standard_NC24rs_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC6', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_ND12s', 'Standard_ND24rs', 'Standard_ND24s', 'Standard_ND6s', 'Standard_NV12', 'Standard_NV24', 'Standard_NV6' :type vm_size: str or ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceVMSizeTypes :param os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :type os_disk_size_gb: int :param vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :type vnet_subnet_id: str :param first_consecutive_static_ip: FirstConsecutiveStaticIP used to specify the first static ip of masters. Default value: "10.240.255.5" . :type first_consecutive_static_ip: str :param storage_profile: Storage profile specifies what kind of storage used. Choose from StorageAccount and ManagedDisks. Leave it empty, we will choose for you based on the orchestrator choice. Possible values include: 'StorageAccount', 'ManagedDisks' :type storage_profile: str or ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceStorageProfileTypes :ivar fqdn: FQDN for the master pool. :vartype fqdn: str """ _validation = { 'dns_prefix': {'required': True}, 'vm_size': {'required': True}, 'fqdn': {'readonly': True}, } _attribute_map = { 'count': {'key': 'count', 'type': 'int'}, 'dns_prefix': {'key': 'dnsPrefix', 'type': 'str'}, 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'os_disk_size_gb': {'key': 'osDiskSizeGB', 'type': 'int'}, 'vnet_subnet_id': {'key': 'vnetSubnetID', 'type': 'str'}, 'first_consecutive_static_ip': {'key': 'firstConsecutiveStaticIP', 'type': 'str'}, 'storage_profile': {'key': 'storageProfile', 'type': 'str'}, 'fqdn': {'key': 'fqdn', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerServiceMasterProfile, self).__init__(**kwargs) self.count = kwargs.get('count', 1) self.dns_prefix = kwargs.get('dns_prefix', None) self.vm_size = kwargs.get('vm_size', None) self.os_disk_size_gb = kwargs.get('os_disk_size_gb', None) self.vnet_subnet_id = kwargs.get('vnet_subnet_id', None) self.first_consecutive_static_ip = kwargs.get('first_consecutive_static_ip', "10.240.255.5") self.storage_profile = kwargs.get('storage_profile', None) self.fqdn = None class ContainerServiceNetworkProfile(Model): """Profile of network configuration. :param network_plugin: Network plugin used for building Kubernetes network. Possible values include: 'azure', 'kubenet'. Default value: "kubenet" . :type network_plugin: str or ~azure.mgmt.containerservice.v2019_02_01.models.NetworkPlugin :param network_policy: Network policy used for building Kubernetes network. Possible values include: 'calico', 'azure' :type network_policy: str or ~azure.mgmt.containerservice.v2019_02_01.models.NetworkPolicy :param pod_cidr: A CIDR notation IP range from which to assign pod IPs when kubenet is used. Default value: "10.244.0.0/16" . :type pod_cidr: str :param service_cidr: A CIDR notation IP range from which to assign service cluster IPs. It must not overlap with any Subnet IP ranges. Default value: "10.0.0.0/16" . :type service_cidr: str :param dns_service_ip: An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes service address range specified in serviceCidr. Default value: "10.0.0.10" . :type dns_service_ip: str :param docker_bridge_cidr: A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes service address range. Default value: "172.17.0.1/16" . :type docker_bridge_cidr: str """ _validation = { 'pod_cidr': {'pattern': r'^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$'}, 'service_cidr': {'pattern': r'^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$'}, 'dns_service_ip': {'pattern': r'^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$'}, 'docker_bridge_cidr': {'pattern': r'^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$'}, } _attribute_map = { 'network_plugin': {'key': 'networkPlugin', 'type': 'str'}, 'network_policy': {'key': 'networkPolicy', 'type': 'str'}, 'pod_cidr': {'key': 'podCidr', 'type': 'str'}, 'service_cidr': {'key': 'serviceCidr', 'type': 'str'}, 'dns_service_ip': {'key': 'dnsServiceIP', 'type': 'str'}, 'docker_bridge_cidr': {'key': 'dockerBridgeCidr', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerServiceNetworkProfile, self).__init__(**kwargs) self.network_plugin = kwargs.get('network_plugin', "kubenet") self.network_policy = kwargs.get('network_policy', None) self.pod_cidr = kwargs.get('pod_cidr', "10.244.0.0/16") self.service_cidr = kwargs.get('service_cidr', "10.0.0.0/16") self.dns_service_ip = kwargs.get('dns_service_ip', "10.0.0.10") self.docker_bridge_cidr = kwargs.get('docker_bridge_cidr', "172.17.0.1/16") class ContainerServiceSshConfiguration(Model): """SSH configuration for Linux-based VMs running on Azure. All required parameters must be populated in order to send to Azure. :param public_keys: Required. The list of SSH public keys used to authenticate with Linux-based VMs. Only expect one key specified. :type public_keys: list[~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceSshPublicKey] """ _validation = { 'public_keys': {'required': True}, } _attribute_map = { 'public_keys': {'key': 'publicKeys', 'type': '[ContainerServiceSshPublicKey]'}, } def __init__(self, **kwargs): super(ContainerServiceSshConfiguration, self).__init__(**kwargs) self.public_keys = kwargs.get('public_keys', None) class ContainerServiceSshPublicKey(Model): """Contains information about SSH certificate public key data. All required parameters must be populated in order to send to Azure. :param key_data: Required. Certificate public key used to authenticate with VMs through SSH. The certificate must be in PEM format with or without headers. :type key_data: str """ _validation = { 'key_data': {'required': True}, } _attribute_map = { 'key_data': {'key': 'keyData', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerServiceSshPublicKey, self).__init__(**kwargs) self.key_data = kwargs.get('key_data', None) class ContainerServiceVMDiagnostics(Model): """Profile for diagnostics on the container service VMs. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param enabled: Required. Whether the VM diagnostic agent is provisioned on the VM. :type enabled: bool :ivar storage_uri: The URI of the storage account where diagnostics are stored. :vartype storage_uri: str """ _validation = { 'enabled': {'required': True}, 'storage_uri': {'readonly': True}, } _attribute_map = { 'enabled': {'key': 'enabled', 'type': 'bool'}, 'storage_uri': {'key': 'storageUri', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerServiceVMDiagnostics, self).__init__(**kwargs) self.enabled = kwargs.get('enabled', None) self.storage_uri = None class ContainerServiceWindowsProfile(Model): """Profile for Windows VMs in the container service cluster. All required parameters must be populated in order to send to Azure. :param admin_username: Required. The administrator username to use for Windows VMs. :type admin_username: str :param admin_password: Required. The administrator password to use for Windows VMs. :type admin_password: str """ _validation = { 'admin_username': {'required': True, 'pattern': r'^[a-zA-Z0-9]+([._]?[a-zA-Z0-9]+)*$'}, 'admin_password': {'required': True, 'pattern': r'^(?=.*[a-z])(?=.*[A-Z])(?=.*[!@#$%\^&\*\(\)])[a-zA-Z\d!@#$%\^&\*\(\)]{12,123}$'}, } _attribute_map = { 'admin_username': {'key': 'adminUsername', 'type': 'str'}, 'admin_password': {'key': 'adminPassword', 'type': 'str'}, } def __init__(self, **kwargs): super(ContainerServiceWindowsProfile, self).__init__(**kwargs) self.admin_username = kwargs.get('admin_username', None) self.admin_password = kwargs.get('admin_password', None) class CredentialResult(Model): """The credential result response. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The name of the credential. :vartype name: str :ivar value: Base64-encoded Kubernetes configuration file. :vartype value: bytearray """ _validation = { 'name': {'readonly': True}, 'value': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'value': {'key': 'value', 'type': 'bytearray'}, } def __init__(self, **kwargs): super(CredentialResult, self).__init__(**kwargs) self.name = None self.value = None class CredentialResults(Model): """The list of credential result response. Variables are only populated by the server, and will be ignored when sending a request. :ivar kubeconfigs: Base64-encoded Kubernetes configuration file. :vartype kubeconfigs: list[~azure.mgmt.containerservice.v2019_02_01.models.CredentialResult] """ _validation = { 'kubeconfigs': {'readonly': True}, } _attribute_map = { 'kubeconfigs': {'key': 'kubeconfigs', 'type': '[CredentialResult]'}, } def __init__(self, **kwargs): super(CredentialResults, self).__init__(**kwargs) self.kubeconfigs = None class Resource(Model): """The Resource model definition. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Required. Resource location :type location: str :param tags: Resource tags :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, **kwargs): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.location = kwargs.get('location', None) self.tags = kwargs.get('tags', None) class ManagedCluster(Resource): """Managed cluster. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Required. Resource location :type location: str :param tags: Resource tags :type tags: dict[str, str] :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :param kubernetes_version: Version of Kubernetes specified when creating the managed cluster. :type kubernetes_version: str :param dns_prefix: DNS prefix specified when creating the managed cluster. :type dns_prefix: str :ivar fqdn: FQDN for the master pool. :vartype fqdn: str :param agent_pool_profiles: Properties of the agent pool. :type agent_pool_profiles: list[~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterAgentPoolProfile] :param linux_profile: Profile for Linux VMs in the container service cluster. :type linux_profile: ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceLinuxProfile :param service_principal_profile: Information about a service principal identity for the cluster to use for manipulating Azure APIs. :type service_principal_profile: ~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterServicePrincipalProfile :param addon_profiles: Profile of managed cluster add-on. :type addon_profiles: dict[str, ~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterAddonProfile] :ivar node_resource_group: Name of the resource group containing agent pool nodes. :vartype node_resource_group: str :param enable_rbac: Whether to enable Kubernetes Role-Based Access Control. :type enable_rbac: bool :param enable_pod_security_policy: (DEPRECATING) Whether to enable Kubernetes pod security policy (preview). This feature is set for removal on October 15th, 2020. Learn more at aka.ms/aks/azpodpolicy. :type enable_pod_security_policy: bool :param network_profile: Profile of network configuration. :type network_profile: ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceNetworkProfile :param aad_profile: Profile of Azure Active Directory configuration. :type aad_profile: ~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterAADProfile :param api_server_authorized_ip_ranges: (PREVIEW) Authorized IP Ranges to kubernetes API server. :type api_server_authorized_ip_ranges: list[str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, 'provisioning_state': {'readonly': True}, 'fqdn': {'readonly': True}, 'node_resource_group': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'kubernetes_version': {'key': 'properties.kubernetesVersion', 'type': 'str'}, 'dns_prefix': {'key': 'properties.dnsPrefix', 'type': 'str'}, 'fqdn': {'key': 'properties.fqdn', 'type': 'str'}, 'agent_pool_profiles': {'key': 'properties.agentPoolProfiles', 'type': '[ManagedClusterAgentPoolProfile]'}, 'linux_profile': {'key': 'properties.linuxProfile', 'type': 'ContainerServiceLinuxProfile'}, 'service_principal_profile': {'key': 'properties.servicePrincipalProfile', 'type': 'ManagedClusterServicePrincipalProfile'}, 'addon_profiles': {'key': 'properties.addonProfiles', 'type': '{ManagedClusterAddonProfile}'}, 'node_resource_group': {'key': 'properties.nodeResourceGroup', 'type': 'str'}, 'enable_rbac': {'key': 'properties.enableRBAC', 'type': 'bool'}, 'enable_pod_security_policy': {'key': 'properties.enablePodSecurityPolicy', 'type': 'bool'}, 'network_profile': {'key': 'properties.networkProfile', 'type': 'ContainerServiceNetworkProfile'}, 'aad_profile': {'key': 'properties.aadProfile', 'type': 'ManagedClusterAADProfile'}, 'api_server_authorized_ip_ranges': {'key': 'properties.apiServerAuthorizedIPRanges', 'type': '[str]'}, } def __init__(self, **kwargs): super(ManagedCluster, self).__init__(**kwargs) self.provisioning_state = None self.kubernetes_version = kwargs.get('kubernetes_version', None) self.dns_prefix = kwargs.get('dns_prefix', None) self.fqdn = None self.agent_pool_profiles = kwargs.get('agent_pool_profiles', None) self.linux_profile = kwargs.get('linux_profile', None) self.service_principal_profile = kwargs.get('service_principal_profile', None) self.addon_profiles = kwargs.get('addon_profiles', None) self.node_resource_group = None self.enable_rbac = kwargs.get('enable_rbac', None) self.enable_pod_security_policy = kwargs.get('enable_pod_security_policy', None) self.network_profile = kwargs.get('network_profile', None) self.aad_profile = kwargs.get('aad_profile', None) self.api_server_authorized_ip_ranges = kwargs.get('api_server_authorized_ip_ranges', None) class ManagedClusterAADProfile(Model): """AADProfile specifies attributes for Azure Active Directory integration. All required parameters must be populated in order to send to Azure. :param client_app_id: Required. The client AAD application ID. :type client_app_id: str :param server_app_id: Required. The server AAD application ID. :type server_app_id: str :param server_app_secret: The server AAD application secret. :type server_app_secret: str :param tenant_id: The AAD tenant ID to use for authentication. If not specified, will use the tenant of the deployment subscription. :type tenant_id: str """ _validation = { 'client_app_id': {'required': True}, 'server_app_id': {'required': True}, } _attribute_map = { 'client_app_id': {'key': 'clientAppID', 'type': 'str'}, 'server_app_id': {'key': 'serverAppID', 'type': 'str'}, 'server_app_secret': {'key': 'serverAppSecret', 'type': 'str'}, 'tenant_id': {'key': 'tenantID', 'type': 'str'}, } def __init__(self, **kwargs): super(ManagedClusterAADProfile, self).__init__(**kwargs) self.client_app_id = kwargs.get('client_app_id', None) self.server_app_id = kwargs.get('server_app_id', None) self.server_app_secret = kwargs.get('server_app_secret', None) self.tenant_id = kwargs.get('tenant_id', None) class ManagedClusterAccessProfile(Resource): """Managed cluster Access Profile. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Required. Resource location :type location: str :param tags: Resource tags :type tags: dict[str, str] :param kube_config: Base64-encoded Kubernetes configuration file. :type kube_config: bytearray """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'kube_config': {'key': 'properties.kubeConfig', 'type': 'bytearray'}, } def __init__(self, **kwargs): super(ManagedClusterAccessProfile, self).__init__(**kwargs) self.kube_config = kwargs.get('kube_config', None) class ManagedClusterAddonProfile(Model): """A Kubernetes add-on profile for a managed cluster. All required parameters must be populated in order to send to Azure. :param enabled: Required. Whether the add-on is enabled or not. :type enabled: bool :param config: Key-value pairs for configuring an add-on. :type config: dict[str, str] """ _validation = { 'enabled': {'required': True}, } _attribute_map = { 'enabled': {'key': 'enabled', 'type': 'bool'}, 'config': {'key': 'config', 'type': '{str}'}, } def __init__(self, **kwargs): super(ManagedClusterAddonProfile, self).__init__(**kwargs) self.enabled = kwargs.get('enabled', None) self.config = kwargs.get('config', None) class ManagedClusterAgentPoolProfileProperties(Model): """Properties for the container service agent pool profile. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param count: Required. Number of agents (VMs) to host docker containers. Allowed values must be in the range of 1 to 100 (inclusive). The default value is 1. . Default value: 1 . :type count: int :param vm_size: Required. Size of agent VMs. Possible values include: 'Standard_A1', 'Standard_A10', 'Standard_A11', 'Standard_A1_v2', 'Standard_A2', 'Standard_A2_v2', 'Standard_A2m_v2', 'Standard_A3', 'Standard_A4', 'Standard_A4_v2', 'Standard_A4m_v2', 'Standard_A5', 'Standard_A6', 'Standard_A7', 'Standard_A8', 'Standard_A8_v2', 'Standard_A8m_v2', 'Standard_A9', 'Standard_B2ms', 'Standard_B2s', 'Standard_B4ms', 'Standard_B8ms', 'Standard_D1', 'Standard_D11', 'Standard_D11_v2', 'Standard_D11_v2_Promo', 'Standard_D12', 'Standard_D12_v2', 'Standard_D12_v2_Promo', 'Standard_D13', 'Standard_D13_v2', 'Standard_D13_v2_Promo', 'Standard_D14', 'Standard_D14_v2', 'Standard_D14_v2_Promo', 'Standard_D15_v2', 'Standard_D16_v3', 'Standard_D16s_v3', 'Standard_D1_v2', 'Standard_D2', 'Standard_D2_v2', 'Standard_D2_v2_Promo', 'Standard_D2_v3', 'Standard_D2s_v3', 'Standard_D3', 'Standard_D32_v3', 'Standard_D32s_v3', 'Standard_D3_v2', 'Standard_D3_v2_Promo', 'Standard_D4', 'Standard_D4_v2', 'Standard_D4_v2_Promo', 'Standard_D4_v3', 'Standard_D4s_v3', 'Standard_D5_v2', 'Standard_D5_v2_Promo', 'Standard_D64_v3', 'Standard_D64s_v3', 'Standard_D8_v3', 'Standard_D8s_v3', 'Standard_DS1', 'Standard_DS11', 'Standard_DS11_v2', 'Standard_DS11_v2_Promo', 'Standard_DS12', 'Standard_DS12_v2', 'Standard_DS12_v2_Promo', 'Standard_DS13', 'Standard_DS13-2_v2', 'Standard_DS13-4_v2', 'Standard_DS13_v2', 'Standard_DS13_v2_Promo', 'Standard_DS14', 'Standard_DS14-4_v2', 'Standard_DS14-8_v2', 'Standard_DS14_v2', 'Standard_DS14_v2_Promo', 'Standard_DS15_v2', 'Standard_DS1_v2', 'Standard_DS2', 'Standard_DS2_v2', 'Standard_DS2_v2_Promo', 'Standard_DS3', 'Standard_DS3_v2', 'Standard_DS3_v2_Promo', 'Standard_DS4', 'Standard_DS4_v2', 'Standard_DS4_v2_Promo', 'Standard_DS5_v2', 'Standard_DS5_v2_Promo', 'Standard_E16_v3', 'Standard_E16s_v3', 'Standard_E2_v3', 'Standard_E2s_v3', 'Standard_E32-16s_v3', 'Standard_E32-8s_v3', 'Standard_E32_v3', 'Standard_E32s_v3', 'Standard_E4_v3', 'Standard_E4s_v3', 'Standard_E64-16s_v3', 'Standard_E64-32s_v3', 'Standard_E64_v3', 'Standard_E64s_v3', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_F1', 'Standard_F16', 'Standard_F16s', 'Standard_F16s_v2', 'Standard_F1s', 'Standard_F2', 'Standard_F2s', 'Standard_F2s_v2', 'Standard_F32s_v2', 'Standard_F4', 'Standard_F4s', 'Standard_F4s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_F8', 'Standard_F8s', 'Standard_F8s_v2', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5', 'Standard_GS1', 'Standard_GS2', 'Standard_GS3', 'Standard_GS4', 'Standard_GS4-4', 'Standard_GS4-8', 'Standard_GS5', 'Standard_GS5-16', 'Standard_GS5-8', 'Standard_H16', 'Standard_H16m', 'Standard_H16mr', 'Standard_H16r', 'Standard_H8', 'Standard_H8m', 'Standard_L16s', 'Standard_L32s', 'Standard_L4s', 'Standard_L8s', 'Standard_M128-32ms', 'Standard_M128-64ms', 'Standard_M128ms', 'Standard_M128s', 'Standard_M64-16ms', 'Standard_M64-32ms', 'Standard_M64ms', 'Standard_M64s', 'Standard_NC12', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC24', 'Standard_NC24r', 'Standard_NC24rs_v2', 'Standard_NC24rs_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC6', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_ND12s', 'Standard_ND24rs', 'Standard_ND24s', 'Standard_ND6s', 'Standard_NV12', 'Standard_NV24', 'Standard_NV6' :type vm_size: str or ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceVMSizeTypes :param os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :type os_disk_size_gb: int :param vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :type vnet_subnet_id: str :param max_pods: Maximum number of pods that can run on a node. :type max_pods: int :param os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Possible values include: 'Linux', 'Windows'. Default value: "Linux" . :type os_type: str or ~azure.mgmt.containerservice.v2019_02_01.models.OSType :param max_count: Maximum number of nodes for auto-scaling :type max_count: int :param min_count: Minimum number of nodes for auto-scaling :type min_count: int :param enable_auto_scaling: Whether to enable auto-scaler :type enable_auto_scaling: bool :param type: AgentPoolType represents types of an agent pool. Possible values include: 'VirtualMachineScaleSets', 'AvailabilitySet' :type type: str or ~azure.mgmt.containerservice.v2019_02_01.models.AgentPoolType :param orchestrator_version: Version of orchestrator specified when creating the managed cluster. :type orchestrator_version: str :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :param availability_zones: (PREVIEW) Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :type availability_zones: list[str] """ _validation = { 'count': {'required': True, 'maximum': 100, 'minimum': 1}, 'vm_size': {'required': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'count': {'key': 'count', 'type': 'int'}, 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'os_disk_size_gb': {'key': 'osDiskSizeGB', 'type': 'int'}, 'vnet_subnet_id': {'key': 'vnetSubnetID', 'type': 'str'}, 'max_pods': {'key': 'maxPods', 'type': 'int'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'max_count': {'key': 'maxCount', 'type': 'int'}, 'min_count': {'key': 'minCount', 'type': 'int'}, 'enable_auto_scaling': {'key': 'enableAutoScaling', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'str'}, 'orchestrator_version': {'key': 'orchestratorVersion', 'type': 'str'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'availability_zones': {'key': 'availabilityZones', 'type': '[str]'}, } def __init__(self, **kwargs): super(ManagedClusterAgentPoolProfileProperties, self).__init__(**kwargs) self.count = kwargs.get('count', 1) self.vm_size = kwargs.get('vm_size', None) self.os_disk_size_gb = kwargs.get('os_disk_size_gb', None) self.vnet_subnet_id = kwargs.get('vnet_subnet_id', None) self.max_pods = kwargs.get('max_pods', None) self.os_type = kwargs.get('os_type', "Linux") self.max_count = kwargs.get('max_count', None) self.min_count = kwargs.get('min_count', None) self.enable_auto_scaling = kwargs.get('enable_auto_scaling', None) self.type = kwargs.get('type', None) self.orchestrator_version = kwargs.get('orchestrator_version', None) self.provisioning_state = None self.availability_zones = kwargs.get('availability_zones', None) class ManagedClusterAgentPoolProfile(ManagedClusterAgentPoolProfileProperties): """Profile for the container service agent pool. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param count: Required. Number of agents (VMs) to host docker containers. Allowed values must be in the range of 1 to 100 (inclusive). The default value is 1. . Default value: 1 . :type count: int :param vm_size: Required. Size of agent VMs. Possible values include: 'Standard_A1', 'Standard_A10', 'Standard_A11', 'Standard_A1_v2', 'Standard_A2', 'Standard_A2_v2', 'Standard_A2m_v2', 'Standard_A3', 'Standard_A4', 'Standard_A4_v2', 'Standard_A4m_v2', 'Standard_A5', 'Standard_A6', 'Standard_A7', 'Standard_A8', 'Standard_A8_v2', 'Standard_A8m_v2', 'Standard_A9', 'Standard_B2ms', 'Standard_B2s', 'Standard_B4ms', 'Standard_B8ms', 'Standard_D1', 'Standard_D11', 'Standard_D11_v2', 'Standard_D11_v2_Promo', 'Standard_D12', 'Standard_D12_v2', 'Standard_D12_v2_Promo', 'Standard_D13', 'Standard_D13_v2', 'Standard_D13_v2_Promo', 'Standard_D14', 'Standard_D14_v2', 'Standard_D14_v2_Promo', 'Standard_D15_v2', 'Standard_D16_v3', 'Standard_D16s_v3', 'Standard_D1_v2', 'Standard_D2', 'Standard_D2_v2', 'Standard_D2_v2_Promo', 'Standard_D2_v3', 'Standard_D2s_v3', 'Standard_D3', 'Standard_D32_v3', 'Standard_D32s_v3', 'Standard_D3_v2', 'Standard_D3_v2_Promo', 'Standard_D4', 'Standard_D4_v2', 'Standard_D4_v2_Promo', 'Standard_D4_v3', 'Standard_D4s_v3', 'Standard_D5_v2', 'Standard_D5_v2_Promo', 'Standard_D64_v3', 'Standard_D64s_v3', 'Standard_D8_v3', 'Standard_D8s_v3', 'Standard_DS1', 'Standard_DS11', 'Standard_DS11_v2', 'Standard_DS11_v2_Promo', 'Standard_DS12', 'Standard_DS12_v2', 'Standard_DS12_v2_Promo', 'Standard_DS13', 'Standard_DS13-2_v2', 'Standard_DS13-4_v2', 'Standard_DS13_v2', 'Standard_DS13_v2_Promo', 'Standard_DS14', 'Standard_DS14-4_v2', 'Standard_DS14-8_v2', 'Standard_DS14_v2', 'Standard_DS14_v2_Promo', 'Standard_DS15_v2', 'Standard_DS1_v2', 'Standard_DS2', 'Standard_DS2_v2', 'Standard_DS2_v2_Promo', 'Standard_DS3', 'Standard_DS3_v2', 'Standard_DS3_v2_Promo', 'Standard_DS4', 'Standard_DS4_v2', 'Standard_DS4_v2_Promo', 'Standard_DS5_v2', 'Standard_DS5_v2_Promo', 'Standard_E16_v3', 'Standard_E16s_v3', 'Standard_E2_v3', 'Standard_E2s_v3', 'Standard_E32-16s_v3', 'Standard_E32-8s_v3', 'Standard_E32_v3', 'Standard_E32s_v3', 'Standard_E4_v3', 'Standard_E4s_v3', 'Standard_E64-16s_v3', 'Standard_E64-32s_v3', 'Standard_E64_v3', 'Standard_E64s_v3', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_F1', 'Standard_F16', 'Standard_F16s', 'Standard_F16s_v2', 'Standard_F1s', 'Standard_F2', 'Standard_F2s', 'Standard_F2s_v2', 'Standard_F32s_v2', 'Standard_F4', 'Standard_F4s', 'Standard_F4s_v2', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_F8', 'Standard_F8s', 'Standard_F8s_v2', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5', 'Standard_GS1', 'Standard_GS2', 'Standard_GS3', 'Standard_GS4', 'Standard_GS4-4', 'Standard_GS4-8', 'Standard_GS5', 'Standard_GS5-16', 'Standard_GS5-8', 'Standard_H16', 'Standard_H16m', 'Standard_H16mr', 'Standard_H16r', 'Standard_H8', 'Standard_H8m', 'Standard_L16s', 'Standard_L32s', 'Standard_L4s', 'Standard_L8s', 'Standard_M128-32ms', 'Standard_M128-64ms', 'Standard_M128ms', 'Standard_M128s', 'Standard_M64-16ms', 'Standard_M64-32ms', 'Standard_M64ms', 'Standard_M64s', 'Standard_NC12', 'Standard_NC12s_v2', 'Standard_NC12s_v3', 'Standard_NC24', 'Standard_NC24r', 'Standard_NC24rs_v2', 'Standard_NC24rs_v3', 'Standard_NC24s_v2', 'Standard_NC24s_v3', 'Standard_NC6', 'Standard_NC6s_v2', 'Standard_NC6s_v3', 'Standard_ND12s', 'Standard_ND24rs', 'Standard_ND24s', 'Standard_ND6s', 'Standard_NV12', 'Standard_NV24', 'Standard_NV6' :type vm_size: str or ~azure.mgmt.containerservice.v2019_02_01.models.ContainerServiceVMSizeTypes :param os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :type os_disk_size_gb: int :param vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :type vnet_subnet_id: str :param max_pods: Maximum number of pods that can run on a node. :type max_pods: int :param os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Possible values include: 'Linux', 'Windows'. Default value: "Linux" . :type os_type: str or ~azure.mgmt.containerservice.v2019_02_01.models.OSType :param max_count: Maximum number of nodes for auto-scaling :type max_count: int :param min_count: Minimum number of nodes for auto-scaling :type min_count: int :param enable_auto_scaling: Whether to enable auto-scaler :type enable_auto_scaling: bool :param type: AgentPoolType represents types of an agent pool. Possible values include: 'VirtualMachineScaleSets', 'AvailabilitySet' :type type: str or ~azure.mgmt.containerservice.v2019_02_01.models.AgentPoolType :param orchestrator_version: Version of orchestrator specified when creating the managed cluster. :type orchestrator_version: str :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :param availability_zones: (PREVIEW) Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :type availability_zones: list[str] :param name: Required. Unique name of the agent pool profile in the context of the subscription and resource group. :type name: str """ _validation = { 'count': {'required': True, 'maximum': 100, 'minimum': 1}, 'vm_size': {'required': True}, 'provisioning_state': {'readonly': True}, 'name': {'required': True, 'pattern': r'^[a-z][a-z0-9]{0,11}$'}, } _attribute_map = { 'count': {'key': 'count', 'type': 'int'}, 'vm_size': {'key': 'vmSize', 'type': 'str'}, 'os_disk_size_gb': {'key': 'osDiskSizeGB', 'type': 'int'}, 'vnet_subnet_id': {'key': 'vnetSubnetID', 'type': 'str'}, 'max_pods': {'key': 'maxPods', 'type': 'int'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'max_count': {'key': 'maxCount', 'type': 'int'}, 'min_count': {'key': 'minCount', 'type': 'int'}, 'enable_auto_scaling': {'key': 'enableAutoScaling', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'str'}, 'orchestrator_version': {'key': 'orchestratorVersion', 'type': 'str'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'availability_zones': {'key': 'availabilityZones', 'type': '[str]'}, 'name': {'key': 'name', 'type': 'str'}, } def __init__(self, **kwargs): super(ManagedClusterAgentPoolProfile, self).__init__(**kwargs) self.name = kwargs.get('name', None) class ManagedClusterPoolUpgradeProfile(Model): """The list of available upgrade versions. All required parameters must be populated in order to send to Azure. :param kubernetes_version: Required. Kubernetes version (major, minor, patch). :type kubernetes_version: str :param name: Pool name. :type name: str :param os_type: Required. OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Possible values include: 'Linux', 'Windows'. Default value: "Linux" . :type os_type: str or ~azure.mgmt.containerservice.v2019_02_01.models.OSType :param upgrades: List of orchestrator types and versions available for upgrade. :type upgrades: list[str] """ _validation = { 'kubernetes_version': {'required': True}, 'os_type': {'required': True}, } _attribute_map = { 'kubernetes_version': {'key': 'kubernetesVersion', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'upgrades': {'key': 'upgrades', 'type': '[str]'}, } def __init__(self, **kwargs): super(ManagedClusterPoolUpgradeProfile, self).__init__(**kwargs) self.kubernetes_version = kwargs.get('kubernetes_version', None) self.name = kwargs.get('name', None) self.os_type = kwargs.get('os_type', "Linux") self.upgrades = kwargs.get('upgrades', None) class ManagedClusterServicePrincipalProfile(Model): """Information about a service principal identity for the cluster to use for manipulating Azure APIs. All required parameters must be populated in order to send to Azure. :param client_id: Required. The ID for the service principal. :type client_id: str :param secret: The secret password associated with the service principal in plain text. :type secret: str """ _validation = { 'client_id': {'required': True}, } _attribute_map = { 'client_id': {'key': 'clientId', 'type': 'str'}, 'secret': {'key': 'secret', 'type': 'str'}, } def __init__(self, **kwargs): super(ManagedClusterServicePrincipalProfile, self).__init__(**kwargs) self.client_id = kwargs.get('client_id', None) self.secret = kwargs.get('secret', None) class ManagedClusterUpgradeProfile(Model): """The list of available upgrades for compute pools. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Id of upgrade profile. :vartype id: str :ivar name: Name of upgrade profile. :vartype name: str :ivar type: Type of upgrade profile. :vartype type: str :param control_plane_profile: Required. The list of available upgrade versions for the control plane. :type control_plane_profile: ~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterPoolUpgradeProfile :param agent_pool_profiles: Required. The list of available upgrade versions for agent pools. :type agent_pool_profiles: list[~azure.mgmt.containerservice.v2019_02_01.models.ManagedClusterPoolUpgradeProfile] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'control_plane_profile': {'required': True}, 'agent_pool_profiles': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'control_plane_profile': {'key': 'properties.controlPlaneProfile', 'type': 'ManagedClusterPoolUpgradeProfile'}, 'agent_pool_profiles': {'key': 'properties.agentPoolProfiles', 'type': '[ManagedClusterPoolUpgradeProfile]'}, } def __init__(self, **kwargs): super(ManagedClusterUpgradeProfile, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.control_plane_profile = kwargs.get('control_plane_profile', None) self.agent_pool_profiles = kwargs.get('agent_pool_profiles', None) class OperationValue(Model): """Describes the properties of a Compute Operation value. Variables are only populated by the server, and will be ignored when sending a request. :ivar origin: The origin of the compute operation. :vartype origin: str :ivar name: The name of the compute operation. :vartype name: str :ivar operation: The display name of the compute operation. :vartype operation: str :ivar resource: The display name of the resource the operation applies to. :vartype resource: str :ivar description: The description of the operation. :vartype description: str :ivar provider: The resource provider for the operation. :vartype provider: str """ _validation = { 'origin': {'readonly': True}, 'name': {'readonly': True}, 'operation': {'readonly': True}, 'resource': {'readonly': True}, 'description': {'readonly': True}, 'provider': {'readonly': True}, } _attribute_map = { 'origin': {'key': 'origin', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'operation': {'key': 'display.operation', 'type': 'str'}, 'resource': {'key': 'display.resource', 'type': 'str'}, 'description': {'key': 'display.description', 'type': 'str'}, 'provider': {'key': 'display.provider', 'type': 'str'}, } def __init__(self, **kwargs): super(OperationValue, self).__init__(**kwargs) self.origin = None self.name = None self.operation = None self.resource = None self.description = None self.provider = None class OrchestratorProfile(Model): """Contains information about orchestrator. All required parameters must be populated in order to send to Azure. :param orchestrator_type: Required. Orchestrator type. :type orchestrator_type: str :param orchestrator_version: Required. Orchestrator version (major, minor, patch). :type orchestrator_version: str """ _validation = { 'orchestrator_type': {'required': True}, 'orchestrator_version': {'required': True}, } _attribute_map = { 'orchestrator_type': {'key': 'orchestratorType', 'type': 'str'}, 'orchestrator_version': {'key': 'orchestratorVersion', 'type': 'str'}, } def __init__(self, **kwargs): super(OrchestratorProfile, self).__init__(**kwargs) self.orchestrator_type = kwargs.get('orchestrator_type', None) self.orchestrator_version = kwargs.get('orchestrator_version', None) class TagsObject(Model): """Tags object for patch operations. :param tags: Resource tags. :type tags: dict[str, str] """ _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, **kwargs): super(TagsObject, self).__init__(**kwargs) self.tags = kwargs.get('tags', None)
43.776818
139
0.670526
[ "Unlicense", "MIT" ]
amcclead7336/Enterprise_Data_Science_Final
venv/lib/python3.8/site-packages/azure/mgmt/containerservice/v2019_02_01/models/_models.py
60,806
Python
import pandas as pd from nibabel.tmpdirs import InTemporaryDirectory from nose.tools import (assert_raises, assert_true, ) from nistats.utils import _check_events_file_uses_tab_separators def make_data_for_test_runs(): data_for_temp_datafile = [ ['csf', 'constant', 'linearTrend', 'wm'], [13343.032102491035, 1.0, 0.0, 9486.199545677482], [13329.224068063204, 1.0, 1.0, 9497.003324892803], [13291.755627241291, 1.0, 2.0, 9484.012965365506], ] delimiters = { 'tab': '\t', 'comma': ',', 'space': ' ', 'semicolon': ';', 'hyphen': '-', } return data_for_temp_datafile, delimiters def _create_test_file(temp_csv, test_data, delimiter): test_data = pd.DataFrame(test_data) test_data.to_csv(temp_csv, sep=delimiter) def _run_test_for_invalid_separator(filepath, delimiter_name): if delimiter_name not in ('tab', 'comma'): with assert_raises(ValueError): _check_events_file_uses_tab_separators(events_files=filepath) else: result = _check_events_file_uses_tab_separators(events_files=filepath) assert_true(result is None) def test_for_invalid_separator(): data_for_temp_datafile, delimiters = make_data_for_test_runs() for delimiter_name, delimiter_char in delimiters.items(): with InTemporaryDirectory(): temp_tsv_file = 'tempfile.{} separated values'.format( delimiter_name) _create_test_file(temp_csv=temp_tsv_file , test_data=data_for_temp_datafile, delimiter=delimiter_char) _run_test_for_invalid_separator(filepath=temp_tsv_file , delimiter_name=delimiter_name) def test_with_2D_dataframe(): data_for_pandas_dataframe, _ = make_data_for_test_runs() events_pandas_dataframe = pd.DataFrame(data_for_pandas_dataframe) result = _check_events_file_uses_tab_separators( events_files=events_pandas_dataframe) assert_true(result is None) def test_with_1D_dataframe(): data_for_pandas_dataframe, _ = make_data_for_test_runs() for dataframe_ in data_for_pandas_dataframe: events_pandas_dataframe = pd.DataFrame(dataframe_) result = _check_events_file_uses_tab_separators( events_files=events_pandas_dataframe) assert_true(result is None) def test_for_invalid_filepath(): filepath = 'junk_file_path.csv' result = _check_events_file_uses_tab_separators(events_files=filepath) assert_true(result is None) def test_for_pandas_dataframe(): events_pandas_dataframe = pd.DataFrame([['a', 'b', 'c'], [0, 1, 2]]) result = _check_events_file_uses_tab_separators( events_files=events_pandas_dataframe) assert_true(result is None) def test_binary_opening_an_image(): img_data = bytearray( b'GIF87a\x01\x00\x01\x00\xe7*\x00\x00\x00\x00\x01\x01\x01\x02\x02' b'\x07\x08\x08\x08\x0b\x0b\x0b\x0c\x0c\x0c\r;') with InTemporaryDirectory(): temp_img_file = 'temp_img.gif' with open(temp_img_file, 'wb') as temp_img_obj: temp_img_obj.write(img_data) with assert_raises(ValueError): _check_events_file_uses_tab_separators( events_files=temp_img_file) def test_binary_bytearray_of_ints_data(): temp_data_bytearray_from_ints = bytearray([0, 1, 0, 11, 10]) with InTemporaryDirectory(): temp_bin_file = 'temp_bin.bin' with open(temp_bin_file, 'wb') as temp_bin_obj: temp_bin_obj.write(temp_data_bytearray_from_ints) with assert_raises(ValueError): _check_events_file_uses_tab_separators( events_files=temp_bin_file) if __name__ == '__main__': def _run_tests_print_test_messages(test_func): from pprint import pprint pprint(['Running', test_func.__name__]) test_func() pprint('... complete') def run_test_suite(): tests = [ test_for_invalid_filepath, test_with_2D_dataframe, test_with_1D_dataframe, test_for_invalid_filepath, test_for_pandas_dataframe, test_binary_opening_an_image, test_binary_bytearray_of_ints_data, ] for test_ in tests: _run_tests_print_test_messages(test_func=test_) run_test_suite()
33.977612
78
0.664617
[ "BSD-3-Clause" ]
bthirion/nistats
nistats/tests/test_check_events_file_uses_tab_separators.py
4,553
Python
from django import forms from django.http import QueryDict from django.forms.formsets import formset_factory from abc import ABCMeta, abstractmethod from collections import OrderedDict from datetime import date import itertools import re from fields import SubmitButtonField, SubmitButtonWidget class Filter(object): __metaclass__ = ABCMeta _order = itertools.count() form_field_class = None form_field_widget = None filter_state_names = ['%s', ] filter_field = '' def __init__(self, default=None, required=False, label=None, form_field_class=None, form_field_widget=None, filter_set=False, filter_field=None): self.default = default self.required = required self.label = label self.form_field_class = form_field_class or self.form_field_class self.form_field_widget = form_field_widget or self.form_field_widget self.order = Filter._order.next() self.filter_set = filter_set self.filter_field = filter_field or self.filter_field def get_form_field(self): """ Returns an instance of the form field class, used for constructing the filter form for a report. """ return self.form_field_class(required=(self.required and not self.filter_set), widget=self.form_field_widget, label=self.label) def get_form_class(self, name, index=0, postfix="Form"): form_class_name = "%s%s" % (type(self).__name__, postfix) form_class_dict = {name: self.get_form_field()} return type(form_class_name, (forms.Form,), form_class_dict) def clean_data(self, name, raw_data): form = self.get_form_class(name)(data=raw_data) return form.cleaned_data[name] if form.is_valid() else None def get_data(self, name, data): """ To get the data for this filter given the filter sets, we instantiate the form with the data, validate it, and return the cleaned data. """ cleaned_data = self.clean_data(name, data) return cleaned_data if cleaned_data else self.default def get_data_set(self, name, data): """ This horribly ugly little function is in charge of returning a list of data entries, given filter states, for a filter set. It does the same thing as get_data, but for every item in a filter set, returning the results in a list. """ # If we're not really a set, just return a 1-element list with the data if not self.filter_set: return [self.get_data(name, data)] # Get the deletion field name and index delete = data.get('delete', None) delete_index = None if delete: n, i = delete.split('.') if n == name: delete_index = int(i) + 1 # Zip together all the lists of filter state values. This gives us a # list of tuples of filter state fields. Ugly but necessary in case we # have a filter which generates a MultiValueField (aka, # NumericComparisonFilter). Exclude elements which have been deleted. filter_state_names = self.filter_state_names[:] filter_state_list = [data.getlist(state_name % name, []) for state_name in filter_state_names] filter_states = zip(*filter_state_list) # Loop over every filter state tuple, converting it to a mini filter- # -state dict. Clean it, and store the cleaned data in a list data_set = [] for i in range(len(filter_states)): # If this index is getting deleted, don't add it if i == delete_index: continue # Get the dict of states for this filter set element state = filter_states[i] filter_dict = {} for i in range(0, len(filter_state_names)): filter_dict.update({filter_state_names[i] % name: state[i]}) # Clean and validate the set instance data. If it validates, store # it in the state list. cleaned_data = self.clean_data(name, filter_dict) if cleaned_data: data_elem = cleaned_data data_set.append(data_elem) # Return the list of states return data_set def get_filter_state_from_data(self, name, data): """ Another nasty little bit. This one (if not overridden) takes some data and encodes it, using the filter state names, to be a valid filter_state which would return the original data if passed to get_data TODO: Make sure this actually works for stuff other than NumericComparisonFilter TODO: Add good comments :P """ if len(self.filter_state_names) > 1: if not (hasattr(data, '__iter__') and len(self.filter_state_names) == len(data)): raise Exception() state = {} for i in range(0, len(data)): state.update({self.filter_state_names[i] % name: data[i]}) return state else: return {self.filter_state_names[0] % name: data} def apply_filter(self, queryset, data): filterspec = {self.filter_field: data} return queryset.filter(**filterspec) def apply_filter_set(self, queryset, data_set): # Apply the filter to the queryset based on each entry in the data set for data in data_set: queryset = self.apply_filter(queryset, data) return queryset class Report(object): __metaclass__ = ABCMeta headers = None footers = None title = None def __init__(self, filter_states={}): """ filter_state will be a querydict with keys corresponding to the names of the filter members on this report object. """ if isinstance(filter_states, QueryDict): self.filter_states = filter_states else: self.filter_states = QueryDict('', mutable=True) self.filter_states.update(filter_states) self.title = self.title or self.get_title_from_class_name() def __getattribute__(self, name): """ When getting a filter attribute, looks for the corresponding filter state and returns that instead of the filter object. If none is found, looks for the default value on the filter object. If that's not found either, then returns none. """ # Perform the normal __getattribute__ call attr = object.__getattribute__(self, name) # If it's a filter attribute... if issubclass(type(attr), Filter): # If we have a filter state for this filter, convert it to the type # of data for this filter. if not attr.filter_set: return attr.get_data(name, self.filter_states) else: return attr.get_data_set(name, self.filter_states) # This isn't a filter, just return the attribute return attr def get_title_from_class_name(self): """ Split the class name into words, delimited by capitals. """ words = re.split(r'([A-Z])', self.__class__.__name__)[1:] words = [words[i] + words[i+1] for i in range(0, len(words) - 1, 2)] return ' '.join(words) def get_filter(self, name): """ Perform the normal __getattribute__ call, and return it if it's a filter """ attr = object.__getattribute__(self, name) return attr if issubclass(type(attr), Filter) else None def get_filters(self): """ Return a list of all the names and attributes on this report instance which have a base class of Filter. """ filters = [] for name in dir(self): attr = object.__getattribute__(self, name) if issubclass(type(attr), Filter): filters.append((name, attr)) return sorted(filters, key=lambda attr: attr[1].order) def get_filter_forms(self): for name, attr in self.get_filters(): # If it is a filter set, loop through the existing list of data # in the filter states, if there are any. For each of these, make a # sub-form which includes a "delete" checkbox if attr.filter_set: # Get the new-set element form form = attr.get_form_class(name)() form.name = name yield form # Yield all the existing form elements data_set = attr.get_data_set(name, self.filter_states) for i in range(len(data_set)): data = data_set[i] state = attr.get_filter_state_from_data(name, data) # Generate and yield a form containing the filter's field, # as well as a deleting submit field to mark deletions form = attr.get_form_class( name=name, postfix="FormSetElem" )(data=state) form.delete = { 'filter': name, 'index': i} form.name = name yield form # If it ain't a filter set, just get it's form class and render it # with the filter state data else: form = attr.get_form_class(name)(data=self.filter_states) form.name = name yield form def get_title(self): return self.title def get_headers(self): return self.headers def get_footers(self): return self.footers def apply_filter(self, queryset, name): f = self.get_filter(name) # If it's not a filterset, just get the regular data and apply it if not f.filter_set: data = f.get_data(name, self.filter_states) if data: return f.apply_filter(queryset, data) # Otherwise, get the full data set and apply it else: data_set = f.get_data_set(name, self.filter_states) if len(data_set) > 0: return f.apply_filter_set(queryset, data_set) # If we weren't able to apply the filter, return the raw queryset return queryset def apply_filters(self, queryset, names=None, excludes=[]): for name, f in self.get_filters(): # Only apply this filter if it's selected if name in excludes or (names and name not in names): continue # Apply this filter queryset = self.apply_filter(queryset, name) # Return the filtered queryset return queryset def get_queryset(self): return [] def get_row(self, item): """ This can return a list for simple data that doesn't need special template rendering, or a dict for more complex data where individual fields will need to be rendered specially. """ return [] def get_rows(self): rows = [] for item in self.get_queryset(): row = self.get_row(item) if row: rows.append(row) return rows def get_count(self): return self.get_queryset().count() def get_table(self): return [[cell for cell in row] for row in self.get_rows()] @staticmethod def encode_filter_states(data): """ Converts a normal POST querydict to the filterstate data, to be stored in the url """ #data = QueryDict(data.urlencode(), mutable=True) return data @staticmethod def decode_filter_states(data): """ Opposite of encode_filter_states """ return data class Row(object): def __init__(self, list, attrs=None): self.list = list if attrs: for name, value in attrs.iteritems(): setattr(self, name, value) def __iter__(self): return self.list.__iter__()
35.008547
102
0.595296
[ "MIT" ]
flagshipenterprise/django-prickly-reports
reporting/base.py
12,288
Python
"""A Mailman newsletter subscription interface. To use this plugin, enable the newsletter module and set the newsletter module and name settings in the admin settings page. """ from django.utils.translation import ugettext as _ from Mailman import MailList, Errors from models import Subscription from satchmo.configuration import config_value import logging import sys log = logging.getLogger('newsletter.mailman') class UserDesc: pass def is_subscribed(contact): return Subscription.email_is_subscribed(contact.email) def update_contact(contact, subscribe, attributes={}): email = contact.email current = Subscription.email_is_subscribed(email) attributesChanged = False sub = None if attributes: sub, created = Subscription.objects.get_or_create(email=email) if created: attributesChanged = True else: oldAttr = [(a.name,a.value) for a in sub.attributes.all()] oldAttr.sort() sub.update_attributes(attributes) newAttr = [(a.name,a.value) for a in sub.attributes.all()] newAttr.sort() if not created: attributesChanged = oldAttr != newAttr if current == subscribe: if subscribe: if attributesChanged: result = _("Updated subscription for %(email)s.") else: result = _("Already subscribed %(email)s.") else: result = _("Already removed %(email)s.") else: if not sub: sub, created = Subscription.objects.get_or_create(email=email) sub.subscribed = subscribe sub.save() if subscribe: mailman_add(contact) result = _("Subscribed: %(email)s") else: mailman_remove(contact) result = _("Unsubscribed: %(email)s") return result % { 'email' : email } def mailman_add(contact, listname=None, send_welcome_msg=None, admin_notify=None): """Add a Satchmo contact to a mailman mailing list. Parameters: - `Contact`: A Satchmo Contact - `listname`: the Mailman listname, defaulting to whatever you have set in settings.NEWSLETTER_NAME - `send_welcome_msg`: True or False, defaulting to the list default - `admin_notify`: True of False, defaulting to the list default """ mm, listname = _get_maillist(listname) print >> sys.stderr, 'mailman adding %s to %s' % (contact.email, listname) if send_welcome_msg is None: send_welcome_msg = mm.send_welcome_msg userdesc = UserDesc() userdesc.fullname = contact.full_name userdesc.address = contact.email userdesc.digest = False if mm.isMember(contact.email): print >> sys.stderr, _('Already Subscribed: %s' % contact.email) else: try: try: mm.Lock() mm.ApprovedAddMember(userdesc, send_welcome_msg, admin_notify) mm.Save() print >> sys.stderr, _('Subscribed: %(email)s') % { 'email' : contact.email } except Errors.MMAlreadyAMember: print >> sys.stderr, _('Already a member: %(email)s') % { 'email' : contact.email } except Errors.MMBadEmailError: if userdesc.address == '': print >> sys.stderr, _('Bad/Invalid email address: blank line') else: print >> sys.stderr, _('Bad/Invalid email address: %(email)s') % { 'email' : contact.email } except Errors.MMHostileAddress: print >> sys.stderr, _('Hostile address (illegal characters): %(email)s') % { 'email' : contact.email } finally: mm.Unlock() def mailman_remove(contact, listname=None, userack=None, admin_notify=None): """Remove a Satchmo contact from a Mailman mailing list Parameters: - `contact`: A Satchmo contact - `listname`: the Mailman listname, defaulting to whatever you have set in settings.NEWSLETTER_NAME - `userack`: True or False, whether to notify the user, defaulting to the list default - `admin_notify`: True or False, defaulting to the list default """ mm, listname = _get_maillist(listname) print >> sys.stderr, 'mailman removing %s from %s' % (contact.email, listname) if mm.isMember(contact.email): try: mm.Lock() mm.ApprovedDeleteMember(contact.email, 'satchmo.newsletter', admin_notify, userack) mm.Save() finally: mm.Unlock() def _get_maillist(listname): try: if not listname: listname = config_value('NEWSLETTER', 'NEWSLETTER_NAME') if listname == "": log.warn("NEWSLETTER_NAME not set in store settings") raise NameError('No NEWSLETTER_NAME in settings') return MailList.MailList(listname, lock=0), listname except Errors.MMUnknownListError: print >> sys.stderr, "Can't find the MailMan newsletter: %s" % listname raise NameError('No such newsletter, "%s"' % listname)
34.621622
119
0.62178
[ "BSD-3-Clause" ]
sankroh/satchmo
satchmo/newsletter/mailman.py
5,124
Python
# Generated by Django 3.1.7 on 2021-02-25 17:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('backoffice', '0005_auto_20210225_1712'), ] operations = [ migrations.AddField( model_name='buyingentry', name='partition', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='backoffice.partitionformulla'), ), migrations.AlterField( model_name='buyingentry', name='buying', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, related_name='entries', to='backoffice.buying'), ), migrations.AlterField( model_name='buyingentry', name='quantity', field=models.IntegerField(verbose_name='Quantité achetée'), ), ]
30.866667
132
0.631749
[ "MIT" ]
mono57/verger.stock-mgmt
backoffice/migrations/0006_auto_20210225_1755.py
928
Python
# # Copyright (c) 2017 Digital Shadows Ltd. # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) # from ds_model import DSModel class InfrastructureSSL(DSModel): def __init__(self, id, payload): self._id = id self._payload = payload @property def id(self): return self._id @property def payload(self): return self._payload def __str__(self): return 'InfrastructureSSL[id={}, payload={}]'.format(self.id, self.payload) @classmethod def from_json(cls, json): cast = DSModel.cast return cls(cast(json.get('id'), long), json)
20.806452
83
0.634109
[ "Apache-2.0" ]
BenSterenson/phantom-apps
Apps/phdigitalshadows/dsapi/model/infrastructure_ssl.py
645
Python
from django.urls import path from django.views.i18n import JavaScriptCatalog from .views import HelloWorldView app_name = 'pokus1' # make possible use {% url 'pokus1:..' %} # however this is maybe deprecated; you can achieve same in include(), see project level urls.py urlpatterns = [ path('jsi18n/pokus1/', JavaScriptCatalog.as_view(), name='javascript-catalog'), # /pokus1/: unique app url, probably important path('', HelloWorldView.as_view(), name='hello') ]
34.142857
131
0.730126
[ "MIT" ]
zvolsky/example_translation
pokus1/urls.py
478
Python
#!/usr/bin/env python import os import sys import django from django.conf import settings from django.test.utils import get_runner def runtests(*test_args): """Setup and run django-lockdowns test suite.""" os.environ['DJANGO_SETTINGS_MODULE'] = 'lockdown.tests.test_settings' django.setup() if not test_args: test_args = ['lockdown.tests'] test_runner = get_runner(settings)() failures = test_runner.run_tests(test_args) sys.exit(bool(failures)) if __name__ == '__main__': runtests(*sys.argv[1:])
20.222222
73
0.705128
[ "BSD-3-Clause" ]
carta/django-lockdown
runtests.py
546
Python
import argparse import collections import functools import itertools import json import multiprocessing as mp import os import pathlib import re import subprocess import warnings os.environ['NO_AT_BRIDGE'] = '1' # Hide X org false warning. import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd np.set_string_function(lambda x: f'<np.array shape={x.shape} dtype={x.dtype}>') Run = collections.namedtuple('Run', 'task method seed xs ys') PALETTES = dict( discrete=( '#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628', '#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99', ), contrast=( '#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa', '#001177', '#117700', '#990022', '#885500', '#553366', '#006666', ), gradient=( '#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d', '#46327e', '#440154', ), baselines=( '#222222', '#666666', '#aaaaaa', '#cccccc', ), ) LEGEND = dict( fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2, handlelength=1.5, handletextpad=0.5, ncol=4, loc='lower center') DEFAULT_BASELINES = [ 'd4pg', 'dqn_sticky', 'rainbow_sticky', 'human$', 'impala'] BINS = collections.defaultdict(int) BINS.update(dmc=1e5, atari=1e6, particle=1e5) def find_keys(args): filenames = [] for indir in args.indir: task = next(indir.iterdir()) # First only. for method in task.iterdir(): seed = next(indir.iterdir()) # First only. filenames += list(seed.glob('**/*.jsonl')) keys = set() for filename in filenames: keys |= set(load_jsonl(filename).columns) print(f'Keys ({len(keys)}):', ', '.join(keys), flush=True) def load_runs(args): total, toload = [], [] for indir in args.indir: filenames = list(indir.glob('**/*.jsonl')) total += filenames for filename in filenames: task, method, seed = filename.relative_to(indir).parts[:-1] if not any(p.search(task) for p in args.tasks): continue if not any(p.search(method) for p in args.methods): continue toload.append((filename, indir)) print(f'Loading {len(toload)} of {len(total)} runs...') jobs = [functools.partial(load_run, f, i, args) for f, i in toload] # Disable async data loading: # runs = [j() for j in jobs] with mp.Pool(10) as pool: promises = [pool.apply_async(j) for j in jobs] runs = [p.get() for p in promises] runs = [r for r in runs if r is not None] return runs def load_run(filename, indir, args): task, method, seed = filename.relative_to(indir).parts[:-1] prefix = f'indir{args.indir.index(indir)+1}_' if task == 'atari_jamesbond': task = 'atari_james_bond' seed = prefix + seed if args.prefix: method = prefix + method df = load_jsonl(filename) if df is None: print('Skipping empty run') return try: df = df[[args.xaxis, args.yaxis]].dropna() if args.maxval: df = df.replace([+np.inf], +args.maxval) df = df.replace([-np.inf], -args.maxval) df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval) except KeyError: return xs = df[args.xaxis].to_numpy() ys = df[args.yaxis].to_numpy() bins = BINS[task.split('_')[0]] if args.bins == -1 else args.bins if bins: borders = np.arange(0, xs.max() + 1e-8, bins) xs, ys = bin_scores(xs, ys, borders) if not len(xs): print('Skipping empty run', task, method, seed) return return Run(task, method, seed, xs, ys) def load_baselines(patterns, prefix=False): runs = [] directory = pathlib.Path(__file__).parent / 'scores' for filename in directory.glob('**/*_baselines.json'): for task, methods in json.loads(filename.read_text()).items(): for method, score in methods.items(): if prefix: method = f'baseline_{method}' if not any(p.search(method) for p in patterns): continue runs.append(Run(task, method, None, None, score)) return runs def stats(runs, baselines): tasks = sorted(set(r.task for r in runs)) methods = sorted(set(r.method for r in runs)) seeds = sorted(set(r.seed for r in runs)) baseline = sorted(set(r.method for r in baselines)) print('Loaded', len(runs), 'runs.') print(f'Tasks ({len(tasks)}):', ', '.join(tasks)) print(f'Methods ({len(methods)}):', ', '.join(methods)) print(f'Seeds ({len(seeds)}):', ', '.join(seeds)) print(f'Baselines ({len(baseline)}):', ', '.join(baseline)) def order_methods(runs, baselines, args): methods = [] for pattern in args.methods: for method in sorted(set(r.method for r in runs)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) % len(args.palette) args.colors[method] = args.palette[index] non_baseline_colors = len(args.colors) for pattern in args.baselines: for method in sorted(set(r.method for r in baselines)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) - non_baseline_colors index = index % len(PALETTES['baselines']) args.colors[method] = PALETTES['baselines'][index] return methods def figure(runs, methods, args): tasks = sorted(set(r.task for r in runs if r.xs is not None)) rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols)) figsize = args.size[0] * args.cols, args.size[1] * rows fig, axes = plt.subplots(rows, args.cols, figsize=figsize) for task, ax in zip(tasks, axes.flatten()): relevant = [r for r in runs if r.task == task] plot(task, ax, relevant, methods, args) for name, ax in zip(args.add, axes.flatten()[len(tasks):]): ax.set_facecolor((0.9, 0.9, 0.9)) if name == 'median': plot_combined( 'combined_median', ax, runs, methods, args, lo='random', hi='human$', agg=lambda x: np.nanmedian(x, -1)) elif name == 'mean': plot_combined( 'combined_mean', ax, runs, methods, args, lo='random', hi='human$', agg=lambda x: np.nanmean(x, -1)) elif name == 'gamer_median': plot_combined( 'combined_gamer_median', ax, runs, methods, args, lo='random', hi='human$', agg=lambda x: np.nanmedian(x, -1)) elif name == 'gamer_mean': plot_combined( 'combined_gamer_mean', ax, runs, methods, args, lo='random', hi='human$', agg=lambda x: np.nanmean(x, -1)) elif name == 'record_mean': plot_combined( 'combined_record_mean', ax, runs, methods, args, lo='random', hi='record', agg=lambda x: np.nanmean(x, -1)) elif name == 'clipped_record_mean': plot_combined( 'combined_clipped_record_mean', ax, runs, methods, args, lo='random', hi='record', clip=True, agg=lambda x: np.nanmean(x, -1)) elif name == 'num_seeds': plot_combined( 'combined_num_seeds', ax, runs, methods, args, agg=lambda x: np.isfinite(x).sum(-1)) elif name == 'human_above': plot_combined( 'combined_above_human$', ax, runs, methods, args, agg=lambda y: (y >= 1.0).astype(float).sum(-1)) elif name == 'human_below': plot_combined( 'combined_below_human$', ax, runs, methods, args, agg=lambda y: (y <= 1.0).astype(float).sum(-1)) else: raise NotImplementedError(name) if args.xlim: for ax in axes[:-1].flatten(): ax.xaxis.get_offset_text().set_visible(False) if args.xlabel: for ax in axes[-1]: ax.set_xlabel(args.xlabel) if args.ylabel: for ax in axes[:, 0]: ax.set_ylabel(args.ylabel) for ax in axes.flatten()[len(tasks) + len(args.add):]: ax.axis('off') legend(fig, args.labels, **LEGEND) return fig def plot(task, ax, runs, methods, args): assert runs try: title = task.split('_', 1)[1].replace('_', ' ').title() except IndexError: title = task.title() ax.set_title(title) xlim = [+np.inf, -np.inf] for index, method in enumerate(methods): relevant = [r for r in runs if r.method == method] if not relevant: continue if any(r.xs is None for r in relevant): baseline(index, method, ax, relevant, args) else: if args.aggregate == 'none': xs, ys = curve_lines(index, task, method, ax, relevant, args) else: xs, ys = curve_area(index, task, method, ax, relevant, args) if len(xs) == len(ys) == 0: print(f'Skipping empty: {task} {method}') continue xlim = [min(xlim[0], xs.min()), max(xlim[1], xs.max())] ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0)) steps = [1, 2, 2.5, 5, 10] ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps)) ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps)) if np.isfinite(xlim).all(): ax.set_xlim(args.xlim or xlim) if args.xlim: ticks = sorted({*ax.get_xticks(), *args.xlim}) ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]] ax.set_xticks(ticks) if args.ylim: ax.set_ylim(args.ylim) if args.ylimticks: ticks = sorted({*ax.get_yticks(), *args.ylim}) ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]] ax.set_yticks(ticks) def plot_combined( name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False): tasks = sorted(set(run.task for run in runs if run.xs is not None)) seeds = list(set(run.seed for run in runs)) runs = [r for r in runs if r.task in tasks] # Discard unused baselines. # Bin all runs onto the same X steps. borders = sorted( [r.xs for r in runs if r.xs is not None], key=lambda x: np.nanmax(x))[-1] for index, run in enumerate(runs): if run.xs is None: continue xs, ys = bin_scores(run.xs, run.ys, borders) runs[index] = run._replace(xs=xs, ys=ys) # Per-task normalization by low and high baseline. if lo or hi: mins = collections.defaultdict(list) maxs = collections.defaultdict(list) [mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])] [maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])] mins = {task: min(ys) for task, ys in mins.items() if task in tasks} maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks} missing_baselines = [] for task in tasks: if task not in mins or task not in maxs: missing_baselines.append(task) if set(missing_baselines) == set(tasks): print(f'No baselines found to normalize any tasks in {name} plot.') else: for task in missing_baselines: print(f'No baselines found to normalize {task} in {name} plot.') for index, run in enumerate(runs): if run.task not in mins or run.task not in maxs: continue ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task]) if clip: ys = np.minimum(ys, 1.0) runs[index] = run._replace(ys=ys) # Aggregate across tasks but not methods or seeds. combined = [] for method, seed in itertools.product(methods, seeds): relevant = [r for r in runs if r.method == method and r.seed == seed] if not relevant: continue if relevant[0].xs is None: xs, ys = None, np.array([r.ys for r in relevant]) else: xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant])) with warnings.catch_warnings(): # Ignore empty slice warnings. warnings.simplefilter('ignore', category=RuntimeWarning) combined.append(Run('combined', method, seed, xs, agg(ys))) plot(name, ax, combined, methods, args) def curve_lines(index, task, method, ax, runs, args): zorder = 10000 - 10 * index - 1 for run in runs: color = args.colors[method] ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder) return runs[0].xs, runs[0].ys def curve_area(index, task, method, ax, runs, args): xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs])) with warnings.catch_warnings(): # NaN buckets remain NaN. warnings.simplefilter('ignore', category=RuntimeWarning) if args.aggregate == 'std1': mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1) lo, mi, hi = mean - std, mean, mean + std elif args.aggregate == 'per0': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)] elif args.aggregate == 'per5': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)] elif args.aggregate == 'per25': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)] else: raise NotImplementedError(args.aggregate) color = args.colors[method] kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0) ax.fill_between(xs, lo, hi, **kw) ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1) return xs, mi def baseline(index, method, ax, runs, args): assert all(run.xs is None for run in runs) ys = np.array([run.ys for run in runs]) mean, std = ys.mean(), ys.std() color = args.colors[method] kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0) ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw) kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1) ax.axhline(mean, label=method, **kw) def legend(fig, mapping=None, **kwargs): entries = {} for ax in fig.axes: for handle, label in zip(*ax.get_legend_handles_labels()): if mapping and label in mapping: label = mapping[label] entries[label] = handle leg = fig.legend(entries.values(), entries.keys(), **kwargs) leg.get_frame().set_edgecolor('white') extent = leg.get_window_extent(fig.canvas.get_renderer()) extent = extent.transformed(fig.transFigure.inverted()) yloc, xloc = kwargs['loc'].split() y0 = dict(lower=extent.y1, center=0, upper=0)[yloc] y1 = dict(lower=1, center=1, upper=extent.y0)[yloc] x0 = dict(left=extent.x1, center=0, right=0)[xloc] x1 = dict(left=1, center=1, right=extent.x0)[xloc] fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5) def save(fig, args): args.outdir.mkdir(parents=True, exist_ok=True) filename = args.outdir / 'curves.png' fig.savefig(filename, dpi=args.dpi) print('Saved to', filename) filename = args.outdir / 'curves.pdf' fig.savefig(filename) try: subprocess.call(['pdfcrop', str(filename), str(filename)]) except FileNotFoundError: print('Install texlive-extra-utils to crop PDF outputs.') def bin_scores(xs, ys, borders, reducer=np.nanmean): order = np.argsort(xs) xs, ys = xs[order], ys[order] binned = [] with warnings.catch_warnings(): # Empty buckets become NaN. warnings.simplefilter('ignore', category=RuntimeWarning) for start, stop in zip(borders[:-1], borders[1:]): left = (xs <= start).sum() right = (xs <= stop).sum() binned.append(reducer(ys[left:right])) return borders[1:], np.array(binned) def stack_scores(multiple_xs, multiple_ys): longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1] multiple_padded_ys = [] for xs, ys in zip(multiple_xs, multiple_ys): assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs)) padding = [np.inf] * (len(longest_xs) - len(xs)) padded_ys = np.concatenate([ys, padding]) multiple_padded_ys.append(padded_ys) stacked_ys = np.stack(multiple_padded_ys, -1) return longest_xs, stacked_ys def load_jsonl(filename): try: with filename.open() as f: lines = list(f.readlines()) records = [] for index, line in enumerate(lines): try: records.append(json.loads(line)) except Exception: if index == len(lines) - 1: continue # Silently skip last line if it is incomplete. raise ValueError( f'Skipping invalid JSON line ({index+1}/{len(lines)+1}) in' f'{filename}: {line}') return pd.DataFrame(records) except ValueError as e: print('Invalid', filename, e) return None def save_runs(runs, filename): filename.parent.mkdir(parents=True, exist_ok=True) records = [] for run in runs: if run.xs is None: continue records.append(dict( task=run.task, method=run.method, seed=run.seed, xs=run.xs.tolist(), ys=run.ys.tolist())) runs = json.dumps(records) filename.write_text(runs) print('Saved', filename) def main(args): find_keys(args) runs = load_runs(args) save_runs(runs, args.outdir / 'runs.jsonl') baselines = load_baselines(args.baselines, args.prefix) stats(runs, baselines) methods = order_methods(runs, baselines, args) if not runs: print('Noting to plot.') return print('Plotting...') fig = figure(runs + baselines, methods, args) save(fig, args) def parse_args(): boolean = lambda x: bool(['False', 'True'].index(x)) parser = argparse.ArgumentParser() parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True) parser.add_argument('--outdir', type=pathlib.Path, required=True) parser.add_argument('--subdir', type=boolean, default=True) parser.add_argument('--xaxis', type=str, required=True) parser.add_argument('--yaxis', type=str, required=True) parser.add_argument('--tasks', nargs='+', default=[r'.*']) parser.add_argument('--methods', nargs='+', default=[r'.*']) parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES) parser.add_argument('--prefix', type=boolean, default=False) parser.add_argument('--bins', type=float, default=-1) parser.add_argument('--aggregate', type=str, default='std1') parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3]) parser.add_argument('--dpi', type=int, default=80) parser.add_argument('--cols', type=int, default=6) parser.add_argument('--xlim', nargs=2, type=float, default=None) parser.add_argument('--ylim', nargs=2, type=float, default=None) parser.add_argument('--ylimticks', type=boolean, default=True) parser.add_argument('--xlabel', type=str, default=None) parser.add_argument('--ylabel', type=str, default=None) parser.add_argument('--xticks', type=int, default=6) parser.add_argument('--yticks', type=int, default=5) parser.add_argument('--labels', nargs='+', default=None) parser.add_argument('--palette', nargs='+', default=['contrast']) parser.add_argument('--colors', nargs='+', default={}) parser.add_argument('--maxval', type=float, default=0) parser.add_argument('--add', nargs='+', type=str, default=[ 'gamer_median', 'gamer_mean', 'record_mean', 'clipped_record_mean', 'num_seeds']) args = parser.parse_args() if args.subdir: args.outdir /= args.indir[0].stem args.indir = [d.expanduser() for d in args.indir] args.outdir = args.outdir.expanduser() if args.labels: assert len(args.labels) % 2 == 0 args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])} if args.colors: assert len(args.colors) % 2 == 0 args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])} args.tasks = [re.compile(p) for p in args.tasks] args.methods = [re.compile(p) for p in args.methods] args.baselines = [re.compile(p) for p in args.baselines] if 'return' not in args.yaxis: args.baselines = [] if args.prefix is None: args.prefix = len(args.indir) > 1 if len(args.palette) == 1 and args.palette[0] in PALETTES: args.palette = 10 * PALETTES[args.palette[0]] if len(args.add) == 1 and args.add[0] == 'none': args.add = [] return args if __name__ == '__main__': main(parse_args())
36.582255
79
0.637411
[ "MIT" ]
HanMeh/dreamerv2
plotting.py
19,791
Python
from __future__ import division import requests import json import sys import os from elasticsearch import Elasticsearch from elasticsearch import exceptions try: # idrac_ip = os.environ['IDRAC_IP'] # idrac_username = os.environ['IDRAC_USERNAME'] # idrac_password = os.environ['IDRAC_PASSWORD'] # elastic_ip = os.environ['ELASTIC_IP'] # elastic_username = os.environ['ELASTIC_USERNAME'] # elastic_password = os.environ['ELASTIC_PASSWORD'] idrac_ip="100.98.26.49" idrac_username="root" idrac_password="calvin" elastic_ip="100.98.26.172" elastic_username="elastic" elastic_password="changeme" es = Elasticsearch([elastic_ip], http_auth=(elastic_username, elastic_password), scheme="http", port=9200, ) except Exception as e: print("- FAIL: You must pass in script name along with iDRAC IP / iDRAC username / iDRAC password") sys.exit(0) def retrieve_logs(): index_name="lc"+idrac_ip res=es.search(index=index_name, body={ "query":{ "range": { "timestamp": { "gte" : "now-5m", "lt" : "now" } } } } ) # print(data) codes = {} code_types={} for i in res['hits']['hits']: #print(i) #print("\n") for key,value in i['_source'].items(): if key=='MessageID': code=value code_type=value[0:3] #print(code_type) if code in codes: codes[code]=codes[code]+1 else: codes.update({code: 1}) if code_type in code_types: code_types[code_type]=code_types[code_type]+1 else: code_types.update({code_type: 1}) total_errors=sum(codes.values()) # print total_errors error_percentage={} print "\nFor Server: ",idrac_ip # print "__________________________ \n\n\n" print("\n\n\n") print "Error Codes Occurrence Percentage " print "____________________________________________ \n" for key,value in codes.items(): error_percentage[key]= (value/total_errors)*100 print key," ",value," ",error_percentage[key],"%" print "\n" print "Error Types Occurrence " print "__________________________ \n" for key,value in code_types.items(): print key," ",value # print(codes) # print(code_types) # print (total_errors) # print error_percentage retrieve_logs()
28.252632
103
0.564083
[ "MIT" ]
collabnix/openusm
logging/logextractor/search_script.py
2,684
Python
tc = int(input()) while tc: tc -= 1 x = int(input()) if 1 <= x and x < 100: print("Easy") elif 100 <= x and x < 200: print("Medium") else: print("Hard")
19.6
30
0.44898
[ "MIT" ]
foooop/competitive
CodeChef/problems/PROBCAT/main.py
196
Python
""" Module Reader Writer This module provide the ReaderWriter class as a concrete implemenation of the AbstractReaderWriter. It handles the implementation details of interfacing with the hardware. """ from controlpyweb.abstract_reader_writer import AbstractReaderWriter import requests import json from typing import Union, Optional, List import time import threading from controlpyweb.errors import ControlPyWebAddressNotFoundError, WebIOConnectionError lock = threading.Lock() class ReaderWriter(AbstractReaderWriter): def __init__(self, url: str, demand_address_exists: bool = True, timeout: float = 10.0, keep_alive: bool = True, **kwargs): """ :param url: The address of the IO Base module from/to which IO is written """ url = 'http://{}'.format(url) if 'http' not in url else url url = '{}/customState.json'.format(url) self._url = url # type: str self._io = dict() self._previous_read_io = dict() self._changes = dict() self._first_read = False self._last_hardware_read_time = None # type: time.time self._req = requests if not keep_alive else requests.Session() self.update_reads_on_write = bool(kwargs.get('update_reads_on_write', False)) self.demand_address_exists = demand_address_exists self.timeout = timeout @property def last_hardware_read_time(self): return self._last_hardware_read_time def _check_for_address(self, addr: str): if not self.demand_address_exists: return if not self._first_read: return if self._io is None: return if addr not in self._io: raise ControlPyWebAddressNotFoundError(addr) def _get(self, timeout: float = None) -> dict: """ Does an http get and returns the results as key/value pairs""" timeout = self.timeout if timeout is None else timeout self._first_read = True r = self._req.get(self._url, timeout=timeout) r = None if r is None else r.json() return r @staticmethod def _value_to_str(value): if isinstance(value, bool): value = '1' if value else '0' return str(value) @property def changes(self): """Returns a dictionary of all changes made since the last read or write""" return self._changes def dumps(self, changes_only: bool = False): """Returns the current IO key/values as json string""" with lock: if changes_only: if len(self._changes) == 0: return '' return json.dumps(self._changes) return json.dumps(self._io) def flush_changes(self): """ Erases the collection of changes stored in memory""" with lock: self._changes = dict() def loads(self, json_str: str): """Replaces the current IO key/values with that from the json string""" with lock: self._first_read = True self._io = json.loads(json_str) def read(self, addr: str) -> Optional[Union[bool, int, float, str]]: """ Returns the value of a single IO from the memory store """ with lock: if not self._first_read: return None self._check_for_address(addr) val = self._io.get(addr) return val def read_immediate(self, addr: str, timeout: float = None) -> object: """ Makes a hardware call to the base module to retrieve the value of the IO. This is inefficient and should be used sparingly. """ try: self._check_for_address(addr) timeout = self.timeout if timeout is None else timeout vals = self._get(timeout=timeout) if vals is None: return None return vals.get(addr) except (requests.exceptions.ConnectionError, requests.exceptions.ConnectTimeout) as ex: raise WebIOConnectionError(ex) def to_hardware(self, timeout: float = None): """ Same as send_changes_to_hardware""" return self.send_changes_to_hardware(timeout) def send_changes_to_hardware(self, timeout: float = None): """ Takes the collection of changes made using the write command and sends them all to the hardware collectively. """ try: with lock: if self._changes is None or len(self._changes) == 0: return timeout = self.timeout if timeout is None else timeout self._req.get(self._url, params=self._changes, timeout=timeout) self.flush_changes() except (requests.exceptions.ConnectionError, requests.exceptions.ConnectTimeout) as ex: raise WebIOConnectionError(ex) def from_hardware(self, timeout: float = None): """ Same as update_from_hardware""" self.update_from_hardware(timeout) def update_from_hardware(self, timeout: float = None): """Makes a hardware call to the base module to retrieve the value of all IOs, storing their results in memory.""" try: timeout = self.timeout if timeout is None else timeout with lock: vals = self._get(timeout) self._last_hardware_read_time = time.time() if vals is not None: self._io = vals self.flush_changes() except (requests.exceptions.ConnectionError, requests.exceptions.ConnectTimeout) as ex: raise WebIOConnectionError(ex) def write(self, addr: str, value: object) -> None: """ Stores the write value in memory to be written as part of a group write when changes are sent to hardware.""" with lock: to_str = self._value_to_str(value) if self.update_reads_on_write: self._io[addr] = value self._changes[addr] = to_str def write_immediate(self, addr: Union[str, List[str]], value: Union[object, List[object]], timeout: float = None): """ Instead of waiting for a group write, writes the given value immediately. Note, this is not very efficient and should be used sparingly. """ if isinstance(addr, list): if isinstance(value, list): items = {addr: self._value_to_str(val) for addr, val in zip(addr, value)} else: value = self._value_to_str(value) items = {addr: value for addr in addr} else: items = {addr: self._value_to_str(value)} try: timeout = self.timeout if timeout is None else timeout with lock: self._req.get(self._url, params=items, timeout=timeout) for addr, value in items.items(): self._io[addr] = value except (requests.exceptions.ConnectionError, requests.exceptions.ConnectTimeout) as ex: raise WebIOConnectionError(ex)
38
114
0.613522
[ "MIT" ]
washad/ControlPyWeb
controlpyweb/reader_writer.py
7,144
Python
''' Bootstrapped from https://github.com/NewKnowledge/imagenet and refined for D3M purposes Original implementation from Craig Corcoran ''' import os import math import numpy as np import tensorflow as tf from tensorflow.keras.applications import inception_v3, mobilenet_v2, xception from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, GlobalMaxPooling2D from tensorflow.keras.utils import to_categorical, Sequence import logging logger = logging.getLogger(__name__) #logger.setLevel(logging.INFO) class ImagenetModel: ''' A class for featurizing images using pre-trained neural nets on ImageNet and finetuning those nets for downstream classification ''' def __init__(self, model='inception_v3', weights = 'imagenet', include_top = False, pooling=None, n_channels=None, clf_head_dense_dim = 1024, ): ''' Creates ImageNet base model for featurization or classification and corresponding image preprocessing function :param model: options are xception, inception_v3, and mobilenet_v2 :param weights: 'imagenet' or filepath :param include_top: whether to include original ImageNet classification head with 1000 classes :param pooling: 'avg', 'max', or None :param n_channels: number of channels to keep if performing featurization :param clf_head_dense_dim: dimension of dense layer before softmax classification (only applies if `include_top` is false) ''' self.include_top = include_top # determines if used for classification or featurization self.n_channels = n_channels self.pooling = pooling self.clf_head_dense_dim = clf_head_dense_dim if model == 'xception': self.model = xception.Xception(weights=weights, include_top=include_top, pooling=pooling) self.preprocess = xception.preprocess_input self.target_size = (299, 299) if include_top: self.decode = xception.decode_predictions else: self.output_dim = (n_channels if n_channels else 2048) * (1 if pooling else 10**2) elif model == 'inception_v3': self.model = inception_v3.InceptionV3(weights=weights, include_top=include_top, pooling=pooling) self.preprocess = inception_v3.preprocess_input self.target_size = (299, 299) if include_top: self.decode = inception_v3.decode_predictions else: self.output_dim = (n_channels if n_channels else 2048) * (1 if pooling else 8**2) elif model == 'mobilenet_v2': self.model = mobilenetv2.MobileNetV2(weights=weights, include_top=include_top, pooling=pooling) self.preprocess = mobilenetv2.preprocess_input self.target_size = (244, 244) if include_top: self.decode = mobilenetv2.decode_predictions else: self.output_dim = (n_channels if n_channels else 1280) * (1 if pooling else 7**2) else: raise Exception('model option not implemented') def _load_finetune_model( self, nclasses = 2, weights_path = None, ): ''' Constructs finetuning model architecture and optionally loads weights :param nclasses: number of classes on which to softmax over :param weights_path: optional filepath from which to try to load weights ''' out = self.model.output if self.pooling is None: out = GlobalAveragePooling2D()(out)# if self.pooling == 'avg' else GlobalMaxPooling2D()(out) dense = Dense(self.clf_head_dense_dim, activation='relu')(out) preds = Dense(nclasses, activation='softmax')(dense) finetune_model = Model(inputs = self.model.input, outputs = preds) # try to load weights if weights_path is not None: if os.path.isfile(weights_path): finetune_model.load_weights(weights_path) return finetune_model def get_features(self, images_array): ''' takes a batch of images as a 4-d array and returns the (flattened) imagenet features for those images as a 2-d array ''' if self.include_top: raise Exception('getting features from a classification model with include_top=True is currently not supported') if images_array.ndim != 4: raise Exception('invalid input shape for images_array, expects a 4d array') # preprocess and compute image features logger.debug(f'preprocessing {images_array.shape[0]} images') images_array = self.preprocess(images_array) logger.debug(f'computing image features') image_features = self.model.predict(images_array) # if n_channels is specified, only keep that number of channels if self.n_channels: logger.debug(f'truncating to first {self.n_channels} channels') image_features = image_features.T[: self.n_channels].T # reshape output array by flattening each image into a vector of features shape = image_features.shape return image_features.reshape(shape[0], np.prod(shape[1:])) def predict(self, images_array): ''' alias for get_features to more closely match scikit-learn interface ''' return self.get_features(images_array) def finetune(self, train_dataset, val_dataset = None, nclasses = 2, top_layer_epochs = 1, unfreeze_proportions = [0.5], all_layer_epochs = 5, class_weight = None, optimizer_top = 'rmsprop', optimizer_full = 'sgd', callbacks = None, num_workers = 8, load_weights_path = None, save_weights_path = None, ): ''' Finetunes the Imagenet model iteratively on a smaller set of images with (potentially) a smaller set of classes. First finetunes last layer then freezes bottom N layers and retrains the rest :param train_dataset: (X, y) pair of tf.constant tensors for training :param val_dataset: (X, y) pair of tf.constant tensors for validation, optional :param nclasses: number of classes :param top_layer_epochs: how many epochs for which to finetune classification head (happens first) :param unfreeze_proportions: list of proportions representing how much of the base ImageNet model one wants to unfreeze (later layers unfrozen) for another round of finetuning :param all_layer_epochs: how many epochs for which to finetune entire model (happens second) :param class_weight: class weights (used for both training steps) :param optimizer_top: optimizer to use for training of classification head :param optimizer_full: optimizer to use for training full classification model * suggest to use lower learning rate / more conservative optimizer for this step to prevent catastrophic forgetting :param callbacks: optional list of callbacks to use for each round of finetuning :param num_workers: number of workers to use for multiprocess data loading :param load_weights_path: optional filepath from which to try to load weights :param save_weights_path: optional filepath to which to store weights ''' finetune_model = self._load_finetune_model( nclasses = nclasses, weights_path=load_weights_path ) fitting_histories = [] # freeze all convolutional InceptionV3 layers, retrain top layer for layer in self.model.layers: layer.trainable = False finetune_model.compile( optimizer=optimizer_top, loss='categorical_crossentropy') fitting_histories.append( finetune_model.fit( train_dataset, validation_data = val_dataset, epochs = top_layer_epochs, class_weight = class_weight, shuffle = True, use_multiprocessing = True, workers = num_workers, callbacks = callbacks ) ) # iteratively unfreeze specified proportion of later ImageNet base layers and finetune finetune_model.compile( # SGD(lr=0.0001, momentum=0.9) optimizer=optimizer_full, loss='categorical_crossentropy') for p in unfreeze_proportions: freeze_count = int(len(self.model.layers) * p) for layer in finetune_model.layers[:freeze_count]: layer.trainable = False for layer in finetune_model.layers[freeze_count:]: layer.trainable = True fitting_histories.append( finetune_model.fit( train_dataset, validation_data = val_dataset, epochs = all_layer_epochs, class_weight = class_weight, shuffle = True, use_multiprocessing = True, workers = num_workers, callbacks = callbacks ) ) # save weights if save_weights_path is not None: finetune_model.save_weights(save_weights_path) return fitting_histories def finetune_classify(self, test_dataset, nclasses = 2, num_workers = 8, load_weights_path = None, ): ''' Uses the finetuned model to predict on a test dataset. :param test_dataset: X, tf.constant tensor for inference :param nclasses: number of classes :param num_workers: number of workers to use for multiprocess data loading :return: array of softmaxed prediction probabilities :param load_weights_path: optional filepath from which to try to load weights ''' finetune_model = self._load_finetune_model( nclasses = nclasses, weights_path = load_weights_path ) return finetune_model.predict_generator(test_dataset, use_multiprocessing = True, workers = num_workers ) class ImageNetGen(Sequence): """ Tf.Keras Sequence for ImageNet input data """ def __init__(self, X, y = None, batch_size = 32): self.X = X self.y = y self.batch_size = batch_size def __len__(self): return math.ceil(self.X.shape[0] / self.batch_size) def __getitem__(self, idx): batch_x = self.X[idx * self.batch_size:(idx + 1) * self.batch_size] if self.y is None: return tf.constant(batch_x) else: batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size] return tf.constant(batch_x), tf.constant(batch_y)
43.208333
132
0.62111
[ "MIT" ]
Yonder-OSS/D3M-Primitives
primitives/image_classification/utils/imagenet.py
11,407
Python
import sys, os sys.path.insert(1, os.path.join(sys.path[0], '../../../')) import script.rio as io import script.initial_condition.noh1D as noh1D # Domain properties lx = 1.0 ly = 1.0 Nx = 512 Ny = 1 # Scheme execution options T = 0.6 CFL = 0.5 gamma = 5./3. BClayer = 1 quantityList = ['rho', 'rhou_x', 'rhou_y', 'rhoE'] def buildme(quantityDict, coords_to_uid, coords_to_bc): noh1D.build(quantityDict, coords_to_uid, coords_to_bc, Nx, Ny, lx, ly, BClayer)
18.8
83
0.680851
[ "MIT" ]
will-iam/Variant
casepy/eulerRuO1/nNoh512x1/chars.py
470
Python
nome = input('Qual é o seu nome? ') print('Olá', nome + '! Prazer em te conhecer!')
28
47
0.619048
[ "Unlicense" ]
ZaikoXander/Python
Curso/Mundo 1/02.py
86
Python
element_list = ["X", "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr", "15N", "14N", "Hex", "HexNAc", "dHex", "NeuAc", "Pent", "18O", "Hep", "NeuGc", "2H", "13C"]
101.625
120
0.306273
[ "Apache-2.0" ]
pFindStudio/pDeep3
pDeep/config/element.py
813
Python
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import argparse import json from .object_detection import build_model, download_dataset, optimize_model, benchmark_model def test(test_config_path): """Runs an object detection test configuration This runs an object detection test configuration. This involves 1. Download and build a model architecture (or use cached). 2. Optimize the model architecrue 3. Benchmark the optimized model against a dataset 4. (optional) Run assertions to check the benchmark output The input to this function is a JSON file which specifies the test configuration. example_test_config.json: { "model_config": { ... }, "optimization_config": { ... }, "benchmark_config": { ... }, "assertions": [ ... ] } model_config: A dictionary of arguments passed to build_model, which specify the pre-optimized model architure. The model will be passed to optimize_model. optimization_config: A dictionary of arguments passed to optimize_model. Please see help(optimize_model) for more details. benchmark_config: A dictionary of arguments passed to benchmark_model. Please see help(benchmark_model) for more details. assertions: A list of strings containing python code that will be evaluated. If the code returns false, an error will be thrown. These assertions can reference any variables local to this 'test' function. Some useful values are statistics['map'] statistics['avg_latency'] statistics['avg_throughput'] Args ---- test_config_path: A string corresponding to the test configuration JSON file. """ with open(args.test_config_path, 'r') as f: test_config = json.load(f) print(json.dumps(test_config, sort_keys=True, indent=4)) frozen_graph = build_model( **test_config['model_config']) # optimize model using source model frozen_graph = optimize_model( frozen_graph, **test_config['optimization_config']) # benchmark optimized model statistics = benchmark_model( frozen_graph=frozen_graph, **test_config['benchmark_config']) # print some statistics to command line print_statistics = statistics if 'runtimes_ms' in print_statistics: print_statistics.pop('runtimes_ms') print(json.dumps(print_statistics, sort_keys=True, indent=4)) # run assertions if 'assertions' in test_config: for a in test_config['assertions']: if not eval(a): raise AssertionError('ASSERTION FAILED: %s' % a) else: print('ASSERTION PASSED: %s' % a) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'test_config_path', help='Path of JSON file containing test configuration. Please' 'see help(tftrt.examples.object_detection.test) for more information') args=parser.parse_args() test(args.test_config_path)
36.188679
92
0.67049
[ "Apache-2.0" ]
HubBucket-Team/tensorrt
tftrt/examples/object_detection/test.py
3,836
Python
# Copyright 2009-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test some utilities for working with JSON and PyMongo.""" import datetime import json import re import sys import uuid sys.path[0:0] = [""] from bson import json_util, EPOCH_AWARE, SON from bson.json_util import (DatetimeRepresentation, STRICT_JSON_OPTIONS) from bson.binary import (ALL_UUID_REPRESENTATIONS, Binary, MD5_SUBTYPE, USER_DEFINED_SUBTYPE, UuidRepresentation, STANDARD) from bson.code import Code from bson.dbref import DBRef from bson.int64 import Int64 from bson.max_key import MaxKey from bson.min_key import MinKey from bson.objectid import ObjectId from bson.regex import Regex from bson.timestamp import Timestamp from bson.tz_util import FixedOffset, utc from test import unittest, IntegrationTest PY3 = sys.version_info[0] == 3 class TestJsonUtil(unittest.TestCase): def round_tripped(self, doc, **kwargs): return json_util.loads(json_util.dumps(doc, **kwargs), **kwargs) def round_trip(self, doc, **kwargs): self.assertEqual(doc, self.round_tripped(doc, **kwargs)) def test_basic(self): self.round_trip({"hello": "world"}) def test_json_options_with_options(self): opts = json_util.JSONOptions( datetime_representation=DatetimeRepresentation.NUMBERLONG) self.assertEqual( opts.datetime_representation, DatetimeRepresentation.NUMBERLONG) opts2 = opts.with_options( datetime_representation=DatetimeRepresentation.ISO8601) self.assertEqual( opts2.datetime_representation, DatetimeRepresentation.ISO8601) opts = json_util.JSONOptions(strict_number_long=True) self.assertEqual(opts.strict_number_long, True) opts2 = opts.with_options(strict_number_long=False) self.assertEqual(opts2.strict_number_long, False) opts = json_util.CANONICAL_JSON_OPTIONS self.assertNotEqual( opts.uuid_representation, UuidRepresentation.JAVA_LEGACY) opts2 = opts.with_options( uuid_representation=UuidRepresentation.JAVA_LEGACY) self.assertEqual( opts2.uuid_representation, UuidRepresentation.JAVA_LEGACY) self.assertEqual(opts2.document_class, dict) opts3 = opts2.with_options(document_class=SON) self.assertEqual( opts3.uuid_representation, UuidRepresentation.JAVA_LEGACY) self.assertEqual(opts3.document_class, SON) def test_objectid(self): self.round_trip({"id": ObjectId()}) def test_dbref(self): self.round_trip({"ref": DBRef("foo", 5)}) self.round_trip({"ref": DBRef("foo", 5, "db")}) self.round_trip({"ref": DBRef("foo", ObjectId())}) # Check order. self.assertEqual( '{"$ref": "collection", "$id": 1, "$db": "db"}', json_util.dumps(DBRef('collection', 1, 'db'))) def test_datetime(self): # only millis, not micros self.round_trip({"date": datetime.datetime(2009, 12, 9, 15, 49, 45, 191000, utc)}) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000+0000"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000000+0000"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000+00:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000000+00:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000000+00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000Z"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000000Z"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00Z"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) # No explicit offset jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T00:00:00.000000"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) # Localtime behind UTC jsn = '{"dt": { "$date" : "1969-12-31T16:00:00.000-0800"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1969-12-31T16:00:00.000000-0800"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1969-12-31T16:00:00.000-08:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1969-12-31T16:00:00.000000-08:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1969-12-31T16:00:00.000000-08"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) # Localtime ahead of UTC jsn = '{"dt": { "$date" : "1970-01-01T01:00:00.000+0100"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T01:00:00.000000+0100"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T01:00:00.000+01:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T01:00:00.000000+01:00"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) jsn = '{"dt": { "$date" : "1970-01-01T01:00:00.000000+01"}}' self.assertEqual(EPOCH_AWARE, json_util.loads(jsn)["dt"]) dtm = datetime.datetime(1, 1, 1, 1, 1, 1, 0, utc) jsn = '{"dt": {"$date": -62135593139000}}' self.assertEqual(dtm, json_util.loads(jsn)["dt"]) jsn = '{"dt": {"$date": {"$numberLong": "-62135593139000"}}}' self.assertEqual(dtm, json_util.loads(jsn)["dt"]) # Test dumps format pre_epoch = {"dt": datetime.datetime(1, 1, 1, 1, 1, 1, 10000, utc)} post_epoch = {"dt": datetime.datetime(1972, 1, 1, 1, 1, 1, 10000, utc)} self.assertEqual( '{"dt": {"$date": -62135593138990}}', json_util.dumps(pre_epoch)) self.assertEqual( '{"dt": {"$date": 63075661010}}', json_util.dumps(post_epoch)) self.assertEqual( '{"dt": {"$date": {"$numberLong": "-62135593138990"}}}', json_util.dumps(pre_epoch, json_options=STRICT_JSON_OPTIONS)) self.assertEqual( '{"dt": {"$date": "1972-01-01T01:01:01.010Z"}}', json_util.dumps(post_epoch, json_options=STRICT_JSON_OPTIONS)) number_long_options = json_util.JSONOptions( datetime_representation=DatetimeRepresentation.NUMBERLONG) self.assertEqual( '{"dt": {"$date": {"$numberLong": "63075661010"}}}', json_util.dumps(post_epoch, json_options=number_long_options)) self.assertEqual( '{"dt": {"$date": {"$numberLong": "-62135593138990"}}}', json_util.dumps(pre_epoch, json_options=number_long_options)) # ISO8601 mode assumes naive datetimes are UTC pre_epoch_naive = {"dt": datetime.datetime(1, 1, 1, 1, 1, 1, 10000)} post_epoch_naive = { "dt": datetime.datetime(1972, 1, 1, 1, 1, 1, 10000)} self.assertEqual( '{"dt": {"$date": {"$numberLong": "-62135593138990"}}}', json_util.dumps(pre_epoch_naive, json_options=STRICT_JSON_OPTIONS)) self.assertEqual( '{"dt": {"$date": "1972-01-01T01:01:01.010Z"}}', json_util.dumps(post_epoch_naive, json_options=STRICT_JSON_OPTIONS)) # Test tz_aware and tzinfo options self.assertEqual( datetime.datetime(1972, 1, 1, 1, 1, 1, 10000, utc), json_util.loads( '{"dt": {"$date": "1972-01-01T01:01:01.010+0000"}}')["dt"]) self.assertEqual( datetime.datetime(1972, 1, 1, 1, 1, 1, 10000, utc), json_util.loads( '{"dt": {"$date": "1972-01-01T01:01:01.010+0000"}}', json_options=json_util.JSONOptions(tz_aware=True, tzinfo=utc))["dt"]) self.assertEqual( datetime.datetime(1972, 1, 1, 1, 1, 1, 10000), json_util.loads( '{"dt": {"$date": "1972-01-01T01:01:01.010+0000"}}', json_options=json_util.JSONOptions(tz_aware=False))["dt"]) self.round_trip(pre_epoch_naive, json_options=json_util.JSONOptions( tz_aware=False)) # Test a non-utc timezone pacific = FixedOffset(-8 * 60, 'US/Pacific') aware_datetime = {"dt": datetime.datetime(2002, 10, 27, 6, 0, 0, 10000, pacific)} self.assertEqual( '{"dt": {"$date": "2002-10-27T06:00:00.010-0800"}}', json_util.dumps(aware_datetime, json_options=STRICT_JSON_OPTIONS)) self.round_trip(aware_datetime, json_options=json_util.JSONOptions( tz_aware=True, tzinfo=pacific)) self.round_trip(aware_datetime, json_options=json_util.JSONOptions( datetime_representation=DatetimeRepresentation.ISO8601, tz_aware=True, tzinfo=pacific)) def test_regex_object_hook(self): # Extended JSON format regular expression. pat = 'a*b' json_re = '{"$regex": "%s", "$options": "u"}' % pat loaded = json_util.object_hook(json.loads(json_re)) self.assertTrue(isinstance(loaded, Regex)) self.assertEqual(pat, loaded.pattern) self.assertEqual(re.U, loaded.flags) def test_regex(self): for regex_instance in ( re.compile("a*b", re.IGNORECASE), Regex("a*b", re.IGNORECASE)): res = self.round_tripped({"r": regex_instance})["r"] self.assertEqual("a*b", res.pattern) res = self.round_tripped({"r": Regex("a*b", re.IGNORECASE)})["r"] self.assertEqual("a*b", res.pattern) self.assertEqual(re.IGNORECASE, res.flags) unicode_options = re.I|re.M|re.S|re.U|re.X regex = re.compile("a*b", unicode_options) res = self.round_tripped({"r": regex})["r"] self.assertEqual(unicode_options, res.flags) # Some tools may not add $options if no flags are set. res = json_util.loads('{"r": {"$regex": "a*b"}}')['r'] self.assertEqual(0, res.flags) self.assertEqual( Regex('.*', 'ilm'), json_util.loads( '{"r": {"$regex": ".*", "$options": "ilm"}}')['r']) # Check order. self.assertEqual( '{"$regex": ".*", "$options": "mx"}', json_util.dumps(Regex('.*', re.M | re.X))) self.assertEqual( '{"$regex": ".*", "$options": "mx"}', json_util.dumps(re.compile(b'.*', re.M | re.X))) def test_minkey(self): self.round_trip({"m": MinKey()}) def test_maxkey(self): self.round_trip({"m": MaxKey()}) def test_timestamp(self): dct = {"ts": Timestamp(4, 13)} res = json_util.dumps(dct, default=json_util.default) rtdct = json_util.loads(res) self.assertEqual(dct, rtdct) self.assertEqual('{"ts": {"$timestamp": {"t": 4, "i": 13}}}', res) def test_uuid(self): doc = {'uuid': uuid.UUID('f47ac10b-58cc-4372-a567-0e02b2c3d479')} self.round_trip(doc) self.assertEqual( '{"uuid": {"$uuid": "f47ac10b58cc4372a5670e02b2c3d479"}}', json_util.dumps(doc)) self.assertEqual( '{"uuid": ' '{"$binary": "9HrBC1jMQ3KlZw4CssPUeQ==", "$type": "03"}}', json_util.dumps( doc, json_options=json_util.STRICT_JSON_OPTIONS)) self.assertEqual( '{"uuid": ' '{"$binary": "9HrBC1jMQ3KlZw4CssPUeQ==", "$type": "04"}}', json_util.dumps( doc, json_options=json_util.JSONOptions( strict_uuid=True, uuid_representation=STANDARD))) self.assertEqual( doc, json_util.loads( '{"uuid": ' '{"$binary": "9HrBC1jMQ3KlZw4CssPUeQ==", "$type": "03"}}')) for uuid_representation in (set(ALL_UUID_REPRESENTATIONS) - {UuidRepresentation.UNSPECIFIED}): options = json_util.JSONOptions( strict_uuid=True, uuid_representation=uuid_representation) self.round_trip(doc, json_options=options) # Ignore UUID representation when decoding BSON binary subtype 4. self.assertEqual(doc, json_util.loads( '{"uuid": ' '{"$binary": "9HrBC1jMQ3KlZw4CssPUeQ==", "$type": "04"}}', json_options=options)) def test_uuid_uuid_rep_unspecified(self): _uuid = uuid.uuid4() options = json_util.JSONOptions( strict_uuid=True, uuid_representation=UuidRepresentation.UNSPECIFIED) # Cannot directly encode native UUIDs with UNSPECIFIED. doc = {'uuid': _uuid} with self.assertRaises(ValueError): json_util.dumps(doc, json_options=options) # All UUID subtypes are decoded as Binary with UNSPECIFIED. # subtype 3 doc = {'uuid': Binary(_uuid.bytes, subtype=3)} ext_json_str = json_util.dumps(doc) self.assertEqual( doc, json_util.loads(ext_json_str, json_options=options)) # subtype 4 doc = {'uuid': Binary(_uuid.bytes, subtype=4)} ext_json_str = json_util.dumps(doc) self.assertEqual( doc, json_util.loads(ext_json_str, json_options=options)) # $uuid-encoded fields doc = {'uuid': Binary(_uuid.bytes, subtype=4)} ext_json_str = json_util.dumps({'uuid': _uuid}) self.assertEqual( doc, json_util.loads(ext_json_str, json_options=options)) def test_binary(self): if PY3: bin_type_dict = {"bin": b"\x00\x01\x02\x03\x04"} else: bin_type_dict = {"bin": Binary(b"\x00\x01\x02\x03\x04")} md5_type_dict = { "md5": Binary(b' n7\x18\xaf\t/\xd1\xd1/\x80\xca\xe7q\xcc\xac', MD5_SUBTYPE)} custom_type_dict = {"custom": Binary(b"hello", USER_DEFINED_SUBTYPE)} self.round_trip(bin_type_dict) self.round_trip(md5_type_dict) self.round_trip(custom_type_dict) # Binary with subtype 0 is decoded into bytes in Python 3. bin = json_util.loads( '{"bin": {"$binary": "AAECAwQ=", "$type": "00"}}')['bin'] if PY3: self.assertEqual(type(bin), bytes) else: self.assertEqual(type(bin), Binary) # PYTHON-443 ensure old type formats are supported json_bin_dump = json_util.dumps(bin_type_dict) self.assertTrue('"$type": "00"' in json_bin_dump) self.assertEqual(bin_type_dict, json_util.loads('{"bin": {"$type": 0, "$binary": "AAECAwQ="}}')) json_bin_dump = json_util.dumps(md5_type_dict) # Check order. self.assertEqual( '{"md5": {"$binary": "IG43GK8JL9HRL4DK53HMrA==",' + ' "$type": "05"}}', json_bin_dump) self.assertEqual(md5_type_dict, json_util.loads('{"md5": {"$type": 5, "$binary":' ' "IG43GK8JL9HRL4DK53HMrA=="}}')) json_bin_dump = json_util.dumps(custom_type_dict) self.assertTrue('"$type": "80"' in json_bin_dump) self.assertEqual(custom_type_dict, json_util.loads('{"custom": {"$type": 128, "$binary":' ' "aGVsbG8="}}')) # Handle mongoexport where subtype >= 128 self.assertEqual(128, json_util.loads('{"custom": {"$type": "ffffff80", "$binary":' ' "aGVsbG8="}}')['custom'].subtype) self.assertEqual(255, json_util.loads('{"custom": {"$type": "ffffffff", "$binary":' ' "aGVsbG8="}}')['custom'].subtype) def test_code(self): self.round_trip({"code": Code("function x() { return 1; }")}) code = Code("return z", z=2) res = json_util.dumps(code) self.assertEqual(code, json_util.loads(res)) # Check order. self.assertEqual('{"$code": "return z", "$scope": {"z": 2}}', res) no_scope = Code('function() {}') self.assertEqual( '{"$code": "function() {}"}', json_util.dumps(no_scope)) def test_undefined(self): jsn = '{"name": {"$undefined": true}}' self.assertIsNone(json_util.loads(jsn)['name']) def test_numberlong(self): jsn = '{"weight": {"$numberLong": "65535"}}' self.assertEqual(json_util.loads(jsn)['weight'], Int64(65535)) self.assertEqual(json_util.dumps({"weight": Int64(65535)}), '{"weight": 65535}') json_options = json_util.JSONOptions(strict_number_long=True) self.assertEqual(json_util.dumps({"weight": Int64(65535)}, json_options=json_options), jsn) def test_loads_document_class(self): # document_class dict should always work self.assertEqual({"foo": "bar"}, json_util.loads( '{"foo": "bar"}', json_options=json_util.JSONOptions(document_class=dict))) self.assertEqual(SON([("foo", "bar"), ("b", 1)]), json_util.loads( '{"foo": "bar", "b": 1}', json_options=json_util.JSONOptions(document_class=SON))) class TestJsonUtilRoundtrip(IntegrationTest): def test_cursor(self): db = self.db db.drop_collection("test") docs = [ {'foo': [1, 2]}, {'bar': {'hello': 'world'}}, {'code': Code("function x() { return 1; }")}, {'bin': Binary(b"\x00\x01\x02\x03\x04", USER_DEFINED_SUBTYPE)}, {'dbref': {'_ref': DBRef('simple', ObjectId('509b8db456c02c5ab7e63c34'))}} ] db.test.insert_many(docs) reloaded_docs = json_util.loads(json_util.dumps(db.test.find())) for doc in docs: self.assertTrue(doc in reloaded_docs) if __name__ == "__main__": unittest.main()
43.10643
79
0.581503
[ "Apache-2.0" ]
Olegt0rr/mongo-python-driver
test/test_json_util.py
19,441
Python
#! -*- coding: utf-8 -*- # # (C) 2013 Internet Initiative Japan Inc. # All rights reserved. # # Created on 2013/05/15 # @author: [email protected] """Notify project owner with email when the project created successfully.""" from pkg_resources import resource_filename from trac.config import Option, ListOption from trac.core import Component, implements from trac.notification import Notify, NotifyEmail from trac.web.chrome import ITemplateProvider from tracportal.i18n import _ from tracportal.project.api import IProjectCreationInterceptor class ProjectCreationNotificationSystem(Component): implements(ITemplateProvider, IProjectCreationInterceptor) # options from_name = Option('tracportal', 'notify_email_from_name', doc=_('Sender name to use in notification emails.')) from_email = Option('tracportal', 'notify_email_from', doc=_('Sender address to use in notification emails.')) ccrcpts = ListOption('tracportal', 'notify_email_cc', doc=_('Email address(es) to always send notifications to, ' 'addresses can be seen by all recipients (Cc:).')) subject = Option('tracportal', 'notify_email_subject', default=_("Ready to start Trac project!"), doc=_('Subject in notification emails.')) # ITemplateProvider methods def get_templates_dirs(self): return [resource_filename(__name__, 'templates')] def get_htdocs_dirs(self): return [] # IProjectCreationInterceptor methods def pre_process(self, project_info, owner_info): pass def post_process(self, project_info, owner_info, env): if 'email' in owner_info: project_info['url'] = env.abs_href() support = { 'name': self.from_name or self.env.project_name, 'email': self.from_email or self.env.config.get('notification', 'smtp_from'), } notify_email = ProjectCreationNotifyEmail(self.env, (owner_info['email'],), tuple(self.ccrcpts), project_info, owner_info, support) notify_email.notify('') class ProjectCreationNotifyEmail(NotifyEmail): """Notification of a project creation.""" template_name = 'project_creation_notify_email.txt' def __init__(self, env, torcpts, ccrcpts, project_info, owner_info, support): NotifyEmail.__init__(self, env) self.torcpts = torcpts self.ccrcpts = ccrcpts self.project_info = project_info self.owner_info = owner_info self.support = support self.subject = self.subject def get_recipients(self, resid): return (self.torcpts, self.ccrcpts,) def notify(self, resid, subject=None, author=None): if subject: self.subject = subject self.from_name = self.support['name'] self.from_email = self.support['email'] self.replyto_email = self.support['email'] if self.data is None: self.data = {} self.data.update({ 'owner': self.owner_info, 'project': self.project_info, 'support': self.support, }) Notify.notify(self, resid)
37.523256
115
0.654478
[ "MIT" ]
iij/TracPortalPlugin
tracportalopt/project/notification.py
3,227
Python
# -*- coding: utf-8 -*- # # python_exameple documentation build configuration file, created by # sphinx-quickstart on Fri Feb 26 00:29:33 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', ] autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pyBAScloudAPI' copyright = u'2021, ProFM Facility & Project Management GmbH' author = u'ProFM Facility & Project Management GmbH' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.2.0' # The full version, including alpha/beta/rc tags. release = u'0.2.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pyBAScloudAPIdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pyBAScloudAPI.tex', u'pyBAScloudAPI Documentation', u'ProFM Facility & Project Management GmbH', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pyBAScloudAPI', u'pyBAScloudAPI Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pyBAScloudAPI', u'pyBAScloudAPI Documentation', author, 'pyBAScloudAPI', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
32.511864
79
0.719737
[ "MIT" ]
bascloud/BASCloudAPI
pyBAScloudAPI/docs/conf.py
9,591
Python
from ipdb import set_trace as st from icecream import ic import gc import os import wandb import pandas as pd from fastprogress import progress_bar from loguru import logger import numpy as np import torch from sklearn.metrics import accuracy_score import utils as U import configuration as C import result_handler as rh from criterion import mixup_criterion from early_stopping import EarlyStopping def train_cv(config): # config debug = config['globals']['debug'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_fold = config['split']['n_fold'] n_epoch = config['globals']['num_epochs'] path_trn_tp = config['path']['path_train_tp'] n_classes = config['model']['params']['n_classes'] dir_save_exp, dir_save_ignore_exp, _ = U.get_save_dir_exp(config) # load data pwd = os.path.dirname(os.path.abspath(__file__)) trn_tp = pd.read_csv(f'{pwd}/{path_trn_tp}') # init acc_val_folds = [] lwlrap_val_folds = [] if debug: oof_sig = np.zeros([n_classes*n_fold, n_classes]) else: oof_sig = np.zeros([len(trn_tp), n_classes]) for i_fold in progress_bar(range(n_fold)): # logger logger.info("-" * 18) logger.info(f'\tFold {i_fold + 1}/{n_fold}') logger.info("-" * 18) # preparation model = C.get_model(config).to(device) criterion = C.get_criterion(config) optimizer = C.get_optimizer(model, config) scheduler = C.get_scheduler(optimizer, config) _, _, exp_name = U.get_save_dir_exp(config) # wandb wb_fold = wandb.init(project='kaggle-rfcx', group=exp_name, name=f'fold{i_fold}') wb_fold.config.config = config epochs = [] losses_trn = [] losses_val = [] accs_val = [] lwlraps_val = [] best_acc_val = 0 best_lwlrap_val = 0 best_loss_val = 0 best_output_sig = 0 save_path = f'{dir_save_ignore_exp}/'\ f'{model.__class__.__name__}_fold{i_fold}.pth' early_stopping = EarlyStopping(patience=12, verbose=True, path=save_path, trace_func=logger.info) for epoch in range(1, n_epoch+1): # 学習を行う result_dict = train_fold(i_fold, trn_tp, model, criterion, optimizer, scheduler, config) val_idxs = result_dict['val_idxs'] output_sig = result_dict['output_sig'] loss_trn = result_dict['loss_trn'] loss_val = result_dict['loss_val'] acc_val = result_dict['acc_val'] lwlrap_val = result_dict['lwlrap_val'] logger.info(f'[fold({i_fold+1})epoch({epoch})]' f'loss_trn={loss_trn:.6f} ' f'loss_val={loss_val:.6f} ' f'acc_val={acc_val:.6f} ' f'lwlrap_val={lwlrap_val:.6f}') wb_fold.log({'epoch': epoch, 'loss_trn': loss_trn, 'loss_val': loss_val, 'acc_val': acc_val, 'lwlrap_val': lwlrap_val}) # 格納 epochs.append(int(epoch)) losses_trn.append(loss_trn) losses_val.append(loss_val) accs_val.append(acc_val) lwlraps_val.append(lwlrap_val) # best model ? is_update = early_stopping(loss_val, result_dict['model'], debug) if is_update: best_loss_val = loss_val best_acc_val = acc_val best_lwlrap_val = lwlrap_val best_output_sig = output_sig wb_fold.summary['loss_val'] = best_loss_val wb_fold.summary['acc_val'] = best_acc_val wb_fold.summary['lwlrap_val'] = best_lwlrap_val if early_stopping.early_stop: logger.info("Early stopping") break wb_fold.finish() # result rh.save_plot_figure(i_fold, epochs, losses_trn, accs_val, lwlraps_val, losses_val, dir_save_exp) rh.save_result_csv(i_fold, best_loss_val, best_acc_val, best_lwlrap_val, dir_save_exp, config) # --- fold end --- # oof_sig acc_val_folds.append(best_acc_val) lwlrap_val_folds.append(best_lwlrap_val) if debug: oof_sig[i_fold*n_classes:(i_fold+1)*n_classes] = best_output_sig else: oof_sig[val_idxs, :] = best_output_sig logger.info(f'best_loss_val: {best_loss_val:.6f}, ' f'best_acc_val: {best_acc_val:.6f}, ' f'best_lwlrap_val: {best_lwlrap_val:.6f}') oof = np.argmax(oof_sig, axis=1) oof_sig = torch.tensor(oof_sig) labels = np.zeros([len(oof), 24], dtype=int) if debug: # 適当な値を答えとする labels[:, 0] = 1 labels = torch.tensor(labels) acc_oof = accuracy_score(np.zeros(len(oof)), oof) lwlrap_oof = U.LWLRAP(oof_sig, labels) else: for i_id, id_ in enumerate(trn_tp['species_id'].values): labels[i_id][id_] = 1 labels = torch.tensor(labels) acc_oof = accuracy_score(trn_tp['species_id'].values, oof) lwlrap_oof = U.LWLRAP(oof_sig, labels) # acc_val_folds acc_val_folds_mean = np.mean(acc_val_folds) acc_val_folds_std = np.std(acc_val_folds) logger.info(f'acc_folds(mean, std): ' f'{acc_val_folds_mean:.6f} +- {acc_val_folds_std:6f}') logger.info(f'acc_oof: {acc_oof:6f}') # lwlrap_val_folds lwlrap_val_folds_mean = np.mean(lwlrap_val_folds) lwlrap_val_folds_std = np.std(lwlrap_val_folds) logger.info(f'lwlrap_folds(mean, std): ' f'{lwlrap_val_folds_mean:.6f} +- {lwlrap_val_folds_std:6f}') logger.info(f'lwlrap_oof: {lwlrap_oof:6f}') # wandb wb_summary = wandb.init(project='kaggle-rfcx', group=exp_name, name='summary') wb_summary.config.config = config wb_summary.log({'acc_val_folds_mean': acc_val_folds_mean, 'acc_val_folds_std': acc_val_folds_std, 'acc_oof': acc_oof, 'lwlrap_val_folds_mean': lwlrap_val_folds_mean, 'lwlrap_val_folds_std': lwlrap_val_folds_std, 'lwlrap_oof': lwlrap_oof}) wb_summary.finish() # 開放 del result_dict del model del optimizer del scheduler gc.collect() torch.cuda.empty_cache() def train_fold(i_fold, trn_tp, model, criterion, optimizer, scheduler, config): mixup = config['globals']['mixup'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trn_idxs, val_idxs = C.get_index_fold(trn_tp, i_fold, config) trn_tp_trn = trn_tp.iloc[trn_idxs].reset_index(drop=True) trn_tp_val = trn_tp.iloc[val_idxs].reset_index(drop=True) trn_loader = C.get_trn_val_loader(trn_tp_trn, 'train', config) val_loader = C.get_trn_val_loader(trn_tp_val, 'valid', config) # train model.train() epoch_train_loss = 0 for batch_idx, (data, target) in enumerate(trn_loader): data, target = data.to(device), target.to(device) if mixup: data, targets_a, targets_b, lam = U.mixup_data(data, target, alpha=1.0) optimizer.zero_grad() output = model(data) if mixup: loss = mixup_criterion(criterion, output, targets_a, targets_b, lam) else: loss = criterion(output, target) loss.backward() optimizer.step() epoch_train_loss += loss.item()*data.size(0) scheduler.step() loss_trn = epoch_train_loss / len(trn_loader.dataset) del data # eval valid loss_val, acc_val, lwlrap_val, output_sig = get_loss_score(model, val_loader, criterion, device) result_dict = { 'model': model, 'val_idxs': val_idxs, 'output_sig': output_sig, 'loss_trn': loss_trn, 'loss_val': loss_val, 'acc_val': acc_val, 'lwlrap_val': lwlrap_val } return result_dict def get_loss_score(model, val_loader, criterion, device): model.eval() epoch_valid_loss = 0 y_pred_list = [] y_true_list = [] output_sig_list = [] lwlrap_val = 0 for batch_idx, (data, target) in enumerate(val_loader): data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) epoch_valid_loss += loss.item()*data.size(0) output_ = output['output'] output_sig = output['output_sigmoid'] output_sig = output_sig.detach().cpu().numpy() _y_pred = output_.detach().cpu().numpy().argmax(axis=1) _y_true = target.detach().cpu().numpy().argmax(axis=1) y_pred_list.append(_y_pred) y_true_list.append(_y_true) output_sig_list.append(output_sig) lwlrap_val += U.LWLRAP(output_, target) / len(val_loader) loss_val = epoch_valid_loss / len(val_loader.dataset) y_pred = np.concatenate(y_pred_list, axis=0) y_true = np.concatenate(y_true_list, axis=0) output_sig = np.concatenate(output_sig_list, axis=0) acc_val = accuracy_score(y_true, y_pred) del data return loss_val, acc_val, lwlrap_val, output_sig
36.870849
80
0.572258
[ "MIT" ]
fkubota/kaggle-Rainforest-Connection-Species-Audio-Detection
exp/exp002/trainner.py
10,030
Python
# Generated by Django 2.2.6 on 2019-12-28 22:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('FoodStore', '0002_auto_20191209_0246'), ] operations = [ migrations.AddField( model_name='foodhomepagemodel', name='PageComplete', field=models.BooleanField(default=False), ), migrations.AddField( model_name='fullmenupagemodel', name='PageComplete', field=models.BooleanField(default=False), ), ]
24.041667
53
0.601386
[ "MIT" ]
CPU-sangoma/PlentyPot
FoodStore/migrations/0003_auto_20191229_0057.py
577
Python
#!/usr/bin/python import os import string call = " hook(10);\n"; call = " hook(10); hook2(10);hook3(0);hook4(0);\n"; def run_test(num_calls, compiler_command): f = open("program_options_test.cpp", "w") f.write("""#include <boost/program_options.hpp> using namespace boost::program_options; void do_it() { boost::program_options::options_description desc; desc.add_options() """) for i in range(0, num_calls): f.write("(\"opt%d\", value<int>())\n") f.write(";\n}\n") f.close() os.system(compiler_command + " -c -save-temps -I /home/ghost/Work/boost-rc program_options_test.cpp") nm = os.popen("nm -S program_options_test.o") for l in nm: if string.find(l, "Z5do_itv") != -1: break size = int(string.split(l)[1], 16) return size def run_tests(range, compiler_command): last_size = None first_size = None for num in range: size = run_test(num, compiler_command) if last_size: print "%2d calls: %5d bytes (+ %d)" % (num, size, size-last_size) else: print "%2d calls: %5d bytes" % (num, size) first_size = size last_size = size print "Avarage: ", (last_size-first_size)/(range[-1]-range[0]) if __name__ == '__main__': for compiler in [ "g++-3.3 -Os", "g++-3.3 -O3", "g++-3.4 -Os", "g++-3.4 -O3"]: print "****", compiler, "****" run_tests(range(1, 20), compiler)
26.203704
104
0.601413
[ "MIT" ]
angel2230/-tlbb
Game/boost/libs/program_options/test/program_options_size_test.py
1,415
Python
import cv2 import numpy as np from PIL import Image def draw_approx_polyDP(cnt, epsilon=0.01, closed=True): """用多边形来近似的表示曲线""" epsilon = epsilon * cv2.arcLength(cnt, closed) # 得到轮廓的周长信息作为参考值 return cv2.approxPolyDP(cnt, epsilon, closed) # 得到近似多边形框 def draw_convex_hull(cnt): """画凸包,传入的是一些点""" return cv2.convexHull(cnt) # 获取处理过的轮廓信息 def show_img(file_name, window_name='win'): img = cv2.imread(file_name) cv2.imshow(window_name, img) # 按任意键,图片消失 cv2.waitKey() cv2.destroyAllWindows() def camera_show(window_name='camera'): """最好在改进一下关闭窗口部分的功能 建立一个窗口捕捉摄像头显示的内容 当左键点击过窗口,且按过任意键盘键,才会退出窗口""" clicked = False camera_capture = cv2.VideoCapture(0) def on_mouse(event, x, y, flags, param): global clicked if event == cv2.EVENT_LBUTTONUP: clicked = True cv2.namedWindow(window_name) cv2.setMouseCallback(window_name, on_mouse) success, frame = camera_capture.read() # cv2.waitKey(1) 参数表示等待键盘触发的时间,返回值为-1表示没有见按下 while success and cv2.waitKey(1) == -1 and not clicked: cv2.imshow(window_name, frame) success, frame = camera_capture.read() cv2.destroyAllWindows() camera_capture.release() def camera_save(file_name, seconds=3, fps=60): # 获得设备 camera_capture = cv2.VideoCapture(0) size = (int(camera_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))) video_writer = cv2.VideoWriter(file_name, cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size) success, frame = camera_capture.read() num_frames_remaining = seconds * fps - 1 while success and num_frames_remaining > 0: video_writer.write(frame) success, frame = camera_capture.read() num_frames_remaining -= 1 camera_capture.release() def copy(orig_img, start_height, start_width, part): height, width = part.shape orig_img[start_height: start_height + height, start_width: start_width + width] = part return orig_img def draw_gray_random(height, width): flat_numpy_array = np.random.randint(0, 256, height * width) gray_image = flat_numpy_array.reshape(height, width) return gray_image def draw_random(height, width, channel=3): flat_numpy_array = np.random.randint(0, 256, height * width * channel) bgr_image = flat_numpy_array.reshape((height, width, channel)) return bgr_image def draw_gray_black(height, width): img = np.zeros((height, width), dtype=np.uint8) return img def draw_line(img, x1, y1, x2, y2, color=(0, 255, 0), thickness=2): return cv2.line(img, (x1, y1), (x2, y2), color, thickness) def draw_rectangle(img, box, contour_idx=0, color=(0, 0, 255), thickness=3): return cv2.drawContours(img, box, contour_idx, color, thickness) def draw_cicile(img, center, radius, color=(0, 255, 0), thickness=2): return cv2.circle(img, center, radius, color, thickness) def draw_black(height, width): img = draw_black(height, width) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return img def img2array(img): return bytearray(img) def array_img(arr, height, width, channel=3): return np.array(arr).reshape(height, width, channel) def array2img_gray(arr, height, width): return np.array(arr).reshape(height, width) if __name__ == '__main__': img = cv2.imread('sphere.png') cv2.imshow('win', img) # empire = Image.open('sphere.png') # cv2.waitKey() # cv2.destroyAllWindows() # print(empire.shape()) # empire.convert('RGB') # print(empire.mode) # print(empire.shape()) img = Image.open('sphere.png') img = img.resize((137, 137)) # 将黑色的部分变为透明 print(img.info) print(img.mode) img = img.convert("RGBA") print(img.mode) width = img.size[0] height = img.size[1] for x in range(width): for y in range(height): r, g, b, a = img.getpixel((x, y)) rgba = (r, g, b, a) if (r == g == b == 0): img.putpixel((x, y), (0, 0, 0, 0)) img.save('sphere_2.png') img.show()
27.904762
100
0.661628
[ "MIT" ]
strawsyz/straw
my_cv/utils/cv2_util.py
4,420
Python
try: from django.conf.urls import * except ImportError: # django < 1.4 from django.conf.urls.defaults import * urlpatterns = patterns("rush_forms.views", #url(r"^(?P<pk>\d+)/$", 'form_view', name='form-detail'), url(r"^(?P<pk>\d+)/$", 'rush_form_view', name='detail'), url(r"^(?P<pk>\d+)/(?P<user_id>\d+)/$", 'rush_form_user_entry_view', name='user_entry'), )
42
111
0.512987
[ "BSD-3-Clause" ]
goldhand/onegreek
onegreek/rush_forms/urls.py
462
Python
import logging import Queue import sia_client as sc logger = logging.getLogger(__name__) def from_upload_jobs(upload_jobs): """Creates a new upload queue from a list of upload jobs. Creates a new queue of files to upload by starting with the full input dataset and removing any files that are uploaded (partially or fully) to Sia. Args: upload_jobs: The unfiltered set of upload jobs. Returns: A Queue of upload jobs, filtered to remove jobs that are already complete (the paths already exist on Sia). """ return from_upload_jobs_and_sia_client(upload_jobs, sc.make_sia_client()) def from_upload_jobs_and_sia_client(upload_jobs, sia_client): """Creates a new upload queue from a dataset. Creates a new queue of files to upload by starting with the full input dataset and removing any files that are uploaded (partially or fully) to Sia. Args: upload_jobs: The unfiltered set of upload jobs. sia_client: An implementation of the Sia client interface. Returns: A Queue of upload jobs, filtered to remove jobs that are already complete (the paths already exist on Sia). """ sia_paths = _get_sia_paths(sia_client) # Filter jobs for files that have already been uploaded to Sia. upload_jobs = [j for j in upload_jobs if j.sia_path not in sia_paths] logger.info('%d files already uploaded to Sia, need to upload %d more', len(sia_paths), len(upload_jobs)) upload_queue = Queue.Queue() for upload_job in upload_jobs: upload_queue.put(upload_job) return upload_queue def _get_sia_paths(sia_client): return set([f[u'siapath'] for f in sia_client.renter_files()])
32.222222
77
0.711494
[ "MIT" ]
mtlynch/sia_load_tester
sia_load_tester/upload_queue.py
1,740
Python
# --------------------------------------------------------------------- # Vendor: DCN # OS: DCWS # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.igetversion import IGetVersion class Script(BaseScript): name = "DCN.DCWS.get_version" cache = True interface = IGetVersion rx_platform = re.compile(r"\s*(?P<platform>\S+)\s+Device.", re.MULTILINE) rx_ver = re.compile(r"^\s*Soft[Ww]are\s+Version\s+(?P<version>\S+)\n", re.MULTILINE) rx_bver = re.compile(r"^\s*Boot[Rr]om\s+Version\s+(?P<bversion>\S+)\n", re.MULTILINE) rx_hver = re.compile(r"^\s*Hard[Ww]are\s+Version\s+(?P<hversion>\S+)\n", re.MULTILINE) rx_serial = re.compile(r"^\s*Serial\s+No\s+(?P<serial>\S+)\n", re.MULTILINE) def execute(self): ver = self.cli("show version", cached=True) match = self.re_search(self.rx_platform, ver) vmatch = self.re_search(self.rx_ver, ver) bmatch = self.re_search(self.rx_bver, ver) hmatch = self.re_search(self.rx_hver, ver) smatch = self.re_search(self.rx_serial, ver) return { "vendor": "DCN", "platform": match.group("platform"), "version": vmatch.group("version"), "attributes": { "Bootrom version": bmatch.group("bversion"), "HW version": hmatch.group("hversion"), "Serial Number": smatch.group("serial"), }, }
37.688889
90
0.533019
[ "BSD-3-Clause" ]
nocproject/noc
sa/profiles/DCN/DCWS/get_version.py
1,696
Python
"""django1 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('blog/', include('blog.urls')), path('polls/', include('polls.urls')), path('portfolio', include('portfolio.urls')), path('admin/', admin.site.urls) ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
38.333333
82
0.721739
[ "MIT" ]
ShiroDevC/Old_Code
python/Django/django1/urls.py
1,150
Python
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, print_function, unicode_literals, absolute_import """ This module implements classes for reading and generating Lammps inputset. For the ease of management we divide LAMMPS input into 2 files: 1.Data file: All structure related settings such as the atomic positions, bonds, angles, dihedrals, corresponding parametrizations etc are set in the data file. 2. Control/input file: This is the main input file that should be fed to the lammps binary. The main input file consists of the path to the afore-mentioned data file and the job control parameters such as the ensemble type(NVT, NPT etc), max number of iterations etc. """ import os import six from monty.json import MSONable, MontyDecoder from pymatgen.io.lammps.data import LammpsData from pymatgen.io.lammps.input import LammpsInput __author__ = "Kiran Mathew" __email__ = "[email protected]" class LammpsInputSet(MSONable): def __init__(self, name, lammps_input, lammps_data=None, data_filename="in.data", user_lammps_settings=None): """ Implementation of LammpsInputSet that is initialized from a dict settings. It is typically used by other LammpsInputSets for initialization from json or yaml source files. Args: name (str): A name for the input set. lammps_input (LammpsInput): The config dictionary to use. lammps_data (LammpsData): LammpsData object data_filename (str): name of the the lammps data file. Note: this will override the value for 'data_file' key in lammps_input user_lammps_settings (dict): User lammps settings. This allows a user to override lammps settings, e.g., setting a different force field or bond type. """ self.name = name self.lines = [] self.lammps_input = lammps_input self.lammps_data = lammps_data self.data_filename = data_filename self.lammps_input.settings["data_file"] = data_filename self.user_lammps_settings = user_lammps_settings or {} self.lammps_input.settings.update(self.user_lammps_settings) def write_input(self, input_filename, data_filename=None): """ Get the string representation of the main input file and write it. Also writes the data file if the lammps_data attribute is set. Args: input_filename (string): name of the input file data_filename (string): override the data file name with this """ if data_filename: data_filename = os.path.abspath(os.path.join(os.getcwd(), data_filename)) if data_filename and ("data_file" in self.lammps_input.settings): self.lammps_input.settings["data_file"] = data_filename self.data_filename = data_filename self.lammps_input.write_file(input_filename) # write the data file if present if self.lammps_data: self.lammps_data.write_file(filename=self.data_filename) @classmethod def from_file(cls, name, input_template, user_settings, lammps_data=None, data_filename="in.data"): """ Returns LammpsInputSet from input file template and input data. Args: name (str) input_template (string): path to the input template file. user_settings (dict): User lammps settings, the keys must correspond to the keys in the template. lammps_data (string/LammpsData): path to the data file or an appropriate object data_filename (string): name of the the lammps data file. Returns: LammpsInputSet """ user_settings["data_file"] = data_filename lammps_input = LammpsInput.from_file(input_template, user_settings) if isinstance(lammps_data, six.string_types): lammps_data = LammpsData.from_file(lammps_data) return cls(name, lammps_input, lammps_data=lammps_data, data_filename=data_filename) def as_dict(self): d = MSONable.as_dict(self) if hasattr(self, "kwargs"): d.update(**self.kwargs) d["lammps_input"] = self.lammps_input.as_dict() return d @classmethod def from_dict(cls, d): decoded = {k: MontyDecoder().process_decoded(v) for k, v in d.items() if k not in ["@module", "@class", "lammps_input"]} decoded["lammps_input"] = LammpsInput.from_dict(d["lammps_input"]) return cls(**decoded)
40.210084
86
0.660815
[ "MIT" ]
JSelf42/pymatgen
pymatgen/io/lammps/sets.py
4,785
Python
# coding=utf-8 # Exemplos para entendiemnto """nome = input('Qual seu nome?' ) if nome == 'Rodrigo' or nome == 'RAYANNE': print('Que nome lindo vocé tem!') else: print('Que nome tão normal!!!') print('Bom dia, {}'.format(nome))""" n1 = float(input('Digite a primeira nota: ')) n2 = float(input('Digite a segunda nota: ')) m = (n1 + n2) / 2 print('A sua média foi: {:.1f}'.format(m)) print('A sua media foi boa!' if m >= 6.0 else 'Sua media foi ruim,estude mais!') """if m >= 6.0: print('Sua média foi boa!') else: print('A sua média foi ruim,estude mais!')"""
28.9
80
0.615917
[ "MIT" ]
rodrigobarbonifilho/Python
Python Aulas/Mundo 1/Aula 010c.py
583
Python
""" Read and plot a PPI from raw mini-MPL data ------------------------------------------ Example of how to read in raw data from the mini-MPL and plot out the PPI by converting it to PyART Author: Adam Theisen """ from matplotlib import pyplot as plt import act try: import pyart PYART_AVAILABLE = True except ImportError: PYART_AVAILABLE = False # Read in sample mini-MPL data files = act.tests.sample_files.EXAMPLE_SIGMA_MPLV5 obj = act.io.mpl.read_sigma_mplv5(files) # Create a PyART Radar Object radar = act.utils.create_pyart_obj( obj, azimuth='azimuth_angle', elevation='elevation_angle', range_var='range' ) # Creat Plot Display if PYART_AVAILABLE: display = pyart.graph.RadarDisplay(radar) display.plot('nrb_copol', sweep=0, title_flag=False, vmin=0, vmax=1.0, cmap='jet') plt.show()
22.459459
86
0.701564
[ "BSD-3-Clause" ]
ANL-DIGR/ACT
examples/plot_raw_minimpl.py
831
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for linear regression example under TensorFlow eager execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import shutil import tempfile import time import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression def device(): return "/device:GPU:0" if tfe.num_gpus() > 0 else "/device:CPU:0" class LinearRegressionTest(tf.test.TestCase): def setUp(self): super(LinearRegressionTest, self).setUp() self._tmp_logdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self._tmp_logdir) super(LinearRegressionTest, self).tearDown() def testSyntheticDataset(self): true_w = tf.random_uniform([3, 1]) true_b = [1.0] batch_size = 10 num_batches = 2 noise_level = 0. dataset = linear_regression.synthetic_dataset(true_w, true_b, noise_level, batch_size, num_batches) it = tfe.Iterator(dataset) for _ in range(2): (xs, ys) = it.next() self.assertEqual((batch_size, 3), xs.shape) self.assertEqual((batch_size, 1), ys.shape) self.assertEqual(tf.float32, xs.dtype) self.assertEqual(tf.float32, ys.dtype) with self.assertRaises(StopIteration): it.next() def testLinearRegression(self): true_w = [[1.0], [-0.5], [2.0]] true_b = [1.0] model = linear_regression.LinearModel() dataset = linear_regression.synthetic_dataset( true_w, true_b, noise_level=0., batch_size=64, num_batches=40) with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) linear_regression.fit(model, dataset, optimizer, logdir=self._tmp_logdir) self.assertAllClose(true_w, model.variables[0].numpy(), rtol=1e-2) self.assertAllClose(true_b, model.variables[1].numpy(), rtol=1e-2) self.assertTrue(glob.glob(os.path.join(self._tmp_logdir, "events.out.*"))) class EagerLinearRegressionBenchmark(tf.test.Benchmark): def benchmarkEagerLinearRegression(self): num_epochs = 10 num_batches = 200 batch_size = 64 dataset = linear_regression.synthetic_dataset( w=tf.random_uniform([3, 1]), b=tf.random_uniform([1]), noise_level=0.01, batch_size=batch_size, num_batches=num_batches) burn_in_dataset = dataset.take(10) model = linear_regression.LinearModel() with tf.device(device()): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) # Perform burn-in. linear_regression.fit(model, burn_in_dataset, optimizer) start_time = time.time() for _ in range(num_epochs): linear_regression.fit(model, dataset, optimizer) wall_time = time.time() - start_time examples_per_sec = num_epochs * num_batches * batch_size / wall_time self.report_benchmark( name="eager_train_%s" % ("gpu" if tfe.num_gpus() > 0 else "cpu"), iters=num_epochs * num_batches, extras={"examples_per_sec": examples_per_sec}, wall_time=wall_time) if __name__ == "__main__": tf.enable_eager_execution() tf.test.main()
33.52459
89
0.666504
[ "Apache-2.0" ]
uve/tensorflow
tensorflow/contrib/eager/python/examples/linear_regression/linear_regression_test.py
4,090
Python
from office365.graph.graph_client import GraphClient from settings import settings def get_token(auth_ctx): """Acquire token via client credential flow (ADAL Python library is utilized)""" token = auth_ctx.acquire_token_with_client_credentials( "https://graph.microsoft.com", settings['client_credentials']['client_id'], settings['client_credentials']['client_secret']) return token client = GraphClient(settings['tenant'], get_token) message_json = { "Message": { "Subject": "Meet for lunch?", "Body": { "ContentType": "Text", "Content": "The new cafeteria is open." }, "ToRecipients": [ { "EmailAddress": { "Address": "[email protected]" } } ] }, "SaveToSentItems": "false" } login_name = "[email protected]" client.users[login_name].send_mail(message_json) client.execute_query()
27.861111
84
0.612164
[ "MIT" ]
stardust85/Office365-REST-Python-Client
examples/outlook/send_message.py
1,003
Python
import tensorflow as tf import cv2 import numpy as np import os from sklearn.model_selection import train_test_split import random import sys my_image_path = 'my_face' others_image_path = 'other_people' image_data = [] label_data = [] def get_padding_size(image): #def get_padding_size(image): h, w, _ = image.shape #长,宽和通道数 longest_edge = max(h, w) top, bottom, left, right = (0, 0, 0, 0) if h <= longest_edge: dh = longest_edge - h top = dh // 2 bottom = dh - top elif w <= longest_edge: dw = longest_edge - w left = dw // 2 right = dw - left else: pass return top, bottom, left, right #(0,0,0,0) #os.listdir(path):path 要获得内容目录的路径。获得当前目录的所有内容。 def read_data(img_path, image_h=64, image_w=64): for filename in os.listdir(img_path): if filename.endswith('.jpg'): filepath = os.path.join(img_path, filename) image = cv2.imread(filepath) top, bottom, left, right = get_padding_size(image) image_pad = cv2.copyMakeBorder(image, top , bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0]) image = cv2.resize(image_pad, (image_h, image_w)) image_data.append(image) label_data.append(img_path) read_data(others_image_path) read_data(my_image_path) image_data = np.array(image_data) label_data = np.array([[0,1] if label == 'my_faces' else [1,0] for label in label_data]) #功能是从样本中随机的按比例选取train data和test data, test_size是样本占比。如果是整数的话就是样本的数量。random_state是随机数的种子。 train_x, test_x, train_y, test_y = train_test_split(image_data, label_data, test_size=0.05, random_state=random.randint(0, 100)) # image (height=64 width=64 channel=3) train_x = train_x.reshape(train_x.shape[0], 64, 64, 3) test_x = test_x.reshape(test_x.shape[0], 64, 64, 3) # nomalize train_x = train_x.astype('float32') / 255.0 test_x = test_x.astype('float32') / 255.0 print(len(train_x), len(train_y)) print(len(test_x), len(test_y)) ############################################################# #batch_size = 128 batch_size = 64 num_batch = len(train_x) // batch_size #tf.placeholder() 占位符,传递一个tensor到session.run()中。 X = tf.placeholder(tf.float32, [None, 64, 64, 3]) # 图片大小64x64 channel=3 Y = tf.placeholder(tf.float32, [None, 2]) keep_prob_5 = tf.placeholder(tf.float32) keep_prob_75 = tf.placeholder(tf.float32) def panda_joke_cnn(): W_c1 = tf.Variable(tf.random_normal([3, 3, 3, 32], stddev=0.01)) b_c1 = tf.Variable(tf.random_normal([32])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(X, W_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv1 = tf.nn.dropout(conv1, keep_prob_5) #先W*X,再W*X+b,再Relu,再max_pool, 再,dropout #Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 W_c2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01)) b_c2 = tf.Variable(tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, W_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv2 = tf.nn.dropout(conv2, keep_prob_5) W_c3 = tf.Variable(tf.random_normal([3, 3, 64, 64], stddev=0.01)) b_c3 = tf.Variable(tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, W_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv3 = tf.nn.dropout(conv3, keep_prob_5) W_c31 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01)) b_c31 = tf.Variable(tf.random_normal([128])) conv31 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv3, W_c31, strides=[1, 1, 1, 1], padding='SAME'), b_c31)) conv31 = tf.nn.max_pool(conv31, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv31 = tf.nn.dropout(conv31, keep_prob_5) W_c32 = tf.Variable(tf.random_normal([3, 3, 128, 128], stddev=0.01)) b_c32 = tf.Variable(tf.random_normal([128])) conv32 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv31, W_c32, strides=[1, 1, 1, 1], padding='SAME'), b_c32)) conv32 = tf.nn.max_pool(conv32, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv32 = tf.nn.dropout(conv32, keep_prob_5) # Fully connected layer #W_d = tf.Variable(tf.random_normal([8*16*32, 512], stddev=0.01)) W_d = tf.Variable(tf.random_normal([128*128, 512], stddev=0.01)) b_d = tf.Variable(tf.random_normal([512])) dense = tf.reshape(conv32, [-1, W_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, W_d), b_d)) dense = tf.nn.dropout(dense, keep_prob_75) W_out = tf.Variable(tf.random_normal([512, 2], stddev=0.01)) b_out = tf.Variable(tf.random_normal([2])) out = tf.add(tf.matmul(dense, W_out), b_out) return out #learning_rate = 0.001 def train_cnn(): output = panda_joke_cnn() #softmax_cross_entropy_with_logits():一步是先对网络最后一层的输出做一个softmax. #第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵.最后求一个平均,得到我们想要的loss. #这个函数的返回值并不是一个数,而是一个向量. loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=output)) optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) #optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output, 1), tf.argmax(Y, 1)), tf.float32)) tf.summary.scalar("loss", loss) tf.summary.scalar("accuracy", accuracy) merged_summary_op = tf.summary.merge_all() saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter('./log', graph=tf.get_default_graph()) for e in range(50): for i in range(num_batch): batch_x = train_x[i*batch_size : (i+1)*batch_size] batch_y = train_y[i*batch_size : (i+1)*batch_size] _, loss_, summary = sess.run([optimizer, loss, merged_summary_op], feed_dict={X: batch_x, Y: batch_y, keep_prob_5:0.5, keep_prob_75: 0.75}) summary_writer.add_summary(summary, e*num_batch+i) print(e*num_batch+i, "loss= ", loss_) if (e*num_batch+i) % 100 == 0: acc = accuracy.eval({X: test_x, Y: test_y, keep_prob_5:1.0, keep_prob_75: 1.0}) print(e*num_batch+i,"acc= ", +acc) # save model if acc > 0.99: saver.save(sess, "G:/codes/tensorflow2/WhetherOrNotMe/models/whether_orNot_me.model", global_step=e*num_batch+i) if e*num_batch+i > 0: sys.exit(0) train_cnn() output = panda_joke_cnn() predict = tf.argmax(output, 1) saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, tf.train.latest_checkpoint('.')) def is_my_face(image): res = sess.run(predict, feed_dict={X: [image/255.0], keep_prob_5:1.0, keep_prob_75: 1.0}) if res[0] == 1: return True else: return False face_haar = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") face_haar.load('D:/Program Files (x86)/Miniconda3/Library/etc/haarcascades/haarcascade_frontalface_default.xml') cam = cv2.VideoCapture(0) while True: _, img = cam.read() gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_haar.detectMultiScale(gray_image, 1.3, 5) for face_x,face_y,face_w,face_h in faces: face = img[face_y:face_y+face_h, face_x:face_x+face_w] face = cv2.resize(face, (64, 64)) print("my face:"+is_my_face(face)) cv2.imshow('img', face) key = cv2.waitKey(30) & 0xff if key == 27: sys.exit(0) sess.close()
40.283582
156
0.632827
[ "Apache-2.0" ]
linrio/WhetherOrNotMe
trainCNN.py
8,629
Python
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests to assure the Authorization Services. Test-Suite to ensure that the Authorization Service is working as expected. """ from http import HTTPStatus import pytest from flask import jsonify from legal_api.models.business import Business from legal_api.services.authz import BASIC_USER, COLIN_SVC_ROLE, STAFF_ROLE, authorized, get_allowed, is_allowed from tests import integration_authorization, not_github_ci from .utils import helper_create_jwt def test_jwt_manager_initialized(jwt): """Assert that the jwt_manager is created as part of the fixtures.""" assert jwt @not_github_ci def test_jwt_manager_correct_test_config(app_request, jwt): """Assert that the test configuration for the JWT is working as expected.""" message = 'This is a protected end-point' protected_route = '/fake_jwt_route' @app_request.route(protected_route) @jwt.has_one_of_roles([STAFF_ROLE]) def get(): return jsonify(message=message) # assert that JWT is setup correctly for a known role token = helper_create_jwt(jwt, [STAFF_ROLE]) headers = {'Authorization': 'Bearer ' + token} rv = app_request.test_client().get(protected_route, headers=headers) assert rv.status_code == HTTPStatus.OK # assert the JWT fails for an unknown role token = helper_create_jwt(jwt, ['SHOULD-FAIL']) headers = {'Authorization': 'Bearer ' + token} rv = app_request.test_client().get(protected_route, headers=headers) assert rv.status_code == HTTPStatus.UNAUTHORIZED TEST_AUTHZ_DATA = [ ('staff_role', # test name 'CP1234567', # business identifier 'happy-staff', # username [STAFF_ROLE], # roles ['view', 'edit'], # allowed actions ['edit'], # requested action HTTPStatus.OK), # expected response ('colin svc role', 'CP1234567', 'CP1234567', [COLIN_SVC_ROLE], ['view', 'edit'], ['edit'], HTTPStatus.OK), ('authorized_user', 'CP0001237', 'CP1234567', [BASIC_USER], ['view', 'edit'], ['edit'], HTTPStatus.OK), ('unauthorized_user', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, ['edit'], HTTPStatus.METHOD_NOT_ALLOWED), ('missing_action', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, None, HTTPStatus.METHOD_NOT_ALLOWED), ('invalid_action', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, ['scrum'], HTTPStatus.METHOD_NOT_ALLOWED), ('add_comment_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['add_comment'], HTTPStatus.METHOD_NOT_ALLOWED), ('court_order_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['court_order'], HTTPStatus.METHOD_NOT_ALLOWED), ('registrars_notation_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['registrars_notation'], HTTPStatus.METHOD_NOT_ALLOWED), ('registrars_order_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['registrars_order'], HTTPStatus.METHOD_NOT_ALLOWED), ] @not_github_ci @pytest.mark.parametrize('test_name,identifier,username,roles,allowed_actions,requested_actions,expected', TEST_AUTHZ_DATA) def test_authorized_user(monkeypatch, app_request, jwt, test_name, identifier, username, roles, allowed_actions, requested_actions, expected): """Assert that the type of user authorization is correct, based on the expected outcome.""" from requests import Response print(test_name) # mocks, the get and json calls for requests.Response def mock_get(*args, **kwargs): # pylint: disable=unused-argument; mocks of library methods resp = Response() resp.status_code = 200 return resp def mock_json(self, **kwargs): # pylint: disable=unused-argument; mocks of library methods return {'roles': allowed_actions} monkeypatch.setattr('requests.sessions.Session.get', mock_get) monkeypatch.setattr('requests.Response.json', mock_json) # setup @app_request.route('/fake_jwt_route/<string:identifier>') @jwt.requires_auth def get_fake(identifier: str): if not authorized(identifier, jwt, ['view']): return jsonify(message='failed'), HTTPStatus.METHOD_NOT_ALLOWED return jsonify(message='success'), HTTPStatus.OK token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} # test it rv = app_request.test_client().get(f'/fake_jwt_route/{identifier}', headers=headers) # check it assert rv.status_code == expected TEST_INTEG_AUTHZ_DATA = [ ('staff_role', # test name 'CP1234567', # business identifier 'happy-staff', # username [STAFF_ROLE], # roles ['view', 'edit'], # allowed actions ['edit'], # requested action HTTPStatus.OK), # expected response ('colin svc role', 'CP1234567', 'CP1234567', [COLIN_SVC_ROLE], ['view', 'edit'], ['edit'], HTTPStatus.OK), ('unauthorized_user', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, ['edit'], HTTPStatus.METHOD_NOT_ALLOWED), ('missing_action', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, None, HTTPStatus.METHOD_NOT_ALLOWED), ('invalid_action', 'CP1234567', 'Not-Match-Identifier', [BASIC_USER], None, ['scrum'], HTTPStatus.METHOD_NOT_ALLOWED), ('add_comment_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['add_comment'], HTTPStatus.METHOD_NOT_ALLOWED), ('court_order_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['court_order'], HTTPStatus.METHOD_NOT_ALLOWED), ('registrars_notation_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['registrars_notation'], HTTPStatus.METHOD_NOT_ALLOWED), ('registrars_order_not_allowed', 'CP0001237', 'CP1234567', [BASIC_USER], None, ['registrars_order'], HTTPStatus.METHOD_NOT_ALLOWED), ] @integration_authorization @pytest.mark.parametrize('test_name,identifier,username,roles,allowed_actions,requested_actions,expected', TEST_INTEG_AUTHZ_DATA) def test_authorized_user_integ(monkeypatch, app, jwt, test_name, identifier, username, roles, allowed_actions, requested_actions, expected): """Assert that the type of user authorization is correct, based on the expected outcome.""" import flask # noqa: F401; import actually used in mock # setup token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} def mock_auth(one, two): # pylint: disable=unused-argument; mocks of library methods return headers['Authorization'] with app.test_request_context(): monkeypatch.setattr('flask.request.headers.get', mock_auth) rv = authorized(identifier, jwt, ['view']) # check it if expected == HTTPStatus.OK: assert rv else: assert not rv def test_authorized_missing_args(): """Assert that the missing args return False.""" identifier = 'a corp' jwt = 'fake' action = 'fake' rv = authorized(identifier, jwt, None) assert not rv rv = authorized(identifier, None, action) assert not rv rv = authorized(None, jwt, action) assert not rv def test_authorized_bad_url(monkeypatch, app, jwt): """Assert that an invalid auth service URL returns False.""" import flask # noqa: F401; import actually used in mock # setup identifier = 'CP1234567' username = 'username' roles = [BASIC_USER] token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} def mock_auth(one, two): # pylint: disable=unused-argument; mocks of library methods return headers['Authorization'] with app.test_request_context(): monkeypatch.setattr('flask.request.headers.get', mock_auth) auth_svc_url = app.config['AUTH_SVC_URL'] app.config['AUTH_SVC_URL'] = 'http://no.way.this.works/dribble' rv = authorized(identifier, jwt, ['view']) app.config['AUTH_SVC_URL'] = auth_svc_url assert not rv def test_authorized_invalid_roles(monkeypatch, app, jwt): """Assert that an invalid role returns False.""" import flask # noqa: F401 ; import actually used in mock # setup noqa: I003 identifier = 'CP1234567' username = 'username' roles = ['NONE'] token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} def mock_auth(one, two): # pylint: disable=unused-argument; mocks of library methods return headers['Authorization'] with app.test_request_context(): monkeypatch.setattr('flask.request.headers.get', mock_auth) rv = authorized(identifier, jwt, ['view']) assert not rv @pytest.mark.parametrize( 'test_name,state,legal_type,username,roles,expected', [ # active business ('staff_active_cp', Business.State.ACTIVE, 'CP', 'staff', [STAFF_ROLE], ['annualReport', 'changeOfAddress', 'changeOfDirectors', 'correction', 'courtOrder', 'dissolution', 'incorporationApplication', 'specialResolution', 'registrarsNotation', 'registrarsOrder']), ('staff_active_bc', Business.State.ACTIVE, 'BC', 'staff', [STAFF_ROLE], ['alteration', 'courtOrder', 'dissolution', 'incorporationApplication', 'transition', 'registrarsNotation', 'registrarsOrder']), ('staff_active_ben', Business.State.ACTIVE, 'BEN', 'staff', [STAFF_ROLE], ['alteration', 'annualReport', 'changeOfAddress', 'changeOfDirectors', 'conversion', 'correction', 'courtOrder', 'dissolution', 'incorporationApplication', 'transition', 'registrarsNotation', 'registrarsOrder']), ('staff_active_cc', Business.State.ACTIVE, 'CC', 'staff', [STAFF_ROLE], ['courtOrder', 'dissolution', 'registrarsNotation', 'registrarsOrder']), ('staff_active_ulc', Business.State.ACTIVE, 'ULC', 'staff', [STAFF_ROLE], ['alteration', 'courtOrder', 'dissolution', 'registrarsNotation', 'registrarsOrder']), ('staff_active_llc', Business.State.ACTIVE, 'LLC', 'staff', [STAFF_ROLE], ['courtOrder', 'dissolution', 'registrarsNotation', 'registrarsOrder']), ('staff_active_sp', Business.State.ACTIVE, 'SP', 'staff', [STAFF_ROLE], ['changeOfRegistration', 'conversion', 'dissolution', 'registration']), ('staff_active_gp', Business.State.ACTIVE, 'GP', 'staff', [STAFF_ROLE], ['changeOfRegistration', 'conversion', 'dissolution', 'registration']), ('user_active_cp', Business.State.ACTIVE, 'CP', 'user', [BASIC_USER], ['annualReport', 'changeOfAddress', 'changeOfDirectors', 'dissolution', 'incorporationApplication', 'specialResolution']), ('user_active_bc', Business.State.ACTIVE, 'BC', 'user', [BASIC_USER], ['alteration', 'dissolution', 'incorporationApplication', 'transition']), ('user_active_ben', Business.State.ACTIVE, 'BEN', 'user', [BASIC_USER], ['alteration', 'annualReport', 'changeOfAddress', 'changeOfDirectors', 'dissolution', 'incorporationApplication', 'transition']), ('user_active_cc', Business.State.ACTIVE, 'CC', 'user', [BASIC_USER], ['dissolution']), ('user_active_ulc', Business.State.ACTIVE, 'ULC', 'user', [BASIC_USER], ['alteration', 'dissolution']), ('user_active_llc', Business.State.ACTIVE, 'LLC', 'user', [BASIC_USER], ['dissolution']), ('user_active_sp', Business.State.ACTIVE, 'SP', 'user', [BASIC_USER], ['changeOfRegistration', 'dissolution', 'registration']), ('user_active_gp', Business.State.ACTIVE, 'GP', 'user', [BASIC_USER], ['changeOfRegistration', 'dissolution', 'registration']), # historical business ('staff_historical_cp', Business.State.HISTORICAL, 'CP', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration']}]), ('staff_historical_bc', Business.State.HISTORICAL, 'BC', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration', 'limitedRestoration']}]), ('staff_historical_ben', Business.State.HISTORICAL, 'BEN', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration', 'limitedRestoration']}]), ('staff_historical_cc', Business.State.HISTORICAL, 'CC', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration', 'limitedRestoration']}]), ('staff_historical_ulc', Business.State.HISTORICAL, 'ULC', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration', 'limitedRestoration']}]), ('staff_historical_llc', Business.State.HISTORICAL, 'LLC', 'staff', [STAFF_ROLE], ['courtOrder', 'registrarsNotation', 'registrarsOrder', {'restoration': ['fullRestoration', 'limitedRestoration']}]), ('user_historical_llc', Business.State.HISTORICAL, 'LLC', 'user', [BASIC_USER], []), ] ) def test_get_allowed(monkeypatch, app, jwt, test_name, state, legal_type, username, roles, expected): """Assert that get allowed returns valid filings.""" token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} def mock_auth(one, two): # pylint: disable=unused-argument; mocks of library methods return headers[one] with app.test_request_context(): monkeypatch.setattr('flask.request.headers.get', mock_auth) filing_types = get_allowed(state, legal_type, jwt) assert filing_types == expected @pytest.mark.parametrize( 'test_name,state,filing_type,sub_filing_type,legal_types,username,roles,expected', [ # active business ('staff_active_allowed', Business.State.ACTIVE, 'alteration', None, ['BC', 'BEN', 'ULC'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'alteration', None, ['CP', 'CC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'annualReport', None, ['CP', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'annualReport', None, ['BC', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'changeOfAddress', None, ['CP', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'changeOfAddress', None, ['BC', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'changeOfDirectors', None, ['CP', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'changeOfDirectors', None, ['BC', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'correction', None, ['CP', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'correction', None, ['BC', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'courtOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_active_allowed', Business.State.ACTIVE, 'dissolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC', 'SP', 'GP'], 'staff', [STAFF_ROLE], True), ('staff_active_allowed', Business.State.ACTIVE, 'incorporationApplication', None, ['CP', 'BC', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'restoration', 'fullRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active', Business.State.ACTIVE, 'restoration', 'limitedRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'specialResolution', None, ['CP'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'specialResolution', None, ['BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'transition', None, ['BC', 'BEN'], 'staff', [STAFF_ROLE], True), ('staff_active', Business.State.ACTIVE, 'transition', None, ['CP', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_active_allowed', Business.State.ACTIVE, 'registrarsNotation', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_active_allowed', Business.State.ACTIVE, 'registrarsOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_active_allowed', Business.State.ACTIVE, 'registration', None, ['SP', 'GP'], 'staff', [STAFF_ROLE], True), ('staff_active_allowed', Business.State.ACTIVE, 'changeOfRegistration', None, ['SP', 'GP'], 'staff', [STAFF_ROLE], True), ('user_active_allowed', Business.State.ACTIVE, 'alteration', None, ['BC', 'BEN', 'ULC'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'alteration', None, ['CP', 'CC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'annualReport', None, ['CP', 'BEN'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'annualReport', None, ['BC', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'changeOfAddress', None, ['CP', 'BEN'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'changeOfAddress', None, ['BC', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'changeOfDirectors', None, ['CP', 'BEN'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'changeOfDirectors', None, ['BC', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active', Business.State.ACTIVE, 'correction', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active', Business.State.ACTIVE, 'courtOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'dissolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC', 'SP', 'GP'], 'user', [BASIC_USER], True), ('user_active_allowed', Business.State.ACTIVE, 'incorporationApplication', None, ['CP', 'BC', 'BEN'], 'user', [BASIC_USER], True), ('user_active_allowed', Business.State.ACTIVE, 'registration', None, ['SP', 'GP'], 'user', [BASIC_USER], True), ('user_active_allowed', Business.State.ACTIVE, 'changeOfRegistration', None, ['SP', 'GP'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'restoration', 'fullRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active', Business.State.ACTIVE, 'restoration', 'limitedRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'specialResolution', None, ['CP'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'specialResolution', None, ['BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active_allowed', Business.State.ACTIVE, 'transition', None, ['BC', 'BEN'], 'user', [BASIC_USER], True), ('user_active', Business.State.ACTIVE, 'transition', None, ['CP', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active', Business.State.ACTIVE, 'registrarsNotation', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_active', Business.State.ACTIVE, 'registrarsOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), # historical business ('staff_historical', Business.State.HISTORICAL, 'alteration', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'annualReport', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'changeOfAddress', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'changeOfDirectors', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'correction', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical_allowed', Business.State.HISTORICAL, 'courtOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_historical', Business.State.HISTORICAL, 'dissolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC', 'SP', 'GP'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'incorporationApplication', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical_allowed', Business.State.HISTORICAL, 'restoration', 'fullRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_historical_allowed', Business.State.HISTORICAL, 'restoration', 'limitedRestoration', ['BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_historical', Business.State.HISTORICAL, 'restoration', 'limitedRestoration', ['CP'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'specialResolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'transition', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], False), ('staff_historical_allowed', Business.State.HISTORICAL, 'registrarsNotation', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_historical_allowed', Business.State.HISTORICAL, 'registrarsOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'staff', [STAFF_ROLE], True), ('staff_historical', Business.State.HISTORICAL, 'registration', None, ['SP', 'GP'], 'staff', [STAFF_ROLE], False), ('staff_historical', Business.State.HISTORICAL, 'changeOfRegistration', None, ['SP', 'GP'], 'staff', [STAFF_ROLE], False), ('user_historical', Business.State.HISTORICAL, 'alteration', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'annualReport', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'changeOfAddress', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'changeOfDirectors', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'correction', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'courtOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'dissolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC', 'SP', 'GP', 'SP', 'GP'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'incorporationApplication', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'restoration', 'fullRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'restoration', 'limitedRestoration', ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'specialResolution', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'transition', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'registrarsNotation', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'registrarsOrder', None, ['CP', 'BC', 'BEN', 'CC', 'ULC', 'LLC'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'registration', None, ['SP', 'GP'], 'user', [BASIC_USER], False), ('user_historical', Business.State.HISTORICAL, 'changeOfRegistration', None, ['SP', 'GP'], 'user', [BASIC_USER], False), ] ) def test_is_allowed(monkeypatch, app, jwt, test_name, state, filing_type, sub_filing_type, legal_types, username, roles, expected): """Assert that get allowed returns valid filings.""" token = helper_create_jwt(jwt, roles=roles, username=username) headers = {'Authorization': 'Bearer ' + token} def mock_auth(one, two): # pylint: disable=unused-argument; mocks of library methods return headers[one] with app.test_request_context(): monkeypatch.setattr('flask.request.headers.get', mock_auth) for legal_type in legal_types: filing_types = is_allowed(state, filing_type, legal_type, jwt, sub_filing_type) assert filing_types == expected
48.531306
135
0.635925
[ "Apache-2.0" ]
leksmall/lear
legal-api/tests/unit/services/test_authorization.py
27,130
Python
""" Tagger using mecab-service """ import traceback import requests from ..models import WordNode from .base import Tagger class MeCabServiceNode(WordNode): """ Parsed word node by MeCabServiceTagger Attributes ---------- surface : str Surface of word part : str Part of the word part_detail1 : str Detail1 of part part_detail2 : str Detail2 of part part_detail3 : str Detail3 of part stem_type : str Stem type stem_form : str Stem form word : str Word itself kana : str Japanese kana of the word pronunciation : str Pronunciation of the word """ @classmethod def create(cls, surface, features): """ Create instance of MeCabServiceNode Parameters ---------- surface : str Surface of the word features : dict Features analyzed by MeCabService """ return cls( surface=surface, part=features["part"], part_detail1=features["part_detail1"], part_detail2=features["part_detail2"], part_detail3=features["part_detail3"], stem_type=features["stem_type"], stem_form=features["stem_form"], word=features["word"], kana=features["kana"], pronunciation=features["pronunciation"] ) class MeCabServiceTagger(Tagger): """ Tagger using mecab-service Attributes ---------- config : minette.Config Configuration timezone : pytz.timezone Timezone logger : logging.Logger Logger api_url : str URL for MeCabService API """ def __init__(self, config=None, timezone=None, logger=None, *, api_url=None, **kwargs): """ Parameters ---------- config : Config, default None Configuration timezone : timezone, default None Timezone logger : Logger, default None Logger api_url : str, default None URL for MeCabService API. If None trial URL is used. """ super().__init__(config=config, timezone=timezone, logger=logger) if not api_url: self.api_url = "https://api.uezo.net/mecab/parse" self.logger.warning( "Do not use default API URL for the production environment. " "This is for trial use only. " "Install MeCab and use MeCabTagger instead.") else: self.api_url = api_url def parse(self, text): """ Parse and annotate using MeCab Service Parameters ---------- text : str Text to analyze Returns ------- words : list of minette.MeCabServiceNode MeCabService nodes """ ret = [] if not text: return ret try: parsed_json = requests.post( self.api_url, headers={"content-type": "application/json"}, json={"text": text}, timeout=10).json() ret = [MeCabServiceNode.create( n["surface"], n["features"]) for n in parsed_json["nodes"]] except Exception as ex: self.logger.error( "MeCab Service parsing error: " + str(ex) + "\n" + traceback.format_exc()) return ret
26.477273
77
0.5402
[ "Apache-2.0" ]
uezo/minette-python
minette/tagger/mecabservice.py
3,495
Python
version = '2.0' import mylib print 'self import in 2.0:', mylib
13
34
0.676923
[ "BSD-3-Clause" ]
mitsuhiko/multiversion
example/mylib-2.0/mylib.py
65
Python
from setuptools import setup, find_packages import os.path HERE = os.path.abspath(os.path.dirname(__file__)) def read(*parts): with open(os.path.join(HERE, *parts)) as f: return f.read() setup( name="doc484", version="0.3.4", author="Chad Dombrova", description="Generate PEP 484 type comments from docstrings", long_description=read("README.rst"), license="MIT", keywords=["mypy", "typing", "pep484", "docstrings", "annotations"], url="https://github.com/chadrik/doc484", packages=find_packages(), entry_points={ 'console_scripts': ['doc484=doc484.__main__:main'], }, install_requires=[ "docutils", # only required for rest format ], extras_require={ "tests": [ "coverage", "pytest==3.6.2", "tox==2.7.0", ], }, classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
29.827586
77
0.590173
[ "MIT" ]
chadrik/doc484
setup.py
1,730
Python
from django.contrib.gis.db import models from django.contrib.gis.tests.utils import mysql, spatialite # MySQL spatial indices can't handle NULL geometries. null_flag = not mysql class Country(models.Model): name = models.CharField(max_length=30) mpoly = models.MultiPolygonField() # SRID, by default, is 4326 objects = models.GeoManager() def __unicode__(self): return self.name class City(models.Model): name = models.CharField(max_length=30) point = models.PointField() objects = models.GeoManager() def __unicode__(self): return self.name # This is an inherited model from City class PennsylvaniaCity(City): county = models.CharField(max_length=30) founded = models.DateTimeField(null=True) objects = models.GeoManager() # TODO: This should be implicitly inherited. class State(models.Model): name = models.CharField(max_length=30) poly = models.PolygonField(null=null_flag) # Allowing NULL geometries here. objects = models.GeoManager() def __unicode__(self): return self.name class Track(models.Model): name = models.CharField(max_length=30) line = models.LineStringField() objects = models.GeoManager() def __unicode__(self): return self.name class Truth(models.Model): val = models.BooleanField() objects = models.GeoManager() if not spatialite: class Feature(models.Model): name = models.CharField(max_length=20) geom = models.GeometryField() objects = models.GeoManager() def __unicode__(self): return self.name class MinusOneSRID(models.Model): geom = models.PointField(srid=-1) # Minus one SRID. objects = models.GeoManager()
33.058824
79
0.716489
[ "Apache-2.0" ]
AppScale/appscale
AppServer/lib/django-1.4/django/contrib/gis/tests/geoapp/models.py
1,686
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ResourceMetricName(Model): """Name of a metric for any resource . Variables are only populated by the server, and will be ignored when sending a request. :ivar value: metric name value. :vartype value: str :ivar localized_value: Localized metric name value. :vartype localized_value: str """ _validation = { 'value': {'readonly': True}, 'localized_value': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': 'str'}, 'localized_value': {'key': 'localizedValue', 'type': 'str'}, } def __init__(self): self.value = None self.localized_value = None
29.85
76
0.579564
[ "MIT" ]
AutorestCI/azure-sdk-for-python
azure-mgmt-web/azure/mgmt/web/models/resource_metric_name.py
1,194
Python
"""A CSV annotation writer that writes the bbox in x, y, w, h format.""" from .types import CSVAnnotationWriter class WidthHeightCSV(CSVAnnotationWriter): """Writes annotations to a CSV file in the following format. image_name, x_min, y_min, width, height, label """ def get_csv_fieldnames(self): """Return the field names for the CSV file.""" return ["image_name", "x_min", "y_min", "width", "height", "label"] def get_csv_row(self, image_name, _image, annotation): """Return the CSV row corresponding to the given annotation.""" return { "image_name": image_name, "x_min": annotation.x_min, "y_min": annotation.y_min, "width": annotation.x_max - annotation.x_min, "height": annotation.y_max - annotation.y_min, "label": annotation.class_idx }
33.961538
75
0.629672
[ "MIT" ]
arunraja-hub/discolight
src/discolight/writers/annotation/widthheightcsv.py
883
Python
import logging from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.sites.shortcuts import get_current_site from django.core.exceptions import ValidationError from django.http import HttpResponseRedirect from django.shortcuts import render from django.urls import reverse_lazy from django.utils.translation import ugettext_lazy as _ from django.views.generic import CreateView, TemplateView from django.views.generic.base import View as BaseView from rdmo.core.imports import handle_uploaded_file from rdmo.core.plugins import get_plugin, get_plugins from rdmo.core.views import RedirectViewMixin from rdmo.questions.models import Catalog from rdmo.tasks.models import Task from rdmo.views.models import View from ..forms import ProjectForm from ..models import Membership, Project from ..utils import (save_import_snapshot_values, save_import_tasks, save_import_values, save_import_views) logger = logging.getLogger(__name__) class ProjectCreateView(LoginRequiredMixin, RedirectViewMixin, CreateView): model = Project form_class = ProjectForm def get_form_kwargs(self): catalogs = Catalog.objects.filter_current_site() \ .filter_group(self.request.user) \ .filter_availability(self.request.user) form_kwargs = super().get_form_kwargs() form_kwargs.update({ 'catalogs': catalogs }) return form_kwargs def form_valid(self, form): # add current site form.instance.site = get_current_site(self.request) # save the project response = super(ProjectCreateView, self).form_valid(form) # add all tasks to project tasks = Task.objects.filter_current_site() \ .filter_group(self.request.user) \ .filter_availability(self.request.user) for task in tasks: form.instance.tasks.add(task) # add all views to project views = View.objects.filter_current_site() \ .filter_catalog(self.object.catalog) \ .filter_group(self.request.user) \ .filter_availability(self.request.user) for view in views: form.instance.views.add(view) # add current user as owner membership = Membership(project=form.instance, user=self.request.user, role='owner') membership.save() return response class ProjectCreateUploadView(LoginRequiredMixin, BaseView): success_url = reverse_lazy('projects') def get(self, request, *args, **kwargs): return HttpResponseRedirect(self.success_url) def post(self, request, *args, **kwargs): try: uploaded_file = request.FILES['uploaded_file'] except KeyError: return HttpResponseRedirect(self.success_url) else: import_tmpfile_name = handle_uploaded_file(uploaded_file) for import_key, import_plugin in get_plugins('PROJECT_IMPORTS').items(): import_plugin.file_name = import_tmpfile_name if import_plugin.check(): try: import_plugin.process() except ValidationError as e: return render(request, 'core/error.html', { 'title': _('Import error'), 'errors': e }, status=400) # store information in session for ProjectCreateImportView request.session['create_import_tmpfile_name'] = import_tmpfile_name request.session['create_import_key'] = import_key return render(request, 'projects/project_upload.html', { 'create': True, 'file_name': uploaded_file.name, 'project': import_plugin.project, 'values': import_plugin.values, 'snapshots': import_plugin.snapshots, 'tasks': import_plugin.tasks, 'views': import_plugin.views }) return render(request, 'core/error.html', { 'title': _('Import error'), 'errors': [_('Files of this type cannot be imported.')] }, status=400) class ProjectCreateImportView(LoginRequiredMixin, TemplateView): success_url = reverse_lazy('projects') def get(self, request, *args, **kwargs): return HttpResponseRedirect(self.success_url) def post(self, request, *args, **kwargs): import_tmpfile_name = request.session.get('create_import_tmpfile_name') import_key = request.session.get('create_import_key') checked = [key for key, value in request.POST.items() if 'on' in value] if import_tmpfile_name and import_key: import_plugin = get_plugin('PROJECT_IMPORTS', import_key) import_plugin.file_name = import_tmpfile_name if import_plugin.check(): try: import_plugin.process() except ValidationError as e: return render(request, 'core/error.html', { 'title': _('Import error'), 'errors': e }, status=400) # add current site and save project import_plugin.project.site = get_current_site(self.request) import_plugin.project.save() # add user to project membership = Membership(project=import_plugin.project, user=request.user, role='owner') membership.save() save_import_values(import_plugin.project, import_plugin.values, checked) save_import_snapshot_values(import_plugin.project, import_plugin.snapshots, checked) save_import_tasks(import_plugin.project, import_plugin.tasks) save_import_views(import_plugin.project, import_plugin.views) return HttpResponseRedirect(import_plugin.project.get_absolute_url()) return render(request, 'core/error.html', { 'title': _('Import error'), 'errors': [_('There has been an error with your import.')] }, status=400)
39.217391
103
0.625436
[ "Apache-2.0" ]
cbittner/rdmo
rdmo/projects/views/project_create.py
6,314
Python
from selenium import webdriver from selenium.webdriver.common.keys import Keys import json import os import urllib2 import argparse import sys searchterm = str(sys.argv[1]) # will also be the name of the folder url = "https://www.google.co.in/search?q="+searchterm+"&source=lnms&tbm=isch" browser = webdriver.Chrome() browser.get(url) header={'User-Agent':"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36"} counter = 0 succounter = 0 if not os.path.exists(searchterm): os.mkdir(searchterm) for _ in range(500): browser.execute_script("window.scrollBy(0,10000)") for x in browser.find_elements_by_xpath('//div[contains(@class,"rg_meta")]'): counter = counter + 1 print "Total Count:", counter print "Succsessful Count:", succounter print "URL:",json.loads(x.get_attribute('innerHTML'))["ou"] if "mrporter" not in (json.loads(x.get_attribute('innerHTML'))["ou"]) and "images.asos" not in (json.loads(x.get_attribute('innerHTML'))["ou"]) and "famousfootwear" not in (json.loads(x.get_attribute('innerHTML'))["ou"]): img = json.loads(x.get_attribute('innerHTML'))["ou"] imgtype = json.loads(x.get_attribute('innerHTML'))["ity"] try: req = urllib2.Request(img, headers={'User-Agent': header}) raw_img = urllib2.urlopen(req).read() File = open(os.path.join(searchterm , searchterm + "_" + str(counter) + "." + imgtype), "wb") File.write(raw_img) File.close() succounter = succounter + 1 except: print "can't get img" print succounter, "pictures succesfully downloaded" browser.close()
39.302326
225
0.671006
[ "MIT" ]
danscime/Tip-Of-My-Shoe
Model/imagescrape.py
1,690
Python
# Object tracking with keypoints example. # Show the camera an object and then run the script. A set of keypoints will be extracted # once and then tracked in the following frames. If you want a new set of keypoints re-run # the script. NOTE: see the docs for arguments to tune find_keypoints and match_keypoints. import sensor, time, image # Reset sensor sensor.reset() # Sensor settings sensor.set_contrast(3) sensor.set_gainceiling(16) sensor.set_framesize(sensor.VGA) sensor.set_windowing((320, 240)) sensor.set_pixformat(sensor.GRAYSCALE) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False, value=100) def draw_keypoints(img, kpts): print(kpts) img.draw_keypoints(kpts) img = sensor.snapshot() time.sleep(1000) kpts1 = None # NOTE: uncomment to load a keypoints descriptor from file #kpts1 = image.load_descriptor("/desc.orb") #img = sensor.snapshot() #draw_keypoints(img, kpts1) clock = time.clock() while (True): clock.tick() img = sensor.snapshot() if (kpts1 == None): # NOTE: By default find_keypoints returns multi-scale keypoints extracted from an image pyramid. kpts1 = img.find_keypoints(max_keypoints=150, threshold=10, scale_factor=1.2) draw_keypoints(img, kpts1) else: # NOTE: When extracting keypoints to match the first descriptor, we use normalized=True to extract # keypoints from the first scale only, which will match one of the scales in the first descriptor. kpts2 = img.find_keypoints(max_keypoints=150, threshold=10, normalized=True) if (kpts2): match = image.match_descriptor(kpts1, kpts2, threshold=85) if (match.count()>10): # If we have at least n "good matches" # Draw bounding rectangle and cross. img.draw_rectangle(match.rect()) img.draw_cross(match.cx(), match.cy(), size=10) print(kpts2, "matched:%d dt:%d"%(match.count(), match.theta())) # NOTE: uncomment if you want to draw the keypoints #img.draw_keypoints(kpts2, size=KEYPOINTS_SIZE, matched=True) # Draw FPS img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))
37.655172
106
0.687729
[ "MIT" ]
Jack19960208/openmv
usr/examples/09-Feature-Detection/keypoints.py
2,184
Python
import os test_data_dir = os.path.join(os.path.dirname(__file__), 'data') test_config_dir = os.path.join(test_data_dir, 'config-test') graph_data_dir = os.path.join(test_data_dir, 'graph_data') default_worker = {"platform": 'linux', 'arch': '64', 'label': 'linux', 'pool_name': 'linux_pool'} def make_recipe(name, dependencies=()): os.makedirs(name) with open(os.path.join(name, 'meta.yaml'), 'w') as f: # not valid meta.yaml. Doesn't matter for test. f.write('package:\n') f.write(' name: {0}\n'.format(name)) f.write(' version: 1.0\n') if dependencies: f.write('requirements:\n') f.write(' build:\n') for dep in dependencies: f.write(' - {0}\n'.format(dep))
33.32
63
0.552221
[ "BSD-3-Clause" ]
AnjuSThomas-anaconda/conda-concourse-ci
tests/utils.py
833
Python
import contextlib import ipaddress import json import os import random import re import time import warnings from collections import Counter from typing import Any, Dict, List, Optional, Set, Union import requests import test_infra.utils.waiting import waiting import yaml from assisted_service_client import models from assisted_service_client.models.operator_type import OperatorType from junit_report import JunitTestCase from netaddr import IPAddress, IPNetwork from test_infra import consts, utils from test_infra.assisted_service_api import InventoryClient from test_infra.controllers.load_balancer_controller import LoadBalancerController from test_infra.controllers.node_controllers import Node from test_infra.helper_classes.cluster_host import ClusterHost from test_infra.helper_classes.config import BaseClusterConfig, BaseInfraEnvConfig from test_infra.helper_classes.entity import Entity from test_infra.helper_classes.events_handler import EventsHandler from test_infra.helper_classes.infra_env import InfraEnv from test_infra.helper_classes.nodes import Nodes from test_infra.tools import static_network, terraform_utils from test_infra.utils import Path, log, logs_utils, network_utils, operators_utils from test_infra.utils.entity_name import ClusterName class Cluster(Entity): MINIMUM_NODES_TO_WAIT = 1 EVENTS_THRESHOLD = 500 # TODO - remove EVENTS_THRESHOLD after removing it from kni-assisted-installer-auto _config: BaseClusterConfig def __init__( self, api_client: InventoryClient, config: BaseClusterConfig, infra_env_config: BaseInfraEnvConfig, nodes: Optional[Nodes] = None, ): super().__init__(api_client, config, nodes) self._infra_env_config = infra_env_config self._infra_env = None # Update infraEnv configurations self._infra_env_config.cluster_id = config.cluster_id self._infra_env_config.openshift_version = self._config.openshift_version self._infra_env_config.pull_secret = self._config.pull_secret self._high_availability_mode = config.high_availability_mode self.name = config.cluster_name.get() @property def kubeconfig_path(self): return self._config.kubeconfig_path @property def iso_download_path(self): return self._config.iso_download_path @property def enable_image_download(self): return self._config.download_image def _update_day2_config(self, api_client: InventoryClient, cluster_id: str): day2_cluster: models.cluster.Cluster = api_client.cluster_get(cluster_id) self.update_config( **dict( openshift_version=day2_cluster.openshift_version, cluster_name=ClusterName(day2_cluster.name), additional_ntp_source=day2_cluster.additional_ntp_source, user_managed_networking=day2_cluster.user_managed_networking, high_availability_mode=day2_cluster.high_availability_mode, olm_operators=day2_cluster.monitored_operators, base_dns_domain=day2_cluster.base_dns_domain, vip_dhcp_allocation=day2_cluster.vip_dhcp_allocation, ) ) def _create(self) -> str: if self._config.cluster_id: log.info(f"Fetching day2 cluster with id {self._config.cluster_id}") self._update_day2_config(self.api_client, self._config.cluster_id) return self._config.cluster_id cluster = self.api_client.create_cluster( self._config.cluster_name.get(), ssh_public_key=self._config.ssh_public_key, openshift_version=self._config.openshift_version, pull_secret=self._config.pull_secret, base_dns_domain=self._config.base_dns_domain, vip_dhcp_allocation=self._config.vip_dhcp_allocation, additional_ntp_source=self._config.additional_ntp_source, user_managed_networking=self._config.user_managed_networking, high_availability_mode=self._config.high_availability_mode, olm_operators=[{"name": name} for name in self._config.olm_operators], network_type=self._config.network_type, ) self._config.cluster_id = cluster.id return cluster.id def delete(self): self.api_client.delete_cluster(self.id) def get_details(self): return self.api_client.cluster_get(self.id) def get_cluster_name(self): return self.get_details().name def get_hosts(self): return self.api_client.get_cluster_hosts(self.id) def get_host_ids(self): return [host["id"] for host in self.get_hosts()] def get_host_ids_names_mapping(self): return {host["id"]: host["requested_hostname"] for host in self.get_hosts()} def get_host_assigned_roles(self): hosts = self.get_hosts() return {h["id"]: h["role"] for h in hosts} def get_operators(self): return self.api_client.get_cluster_operators(self.id) # TODO remove in favor of generate_infra_env def generate_image(self): warnings.warn("generate_image is deprecated. Use generate_infra_env instead.", DeprecationWarning) self.api_client.generate_image(cluster_id=self.id, ssh_key=self._config.ssh_public_key) def generate_infra_env( self, static_network_config=None, iso_image_type=None, ssh_key=None, ignition_info=None, proxy=None ) -> InfraEnv: self._infra_env_config.ssh_public_key = ssh_key or self._config.ssh_public_key self._infra_env_config.iso_image_type = iso_image_type or self._config.iso_image_type self._infra_env_config.static_network_config = static_network_config self._infra_env_config.ignition_config_override = ignition_info self._infra_env_config.proxy = proxy or self._config.proxy infra_env = InfraEnv(api_client=self.api_client, config=self._infra_env_config) self._infra_env = infra_env return infra_env def update_infra_env_proxy(self, proxy: models.Proxy) -> None: self._infra_env_config.proxy = proxy self._infra_env.update_proxy(proxy=proxy) def download_infra_env_image(self, iso_download_path=None) -> Path: iso_download_path = iso_download_path or self._config.iso_download_path return self._infra_env.download_image(iso_download_path=iso_download_path) @JunitTestCase() def generate_and_download_infra_env( self, iso_download_path=None, static_network_config=None, iso_image_type=None, ssh_key=None, ignition_info=None, proxy=None, ) -> Path: if self._config.is_static_ip and static_network_config is None: static_network_config = static_network.generate_static_network_data_from_tf(self.nodes.controller.tf_folder) self.generate_infra_env( static_network_config=static_network_config, iso_image_type=iso_image_type, ssh_key=ssh_key, ignition_info=ignition_info, proxy=proxy, ) return self.download_infra_env_image(iso_download_path=iso_download_path or self._config.iso_download_path) @JunitTestCase() def generate_and_download_image( self, iso_download_path=None, static_network_config=None, iso_image_type=None, ssh_key=None ): warnings.warn( "generate_and_download_image is deprecated. Use generate_and_download_infra_env instead.", DeprecationWarning, ) iso_download_path = iso_download_path or self._config.iso_download_path # ensure file path exists before downloading if not os.path.exists(iso_download_path): utils.recreate_folder(os.path.dirname(iso_download_path), force_recreate=False) self.api_client.generate_and_download_image( cluster_id=self.id, ssh_key=ssh_key or self._config.ssh_public_key, image_path=iso_download_path, image_type=iso_image_type or self._config.iso_image_type, static_network_config=static_network_config, ) def wait_until_hosts_are_disconnected(self, nodes_count: int = None): statuses = [consts.NodesStatus.DISCONNECTED] test_infra.utils.waiting.wait_till_all_hosts_are_in_status( client=self.api_client, cluster_id=self.id, nodes_count=nodes_count or self.nodes.nodes_count, statuses=statuses, timeout=consts.DISCONNECTED_TIMEOUT, ) @JunitTestCase() def wait_until_hosts_are_discovered(self, allow_insufficient=False, nodes_count: int = None): statuses = [consts.NodesStatus.PENDING_FOR_INPUT, consts.NodesStatus.KNOWN] if allow_insufficient: statuses.append(consts.NodesStatus.INSUFFICIENT) test_infra.utils.waiting.wait_till_all_hosts_are_in_status( client=self.api_client, cluster_id=self.id, nodes_count=nodes_count or self.nodes.nodes_count, statuses=statuses, timeout=consts.NODES_REGISTERED_TIMEOUT, ) def _get_matching_hosts(self, host_type, count): hosts = self.get_hosts() return [{"id": h["id"], "role": host_type} for h in hosts if host_type in h["requested_hostname"]][:count] def set_cluster_name(self, cluster_name: str): log.info(f"Setting Cluster Name:{cluster_name} for cluster: {self.id}") self.update_config(cluster_name=ClusterName(prefix=cluster_name, suffix=None)) self.api_client.update_cluster(self.id, {"name": cluster_name}) def select_installation_disk(self, host_id: str, disk_paths: List[dict]) -> None: self._infra_env.select_host_installation_disk(host_id=host_id, disk_paths=disk_paths) def set_ocs(self, properties=None): self.set_olm_operator(consts.OperatorType.OCS, properties=properties) def set_cnv(self, properties=None): self.set_olm_operator(consts.OperatorType.CNV, properties=properties) def unset_ocs(self): self.unset_olm_operator(consts.OperatorType.OCS) def unset_cnv(self): self.unset_olm_operator(consts.OperatorType.CNV) def unset_olm_operator(self, operator_name): log.info(f"Unsetting {operator_name} for cluster: {self.id}") cluster = self.api_client.cluster_get(self.id) olm_operators = [] for operator in cluster.monitored_operators: if operator.name == operator_name or operator.operator_type == OperatorType.BUILTIN: continue olm_operators.append({"name": operator.name, "properties": operator.properties}) self.api_client.update_cluster(self.id, {"olm_operators": olm_operators}) def set_olm_operator(self, operator_name, properties=None): log.info(f"Setting {operator_name} for cluster: {self.id}") cluster = self.api_client.cluster_get(self.id) if operator_name in [o.name for o in cluster.monitored_operators]: return olm_operators = [] for operator in cluster.monitored_operators: if operator.operator_type == OperatorType.BUILTIN: continue olm_operators.append({"name": operator.name, "properties": operator.properties}) olm_operators.append({"name": operator_name, "properties": properties}) self._config.olm_operators = olm_operators self.api_client.update_cluster(self.id, {"olm_operators": olm_operators}) def set_host_roles(self, num_masters: int = None, num_workers: int = None, requested_roles=None): if requested_roles is None: requested_roles = Counter( master=num_masters or self.nodes.masters_count, worker=num_workers or self.nodes.workers_count ) assigned_roles = self._get_matching_hosts(host_type=consts.NodeRoles.MASTER, count=requested_roles["master"]) assigned_roles.extend( self._get_matching_hosts(host_type=consts.NodeRoles.WORKER, count=requested_roles["worker"]) ) for role in assigned_roles: self._infra_env.update_host(host_id=role["id"], host_role=role["role"]) return assigned_roles def set_specific_host_role(self, host, role): self._infra_env.update_host(host_id=host["id"], host_role=role) def set_network_params(self, controller=None): # Controller argument is here only for backward compatibility TODO - Remove after QE refactor all e2e tests controller = controller or self.nodes.controller # TODO - Remove after QE refactor all e2e tests if self._config.platform == consts.Platforms.NONE: log.info("On None platform, leaving network management to the user") api_vip = ingress_vip = machine_networks = None elif self._config.vip_dhcp_allocation or self._high_availability_mode == consts.HighAvailabilityMode.NONE: log.info("Letting access VIPs be deducted from machine networks") api_vip = ingress_vip = None machine_networks = self.get_machine_networks() else: log.info("Assigning VIPs statically") access_vips = controller.get_ingress_and_api_vips() api_vip = access_vips["api_vip"] ingress_vip = access_vips["ingress_vip"] machine_networks = None self.set_advanced_networking( vip_dhcp_allocation=self._config.vip_dhcp_allocation, cluster_networks=self._config.cluster_networks, service_networks=self._config.service_networks, machine_networks=machine_networks, api_vip=api_vip, ingress_vip=ingress_vip, ) # TODO: when assisted-service supports configuring dual-stack networks on one go, # change it so that we call set_advanced_networking only once if self._config.is_ipv4 and self._config.is_ipv6: machine_networks = controller.get_all_machine_addresses() self.set_advanced_networking(machine_networks=machine_networks) def get_primary_machine_cidr(self): cidr = self.nodes.controller.get_primary_machine_cidr() if not cidr: # Support controllers which the machine cidr is not configurable. taking it from the AI instead matching_cidrs = self.get_cluster_matching_cidrs(Cluster.get_cluster_hosts(self.get_details())) if not matching_cidrs: raise RuntimeError("No matching cidr for DHCP") cidr = next(iter(matching_cidrs)) return cidr def get_machine_networks(self): networks = [] primary_machine_cidr = self.nodes.controller.get_primary_machine_cidr() if primary_machine_cidr: networks.append(primary_machine_cidr) secondary_machine_cidr = self.nodes.controller.get_provisioning_cidr() if secondary_machine_cidr: networks.append(secondary_machine_cidr) if not networks: # Support controllers which the machine cidr is not configurable. taking it from the AI instead networks = self.get_cluster_matching_cidrs(Cluster.get_cluster_hosts(self.get_details())) if not networks: raise RuntimeError("No matching cidr for DHCP") return networks def set_ingress_and_api_vips(self, vips): log.info(f"Setting API VIP:{vips['api_vip']} and ingress VIP:{vips['ingress_vip']} for cluster: {self.id}") self.api_client.update_cluster(self.id, vips) def set_ssh_key(self, ssh_key: str): log.info(f"Setting SSH key:{ssh_key} for cluster: {self.id}") self.update_config(ssh_public_key=ssh_key) self.api_client.update_cluster(self.id, {"ssh_public_key": ssh_key}) def set_base_dns_domain(self, base_dns_domain: str): log.info(f"Setting base DNS domain:{base_dns_domain} for cluster: {self.id}") self.update_config(base_dns_domain=base_dns_domain) self.api_client.update_cluster(self.id, {"base_dns_domain": base_dns_domain}) def set_advanced_networking( self, vip_dhcp_allocation: Optional[bool] = None, cluster_networks: Optional[List[models.ClusterNetwork]] = None, service_networks: Optional[List[models.ServiceNetwork]] = None, machine_networks: Optional[List[models.MachineNetwork]] = None, api_vip: Optional[str] = None, ingress_vip: Optional[str] = None, ): if machine_networks is None: machine_networks = self._config.machine_networks else: machine_networks = [models.MachineNetwork(cidr=cidr) for cidr in machine_networks] if vip_dhcp_allocation is None: vip_dhcp_allocation = self._config.vip_dhcp_allocation advanced_networking = { "vip_dhcp_allocation": vip_dhcp_allocation, "cluster_networks": cluster_networks if cluster_networks is not None else self._config.cluster_networks, "service_networks": service_networks if service_networks is not None else self._config.service_networks, "machine_networks": machine_networks, "api_vip": api_vip if api_vip is not None else self._config.api_vip, "ingress_vip": ingress_vip if ingress_vip is not None else self._config.ingress_vip, } log.info(f"Updating advanced networking with {advanced_networking} for cluster: {self.id}") self.update_config(**advanced_networking) self.api_client.update_cluster(self.id, advanced_networking) def set_pull_secret(self, pull_secret: str): log.info(f"Setting pull secret:{pull_secret} for cluster: {self.id}") self.update_config(pull_secret=pull_secret) self.api_client.update_cluster(self.id, {"pull_secret": pull_secret}) def set_host_name(self, host_id, requested_name): log.info(f"Setting Required Host Name:{requested_name}, for Host ID: {host_id}") self._infra_env.update_host(host_id=host_id, host_name=requested_name) def set_additional_ntp_source(self, ntp_source: List[str]): log.info(f"Setting Additional NTP source:{ntp_source}") if isinstance(ntp_source, List): ntp_source_string = ",".join(ntp_source) elif isinstance(ntp_source, str): ntp_source_string = ntp_source else: raise TypeError( f"ntp_source must be a string or a list of strings, got: {ntp_source}," f" type: {type(ntp_source)}" ) self.update_config(additional_ntp_source=ntp_source_string) self.api_client.update_cluster(self.id, {"additional_ntp_source": ntp_source_string}) def patch_discovery_ignition(self, ignition): self._infra_env.patch_discovery_ignition(ignition_info=ignition) def set_proxy_values(self, proxy_values: models.Proxy) -> None: log.info(f"Setting proxy values {proxy_values} for cluster: {self.id}") self.update_config(proxy=proxy_values) self.api_client.set_cluster_proxy( self.id, http_proxy=self._config.proxy.http_proxy, https_proxy=self._config.proxy.https_proxy, no_proxy=self._config.proxy.no_proxy, ) @JunitTestCase() def start_install(self): self.api_client.install_cluster(cluster_id=self.id) def wait_for_logs_complete(self, timeout, interval=60, check_host_logs_only=False): logs_utils.wait_for_logs_complete( client=self.api_client, cluster_id=self.id, timeout=timeout, interval=interval, check_host_logs_only=check_host_logs_only, ) def wait_for_installing_in_progress(self, nodes_count: int = MINIMUM_NODES_TO_WAIT): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.NodesStatus.INSTALLING_IN_PROGRESS], nodes_count=nodes_count, timeout=consts.INSTALLING_IN_PROGRESS_TIMEOUT, ) def wait_for_write_image_to_disk(self, nodes_count: int = MINIMUM_NODES_TO_WAIT): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_stage( client=self.api_client, cluster_id=self.id, stages=[consts.HostsProgressStages.WRITE_IMAGE_TO_DISK, consts.HostsProgressStages.REBOOTING], nodes_count=nodes_count, ) def wait_for_host_status(self, statuses, fall_on_error_status=True, nodes_count: int = MINIMUM_NODES_TO_WAIT): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_status( client=self.api_client, cluster_id=self.id, statuses=statuses, nodes_count=nodes_count, fall_on_error_status=fall_on_error_status, ) def wait_for_specific_host_status(self, host, statuses, nodes_count: int = MINIMUM_NODES_TO_WAIT): test_infra.utils.waiting.wait_till_specific_host_is_in_status( client=self.api_client, cluster_id=self.id, host_name=host.get("requested_hostname"), statuses=statuses, nodes_count=nodes_count, ) def wait_for_specific_host_stage(self, host: dict, stage: str, inclusive: bool = True): index = consts.all_host_stages.index(stage) test_infra.utils.waiting.wait_till_specific_host_is_in_stage( client=self.api_client, cluster_id=self.id, host_name=host.get("requested_hostname"), stages=consts.all_host_stages[index:] if inclusive else consts.all_host_stages[index + 1 :], ) def wait_for_cluster_in_error_status(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.ERROR], timeout=consts.ERROR_TIMEOUT, ) def wait_for_pending_for_input_status(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.PENDING_FOR_INPUT], timeout=consts.PENDING_USER_ACTION_TIMEOUT, ) def wait_for_at_least_one_host_to_boot_during_install(self, nodes_count: int = MINIMUM_NODES_TO_WAIT): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_stage( client=self.api_client, cluster_id=self.id, stages=[consts.HostsProgressStages.REBOOTING], nodes_count=nodes_count, ) def wait_for_non_bootstrap_masters_to_reach_configuring_state_during_install(self, num_masters: int = None): num_masters = num_masters if num_masters is not None else self.nodes.masters_count test_infra.utils.waiting.wait_till_at_least_one_host_is_in_stage( client=self.api_client, cluster_id=self.id, stages=[consts.HostsProgressStages.CONFIGURING], nodes_count=num_masters - 1, ) def wait_for_non_bootstrap_masters_to_reach_joined_state_during_install(self, num_masters: int = None): num_masters = num_masters if num_masters is not None else self.nodes.masters_count test_infra.utils.waiting.wait_till_at_least_one_host_is_in_stage( client=self.api_client, cluster_id=self.id, stages=[consts.HostsProgressStages.JOINED], nodes_count=num_masters - 1, ) def wait_for_hosts_stage(self, stage: str, inclusive: bool = True): index = consts.all_host_stages.index(stage) test_infra.utils.waiting.wait_till_at_least_one_host_is_in_stage( client=self.api_client, cluster_id=self.id, stages=consts.all_host_stages[index:] if inclusive else consts.all_host_stages[index + 1 :], nodes_count=self.nodes.nodes_count, ) @JunitTestCase() def start_install_and_wait_for_installed( self, wait_for_hosts=True, wait_for_operators=True, wait_for_cluster_install=True, download_kubeconfig=True, ): self.start_install() if wait_for_hosts: self.wait_for_hosts_to_install() if wait_for_operators: self.wait_for_operators_to_finish() if wait_for_cluster_install: self.wait_for_install() if download_kubeconfig: self.download_kubeconfig() def disable_worker_hosts(self): hosts = self.get_hosts_by_role(consts.NodeRoles.WORKER) for host in hosts: self.disable_host(host) def disable_host(self, host): host_name = host["requested_hostname"] log.info(f"Going to disable host: {host_name} in cluster: {self.id}") self._infra_env.unbind_host(host_id=host["id"]) def enable_host(self, host): host_name = host["requested_hostname"] log.info(f"Going to enable host: {host_name} in cluster: {self.id}") self._infra_env.bind_host(host_id=host["id"], cluster_id=self.id) def delete_host(self, host): host_id = host["id"] log.info(f"Going to delete host: {host_id} in cluster: {self.id}") self._infra_env.delete_host(host_id=host_id) def cancel_install(self): self.api_client.cancel_cluster_install(cluster_id=self.id) def get_bootstrap_hostname(self): hosts = self.get_hosts_by_role(consts.NodeRoles.MASTER) for host in hosts: if host.get("bootstrap"): log.info("Bootstrap node is: %s", host["requested_hostname"]) return host["requested_hostname"] def get_hosts_by_role(self, role, hosts=None): hosts = hosts or self.api_client.get_cluster_hosts(self.id) nodes_by_role = [] for host in hosts: if host["role"] == role: nodes_by_role.append(host) log.info(f"Found hosts: {nodes_by_role}, that has the role: {role}") return nodes_by_role def get_random_host_by_role(self, role): return random.choice(self.get_hosts_by_role(role)) def get_reboot_required_hosts(self): return self.api_client.get_hosts_in_statuses( cluster_id=self.id, statuses=[consts.NodesStatus.RESETING_PENDING_USER_ACTION] ) def reboot_required_nodes_into_iso_after_reset(self): hosts_to_reboot = self.get_reboot_required_hosts() self.nodes.run_for_given_nodes_by_cluster_hosts(cluster_hosts=hosts_to_reboot, func_name="reset") def wait_for_one_host_to_be_in_wrong_boot_order(self, fall_on_error_status=True): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.NodesStatus.INSTALLING_PENDING_USER_ACTION], status_info=consts.HostStatusInfo.WRONG_BOOT_ORDER, fall_on_error_status=fall_on_error_status, timeout=consts.PENDING_USER_ACTION_TIMEOUT, ) def wait_for_at_least_one_host_to_be_in_reboot_timeout(self, fall_on_error_status=True, nodes_count=1): test_infra.utils.waiting.wait_till_at_least_one_host_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.NodesStatus.INSTALLING_PENDING_USER_ACTION], status_info=consts.HostStatusInfo.REBOOT_TIMEOUT, nodes_count=nodes_count, fall_on_error_status=fall_on_error_status, timeout=consts.PENDING_USER_ACTION_TIMEOUT, ) def wait_for_hosts_to_be_in_wrong_boot_order( self, nodes_count, timeout=consts.PENDING_USER_ACTION_TIMEOUT, fall_on_error_status=True ): test_infra.utils.waiting.wait_till_all_hosts_are_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.NodesStatus.INSTALLING_PENDING_USER_ACTION], status_info=consts.HostStatusInfo.WRONG_BOOT_ORDER, nodes_count=nodes_count, timeout=timeout, fall_on_error_status=fall_on_error_status, ) def wait_for_ready_to_install(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.READY], timeout=consts.READY_TIMEOUT, ) # This code added due to BZ:1909997, temporarily checking if help to prevent unexpected failure time.sleep(10) utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.READY], timeout=consts.READY_TIMEOUT, ) def is_in_cancelled_status(self): return utils.is_cluster_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.CANCELLED] ) def is_in_error(self): return utils.is_cluster_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.ERROR] ) def is_finalizing(self): return utils.is_cluster_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.FINALIZING] ) def is_installing(self): return utils.is_cluster_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSTALLING] ) def reset_install(self): self.api_client.reset_cluster_install(cluster_id=self.id) def is_in_insufficient_status(self): return utils.is_cluster_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSUFFICIENT] ) def wait_for_hosts_to_install( self, timeout=consts.CLUSTER_INSTALLATION_TIMEOUT, fall_on_error_status=True, nodes_count: int = None ): test_infra.utils.waiting.wait_till_all_hosts_are_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSTALLED], nodes_count=nodes_count or self.nodes.nodes_count, timeout=timeout, fall_on_error_status=fall_on_error_status, ) def wait_for_operators_to_finish(self, timeout=consts.CLUSTER_INSTALLATION_TIMEOUT, fall_on_error_status=True): operators = self.get_operators() if fall_on_error_status: statuses = [consts.OperatorStatus.AVAILABLE] else: statuses = [consts.OperatorStatus.AVAILABLE, consts.OperatorStatus.FAILED] operators_utils.wait_till_all_operators_are_in_status( client=self.api_client, cluster_id=self.id, operators_count=len(operators_utils.filter_operators_by_type(operators, OperatorType.BUILTIN)), operator_types=[OperatorType.BUILTIN], statuses=statuses, timeout=timeout, fall_on_error_status=False, ) operators_utils.wait_till_all_operators_are_in_status( client=self.api_client, cluster_id=self.id, operators_count=len(operators_utils.filter_operators_by_type(operators, OperatorType.OLM)), operator_types=[OperatorType.OLM], statuses=[consts.OperatorStatus.AVAILABLE, consts.OperatorStatus.FAILED], timeout=timeout, fall_on_error_status=fall_on_error_status, ) def is_operator_in_status(self, operator_name, status): return operators_utils.is_operator_in_status( operators=self.get_operators(), operator_name=operator_name, status=status ) def wait_for_install(self, timeout=consts.CLUSTER_INSTALLATION_TIMEOUT): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSTALLED], timeout=timeout, ) def _set_hostnames_and_roles(self): cluster_id = self.id hosts = self.to_cluster_hosts(self.api_client.get_cluster_hosts(cluster_id)) nodes = self.nodes.get_nodes(refresh=True) for host in hosts: if host.has_hostname(): continue name = self.find_matching_node_name(host, nodes) assert name is not None, ( f"Failed to find matching node for host with mac address {host.macs()}" f" nodes: {[(n.name, n.ips, n.macs) for n in nodes]}" ) if self.nodes.nodes_count == 1: role = None else: role = consts.NodeRoles.MASTER if consts.NodeRoles.MASTER in name else consts.NodeRoles.WORKER self._infra_env.update_host(host_id=host.get_id(), host_role=role, host_name=name) def _ha_not_none(self): return ( self._high_availability_mode != consts.HighAvailabilityMode.NONE and self._config.platform != consts.Platforms.NONE ) def download_image(self, iso_download_path: str = None) -> Path: if self._infra_env is None: log.warning("No infra_env found. Generating infra_env and downloading ISO") return self.generate_and_download_infra_env( iso_download_path=iso_download_path or self._config.iso_download_path, iso_image_type=self._config.iso_image_type, ) return self._infra_env.download_image(iso_download_path) @JunitTestCase() def prepare_for_installation(self, **kwargs): super(Cluster, self).prepare_for_installation(**kwargs) self.nodes.wait_for_networking() self._set_hostnames_and_roles() if self._high_availability_mode != consts.HighAvailabilityMode.NONE: self.set_host_roles(len(self.nodes.get_masters()), len(self.nodes.get_workers())) self.set_network_params(controller=self.nodes.controller) # in case of None platform we need to specify dns records before hosts are ready if self._config.platform == consts.Platforms.NONE: self._configure_load_balancer() self.nodes.controller.set_dns_for_user_managed_network() elif self._high_availability_mode == consts.HighAvailabilityMode.NONE: main_cidr = self.get_primary_machine_cidr() ip = Cluster.get_ip_for_single_node(self.api_client, self.id, main_cidr) self.nodes.controller.set_single_node_ip(ip) self.nodes.controller.set_dns(api_vip=ip, ingress_vip=ip) self.wait_for_ready_to_install() # in case of regular cluster, need to set dns after vips exits # in our case when nodes are ready, vips will be there for sure if self._ha_not_none(): vips_info = self.__class__.get_vips_from_cluster(self.api_client, self.id) self.nodes.controller.set_dns(api_vip=vips_info["api_vip"], ingress_vip=vips_info["ingress_vip"]) def download_kubeconfig_no_ingress(self, kubeconfig_path: str = None): self.api_client.download_kubeconfig_no_ingress(self.id, kubeconfig_path or self._config.kubeconfig_path) def download_kubeconfig(self, kubeconfig_path: str = None): self.api_client.download_kubeconfig(self.id, kubeconfig_path or self._config.kubeconfig_path) def download_installation_logs(self, cluster_tar_path): self.api_client.download_cluster_logs(self.id, cluster_tar_path) def get_install_config(self): return yaml.safe_load(self.api_client.get_cluster_install_config(self.id)) def get_admin_credentials(self): return self.api_client.get_cluster_admin_credentials(self.id) def register_dummy_host(self): dummy_host_id = "b164df18-0ff1-4b85-9121-059f10f58f71" self.api_client.register_host(self.id, dummy_host_id) def host_get_next_step(self, host_id): return self.api_client.host_get_next_step(self.id, host_id) def host_post_step_result(self, host_id, step_type, step_id, exit_code, output): self.api_client.host_post_step_result( self.id, host_id, step_type=step_type, step_id=step_id, exit_code=exit_code, output=output ) def host_update_install_progress(self, host_id, current_stage, progress_info=None): self.api_client.host_update_progress(self.id, host_id, current_stage, progress_info=progress_info) def host_complete_install(self): self.api_client.complete_cluster_installation(cluster_id=self.id, is_success=True) def setup_nodes(self, nodes, infra_env_config: BaseInfraEnvConfig): self._infra_env = InfraEnv.generate( self.api_client, infra_env_config, iso_image_type=self._config.iso_image_type ) self._infra_env.download_image(iso_download_path=self._config.iso_download_path) nodes.start_all() self.wait_until_hosts_are_discovered() return nodes.create_nodes_cluster_hosts_mapping(cluster=self) def wait_for_cluster_validation( self, validation_section, validation_id, statuses, timeout=consts.VALIDATION_TIMEOUT, interval=2 ): log.info("Wait until cluster %s validation %s is in status %s", self.id, validation_id, statuses) try: waiting.wait( lambda: self.is_cluster_validation_in_status( validation_section=validation_section, validation_id=validation_id, statuses=statuses ), timeout_seconds=timeout, sleep_seconds=interval, waiting_for=f"Cluster validation to be in status {statuses}", ) except BaseException: log.error( "Cluster validation status is: %s", utils.get_cluster_validation_value( self.api_client.cluster_get(self.id), validation_section, validation_id ), ) raise def is_cluster_validation_in_status(self, validation_section, validation_id, statuses): log.info("Is cluster %s validation %s in status %s", self.id, validation_id, statuses) try: return ( utils.get_cluster_validation_value( self.api_client.cluster_get(self.id), validation_section, validation_id ) in statuses ) except BaseException: log.exception("Failed to get cluster %s validation info", self.id) def wait_for_host_validation( self, host_id, validation_section, validation_id, statuses, timeout=consts.VALIDATION_TIMEOUT, interval=2 ): log.info("Wait until host %s validation %s is in status %s", host_id, validation_id, statuses) try: waiting.wait( lambda: self.is_host_validation_in_status( host_id=host_id, validation_section=validation_section, validation_id=validation_id, statuses=statuses, ), timeout_seconds=timeout, sleep_seconds=interval, waiting_for=f"Host validation to be in status {statuses}", ) except BaseException: log.error( "Host validation status is: %s", utils.get_host_validation_value( self.api_client.cluster_get(self.id), host_id, validation_section, validation_id ), ) raise def is_host_validation_in_status(self, host_id, validation_section, validation_id, statuses): log.info("Is host %s validation %s in status %s", host_id, validation_id, statuses) try: return ( utils.get_host_validation_value( self.api_client.cluster_get(self.id), host_id, validation_section, validation_id ) in statuses ) except BaseException: log.exception("Failed to get cluster %s validation info", self.id) def wait_for_cluster_to_be_in_installing_pending_user_action_status(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSTALLING_PENDING_USER_ACTION], timeout=consts.PENDING_USER_ACTION_TIMEOUT, ) def wait_for_cluster_to_be_in_installing_status(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.INSTALLING], timeout=consts.START_CLUSTER_INSTALLATION_TIMEOUT, ) def wait_for_cluster_to_be_in_finalizing_status(self): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=[consts.ClusterStatus.FINALIZING, consts.ClusterStatus.INSTALLED], timeout=consts.CLUSTER_INSTALLATION_TIMEOUT, break_statuses=[consts.ClusterStatus.ERROR], ) def wait_for_cluster_to_be_in_status(self, statuses, timeout=consts.ERROR_TIMEOUT): utils.wait_till_cluster_is_in_status( client=self.api_client, cluster_id=self.id, statuses=statuses, timeout=timeout, ) @classmethod def reset_cluster_and_wait_for_ready(cls, cluster): # Reset cluster install cluster.reset_install() assert cluster.is_in_insufficient_status() # Reboot required nodes into ISO cluster.reboot_required_nodes_into_iso_after_reset() # Wait for hosts to be rediscovered cluster.wait_until_hosts_are_discovered() cluster.wait_for_ready_to_install() def get_events(self, host_id="", infra_env_id=""): warnings.warn( "Cluster.get_events is now deprecated, use EventsHandler.get_events instead", PendingDeprecationWarning, ) handler = EventsHandler(self.api_client) return handler.get_events(host_id, self.id, infra_env_id) def _configure_load_balancer(self): main_cidr = self.get_primary_machine_cidr() secondary_cidr = self.nodes.controller.get_provisioning_cidr() master_ips = self.get_master_ips(self.api_client, self.id, main_cidr) + self.get_master_ips( self.api_client, self.id, secondary_cidr ) worker_ips = self.get_worker_ips(self.api_client, self.id, main_cidr) load_balancer_ip = str(IPNetwork(main_cidr).ip + 1) tf = terraform_utils.TerraformUtils(working_dir=self.nodes.controller.tf_folder) lb_controller = LoadBalancerController(tf) lb_controller.set_load_balancing_config(load_balancer_ip, master_ips, worker_ips) @classmethod def _get_namespace_index(cls, libvirt_network_if): # Hack to retrieve namespace index - does not exist in tests matcher = re.match(r"^tt(\d+)$", libvirt_network_if) return int(matcher.groups()[0]) if matcher is not None else 0 def wait_for_event(self, event_to_find, reference_time, params_list=None, host_id="", infra_env_id="", timeout=10): warnings.warn( "Cluster.wait_for_event is now deprecated, use EventsHandler.wait_for_event instead", PendingDeprecationWarning, ) handler = EventsHandler(self.api_client) return handler.wait_for_event( event_to_find, reference_time, params_list, host_id, infra_env_id, self.id, timeout ) @staticmethod def get_inventory_host_nics_data(host: dict, ipv4_first=True): def get_network_interface_ip(interface): addresses = ( interface.ipv4_addresses + interface.ipv6_addresses if ipv4_first else interface.ipv6_addresses + interface.ipv4_addresses ) return addresses[0].split("/")[0] if len(addresses) > 0 else None inventory = models.Inventory(**json.loads(host["inventory"])) interfaces_list = [models.Interface(**interface) for interface in inventory.interfaces] return [ { "name": interface.name, "model": interface.product, "mac": interface.mac_address, "ip": get_network_interface_ip(interface), "speed": interface.speed_mbps, } for interface in interfaces_list ] @staticmethod def get_hosts_nics_data(hosts: list, ipv4_first=True): return [Cluster.get_inventory_host_nics_data(h, ipv4_first=ipv4_first) for h in hosts] @staticmethod def get_cluster_hosts(cluster: models.cluster.Cluster) -> List[ClusterHost]: return [ClusterHost(h) for h in cluster.hosts] @staticmethod def to_cluster_hosts(hosts: List[Dict[str, Any]]) -> List[ClusterHost]: return [ClusterHost(models.Host(**h)) for h in hosts] def get_cluster_cidrs(self, hosts: List[ClusterHost]) -> Set[str]: cidrs = set() for host in hosts: ips = [] if self.nodes.is_ipv4: ips += host.ipv4_addresses() if self.nodes.is_ipv6: ips += host.ipv6_addresses() for host_ip in ips: cidr = network_utils.get_cidr_by_interface(host_ip) cidrs.add(cidr) return cidrs def get_cluster_matching_cidrs(self, hosts: List[ClusterHost]) -> Set[str]: cluster_cidrs = self.get_cluster_cidrs(hosts) matching_cidrs = set() for cidr in cluster_cidrs: for host in hosts: interfaces = [] if self.nodes.is_ipv4: interfaces += host.ipv4_addresses() if self.nodes.is_ipv6: interfaces += host.ipv6_addresses() if not network_utils.any_interface_in_cidr(interfaces, cidr): break matching_cidrs.add(cidr) return matching_cidrs @staticmethod def get_ip_for_single_node(client, cluster_id, machine_cidr, ipv4_first=True): cluster_info = client.cluster_get(cluster_id).to_dict() if len(cluster_info["hosts"]) == 0: raise Exception("No host found") network = IPNetwork(machine_cidr) interfaces = Cluster.get_inventory_host_nics_data(cluster_info["hosts"][0], ipv4_first=ipv4_first) for intf in interfaces: ip = intf["ip"] if IPAddress(ip) in network: return ip raise Exception("IP for single node not found") @staticmethod def get_ips_for_role(client, cluster_id, network, role): cluster_info = client.cluster_get(cluster_id).to_dict() ret = [] net = IPNetwork(network) hosts_interfaces = Cluster.get_hosts_nics_data([h for h in cluster_info["hosts"] if h["role"] == role]) for host_interfaces in hosts_interfaces: for intf in host_interfaces: ip = IPAddress(intf["ip"]) if ip in net: ret = ret + [intf["ip"]] return ret @staticmethod def get_master_ips(client, cluster_id, network): return Cluster.get_ips_for_role(client, cluster_id, network, consts.NodeRoles.MASTER) @staticmethod def get_worker_ips(client, cluster_id, network): return Cluster.get_ips_for_role(client, cluster_id, network, consts.NodeRoles.WORKER) @staticmethod def get_vips_from_cluster(client, cluster_id): cluster_info = client.cluster_get(cluster_id) return dict(api_vip=cluster_info.api_vip, ingress_vip=cluster_info.ingress_vip) def get_host_disks(self, host, filter=None): hosts = self.get_hosts() selected_host = [h for h in hosts if h["id"] == host["id"]] disks = json.loads(selected_host[0]["inventory"])["disks"] if not filter: return [disk for disk in disks] else: return [disk for disk in disks if filter(disk)] def get_inventory_host_ips_data(self, host: dict): nics = self.get_inventory_host_nics_data(host) return [nic["ip"] for nic in nics] # needed for None platform and single node # we need to get ip where api is running def get_kube_api_ip(self, hosts): for host in hosts: for ip in self.get_inventory_host_ips_data(host): if self.is_kubeapi_service_ready(ip): return ip def get_api_vip(self, cluster): cluster = cluster or self.get_details() api_vip = cluster.api_vip if not api_vip and cluster.user_managed_networking: log.info("API VIP is not set, searching for api ip on masters") masters = self.get_hosts_by_role(consts.NodeRoles.MASTER, hosts=cluster.to_dict()["hosts"]) api_vip = self._wait_for_api_vip(masters) log.info("api vip is %s", api_vip) return api_vip def _wait_for_api_vip(self, hosts, timeout=180): """Enable some grace time for waiting for API's availability.""" return waiting.wait( lambda: self.get_kube_api_ip(hosts=hosts), timeout_seconds=timeout, sleep_seconds=5, waiting_for="API's IP" ) def find_matching_node_name(self, host: ClusterHost, nodes: List[Node]) -> Union[str, None]: # Looking for node matches the given host by its mac address (which is unique) for node in nodes: for mac in node.macs: if mac.lower() in host.macs(): return node.name # IPv6 static ips if self._config.is_static_ip: mappings = static_network.get_name_to_mac_addresses_mapping(self.nodes.controller.tf_folder) for mac in host.macs(): for name, macs in mappings.items(): if mac in macs: return name return None @staticmethod def is_kubeapi_service_ready(ip_or_dns): """Validate if kube-api is ready on given address.""" with contextlib.suppress(ValueError): # IPv6 addresses need to be surrounded with square-brackets # to differentiate them from domain names if ipaddress.ip_address(ip_or_dns).version == 6: ip_or_dns = f"[{ip_or_dns}]" try: response = requests.get(f"https://{ip_or_dns}:6443/readyz", verify=False, timeout=1) return response.ok except BaseException: return False def wait_and_kill_installer(self, host): # Wait for specific host to be in installing in progress self.wait_for_specific_host_status(host=host, statuses=[consts.NodesStatus.INSTALLING_IN_PROGRESS]) # Kill installer to simulate host error selected_node = self.nodes.get_node_from_cluster_host(host) selected_node.kill_installer() def get_api_vip_from_cluster(api_client, cluster_info: Union[dict, models.cluster.Cluster], pull_secret): import warnings from tests.config import ClusterConfig, InfraEnvConfig warnings.warn( "Soon get_api_vip_from_cluster will be deprecated. Avoid using or adding new functionality to " "this function. The function and solution for that case have not been determined yet. It might be " "on another module, or as a classmethod within Cluster class." " For more information see https://issues.redhat.com/browse/MGMT-4975", PendingDeprecationWarning, ) if isinstance(cluster_info, dict): cluster_info = models.cluster.Cluster(**cluster_info) cluster = Cluster( api_client=api_client, infra_env_config=InfraEnvConfig(), config=ClusterConfig( cluster_name=ClusterName(cluster_info.name), pull_secret=pull_secret, ssh_public_key=cluster_info.ssh_public_key, cluster_id=cluster_info.id, ), nodes=None, ) return cluster.get_api_vip(cluster=cluster_info)
42.450853
120
0.679813
[ "Apache-2.0" ]
empovit/assisted-test-infra
discovery-infra/test_infra/helper_classes/cluster.py
52,257
Python
""" Purpose: Unsupervised learning sampler Date created: 2020-11-06 Ref repo: https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries Local folder: C:/Users/Work1/Desktop/Info/GitHub/python-examples-main/notebook-samples/unsupervised Contributor(s): Mark M. """ import os from pathlib import Path # Set local folder if developing/debugging myuser = os.environ["username"] PROJECT_FOLDER = Path(rf"C:\Users\{myuser}\Desktop\Info\GitHub\python-examples-main\notebook-samples\unsupervised") os.chdir(PROJECT_FOLDER) from UnsupervisedTSRepo import scikit_wrappers import gc import zipfile import requests from io import BytesIO, StringIO # Data sci and dat processing imports import scipy as sp import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import sklearn from sklearn import cluster from sklearn import neighbors import torch import torch.nn as nn import torch.optim as optim pd.set_option("mode.chained_assignment", None) pd.set_option("display.width", 120) pd.set_option("display.date_yearfirst", True) pd.set_option("display.max_colwidth", None) pd.set_option("display.max_columns", None) pd.set_option("display.max_info_rows", 10000) gc.enable() # Check for CUDA CUDA_TF: bool = False if torch.cuda.is_available(): print("Using CUDA...") CUDA_TF = True GPU = 0 zip_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00235/household_power_consumption.zip" def import_zipfile_data(URL = zip_url): with requests.Session() as s: tmp = s.get(URL) with zipfile.ZipFile(BytesIO(tmp.content)) as zfo: with zfo.open("household_power_consumption.txt") as zfi: tmp = StringIO(zfi.read().decode("utf-8")) data_ = pd.read_csv(tmp, sep=";", decimal=",", header=0, low_memory=False) del tmp return data_ data = import_zipfile_data(zip_url) data.loc[:, "Date"] = pd.to_datetime(data.loc[:, "Date"], yearfirst=True) data.loc[:, "Time"] = pd.to_datetime(data.loc[:, "Time"], format="%H:%M:%S").dt.time #dataset = data.transpose(pd.array(data))[2].reshape(1, 1, -1) # Update missing values with the "last seen" value. # This probably works better for timeseries than other data # since order is important here. dataset = np.transpose(np.array(data))[2].reshape(1, 1, -1) for idx in range(np.shape(dataset)[2]): if dataset[0, 0, idx] == "?": dataset[0, 0, idx] = dataset[0, 0, idx - 1] dataset = dataset.astype(np.float32) # Create training and testing sets train = dataset[:, :, :500000] test = dataset[:, :, 500000:] # Normalization mu_ = np.mean(dataset) sigma_ = np.std(dataset) normalize = lambda d, mean, sigma: (d - mean) / sigma dataset = normalize(dataset, mu_, sigma_) train = normalize(train, mu_, sigma_) test = normalize(test, mu_, sigma_) print(f"Normalized data set metrics:\n\tMean: {np.mean(dataset)}\n\tVariance: {np.var(dataset)}") # Feature learning # Train new model? training = True model_path = PROJECT_FOLDER.joinpath(r"data\HouseholdPowerConsumption_yearly") # hyperparams = { # "batch_size": 1, # "channels": 30, # "compared_length": None, # "depth": 10, # "nb_steps": 400, # "in_channels": 1, # "kernel_size": 3, # "penalty": None, # "early_stopping": None, # "lr": 0.001, # "nb_random_samples": 10, # "negative_penalty": 1, # "out_channels": 160, # "reduced_size": 80, # "cuda": CUDA_TF, # "gpu": GPU # } # encoder_yearly = scikit_wrappers.CausalCNNEncoderClassifier() # encoder_yearly.set_params(**hyperparams) # if training: # encoder_yearly.fit_encoder(train, save_memory=True, verbose=True) # encoder_yearly.save_encoder(model_path.as_posix()) # else: # encoder_yearly.load_encoder(model_path.as_posix()) torch.cuda.empty_cache() """" For local zipfile data from io import StringIO with zipfile.ZipFile("household_power_consumption.zip") as zfo: with zfo.open("household_power_consumption.txt") as zfi: tmp = StringIO(zfi.read().decode("utf-8")) data = pd.read_csv(tmp, sep=";", decimal=",", header=0, low_memory=False) del tmp """ """ import hmac import pickle import hashlib import binascii def create_sha256_signature(key, message): byte_key = binascii.unhexlify(key) message = message.encode() return hmac.new(byte_key, message, hashlib.sha256).hexdigest().upper() create_sha256_signature("E49756B4C8FAB4E48222A3E7F3B97CC3", "TEST STRING") """
23.978836
115
0.703442
[ "MIT" ]
MarkMoretto/python-examples-main
notebook-samples/unsupervised/pred_electricity_consumption.py
4,532
Python
""" Copyright (c) 2021 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ from io import BufferedReader, BytesIO import pytest import requests import responses from flexmock import flexmock from atomic_reactor.util import get_retrying_requests_session from atomic_reactor.utils.pnc import PNCUtil PNC_BASE_API_URL = 'http://pnc.localhost/pnc-rest/v2' PNC_GET_SCM_ARCHIVE_PATH = 'builds/{}/scm-archive' def mock_pnc_map(): return {'base_api_url': PNC_BASE_API_URL, 'get_scm_archive_path': PNC_GET_SCM_ARCHIVE_PATH} @pytest.mark.usefixtures('user_params') class TestGetSCMArchiveFromBuildID(object): @responses.activate def test_connection_filename_in_header(self): build_id = '1234' filename = 'source.tar.gz' scm_url = f'https://code.example.com/{filename};sf=tgz' content = b'abc' reader = BufferedReader(BytesIO(content), buffer_size=1) # to mock this URL we have to construct it manually first get_scm_archive_request_url = PNC_BASE_API_URL + '/' + PNC_GET_SCM_ARCHIVE_PATH responses.add(responses.GET, get_scm_archive_request_url.format(build_id), body=reader, status=302, headers={'Location': scm_url}) responses.add(responses.HEAD, scm_url, body='', status=200, headers={'Content-disposition': f'filename="{filename}"'}) pnc_util = PNCUtil(mock_pnc_map()) url, dest_filename = pnc_util.get_scm_archive_from_build_id(build_id) assert url == scm_url assert dest_filename == filename @responses.activate def test_connection_filename_in_url(self): build_id = '1234' filename = 'source.tar.gz' scm_url = f'https://code.example.com/{filename}' # to mock this URL we have to construct it manually first get_scm_archive_request_url = PNC_BASE_API_URL + '/' + PNC_GET_SCM_ARCHIVE_PATH responses.add(responses.GET, get_scm_archive_request_url.format(build_id), body='', status=302, headers={'Location': scm_url}) pnc_util = PNCUtil(mock_pnc_map()) url, dest_filename = pnc_util.get_scm_archive_from_build_id(build_id) assert url == scm_url assert dest_filename == filename def test_connection_failure(self): build_id = '1234' session = get_retrying_requests_session() (flexmock(session) .should_receive('get') .and_raise(requests.exceptions.RetryError)) pnc_util = PNCUtil(mock_pnc_map(), session) with pytest.raises(requests.exceptions.RetryError): pnc_util.get_scm_archive_from_build_id(build_id)
33.457831
95
0.695355
[ "BSD-3-Clause" ]
hjmodi/atomic-reactor
tests/utils/test_pnc.py
2,777
Python
class Beam(object): def __init__(self): super().__init__() def get_number_of_rays(self): raise NotImplementedError("method is abstract") def get_rays(self): raise NotImplementedError("method is abstract") def get_ray(self, ray_index): raise NotImplementedError("method is abstract") def duplicate(self): raise NotImplementedError("method is abstract") def merge(self, other_beam): raise NotImplementedError("method is abstract")
23.136364
55
0.675835
[ "MIT" ]
oasys-kit/rafry
rafry/raytracer/beam.py
509
Python
from .hflip import hflip from .resize import resize from .pad import pad from .random_crop import random_crop from .to_tensor import to_tensor from .random_erasing import random_erasing from .random_sized_rect_crop import random_sized_rect_crop def transforms(item, cfg, mode): """ :param item: sample = deepcopy(self.items[index]) :param cfg: cfg :return: eval() transform str to list, dict, tuple. Here is a series of the transform methods in turn. """ transforms_dataset_factory = { 'train': cfg.dataset.train, 'test': cfg.dataset.test } if transforms_dataset_factory[mode].before_to_tensor_transform_list is not None: for t in transforms_dataset_factory[mode].before_to_tensor_transform_list: item = eval('{}(item, cfg)'.format(t)) item = to_tensor(item, cfg) if transforms_dataset_factory[mode].after_to_tensor_transform_list is not None: for t in transforms_dataset_factory[mode].after_to_tensor_transform_list: item = eval('{}(item, cfg)'.format(t)) return item
34.741935
97
0.717734
[ "MIT" ]
nickhuang1996/HJL-re-id
MDRSREID/utils/data_utils/transforms/torch_transforms/__init__.py
1,077
Python
import torch import torch.nn as nn import math from arcface.utils import l2_norm, Flatten, SentVec_TFIDF model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.ca = ChannelAttention(planes) self.sa = SpatialAttention() self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.ca(out) * out out = self.sa(out) * out if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.ca = ChannelAttention(planes * 4) self.sa = SpatialAttention() self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.ca(out) * out out = self.sa(out) * out if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out MODEL = { 50:{ 'layers': [3, 4, 6, 3] }, 101:{ 'layers': [3, 4, 23, 3] }, 152:{ 'layers': [3, 8, 36, 3] } } class ResNetCBAM(nn.Module): def __init__(self, config): super(ResNetCBAM, self).__init__() embedding_size = config.embedding_size drop_ratio = config.drop_ratio model_dic = MODEL[config.num_layers_c] layers = model_dic['layers'] # embedding_size = 2048 # drop_ratio = 0.1 # layers = [3, 4, 23, 3] # self.sentvec = SentVec_TFIDF(embedding_size=embedding_size, root_dir='data/') block = Bottleneck self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) # self.avgpool = nn.AvgPool2d(4, stride=1) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512* block.expansion, 1000) self.bn_last = nn.BatchNorm1d(embedding_size) self.bn_last.bias.requires_grad_(False) # self.output_layer = nn.Sequential( # nn.BatchNorm2d(512 * block.expansion), # nn.Dropout(drop_ratio), # Flatten(), # nn.Linear(512 * block.expansion, embedding_size), # nn.BatchNorm1d(embedding_size)) # self.last_layer = nn.Sequential( # nn.Linear(2*embedding_size, embedding_size), # nn.BatchNorm1d(embedding_size) # ) '''if not config.resume: self._initialize_weights() ''' def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) # print(x.size()) x = self.layer2(x) # print(x.size()) x = self.layer3(x) # print(x.size()) x = self.layer4(x) # print(x.size()) x = self.avgpool(x) # x = self.output_layer(x) # sent = self.sentvec(text) # x = torch.cat((x, sent), dim=1) # x = self.last_layer(x) x = torch.flatten(x, 1) if self.training: return x, self.bn_last(x) else: return l2_norm(self.bn_last(x)) if __name__ == "__main__": net = ResNetCBAM('aa') net.load_state_dict(torch.load('trained_models/resnet_cbam_101.pth')) # del net.output_layer # net.bn_last = nn.BatchNorm1d(2048) # l = [3, 4, 6, 3] # for i in range(3): # net.layer1[i].ca = ChannelAttention(64 * 4) # net.layer1[i].sa = SpatialAttention() # for i in range(4): # net.layer2[i].ca = ChannelAttention(64 * 8) # net.layer2[i].sa = SpatialAttention() # for i in range(6): # net.layer3[i].ca = ChannelAttention(64 * 16) # net.layer3[i].sa = SpatialAttention() # for i in range(3): # net.layer4[i].ca = ChannelAttention(64 * 32) # net.layer4[i].sa = SpatialAttention() # # net.sentvec = SentVec_TFIDF(embedding_size=512, root_dir='data/') # net.output_layer = nn.Sequential( # nn.BatchNorm2d(512* 4), # nn.Dropout(0.1), # Flatten(), # nn.Linear(512 * 4, 4096), # nn.BatchNorm1d(4096)) # del net.fc torch.save(net.state_dict(), 'trained_models/resnet_cbam_101.pth') a = torch.randn(5,3,224,224) b = net(a) print(b[0].size())
33.618881
87
0.562142
[ "MIT" ]
DerryHub/the-TaobaoLive-Commodity-Identify-Competition
arcface/resnet_cbam.py
9,615
Python
# Automatically generated by pb2py # fmt: off if False: from typing_extensions import Literal Transfer = 0 # type: Literal[0] RegisterSecondPassphrase = 1 # type: Literal[1] RegisterDelegate = 2 # type: Literal[2] CastVotes = 3 # type: Literal[3] RegisterMultisignatureAccount = 4 # type: Literal[4] CreateDapp = 5 # type: Literal[5] TransferIntoDapp = 6 # type: Literal[6] TransferOutOfDapp = 7 # type: Literal[7]
30.571429
53
0.721963
[ "MIT" ]
ph4r05/monero-agent
monero_glue/messages/LiskTransactionType.py
428
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import inspect import setuptools from setuptools.command.test import test as TestCommand from setuptools import setup if sys.version_info < (3, 4, 0): sys.stderr.write('FATAL: This script needs to be run with Python 3.4+\n') sys.exit(1) __location__ = os.path.join(os.getcwd(), os.path.dirname(inspect.getfile(inspect.currentframe()))) def read_version(package): data = {} with open(os.path.join(package, '__init__.py'), 'r') as fd: exec(fd.read(), data) return data['__version__'] NAME = 'github-maintainer' MAIN_PACKAGE = 'github_maintainer' VERSION = read_version(MAIN_PACKAGE) DESCRIPTION = 'CLI support tool for GitHub repo maintainers' LICENSE = 'Apache License 2.0' URL = 'https://github.com/zalando-stups/github-maintainer-cli' AUTHOR = 'Henning Jacobs' EMAIL = '[email protected]' COVERAGE_XML = True COVERAGE_HTML = False JUNIT_XML = True # Add here all kinds of additional classifiers as defined under # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: Implementation :: CPython', ] CONSOLE_SCRIPTS = ['github-maintainer = github_maintainer.cli:main'] class PyTest(TestCommand): user_options = [('cov=', None, 'Run coverage'), ('cov-xml=', None, 'Generate junit xml report'), ('cov-html=', None, 'Generate junit html report'), ('junitxml=', None, 'Generate xml of test results')] def initialize_options(self): TestCommand.initialize_options(self) self.cov = None self.cov_xml = False self.cov_html = False self.junitxml = None def finalize_options(self): TestCommand.finalize_options(self) if self.cov is not None: self.cov = ['--cov', self.cov, '--cov-report', 'term-missing'] if self.cov_xml: self.cov.extend(['--cov-report', 'xml']) if self.cov_html: self.cov.extend(['--cov-report', 'html']) if self.junitxml is not None: self.junitxml = ['--junitxml', self.junitxml] def run_tests(self): try: import pytest except: raise RuntimeError('py.test is not installed, run: pip install pytest') params = {'args': self.test_args} if self.cov: params['args'] += self.cov if self.junitxml: params['args'] += self.junitxml params['args'] += ['--doctest-modules', MAIN_PACKAGE, '-s'] errno = pytest.main(**params) sys.exit(errno) def get_install_requirements(path): content = open(os.path.join(__location__, path)).read() return [req for req in content.split('\\n') if req != ''] def read(fname): return open(os.path.join(__location__, fname), encoding='utf-8').read() def setup_package(): # Assemble additional setup commands cmdclass = {} cmdclass['test'] = PyTest install_reqs = get_install_requirements('requirements.txt') command_options = {'test': {'test_suite': ('setup.py', 'tests'), 'cov': ('setup.py', MAIN_PACKAGE)}} if JUNIT_XML: command_options['test']['junitxml'] = 'setup.py', 'junit.xml' if COVERAGE_XML: command_options['test']['cov_xml'] = 'setup.py', True if COVERAGE_HTML: command_options['test']['cov_html'] = 'setup.py', True setup( name=NAME, version=VERSION, url=URL, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, license=LICENSE, keywords='github git project maintainer', long_description=read('README.rst'), classifiers=CLASSIFIERS, test_suite='tests', packages=setuptools.find_packages(exclude=['tests', 'tests.*']), install_requires=install_reqs, setup_requires=['six', 'flake8'], cmdclass=cmdclass, tests_require=['pytest-cov', 'pytest'], command_options=command_options, entry_points={'console_scripts': CONSOLE_SCRIPTS}, ) if __name__ == '__main__': setup_package()
31.514286
114
0.636673
[ "Apache-2.0" ]
hjacobs/github-maintainer-cli
setup.py
4,412
Python
from mopidy import backend import pykka from mopidy_funkwhale import api, client, library, playback, playlists class FunkwhaleBackend(pykka.ThreadingActor, backend.Backend): def __init__(self, config, audio): super(FunkwhaleBackend, self).__init__() self.api = api.FunkwhaleApi(config) self.client = client.FunkwhaleClient(self.api) self.audio = audio self.library = library.FunkwhaleLibraryProvider(backend=self) self.playback = playback.FunkwhalePlaybackProvider(audio=audio, backend=self) self.playlists = playlists.FunkwhalePlaylistsProvider(backend=self) self.uri_schemes = ['funkwhale'] def on_start(self): self.api.login()
35.181818
75
0.665375
[ "Apache-2.0" ]
gjabell/mopidy-funkwhale
mopidy_funkwhale/backend.py
774
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from dve.io.table import TableDataBase from jhunt.qt.widgets.mainwindow import MainWindow import datetime from PyQt5.QtWidgets import QApplication APPLICATION_NAME = "JHunt" def main(): adverts_file_name = ".jhunt_adverts" adverts_data_schema = [ {"header": "Date", "default_value": datetime.datetime.now(), "dtype": datetime.datetime, "mapped": False}, {"header": "Score", "default_value": int(0), "dtype": int, "mapped": False, "min_value": 0, "max_value": 5}, {"header": "Application", "default_value": False, "dtype": bool, "mapped": False}, {"header": "Category", "default_value": "Entreprise", "dtype": str, "mapped": False, "values": ("Entreprise", "IR/IE", "PostDoc")}, {"header": "Organization", "default_value": "", "dtype": str, "mapped": False}, {"header": "Ref.", "default_value": "", "dtype": str, "mapped": False}, {"header": "Title", "default_value": "", "dtype": str, "mapped": False}, {"header": "URL", "default_value": "", "dtype": str, "mapped": True, "widget": "QLineEdit"}, {"header": "Pros", "default_value": "", "dtype": str, "mapped": True, "widget": "QPlainTextEdit"}, {"header": "Cons", "default_value": "", "dtype": str, "mapped": True, "widget": "QPlainTextEdit"}, {"header": "Description", "default_value": "", "dtype": str, "mapped": True, "widget": "QPlainTextEdit"} ] adverts_database = TableDataBase(adverts_data_schema, adverts_file_name) websites_file_name = ".jhunt_websites" websites_data_schema = [ {"header": "Date", "default_value": datetime.datetime.now(), "dtype": datetime.datetime, "mapped": False, "hidden": True}, {"header": "Name", "default_value": "", "dtype": str, "mapped": False}, {"header": "Score", "default_value": int(0), "dtype": int, "mapped": False, "min_value": 0, "max_value": 3}, {"header": "Category", "default_value": "Private Company", "dtype": str, "mapped": False, "values": ("Private Company", "Public Research", "School", "Search Engine")}, {"header": "Last visit", "default_value": datetime.datetime.now(), "dtype": datetime.datetime, "mapped": False}, {"header": "Today status", "default_value": "None", "dtype": str, "mapped": False, "values": ("None", "Partial", "Full")}, {"header": "Description", "default_value": "", "dtype": str, "mapped": True, "widget": "QPlainTextEdit"}, {"header": "URL", "default_value": "", "dtype": str, "mapped": True, "widget": "QLineEdit"} ] websites_database = TableDataBase(websites_data_schema, websites_file_name) adverts_data = adverts_database.load() # TODO ? websites_data = websites_database.load() # TODO ? app = QApplication(sys.argv) app.setApplicationName(APPLICATION_NAME) # Make widgets window = MainWindow(adverts_data, websites_data) # The mainloop of the application. The event handling starts from this point. # The exec_() method has an underscore. It is because the exec is a Python keyword. And thus, exec_() was used instead. exit_code = app.exec_() adverts_database.save(adverts_data) # TODO ? websites_database.save(websites_data) # TODO ? # The sys.exit() method ensures a clean exit. # The environment will be informed, how the application ended. sys.exit(exit_code) if __name__ == '__main__': main()
57.520548
201
0.526554
[ "MIT" ]
jeremiedecock/jhunt
jhunt/qt/main.py
4,199
Python
# coding=utf-8 # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file has been copied from # https://github.com/mlcommons/inference/blob/r0.7/vision/medical_imaging/3d-unet/preprocess.py import argparse import numpy import os import pickle import sys import torch from batchgenerators.augmentations.utils import pad_nd_image from batchgenerators.utilities.file_and_folder_operations import subfiles from nnunet.training.model_restore import load_model_and_checkpoint_files from nnunet.inference.predict import preprocess_multithreaded def preprocess_MLPerf(model, checkpoint_name, folds, fp16, list_of_lists, output_filenames, preprocessing_folder, num_threads_preprocessing): assert len(list_of_lists) == len(output_filenames) print("loading parameters for folds", folds) trainer, params = load_model_and_checkpoint_files(model, folds, fp16, checkpoint_name=checkpoint_name) print("starting preprocessing generator") preprocessing = preprocess_multithreaded(trainer, list_of_lists, output_filenames, num_threads_preprocessing, None) print("Preprocessing images...") all_output_files = [] for preprocessed in preprocessing: output_filename, (d, dct) = preprocessed all_output_files.append(output_filename) if isinstance(d, str): data = np.load(d) os.remove(d) d = data # Pad to the desired full volume d = pad_nd_image(d, trainer.patch_size, "constant", None, False, None) with open(os.path.join(preprocessing_folder, output_filename+ ".pkl"), "wb") as f: pickle.dump([d, dct], f) f.close() return all_output_files def preprocess_setup(preprocessed_data_dir): print("Preparing for preprocessing data...") # Validation set is fold 1 fold = 1 validation_fold_file = '../models/image_segmentation/tensorflow/3d_unet_mlperf/inference/nnUNet/folds/fold1_validation.txt' # Make sure the model exists model_dir = 'build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1' model_path = os.path.join(model_dir, "plans.pkl") assert os.path.isfile(model_path), "Cannot find the model file {:}!".format(model_path) checkpoint_name = "model_final_checkpoint" # Other settings fp16 = False num_threads_preprocessing = 12 raw_data_dir = 'build/raw_data/nnUNet_raw_data/Task043_BraTS2019/imagesTr' # Open list containing validation images from specific fold (e.g. 1) validation_files = [] with open(validation_fold_file) as f: for line in f: validation_files.append(line.rstrip()) # Create output and preprocessed directory if not os.path.isdir(preprocessed_data_dir): os.makedirs(preprocessed_data_dir) # Create list of images locations (i.e. 4 images per case => 4 modalities) all_files = subfiles(raw_data_dir, suffix=".nii.gz", join=False, sort=True) list_of_lists = [[os.path.join(raw_data_dir, i) for i in all_files if i[:len(j)].startswith(j) and len(i) == (len(j) + 12)] for j in validation_files] # Preprocess images, returns filenames list # This runs in multiprocess print("Acually preprocessing data...") preprocessed_files = preprocess_MLPerf(model_dir, checkpoint_name, fold, fp16, list_of_lists, validation_files, preprocessed_data_dir, num_threads_preprocessing) print("Saving metadata of the preprocessed data...") with open(os.path.join(preprocessed_data_dir, "preprocessed_files.pkl"), "wb") as f: pickle.dump(preprocessed_files, f) print("Preprocessed data saved to {:}".format(preprocessed_data_dir)) print("Done!")
40.934579
141
0.736073
[ "Apache-2.0" ]
Alavandar08/models
models/image_segmentation/tensorflow/3d_unet_mlperf/inference/nnUNet/preprocess.py
4,380
Python
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import DECIMAL_PLACES class livecoin(Exchange): def describe(self): return self.deep_extend(super(livecoin, self).describe(), { 'id': 'livecoin', 'name': 'LiveCoin', 'countries': ['US', 'UK', 'RU'], 'rateLimit': 1000, 'userAgent': self.userAgents['chrome'], 'has': { 'fetchDepositAddress': True, 'fetchDeposits': True, 'CORS': False, 'fetchTickers': True, 'fetchCurrencies': True, 'fetchTradingFee': True, 'fetchTradingFees': True, 'fetchOrders': True, 'fetchOrder': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, 'fetchWithdrawals': True, 'withdraw': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27980768-f22fc424-638a-11e7-89c9-6010a54ff9be.jpg', 'api': 'https://api.livecoin.net', 'www': 'https://www.livecoin.net', 'doc': 'https://www.livecoin.net/api?lang=en', 'referral': 'https://livecoin.net/?from=Livecoin-CQ1hfx44', }, 'api': { 'public': { 'get': [ 'exchange/all/order_book', 'exchange/last_trades', 'exchange/maxbid_minask', 'exchange/order_book', 'exchange/restrictions', 'exchange/ticker', # omit params to get all tickers at once 'info/coinInfo', ], }, 'private': { 'get': [ 'exchange/client_orders', 'exchange/order', 'exchange/trades', 'exchange/commission', 'exchange/commissionCommonInfo', 'payment/balances', 'payment/balance', 'payment/get/address', 'payment/history/size', 'payment/history/transactions', ], 'post': [ 'exchange/buylimit', 'exchange/buymarket', 'exchange/cancellimit', 'exchange/selllimit', 'exchange/sellmarket', 'payment/out/capitalist', 'payment/out/card', 'payment/out/coin', 'payment/out/okpay', 'payment/out/payeer', 'payment/out/perfectmoney', 'payment/voucher/amount', 'payment/voucher/make', 'payment/voucher/redeem', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.18 / 100, 'taker': 0.18 / 100, }, }, 'commonCurrencies': { 'BTCH': 'Bithash', 'CPC': 'Capricoin', 'CPT': 'Cryptos', # conflict with CPT = Contents Protocol https://github.com/ccxt/ccxt/issues/4920 and https://github.com/ccxt/ccxt/issues/6081 'EDR': 'E-Dinar Coin', # conflicts with EDR for Endor Protocol and EDRCoin 'eETT': 'EETT', 'FirstBlood': '1ST', 'FORTYTWO': '42', 'LEO': 'LeoCoin', 'ORE': 'Orectic', 'PLN': 'Plutaneum', # conflict with Polish Zloty 'RUR': 'RUB', 'SCT': 'SpaceCoin', 'TPI': 'ThaneCoin', 'wETT': 'WETT', 'XBT': 'Bricktox', }, 'exceptions': { 'exact': { '1': ExchangeError, '10': AuthenticationError, '100': ExchangeError, # invalid parameters '101': AuthenticationError, '102': AuthenticationError, '103': InvalidOrder, # invalid currency '104': InvalidOrder, # invalid amount '105': InvalidOrder, # unable to block funds '11': AuthenticationError, '12': AuthenticationError, '2': AuthenticationError, # "User not found" '20': AuthenticationError, '30': AuthenticationError, '31': NotSupported, '32': ExchangeError, '429': DDoSProtection, '503': ExchangeNotAvailable, }, 'broad': { 'insufficient funds': InsufficientFunds, # https://github.com/ccxt/ccxt/issues/5749 'NOT FOUND': OrderNotFound, 'Cannot find order': OrderNotFound, 'Minimal amount is': InvalidOrder, }, }, }) async def fetch_markets(self, params={}): response = await self.publicGetExchangeTicker(params) restrictions = await self.publicGetExchangeRestrictions() restrictionsById = self.index_by(restrictions['restrictions'], 'currencyPair') result = [] for i in range(0, len(response)): market = response[i] id = self.safe_string(market, 'symbol') baseId, quoteId = id.split('/') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote coinRestrictions = self.safe_value(restrictionsById, symbol) precision = { 'price': 5, 'amount': 8, 'cost': 8, } limits = { 'amount': { 'min': math.pow(10, -precision['amount']), 'max': math.pow(10, precision['amount']), }, } if coinRestrictions: precision['price'] = self.safe_integer(coinRestrictions, 'priceScale', 5) limits['amount']['min'] = self.safe_float(coinRestrictions, 'minLimitQuantity', limits['amount']['min']) limits['price'] = { 'min': math.pow(10, -precision['price']), 'max': math.pow(10, precision['price']), } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': True, 'precision': precision, 'limits': limits, 'info': market, }) return result async def fetch_currencies(self, params={}): response = await self.publicGetInfoCoinInfo(params) currencies = self.safe_value(response, 'info') result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'symbol') # todo: will need to rethink the fees # to add support for multiple withdrawal/deposit methods and # differentiated fees for each particular method code = self.safe_currency_code(id) precision = 8 # default precision, todo: fix "magic constants" walletStatus = self.safe_string(currency, 'walletStatus') active = (walletStatus == 'normal') name = self.safe_string(currency, 'name') fee = self.safe_float(currency, 'withdrawFee') result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'fee': fee, 'precision': precision, 'limits': { 'amount': { 'min': self.safe_float(currency, 'minOrderAmount'), 'max': math.pow(10, precision), }, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'cost': { 'min': self.safe_float(currency, 'minOrderAmount'), 'max': None, }, 'withdraw': { 'min': self.safe_float(currency, 'minWithdrawAmount'), 'max': math.pow(10, precision), }, 'deposit': { 'min': self.safe_float(currency, 'minDepositAmount'), 'max': None, }, }, } result = self.append_fiat_currencies(result) return result def append_fiat_currencies(self, result): precision = 8 defaults = { 'info': None, 'active': True, 'fee': None, 'precision': precision, 'limits': { 'withdraw': {'min': None, 'max': None}, 'deposit': {'min': None, 'max': None}, 'amount': {'min': None, 'max': None}, 'cost': {'min': None, 'max': None}, 'price': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, }, } currencies = [ {'id': 'USD', 'code': 'USD', 'name': 'US Dollar'}, {'id': 'EUR', 'code': 'EUR', 'name': 'Euro'}, # {'id': 'RUR', 'code': 'RUB', 'name': 'Russian ruble'}, ] currencies.append({ 'id': 'RUR', 'code': self.safe_currency_code('RUR'), 'name': 'Russian ruble', }) for i in range(0, len(currencies)): currency = currencies[i] code = currency['code'] result[code] = self.extend(defaults, currency) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetPaymentBalances(params) result = {'info': response} for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = None if code in result: account = result[code] else: account = self.account() if balance['type'] == 'total': account['total'] = self.safe_float(balance, 'value') if balance['type'] == 'available': account['free'] = self.safe_float(balance, 'value') if balance['type'] == 'trade': account['used'] = self.safe_float(balance, 'value') result[code] = account return self.parse_balance(result) async def fetch_trading_fees(self, params={}): await self.load_markets() response = await self.privateGetExchangeCommissionCommonInfo(params) commission = self.safe_float(response, 'commission') return { 'info': response, 'maker': commission, 'taker': commission, } async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'currencyPair': self.market_id(symbol), 'groupByPrice': 'false', } if limit is not None: request['depth'] = limit # 100 response = await self.publicGetExchangeOrderBook(self.extend(request, params)) timestamp = self.safe_integer(response, 'timestamp') return self.parse_order_book(response, timestamp) def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() symbol = None if market: symbol = market['symbol'] vwap = self.safe_float(ticker, 'vwap') baseVolume = self.safe_float(ticker, 'volume') quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = self.safe_float(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': self.safe_float(ticker, 'best_bid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'best_ask'), 'askVolume': None, 'vwap': self.safe_float(ticker, 'vwap'), 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() response = await self.publicGetExchangeTicker(params) tickers = self.index_by(response, 'symbol') ids = list(tickers.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'currencyPair': market['id'], } ticker = await self.publicGetExchangeTicker(self.extend(request, params)) return self.parse_ticker(ticker, market) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "time": 1409935047, # "id": 99451, # "price": 350, # "quantity": 2.85714285, # "type": "BUY" # } # # fetchMyTrades(private) # # { # "datetime": 1435844369, # "id": 30651619, # "type": "sell", # "symbol": "BTC/EUR", # "price": 230, # "quantity": 0.1, # "commission": 0, # "clientorderid": 1472837650 # } timestamp = self.safe_timestamp_2(trade, 'time', 'datetime') fee = None feeCost = self.safe_float(trade, 'commission') if feeCost is not None: feeCurrency = market['quote'] if market else None fee = { 'cost': feeCost, 'currency': feeCurrency, } orderId = self.safe_string(trade, 'clientorderid') id = self.safe_string(trade, 'id') side = self.safe_string_lower(trade, 'type') amount = self.safe_float(trade, 'quantity') price = self.safe_float(trade, 'price') cost = None if amount is not None: if price is not None: cost = amount * price symbol = None if market is not None: symbol = market['symbol'] return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'currencyPair': market['id'], # orderDesc': 'true', # or 'false', if True then new orders will be first, otherwise old orders will be first. # 'offset': 0, # page offset, position of the first item on the page } if limit is not None: request['limit'] = limit response = await self.privateGetExchangeTrades(self.extend(request, params)) # # [ # { # "datetime": 1435844369, # "id": 30651619, # "type": "sell", # "symbol": "BTC/EUR", # "price": 230, # "quantity": 0.1, # "commission": 0, # "clientorderid": 1472837650 # }, # { # "datetime": 1435844356, # "id": 30651618, # "type": "sell", # "symbol": "BTC/EUR", # "price": 230, # "quantity": 0.2, # "commission": 0.092, # "clientorderid": 1472837651 # } # ] # return self.parse_trades(response, market, since, limit) async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'currencyPair': market['id'], } response = await self.publicGetExchangeLastTrades(self.extend(request, params)) # # [ # { # "time": 1409935047, # "id": 99451, # "price": 350, # "quantity": 2.85714285, # "type": "BUY" # }, # { # "time": 1409934792, # "id": 99450, # "price": 350, # "quantity": 0.57142857, # "type": "SELL" # } # ] # return self.parse_trades(response, market, since, limit) async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'orderId': id, } response = await self.privateGetExchangeOrder(self.extend(request, params)) return self.parse_order(response) def parse_order_status(self, status): statuses = { 'OPEN': 'open', 'PARTIALLY_FILLED': 'open', 'EXECUTED': 'closed', 'CANCELLED': 'canceled', 'PARTIALLY_FILLED_AND_CANCELLED': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): timestamp = None if 'lastModificationTime' in order: timestamp = self.safe_string(order, 'lastModificationTime') if timestamp is not None: if timestamp.find('T') >= 0: timestamp = self.parse8601(timestamp) else: timestamp = self.safe_integer(order, 'lastModificationTime') # TODO currently not supported by livecoin # trades = self.parse_trades(order['trades'], market, since, limit) trades = None status = self.parse_order_status(self.safe_string_2(order, 'status', 'orderStatus')) symbol = None if market is None: marketId = self.safe_string(order, 'currencyPair') marketId = self.safe_string(order, 'symbol', marketId) if marketId in self.markets_by_id: market = self.markets_by_id[marketId] type = self.safe_string_lower(order, 'type') side = None if type is not None: orderType = type.split('_') type = orderType[0] side = orderType[1] price = self.safe_float(order, 'price') # of the next two lines the latter overrides the former, if present in the order structure remaining = self.safe_float(order, 'remainingQuantity') remaining = self.safe_float(order, 'remaining_quantity', remaining) amount = self.safe_float(order, 'quantity', remaining) filled = None if remaining is not None: filled = amount - remaining cost = None if filled is not None and price is not None: cost = filled * price feeRate = self.safe_float(order, 'commission_rate') feeCost = None if cost is not None and feeRate is not None: feeCost = cost * feeRate feeCurrency = None if market is not None: symbol = market['symbol'] feeCurrency = market['quote'] return { 'info': order, 'id': order['id'], 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'filled': filled, 'remaining': remaining, 'trades': trades, 'fee': { 'cost': feeCost, 'currency': feeCurrency, 'rate': feeRate, }, } async def fetch_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None request = {} if symbol is not None: market = self.market(symbol) request['currencyPair'] = market['id'] if since is not None: request['issuedFrom'] = int(since) if limit is not None: request['endRow'] = limit - 1 response = await self.privateGetExchangeClientOrders(self.extend(request, params)) result = [] rawOrders = [] if response['data']: rawOrders = response['data'] for i in range(0, len(rawOrders)): order = rawOrders[i] result.append(self.parse_order(order, market)) return self.sort_by(result, 'timestamp') async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): request = { 'openClosed': 'OPEN', } return await self.fetch_orders(symbol, since, limit, self.extend(request, params)) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): request = { 'openClosed': 'CLOSED', } return await self.fetch_orders(symbol, since, limit, self.extend(request, params)) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() method = 'privatePostExchange' + self.capitalize(side) + type market = self.market(symbol) request = { 'quantity': self.amount_to_precision(symbol, amount), 'currencyPair': market['id'], } if type == 'limit': request['price'] = self.price_to_precision(symbol, price) response = await getattr(self, method)(self.extend(request, params)) result = { 'info': response, 'id': str(response['orderId']), } success = self.safe_value(response, 'success') if success: result['status'] = 'open' return result async def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'orderId': id, 'currencyPair': market['id'], } response = await self.privatePostExchangeCancellimit(self.extend(request, params)) message = self.safe_string(response, 'message', self.json(response)) if 'success' in response: if not response['success']: raise InvalidOrder(message) elif 'cancelled' in response: if response['cancelled']: return { 'status': 'canceled', 'info': response, } else: raise OrderNotFound(message) raise ExchangeError(self.id + ' cancelOrder() failed: ' + self.json(response)) async def withdraw(self, code, amount, address, tag=None, params={}): # Sometimes the response with be {key: null} for all keys. # An example is if you attempt to withdraw more than is allowed when withdrawal fees are considered. self.check_address(address) await self.load_markets() currency = self.currency(code) wallet = address if tag is not None: wallet += '::' + tag request = { 'amount': self.decimal_to_precision(amount, TRUNCATE, currency['precision'], DECIMAL_PLACES), 'currency': currency['id'], 'wallet': wallet, } response = await self.privatePostPaymentOutCoin(self.extend(request, params)) id = self.safe_integer(response, 'id') if id is None: raise InsufficientFunds(self.id + ' insufficient funds to cover requested withdrawal amount post fees ' + self.json(response)) return { 'info': response, 'id': id, } def parse_transaction(self, transaction, currency=None): # { # "id": "c853093d5aa06df1c92d79c2...",(tx on deposits, address on withdrawals) # "type": "DEPOSIT", # "date": 1553186482676, # "amount": 712.61266, # "fee": 0, # "fixedCurrency": "XVG", # "taxCurrency": "XVG", # "variableAmount": null, # "variableCurrency": null, # "external": "Coin", # "login": "USERNAME", # "externalKey": "....87diPBy......3hTtuwUT78Yi",(address on deposits, tx on withdrawals) # "documentId": 1110662453 # }, txid = None address = None id = self.safe_string(transaction, 'documentId') amount = self.safe_float(transaction, 'amount') timestamp = self.safe_integer(transaction, 'date') type = self.safe_string_lower(transaction, 'type') currencyId = self.safe_string(transaction, 'fixedCurrency') feeCost = self.safe_float(transaction, 'fee') code = self.safe_currency_code(currencyId, currency) if type == 'withdrawal': txid = self.safe_string(transaction, 'externalKey') address = self.safe_string(transaction, 'id') elif type == 'deposit': address = self.safe_string(transaction, 'externalKey') txid = self.safe_string(transaction, 'id') status = None if type == 'deposit': status = 'ok' # Deposits is not registered until they are in account. Withdrawals are left as None, not entirely sure about theyre status. return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'address': address, 'tag': None, 'status': status, 'type': type, 'updated': None, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } async def fetch_deposits(self, code=None, since=None, limit=None, params={}): await self.load_markets() endtime = 2505600000 # 29 days - exchange has maximum 30 days. now = self.milliseconds() request = { 'types': 'DEPOSIT', 'end': now, 'start': int(since) if (since is not None) else now - endtime, } currency = None if code is not None: currency = self.currency(code) if limit is not None: request['limit'] = limit # default is 100 response = await self.privateGetPaymentHistoryTransactions(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() endtime = 2505600000 # 29 days - exchange has maximum 30 days. now = self.milliseconds() request = { 'types': 'WITHDRAWAL', 'end': now, 'start': int(since) if (since is not None) else now - endtime, } currency = None if code is not None: currency = self.currency(code) if limit is not None: request['limit'] = limit # default is 100 if since is not None: request['start'] = since response = await self.privateGetPaymentHistoryTransactions(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit) async def fetch_deposit_address(self, currency, params={}): request = { 'currency': currency, } response = await self.privateGetPaymentGetAddress(self.extend(request, params)) address = self.safe_string(response, 'wallet') tag = None if address.find(':') >= 0: parts = address.split(':') address = parts[0] tag = parts[2] self.check_address(address) return { 'currency': currency, 'address': address, 'tag': tag, 'info': response, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + path query = self.urlencode(self.keysort(params)) if method == 'GET': if params: url += '?' + query if api == 'private': self.check_required_credentials() if method == 'POST': body = query signature = self.hmac(self.encode(query), self.encode(self.secret), hashlib.sha256) headers = { 'Api-Key': self.apiKey, 'Sign': signature.upper(), 'Content-Type': 'application/x-www-form-urlencoded', } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if code >= 300: feedback = self.id + ' ' + body exact = self.exceptions['exact'] errorCode = self.safe_string(response, 'errorCode') if errorCode in exact: raise exact[errorCode](feedback) else: raise ExchangeError(feedback) # returns status code 200 even if success == False success = self.safe_value(response, 'success', True) if not success: feedback = self.id + ' ' + body broad = self.exceptions['broad'] message = self.safe_string_2(response, 'message', 'exception') if message is not None: broadKey = self.findBroadlyMatchedKey(broad, message) if broadKey is not None: raise broad[broadKey](feedback) raise ExchangeError(feedback)
39.406659
160
0.50264
[ "MIT" ]
Evan-carry-you/ccxt
python/ccxt/async_support/livecoin.py
33,141
Python
# # This source file is part of the EdgeDB open source project. # # Copyright 2015-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import collections import functools import typing from edb.lang.common import ast from edb.lang.schema import basetypes as s_basetypes from edb.lang.schema import inheriting as s_inh from edb.lang.schema import name as s_name from edb.lang.schema import objects as s_obj from edb.lang.schema import types as s_types from edb.lang.schema import utils as s_utils from edb.lang.edgeql import ast as qlast from edb.lang.edgeql import errors as ql_errors from edb.lang.ir import ast as irast def is_polymorphic_type(t): if isinstance(t, s_types.Collection): return any(is_polymorphic_type(st) for st in t.get_subtypes()) else: return t.name == 'std::any' def amend_empty_set_type(es: irast.EmptySet, t: s_obj.Object, schema) -> None: alias = es.path_id.target.name.name scls_name = s_name.Name(module='__expr__', name=alias) scls = t.__class__(name=scls_name, bases=[t]) scls.acquire_ancestor_inheritance(schema) es.path_id = irast.PathId(scls) es.scls = t def _infer_common_type(irs: typing.List[irast.Base], schema): if not irs: raise ql_errors.EdgeQLError( 'cannot determine common type of an empty set', context=irs[0].context) col_type = None arg_types = [] empties = [] for i, arg in enumerate(irs): if isinstance(arg, irast.EmptySet) and arg.scls is None: empties.append(i) continue arg_type = infer_type(arg, schema) arg_types.append(arg_type) if isinstance(arg_type, s_types.Collection): col_type = arg_type if not arg_types: raise ql_errors.EdgeQLError( 'cannot determine common type of an empty set', context=irs[0].context) if col_type is not None: if not all(col_type.issubclass(t) for t in arg_types): raise ql_errors.EdgeQLError( 'cannot determine common type', context=irs[0].context) common_type = col_type else: common_type = s_utils.get_class_nearest_common_ancestor(arg_types) for i in empties: amend_empty_set_type(irs[i], common_type, schema) return common_type @functools.singledispatch def _infer_type(ir, schema): return @_infer_type.register(type(None)) def __infer_none(ir, schema): # Here for debugging purposes. raise ValueError('invalid infer_type(None, schema) call') @_infer_type.register(irast.Statement) def __infer_statement(ir, schema): return infer_type(ir.expr, schema) @_infer_type.register(irast.Set) def __infer_set(ir, schema): return ir.scls @_infer_type.register(irast.FunctionCall) def __infer_func_call(ir, schema): rtype = ir.func.returntype if is_polymorphic_type(rtype): # Polymorphic function, determine the result type from # the argument type. if isinstance(rtype, s_types.Tuple): for i, arg in enumerate(ir.args): if is_polymorphic_type(ir.func.paramtypes[i]): arg_type = infer_type(arg, schema) stypes = collections.OrderedDict(rtype.element_types) for sn, st in stypes.items(): if is_polymorphic_type(st): stypes[sn] = arg_type break return rtype.from_subtypes(stypes, rtype.get_typemods()) elif isinstance(rtype, s_types.Collection): for i, arg in enumerate(ir.args): if is_polymorphic_type(ir.func.paramtypes[i]): arg_type = infer_type(arg, schema) stypes = list(rtype.get_subtypes()) for si, st in enumerate(stypes): if is_polymorphic_type(st): stypes[si] = arg_type break return rtype.from_subtypes(stypes, rtype.get_typemods()) else: for i, arg in enumerate(ir.args): if is_polymorphic_type(ir.func.paramtypes[i]): arg_type = infer_type(arg, schema) if isinstance(arg_type, s_types.Collection): stypes = list(arg_type.get_subtypes()) return stypes[-1] else: return rtype @_infer_type.register(irast.Constant) @_infer_type.register(irast.Parameter) def __infer_const_or_param(ir, schema): return ir.type @_infer_type.register(irast.Coalesce) def __infer_coalesce(ir, schema): result = _infer_common_type([ir.left, ir.right], schema) if result is None: raise ql_errors.EdgeQLError( 'coalescing operator must have operands of related types', context=ir.context) return result @_infer_type.register(irast.SetOp) def __infer_setop(ir, schema): left_type = infer_type(ir.left, schema).material_type() right_type = infer_type(ir.right, schema).material_type() # for purposes of type inference UNION and UNION ALL work almost # the same way if ir.op == qlast.UNION: if left_type.issubclass(right_type): result = left_type elif right_type.issubclass(left_type): result = right_type else: result = s_inh.create_virtual_parent( schema, [left_type, right_type]) else: result = infer_type(ir.left, schema) # create_virtual_parent will raise if types are incompatible. s_inh.create_virtual_parent(schema, [left_type, right_type]) return result @_infer_type.register(irast.DistinctOp) def __infer_distinctop(ir, schema): result = infer_type(ir.expr, schema) return result def _infer_binop_args(left, right, schema): if not isinstance(left, irast.EmptySet) or left.scls is not None: left_type = infer_type(left, schema) else: left_type = None if not isinstance(right, irast.EmptySet) or right.scls is not None: right_type = infer_type(right, schema) else: right_type = None if left_type is None and right_type is None: raise ql_errors.EdgeQLError( 'cannot determine the type of an empty set', context=left.context) elif left_type is None: amend_empty_set_type(left, right_type, schema) left_type = right_type elif right_type is None: amend_empty_set_type(right, left_type, schema) right_type = left_type return left_type, right_type @_infer_type.register(irast.BinOp) def __infer_binop(ir, schema): left_type, right_type = _infer_binop_args(ir.left, ir.right, schema) if isinstance(ir.op, (ast.ops.ComparisonOperator, ast.ops.MembershipOperator)): result = schema.get('std::bool') else: result = s_basetypes.TypeRules.get_result( ir.op, (left_type, right_type), schema) if result is None: result = s_basetypes.TypeRules.get_result( (ir.op, 'reversed'), (right_type, left_type), schema) if result is None: if right_type.implicitly_castable_to(left_type, schema): right_type = left_type elif left_type.implicitly_castable_to(right_type, schema): left_type = right_type result = s_basetypes.TypeRules.get_result( (ir.op, 'reversed'), (right_type, left_type), schema) if result is None: raise ql_errors.EdgeQLError( f'binary operator `{ir.op.upper()}` is not defined for types ' f'{left_type.name} and {right_type.name}', context=ir.left.context) return result @_infer_type.register(irast.EquivalenceOp) def __infer_equivop(ir, schema): left_type, right_type = _infer_binop_args(ir.left, ir.right, schema) return schema.get('std::bool') @_infer_type.register(irast.TypeCheckOp) def __infer_typecheckop(ir, schema): left_type, right_type = _infer_binop_args(ir.left, ir.right, schema) return schema.get('std::bool') @_infer_type.register(irast.UnaryOp) def __infer_unaryop(ir, schema): result = None operand_type = infer_type(ir.expr, schema) if ir.op == ast.ops.NOT: if operand_type.name == 'std::bool': result = operand_type else: if ir.op not in {ast.ops.UPLUS, ast.ops.UMINUS}: raise ql_errors.EdgeQLError( f'unknown unary operator: {ir.op}', context=ir.context) result = s_basetypes.TypeRules.get_result( ir.op, (operand_type,), schema) if result is None: raise ql_errors.EdgeQLError( f'unary operator `{ir.op.upper()}` is not defined ' f'for type {operand_type.name}', context=ir.context) return result @_infer_type.register(irast.IfElseExpr) def __infer_ifelse(ir, schema): if_expr_type = infer_type(ir.if_expr, schema) else_expr_type = infer_type(ir.else_expr, schema) result = s_utils.get_class_nearest_common_ancestor( [if_expr_type, else_expr_type]) if result is None: raise ql_errors.EdgeQLError( 'if/else clauses must be of related types, got: {}/{}'.format( if_expr_type.name, else_expr_type.name), context=ir.if_expr.context) return result @_infer_type.register(irast.TypeRef) def __infer_typeref(ir, schema): if ir.subtypes: coll = s_types.Collection.get_class(ir.maintype) result = coll.from_subtypes( [infer_type(t, schema) for t in ir.subtypes]) else: result = schema.get(ir.maintype) return result @_infer_type.register(irast.TypeCast) def __infer_typecast(ir, schema): return infer_type(ir.type, schema) @_infer_type.register(irast.Stmt) def __infer_stmt(ir, schema): return infer_type(ir.result, schema) @_infer_type.register(irast.ExistPred) def __infer_exist(ir, schema): bool_t = schema.get('std::bool') if isinstance(ir.expr, irast.EmptySet) and ir.expr.scls is None: amend_empty_set_type(ir.expr, bool_t, schema=schema) return bool_t @_infer_type.register(irast.SliceIndirection) def __infer_slice(ir, schema): return infer_type(ir.expr, schema) @_infer_type.register(irast.IndexIndirection) def __infer_index(ir, schema): node_type = infer_type(ir.expr, schema) index_type = infer_type(ir.index, schema) str_t = schema.get('std::str') int_t = schema.get('std::int64') result = None if node_type.issubclass(str_t): if not index_type.issubclass(int_t): raise ql_errors.EdgeQLError( f'cannot index string by {index_type.name}, ' f'{int_t.name} was expected', context=ir.index.context) result = str_t elif isinstance(node_type, s_types.Array): if not index_type.issubclass(int_t): raise ql_errors.EdgeQLError( f'cannot index array by {index_type.name}, ' f'{int_t.name} was expected', context=ir.index.context) result = node_type.element_type return result @_infer_type.register(irast.Array) def __infer_array(ir, schema): if ir.elements: element_type = _infer_common_type(ir.elements, schema) if element_type is None: raise ql_errors.EdgeQLError('could not determine array type', context=ir.context) else: raise ql_errors.EdgeQLError( 'could not determine type of empty array', context=ir.context) return s_types.Array(element_type=element_type) @_infer_type.register(irast.Tuple) def __infer_struct(ir, schema): element_types = {el.name: infer_type(el.val, schema) for el in ir.elements} return s_types.Tuple(element_types=element_types, named=ir.named) @_infer_type.register(irast.TupleIndirection) def __infer_struct_indirection(ir, schema): struct_type = infer_type(ir.expr, schema) result = struct_type.element_types.get(ir.name) if result is None: raise ql_errors.EdgeQLError('could not determine struct element type', context=ir.context) return result def infer_type(ir, schema): try: return ir._inferred_type_ except AttributeError: pass result = _infer_type(ir, schema) if (result is not None and not isinstance(result, (s_obj.Object, s_obj.ObjectMeta))): raise ql_errors.EdgeQLError( f'infer_type({ir!r}) retured {result!r} instead of a Object', context=ir.context) if result is None or result.name == 'std::any': raise ql_errors.EdgeQLError('could not determine expression type', context=ir.context) ir._inferred_type_ = result return result
30.609481
79
0.652212
[ "Apache-2.0" ]
mcaramma/edgedb
edb/lang/ir/inference/types.py
13,560
Python
# Date: May 2018 # Author: Joe English, PDST # eMail: [email protected] # Name: Guessing Game v7 # Purpose: A program to demonstrate data validation # Description: This is the exact same as version 6 except the input is validated # Guess Game v7 - while - go again? - data validation import random number = random.randint(1, 10) # Initialise the loop guard variable keepGoing = True # Loop as long as keepGoing is True while keepGoing: guess = input("Enter a number between 1 and 10: ") # Validate. Make sure the value entered is numeric while not guess.isdigit(): guess = input("Enter a number between 1 and 10: ") # Convert the string to an integer guess = int(guess) if guess == number: print("Correct") goAgain = input("Play again? (Y/N): ") if goAgain.upper() == "N": keepGoing = False else: # Get a new number number = random.randint(1, 10) elif guess < number: print("Too low") else: print("Too high") print("Goodbye")
25.227273
81
0.609009
[ "CC0-1.0" ]
gitjot/python-for-lccs
Section 5 - Programming Logic/Guess game v7 - while - data validation.py
1,110
Python
from math import log, exp from numpy import inf, zeros, zeros_like as np_zeros_like, arange, asarray, empty from pandas import concat from anndata import AnnData from torch import cat, no_grad, randn, zeros_like, zeros as torch_zeros, ones, argmax from torch.nn import Module, Linear, Sequential, RNNCell, Softplus, Parameter, Softmax from torch.optim import Adam from torch.optim.lr_scheduler import StepLR from .Layers import Input_Block, FF_Block, LambdaLayer, Dual_Forward class sciPENN_Model(Module): def __init__(self, p_mod1, p_mod2, loss1, loss2, quantiles, categories): super(sciPENN_Model, self).__init__() h_size, drop_rate = 512, 0.25 self.RNNCell = RNNCell(h_size, h_size) self.input_block = Input_Block(p_mod1, h_size, drop_rate, drop_rate) self.skip_1 = FF_Block(h_size, drop_rate) self.skip_2 = FF_Block(h_size, drop_rate) self.skip_3 = FF_Block(h_size, drop_rate) MSE_output = Linear(h_size, p_mod2) if len(quantiles) > 0: quantile_layer = [] quantile_layer.append(Linear(h_size, p_mod2 * len(quantiles))) quantile_layer.append(LambdaLayer(lambda x: x.view(-1, p_mod2, len(quantiles)))) quantile_layer = Sequential(*quantile_layer) self.mod2_out = Dual_Forward(MSE_output, quantile_layer) else: self.mod2_out = MSE_output if categories is not None: self.celltype_out = Sequential(Linear(h_size, len(categories)), Softmax(1)) self.forward = self.forward_transfer self.categories_arr = empty((len(categories), ), dtype = 'object') for cat in categories: self.categories_arr[categories[cat]] = cat else: self.forward = self.forward_simple self.categories_arr = None self.quantiles = quantiles self.loss1, self.loss2 = loss1, loss2 def forward_transfer(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': self.celltype_out(h.detach()), 'modality 2': self.mod2_out(h), 'embedding': h} def forward_simple(self, x): x = self.input_block(x) h = self.RNNCell(x, zeros_like(x)) x = self.skip_1(x) h = self.RNNCell(x, h) x = self.skip_2(x) h = self.RNNCell(x, h) x = self.skip_3(x) h = self.RNNCell(x, h) return {'celltypes': None, 'modality 2': self.mod2_out(h), 'embedding': h} def train_backprop(self, train_loader, val_loader, n_epoch = 10000, ES_max = 30, decay_max = 10, decay_step = 0.1, lr = 10**(-3)): optimizer = Adam(self.parameters(), lr = lr) scheduler = StepLR(optimizer, step_size = 1, gamma = decay_step) patience = 0 bestloss = inf if self.categories_arr is None: get_correct = lambda x: 0 else: get_correct = lambda outputs: (argmax(outputs['celltypes'], axis = 1) == celltypes).sum() for epoch in range(n_epoch): with no_grad(): running_loss, rtype_acc = 0., 0. self.eval() for batch, inputs in enumerate(val_loader): mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) n_correct = get_correct(outputs) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) rtype_acc += n_correct running_loss += mod2_loss.item() * len(mod2) if self.categories_arr is None: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}") else: print(f"Epoch {epoch} prediction loss = {running_loss/len(val_loader):.3f}, validation accuracy = {rtype_acc/len(val_loader):.3f}") patience += 1 if bestloss/1.005 > running_loss: bestloss, patience = running_loss, 0 if (patience + 1) % decay_max == 0: scheduler.step() print(f"Decaying loss to {optimizer.param_groups[0]['lr']}") if (patience + 1) > ES_max: break self.train() for batch, inputs in enumerate(train_loader): optimizer.zero_grad() mod1, mod2, protein_bools, celltypes = inputs outputs = self(mod1) mod1_loss = self.loss1(outputs['celltypes'], celltypes) mod2_loss = self.loss2(outputs['modality 2'], mod2, protein_bools) loss = mod1_loss + mod2_loss loss.backward() optimizer.step() def impute(self, impute_loader, requested_quantiles, denoise_genes, proteins): imputed_test = proteins.copy() for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = self.fill_predicted(imputed_test.X[start:end], mod2_impute, bools) for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end return imputed_test def embed(self, impute_loader, test_loader, cells_train, cells_test): if cells_test is not None: embedding = AnnData(zeros(shape = (len(cells_train) + len(cells_test), 512))) embedding.obs = concat((cells_train, cells_test), join = 'inner') else: embedding = AnnData(zeros(shape = (len(cells_train), 512))) embedding.obs = cells_train self.eval() start = 0 for mod1, bools, celltypes in impute_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end if cells_test is not None: for mod1 in test_loader: end = start + mod1.shape[0] outputs = self(mod1) embedding[start:end] = outputs['embedding'].detach().cpu().numpy() start = end return embedding def fill_predicted(self, array, predicted, bools): bools = bools.cpu().numpy() return (1. - bools) * predicted.cpu().numpy() + array def predict(self, test_loader, requested_quantiles, denoise_genes, proteins, cells): imputed_test = AnnData(zeros(shape = (len(cells), len(proteins.var)))) imputed_test.obs = cells imputed_test.var.index = proteins.var.index if self.categories_arr is not None: celltypes = ['None'] * len(cells) for quantile in requested_quantiles: imputed_test.layers['q' + str(round(100 * quantile))] = np_zeros_like(imputed_test.X) self.eval() start = 0 for mod1 in test_loader: end = start + mod1.shape[0] with no_grad(): outputs = self(mod1) if self.categories_arr is not None: predicted_types = argmax(outputs['celltypes'], axis = 1).cpu().numpy() celltypes[start:end] = self.categories_arr[predicted_types].tolist() if len(self.quantiles) > 0: mod2_impute, mod2_quantile = outputs['modality 2'] else: mod2_impute = outputs['modality 2'] imputed_test.X[start:end] = mod2_impute.cpu().numpy() for quantile in requested_quantiles: index = [i for i, q in enumerate(self.quantiles) if quantile == q][0] q_name = 'q' + str(round(100 * quantile)) imputed_test.layers[q_name][start:end] = mod2_quantile[:, : , index].cpu().numpy() start = end if self.categories_arr is not None: imputed_test.obs['transfered cell labels'] = celltypes return imputed_test
37.434263
151
0.540975
[ "MIT" ]
jlakkis/sciPENN
src/sciPENN/Network/Model.py
9,396
Python
import os import sys import time import datetime import selenium from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.common.exceptions import NoSuchElementException from compare_images import * if __name__ == "__main__": # Create a Firefox window driver. browser = webdriver.Firefox() browser.set_window_size(400, 400) # Load the vtkweb application page. url = "http://localhost:8000/testing/drawCountries.html" browser.get(url) # Give the page some time to update the image. time.sleep(1) # Take a screenshot. shot = "drawCountries-%s.png" % (datetime.datetime.now()) browser.save_screenshot(shot) # Compare the screenshot with the baseline, and report to stdout. baseline_dir = os.environ['VGL_BASELINE_DIR'] print check_result_image(shot, os.path.join(baseline_dir, "baseline-drawCountries.png"), 20) # Close the browser window. browser.quit()
27.914286
96
0.738997
[ "Apache-2.0" ]
OpenGeoscience/vgl
src/testing/drawCountriesReg.py
977
Python
import json import hashlib from tornado import httpclient as hc from tornado import gen from graphite_beacon.handlers import LOGGER, AbstractHandler class PagerdutyHandler(AbstractHandler): name = 'pagerduty' # Default options defaults = { 'subdomain': None, 'apitoken': None, 'service_key': None } def init_handler(self): self.subdomain = self.options.get('subdomain') assert self.subdomain, 'subdomain is not defined' self.apitoken = self.options.get('apitoken') assert self.apitoken, 'apitoken is not defined' self.service_key = self.options.get('service_key') assert self.service_key, 'service_key is not defined' self.client = hc.AsyncHTTPClient() @gen.coroutine def notify(self, level, alert, value, target=None, ntype=None, rule=None): LOGGER.debug("Handler (%s) %s", self.name, level) message = self.get_short(level, alert, value, target=target, ntype=ntype, rule=rule) LOGGER.debug('message1:%s', message) if level == 'normal': event_type = 'resolve' else: event_type = 'trigger' headers = { "Content-type": "application/json", } client_url = None if target: client_url = alert.get_graph_url(target) m = hashlib.md5() incident_key_str = "alert={},client_url={}".format(alert.name, client_url) m.update(incident_key_str) incident_key = m.hexdigest() data = { "service_key": self.service_key, "event_type": event_type, "description": message, "details": message, "incident_key": incident_key, "client": 'graphite-beacon', "client_url": client_url } yield self.client.fetch( "https://events.pagerduty.com/generic/2010-04-15/create_event.json", body=json.dumps(data), headers=headers, method='POST' )
30.462687
92
0.598726
[ "MIT" ]
z1nkum/graphite-beacon
graphite_beacon/handlers/pagerduty.py
2,041
Python
from uuid import uuid4 from django.contrib.auth.models import (AbstractBaseUser, BaseUserManager, PermissionsMixin) from django.core.validators import EmailValidator from django.db import models class UserManager(BaseUserManager): def create_user(self, name, email, password=None): if not email: raise ValueError('O email é obrigatório.') email = self.normalize_email(email) user = self.model(name=name, email=email) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, name, email, password): user = self.create_user(name, email, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): public_id = models.UUIDField(default=uuid4, editable=False) name = models.CharField('Nome', max_length=255) email = models.EmailField('Email', max_length=255, unique=True, validators=[EmailValidator(message='Email inválido.'), ]) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name', ] def get_full_name(self): return self.name def get_shot_name(self): return self.name def __str__(self): return self.name
28.730769
100
0.657965
[ "MIT" ]
MaryzangelaBessa/ElRoyale
users/models.py
1,497
Python
import argparse import os import numpy as np from keras.layers import Conv2D, Input, BatchNormalization, LeakyReLU, ZeroPadding2D, UpSampling2D from keras.layers.merge import add, concatenate from keras.models import Model import struct import cv2 import time from pathlib import Path #np.set_printoptions(threshold=np.nan) np.set_printoptions(threshold=30) os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" argparser = argparse.ArgumentParser( description='test yolov3 network with coco weights') argparser.add_argument( '-w', '--weights', help='path to weights file') argparser.add_argument( '-v', '--video', help='path to video file') class WeightReader: def __init__(self, weight_file): with open(weight_file, 'rb') as w_f: major, = struct.unpack('i', w_f.read(4)) minor, = struct.unpack('i', w_f.read(4)) revision, = struct.unpack('i', w_f.read(4)) if (major*10 + minor) >= 2 and major < 1000 and minor < 1000: w_f.read(8) else: w_f.read(4) transpose = (major > 1000) or (minor > 1000) binary = w_f.read() self.offset = 0 self.all_weights = np.frombuffer(binary, dtype='float32') def read_bytes(self, size): self.offset = self.offset + size return self.all_weights[self.offset-size:self.offset] def load_weights(self, model): for i in range(106): try: conv_layer = model.get_layer('conv_' + str(i)) print("loading weights of convolution #" + str(i)) if i not in [81, 93, 105]: norm_layer = model.get_layer('bnorm_' + str(i)) size = np.prod(norm_layer.get_weights()[0].shape) beta = self.read_bytes(size) # bias gamma = self.read_bytes(size) # scale mean = self.read_bytes(size) # mean var = self.read_bytes(size) # variance weights = norm_layer.set_weights([gamma, beta, mean, var]) if len(conv_layer.get_weights()) > 1: bias = self.read_bytes(np.prod(conv_layer.get_weights()[1].shape)) kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape)) kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape))) kernel = kernel.transpose([2,3,1,0]) conv_layer.set_weights([kernel, bias]) else: kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape)) kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape))) kernel = kernel.transpose([2,3,1,0]) conv_layer.set_weights([kernel]) except ValueError: print("no convolution #" + str(i)) def reset(self): self.offset = 0 class BoundBox: def __init__(self, xmin, ymin, xmax, ymax, objness = None, classes = None): self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax self.objness = objness self.classes = classes self.label = -1 self.score = -1 def get_label(self): if self.label == -1: self.label = np.argmax(self.classes) return self.label def get_score(self): if self.score == -1: self.score = self.classes[self.get_label()] return self.score def _conv_block(inp, convs, skip=True): x = inp count = 0 for conv in convs: if count == (len(convs) - 2) and skip: skip_connection = x count += 1 if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top x = Conv2D(conv['filter'], conv['kernel'], strides=conv['stride'], padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top name='conv_' + str(conv['layer_idx']), use_bias=False if conv['bnorm'] else True)(x) if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x) if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x) return add([skip_connection, x]) if skip else x def _interval_overlap(interval_a, interval_b): x1, x2 = interval_a x3, x4 = interval_b if x3 < x1: if x4 < x1: return 0 else: return min(x2,x4) - x1 else: if x2 < x3: return 0 else: return min(x2,x4) - x3 def _sigmoid(x): return 1. / (1. + np.exp(-x)) def bbox_iou(box1, box2): intersect_w = _interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax]) intersect_h = _interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax]) intersect = intersect_w * intersect_h w1, h1 = box1.xmax-box1.xmin, box1.ymax-box1.ymin w2, h2 = box2.xmax-box2.xmin, box2.ymax-box2.ymin union = w1*h1 + w2*h2 - intersect return float(intersect) / union def make_yolov3_model(): input_image = Input(shape=(None, None, 3)) # Layer 0 => 4 x = _conv_block(input_image, [{'filter': 32, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 0}, {'filter': 64, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 1}, {'filter': 32, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 2}, {'filter': 64, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 3}]) # Layer 5 => 8 x = _conv_block(x, [{'filter': 128, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 5}, {'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 6}, {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 7}]) # Layer 9 => 11 x = _conv_block(x, [{'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 9}, {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 10}]) # Layer 12 => 15 x = _conv_block(x, [{'filter': 256, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 12}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 13}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 14}]) # Layer 16 => 36 for i in range(7): x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 16+i*3}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 17+i*3}]) skip_36 = x # Layer 37 => 40 x = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 37}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 38}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 39}]) # Layer 41 => 61 for i in range(7): x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 41+i*3}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 42+i*3}]) skip_61 = x # Layer 62 => 65 x = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky': True, 'layer_idx': 62}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 63}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 64}]) # Layer 66 => 74 for i in range(3): x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 66+i*3}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 67+i*3}]) # Layer 75 => 79 x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 75}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 76}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 77}, {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 78}, {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 79}], skip=False) # Layer 80 => 82 yolo_82 = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 80}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 81}], skip=False) # Layer 83 => 86 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 84}], skip=False) x = UpSampling2D(2)(x) x = concatenate([x, skip_61]) # Layer 87 => 91 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 87}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 88}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 89}, {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 90}, {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 91}], skip=False) # Layer 92 => 94 yolo_94 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 92}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 93}], skip=False) # Layer 95 => 98 x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 96}], skip=False) x = UpSampling2D(2)(x) x = concatenate([x, skip_36]) # Layer 99 => 106 yolo_106 = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 99}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 100}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 101}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 102}, {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 103}, {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True, 'layer_idx': 104}, {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False, 'leaky': False, 'layer_idx': 105}], skip=False) model = Model(input_image, [yolo_82, yolo_94, yolo_106]) return model def preprocess_input(image, net_h, net_w): #new_h, new_w, _ = image.shape new_h = 480 new_w = 640 # determine the new size of the image if (float(net_w)/new_w) < (float(net_h)/new_h): new_h = (new_h * net_w)/new_w new_w = net_w else: new_w = (new_w * net_h)/new_h new_h = net_h # resize the image to the new size resized = cv2.resize(image[:,:,::-1]/255., (int(new_w), int(new_h))) # embed the image into the standard letter box new_image = np.ones((net_h, net_w, 3)) * 0.5 new_image[int((net_h-new_h)//2):int((net_h+new_h)//2), int((net_w-new_w)//2):int((net_w+new_w)//2), :] = resized new_image = np.expand_dims(new_image, 0) return new_image def decode_netout(netout, anchors, obj_thresh, nms_thresh, net_h, net_w): grid_h, grid_w = netout.shape[:2] nb_box = 3 netout = netout.reshape((grid_h, grid_w, nb_box, -1)) nb_class = netout.shape[-1] - 5 boxes = [] netout[..., :2] = _sigmoid(netout[..., :2]) netout[..., 4:] = _sigmoid(netout[..., 4:]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * netout[..., 5:] netout[..., 5:] *= netout[..., 5:] > obj_thresh for i in range(grid_h*grid_w): row = i / grid_w col = i % grid_w for b in range(nb_box): # 4th element is objectness score objectness = netout[int(row)][int(col)][b][4] #objectness = netout[..., :4] if(objectness.all() <= obj_thresh): continue # first 4 elements are x, y, w, and h x, y, w, h = netout[int(row)][int(col)][b][:4] x = (col + x) / grid_w # center position, unit: image width y = (row + y) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height # last elements are class probabilities classes = netout[int(row)][col][b][5:] box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, objectness, classes) #box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, None, classes) boxes.append(box) return boxes def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w): if (float(net_w)/image_w) < (float(net_h)/image_h): new_w = net_w new_h = (image_h*net_w)/image_w else: new_h = net_w new_w = (image_w*net_h)/image_h for i in range(len(boxes)): x_offset, x_scale = (net_w - new_w)/2./net_w, float(new_w)/net_w y_offset, y_scale = (net_h - new_h)/2./net_h, float(new_h)/net_h boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w) boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w) boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h) boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h) def do_nms(boxes, nms_thresh): if len(boxes) > 0: nb_class = len(boxes[0].classes) else: return for c in range(nb_class): sorted_indices = np.argsort([-box.classes[c] for box in boxes]) for i in range(len(sorted_indices)): index_i = sorted_indices[i] if boxes[index_i].classes[c] == 0: continue for j in range(i+1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh: boxes[index_j].classes[c] = 0 def draw_boxes(image, boxes, labels, obj_thresh): #highest_conf_label = '' #highest_conf = 0 for box in boxes: label_str = '' label = -1 for i in range(len(labels)): if box.classes[i] > obj_thresh: label_str += labels[i] label = i print(labels[i] + ': ' + str(box.classes[i]*100) + '%') #if box.classes[i] > highest_conf: # highest_conf = box.classes[i] # highest_conf_label = labels[i] if label >= 0: cv2.rectangle(image, (box.xmin,box.ymin), (box.xmax,box.ymax), (0,255,0), 3) #print(type(box.get_score())) #print(np.format_float_positional(box.get_score(), precision=2)) cv2.putText(image, label_str + ' ' + str(np.format_float_positional(box.get_score(), precision=2)), (box.xmin, box.ymin - 13), cv2.FONT_HERSHEY_SIMPLEX, 1e-3 * image.shape[0], (0,255,0), 2) return image def _main_(args): weights_path = args.weights video_path = args.video # set some parameters net_h, net_w = 416, 416 obj_thresh, nms_thresh = 0.65, 0.45 anchors = [[116,90, 156,198, 373,326], [30,61, 62,45, 59,119], [10,13, 16,30, 33,23]] labels = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", \ "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", \ "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", \ "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", \ "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", \ "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", \ "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", \ "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", \ "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", \ "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # make the yolov3 model to predict 80 classes on COCO yolov3 = make_yolov3_model() # load the weights trained on COCO into the model weight_reader = WeightReader(weights_path) weight_reader.load_weights(yolov3) ''' # set webcam cap = cv2.VideoCapture(1) while(True): ret, image = cap.read() #image_h, image_w, _ = image.shape image_w = cap.get(3) image_h = cap.get(4) if cv2.waitKey(1) & 0xFF == ord(' '): new_image = preprocess_input(image, net_h, net_w) yolos = yolov3.predict(new_image) boxes = [] for i in range(len(yolos)): boxes += decode_netout(yolos[i][0], anchors[i], obj_thresh, nms_thresh, net_h, net_w) correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w) do_nms(boxes, nms_thresh) draw_boxes_play_music(image, boxes, labels, obj_thresh) cv2.imshow('frame',image) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ''' # preprocess the video cap = cv2.VideoCapture(video_path) print("open video file from", video_path) if Path(video_path).is_file(): print("Video file exists") else: print("cannot find video file") print(cap.isOpened()) while(cap.isOpened()): ret, image = cap.read() image_w = cap.get(3) image_h = cap.get(4) image = cv2.flip(image, 0) new_image = preprocess_input(image, net_h, net_w) yolos = yolov3.predict(new_image) boxes = [] for i in range(len(yolos)): # decode the output of the network boxes += decode_netout(yolos[i][0], anchors[i], obj_thresh, nms_thresh, net_h, net_w) # correct the sizes of the bounding boxes correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w) # suppress non-maximal boxes do_nms(boxes, nms_thresh) # draw bounding boxes on the image using labels draw_boxes(image, boxes, labels, obj_thresh) # write the image with bounding boxes to video cv2.imshow('frame',image) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == '__main__': args = argparser.parse_args() _main_(args)
42.228216
136
0.532131
[ "MIT" ]
BG4WCE/keras-yolo3
yolo3_video.py
20,354
Python
""" Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Activation generator helper classes for TCAV""" from abc import ABCMeta from abc import abstractmethod from multiprocessing import dummy as multiprocessing import os.path import numpy as np import PIL.Image import tensorflow as tf class ActivationGeneratorInterface(object): """Interface for an activation generator for a model""" __metaclass__ = ABCMeta @abstractmethod def process_and_load_activations(self, bottleneck_names, concepts): pass @abstractmethod def get_model(): pass class ActivationGeneratorBase(ActivationGeneratorInterface): """Basic abstract activation generator for a model""" def __init__(self, model, acts_dir, max_examples=500): self.model = model self.acts_dir = acts_dir self.max_examples = max_examples def get_model(self): return self.model @abstractmethod def get_examples_for_concept(self, concept): pass def get_activations_for_concept(self, concept, bottleneck): examples = self.get_examples_for_concept(concept) return self.get_activations_for_examples(examples, bottleneck) def get_activations_for_examples(self, examples, bottleneck): acts = self.model.run_examples(examples, bottleneck) return self.model.reshape_activations(acts).squeeze() def process_and_load_activations(self, bottleneck_names, concepts): acts = {} if self.acts_dir and not tf.gfile.Exists(self.acts_dir): tf.gfile.MakeDirs(self.acts_dir) for concept in concepts: if concept not in acts: acts[concept] = {} for bottleneck_name in bottleneck_names: acts_path = os.path.join(self.acts_dir, 'acts_{}_{}'.format( concept, bottleneck_name)) if self.acts_dir else None if acts_path and tf.gfile.Exists(acts_path): with tf.gfile.Open(acts_path, 'rb') as f: acts[concept][bottleneck_name] = np.load(f).squeeze() tf.logging.info('Loaded {} shape {}'.format( acts_path, acts[concept][bottleneck_name].shape)) else: acts[concept][bottleneck_name] = self.get_activations_for_concept( concept, bottleneck_name) if acts_path: tf.logging.info('{} does not exist, Making one...'.format( acts_path)) with tf.gfile.Open(acts_path, 'w') as f: np.save(f, acts[concept][bottleneck_name], allow_pickle=False) return acts class ImageActivationGenerator(ActivationGeneratorBase): """Activation generator for a basic image model""" def __init__(self, model, source_dir, acts_dir, max_examples=10): self.source_dir = source_dir super(ImageActivationGenerator, self).__init__( model, acts_dir, max_examples) def get_examples_for_concept(self, concept): concept_dir = os.path.join(self.source_dir, concept) img_paths = [os.path.join(concept_dir, d) for d in tf.gfile.ListDirectory(concept_dir)] imgs = self.load_images_from_files(img_paths, self.max_examples, shape=self.model.get_image_shape()[:2]) return imgs def load_image_from_file(self, filename, shape): """Given a filename, try to open the file. If failed, return None. Args: filename: location of the image file shape: the shape of the image file to be scaled Returns: the image if succeeds, None if fails. Rasies: exception if the image was not the right shape. """ if not tf.gfile.Exists(filename): tf.logging.error('Cannot find file: {}'.format(filename)) return None try: # ensure image has no transparency channel img = np.array(PIL.Image.open(tf.gfile.Open(filename, 'rb')).convert( 'RGB').resize(shape, PIL.Image.BILINEAR)) # Normalize pixel values to between 0 and 1. img = np.float32(img) / 255.0 if not (len(img.shape) == 3 and img.shape[2] == 3): return None else: return img except Exception as e: tf.logging.info(e) return None return img def load_images_from_files(self, filenames, max_imgs=500, do_shuffle=True, run_parallel=True, shape=(299, 299), num_workers=100): """Return image arrays from filenames. Args: filenames: locations of image files. max_imgs: maximum number of images from filenames. do_shuffle: before getting max_imgs files, shuffle the names or not run_parallel: get images in parallel or not shape: desired shape of the image num_workers: number of workers in parallelization. Returns: image arrays """ imgs = [] # First shuffle a copy of the filenames. filenames = filenames[:] if do_shuffle: np.random.shuffle(filenames) if run_parallel: pool = multiprocessing.Pool(num_workers) imgs = pool.map( lambda filename: self.load_image_from_file(filename, shape), filenames[:max_imgs]) imgs = [img for img in imgs if img is not None] if len(imgs) <= 1: raise ValueError('You must have more than 1 image in each class to run TCAV.') else: for filename in filenames: img = self.load_image_from_file(filename, shape) if img is not None: imgs.append(img) if len(imgs) <= 1: raise ValueError('You must have more than 1 image in each class to run TCAV.') elif len(imgs) >= max_imgs: break return np.array(imgs)
33.494505
88
0.674869
[ "Apache-2.0" ]
Gareth001/tcav
activation_generator.py
6,096
Python
from django.contrib import admin from django.urls import path, include from django.conf.urls import url from rest_framework.schemas import get_schema_view VERSION = 'V1.0.0' urlpatterns = [ path('admin/', admin.site.urls), url('api/{}/user/'.format(VERSION),include('app.user.urls',namespace='user')), url('api/{}/core/'.format(VERSION),include('app.core.urls',namespace='core')), ]
30.538462
82
0.715365
[ "MIT" ]
JeremyAndress/API-User-Template
src/config/urls.py
397
Python
""" ======================== Obstacle Avoidance in 2D ======================== Plots a 2D DMP that goes through a point obstacle when there is no coupling term for obstacle avoidance and a 2D DMP that avoids the point obstacle with a coupling term. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from movement_primitives.dmp import DMP, CouplingTermObstacleAvoidance2D execution_time = 1.0 start_y = np.zeros(2) goal_y = np.ones(2) dmp = DMP(n_dims=2, execution_time=execution_time, n_weights_per_dim=3) dmp.configure(start_y=start_y, goal_y=goal_y) dmp.set_weights(np.array([-50.0, 100.0, 300.0, -200.0, -200.0, -200.0])) fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel("x") ax.set_ylabel("y") obstacle_position = np.array([0.92, 0.5]) T, Y = dmp.open_loop(run_t=execution_time) ax.plot(Y[:, 0], Y[:, 1], label="Original") coupling_term = CouplingTermObstacleAvoidance2D(obstacle_position) T, Y = dmp.open_loop(run_t=execution_time, coupling_term=coupling_term) ax.plot(Y[:, 0], Y[:, 1], label="Obstacle avoidance") ax.scatter(start_y[0], start_y[1], c="r", label="Start") ax.scatter(goal_y[0], goal_y[1], c="g", label="Goal") ax.scatter(obstacle_position[0], obstacle_position[1], c="y", label="Obstacle") ax.legend() plt.tight_layout() plt.show()
30.738095
79
0.711077
[ "BSD-3-Clause" ]
DavidYaonanZhu/movement_primitives
examples/plot_obstacle_avoidance_2d.py
1,291
Python
#!/usr/bin/env python # # Copyright (c) 2018 All rights reserved # This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # """Define the classes required to fully cover k8s.""" import logging import os import unittest from security_tests import SecurityTesting class SecurityTests(unittest.TestCase): # pylint: disable=missing-docstring def setUp(self): os.environ["DEPLOY_SCENARIO"] = "k8-test" os.environ["KUBE_MASTER_IP"] = "127.0.0.1" os.environ["KUBE_MASTER_URL"] = "https://127.0.0.1:6443" os.environ["KUBERNETES_PROVIDER"] = "local" self.security_stesting = SecurityTesting.SecurityTesting() def test_run_kubetest_cmd_none(self): with self.assertRaises(TypeError): self.security_stesting.run_security() if __name__ == "__main__": logging.disable(logging.CRITICAL) unittest.main(verbosity=2)
25.804878
71
0.713611
[ "Apache-2.0" ]
onap/integration-xtesting
security/onap_security/test_security_test.py
1,058
Python
#!/usr/bin/env python2.6 ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import json import logging import time from pprint import pformat from ActionQueue import ActionQueue import AmbariConfig import hostname from HostInfo import HostInfo logger = logging.getLogger() firstContact = True class Heartbeat: def __init__(self, actionQueue, config=None): self.actionQueue = actionQueue self.config = config self.reports = [] def build(self, id='-1', state_interval=-1, componentsMapped=False): global clusterId, clusterDefinitionRevision, firstContact timestamp = int(time.time()*1000) queueResult = self.actionQueue.result() nodeStatus = { "status" : "HEALTHY", "cause" : "NONE"} heartbeat = { 'responseId' : int(id), 'timestamp' : timestamp, 'hostname' : hostname.hostname(), 'nodeStatus' : nodeStatus } commandsInProgress = False if self.actionQueue.commandQueue.empty() == False: commandsInProgress = True if len(queueResult) != 0: heartbeat['reports'] = queueResult['reports'] heartbeat['componentStatus'] = queueResult['componentStatus'] if len(heartbeat['reports']) > 0: # There may be IN_PROGRESS tasks commandsInProgress = True pass logger.info("Sending heartbeat with response id: " + str(id) + " and " "timestamp: " + str(timestamp) + ". Command(s) in progress: " + repr(commandsInProgress) + ". Components mapped: " + repr(componentsMapped)) logger.debug("Heartbeat : " + pformat(heartbeat)) if (int(id) >= 0) and state_interval > 0 and (int(id) % state_interval) == 0: hostInfo = HostInfo(self.config) nodeInfo = { } # for now, just do the same work as registration # this must be the last step before returning heartbeat hostInfo.register(nodeInfo, componentsMapped, commandsInProgress) heartbeat['agentEnv'] = nodeInfo logger.debug("agentEnv : " + str(nodeInfo)) return heartbeat def main(argv=None): actionQueue = ActionQueue(AmbariConfig.config) heartbeat = Heartbeat(actionQueue) print json.dumps(heartbeat.build('3',3)) if __name__ == '__main__': main()
33.395604
81
0.676867
[ "Apache-2.0" ]
zhanganha/ambari
ambari-agent/src/main/python/ambari_agent/Heartbeat.py
3,039
Python
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Input: FIREWALL = "firewall" class Output: ALLOWED = "allowed" CREATIONTIMESTAMP = "creationTimestamp" DESCRIPTION = "description" ID = "id" KIND = "kind" NAME = "name" NETWORK = "network" SELFLINK = "selfLink" SOURCERANGES = "sourceRanges" SOURCETAGS = "sourceTags" TARGETTAGS = "targetTags" class GetFirewallInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "firewall": { "type": "string", "title": "Firewall Name", "description": "Name of the firewall rule to return", "order": 1 } }, "required": [ "firewall" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class GetFirewallOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "allowed": { "type": "array", "title": "Allowed", "description": "The list of allow rules specified by this firewall. Each rule specifies a protocol and port-range tuple that describes a permitted connection", "items": { "$ref": "#/definitions/allowed" }, "order": 10 }, "creationTimestamp": { "type": "string", "title": "Creation Timestamp", "description": "Creation timestamp", "order": 11 }, "description": { "type": "string", "title": "Description", "description": "A textual description of the operation, which is set when the operation is created", "order": 5 }, "id": { "type": "string", "title": "ID", "description": "The unique identifier for the resource. This identifier is defined by the server", "order": 1 }, "kind": { "type": "string", "title": "Kind", "description": "Type of the resource. Always compute#firewall for firewall rules", "order": 2 }, "name": { "type": "string", "title": "Name", "description": "Name of the resource, provided by the client when the resource is created", "order": 3 }, "network": { "type": "string", "title": "Network", "description": "URL of the network resource for this firewall rule. If not specified when creating a firewall rule, the default network is used: global/networks/default", "order": 6 }, "selfLink": { "type": "string", "title": "Self Link", "description": "Server-defined url for the resource", "order": 4 }, "sourceRanges": { "type": "array", "title": "Source Ranges", "description": "If source ranges are specified, the firewall will apply only to traffic that has source ip address in these ranges", "items": { "type": "string" }, "order": 8 }, "sourceTags": { "type": "array", "title": "Source Tags", "description": "If source tags are specified, the firewall will apply only to traffic with source ip that belongs to a tag listed in source tags", "items": { "type": "string" }, "order": 7 }, "targetTags": { "type": "array", "title": "Target Tags", "description": "A list of instance tags indicating sets of instances located in the network that may make network connections as specified in allowed[]", "items": { "type": "string" }, "order": 9 } }, "definitions": { "allowed": { "type": "object", "title": "allowed", "properties": { "IPProtocol": { "type": "string", "title": "IPProtocol", "order": 1 }, "ports": { "type": "array", "title": "Ports", "items": { "type": "string" }, "order": 2 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
25.613924
176
0.551767
[ "MIT" ]
TonyHamil/insightconnect-plugins
google_cloud_compute/komand_google_cloud_compute/actions/get_firewall/schema.py
4,047
Python
"""This module contains the general information for EquipmentHealthLed ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class EquipmentHealthLedConsts: COLOR_AMBER = "amber" COLOR_BLUE = "blue" COLOR_GREEN = "green" COLOR_RED = "red" COLOR_UNKNOWN = "unknown" HEALTH_LED_STATE_CRITICAL = "critical" HEALTH_LED_STATE_MINOR = "minor" HEALTH_LED_STATE_NORMAL = "normal" OPER_STATE_BLINKING = "blinking" OPER_STATE_ETH = "eth" OPER_STATE_FC = "fc" OPER_STATE_OFF = "off" OPER_STATE_ON = "on" OPER_STATE_UNKNOWN = "unknown" OPER_STATE_UNSUPPORTED = "unsupported" class EquipmentHealthLed(ManagedObject): """This is EquipmentHealthLed class.""" consts = EquipmentHealthLedConsts() naming_props = set([]) mo_meta = MoMeta("EquipmentHealthLed", "equipmentHealthLed", "health-led", VersionMeta.Version212a, "InputOutput", 0x7f, [], ["admin", "pn-equipment", "pn-maintenance", "pn-policy"], [u'computeBlade', u'computeExtBoard', u'computeRackUnit', u'computeServerUnit', u'equipmentChassis', u'equipmentFanModule', u'equipmentFex', u'equipmentIOCard', u'equipmentPsu'], [u'computeHealthLedSensorAlarm', u'faultInst'], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version212a, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "color": MoPropertyMeta("color", "color", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["amber", "blue", "green", "red", "unknown"], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "health_led_state": MoPropertyMeta("health_led_state", "healthLedState", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["critical", "minor", "normal"], []), "health_led_state_qualifier": MoPropertyMeta("health_led_state_qualifier", "healthLedStateQualifier", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "id": MoPropertyMeta("id", "id", "uint", VersionMeta.Version212a, MoPropertyMeta.READ_WRITE, 0x8, None, None, None, [], []), "name": MoPropertyMeta("name", "name", "string", VersionMeta.Version212a, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""[\-\.:_a-zA-Z0-9]{0,16}""", [], []), "oper_state": MoPropertyMeta("oper_state", "operState", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["blinking", "eth", "fc", "off", "on", "unknown", "unsupported"], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version212a, MoPropertyMeta.READ_ONLY, 0x20, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version212a, MoPropertyMeta.READ_WRITE, 0x40, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "color": "color", "dn": "dn", "healthLedState": "health_led_state", "healthLedStateQualifier": "health_led_state_qualifier", "id": "id", "name": "name", "operState": "oper_state", "rn": "rn", "sacl": "sacl", "status": "status", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.color = None self.health_led_state = None self.health_led_state_qualifier = None self.id = None self.name = None self.oper_state = None self.sacl = None self.status = None ManagedObject.__init__(self, "EquipmentHealthLed", parent_mo_or_dn, **kwargs)
56.266667
422
0.662322
[ "Apache-2.0" ]
Curlyfingers/ucsmsdk
ucsmsdk/mometa/equipment/EquipmentHealthLed.py
4,220
Python
from django import forms class PostForm(forms.Form): image = forms.ImageField() image_name = forms.CharField(widget=forms.TextInput(attrs={"class": "form-control","placeholder": "Image Name"})) image_caption = forms.CharField(widget=forms.Textarea(attrs={"class": "form-control","placeholder": "Image Caption"})) class CommentForm(forms.Form): body = forms.CharField(widget=forms.Textarea(attrs={"class": "form-control","placeholder": "Leave a comment!"}))
47.5
122
0.726316
[ "MIT" ]
Irene-nandy/Instagram
instagramHome/froms.py
475
Python
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Module houses Modin configs originated from environment variables.""" import os import sys from textwrap import dedent import warnings from packaging import version import secrets from .pubsub import Parameter, _TYPE_PARAMS, ExactStr, ValueSource class EnvironmentVariable(Parameter, type=str, abstract=True): """Base class for environment variables-based configuration.""" varname: str = None @classmethod def _get_raw_from_config(cls) -> str: """ Read the value from environment variable. Returns ------- str Config raw value. Raises ------ KeyError If value is absent. """ return os.environ[cls.varname] @classmethod def get_help(cls) -> str: """ Generate user-presentable help for the config. Returns ------- str """ help = f"{cls.varname}: {dedent(cls.__doc__ or 'Unknown').strip()}\n\tProvide {_TYPE_PARAMS[cls.type].help}" if cls.choices: help += f" (valid examples are: {', '.join(str(c) for c in cls.choices)})" return help class IsDebug(EnvironmentVariable, type=bool): """Force Modin engine to be "Python" unless specified by $MODIN_ENGINE.""" varname = "MODIN_DEBUG" class Engine(EnvironmentVariable, type=str): """Distribution engine to run queries by.""" varname = "MODIN_ENGINE" choices = ("Ray", "Dask", "Python", "Native") @classmethod def _get_default(cls): """ Get default value of the config. Returns ------- str """ if IsDebug.get(): return "Python" try: import ray except ImportError: pass else: if version.parse(ray.__version__) < version.parse("1.4.0"): raise ImportError( "Please `pip install modin[ray]` to install compatible Ray version." ) return "Ray" try: import dask import distributed except ImportError: pass else: if version.parse(dask.__version__) < version.parse( "2.22.0" ) or version.parse(distributed.__version__) < version.parse("2.22.0"): raise ImportError( "Please `pip install modin[dask]` to install compatible Dask version." ) return "Dask" try: import omniscidbe # noqa except ImportError: try: import dbe # noqa except ImportError: pass else: return "Native" else: return "Native" raise ImportError( "Please refer to installation documentation page to install an engine" ) class Backend(EnvironmentVariable, type=str): """Engine to run on a single node of distribution.""" varname = "MODIN_BACKEND" default = "Pandas" choices = ("Pandas", "OmniSci", "Pyarrow", "Cudf") class IsExperimental(EnvironmentVariable, type=bool): """Whether to Turn on experimental features.""" varname = "MODIN_EXPERIMENTAL" class IsRayCluster(EnvironmentVariable, type=bool): """Whether Modin is running on pre-initialized Ray cluster.""" varname = "MODIN_RAY_CLUSTER" class RayRedisAddress(EnvironmentVariable, type=ExactStr): """Redis address to connect to when running in Ray cluster.""" varname = "MODIN_REDIS_ADDRESS" class RayRedisPassword(EnvironmentVariable, type=ExactStr): """What password to use for connecting to Redis.""" varname = "MODIN_REDIS_PASSWORD" default = secrets.token_hex(32) class CpuCount(EnvironmentVariable, type=int): """How many CPU cores to use during initialization of the Modin engine.""" varname = "MODIN_CPUS" @classmethod def _get_default(cls): """ Get default value of the config. Returns ------- int """ import multiprocessing return multiprocessing.cpu_count() class GpuCount(EnvironmentVariable, type=int): """How may GPU devices to utilize across the whole distribution.""" varname = "MODIN_GPUS" class Memory(EnvironmentVariable, type=int): """ How much memory (in bytes) give to an execution engine. Notes ----- * In Ray case: the amount of memory to start the Plasma object store with. * In Dask case: the amount of memory that is given to each worker depending on CPUs used. """ varname = "MODIN_MEMORY" class NPartitions(EnvironmentVariable, type=int): """How many partitions to use for a Modin DataFrame (along each axis).""" varname = "MODIN_NPARTITIONS" @classmethod def _put(cls, value): """ Put specific value if NPartitions wasn't set by a user yet. Parameters ---------- value : int Config value to set. Notes ----- This method is used to set NPartitions from cluster resources internally and should not be called by a user. """ if cls.get_value_source() == ValueSource.DEFAULT: cls.put(value) @classmethod def _get_default(cls): """ Get default value of the config. Returns ------- int """ if Backend.get() == "Cudf": return GpuCount.get() else: return CpuCount.get() class SocksProxy(EnvironmentVariable, type=ExactStr): """SOCKS proxy address if it is needed for SSH to work.""" varname = "MODIN_SOCKS_PROXY" class DoLogRpyc(EnvironmentVariable, type=bool): """Whether to gather RPyC logs (applicable for remote context).""" varname = "MODIN_LOG_RPYC" class DoTraceRpyc(EnvironmentVariable, type=bool): """Whether to trace RPyC calls (applicable for remote context).""" varname = "MODIN_TRACE_RPYC" class OmnisciFragmentSize(EnvironmentVariable, type=int): """How big a fragment in OmniSci should be when creating a table (in rows).""" varname = "MODIN_OMNISCI_FRAGMENT_SIZE" class DoUseCalcite(EnvironmentVariable, type=bool): """Whether to use Calcite for OmniSci queries execution.""" varname = "MODIN_USE_CALCITE" default = True class TestDatasetSize(EnvironmentVariable, type=str): """Dataset size for running some tests.""" varname = "MODIN_TEST_DATASET_SIZE" choices = ("Small", "Normal", "Big") class TestRayClient(EnvironmentVariable, type=bool): """Set to true to start and connect Ray client before a testing session starts.""" varname = "MODIN_TEST_RAY_CLIENT" default = False class TrackFileLeaks(EnvironmentVariable, type=bool): """Whether to track for open file handles leakage during testing.""" varname = "MODIN_TEST_TRACK_FILE_LEAKS" # Turn off tracking on Windows by default because # psutil's open_files() can be extremely slow on Windows (up to adding a few hours). # see https://github.com/giampaolo/psutil/pull/597 default = sys.platform != "win32" class AsvImplementation(EnvironmentVariable, type=ExactStr): """Allows to select a library that we will use for testing performance.""" varname = "MODIN_ASV_USE_IMPL" choices = ("modin", "pandas") default = "modin" class AsvDataSizeConfig(EnvironmentVariable, type=ExactStr): """Allows to override default size of data (shapes).""" varname = "MODIN_ASV_DATASIZE_CONFIG" default = None class ProgressBar(EnvironmentVariable, type=bool): """Whether or not to show the progress bar.""" varname = "MODIN_PROGRESS_BAR" default = False @classmethod def enable(cls): """Enable ``ProgressBar`` feature.""" cls.put(True) @classmethod def disable(cls): """Disable ``ProgressBar`` feature.""" cls.put(False) @classmethod def put(cls, value): """ Set ``ProgressBar`` value only if synchronous benchmarking is disabled. Parameters ---------- value : bool Config value to set. """ if value and BenchmarkMode.get(): raise ValueError("ProgressBar isn't compatible with BenchmarkMode") super().put(value) class BenchmarkMode(EnvironmentVariable, type=bool): """Whether or not to perform computations synchronously.""" varname = "MODIN_BENCHMARK_MODE" default = False @classmethod def put(cls, value): """ Set ``BenchmarkMode`` value only if progress bar feature is disabled. Parameters ---------- value : bool Config value to set. """ if value and ProgressBar.get(): raise ValueError("BenchmarkMode isn't compatible with ProgressBar") super().put(value) class PersistentPickle(EnvironmentVariable, type=bool): """Wheather serialization should be persistent.""" varname = "MODIN_PERSISTENT_PICKLE" # When set to off, it allows faster serialization which is only # valid in current run (i.e. useless for saving to disk). # When set to on, Modin objects could be saved to disk and loaded # but serialization/deserialization could take more time. default = False class OmnisciLaunchParameters(EnvironmentVariable, type=dict): """ Additional command line options for the OmniSci engine. Please visit OmniSci documentation for the description of available parameters: https://docs.omnisci.com/installation-and-configuration/config-parameters#configuration-parameters-for-omniscidb """ varname = "MODIN_OMNISCI_LAUNCH_PARAMETERS" default = { "enable_union": 1, "enable_columnar_output": 1, "enable_lazy_fetch": 0, "null_div_by_zero": 1, "enable_watchdog": 0, } @classmethod def get(self): """ Get the resulted command-line options. Decode and merge specified command-line options with the default one. Returns ------- dict Decoded and verified config value. """ custom_parameters = super().get() result = self.default.copy() result.update( {key.replace("-", "_"): value for key, value in custom_parameters.items()} ) return result def _check_vars(): """ Check validity of environment variables. Look out for any environment variables that start with "MODIN_" prefix that are unknown - they might be a typo, so warn a user. """ valid_names = { obj.varname for obj in globals().values() if isinstance(obj, type) and issubclass(obj, EnvironmentVariable) and not obj.is_abstract } found_names = {name for name in os.environ if name.startswith("MODIN_")} unknown = found_names - valid_names if unknown: warnings.warn( f"Found unknown environment variable{'s' if len(unknown) > 1 else ''}," f" please check {'their' if len(unknown) > 1 else 'its'} spelling: " + ", ".join(sorted(unknown)) ) _check_vars()
27.837963
116
0.633378
[ "ECL-2.0", "Apache-2.0" ]
atomicai/modin
modin/config/envvars.py
12,026
Python
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from .utils import NamespacedClient, query_params, _make_path, SKIP_IN_PATH, _bulk_body class MonitoringClient(NamespacedClient): @query_params("interval", "system_api_version", "system_id") def bulk(self, body, doc_type=None, params=None, headers=None): """ Used by the monitoring features to send monitoring data. `<https://www.elastic.co/guide/en/elasticsearch/reference/7.10/monitor-elasticsearch-cluster.html>`_ .. warning:: This API is **experimental** so may include breaking changes or be removed in a future version :arg body: The operation definition and data (action-data pairs), separated by newlines :arg doc_type: Default document type for items which don't provide one :arg interval: Collection interval (e.g., '10s' or '10000ms') of the payload :arg system_api_version: API Version of the monitored system :arg system_id: Identifier of the monitored system """ if body in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument 'body'.") body = _bulk_body(self.transport.serializer, body) return self.transport.perform_request( "POST", _make_path("_monitoring", doc_type, "bulk"), params=params, headers=headers, body=body, )
40.888889
108
0.685688
[ "MIT" ]
PatrickJD/AWS
AB/lambda/elasticindex/elasticsearch/client/monitoring.py
2,208
Python
# Simple script for updating the build number in pubspec.yaml import re # Regex patter to be used to ID the correct line in pubspec.yaml version_line_pattern = "version:\s+\d+\.\d+\.\d+\+\d+" # Open pubspec.yaml and read lines into memory with open("pubspec.yaml", "r") as current_pubspec: contents = current_pubspec.readlines() # Reopen pubspec.yaml for writing and update with open("pubspec.yaml", "w") as updated_pubspec: # Find and bump build number counter = 0 for line in contents: if re.match(pattern=version_line_pattern, string=line): line_array = line.split("+") contents[counter] = line_array[0] + "+" + str(int(line_array[1]) + 1) + "\n" break counter += 1 # Write updated contents back to disk updated_pubspec.writelines(contents)
33.32
88
0.662665
[ "MIT" ]
EpicSalvation/FlutterStep
increment_build.py
833
Python
import math import warnings import numpy as np import matplotlib rcParams = matplotlib.rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis from matplotlib import cbook from matplotlib import docstring from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, FormatStrFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper, \ ScaledTranslation, blended_transform_factory, BboxTransformToMaxOnly import matplotlib.spines as mspines class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' class PolarTransform(Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform(self, tr): xy = np.empty(tr.shape, np.float_) if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 t = tr[:, 0:1] r = tr[:, 1:2] x = xy[:, 0:1] y = xy[:, 1:2] t *= theta_direction t += theta_offset if rmin != 0: r = r - rmin mask = r < 0 x[:] = np.where(mask, np.nan, r * np.cos(t)) y[:] = np.where(mask, np.nan, r * np.sin(t)) else: x[:] = r * np.cos(t) y[:] = r * np.sin(t) return xy transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return Path(self.transform(vertices), path.codes) ipath = path.interpolated(path._interpolation_steps) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class PolarAffine(Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): """ *limits* is the view limit of the data. The only part of its bounds that is used is ymax (for the radius maximum). The theta range is always fixed to (0, 2pi). """ Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def get_matrix(self): if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) yscale = limits_scaled.ymax - limits_scaled.ymin affine = Affine2D() \ .scale(0.5 / yscale) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class InvertedPolarTransform(Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform(self, xy): if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 x = xy[:, 0:1] y = xy[:, 1:] r = np.sqrt(x*x + y*y) theta = np.arccos(x / r) theta = np.where(y < 0, 2 * np.pi - theta, theta) theta -= theta_offset theta *= theta_direction r += rmin return np.concatenate((theta, r), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return PolarAxes.PolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class ThetaFormatter(Formatter): """ Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __call__(self, x, pos=None): # \u00b0 : degree symbol if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % ((x / np.pi) * 180.0) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) return u"%0.0f\u00b0" % ((x / np.pi) * 180.0) class RadialLocator(Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base): self.base = base def __call__(self): ticks = self.base() return [x for x in ticks if x > 0] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = self.base.view_limits(vmin, vmax) return 0, vmax def __init__(self, *args, **kwargs): """ Create a new Polar Axes for a polar plot. The following optional kwargs are supported: - *resolution*: The number of points of interpolation between each pair of data points. Set to 1 to disable interpolation. """ self.resolution = kwargs.pop('resolution', None) if self.resolution not in (None, 1): warnings.warn( """The resolution kwarg to Polar plots is now ignored. If you need to interpolate data points, consider running cbook.simple_linear_interpolation on the data before passing to matplotlib.""") Axes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() __init__.__doc__ = Axes.__init__.__doc__ def cla(self): Axes.cla(self) self.title.set_y(1.05) self.xaxis.set_major_formatter(self.ThetaFormatter()) self.xaxis.isDefault_majfmt = True angles = np.arange(0.0, 360.0, 45.0) self.set_thetagrids(angles) self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator())) self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.set_theta_offset(0) self.set_theta_direction(1) def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla() # results in weird artifacts. Therefore we disable this for # now. # self.spines['polar'].register_axis(self.yaxis) self._update_transScale() def _set_lim_and_transforms(self): self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = TransformWrapper(IdentityTransform()) # A (possibly non-linear) projection on the (already scaled) # data. This one is aware of rmin self.transProjection = self.PolarTransform(self) # This one is not aware of rmin self.transPureProjection = self.PolarTransform(self, use_rmin=False) # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = self.transScale + self.transProjection + \ (self.transProjectionAffine + self.transAxes) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 1.0 at # the edge of the axis circle. self._xaxis_transform = ( self.transPureProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes) # The theta labels are moved from radius == 0.0 to radius == 1.1 self._theta_label1_position = Affine2D().translate(0.0, 1.1) self._xaxis_text1_transform = ( self._theta_label1_position + self._xaxis_transform) self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1) self._xaxis_text2_transform = ( self._theta_label2_position + self._xaxis_transform) # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to # 2pi. self._yaxis_transform = ( Affine2D().scale(np.pi * 2.0, 1.0) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label_position = ScaledTranslation( 22.5, 0.0, Affine2D()) self._yaxis_text_transform = ( self._r_label_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) def get_xaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pad): angle = self._r_label_position.to_values()[4] if angle < 90.: return self._yaxis_text_transform, 'bottom', 'left' elif angle < 180.: return self._yaxis_text_transform, 'bottom', 'right' elif angle < 270.: return self._yaxis_text_transform, 'top', 'right' else: return self._yaxis_text_transform, 'top', 'left' def get_yaxis_text2_transform(self, pad): angle = self._r_label_position.to_values()[4] if angle < 90.: return self._yaxis_text_transform, 'top', 'right' elif angle < 180.: return self._yaxis_text_transform, 'top', 'left' elif angle < 270.: return self._yaxis_text_transform, 'bottom', 'left' else: return self._yaxis_text_transform, 'bottom', 'right' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'polar':mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_rmax(self, rmax): self.viewLim.y1 = rmax def get_rmax(self): return self.viewLim.ymax def set_rmin(self, rmin): self.viewLim.y0 = rmin def get_rmin(self): return self.viewLim.ymin def set_theta_offset(self, offset): """ Set the offset for the location of 0 in radians. """ self._theta_offset = offset def get_theta_offset(self): """ Get the offset for the location of 0 in radians. """ return self._theta_offset def set_theta_zero_location(self, loc): """ Sets the location of theta's zero. (Calls set_theta_offset with the correct value in radians under the hood.) May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE". """ mapping = { 'N': np.pi * 0.5, 'NW': np.pi * 0.75, 'W': np.pi, 'SW': np.pi * 1.25, 'S': np.pi * 1.5, 'SE': np.pi * 1.75, 'E': 0, 'NE': np.pi * 0.25 } return self.set_theta_offset(mapping[loc]) def set_theta_direction(self, direction): """ Set the direction in which theta increases. clockwise, -1: Theta increases in the clockwise direction counterclockwise, anticlockwise, 1: Theta increases in the counterclockwise direction """ if direction in ('clockwise',): self._direction = -1 elif direction in ('counterclockwise', 'anticlockwise'): self._direction = 1 elif direction in (1, -1): self._direction = direction else: raise ValueError("direction must be 1, -1, clockwise or counterclockwise") def get_theta_direction(self): """ Get the direction in which theta increases. -1: Theta increases in the clockwise direction 1: Theta increases in the counterclockwise direction """ return self._direction def set_rlim(self, *args, **kwargs): if 'rmin' in kwargs: kwargs['ymin'] = kwargs.pop('rmin') if 'rmax' in kwargs: kwargs['ymax'] = kwargs.pop('rmax') return self.set_ylim(*args, **kwargs) def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator())) set_rscale = Axes.set_yscale set_rticks = Axes.set_yticks @docstring.dedent_interpd def set_thetagrids(self, angles, labels=None, frac=None, fmt=None, **kwargs): """ Set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not None, is a ``len(angles)`` list of strings of the labels to use at each angle. If *labels* is None, the labels will be ``fmt %% angle`` *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ angles = np.asarray(angles, np.float_) self.set_xticks(angles * (np.pi / 180.0)) if labels is not None: self.set_xticklabels(labels) elif fmt is not None: self.xaxis.set_major_formatter(FormatStrFormatter(fmt)) if frac is not None: self._theta_label1_position.clear().translate(0.0, frac) self._theta_label2_position.clear().translate(0.0, 1.0 / frac) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() @docstring.dedent_interpd def set_rgrids(self, radii, labels=None, angle=None, fmt=None, **kwargs): """ Set the radial locations and labels of the *r* grids. The labels will appear at radial distances *radii* at the given *angle* in degrees. *labels*, if not None, is a ``len(radii)`` list of strings of the labels to use at each radius. If *labels* is None, the built-in formatter will be used. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ radii = np.asarray(radii) rmin = radii.min() if rmin <= 0: raise ValueError('radial grids must be strictly positive') self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) elif fmt is not None: self.yaxis.set_major_formatter(FormatStrFormatter(fmt)) if angle is None: angle = self._r_label_position.to_values()[4] self._r_label_position._t = (angle, 0.0) self._r_label_position.invalidate() for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels() def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError("You can not set the xscale on a polar plot.") def set_xlim(self, *args, **kargs): # The xlim is fixed, no matter what you do self.viewLim.intervalx = (0.0, np.pi * 2.0) def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ theta /= math.pi # \u03b8: lower-case theta # \u03c0: lower-case pi # \u00b0: degree symbol return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. Polar axes do not support zoom boxes. """ return False def can_pan(self) : """ Return *True* if this axes supports the pan/zoom button functionality. For polar axes, this is slightly misleading. Both panning and zooming are performed by the same button. Panning is performed in azimuth while zooming is done along the radial. """ return True def start_pan(self, x, y, button): angle = np.deg2rad(self._r_label_position.to_values()[4]) mode = '' if button == 1: epsilon = np.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if t >= angle - epsilon and t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = cbook.Bunch( rmax = self.get_rmax(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), r_label_angle = self._r_label_position.to_values()[4], x = x, y = y, mode = mode ) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / np.pi) * 180.0 self._r_label_position._t = (p.r_label_angle - dt, 0.0) self._r_label_position.invalidate() trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0) trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0) for t in self.yaxis.majorTicks + self.yaxis.minorTicks: t.label1.set_va(vert1) t.label1.set_ha(horiz1) t.label2.set_va(vert2) t.label2.set_ha(horiz2) elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) dr = r - startr # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # These are a couple of aborted attempts to project a polar plot using # cubic bezier curves. # def transform_path(self, path): # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # vertices = self.transform(vertices) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # kappa = 0.5 # p0 = vertices[0:-1] # p1 = vertices[1: ] # x0 = p0[:, 0:1] # y0 = p0[:, 1: ] # b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0) # a0 = y0 - b0*x0 # x1 = p1[:, 0:1] # y1 = p1[:, 1: ] # b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1) # a1 = y1 - b1*x1 # x = -(a0-a1) / (b0-b1) # y = a0 + b0*x # xk = (x - x0) * kappa + x0 # yk = (y - y0) * kappa + y0 # result[1::3, 0:1] = xk # result[1::3, 1: ] = yk # xk = (x - x1) * kappa + x1 # yk = (y - y1) * kappa + y1 # result[2::3, 0:1] = xk # result[2::3, 1: ] = yk # result[3::3] = p1 # print vertices[-2:] # print result[-2:] # return mpath.Path(result, codes) # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # print "interpolate", interpolate # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # tkappa = np.arctan(kappa) # hyp_kappa = np.sqrt(kappa*kappa + 1.0) # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # r0 = vertices[0:-1, 1] # r1 = vertices[1: , 1] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # td_scaled = td / (np.pi * 0.5) # rd = r1 - r0 # r0kappa = r0 * kappa * td_scaled # r1kappa = r1 * kappa * td_scaled # ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled # result[1::3, 0] = t0 + (tkappa * td_scaled) # result[1::3, 1] = r0*hyp_kappa # # result[1::3, 1] = r0 / np.cos(tkappa * td_scaled) # np.sqrt(r0*r0 + ravg_kappa*ravg_kappa) # result[2::3, 0] = t1 - (tkappa * td_scaled) # result[2::3, 1] = r1*hyp_kappa # # result[2::3, 1] = r1 / np.cos(tkappa * td_scaled) # np.sqrt(r1*r1 + ravg_kappa*ravg_kappa) # result[3::3, 0] = t1 # result[3::3, 1] = r1 # print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa # result = self.transform(result) # return mpath.Path(result, codes) # transform_path_non_affine = transform_path
35.076216
106
0.559173
[ "BSD-3-Clause" ]
ashley8jain/IITD-complaint-system-web
lib/python2.7/matplotlib/projections/polar.py
26,693
Python
import cgi import errno import mimetypes import os import posixpath import re import shutil import stat import sys import tempfile try: from urllib.request import urlretrieve except ImportError: # Python 2 from urllib import urlretrieve from optparse import make_option from os import path import django from django.template import Template, Context from django.utils import archive from django.utils._os import rmtree_errorhandler from django.core.management.base import BaseCommand, CommandError from django.core.management.commands.makemessages import handle_extensions _drive_re = re.compile('^([a-z]):', re.I) _url_drive_re = re.compile('^([a-z])[:|]', re.I) class TemplateCommand(BaseCommand): """ Copies either a Django application layout template or a Django project layout template into the specified directory. :param style: A color style object (see django.core.management.color). :param app_or_project: The string 'app' or 'project'. :param name: The name of the application or project. :param directory: The directory to which the template should be copied. :param options: The additional variables passed to project or app templates """ args = "[name] [optional destination directory]" option_list = BaseCommand.option_list + ( make_option('--template', action='store', dest='template', help='The dotted import path to load the template from.'), make_option('--extension', '-e', dest='extensions', action='append', default=['py'], help='The file extension(s) to render (default: "py"). ' 'Separate multiple extensions with commas, or use ' '-e multiple times.'), make_option('--name', '-n', dest='files', action='append', default=[], help='The file name(s) to render. ' 'Separate multiple extensions with commas, or use ' '-n multiple times.') ) requires_model_validation = False # Can't import settings during this command, because they haven't # necessarily been created. can_import_settings = False # The supported URL schemes url_schemes = ['http', 'https', 'ftp'] # Can't perform any active locale changes during this command, because # setting might not be available at all. leave_locale_alone = True def handle(self, app_or_project, name, target=None, **options): self.app_or_project = app_or_project self.paths_to_remove = [] self.verbosity = int(options.get('verbosity')) self.validate_name(name, app_or_project) # if some directory is given, make sure it's nicely expanded if target is None: top_dir = path.join(os.getcwd(), name) try: os.makedirs(top_dir) except OSError as e: if e.errno == errno.EEXIST: message = "'%s' already exists" % top_dir else: message = e raise CommandError(message) else: top_dir = os.path.abspath(path.expanduser(target)) if not os.path.exists(top_dir): raise CommandError("Destination directory '%s' does not " "exist, please create it first." % top_dir) extensions = tuple( handle_extensions(options.get('extensions'), ignored=())) extra_files = [] for file in options.get('files'): extra_files.extend(map(lambda x: x.strip(), file.split(','))) if self.verbosity >= 2: self.stdout.write("Rendering %s template files with " "extensions: %s\n" % (app_or_project, ', '.join(extensions))) self.stdout.write("Rendering %s template files with " "filenames: %s\n" % (app_or_project, ', '.join(extra_files))) base_name = '%s_name' % app_or_project base_subdir = '%s_template' % app_or_project base_directory = '%s_directory' % app_or_project if django.VERSION[-1] == 0: docs_version = 'dev' else: docs_version = '%d.%d' % django.VERSION[:2] context = Context(dict(options, **{ base_name: name, base_directory: top_dir, 'docs_version': docs_version, }), autoescape=False) # Setup a stub settings environment for template rendering from django.conf import settings if not settings.configured: settings.configure() template_dir = self.handle_template(options.get('template'), base_subdir) prefix_length = len(template_dir) + 1 for root, dirs, files in os.walk(template_dir): path_rest = root[prefix_length:] relative_dir = path_rest.replace(base_name, name) if relative_dir: target_dir = path.join(top_dir, relative_dir) if not path.exists(target_dir): os.mkdir(target_dir) for dirname in dirs[:]: if dirname.startswith('.') or dirname == '__pycache__': dirs.remove(dirname) for filename in files: if filename.endswith(('.pyo', '.pyc', '.py.class')): # Ignore some files as they cause various breakages. continue old_path = path.join(root, filename) new_path = path.join(top_dir, relative_dir, filename.replace(base_name, name)) if path.exists(new_path): raise CommandError("%s already exists, overlaying a " "project or app into an existing " "directory won't replace conflicting " "files" % new_path) # Only render the Python files, as we don't want to # accidentally render Django templates files with open(old_path, 'rb') as template_file: content = template_file.read() if filename.endswith(extensions) or filename in extra_files: content = content.decode('utf-8') template = Template(content) content = template.render(context) content = content.encode('utf-8') with open(new_path, 'wb') as new_file: new_file.write(content) if self.verbosity >= 2: self.stdout.write("Creating %s\n" % new_path) try: shutil.copymode(old_path, new_path) self.make_writeable(new_path) except OSError: self.stderr.write( "Notice: Couldn't set permission bits on %s. You're " "probably using an uncommon filesystem setup. No " "problem." % new_path, self.style.NOTICE) if self.paths_to_remove: if self.verbosity >= 2: self.stdout.write("Cleaning up temporary files.\n") for path_to_remove in self.paths_to_remove: if path.isfile(path_to_remove): os.remove(path_to_remove) else: shutil.rmtree(path_to_remove, onerror=rmtree_errorhandler) def handle_template(self, template, subdir): """ Determines where the app or project templates are. Use django.__path__[0] as the default because we don't know into which directory Django has been installed. """ if template is None: return path.join(django.__path__[0], 'conf', subdir) else: if template.startswith('file://'): template = template[7:] expanded_template = path.expanduser(template) expanded_template = path.normpath(expanded_template) if path.isdir(expanded_template): return expanded_template if self.is_url(template): # downloads the file and returns the path absolute_path = self.download(template) else: absolute_path = path.abspath(expanded_template) if path.exists(absolute_path): return self.extract(absolute_path) raise CommandError("couldn't handle %s template %s." % (self.app_or_project, template)) def validate_name(self, name, app_or_project): if name is None: raise CommandError("you must provide %s %s name" % ( "an" if app_or_project == "app" else "a", app_or_project)) # If it's not a valid directory name. if not re.search(r'^[_a-zA-Z]\w*$', name): # Provide a smart error message, depending on the error. if not re.search(r'^[_a-zA-Z]', name): message = 'make sure the name begins with a letter or underscore' else: message = 'use only numbers, letters and underscores' raise CommandError("%r is not a valid %s name. Please %s." % (name, app_or_project, message)) def download(self, url): """ Downloads the given URL and returns the file name. """ def cleanup_url(url): tmp = url.rstrip('/') filename = tmp.split('/')[-1] if url.endswith('/'): display_url = tmp + '/' else: display_url = url return filename, display_url prefix = 'django_%s_template_' % self.app_or_project tempdir = tempfile.mkdtemp(prefix=prefix, suffix='_download') self.paths_to_remove.append(tempdir) filename, display_url = cleanup_url(url) if self.verbosity >= 2: self.stdout.write("Downloading %s\n" % display_url) try: the_path, info = urlretrieve(url, path.join(tempdir, filename)) except IOError as e: raise CommandError("couldn't download URL %s to %s: %s" % (url, filename, e)) used_name = the_path.split('/')[-1] # Trying to get better name from response headers content_disposition = info.get('content-disposition') if content_disposition: _, params = cgi.parse_header(content_disposition) guessed_filename = params.get('filename') or used_name else: guessed_filename = used_name # Falling back to content type guessing ext = self.splitext(guessed_filename)[1] content_type = info.get('content-type') if not ext and content_type: ext = mimetypes.guess_extension(content_type) if ext: guessed_filename += ext # Move the temporary file to a filename that has better # chances of being recognnized by the archive utils if used_name != guessed_filename: guessed_path = path.join(tempdir, guessed_filename) shutil.move(the_path, guessed_path) return guessed_path # Giving up return the_path def splitext(self, the_path): """ Like os.path.splitext, but takes off .tar, too """ base, ext = posixpath.splitext(the_path) if base.lower().endswith('.tar'): ext = base[-4:] + ext base = base[:-4] return base, ext def extract(self, filename): """ Extracts the given file to a temporarily and returns the path of the directory with the extracted content. """ prefix = 'django_%s_template_' % self.app_or_project tempdir = tempfile.mkdtemp(prefix=prefix, suffix='_extract') self.paths_to_remove.append(tempdir) if self.verbosity >= 2: self.stdout.write("Extracting %s\n" % filename) try: archive.extract(filename, tempdir) return tempdir except (archive.ArchiveException, IOError) as e: raise CommandError("couldn't extract file %s to %s: %s" % (filename, tempdir, e)) def is_url(self, template): """ Returns True if the name looks like a URL """ if ':' not in template: return False scheme = template.split(':', 1)[0].lower() return scheme in self.url_schemes def make_writeable(self, filename): """ Make sure that the file is writeable. Useful if our source is read-only. """ if sys.platform.startswith('java'): # On Jython there is no os.access() return if not os.access(filename, os.W_OK): st = os.stat(filename) new_permissions = stat.S_IMODE(st.st_mode) | stat.S_IWUSR os.chmod(filename, new_permissions)
40.364742
81
0.565437
[ "BSD-3-Clause" ]
LuanP/django
django/core/management/templates.py
13,280
Python
""" Using the csv module. """ import csv def parse(csvfilename): """ Reads CSV file named csvfilename, parses it's content and returns the data within the file as a list of lists. """ table = [] with open(csvfilename, "r") as csvfile: csvreader = csv.reader(csvfile, skipinitialspace=True) for row in csvreader: table.append(row) return table def print_table(table): """ Print out table, which must be a list of lists, in a nicely formatted way. """ for row in table: # Header column left justified print("{:<19}".format(row[0]), end='') # Remaining columns right justified for col in row[1:]: print("{:>4}".format(col), end='') print("", end='\n') table = parse("hightemp.csv") print_table(table) print("") print("") table2 = parse("hightemp2.csv") print_table(table2)
21.860465
53
0.578723
[ "Apache-2.0" ]
Abu-Kaisar/Courses-
Rice-Python-Data-Analysis/week3/examples3_csvmodule.py
940
Python
""" Utility functions for training one epoch and evaluating one epoch """ import torch import torch.nn as nn import math from train.metrics import accuracy_MNIST_CIFAR as accuracy def train_epoch(model, optimizer, device, data_loader, epoch=0): model.train() epoch_loss = 0 epoch_train_acc = 0 nb_data = 0 gpu_mem = 0 for iter, (batch_graphs, batch_labels, batch_snorm_n, batch_snorm_e) in enumerate(data_loader): batch_x = batch_graphs.ndata['feat'].to(device) # num x feat batch_e = batch_graphs.edata['feat'].to(device) batch_snorm_e = batch_snorm_e.to(device) batch_labels = batch_labels.to(device) batch_snorm_n = batch_snorm_n.to(device) # num x 1 optimizer.zero_grad() batch_scores = model.forward(batch_graphs, batch_x, batch_e, batch_snorm_n, batch_snorm_e) loss = model.loss(batch_scores, batch_labels) loss.backward() optimizer.step() epoch_loss += loss.detach().item() epoch_train_acc += accuracy(batch_scores, batch_labels) nb_data += batch_labels.size(0) epoch_loss /= (iter + 1) epoch_train_acc /= nb_data return epoch_loss, epoch_train_acc, optimizer def evaluate_network(model, device, data_loader, epoch=0): model.eval() epoch_test_loss = 0 epoch_test_acc = 0 nb_data = 0 with torch.no_grad(): for iter, (batch_graphs, batch_labels, batch_snorm_n, batch_snorm_e) in enumerate(data_loader): batch_x = batch_graphs.ndata['feat'].to(device) batch_e = batch_graphs.edata['feat'].to(device) batch_snorm_e = batch_snorm_e.to(device) batch_labels = batch_labels.to(device) batch_snorm_n = batch_snorm_n.to(device) batch_scores = model.forward(batch_graphs, batch_x, batch_e, batch_snorm_n, batch_snorm_e) loss = model.loss(batch_scores, batch_labels) epoch_test_loss += loss.detach().item() epoch_test_acc += accuracy(batch_scores, batch_labels) nb_data += batch_labels.size(0) epoch_test_loss /= (iter + 1) epoch_test_acc /= nb_data return epoch_test_loss, epoch_test_acc
38.775862
103
0.663406
[ "MIT" ]
nfkjsfoeif/AutoGCN
train/train_superpixels_graph_classification.py
2,249
Python
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import io import logging import zipfile import requests from .record import Record logger = logging.getLogger(__name__) # Module API def collect(conf, conn): """Collect ICD-XX-PCS procedures. """ # For more information see: # https://www.cms.gov/Medicare/Coding/ICD10/2016-ICD-10-PCS-and-GEMs.html URL = 'https://www.cms.gov/Medicare/Coding/ICD10/Downloads/2016-PCS-Long-Abbrev-Titles.zip' FILE = 'icd10pcs_order_2016.txt' VERSION = 'ICD-10-PCS' LAST_UPDATED = '2015-10-01' # Prepare file zip = requests.get(URL).content file = zipfile.ZipFile(io.BytesIO(zip)).open(FILE) count = 0 for line in file: # Prepare data # Format is described in instruction # stored in zip archive we download data = { 'code': line[6:6+7].strip(), 'is_header': line[14:14+1].strip(), 'short_description': line[16:16+60].strip(), 'long_description': line[77:].strip(), 'version': VERSION, 'last_updated': LAST_UPDATED, } # Create record record = Record.create(URL, data) # Write record record.write(conf, conn) # Log info count += 1 if not count % 100: logger.info('Collected %s "%s" interventions', count, record.table)
27.017857
95
0.62657
[ "MIT" ]
almeidaah/collectors
collectors/icdpcs/collector.py
1,513
Python
# encoding: utf-8 import io from setuptools import find_packages, setup from har2case import __version__ with io.open("README.rst", encoding='utf-8') as f: long_description = f.read() install_requires = open("requirements.txt").readlines() setup( name='har2case', version=__version__, description='Convert HAR(HTTP Archive) to YAML/JSON testcases for HttpRunner.', long_description=long_description, author='Leo Lee', author_email='[email protected]', url='https://github.com/HttpRunner/har2case', license='MIT', packages=find_packages(exclude=['test.*', 'test']), package_data={}, keywords='har converter yaml json', install_requires=install_requires, classifiers=[ "Development Status :: 3 - Alpha", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6' ], entry_points={ 'console_scripts': [ 'har2case=har2case.cli:main' ] } )
28.25
83
0.645133
[ "MIT" ]
ddkwing/har2case
setup.py
1,130
Python
import requests import os class IntegrationDiscordDriver: _scope = '' _state = '' def scopes(self, scopes): pass def send(self, request, state='', scopes=('identify',)): self._scope = scopes self._state = state return request.redirect('https://discordapp.com/api/oauth2/authorize?response_type=code&client_id={}&scope={}&state={}&redirect_uri={}'.format( os.getenv('DISCORD_CLIENT'), ' '.join(self._scope), self._state, os.getenv('DISCORD_REDIRECT'), )) def user(self, request): data = { 'client_id': os.getenv('DISCORD_CLIENT'), 'client_secret': os.getenv('DISCORD_SECRET'), 'grant_type': 'authorization_code', 'code': request.input('code'), 'redirect_uri': os.getenv('DISCORD_REDIRECT') } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } return requests.post('https://discordapp.com/api/oauth2/token', data, headers).json() def refresh(self, refresh_token): data = { 'client_id': os.getenv('DISCORD_CLIENT'), 'client_secret': os.getenv('DISCORD_SECRET'), 'grant_type': 'refresh_token', 'refresh_token': refresh_token, 'redirect_uri': os.getenv('DISCORD_REDIRECT') } headers = { 'Content-Type': 'application/x-www-form-urlencoded' } return requests.post('https://discordapp.com/api/oauth2/token', data, headers).json()
31.058824
151
0.576389
[ "MIT" ]
josephmancuso/gbaleague-masonite2
app/integrations/IntegrationDiscordDriver.py
1,584
Python
#!/usr/bin/env python from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name='bcpy', version='0.1', author='Igor Neves Faustino', author_email='[email protected]', url='https://github.com/igornfaustino/bcpy.git', description='library for BCI signal analysis', long_description=long_description, long_description_content_type="text/markdown", license='MIT', packages=find_packages(), # entry_points={ # 'console_scripts': ['forecastio = displayforecastio.app:run'], # } )
26.304348
72
0.682645
[ "MIT" ]
bneurd/bcpy
setup.py
605
Python
from collections import OrderedDict, defaultdict, namedtuple from functools import partial from itertools import groupby from cached_property import cached_property import numpy as np from devito.ir import (SEQUENTIAL, PARALLEL, PARALLEL_IF_PVT, ROUNDABLE, DataSpace, Forward, IterationInstance, IterationSpace, Interval, IntervalGroup, LabeledVector, Context, detect_accesses, build_intervals, normalize_properties) from devito.passes.clusters.utils import timed_pass from devito.symbolics import (Uxmapper, compare_ops, estimate_cost, q_constant, q_leaf, retrieve_indexed, search, uxreplace) from devito.tools import as_tuple, flatten, split from devito.types import (Array, TempFunction, Eq, Symbol, ModuloDimension, CustomDimension, IncrDimension) __all__ = ['cire'] @timed_pass(name='cire') def cire(clusters, mode, sregistry, options, platform): """ Cross-iteration redundancies elimination. Parameters ---------- cluster : Cluster Input Cluster, subject of the optimization pass. mode : str The transformation mode. Accepted: ['invariants', 'sops']. * 'invariants' is for sub-expressions that are invariant w.r.t. one or more Dimensions. * 'sops' stands for sums-of-products, that is redundancies are searched across all expressions in sum-of-product form. sregistry : SymbolRegistry The symbol registry, to create unique temporary names. options : dict The optimization options. Accepted: ['min-storage', 'cire-maxpar', 'cire-rotate', 'cire-maxalias']. * 'min-storage': if True, the pass will try to minimize the amount of storage introduced for the tensor temporaries. This might also reduce the operation count. On the other hand, this might affect fusion and therefore data locality. Defaults to False (legacy). * 'cire-maxpar': if True, privilege parallelism over working set size, that is the pass will try to create as many parallel loops as possible, even though this will require more space (Dimensions) for the temporaries. Defaults to False. * 'cire-rotate': if True, the pass will use modulo indexing for the outermost Dimension iterated over by the temporaries. This will sacrifice a parallel loop for a reduced working set size. Defaults to False (legacy). * 'cire-maxalias': if True, capture the largest redundancies. This will minimize the flop count while maximizing the number of tensor temporaries, thus increasing the working set size. platform : Platform The underlying platform. Used to optimize the shape of the introduced tensor symbols. Examples -------- 1) 'invariants'. Here's an expensive expression invariant w.r.t. `t` t0 = (cos(a[x,y,z])*sin(b[x,y,z]))*c[t,x,y,z] which after CIRE becomes t1[x,y,z] = cos(a[x,y,z])*sin(b[x,y,z]) t0 = t1[x,y,z]*c[t,x,y,z] 2) 'sops'. Below we see two expressions in sum-of-product form (in this case, the sum degenerates to a single product). t0 = 2.0*a[x,y,z]*b[x,y,z] t1 = 3.0*a[x,y,z+1]*b[x,y,z+1] CIRE detects that these two expressions are actually redundant and rewrites them as: t2[x,y,z] = a[x,y,z]*b[x,y,z] t0 = 2.0*t2[x,y,z] t1 = 3.0*t2[x,y,z+1] """ if mode == 'invariants': space = ('inv-basic', 'inv-compound') elif mode in ('sops',): space = (mode,) else: assert False, "Unknown CIRE mode `%s`" % mode processed = [] for c in clusters: # We don't care about sparse Clusters. Their computational cost is # negligible and processing all of them would only increase compilation # time and potentially make the generated code more chaotic if not c.is_dense: processed.append(c) continue # Some of the CIRE transformers need to look inside all scopes # surrounding `c` to perform data dependencies analysis context = Context(c).process(clusters) # Applying CIRE may change `c` as well as creating one or more new Clusters transformed = _cire(c, context, space, sregistry, options, platform) processed.extend(transformed) return processed def _cire(cluster, context, space, sregistry, options, platform): # Construct the space of variants variants = [modes[mode](sregistry, options).make_schedule(cluster, context) for mode in space] if not any(i.schedule for i in variants): return [cluster] # Pick the variant with the highest score, that is the variant with the best # trade-off between operation count reduction and working set size increase schedule, exprs = pick_best(variants) # Schedule -> [Clusters] schedule = optimize_schedule(cluster, schedule, platform, sregistry, options) clusters, subs = lower_schedule(cluster, schedule, sregistry, options) clusters.append(rebuild(cluster, exprs, subs, schedule)) return clusters class Cire(object): """ Base class for CIRE transformers. """ optname = None mode = None def __init__(self, sregistry, options): self.sregistry = sregistry self._opt_minstorage = options['min-storage'] self._opt_mincost = options['cire-mincost'][self.optname] self._opt_maxpar = options['cire-maxpar'] self._opt_maxalias = options['cire-maxalias'] def make_schedule(self, cluster, context): # Capture aliases within `exprs` aliases = AliasMapper() score = 0 exprs = cluster.exprs ispace = cluster.ispace for n in range(self._nrepeats(cluster)): # Extract potentially aliasing expressions mapper = self._extract(exprs, context, n) # Search aliasing expressions found = collect(mapper.extracted, ispace, self._opt_minstorage) # Choose the aliasing expressions with a good flops/memory trade-off exprs, chosen, pscore = choose(found, exprs, mapper, self._selector) aliases.update(chosen) score += pscore # AliasMapper -> Schedule schedule = lower_aliases(cluster, aliases, self._in_writeto, self._opt_maxpar) # The actual score is a 2-tuple <flop-reduction-score, workin-set-score> score = (score, len(aliases)) return SpacePoint(schedule, exprs, score) def _make_symbol(self): return Symbol(name=self.sregistry.make_name('dummy')) def _nrepeats(self, cluster): raise NotImplementedError def _extract(self, exprs, context, n): raise NotImplementedError def _in_writeto(self, dim, cluster): raise NotImplementedError def _selector(self, e, naliases): raise NotImplementedError class CireInvariants(Cire): optname = 'invariants' def _nrepeats(self, cluster): return 1 def _rule(self, e): return (e.is_Function or (e.is_Pow and e.exp.is_Number and e.exp < 1)) def _extract(self, exprs, context, n): mapper = Uxmapper() for prefix, clusters in context.items(): if not prefix: continue exclude = set().union(*[c.scope.writes for c in clusters]) exclude.add(prefix[-1].dim) for e in exprs: for i in search(e, self._rule, 'all', 'bfs_first_hit'): if {a.function for a in i.free_symbols} & exclude: continue mapper.add(i, self._make_symbol) return mapper def _in_writeto(self, dim, cluster): return PARALLEL in cluster.properties[dim] def _selector(self, e, naliases): if all(i.function.is_Symbol for i in e.free_symbols): # E.g., `dt**(-2)` mincost = self._opt_mincost['scalar'] else: mincost = self._opt_mincost['tensor'] return estimate_cost(e, True)*naliases // mincost class CireInvariantsBasic(CireInvariants): mode = 'inv-basic' class CireInvariantsCompound(CireInvariants): mode = 'inv-compound' def _extract(self, exprs, context, n): extracted = super()._extract(exprs, context, n).extracted rule = lambda e: any(a in extracted for a in e.args) mapper = Uxmapper() for e in exprs: for i in search(e, rule, 'all', 'dfs'): if not i.is_commutative: continue key = lambda a: a in extracted terms, others = split(i.args, key) mapper.add(i, self._make_symbol, terms) return mapper class CireSOPS(Cire): optname = 'sops' mode = 'sops' def _nrepeats(self, cluster): # The `nrepeats` is calculated such that we analyze all potential derivatives # in `cluster` return potential_max_deriv_order(cluster.exprs) def _extract(self, exprs, context, n): # Forbid CIRE involving Dimension-independent dependencies, e.g.: # r0 = ... # u[x, y] = ... r0*a[x, y] ... # NOTE: if one uses the DSL in a conventional way and sticks to the default # compilation pipelines where CSE always happens after CIRE, then `exclude` # will always be empty exclude = {i.source.indexed for i in context[None].scope.d_flow.independent()} mapper = Uxmapper() for e in exprs: for i in search_potential_deriv(e, n): if i.free_symbols & exclude: continue key = lambda a: a.is_Add terms, others = split(i.args, key) if self._opt_maxalias: # Treat `e` as an FD expression and pull out the derivative # coefficient from `i` # Note: typically derivative coefficients are numbers, but # sometimes they could be provided in symbolic form through an # arbitrary Function. In the latter case, we rely on the # heuristic that such Function's basically never span the whole # grid, but rather a single Grid dimension (e.g., `c[z, n]` for a # stencil of diameter `n` along `z`) if e.grid is not None and terms: key = partial(maybe_coeff_key, e.grid) others, more_terms = split(others, key) terms += more_terms mapper.add(i, self._make_symbol, terms) return mapper def _in_writeto(self, dim, cluster): return self._opt_maxpar and PARALLEL in cluster.properties[dim] def _selector(self, e, naliases): if naliases <= 1: return 0 else: return estimate_cost(e, True)*naliases // self._opt_mincost modes = { CireInvariantsBasic.mode: CireInvariantsBasic, CireInvariantsCompound.mode: CireInvariantsCompound, CireSOPS.mode: CireSOPS } def collect(extracted, ispace, min_storage): """ Find groups of aliasing expressions. We shall introduce the following (loose) terminology: * A ``terminal`` is the leaf of a mathematical operation. Terminals can be numbers (n), literals (l), or Indexeds (I). * ``R`` is the relaxation operator := ``R(n) = n``, ``R(l) = l``, ``R(I) = J``, where ``J`` has the same base as ``I`` but with all offsets stripped away. For example, ``R(a[i+2,j-1]) = a[i,j]``. * A ``relaxed expression`` is an expression in which all of the terminals are relaxed. Now we define the concept of aliasing. We say that an expression A aliases an expression B if: * ``R(A) == R(B)`` * all pairwise Indexeds in A and B access memory locations at a fixed constant distance along each Dimension. For example, consider the following expressions: * a[i+1] + b[i+1] * a[i+1] + b[j+1] * a[i] + c[i] * a[i+2] - b[i+2] * a[i+2] + b[i] * a[i-1] + b[i-1] Out of the expressions above, the following alias to `a[i] + b[i]`: * a[i+1] + b[i+1] : same operands and operations, distance along i: 1 * a[i-1] + b[i-1] : same operands and operations, distance along i: -1 Whereas the following do not: * a[i+1] + b[j+1] : because at least one index differs * a[i] + c[i] : because at least one of the operands differs * a[i+2] - b[i+2] : because at least one operation differs * a[i+2] + b[i] : because the distances along ``i`` differ (+2 and +0) """ # Find the potential aliases found = [] for expr in extracted: assert not expr.is_Equality indexeds = retrieve_indexed(expr) bases = [] offsets = [] for i in indexeds: ii = IterationInstance(i) if ii.is_irregular: break base = [] offset = [] for e, ai in zip(ii, ii.aindices): if q_constant(e): base.append(e) else: base.append(ai) offset.append((ai, e - ai)) bases.append(tuple(base)) offsets.append(LabeledVector(offset)) if not indexeds or len(bases) == len(indexeds): found.append(Candidate(expr, ispace, indexeds, bases, offsets)) # Create groups of aliasing expressions mapper = OrderedDict() unseen = list(found) while unseen: c = unseen.pop(0) group = [c] for u in list(unseen): # Is the arithmetic structure of `c` and `u` equivalent ? if not compare_ops(c.expr, u.expr): continue # Is `c` translated w.r.t. `u` ? if not c.translated(u): continue group.append(u) unseen.remove(u) group = Group(group) if min_storage: k = group.dimensions_translated else: k = group.dimensions mapper.setdefault(k, []).append(group) aliases = AliasMapper() queue = list(mapper.values()) while queue: groups = queue.pop(0) while groups: # For each Dimension, determine the Minimum Intervals (MI) spanning # all of the Groups diameters # Example: x's largest_diameter=2 => [x[-2,0], x[-1,1], x[0,2]] # Note: Groups that cannot evaluate their diameter are dropped mapper = defaultdict(int) for g in list(groups): try: mapper.update({d: max(mapper[d], v) for d, v in g.diameter.items()}) except ValueError: groups.remove(g) intervalss = {d: make_rotations_table(d, v) for d, v in mapper.items()} # For each Group, find a rotation that is compatible with a given MI mapper = {} for d, intervals in intervalss.items(): # Not all groups may access all dimensions # Example: `d=t` and groups=[Group(...[t, x]...), Group(...[time, x]...)] impacted = [g for g in groups if d in g.dimensions] for interval in list(intervals): found = {g: g.find_rotation_distance(d, interval) for g in impacted} if all(distance is not None for distance in found.values()): # `interval` is OK ! mapper[interval] = found break if len(mapper) == len(intervalss): break # Try again with fewer groups # Heuristic: first try retaining the larger ones smallest = len(min(groups, key=len)) fallback = groups groups, remainder = split(groups, lambda g: len(g) > smallest) if groups: queue.append(remainder) elif len(remainder) > 1: # No luck with the heuristic, e.g. there are two groups # and both have same `len` queue.append(fallback[1:]) groups = [fallback.pop(0)] else: break for g in groups: c = g.pivot distances = defaultdict(int, [(i.dim, v.get(g)) for i, v in mapper.items()]) # Create the basis alias offsets = [LabeledVector([(l, v[l] + distances[l]) for l in v.labels]) for v in c.offsets] subs = {i: i.function[[l + v.fromlabel(l, 0) for l in b]] for i, b, v in zip(c.indexeds, c.bases, offsets)} alias = uxreplace(c.expr, subs) # All aliased expressions aliaseds = [extracted[i.expr] for i in g] # Distance of each aliased expression from the basis alias distances = [] for i in g: distance = [o.distance(v) for o, v in zip(i.offsets, offsets)] distance = [(d, set(v)) for d, v in LabeledVector.transpose(*distance)] distances.append(LabeledVector([(d, v.pop()) for d, v in distance])) aliases.add(alias, list(mapper), aliaseds, distances) return aliases def choose(aliases, exprs, mapper, selector): """ Analyze the detected aliases and, after applying a cost model to rule out the aliases with a bad flops/memory trade-off, inject them into the original expressions. """ tot = 0 retained = AliasMapper() # Pass 1: a set of aliasing expressions is retained only if its cost # exceeds the mode's threshold candidates = OrderedDict() aliaseds = [] others = [] for e, v in aliases.items(): score = selector(e, len(v.aliaseds)) if score > 0: candidates[e] = score aliaseds.extend(v.aliaseds) else: others.append(e) # Do not waste time if unneccesary if not candidates: return exprs, retained, tot # Project the candidate aliases into exprs to determine what the new # working set would be mapper = {k: v for k, v in mapper.items() if v.free_symbols & set(aliaseds)} templated = [uxreplace(e, mapper) for e in exprs] # Pass 2: a set of aliasing expressions is retained only if the tradeoff # between operation count reduction and working set increase is favorable owset = wset(others + templated) for e, v in aliases.items(): try: score = candidates[e] except KeyError: score = 0 if score > 1 or \ score == 1 and max(len(wset(e)), 1) > len(wset(e) & owset): retained[e] = v tot += score # Do not waste time if unneccesary if not retained: return exprs, retained, tot # Substitute the chosen aliasing sub-expressions mapper = {k: v for k, v in mapper.items() if v.free_symbols & set(retained.aliaseds)} exprs = [uxreplace(e, mapper) for e in exprs] return exprs, retained, tot def lower_aliases(cluster, aliases, in_writeto, maxpar): """ Create a Schedule from an AliasMapper. """ dmapper = {} processed = [] for alias, v in aliases.items(): imapper = {**{i.dim: i for i in v.intervals}, **{i.dim.parent: i for i in v.intervals if i.dim.is_NonlinearDerived}} intervals = [] writeto = [] sub_iterators = {} indicess = [[] for _ in v.distances] for i in cluster.ispace.intervals: try: interval = imapper[i.dim] except KeyError: # E.g., `x0_blk0` or (`a[y_m+1]` => `y not in imapper`) intervals.append(i) continue assert i.stamp >= interval.stamp if not (writeto or interval != interval.zero() or in_writeto(i.dim, cluster)): # The alias doesn't require a temporary Dimension along i.dim intervals.append(i) continue assert not i.dim.is_NonlinearDerived # `i.dim` is necessarily part of the write-to region, so # we have to adjust the Interval's stamp. For example, consider # `i=x[0,0]<1>` and `interval=x[-4,4]<0>`; here we need to # use `<1>` as stamp, which is what appears in `cluster` interval = interval.lift(i.stamp) # We further bump the interval stamp if we were requested to trade # fusion for more collapse-parallelism interval = interval.lift(interval.stamp + int(maxpar)) writeto.append(interval) intervals.append(interval) if i.dim.is_Incr: # Suitable IncrDimensions must be used to avoid OOB accesses. # E.g., r[xs][ys][z] => both `xs` and `ys` must be initialized such # that all accesses are within bounds. This requires traversing the # hierarchy of IncrDimensions to set `xs` (`ys`) in a way that # consecutive blocks access consecutive regions in `r` (e.g., # `xs=x0_blk1-x0_blk0` with `blocklevels=2`; `xs=0` with # `blocklevels=1`, that is it degenerates in this case) try: d = dmapper[i.dim] except KeyError: dd = i.dim.parent assert dd.is_Incr if dd.parent.is_Incr: # An IncrDimension in between IncrDimensions m = i.dim.symbolic_min - i.dim.parent.symbolic_min else: m = 0 d = dmapper[i.dim] = IncrDimension("%ss" % i.dim.name, i.dim, m, dd.symbolic_size, 1, dd.step) sub_iterators[i.dim] = d else: d = i.dim # Given the iteration `interval`, lower distances to indices for distance, indices in zip(v.distances, indicess): indices.append(d - interval.lower + distance[interval.dim]) # The alias write-to space writeto = IterationSpace(IntervalGroup(writeto), sub_iterators) # The alias iteration space intervals = IntervalGroup(intervals, cluster.ispace.relations) ispace = IterationSpace(intervals, cluster.sub_iterators, cluster.directions) ispace = ispace.augment(sub_iterators) processed.append(ScheduledAlias(alias, writeto, ispace, v.aliaseds, indicess)) # The [ScheduledAliases] must be ordered so as to reuse as many of the # `cluster`'s IterationIntervals as possible in order to honor the # write-to region. Another fundamental reason for ordering is to ensure # deterministic code generation processed = sorted(processed, key=lambda i: cit(cluster.ispace, i.ispace)) return Schedule(*processed, dmapper=dmapper) def optimize_schedule(cluster, schedule, platform, sregistry, options): """ Rewrite the schedule for performance optimization. """ if options['cire-rotate']: schedule = _optimize_schedule_rotations(schedule, sregistry) schedule = _optimize_schedule_padding(cluster, schedule, platform) return schedule def _optimize_schedule_rotations(schedule, sregistry): """ Transform the schedule such that the tensor temporaries "rotate" along the outermost Dimension. This trades a parallel Dimension for a smaller working set size. """ # The rotations Dimension is the outermost ridx = 0 rmapper = defaultdict(list) processed = [] for k, group in groupby(schedule, key=lambda i: i.writeto): g = list(group) candidate = k[ridx] d = candidate.dim try: ds = schedule.dmapper[d] except KeyError: # Can't do anything if `d` isn't an IncrDimension over a block processed.extend(g) continue n = candidate.min_size assert n > 0 iis = candidate.lower iib = candidate.upper ii = ModuloDimension('%sii' % d, ds, iis, incr=iib) cd = CustomDimension(name='%s%s' % (d, d), symbolic_min=ii, symbolic_max=iib, symbolic_size=n) dsi = ModuloDimension('%si' % ds, cd, cd + ds - iis, n) mapper = OrderedDict() for i in g: # Update `indicess` to use `xs0`, `xs1`, ... mds = [] for indices in i.indicess: v = indices[ridx] try: md = mapper[v] except KeyError: name = sregistry.make_name(prefix='%sr' % d.name) md = mapper.setdefault(v, ModuloDimension(name, ds, v, n)) mds.append(md) indicess = [indices[:ridx] + [md] + indices[ridx + 1:] for md, indices in zip(mds, i.indicess)] # Update `writeto` by switching `d` to `dsi` intervals = k.intervals.switch(d, dsi).zero(dsi) sub_iterators = dict(k.sub_iterators) sub_iterators[d] = dsi writeto = IterationSpace(intervals, sub_iterators) # Transform `alias` by adding `i` alias = i.alias.xreplace({d: d + cd}) # Extend `ispace` to iterate over rotations d1 = writeto[ridx+1].dim # Note: we're by construction in-bounds here intervals = IntervalGroup(Interval(cd, 0, 0), relations={(d, cd, d1)}) rispace = IterationSpace(intervals, {cd: dsi}, {cd: Forward}) aispace = i.ispace.zero(d) aispace = aispace.augment({d: mds + [ii]}) ispace = IterationSpace.union(rispace, aispace) processed.append(ScheduledAlias(alias, writeto, ispace, i.aliaseds, indicess)) # Update the rotations mapper rmapper[d].extend(list(mapper.values())) return Schedule(*processed, dmapper=schedule.dmapper, rmapper=rmapper) def _optimize_schedule_padding(cluster, schedule, platform): """ Round up the innermost IterationInterval of the tensor temporaries IterationSpace to a multiple of the SIMD vector length. This is not always possible though (it depends on how much halo is safely accessible in all read Functions). """ processed = [] for i in schedule: try: it = i.ispace.itintervals[-1] if ROUNDABLE in cluster.properties[it.dim]: vl = platform.simd_items_per_reg(cluster.dtype) ispace = i.ispace.add(Interval(it.dim, 0, it.interval.size % vl)) else: ispace = i.ispace processed.append(ScheduledAlias(i.alias, i.writeto, ispace, i.aliaseds, i.indicess)) except (TypeError, KeyError): processed.append(i) return Schedule(*processed, dmapper=schedule.dmapper, rmapper=schedule.rmapper) def lower_schedule(cluster, schedule, sregistry, options): """ Turn a Schedule into a sequence of Clusters. """ ftemps = options['cire-ftemps'] if ftemps: make = TempFunction else: # Typical case -- the user does *not* "see" the CIRE-created temporaries make = Array clusters = [] subs = {} for alias, writeto, ispace, aliaseds, indicess in schedule: # Basic info to create the temporary that will hold the alias name = sregistry.make_name() dtype = cluster.dtype if writeto: # The Dimensions defining the shape of Array # Note: with SubDimensions, we may have the following situation: # # for zi = z_m + zi_ltkn; zi <= z_M - zi_rtkn; ... # r[zi] = ... # # Instead of `r[zi - z_m - zi_ltkn]` we have just `r[zi]`, so we'll need # as much room as in `zi`'s parent to avoid going OOB # Aside from ugly generated code, the reason we do not rather shift the # indices is that it prevents future passes to transform the loop bounds # (e.g., MPI's comp/comm overlap does that) dimensions = [d.parent if d.is_Sub else d for d in writeto.itdimensions] # The halo must be set according to the size of writeto space halo = [(abs(i.lower), abs(i.upper)) for i in writeto] # The indices used to write into the Array indices = [] for i in writeto: try: # E.g., `xs` sub_iterators = writeto.sub_iterators[i.dim] assert len(sub_iterators) == 1 indices.append(sub_iterators[0]) except KeyError: # E.g., `z` -- a non-shifted Dimension indices.append(i.dim - i.lower) obj = make(name=name, dimensions=dimensions, halo=halo, dtype=dtype) expression = Eq(obj[indices], alias) callback = lambda idx: obj[idx] else: # Degenerate case: scalar expression assert writeto.size == 0 obj = Symbol(name=name, dtype=dtype) expression = Eq(obj, alias) callback = lambda idx: obj # Create the substitution rules for the aliasing expressions subs.update({aliased: callback(indices) for aliased, indices in zip(aliaseds, indicess)}) # Construct the `alias` DataSpace accesses = detect_accesses(expression) parts = {k: IntervalGroup(build_intervals(v)).add(ispace.intervals).relaxed for k, v in accesses.items() if k} dspace = DataSpace(cluster.dspace.intervals, parts) # Drop or weaken parallelism if necessary properties = dict(cluster.properties) for d, v in cluster.properties.items(): if any(i.is_Modulo for i in ispace.sub_iterators[d]): properties[d] = normalize_properties(v, {SEQUENTIAL}) elif d not in writeto.dimensions: properties[d] = normalize_properties(v, {PARALLEL_IF_PVT}) # Finally, build the `alias` Cluster clusters.append(cluster.rebuild(exprs=expression, ispace=ispace, dspace=dspace, properties=properties)) return clusters, subs def pick_best(variants): """ Use the variant score and heuristics to return the variant with the best trade-off between operation count reduction and working set increase. """ best = variants.pop(0) for i in variants: best_flop_score, best_ws_score = best.score if best_flop_score == 0: best = i continue i_flop_score, i_ws_score = i.score # The current heustic is fairly basic: the one with smaller working # set size increase wins, unless there's a massive reduction in operation # count in the other one delta = i_ws_score - best_ws_score if (delta > 0 and i_flop_score / best_flop_score > 100) or \ (delta == 0 and i_flop_score > best_flop_score) or \ (delta < 0 and best_flop_score / i_flop_score <= 100): best = i schedule, exprs, _ = best return schedule, exprs def rebuild(cluster, exprs, subs, schedule): """ Plug the optimized aliases into the input Cluster. This leads to creating a new Cluster with suitable IterationSpace and DataSpace. """ exprs = [uxreplace(e, subs) for e in exprs] ispace = cluster.ispace.augment(schedule.dmapper) ispace = ispace.augment(schedule.rmapper) accesses = detect_accesses(exprs) parts = {k: IntervalGroup(build_intervals(v)).relaxed for k, v in accesses.items() if k} dspace = DataSpace(cluster.dspace.intervals, parts) return cluster.rebuild(exprs=exprs, ispace=ispace, dspace=dspace) # Utilities class Candidate(object): def __init__(self, expr, ispace, indexeds, bases, offsets): self.expr = expr self.shifts = ispace.intervals self.indexeds = indexeds self.bases = bases self.offsets = offsets def __repr__(self): return "Candidate(expr=%s)" % self.expr def translated(self, other): """ True if ``self`` is translated w.r.t. ``other``, False otherwise. Examples -------- Two candidates are translated if their bases are the same and their offsets are pairwise translated. c := A[i,j] op A[i,j+1] -> Toffsets = {i: [0,0], j: [0,1]} u := A[i+1,j] op A[i+1,j+1] -> Toffsets = {i: [1,1], j: [0,1]} Then `c` is translated w.r.t. `u` with distance `{i: 1, j: 0}` """ if len(self.Toffsets) != len(other.Toffsets): return False if len(self.bases) != len(other.bases): return False # Check the bases if any(b0 != b1 for b0, b1 in zip(self.bases, other.bases)): return False # Check the offsets for (d0, o0), (d1, o1) in zip(self.Toffsets, other.Toffsets): if d0 is not d1: return False distance = set(o0 - o1) if len(distance) != 1: return False return True @cached_property def Toffsets(self): return LabeledVector.transpose(*self.offsets) @cached_property def dimensions(self): return frozenset(i for i, _ in self.Toffsets) class Group(tuple): """ A collection of aliasing expressions. """ def __repr__(self): return "Group(%s)" % ", ".join([str(i) for i in self]) def find_rotation_distance(self, d, interval): """ The distance from the Group pivot of a rotation along Dimension ``d`` that can safely iterate over the ``interval``. """ assert d is interval.dim for rotation, distance in self._pivot_legal_rotations[d]: # Does `rotation` cover the `interval` ? if rotation.union(interval) != rotation: continue # Infer the `rotation`'s min_intervals from the pivot's min_interval = self._pivot_min_intervals[d].translate(-distance) # Does the `interval` actually cover the `rotation`'s `min_interval`? if interval.union(min_interval) == interval: return distance return None @cached_property def Toffsets(self): return [LabeledVector.transpose(*i) for i in zip(*[i.offsets for i in self])] @cached_property def diameter(self): """ The size of the iteration space required to evaluate all aliasing expressions in this Group, along each Dimension. """ ret = defaultdict(int) for i in self.Toffsets: for d, v in i: try: distance = int(max(v) - min(v)) except TypeError: # An entry in `v` has symbolic components, e.g. `x_m + 2` if len(set(v)) == 1: continue else: raise ValueError ret[d] = max(ret[d], distance) return ret @property def pivot(self): """ A deterministically chosen Candidate for this Group. """ return self[0] @property def dimensions(self): return self.pivot.dimensions @property def dimensions_translated(self): return frozenset(d for d, v in self.diameter.items() if v > 0) @cached_property def _pivot_legal_rotations(self): """ All legal rotations along each Dimension for the Group pivot. """ ret = {} for d, (maxd, mini) in self._pivot_legal_shifts.items(): # Rotation size = mini (min-increment) - maxd (max-decrement) v = mini - maxd # Build the table of all possible rotations m = make_rotations_table(d, v) distances = [] for rotation in m: # Distance of the rotation `i` from `c` distance = maxd - rotation.lower assert distance == mini - rotation.upper distances.append(distance) ret[d] = list(zip(m, distances)) return ret @cached_property def _pivot_min_intervals(self): """ The minimum Interval along each Dimension such that by evaluating the pivot, all Candidates are evaluated too. """ c = self.pivot ret = defaultdict(lambda: [np.inf, -np.inf]) for i in self: distance = [o.distance(v) for o, v in zip(i.offsets, c.offsets)] distance = [(d, set(v)) for d, v in LabeledVector.transpose(*distance)] for d, v in distance: value = v.pop() ret[d][0] = min(ret[d][0], value) ret[d][1] = max(ret[d][1], value) ret = {d: Interval(d, m, M) for d, (m, M) in ret.items()} return ret @cached_property def _pivot_legal_shifts(self): """ The max decrement and min increment along each Dimension such that the Group pivot does not go OOB. """ c = self.pivot ret = defaultdict(lambda: (-np.inf, np.inf)) for i, ofs in zip(c.indexeds, c.offsets): f = i.function for l in ofs.labels: # `f`'s cumulative halo size along `l` hsize = sum(f._size_halo[l]) # Any `ofs`'s shift due to non-[0,0] iteration space lower, upper = c.shifts[l].offsets try: # Assume `ofs[d]` is a number (typical case) maxd = min(0, max(ret[l][0], -ofs[l] - lower)) mini = max(0, min(ret[l][1], hsize - ofs[l] - upper)) ret[l] = (maxd, mini) except TypeError: # E.g., `ofs[d] = x_m - x + 5` ret[l] = (0, 0) return ret AliasedGroup = namedtuple('AliasedGroup', 'intervals aliaseds distances') ScheduledAlias = namedtuple('ScheduledAlias', 'alias writeto ispace aliaseds indicess') ScheduledAlias.__new__.__defaults__ = (None,) * len(ScheduledAlias._fields) SpacePoint = namedtuple('SpacePoint', 'schedule exprs score') class Schedule(tuple): def __new__(cls, *items, dmapper=None, rmapper=None): obj = super(Schedule, cls).__new__(cls, items) obj.dmapper = dmapper or {} obj.rmapper = rmapper or {} return obj class AliasMapper(OrderedDict): def add(self, alias, intervals, aliaseds, distances): assert len(aliaseds) == len(distances) self[alias] = AliasedGroup(intervals, aliaseds, distances) def update(self, aliases): for k, v in aliases.items(): try: v0 = self[k] if v0.intervals != v.intervals: raise ValueError v0.aliaseds.extend(v.aliaseds) v0.distances.extend(v.distances) except KeyError: self[k] = v @property def aliaseds(self): return flatten(i.aliaseds for i in self.values()) def make_rotations_table(d, v): """ All possible rotations of `range(v+1)`. """ m = np.array([[j-i if j > i else 0 for j in range(v+1)] for i in range(v+1)]) m = (m - m.T)[::-1, :] # Shift the table so that the middle rotation is at the top m = np.roll(m, int(-np.floor(v/2)), axis=0) # Turn into a more compact representation as a list of Intervals m = [Interval(d, min(i), max(i)) for i in m] return m def cit(ispace0, ispace1): """ The Common IterationIntervals of two IterationSpaces. """ found = [] for it0, it1 in zip(ispace0.itintervals, ispace1.itintervals): if it0 == it1: found.append(it0) else: break return tuple(found) def maybe_coeff_key(grid, expr): """ True if `expr` could be the coefficient of an FD derivative, False otherwise. """ if expr.is_Number: return True indexeds = [i for i in expr.free_symbols if i.is_Indexed] return any(not set(grid.dimensions) <= set(i.function.dimensions) for i in indexeds) def wset(exprs): """ Extract the working set out of a set of equations. """ return {i.function for i in flatten([e.free_symbols for e in as_tuple(exprs)]) if i.function.is_AbstractFunction} def potential_max_deriv_order(exprs): """ The maximum FD derivative order in a list of expressions. """ # NOTE: e might propagate the Derivative(...) information down from the # symbolic language, but users may do crazy things and write their own custom # expansions "by hand" (i.e., not resorting to Derivative(...)), hence instead # of looking for Derivative(...) we use the following heuristic: # add(mul, mul, ...) -> stems from first order derivative # add(mul(add(mul, mul, ...), ...), ...) -> stems from second order derivative # ... nadds = lambda e: (int(e.is_Add) + max([nadds(a) for a in e.args], default=0) if not q_leaf(e) else 0) return max([nadds(e) for e in exprs], default=0) def search_potential_deriv(expr, n, c=0): """ Retrieve the expressions at depth `n` that potentially stem from FD derivatives. """ assert n >= c >= 0 if q_leaf(expr) or expr.is_Pow: return [] elif expr.is_Mul: if c == n: return [expr] else: return flatten([search_potential_deriv(a, n, c+1) for a in expr.args]) else: return flatten([search_potential_deriv(a, n, c) for a in expr.args])
35.173189
90
0.581848
[ "MIT" ]
ccuetom/devito
devito/passes/clusters/aliases.py
42,243
Python
#!/usr/bin/env python import os import sys import platform import tempfile import urllib2 import shutil import boto from boto.exception import BotoClientError def merge_dicts(a, b): """ Merge two dictionaries. If there is a key collision, `b` overrides `a`. :param a: Dictionary of default settings :param b: Dictionary of override settings :rtype : dict """ try: a.update(b) except Exception as exc: #TODO: Update `except` logic raise SystemError('Failed to merge dictionaries. Dictionary A:\n\n' '{0}\n\n' 'Dictionary B:\n\n' '{1}\n\n' 'Exception: {2}' .format(a, b, exc)) return a def get_scripts_to_execute(system, workingdir, **scriptparams): """ Returns an array of hashtables. Each hashtable has two keys: 'ScriptUrl' and 'Parameters'. 'ScriptSource' is the path to the script to be executed. Only supports http/s sources currently. 'Parameters' is a hashtable of parameters to pass to the script. Use `merge_dicts({yourdict}, scriptparams)` to merge command line parameters with a set of default parameters. :param system: str, the system type as returned from `platform.system` :param workingdir: str, the working directory where content should be saved :param scriptparams: dict, parameters passed to the master script which should be relayed to the content scripts :rtype : dict """ if 'Linux' in system: scriptstoexecute = ( { 'ScriptSource': "https://systemprep.s3.amazonaws.com/ContentScripts/systemprep-linuxyumrepoinstall.py", 'Parameters': merge_dicts({ 'yumrepomap': [ { 'url': 'https://s3.amazonaws.com/systemprep-repo/linux/saltstack/salt/yum.repos/salt-reposync-amzn.repo', 'dist': 'amazon', 'epel_version': '6', }, { 'url': 'https://s3.amazonaws.com/systemprep-repo/linux/saltstack/salt/yum.repos/salt-reposync-el6.repo', 'dist': 'redhat', 'epel_version': '6', }, { 'url': 'https://s3.amazonaws.com/systemprep-repo/linux/saltstack/salt/yum.repos/salt-reposync-el6.repo', 'dist': 'centos', 'epel_version': '6', }, { 'url': 'https://s3.amazonaws.com/systemprep-repo/linux/saltstack/salt/yum.repos/salt-reposync-el7.repo', 'dist': 'redhat', 'epel_version': '7', }, { 'url': 'https://s3.amazonaws.com/systemprep-repo/linux/saltstack/salt/yum.repos/salt-reposync-el7.repo', 'dist': 'centos', 'epel_version': '7', }, ], }, scriptparams) }, { 'ScriptSource': "https://systemprep.s3.amazonaws.com/ContentScripts/SystemPrep-LinuxSaltInstall.py", 'Parameters': merge_dicts({ 'saltinstallmethod': 'yum', 'saltcontentsource': "https://systemprep-content.s3.amazonaws.com/linux/salt/salt-content.zip", 'formulastoinclude': [ "https://salt-formulas.s3.amazonaws.com/systemprep-formula-master.zip", "https://salt-formulas.s3.amazonaws.com/ash-linux-formula-master.zip", "https://salt-formulas.s3.amazonaws.com/join-domain-formula-master.zip", "https://salt-formulas.s3.amazonaws.com/scc-formula-master.zip", "https://s3.amazonaws.com/salt-formulas/name-computer-formula-master.zip", ], 'formulaterminationstrings': [ "-master", "-latest", ], 'saltstates': 'Highstate', 'entenv': 'False', 'salt_results_log': '/var/log/saltcall.results.log', 'salt_debug_log': '/var/log/saltcall.debug.log', 'sourceiss3bucket': 'True', }, scriptparams) }, ) elif 'Windows' in system: scriptstoexecute = ( { 'ScriptSource': "https://systemprep.s3.amazonaws.com/SystemContent/Windows/Salt/SystemPrep-WindowsSaltInstall.ps1", 'Parameters': merge_dicts({ 'saltworkingdir': '{0}\\SystemContent\\Windows\\Salt'.format(workingdir), 'saltcontentsource': "https://systemprep.s3.amazonaws.com/SystemContent/Windows/Salt/salt-content.zip", 'formulastoinclude': [ "https://salt-formulas.s3.amazonaws.com/systemprep-formula-master.zip", "https://salt-formulas.s3.amazonaws.com/ash-windows-formula-master.zip", ], 'formulaterminationstrings': [ "-latest", ], 'ashrole': "MemberServer", 'entenv': 'False', 'saltstates': "Highstate", }, scriptparams) }, ) else: #TODO: Update `except` logic raise SystemError('System, {0}, is not recognized?'.format(system)) return scriptstoexecute def create_working_dir(basedir, dirprefix): """ Creates a directory in `basedir` with a prefix of `dirprefix`. The directory will have a random 5 character string appended to `dirprefix`. Returns the path to the working directory. :rtype : str :param basedir: str, the directory in which to create the working directory :param dirprefix: str, prefix to prepend to the working directory """ workingdir = None try: workingdir = tempfile.mkdtemp(prefix=dirprefix, dir=basedir) except Exception as exc: #TODO: Update `except` logic raise SystemError('Could not create workingdir in {0}.\n' 'Exception: {1}'.format(basedir, exc)) return workingdir def get_system_params(system): """ Returns a dictionary of OS platform-specific parameters. :param system: str, the system type as returned by `platform.system` :rtype : dict """ a = {} workingdirprefix = 'systemprep-' if 'Linux' in system: tempdir = '/usr/tmp/' a['pathseparator'] = '/' a['readyfile'] = '/var/run/system-is-ready' a['restart'] = 'shutdown -r +1 &' elif 'Windows' in system: #TODO: Add and test the Windows parameters/functionality systemroot = os.environ['SYSTEMROOT'] systemdrive = os.environ['SYSTEMDRIVE'] tempdir = os.environ['TEMP'] a['pathseparator'] = '\\' a['readyfile'] = '{0}\system-is-ready'.format(systemdrive) a['restart'] = '{0}\system32\shutdown.exe/r /t 30 /d p:2:4 /c "SystemPrep complete. Rebooting computer."'.format(systemroot) else: #TODO: Update `except` logic raise SystemError('System, {0}, is not recognized?'.format(system)) a['workingdir'] = create_working_dir(tempdir, workingdirprefix) return a def download_file(url, filename, sourceiss3bucket=None): """ Download the file from `url` and save it locally under `filename`. :rtype : bool :param url: :param filename: :param sourceiss3bucket: """ conn = None if sourceiss3bucket: bucket_name = url.split('/')[3] key_name = '/'.join(url.split('/')[4:]) try: conn = boto.connect_s3() bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except (NameError, BotoClientError): try: bucket_name = url.split('/')[2].split('.')[0] key_name = '/'.join(url.split('/')[3:]) bucket = conn.get_bucket(bucket_name) key = bucket.get_key(key_name) key.get_contents_to_filename(filename=filename) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\n' 'url = {0}\n' 'bucket = {1}\n' 'key = {2}\n' 'file = {3}\n' 'Exception: {4}' .format(url, bucket_name, key_name, filename, exc)) except Exception as exc: raise SystemError('Unable to download file from S3 bucket.\n' 'url = {0}\n' 'bucket = {1}\n' 'key = {2}\n' 'file = {3}\n' 'Exception: {4}' .format(url, bucket_name, key_name, filename, exc)) print('Downloaded file from S3 bucket -- \n' ' url = {0}\n' ' filename = {1}'.format(url, filename)) else: try: response = urllib2.urlopen(url) with open(filename, 'wb') as outfile: shutil.copyfileobj(response, outfile) except Exception as exc: #TODO: Update `except` logic raise SystemError('Unable to download file from web server.\n' 'url = {0}\n' 'filename = {1}\n' 'Exception: {2}' .format(url, filename, exc)) print('Downloaded file from web server -- \n' ' url = {0}\n' ' filename = {1}'.format(url, filename)) return True def cleanup(workingdir): """ Removes temporary files loaded to the system. :param workingdir: str, Path to the working directory :return: bool """ print('+-' * 40) print('Cleanup Time...') try: shutil.rmtree(workingdir) except Exception as exc: #TODO: Update `except` logic raise SystemError('Cleanup Failed!\n' 'Exception: {0}'.format(exc)) print('Removed temporary data in working directory -- ' + workingdir) print('Exiting cleanup routine...') print('-+' * 40) return True def main(noreboot = 'false', **kwargs): """ Master script that calls content scripts to be deployed when provisioning systems """ # NOTE: Using __file__ may freeze if trying to build an executable, e.g. via py2exe. # NOTE: Using __file__ does not work if running from IDLE/interpreter. # NOTE: __file__ may return relative path as opposed to an absolute path, so include os.path.abspath. scriptname = '' if '__file__' in dir(): scriptname = os.path.abspath(__file__) else: scriptname = os.path.abspath(sys.argv[0]) # Check special parameter types noreboot = 'true' == noreboot.lower() sourceiss3bucket = 'true' == kwargs.get('sourceiss3bucket', 'false').lower() print('+' * 80) print('Entering script -- {0}'.format(scriptname)) print('Printing parameters --') print(' noreboot = {0}'.format(noreboot)) for key, value in kwargs.items(): print(' {0} = {1}'.format(key, value)) system = platform.system() systemparams = get_system_params(system) scriptstoexecute = get_scripts_to_execute(system, systemparams['workingdir'], **kwargs) #Loop through each 'script' in scriptstoexecute for script in scriptstoexecute: url = script['ScriptSource'] filename = url.split('/')[-1] fullfilepath = systemparams['workingdir'] + systemparams['pathseparator'] + filename #Download each script, script['ScriptSource'] download_file(url, fullfilepath, sourceiss3bucket) #Execute each script, passing it the parameters in script['Parameters'] #TODO: figure out if there's a better way to call and execute the script print('Running script -- ' + script['ScriptSource']) print('Sending parameters --') for key, value in script['Parameters'].items(): print(' {0} = {1}'.format(key, value)) paramstring = ' '.join("%s='%s'" % (key, val) for (key, val) in script['Parameters'].iteritems()) fullcommand = 'python {0} {1}'.format(fullfilepath, paramstring) result = os.system(fullcommand) if result is not 0: message = 'Encountered an unrecoverable error executing a ' \ 'content script. Exiting with failure.\n' \ 'Command executed: {0}' \ .format(fullcommand) raise SystemError(message) cleanup(systemparams['workingdir']) if noreboot: print('Detected `noreboot` switch. System will not be rebooted.') else: print('Reboot scheduled. System will reboot after the script exits.') os.system(systemparams['restart']) print('{0} complete!'.format(scriptname)) print('-' * 80) if "__main__" == __name__: # Convert command line parameters of the form `param=value` to a dictionary. # NOTE: Keys are stored in lowercase format. kwargs = {} for x in sys.argv[1:]: if '=' in x: [key, value] = x.split('=', 1) kwargs[key.lower()] = value else: message = 'Encountered a parameter that does not have = in it.' raise SystemError(message) # NOTE: We are unpacking kwargs to obtain the noreboot parameter for the main # definition. The rest are packed back into kwargs. # TODO: This is not necessary and consumes a minor overhead. I would just pass along the dictionary. # However, since we will be moving to using argparse, this will become obsolete. main(**kwargs)
41.507205
133
0.545789
[ "Apache-2.0" ]
plus3it/SystemPrep
MasterScripts/systemprep-linuxmaster.py
14,403
Python
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## ######################################################################## # FirePeriodTable # # Type: table # Edit Areas: solicited from user # Weather Elements: You must have these Weather elements defined in # your server: Sky, LAL, RelHum, MaxT, MinT, FreeWind, # Haines, TransWind, MixHgt(ft AGL) # To Run: # Set GFE Time Range # Products-->Generate Products # Choose Edit Areas # Select OK # ######################################################################## ## EXAMPLE OUTPUT (Scarce Data) ## Fire Period Table for Feb 29 00 17:00:00 GMT - Mar 01 00 11:00:00 GMT. ## Edit Area Sky (%) LAL RelHum (%) MaxT MinT FreeWind(mph) Haines TransWind(mph) MixHgt(ft AGL) ## COAdams 36-23 46 26 ## COArapahoe 34-24 46 26 ## COBoulder 31-52 34 18 ## COClearCreek 16-57 26 12 ## CODenver 37-40 43 25 ## CODouglas 24-47 40 21 ## COElbert 31-22 46 25 ######################################################################## Definition = { "type": "table", "displayName": "TEST_Fire Period Table", # for Product Generation Menu # Output file for product results "outputFile": "./FirePeriodTable.txt", # default output file "constantVariable": "TimePeriod", "rowVariable": "EditArea", "columnVariable": "WeatherElement", "beginningText": "Fire Period Table for %TimePeriod. \n\n", "endingText": "", # Edit Areas "defaultEditAreas" : [("area1","Area 1"),("area2","Area 2")], "runTimeEditAreas": "yes", "areaType" : "Edit Area", # E.g. City, County, Basin, etc. # Time Ranges "defaultRanges": ["Today"], "runTimeRanges" : "no", # if yes, ask user at run time "elementList": [ ("Sky", "Sky (%)", "minMax", "range2Value", "Scalar", 1, None), ("LAL","LAL", "minMax", "range2Value", "Scalar",1,None), ("MaxT","MaxT", "avg", "singleValue", "Scalar", 1, None), ("MinT","MinT", "avg", "singleValue", "Scalar", 1, None), ("FreeWind","FreeWind(mph)", "vectorRange", "range2Value", "Vector", 1, "ktToMph"), ("Haines","Haines", "minMax", "range2Value", "Scalar",1,None), ("TransWind","TransWind(mph)", "vectorRange", "range2Value", "Vector", 1, "ktToMph"), ("MixHgt", "MixHgt(ft AGL)", "minMax", "range2Value", "Scalar",10,None), ], }
34.720721
112
0.463415
[ "Apache-2.0" ]
drjoeycadieux/awips2
cave/com.raytheon.viz.gfe/python/testFormatters/FirePeriodTable.py
3,854
Python
# Python stubs generated by omniidl from /tmp/corba/omni/share/idl/omniORB/COS/CosObjectIdentity.idl # DO NOT EDIT THIS FILE! import omniORB, _omnipy from omniORB import CORBA, PortableServer _0_CORBA = CORBA _omnipy.checkVersion(4,2, __file__, 1) try: property except NameError: def property(*args): return None # # Start of module "CosObjectIdentity" # __name__ = "CosObjectIdentity" _0_CosObjectIdentity = omniORB.openModule("CosObjectIdentity", r"/tmp/corba/omni/share/idl/omniORB/COS/CosObjectIdentity.idl") _0_CosObjectIdentity__POA = omniORB.openModule("CosObjectIdentity__POA", r"/tmp/corba/omni/share/idl/omniORB/COS/CosObjectIdentity.idl") # typedef ... ObjectIdentifier class ObjectIdentifier: _NP_RepositoryId = "IDL:omg.org/CosObjectIdentity/ObjectIdentifier:1.0" def __init__(self, *args, **kw): raise RuntimeError("Cannot construct objects of this type.") _0_CosObjectIdentity.ObjectIdentifier = ObjectIdentifier _0_CosObjectIdentity._d_ObjectIdentifier = omniORB.tcInternal.tv_ulong _0_CosObjectIdentity._ad_ObjectIdentifier = (omniORB.tcInternal.tv_alias, ObjectIdentifier._NP_RepositoryId, "ObjectIdentifier", omniORB.tcInternal.tv_ulong) _0_CosObjectIdentity._tc_ObjectIdentifier = omniORB.tcInternal.createTypeCode(_0_CosObjectIdentity._ad_ObjectIdentifier) omniORB.registerType(ObjectIdentifier._NP_RepositoryId, _0_CosObjectIdentity._ad_ObjectIdentifier, _0_CosObjectIdentity._tc_ObjectIdentifier) del ObjectIdentifier # interface IdentifiableObject _0_CosObjectIdentity._d_IdentifiableObject = (omniORB.tcInternal.tv_objref, "IDL:omg.org/CosObjectIdentity/IdentifiableObject:1.0", "IdentifiableObject") omniORB.typeMapping["IDL:omg.org/CosObjectIdentity/IdentifiableObject:1.0"] = _0_CosObjectIdentity._d_IdentifiableObject _0_CosObjectIdentity.IdentifiableObject = omniORB.newEmptyClass() class IdentifiableObject : _NP_RepositoryId = _0_CosObjectIdentity._d_IdentifiableObject[1] def __init__(self, *args, **kw): raise RuntimeError("Cannot construct objects of this type.") _nil = CORBA.Object._nil _0_CosObjectIdentity.IdentifiableObject = IdentifiableObject _0_CosObjectIdentity._tc_IdentifiableObject = omniORB.tcInternal.createTypeCode(_0_CosObjectIdentity._d_IdentifiableObject) omniORB.registerType(IdentifiableObject._NP_RepositoryId, _0_CosObjectIdentity._d_IdentifiableObject, _0_CosObjectIdentity._tc_IdentifiableObject) # IdentifiableObject operations and attributes IdentifiableObject._d__get_constant_random_id = ((),(omniORB.typeMapping["IDL:omg.org/CosObjectIdentity/ObjectIdentifier:1.0"],),None) IdentifiableObject._d_is_identical = ((omniORB.typeMapping["IDL:omg.org/CosObjectIdentity/IdentifiableObject:1.0"], ), (omniORB.tcInternal.tv_boolean, ), None) # IdentifiableObject object reference class _objref_IdentifiableObject (CORBA.Object): _NP_RepositoryId = IdentifiableObject._NP_RepositoryId def __init__(self, obj): CORBA.Object.__init__(self, obj) def _get_constant_random_id(self, *args): return self._obj.invoke("_get_constant_random_id", _0_CosObjectIdentity.IdentifiableObject._d__get_constant_random_id, args) constant_random_id = property(_get_constant_random_id) def is_identical(self, *args): return self._obj.invoke("is_identical", _0_CosObjectIdentity.IdentifiableObject._d_is_identical, args) omniORB.registerObjref(IdentifiableObject._NP_RepositoryId, _objref_IdentifiableObject) _0_CosObjectIdentity._objref_IdentifiableObject = _objref_IdentifiableObject del IdentifiableObject, _objref_IdentifiableObject # IdentifiableObject skeleton __name__ = "CosObjectIdentity__POA" class IdentifiableObject (PortableServer.Servant): _NP_RepositoryId = _0_CosObjectIdentity.IdentifiableObject._NP_RepositoryId _omni_op_d = {"_get_constant_random_id": _0_CosObjectIdentity.IdentifiableObject._d__get_constant_random_id, "is_identical": _0_CosObjectIdentity.IdentifiableObject._d_is_identical} IdentifiableObject._omni_skeleton = IdentifiableObject _0_CosObjectIdentity__POA.IdentifiableObject = IdentifiableObject omniORB.registerSkeleton(IdentifiableObject._NP_RepositoryId, IdentifiableObject) del IdentifiableObject __name__ = "CosObjectIdentity" # # End of module "CosObjectIdentity" # __name__ = "CosObjectIdentity_idl" _exported_modules = ( "CosObjectIdentity", ) # The end.
43.227723
185
0.830508
[ "MIT" ]
akaszynski/ansys_corba
ansys_corba/omniORB/COS/CosObjectIdentity_idl.py
4,366
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet accounts properly when there is a double-spend conflict.""" from decimal import Decimal from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.zerohourconfig import INITIAL_BLOCK_REWARD class TxnMallTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def add_options(self, parser): parser.add_argument("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: super().setup_network() disconnect_nodes(self.nodes[1], 2) disconnect_nodes(self.nodes[2], 1) def run_test(self): # All nodes should start with 1,250 BTC: starting_balance = 25*INITIAL_BLOCK_REWARD # All nodes should be out of IBD. # If the nodes are not all out of IBD, that can interfere with # blockchain sync later in the test when nodes are connected, due to # timing issues. for n in self.nodes: assert n.getblockchaininfo()["initialblockdownload"] == False for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) self.nodes[i].getnewaddress("") # bug workaround, coins generated assigned to first getnewaddress! spend_from_foo = starting_balance - INITIAL_BLOCK_REWARD*5 spend_from_bar = INITIAL_BLOCK_REWARD*5 - 100 spend_from_doublespend = spend_from_foo + spend_from_bar - 8 # Assign coins to foo and bar addresses: node0_address_foo = self.nodes[0].getnewaddress() fund_foo_txid = self.nodes[0].sendtoaddress(node0_address_foo, spend_from_foo) fund_foo_tx = self.nodes[0].gettransaction(fund_foo_txid) node0_address_bar = self.nodes[0].getnewaddress() fund_bar_txid = self.nodes[0].sendtoaddress(node0_address_bar, spend_from_bar) fund_bar_tx = self.nodes[0].gettransaction(fund_bar_txid) assert_equal(self.nodes[0].getbalance(), starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress() # First: use raw transaction API to send 1240 BTC to node1_address, # but don't broadcast: doublespend_fee = Decimal('-.02') rawtx_input_0 = {} rawtx_input_0["txid"] = fund_foo_txid rawtx_input_0["vout"] = find_output(self.nodes[0], fund_foo_txid, spend_from_foo) rawtx_input_1 = {} rawtx_input_1["txid"] = fund_bar_txid rawtx_input_1["vout"] = find_output(self.nodes[0], fund_bar_txid, spend_from_bar) inputs = [rawtx_input_0, rawtx_input_1] change_address = self.nodes[0].getnewaddress() outputs = {} outputs[node1_address] = spend_from_doublespend outputs[change_address] = spend_from_foo + spend_from_bar - spend_from_doublespend + doublespend_fee rawtx = self.nodes[0].createrawtransaction(inputs, outputs) doublespend = self.nodes[0].signrawtransactionwithwallet(rawtx) assert_equal(doublespend["complete"], True) # Create two spends using 1 50 BTC coin each txid1 = self.nodes[0].sendtoaddress(node1_address, (INITIAL_BLOCK_REWARD/5) * 4) txid2 = self.nodes[0].sendtoaddress(node1_address, (INITIAL_BLOCK_REWARD/5) * 2) # Have node0 mine a block: if (self.options.mine_block): self.nodes[0].generate(1) sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 50BTC for another # matured block, minus 40, minus 20, and minus transaction fees: expected = starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"] if self.options.mine_block: expected += INITIAL_BLOCK_REWARD expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) # Node1's "from0" balance should be both transaction amounts: assert_equal(self.nodes[1].getbalance(), starting_balance - (tx1["amount"]+tx2["amount"])) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Now give doublespend and its parents to miner: self.nodes[2].sendrawtransaction(fund_foo_tx["hex"]) self.nodes[2].sendrawtransaction(fund_bar_tx["hex"]) doublespend_txid = self.nodes[2].sendrawtransaction(doublespend["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], 2) self.nodes[2].generate(1) # Mine another block to make sure we sync sync_blocks(self.nodes) assert_equal(self.nodes[0].gettransaction(doublespend_txid)["confirmations"], 2) # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Both transactions should be conflicted assert_equal(tx1["confirmations"], -2) assert_equal(tx2["confirmations"], -2) # Node0's total balance should be starting balance, plus 100BTC for # two more matured blocks, minus 1240 for the double-spend, plus fees (which are # negative): expected = starting_balance + 2*INITIAL_BLOCK_REWARD - spend_from_doublespend + fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee assert_equal(self.nodes[0].getbalance(), expected) assert_equal(self.nodes[0].getbalance("*"), expected) # Final "" balance is starting_balance - amount moved to accounts - doublespend + subsidies + # fees (which are negative) assert_equal(self.nodes[0].getbalance(), starting_balance - spend_from_doublespend + 2*INITIAL_BLOCK_REWARD + fund_foo_tx["fee"] + fund_bar_tx["fee"] + doublespend_fee) if __name__ == '__main__': TxnMallTest().main()
46.178808
145
0.641761
[ "MIT" ]
zerohourcash/zerohourcash
test/functional/wallet_txn_doublespend.py
6,973
Python
git clone git add 文件/文件夹 git commit -m '提交说明' git push orgin('默认仓库名') master(分支名)
16.4
35
0.719512
[ "Apache-2.0" ]
demengliu/network
test.py
116
Python
import time try: import wandb wandb_log=True except ImportError: wandb_log=False import numpy as np from advbench.lib.plotting import plot_perturbed_wandb from einops import rearrange class AverageMeter: """Computes and stores the average and current value""" def __init__(self, avg_mom=0.5): self.avg_mom = avg_mom self.reset() self.print = True def reset(self): self.val = 0 self.avg = 0 # running average of whole epoch self.smooth_avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.smooth_avg = val if self.count == 0 else self.avg*self.avg_mom + val*(1-self.avg_mom) self.avg = self.sum / self.count class TimeMeter: def __init__(self): self.batch_time = AverageMeter() self.data_time = AverageMeter() self.start = time.time() def batch_start(self): self.data_time.update(time.time() - self.start) def batch_end(self): self.batch_time.update(time.time() - self.start) self.start = time.time() if wandb: class WBHistogramMeter: def __init__(self, name): self.print = False self.name = name def reset(self): pass def update(self, val): wandb.log({self.name: wandb.Histogram(val)}) class WBDeltaMeter(WBHistogramMeter): def __init__(self, names = [], dims = 0, max_points = 100): self.max_points = max_points self.print = False self.dims = dims if isinstance(names, str): names = [f"{names} {i}" for i in range(dims)] self.meters = [WBHistogramMeter(name) for name in names] def reset(self): pass def update(self, vals): if self.dims>3: pass elif len(vals.shape)==3: for i in range(len(self.meters)): self.meters[i].update(vals[:,i,:self.max_points].flatten()) else: for i in range(len(vals[0])): self.meters[i].update(vals[:,i]) class WBLinePlotMeter(): def __init__(self, name): self.print = False self.name = name def reset(self): pass def update(self, grid, vals): plot_perturbed_wandb(grid, vals, name=self.name) class WBDualMeter(WBHistogramMeter): def __init__(self, grid, translations, names = "dual vs angle", locs = [(0, 0), (-1,-1)], log_every=500): self.print = False self.locs = [] tx, ty = translations for loc in locs: self.locs.append((grid[:,1]==tx[loc[0]])&(grid[:,2]==ty[loc[1]])) if isinstance(names, str): names = [f"{names} {grid[i[0], 1].detach().cpu().item(), grid[i[0], 2].detach().cpu().item()}" for i in locs] self.grid = grid self.meters = [WBLinePlotMeter(name) for name in names] self.log_every = log_every self.counter = 0 def reset(self): self.counter=0 def update(self, vals): if self.counter%self.log_every == 0: print("*"*10) print("log") for i in range(len(self.locs)): self.meters[i].update(self.grid[self.locs[i], 0].detach().cpu().numpy(), vals[self.locs[i]].detach().cpu().numpy()) self.counter+=1 else: class WBHistogramMeter: def __init__(self, name): self.print = False def reset(self): pass def update(self, val): pass class WBDeltaMeter(WBHistogramMeter): def __init__(self,names = [], dims = 0): self.print = False
29.923664
135
0.53801
[ "MIT" ]
constrainedlearning/advbench
advbench/lib/meters.py
3,920
Python
from collections import OrderedDict from datetime import date, datetime, time, timedelta from decimal import Decimal from enum import Enum from pathlib import Path from typing import Any from uuid import UUID from .datetime_parse import parse_date, parse_datetime, parse_duration, parse_time from .exceptions import ConfigError, type_display NoneType = type(None) def display_as_type(v): return type_display(type(v)) def not_none_validator(v): if v is None: raise TypeError('None is not an allow value') return v def str_validator(v) -> str: if isinstance(v, (str, NoneType)): return v elif isinstance(v, (bytes, bytearray)): return v.decode() elif isinstance(v, (float, int, Decimal)): # is there anything else we want to add here? If you think so, create an issue. return str(v) else: raise TypeError(f'str or byte type expected not {display_as_type(v)}') def bytes_validator(v) -> bytes: if isinstance(v, (bytes, NoneType)): return v return str_validator(v).encode() BOOL_STRINGS = { '1', 'TRUE', 'ON', 'YES', } def bool_validator(v) -> bool: if isinstance(v, bool): return v if isinstance(v, bytes): v = v.decode() if isinstance(v, str): return v.upper() in BOOL_STRINGS return bool(v) def number_size_validator(v, config, **kwargs): if config.min_number_size <= v <= config.max_number_size: return v raise ValueError(f'size not in range {config.min_number_size} to {config.max_number_size}') def anystr_length_validator(v, config, **kwargs): if v is None or config.min_anystr_length <= len(v) <= config.max_anystr_length: return v raise ValueError(f'length {len(v)} not in range {config.min_anystr_length} to {config.max_anystr_length}') def ordered_dict_validator(v) -> OrderedDict: if isinstance(v, OrderedDict): return v return OrderedDict(v) def dict_validator(v) -> dict: if isinstance(v, dict): return v try: return dict(v) except TypeError as e: raise TypeError(f'value is not a valid dict, got {display_as_type(v)}') from e def list_validator(v) -> list: if isinstance(v, list): return v return list(v) def tuple_validator(v) -> tuple: if isinstance(v, tuple): return v return tuple(v) def set_validator(v) -> set: if isinstance(v, set): return v return set(v) def enum_validator(v, field, config, **kwargs) -> Enum: enum_v = field.type_(v) return enum_v.value if config.use_enum_values else enum_v def uuid_validator(v) -> UUID: if isinstance(v, UUID): return v elif isinstance(v, str): return UUID(v) elif isinstance(v, (bytes, bytearray)): return UUID(v.decode()) else: raise ValueError(f'str, byte or native UUID type expected not {type(v)}') # order is important here, for example: bool is a subclass of int so has to come first, datetime before date same _VALIDATORS = [ (Enum, [enum_validator]), (str, [not_none_validator, str_validator, anystr_length_validator]), (bytes, [not_none_validator, bytes_validator, anystr_length_validator]), (bool, [bool_validator]), (int, [int, number_size_validator]), (float, [float, number_size_validator]), (Path, [Path]), (datetime, [parse_datetime]), (date, [parse_date]), (time, [parse_time]), (timedelta, [parse_duration]), (OrderedDict, [ordered_dict_validator]), (dict, [dict_validator]), (list, [list_validator]), (tuple, [tuple_validator]), (set, [set_validator]), (UUID, [not_none_validator, uuid_validator]), ] def find_validators(type_): if type_ is Any: return [] for val_type, validators in _VALIDATORS: try: if issubclass(type_, val_type): return validators except TypeError as e: raise TypeError(f'error checking inheritance of {type_!r} (type: {display_as_type(type_)})') from e raise ConfigError(f'no validator found for {type_}')
25.937107
113
0.660281
[ "MIT" ]
anentropic/pydantic
pydantic/validators.py
4,124
Python