content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# -*- coding: utf-8 -*- # from typing import Optional from ..category import Category class Utils(Category): def check_link( self, url: str = None, **kwargs ) -> dict: return self._request("checkLink", locals()) def delete_from_last_shortened( self, key: str = None, **kwargs ) -> dict: return self._request("deleteFromLastShortened", locals()) def get_last_shortened_links( self, count: Optional[int] = None, offset: Optional[int] = None, **kwargs ) -> dict: return self._request("getLastShortenedLinks", locals()) def get_link_stats( self, key: str = None, source: Optional[str] = None, access_key: Optional[str] = None, interval: Optional[str] = None, intervals_count: Optional[int] = None, extended: Optional[bool] = None, **kwargs ) -> dict: return self._request("getLinkStats", locals()) def get_server_time( self, **kwargs ) -> dict: return self._request("getServerTime", locals()) def get_short_link( self, url: str = None, private: Optional[bool] = None, **kwargs ) -> dict: return self._request("getShortLink", locals()) def resolve_screen_name( self, screen_name: str = None, **kwargs ) -> dict: return self._request("resolveScreenName", locals())
23.390625
65
0.560454
[ "MIT" ]
UT1C/pyVDK
pyvdk/api/categories/utils.py
1,497
Python
from pynzb.base import BaseETreeNZBParser, NZBFile, NZBSegment try: from lxml import etree except ImportError: raise ImportError("You must have lxml installed before you can use the " + "lxml NZB parser.") try: from cStringIO import StringIO except ImportError: from StringIO import StringIO class LXMLNZBParser(BaseETreeNZBParser): def get_etree_iter(self, xml, et=etree): return iter(et.iterparse(StringIO(xml), events=("start", "end")))
29.875
78
0.732218
[ "BSD-3-Clause" ]
DavidM42/pynzb
pynzb/lxml_nzb.py
478
Python
# # PySNMP MIB module SNMP-MPD-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SNMP-MPD-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:08:13 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ConstraintsIntersection, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "ValueSizeConstraint") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") IpAddress, TimeTicks, ObjectIdentity, snmpModules, ModuleIdentity, Integer32, Counter64, Counter32, Unsigned32, iso, Bits, NotificationType, Gauge32, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "TimeTicks", "ObjectIdentity", "snmpModules", "ModuleIdentity", "Integer32", "Counter64", "Counter32", "Unsigned32", "iso", "Bits", "NotificationType", "Gauge32", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") snmpMPDMIB = ModuleIdentity((1, 3, 6, 1, 6, 3, 11)) snmpMPDMIB.setRevisions(('2002-10-14 00:00', '1999-05-04 16:36', '1997-09-30 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: snmpMPDMIB.setRevisionsDescriptions(('Updated addresses, published as RFC 3412.', 'Updated addresses, published as RFC 2572.', 'Original version, published as RFC 2272.',)) if mibBuilder.loadTexts: snmpMPDMIB.setLastUpdated('200210140000Z') if mibBuilder.loadTexts: snmpMPDMIB.setOrganization('SNMPv3 Working Group') if mibBuilder.loadTexts: snmpMPDMIB.setContactInfo('WG-EMail: [email protected] Subscribe: [email protected] Co-Chair: Russ Mundy Network Associates Laboratories postal: 15204 Omega Drive, Suite 300 Rockville, MD 20850-4601 USA EMail: [email protected] phone: +1 301-947-7107 Co-Chair & Co-editor: David Harrington Enterasys Networks postal: 35 Industrial Way P. O. Box 5005 Rochester NH 03866-5005 USA EMail: [email protected] phone: +1 603-337-2614 Co-editor: Jeffrey Case SNMP Research, Inc. postal: 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 USA EMail: [email protected] phone: +1 423-573-1434 Co-editor: Randy Presuhn BMC Software, Inc. postal: 2141 North First Street San Jose, CA 95131 USA EMail: [email protected] phone: +1 408-546-1006 Co-editor: Bert Wijnen Lucent Technologies postal: Schagen 33 3461 GL Linschoten Netherlands EMail: [email protected] phone: +31 348-680-485 ') if mibBuilder.loadTexts: snmpMPDMIB.setDescription('The MIB for Message Processing and Dispatching Copyright (C) The Internet Society (2002). This version of this MIB module is part of RFC 3412; see the RFC itself for full legal notices. ') snmpMPDAdmin = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 1)) snmpMPDMIBObjects = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 2)) snmpMPDMIBConformance = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 3)) snmpMPDStats = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 2, 1)) snmpUnknownSecurityModels = MibScalar((1, 3, 6, 1, 6, 3, 11, 2, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmpUnknownSecurityModels.setStatus('current') if mibBuilder.loadTexts: snmpUnknownSecurityModels.setDescription('The total number of packets received by the SNMP engine which were dropped because they referenced a securityModel that was not known to or supported by the SNMP engine. ') snmpInvalidMsgs = MibScalar((1, 3, 6, 1, 6, 3, 11, 2, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmpInvalidMsgs.setStatus('current') if mibBuilder.loadTexts: snmpInvalidMsgs.setDescription('The total number of packets received by the SNMP engine which were dropped because there were invalid or inconsistent components in the SNMP message. ') snmpUnknownPDUHandlers = MibScalar((1, 3, 6, 1, 6, 3, 11, 2, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snmpUnknownPDUHandlers.setStatus('current') if mibBuilder.loadTexts: snmpUnknownPDUHandlers.setDescription('The total number of packets received by the SNMP engine which were dropped because the PDU contained in the packet could not be passed to an application responsible for handling the pduType, e.g. no SNMP application had registered for the proper combination of the contextEngineID and the pduType. ') snmpMPDMIBCompliances = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 3, 1)) snmpMPDMIBGroups = MibIdentifier((1, 3, 6, 1, 6, 3, 11, 3, 2)) snmpMPDCompliance = ModuleCompliance((1, 3, 6, 1, 6, 3, 11, 3, 1, 1)).setObjects(("SNMP-MPD-MIB", "snmpMPDGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): snmpMPDCompliance = snmpMPDCompliance.setStatus('current') if mibBuilder.loadTexts: snmpMPDCompliance.setDescription('The compliance statement for SNMP entities which implement the SNMP-MPD-MIB. ') snmpMPDGroup = ObjectGroup((1, 3, 6, 1, 6, 3, 11, 3, 2, 1)).setObjects(("SNMP-MPD-MIB", "snmpUnknownSecurityModels"), ("SNMP-MPD-MIB", "snmpInvalidMsgs"), ("SNMP-MPD-MIB", "snmpUnknownPDUHandlers")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): snmpMPDGroup = snmpMPDGroup.setStatus('current') if mibBuilder.loadTexts: snmpMPDGroup.setDescription('A collection of objects providing for remote monitoring of the SNMP Message Processing and Dispatching process. ') mibBuilder.exportSymbols("SNMP-MPD-MIB", snmpMPDMIBGroups=snmpMPDMIBGroups, snmpMPDMIB=snmpMPDMIB, snmpMPDCompliance=snmpMPDCompliance, snmpMPDStats=snmpMPDStats, snmpUnknownPDUHandlers=snmpUnknownPDUHandlers, snmpMPDMIBCompliances=snmpMPDMIBCompliances, snmpMPDGroup=snmpMPDGroup, PYSNMP_MODULE_ID=snmpMPDMIB, snmpMPDMIBObjects=snmpMPDMIBObjects, snmpMPDAdmin=snmpMPDAdmin, snmpMPDMIBConformance=snmpMPDMIBConformance, snmpUnknownSecurityModels=snmpUnknownSecurityModels, snmpInvalidMsgs=snmpInvalidMsgs)
132.041667
921
0.778321
[ "Apache-2.0" ]
agustinhenze/mibs.snmplabs.com
pysnmp-with-texts/SNMP-MPD-MIB.py
6,338
Python
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, softwar # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for rule objects.""" __author__ = 'Sean Lip' import inspect import os import pkgutil from core.domain import rule_domain from extensions.objects.models import objects import feconf import test_utils class FakeRule(rule_domain.Rule): subject_type = objects.Real description = 'is between {{x|Real}} and {{y|UnicodeString}}' def _evaluate(self, subject): return subject == self.x class RuleServicesUnitTests(test_utils.GenericTestBase): """Tests for rule services.""" def test_get_rules_for_obj_type(self): self.assertEqual( len(rule_domain.get_rules_for_obj_type('NonnegativeInt')), 1) self.assertEqual( len(rule_domain.get_rules_for_obj_type('Real')), 7) self.assertEqual( len(rule_domain.get_rules_for_obj_type('Null')), 0) self.assertEqual( len(rule_domain.get_rules_for_obj_type('FakeObjType')), 0) class RuleDomainUnitTests(test_utils.GenericTestBase): """Tests for rules.""" def test_rule_initialization(self): with self.assertRaises(ValueError): FakeRule() with self.assertRaises(ValueError): FakeRule(1, 'too_many_args', 3) with self.assertRaises(ValueError): FakeRule('not_a_number', 'a') with self.assertRaises(ValueError): FakeRule('wrong_order', 1) fake_rule = FakeRule(2, 'a') self.assertTrue(fake_rule.x, 2) self.assertTrue(fake_rule.y, 'a') self.assertEqual( fake_rule._PARAMS, [('x', objects.Real), ('y', objects.UnicodeString)] ) def test_rule_is_generic(self): self.assertTrue(rule_domain.is_generic('Real', 'IsGreaterThan')) self.assertFalse(rule_domain.is_generic('UnicodeString', 'Equals')) class RuleDataUnitTests(test_utils.GenericTestBase): """Tests for the actual rules in extensions/.""" def test_that_all_rules_have_object_editor_templates(self): rule_dir = os.path.join(os.getcwd(), feconf.RULES_DIR) at_least_one_rule_found = False clses = [] for loader, name, _ in pkgutil.iter_modules(path=[rule_dir]): if name.endswith('_test') or name == 'base': continue module = loader.find_module(name).load_module(name) for name, clazz in inspect.getmembers(module, inspect.isclass): param_list = rule_domain.get_param_list(clazz.description) for (param_name, param_obj_type) in param_list: # TODO(sll): Get rid of this special case. if param_obj_type.__name__ == 'NonnegativeInt': continue self.assertTrue( param_obj_type.has_editor_js_template(), msg='(%s)' % clazz.description) at_least_one_rule_found = True clses.append(clazz) self.assertTrue(at_least_one_rule_found) class RuleFunctionUnitTests(test_utils.GenericTestBase): """Test for functions involving rules.""" def test_get_description_strings_for_obj_type(self): rule_descriptions = rule_domain.get_description_strings_for_obj_type( 'UnicodeString') self.assertEqual(rule_descriptions, { 'CaseSensitiveEquals': ( 'is equal to {{x|UnicodeString}}, taking case into account'), 'Contains': 'contains {{x|UnicodeString}}', 'Equals': 'is equal to {{x|UnicodeString}}', 'MatchesBase64EncodedFile': ( 'has same content as the file located at ' '{{filepath|UnicodeString}}'), 'StartsWith': 'starts with {{x|UnicodeString}}', })
34.84127
77
0.648064
[ "Apache-2.0" ]
VictoriaRoux/oppia
core/domain/rule_domain_test.py
4,390
Python
from __future__ import division, print_function, absolute_import # noinspection PyUnresolvedReferences from six.moves import range import numpy as np from scipy.misc import doccer from ...stats import nonuniform from ...auxiliary.array import normalize, nunique, accum __all__ = ['markov'] _doc_default_callparams = """\ startprob : array_like Start probabilities. transmat : array_like Transition matrix. """ _doc_frozen_callparams = "" _doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" docdict_params = { '_doc_default_callparams': _doc_default_callparams, } docdict_noparams = { '_doc_default_callparams': _doc_frozen_callparams, } # noinspection PyPep8Naming class markov_gen(object): """Markov model. The `startprob` keyword specifies the start probabilities for the model. The `transmat` keyword specifies the transition probabilities the model follows. Methods ------- score(x, startprob, transmat) Log probability of the given data `x`. sample(x, startprob, transmat, size=1) Draw random samples from a Markov model. fit(x) Fits a Markov model from data via MLE or MAP. Parameters ---------- %(_doc_default_callparams)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Markov model: rv = normal_invwishart(startprob=None, transmat=None) - Frozen object with the same methods but holding the given start probabilities and transitions fixed. Examples -------- >>> from mlpy.stats.models import markov >>> startprob = np.array([0.1, 0.4, 0.5]) >>> transmat = np.array([[0.3, 0.2, 0.5], [0.6, 0.3, 0.1], [0.1, 0.5, 0.4]]) >>> m = markov(startprob, transmat) >>> m.sample(size=2) [[2 2]] .. note:: Adapted from Matlab: | Project: `Probabilistic Modeling Toolkit for Matlab/Octave <https://github.com/probml/pmtk3>`_. | Copyright (2010) Kevin Murphy and Matt Dunham | License: `MIT <https://github.com/probml/pmtk3/blob/5fefd068a2e84ae508684d3e4750bd72a4164ba0/license.txt>`_ """ def __init__(self): super(markov_gen, self).__init__() self.__doc__ = doccer.docformat(self.__doc__, docdict_params) def __call__(self, startprob, transmat): markov_frozen(startprob, transmat) def score(self, x, startprob, transmat): """Log probability for a given data `x`. Attributes ---------- x : ndarray Data to evaluate. %(_doc_default_callparams)s Returns ------- log_prob : float The log probability of the data. """ log_transmat = np.log(transmat + np.finfo(float).eps) log_startprob = np.log(startprob + np.finfo(float).eps) log_prior = log_startprob[x[:, 0]] n = x.shape[0] nstates = log_startprob.shape[0] logp = np.zeros(n) for i in range(n): njk = accum(np.vstack([x[i, 0:-1], x[i, 1::]]).T, 1, size=(nstates, nstates), dtype=np.int32) logp[i] = np.sum(njk * log_transmat) return logp + log_prior def sample(self, startprob, transmat, size=1): """Sample from a Markov model. Attributes ---------- size: int Defining number of sampled variates. Defaults to `1`. Returns ------- vals: ndarray The sampled sequences of size (nseq, seqlen). """ if np.isscalar(size): size = (1, size) vals = np.zeros(size, dtype=np.int32) nseq, seqlen = size for i in range(nseq): vals[i][0] = nonuniform.rvs(startprob) for t in range(1, seqlen): vals[i][t] = nonuniform.rvs(transmat[vals[i][t - 1]]) return vals def fit(self, x): """Fit a Markov model from data via MLE or MAP. Attributes ---------- x : ndarray[int] Observed data Returns ------- %(_doc_default_callparams)s """ # TODO: allow to pass pseudo_counts as parameter? nstates = nunique(x.ravel()) pi_pseudo_counts = np.ones(nstates) transmat_pseudo_counts = np.ones((nstates, nstates)) n = x.shape[0] startprob = normalize(np.bincount(x[:, 0])) + pi_pseudo_counts - 1 counts = np.zeros((nstates, nstates)) for i in range(n): counts += accum(np.vstack([x[i, 0:-1], x[i, 1::]]).T, 1, size=(nstates, nstates)) transmat = normalize(counts + transmat_pseudo_counts - 1, 1) return startprob, transmat markov = markov_gen() # noinspection PyPep8Naming class markov_frozen(object): def __init__(self, startprob, transmat): """Create a "frozen" Markov model. Parameters ---------- startprob : array_like Start probabilities transmat : array_like Transition matrix """ self._model = markov_gen() self.startprob = startprob self.transmat = transmat def score(self, x): return self._model.score(x, self.startprob, self.transmat) def sample(self, size=1): return self._model.sample(self.startprob, self.transmat, size)
27.236181
117
0.606827
[ "MIT" ]
evenmarbles/mlpy
mlpy/stats/models/_basic.py
5,420
Python
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Polynomial Regression """ import numpy as np import utils.importerUtils statsmodels = utils.importerUtils.importModuleLazy("statsmodels", globals()) from utils import InputData, InputTypes, randomUtils, xmlUtils, mathUtils, utils from .TimeSeriesAnalyzer import TimeSeriesCharacterizer, TimeSeriesGenerator class PolynomialRegression(TimeSeriesGenerator, TimeSeriesCharacterizer): """ """ @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class cls. @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying input of cls. """ specs = super(PolynomialRegression, cls).getInputSpecification() specs.name = 'PolynomialRegression' specs.description = """TimeSeriesAnalysis algorithm for fitting data of degree one or greater.""" specs.addSub(InputData.parameterInputFactory('degree', contentType=InputTypes.IntegerType, descr="Specifies the degree polynomial to fit the data with.")) return specs # # API Methods # def __init__(self, *args, **kwargs): """ A constructor that will appropriately intialize a supervised learning object @ In, args, list, an arbitrary list of positional values @ In, kwargs, dict, an arbitrary dictionary of keywords and values @ Out, None """ # general infrastructure super().__init__(*args, **kwargs) def handleInput(self, spec): """ Reads user inputs into this object. @ In, inp, InputData.InputParams, input specifications @ Out, settings, dict, initialization settings for this algorithm """ settings = super().handleInput(spec) settings['degree'] = spec.findFirst('degree').value return settings def characterize(self, signal, pivot, targets, settings): """ Determines the charactistics of the signal based on this algorithm. @ In, signal, np.ndarray, time series with dims [time, target] @ In, pivot, np.1darray, time-like parameter values @ In, targets, list(str), names of targets in same order as signal @ In, settings, dict, additional settings specific to this algorithm @ Out, params, dict, characteristic parameters """ from sklearn.preprocessing import PolynomialFeatures import statsmodels.api as sm params = {target: {'model': {}} for target in targets} degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape(-1, 1)) for target in targets: results = sm.OLS(signal, xp).fit() params[target]['model']['intercept'] = results.params[0] for i, value in enumerate(results.params[1:]): params[target]['model'][f'coef{i+1}'] = value params[target]['model']['object'] = results return params def getParamNames(self, settings): """ Return list of expected variable names based on the parameters @ In, settings, dict, training parameters for this algorithm @ Out, names, list, string list of names """ names = [] for target in settings['target']: base = f'{self.name}__{target}' names.append(f'{base}__intercept') for i in range(1,settings['degree']): names.append(f'{base}__coef{i}') return names def getParamsAsVars(self, params): """ Map characterization parameters into flattened variable format @ In, params, dict, trained parameters (as from characterize) @ Out, rlz, dict, realization-style response """ rlz = {} for target, info in params.items(): base = f'{self.name}__{target}' for name, value in info['model'].items(): if name == 'object': continue rlz[f'{base}__{name}'] = value return rlz def generate(self, params, pivot, settings): """ Generates a synthetic history from fitted parameters. @ In, params, dict, characterization such as otained from self.characterize() @ In, pivot, np.array(float), pivot parameter values @ In, settings, dict, additional settings specific to algorithm @ Out, synthetic, np.array(float), synthetic estimated model signal """ from sklearn.preprocessing import PolynomialFeatures synthetic = np.zeros((len(pivot), len(params))) degree = settings['degree'] features = PolynomialFeatures(degree=degree) xp = features.fit_transform(pivot.reshape(-1, 1)) for t, (target, _) in enumerate(params.items()): model = params[target]['model']['object'] synthetic[:, t] = model.predict(xp) return synthetic def writeXML(self, writeTo, params): """ Allows the engine to put whatever it wants into an XML to print to file. @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to @ In, params, dict, trained parameters as from self.characterize @ Out, None """ for target, info in params.items(): base = xmlUtils.newNode(target) writeTo.append(base) for name, value in info['model'].items(): if name == 'object': continue base.append(xmlUtils.newNode(name, text=f'{float(value):1.9e}'))
36.917722
112
0.677353
[ "Apache-2.0" ]
archmagethanos/raven
framework/TSA/PolynomialRegression.py
5,833
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2014-10-26 13:02:58 # @Author : [email protected] from sqlalchemy import Column, String, Integer from sqlalchemy.ext.declarative import declarative_base from db import dbengine, Base class User(Base): __tablename__ = 'user' cardnum = Column(String(10), primary_key=True) number = Column(String(50), nullable=True) password = Column(String(50), nullable=False) pe_password = Column(String(50), nullable=True) lib_username = Column(String(50), nullable=True) lib_password = Column(String(50), nullable=True) card_query_pwd = Column(String(50), nullable=True) card_consume_pwd = Column(String(50), nullable=True) state = Column(Integer, nullable=False)
35.857143
56
0.713147
[ "MIT" ]
HeraldStudio/herald_auth
mod/models/user.py
753
Python
import torch import torch.nn as nn def clip_by_tensor(t, t_min, t_max): result = (t>=t_min)*t+(t<t_min)*t_min result = (result<=t_max)*result+(result>t_max)*t_max return result class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=0.25): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha def forward(self, prediction_tensor, target_tensor): alpha = self.alpha gamma = self.gamma # input:size is M*2. M is the batch number """Compute focal loss for predictions. Multi-labels Focal loss formula: FL = -alpha * (z-p)^gamma * log(p) -(1-alpha) * p^gamma * log(1-p) ,which alpha = 0.25, gamma = 2, p = sigmoid(x), z = target_tensor. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: A float tensor of shape [batch_size, num_anchors] alpha: A scalar tensor for focal loss alpha hyper-parameter gamma: A scalar tensor for focal loss gamma hyper-parameter Returns: loss: A (scalar) tensor representing the value of the loss function """ sigmoid_p = torch.sigmoid(prediction_tensor) zeros = torch.zeros_like(sigmoid_p, dtype=sigmoid_p.dtype) # For poitive prediction, only need consider front part loss, back part is 0; # target_tensor > zeros <=> z=1, so poitive coefficient = z - p. pos_p_sub = torch.where(target_tensor > zeros, target_tensor - sigmoid_p, zeros) # For negative prediction, only need consider back part loss, front part is 0; # target_tensor > zeros <=> z=1, so negative coefficient = 0. neg_p_sub = torch.where(target_tensor > zeros, zeros, sigmoid_p) per_entry_cross_ent = - alpha * (pos_p_sub ** gamma) * torch.log(clip_by_tensor(sigmoid_p, 1e-8, 1.0)) \ - (1 - alpha) * (neg_p_sub ** gamma) * torch.log(clip_by_tensor(1.0 - sigmoid_p, 1e-8, 1.0)) return per_entry_cross_ent.mean()
46.897959
122
0.639252
[ "Apache-2.0" ]
86236291/MSAN_Retina
utils/FocalLoss.py
2,302
Python
# Generated by Django 2.2.2 on 2019-07-18 19:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('weblog', '0011_auto_20190718_1829'), ] operations = [ migrations.AddField( model_name='userdetail', name='phone', field=models.CharField(blank=True, max_length=15, null=True), ), ]
21.526316
73
0.606357
[ "MIT" ]
mmohajer9/Resumo
weblog/migrations/0012_userdetail_phone.py
409
Python
import csv import itertools import sys import re import math def get_root_mean_square( mean_square, number): return math.sqrt(mean_square / number) def gpsr_tlm_compare(target_arr, answer_arr, lift_off_time, fileobj, csv_header): cache_idx = 0 sim_data_list = [] start_flight_idx = 0 iter_idx = 0 mean_len_sq = 0.0 mean_speed_sq = 0.0 filecusor = csv.writer(fileobj) filecusor.writerow(csv_header) for target_elem in enumerate(target_arr): sim_data_list = [] iter_idx += 1 if target_elem[0] == 0: continue; if float(target_elem[1][0]) == lift_off_time: start_flight_idx = iter_idx for answer_elem in enumerate(answer_arr , start = cache_idx): cache_idx = answer_elem[0] if answer_elem[0] == 0: continue; if abs(float(target_elem[1][0]) - float(answer_elem[1][0])) == 0.0: # simtime sim_data_list.append(target_elem[1][0]) # gps sow time sim_data_list.append(target_elem[1][1]) # DM Length dm_length = math.sqrt(float(answer_elem[1][2])**2 + float(answer_elem[1][3])**2 + float(answer_elem[1][4])**2) sim_data_list.append(dm_length) # DM SPEED dm_speed = math.sqrt(float(answer_elem[1][5])**2 + float(answer_elem[1][6])**2 + float(answer_elem[1][7])**2) sim_data_list.append(dm_speed) # DM ABEE dm_abee = float(answer_elem[1][10]) sim_data_list.append(dm_abee) # Target Benchmark (DM_GPSR_TLM - target_GPSR_TLM) target_length_err = float(answer_elem[1][18]) - float(target_elem[1][18]) target_speed_err = float(answer_elem[1][19]) - float(target_elem[1][19]) sim_data_list.append(target_length_err) sim_data_list.append(target_speed_err) # Answer DM-TLM sim_data_list.append(answer_elem[1][20]) sim_data_list.append(answer_elem[1][21]) # Target DM-TLM sim_data_list.append(target_elem[1][20]) sim_data_list.append(target_elem[1][21]) filecusor.writerow(sim_data_list) # Root Mean square if iter_idx >= start_flight_idx: mean_len_sq = mean_len_sq + target_length_err**2 mean_speed_sq = mean_speed_sq + target_speed_err**2 break return (iter_idx - start_flight_idx), mean_len_sq, mean_speed_sq
41.968254
127
0.580938
[ "BSD-3-Clause" ]
cihuang123/Next-simulation
utilities/log_parser/parser_utility.py
2,644
Python
from databroker.v1 import from_config from databroker.v0 import Broker from .. import load_config name = 'tes' v0_catalog = Broker.from_config(load_config(f'{name}/{name}.yml')) v1_catalog = from_config(load_config(f'{name}/{name}.yml')) catalog = from_config(load_config(f'{name}/{name}.yml')).v2
33.222222
66
0.755853
[ "BSD-3-Clause" ]
NSLS-II/nsls2-catalogs
nsls2_catalogs/tes/__init__.py
299
Python
""" .. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import os import tempfile import json import pytest from context import app @pytest.fixture def client(request): """ Definges the client object to make requests against """ db_fd, app.APP.config['DATABASE'] = tempfile.mkstemp() app.APP.config['TESTING'] = True client = app.APP.test_client() def teardown(): """ Close the client once testing has completed """ os.close(db_fd) os.unlink(app.APP.config['DATABASE']) request.addfinalizer(teardown) return client def test_region_meta(client): """ Test that the track endpoint is returning the usage paramerts """ rest_value = client.get( '/mug/api/dmp/file/whole', headers=dict(Authorization='Authorization: Bearer teststring') ) details = json.loads(rest_value.data) # print(details) assert 'usage' in details def test_region_file(client): """ Test that the track endpoint is returning the usage paramerts """ rest_value = client.get( '/mug/api/dmp/file/region?file_id=testtest0000&chrom=19&start=3000000&end=3100000', headers=dict(Authorization='Authorization: Bearer teststring') ) assert len(rest_value.data) > 0
28.602941
91
0.698715
[ "Apache-2.0" ]
Multiscale-Genomics/mg-rest-file
tests/test_rest_file_region.py
1,945
Python
import asyncio import io import time from firebot import CMD_HELP from firebot.utils import edit_or_reply, fire_on_cmd, sudo_cmd @fire.on(fire_on_cmd(pattern="bash ?(.*)")) @fire.on(sudo_cmd(pattern="bash ?(.*)", allow_sudo=True)) async def _(event): if event.fwd_from: return PROCESS_RUN_TIME = 100 cmd = event.pattern_match.group(1) tflyf = await edit_or_reply(event, "Processing Your Request...") reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id time.time() + PROCESS_RUN_TIME process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() e = stderr.decode() if not e: e = "No Error" o = stdout.decode() if not o: o = "**Tip**: \n`If you want to see the results of your code, I suggest printing them to stdout.`" else: _o = o.split("\n") o = "`\n".join(_o) OUTPUT = f"**QUERY:**\n__Command:__\n`{cmd}` \n__PID:__\n`{process.pid}`\n\n**stderr:** \n`{e}`\n**Output:**\n{o}" if len(OUTPUT) > 4095: with io.BytesIO(str.encode(OUTPUT)) as out_file: out_file.name = "exec.text" await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, caption=cmd, reply_to=reply_to_id, ) await event.delete() await tflyf.edit(OUTPUT) CMD_HELP.update( { "bash": "**Bash**\ \n\n**Syntax : **`.bash <cmd>`\ \n**Usage :** Run Commands Using Userbot" } )
29.947368
118
0.596368
[ "MIT" ]
Anju56/Fire-X
firebot/modules/bash.py
1,707
Python
# Demo Python Datetime - The strftime() Method ''' The strftime() Method The datetime object has a method for formatting date objects into readable strings. The method is called strftime(), and takes one parameter, format, to specify the format of the returned string. Directive Description Example %a Weekday, short version Wed %A Weekday, full version Wednesday %w Weekday as a number 0-6, 0 is Sunday 3 %d Day of month 01-31 31 %b Month name, short version Dec %B Month name, full version December %m Month as a number 01-12 12 %y Year, short version, without century 18 %Y Year, full version 2018 %H Hour 00-23 17 %I Hour 00-12 05 %p AM/PM PM %M Minute 00-59 41 %S Second 00-59 08 %f Microsecond 000000-999999 548513 %z UTC offset +0100 %Z Timezone CST %j Day number of year 001-366 365 %U Week number of year, Sunday as the first day of week, 00-53 52 %W Week number of year, Monday as the first day of week, 00-53 52 %c Local version of date and time Mon Dec 31 17:41:00 2018 %x Local version of date 12/31/18 %X Local version of time 17:41:00 %% A % character % ''' import datetime x = datetime.datetime.now() print(x) print(x.strftime("%z"))
57.333333
111
0.354236
[ "MIT" ]
luis2ra/py3-00-w3schools
0-python-tutorial/25-dates05_strftime23_z.py
2,408
Python
from abc import ABC, abstractmethod from status import Status class State(ABC): def __init__(self, turret_controls, body_controls, status: Status): self.turret_controls = turret_controls self.body_controls = body_controls self.status = status @abstractmethod def perform(self): pass @abstractmethod def calculate_priority(self, is_current_state: bool): pass
23.444444
71
0.699052
[ "MIT" ]
Iain530/do-you-have-the-guts2018
src/states/state.py
422
Python
class Solution(object): # def findKthLargest(self, nums, k): # """ # :type nums: List[int] # :type k: int # :rtype: int # """ # return sorted(nums, reverse=True)[k - 1] # def findKthLargest(self, nums, k): # # build min heap # heapq.heapify(nums) # # remove n - k smallest number # while len(nums) > k: # heapq.heappop(nums) # return nums[0] # #return heapq.nlargest(k, nums)[-1] def findKthLargest(self, nums, k): # shuffle nums to avoid n*n random.shuffle(nums) return self.quickSelection(nums, 0, len(nums) - 1, len(nums) - k) def quickSelection(self, nums, start, end, k): if start > end: return float('inf') pivot = nums[end] left = start for i in range(start, end): if nums[i] <= pivot: # swip left and i nums[left], nums[i] = nums[i], nums[left] left += 1 nums[left], nums[end] = nums[end], nums[left] if left == k: return nums[left] elif left < k: return self.quickSelection(nums, left + 1, end, k) else: return self.quickSelection(nums, start, left - 1, k)
31.439024
73
0.501939
[ "MIT" ]
CZZLEGEND/leetcode-2
python/215_Kth_Largest_Element_in_an_Array.py
1,289
Python
from itertools import islice from tests.unit.utils import Teardown import inspect import pytest import time import cbpro.messenger import cbpro.public import cbpro.private class TestPrivateClient(object): def test_private_attr(self, private_client): assert isinstance(private_client, cbpro.public.PublicClient) assert hasattr(private_client, 'accounts') assert hasattr(private_client, 'orders') assert hasattr(private_client, 'fills') assert hasattr(private_client, 'limits') assert hasattr(private_client, 'deposits') assert hasattr(private_client, 'withdrawals') assert hasattr(private_client, 'conversions') assert hasattr(private_client, 'payments') assert hasattr(private_client, 'coinbase') assert hasattr(private_client, 'fees') assert hasattr(private_client, 'reports') assert hasattr(private_client, 'profiles') assert hasattr(private_client, 'oracle') def test_private_accounts(self, private_client): accounts = private_client.accounts assert isinstance(accounts, cbpro.messenger.Subscriber) assert isinstance(accounts, cbpro.private.Accounts) assert hasattr(accounts, 'list') assert hasattr(accounts, 'get') assert hasattr(accounts, 'history') assert hasattr(accounts, 'holds') def test_private_orders(self, private_client): orders = private_client.orders assert isinstance(orders, cbpro.messenger.Subscriber) assert isinstance(orders, cbpro.private.Orders) assert hasattr(orders, 'post') assert hasattr(orders, 'cancel') assert hasattr(orders, 'list') assert hasattr(orders, 'get') def test_private_fills(self, private_client): fills = private_client.fills assert isinstance(fills, cbpro.messenger.Subscriber) assert isinstance(fills, cbpro.private.Fills) assert hasattr(fills, 'list') def test_private_limits(self, private_client): limits = private_client.limits assert isinstance(limits, cbpro.messenger.Subscriber) assert isinstance(limits, cbpro.private.Limits) assert hasattr(limits, 'get') def test_private_deposits(self, private_client): deposits = private_client.deposits assert isinstance(deposits, cbpro.messenger.Subscriber) assert isinstance(deposits, cbpro.private.Deposits) assert hasattr(deposits, 'list') assert hasattr(deposits, 'get') assert hasattr(deposits, 'payment') assert hasattr(deposits, 'coinbase') assert hasattr(deposits, 'generate') def test_private_withdrawals(self, private_client): withdrawals = private_client.withdrawals assert isinstance(withdrawals, cbpro.messenger.Subscriber) assert isinstance(withdrawals, cbpro.private.Deposits) assert isinstance(withdrawals, cbpro.private.Withdrawals) assert hasattr(withdrawals, 'list') assert hasattr(withdrawals, 'get') assert hasattr(withdrawals, 'payment') assert hasattr(withdrawals, 'coinbase') assert hasattr(withdrawals, 'generate') assert hasattr(withdrawals, 'crypto') assert hasattr(withdrawals, 'estimate') def test_private_conversions(self, private_client): conversions = private_client.conversions assert isinstance(conversions, cbpro.messenger.Subscriber) assert isinstance(conversions, cbpro.private.Conversions) assert hasattr(conversions, 'post') def test_private_payments(self, private_client): payments = private_client.payments assert isinstance(payments, cbpro.messenger.Subscriber) assert isinstance(payments, cbpro.private.Payments) assert hasattr(payments, 'list') def test_private_coinbase(self, private_client): coinbase = private_client.coinbase assert isinstance(coinbase, cbpro.messenger.Subscriber) assert isinstance(coinbase, cbpro.private.Coinbase) assert hasattr(coinbase, 'list') def test_private_fees(self, private_client): fees = private_client.fees assert isinstance(fees, cbpro.messenger.Subscriber) assert isinstance(fees, cbpro.private.Fees) assert hasattr(fees, 'list') def test_private_reports(self, private_client): reports = private_client.reports assert isinstance(reports, cbpro.messenger.Subscriber) assert isinstance(reports, cbpro.private.Reports) def test_private_profiles(self, private_client): profiles = private_client.profiles assert isinstance(profiles, cbpro.messenger.Subscriber) assert isinstance(profiles, cbpro.private.Profiles) assert hasattr(profiles, 'list') assert hasattr(profiles, 'get') assert hasattr(profiles, 'transfer') def test_private_oracle(self, private_client): oracle = private_client.oracle assert isinstance(oracle, cbpro.messenger.Subscriber) assert isinstance(oracle, cbpro.private.Oracle) @pytest.mark.skip class TestPrivateAccounts(Teardown): def test_list(self, private_client): response = private_client.accounts.list() assert isinstance(response, list) assert 'currency' in response[0] def test_get(self, private_client, account_id): response = private_client.accounts.get(account_id) assert isinstance(response, dict) assert 'currency' in response def test_history(self, private_client, account_id): response = private_client.accounts.history(account_id) assert inspect.isgenerator(response) accounts = list(islice(response, 5)) assert 'amount' in accounts[0] assert 'details' in accounts[0] def test_holds(self, private_client, account_id): response = private_client.accounts.holds(account_id) assert inspect.isgenerator(response) holds = list(islice(response, 5)) assert 'type' in holds[0] assert 'ref' in holds[0] @pytest.mark.skip class TestPrivateOrders(Teardown): def test_post_limit_order(self, private_client, private_model): json = private_model.orders.limit('buy', 'BTC-USD', 40000.0, 0.001) response = private_client.orders.post(json) assert isinstance(response, dict) assert response['type'] == 'limit' def test_post_market_order(self, private_client, private_model): json = private_model.orders.market('buy', 'BTC-USD', size=0.001) response = private_client.orders.post(json) assert isinstance(response, dict) assert 'status' in response assert response['type'] == 'market' @pytest.mark.parametrize('stop', ['entry', 'loss']) def test_post_stop_order(self, private_client, private_model, stop): json = private_model.orders.market( 'buy', 'BTC-USD', size=0.001, stop=stop, stop_price=30000 ) response = private_client.orders.post(json) assert isinstance(response, dict) assert response['stop'] == stop assert response['type'] == 'market' def test_cancel(self, private_client, private_model): json = private_model.orders.limit('buy', 'BTC-USD', 40000.0, 0.001) order = private_client.orders.post(json) time.sleep(0.2) params = private_model.orders.cancel('BTC-USD') response = private_client.orders.cancel(order['id'], params) assert isinstance(response, list) assert response[0] == order['id'] def test_list(self, private_client, private_model): params = private_model.orders.list('pending') response = private_client.orders.list(params) assert inspect.isgenerator(response) orders = list(islice(response, 10)) assert isinstance(orders, list) assert 'created_at' in orders[0] def test_get(self, private_client, private_model): json = private_model.orders.limit('buy', 'BTC-USD', 40000.0, 0.001) order = private_client.orders.post(json) time.sleep(0.2) response = private_client.orders.get(order['id']) assert response['id'] == order['id'] @pytest.mark.skip class TestPrivateFills(Teardown): def test_list(self, private_client, private_model): params = private_model.fills.list('BTC-USD') response = private_client.fills.list(params) assert inspect.isgenerator(response) fills = list(islice(response, 10)) assert isinstance(fills, list) assert 'fill_fees' in fills[0] @pytest.mark.skip class TestPrivateLimits(Teardown): def test_get(self, private_client): response = private_client.limits.get() assert isinstance(response, dict) @pytest.mark.skip class TestPrivateDeposits(Teardown): pass @pytest.mark.skip class TestPrivateWithdrawals(Teardown): pass @pytest.mark.skip class TestPrivateConversions(Teardown): def test_post(self, private_client, private_model): json = private_model.conversions.post('USD', 'USDC', 10.0) response = private_client.conversions.post(json) assert isinstance(response, dict) assert 'id' in response assert 'amount' in response assert response['from'] == 'USD' assert response['to'] == 'USDC' @pytest.mark.skip class TestPrivatePayments(Teardown): def test_list(self, private_client): response = private_client.payments.list() assert isinstance(response, list) @pytest.mark.skip class TestPrivateCoinbase(Teardown): def test_list(self, private_client): response = private_client.coinbase.list() assert isinstance(response, list) @pytest.mark.skip class TestPrivateFees(Teardown): def test_list(self, private_client): response = private_client.fees.list() assert isinstance(response, list) @pytest.mark.skip class TestPrivateReports(Teardown): pass @pytest.mark.skip class TestPrivateProfiles(Teardown): pass @pytest.mark.skip class TestPrivateOracle(Teardown): pass
35.038062
75
0.693067
[ "MIT" ]
Casaplaya/coinbasepro-python
tests/unit/test_private.py
10,126
Python
from __future__ import unicode_literals from django.db import models from timezone_field import TimeZoneField class FakeModel(models.Model): tz = TimeZoneField() tz_opt = TimeZoneField(blank=True) tz_opt_default = TimeZoneField(blank=True, default='America/Los_Angeles')
23.916667
77
0.787456
[ "BSD-2-Clause" ]
ambitioninc/django-timezone-field
timezone_field/tests/models.py
287
Python
"""Configuration for reproducing leaderboard of grb-citeseer dataset.""" import torch import torch.nn.functional as F from grb.evaluator import metric model_list = ["gcn", "gcn_ln", "gcn_at", "graphsage", "graphsage_ln", "graphsage_at", "sgcn", "sgcn_ln", "sgcn_at", "robustgcn", "robustgcn_at", "tagcn", "tagcn_ln", "tagcn_at", "appnp", "appnp_ln", "appnp_at", "gin", "gin_ln", "gin_at", "gat", "gat_ln", "gat_at", "gcnguard", "gatguard", "gcnsvd"] model_list_basic = ["gcn", "graphsage", "sgcn", "tagcn", "appnp", "gin", "gat"] modification_attack_list = ["dice", "rand", "flip", "fga", "nea", "pgd", "prbcd", "stack"] injection_attack_list = ["rand", "fgsm", "pgd", "speit", "tdgia"] model_sur_list = ["gcn"] def build_model(model_name, num_features, num_classes): """Hyper-parameters are determined by auto training, refer to grb.utils.trainer.AutoTrainer.""" if model_name in ["gcn", "gcn_ln", "gcn_at", "gcn_ln_at"]: from grb.model.torch import GCN model = GCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, layer_norm=True if "ln" in model_name else False, dropout=0.7) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["graphsage", "graphsage_ln", "graphsage_at", "graphsage_ln_at"]: from grb.model.torch import GraphSAGE model = GraphSAGE(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=5, layer_norm=True if "ln" in model_name else False, dropout=0.5) train_params = { "lr" : 0.0001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["sgcn", "sgcn_ln", "sgcn_at", "sgcn_ln_at"]: from grb.model.torch import SGCN model = SGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=4, k=4, layer_norm=True if "ln" in model_name else False, dropout=0.5) train_params = { "lr" : 0.01, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["tagcn", "tagcn_ln", "tagcn_at", "tagcn_ln_at"]: from grb.model.torch import TAGCN model = TAGCN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=3, k=2, layer_norm=True if "ln" in model_name else False, dropout=0.5) train_params = { "lr" : 0.005, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["appnp", "appnp_ln", "appnp_at", "appnp_ln_at"]: from grb.model.torch import APPNP model = APPNP(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, k=3, layer_norm=True if "ln" in model_name else False, dropout=0.5) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["gin", "gin_ln", "gin_at", "gin_ln_at"]: from grb.model.torch import GIN model = GIN(in_features=num_features, out_features=num_classes, hidden_features=256, n_layers=2, layer_norm=True if "ln" in model_name else False, dropout=0.6) train_params = { "lr" : 0.0001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["gat", "gat_ln", "gat_at", "gat_ln_at"]: from grb.model.dgl import GAT model = GAT(in_features=num_features, out_features=num_classes, hidden_features=64, n_layers=3, n_heads=6, layer_norm=True if "ln" in model_name else False, dropout=0.6) train_params = { "lr" : 0.005, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["robustgcn", "robustgcn_at"]: from grb.defense import RobustGCN model = RobustGCN(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["gcnsvd", "gcnsvd_ln"]: from grb.defense.gcnsvd import GCNSVD model = GCNSVD(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["gcnguard"]: from grb.defense import GCNGuard model = GCNGuard(in_features=num_features, out_features=num_classes, hidden_features=128, n_layers=3, dropout=0.5) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params if model_name in ["gatguard"]: from grb.defense import GATGuard model = GATGuard(in_features=num_features, out_features=num_classes, hidden_features=64, n_heads=6, n_layers=3, dropout=0.5) train_params = { "lr" : 0.001, "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, "train_mode" : "inductive", } return model, train_params def build_optimizer(model, lr): optimizer = torch.optim.Adam(model.parameters(), lr=lr) return optimizer def build_loss(): return F.nll_loss def build_metric(): return metric.eval_acc def build_attack(attack_name, device="cpu", args=None, mode="modification"): if mode == "modification": if attack_name == "dice": from grb.attack.modification import DICE attack = DICE(n_edge_mod=args.n_edge_mod, ratio_delete=0.6, device=device) return attack if attack_name == "fga": from grb.attack.modification import FGA attack = FGA(n_edge_mod=args.n_edge_mod, device=device) return attack if attack_name == "flip": from grb.attack.modification import FLIP attack = FLIP(n_edge_mod=args.n_edge_mod, flip_type=args.flip_type, mode="descend", device=device) return attack if attack_name == "rand": from grb.attack.modification import RAND attack = RAND(n_edge_mod=args.n_edge_mod, device=device) return attack if attack_name == "nea": from grb.attack.modification import NEA attack = NEA(n_edge_mod=args.n_edge_mod, device=device) return attack if attack_name == "stack": from grb.attack.modification import STACK attack = STACK(n_edge_mod=args.n_edge_mod, device=device) return attack if attack_name == "pgd": from grb.attack.modification import PGD attack = PGD(epsilon=args.epsilon, n_epoch=args.attack_epoch, n_node_mod=args.n_node_mod, n_edge_mod=args.n_edge_mod, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, device=device) return attack if attack_name == "prbcd": from grb.attack.modification import PRBCD attack = PRBCD(epsilon=args.epsilon, n_epoch=args.attack_epoch, n_node_mod=args.n_node_mod, n_edge_mod=args.n_edge_mod, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, device=device) return attack elif mode == "injection": if attack_name == "rand": from grb.attack.injection import RAND attack = RAND(n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, device=device) return attack elif attack_name == "fgsm": from grb.attack.injection import FGSM attack = FGSM(epsilon=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, device=device) return attack elif attack_name == "pgd": from grb.attack.injection import PGD attack = PGD(epsilon=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, device=device) return attack elif attack_name == "speit": from grb.attack.injection import SPEIT attack = SPEIT(lr=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, device=device) return attack elif attack_name == "tdgia": from grb.attack.injection import TDGIA attack = TDGIA(lr=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, inject_mode='random', sequential_step=1.0, device=device) return attack elif attack_name == "tdgia_random": from grb.attack.injection.tdgia import TDGIA attack = TDGIA(lr=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, inject_mode='random', device=device) return attack elif attack_name == "tdgia_uniform": from grb.attack.injection import TDGIA attack = TDGIA(lr=args.lr, n_epoch=args.n_epoch, n_inject_max=args.n_inject_max, n_edge_max=args.n_edge_max, feat_lim_min=args.feat_lim_min, feat_lim_max=args.feat_lim_max, early_stop=args.early_stop, inject_mode='uniform', sequential_step=1.0, device=device) return attack else: raise NotImplementedError def build_model_autotrain(model_name): if model_name == "gcn": from grb.model.torch import GCN def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return GCN, params_search if model_name == "graphsage": from grb.model.torch import GraphSAGE def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return GraphSAGE, params_search if model_name == "sgcn": from grb.model.torch import SGCN def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return SGCN, params_search if model_name == "tagcn": from grb.model.torch import TAGCN def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "k" : trial.suggest_categorical("k", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return TAGCN, params_search if model_name == "appnp": from grb.model.torch import APPNP def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "k" : trial.suggest_categorical("k", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return APPNP, params_search if model_name == "gin": from grb.model.torch import GIN def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return GIN, params_search if model_name == "gat": from grb.model.dgl import GAT def params_search(trial): model_params = { "hidden_features": trial.suggest_categorical("hidden_features", [32, 64, 128, 256]), "n_layers" : trial.suggest_categorical("n_layers", [2, 3, 4, 5]), "n_heads" : trial.suggest_categorical("n_heads", [2, 4, 6, 8]), "dropout" : trial.suggest_categorical("dropout", [0.5, 0.6, 0.7, 0.8]), } other_params = { "lr" : trial.suggest_categorical("lr", [1e-2, 1e-3, 5e-3, 1e-4]), "n_epoch" : 5000, "early_stop" : True, "early_stop_patience": 500, } return model_params, other_params return GAT, params_search
39.193015
100
0.463862
[ "MIT" ]
sigeisler/grb
pipeline/configs/grb-citeseer/config.py
21,321
Python
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' module: sns_topic short_description: Manages AWS SNS topics and subscriptions version_added: 1.0.0 description: - The M(community.aws.sns_topic) module allows you to create, delete, and manage subscriptions for AWS SNS topics. - As of 2.6, this module can be use to subscribe and unsubscribe to topics outside of your AWS account. author: - "Joel Thompson (@joelthompson)" - "Fernando Jose Pando (@nand0p)" - "Will Thames (@willthames)" options: name: description: - The name or ARN of the SNS topic to manage. required: true type: str state: description: - Whether to create or destroy an SNS topic. default: present choices: ["absent", "present"] type: str display_name: description: - Display name of the topic. type: str policy: description: - Policy to apply to the SNS topic. type: dict delivery_policy: description: - Delivery policy to apply to the SNS topic. type: dict subscriptions: description: - List of subscriptions to apply to the topic. Note that AWS requires subscriptions to be confirmed, so you will need to confirm any new subscriptions. suboptions: endpoint: description: Endpoint of subscription. required: true protocol: description: Protocol of subscription. required: true type: list elements: dict default: [] purge_subscriptions: description: - "Whether to purge any subscriptions not listed here. NOTE: AWS does not allow you to purge any PendingConfirmation subscriptions, so if any exist and would be purged, they are silently skipped. This means that somebody could come back later and confirm the subscription. Sorry. Blame Amazon." default: true type: bool extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 requirements: [ "boto" ] ''' EXAMPLES = r""" - name: Create alarm SNS topic community.aws.sns_topic: name: "alarms" state: present display_name: "alarm SNS topic" delivery_policy: http: defaultHealthyRetryPolicy: minDelayTarget: 2 maxDelayTarget: 4 numRetries: 3 numMaxDelayRetries: 5 backoffFunction: "<linear|arithmetic|geometric|exponential>" disableSubscriptionOverrides: True defaultThrottlePolicy: maxReceivesPerSecond: 10 subscriptions: - endpoint: "[email protected]" protocol: "email" - endpoint: "my_mobile_number" protocol: "sms" """ RETURN = r''' sns_arn: description: The ARN of the topic you are modifying type: str returned: always sample: "arn:aws:sns:us-east-2:111111111111:my_topic_name" community.aws.sns_topic: description: Dict of sns topic details type: complex returned: always contains: attributes_set: description: list of attributes set during this run returned: always type: list sample: [] check_mode: description: whether check mode was on returned: always type: bool sample: false delivery_policy: description: Delivery policy for the SNS topic returned: when topic is owned by this AWS account type: str sample: > {"http":{"defaultHealthyRetryPolicy":{"minDelayTarget":20,"maxDelayTarget":20,"numRetries":3,"numMaxDelayRetries":0, "numNoDelayRetries":0,"numMinDelayRetries":0,"backoffFunction":"linear"},"disableSubscriptionOverrides":false}} display_name: description: Display name for SNS topic returned: when topic is owned by this AWS account type: str sample: My topic name name: description: Topic name returned: always type: str sample: ansible-test-dummy-topic owner: description: AWS account that owns the topic returned: when topic is owned by this AWS account type: str sample: '111111111111' policy: description: Policy for the SNS topic returned: when topic is owned by this AWS account type: str sample: > {"Version":"2012-10-17","Id":"SomePolicyId","Statement":[{"Sid":"ANewSid","Effect":"Allow","Principal":{"AWS":"arn:aws:iam::111111111111:root"}, "Action":"sns:Subscribe","Resource":"arn:aws:sns:us-east-2:111111111111:ansible-test-dummy-topic","Condition":{"StringEquals":{"sns:Protocol":"email"}}}]} state: description: whether the topic is present or absent returned: always type: str sample: present subscriptions: description: List of subscribers to the topic in this AWS account returned: always type: list sample: [] subscriptions_added: description: List of subscribers added in this run returned: always type: list sample: [] subscriptions_confirmed: description: Count of confirmed subscriptions returned: when topic is owned by this AWS account type: str sample: '0' subscriptions_deleted: description: Count of deleted subscriptions returned: when topic is owned by this AWS account type: str sample: '0' subscriptions_existing: description: List of existing subscriptions returned: always type: list sample: [] subscriptions_new: description: List of new subscriptions returned: always type: list sample: [] subscriptions_pending: description: Count of pending subscriptions returned: when topic is owned by this AWS account type: str sample: '0' subscriptions_purge: description: Whether or not purge_subscriptions was set returned: always type: bool sample: true topic_arn: description: ARN of the SNS topic (equivalent to sns_arn) returned: when topic is owned by this AWS account type: str sample: arn:aws:sns:us-east-2:111111111111:ansible-test-dummy-topic topic_created: description: Whether the topic was created returned: always type: bool sample: false topic_deleted: description: Whether the topic was deleted returned: always type: bool sample: false ''' import json import re import copy try: import botocore except ImportError: pass # handled by AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule, is_boto3_error_code from ansible_collections.amazon.aws.plugins.module_utils.ec2 import compare_policies, AWSRetry, camel_dict_to_snake_dict class SnsTopicManager(object): """ Handles SNS Topic creation and destruction """ def __init__(self, module, name, state, display_name, policy, delivery_policy, subscriptions, purge_subscriptions, check_mode): self.connection = module.client('sns') self.module = module self.name = name self.state = state self.display_name = display_name self.policy = policy self.delivery_policy = delivery_policy self.subscriptions = subscriptions self.subscriptions_existing = [] self.subscriptions_deleted = [] self.subscriptions_added = [] self.purge_subscriptions = purge_subscriptions self.check_mode = check_mode self.topic_created = False self.topic_deleted = False self.topic_arn = None self.attributes_set = [] @AWSRetry.jittered_backoff() def _list_topics_with_backoff(self): paginator = self.connection.get_paginator('list_topics') return paginator.paginate().build_full_result()['Topics'] @AWSRetry.jittered_backoff(catch_extra_error_codes=['NotFound']) def _list_topic_subscriptions_with_backoff(self): paginator = self.connection.get_paginator('list_subscriptions_by_topic') return paginator.paginate(TopicArn=self.topic_arn).build_full_result()['Subscriptions'] @AWSRetry.jittered_backoff(catch_extra_error_codes=['NotFound']) def _list_subscriptions_with_backoff(self): paginator = self.connection.get_paginator('list_subscriptions') return paginator.paginate().build_full_result()['Subscriptions'] def _list_topics(self): try: topics = self._list_topics_with_backoff() except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't get topic list") return [t['TopicArn'] for t in topics] def _topic_arn_lookup(self): # topic names cannot have colons, so this captures the full topic name all_topics = self._list_topics() lookup_topic = ':%s' % self.name for topic in all_topics: if topic.endswith(lookup_topic): return topic def _create_topic(self): if not self.check_mode: try: response = self.connection.create_topic(Name=self.name) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't create topic %s" % self.name) self.topic_arn = response['TopicArn'] return True def _compare_delivery_policies(self, policy_a, policy_b): _policy_a = copy.deepcopy(policy_a) _policy_b = copy.deepcopy(policy_b) # AWS automatically injects disableSubscriptionOverrides if you set an # http policy if 'http' in policy_a: if 'disableSubscriptionOverrides' not in policy_a['http']: _policy_a['http']['disableSubscriptionOverrides'] = False if 'http' in policy_b: if 'disableSubscriptionOverrides' not in policy_b['http']: _policy_b['http']['disableSubscriptionOverrides'] = False comparison = (_policy_a != _policy_b) return comparison def _set_topic_attrs(self): changed = False try: topic_attributes = self.connection.get_topic_attributes(TopicArn=self.topic_arn)['Attributes'] except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't get topic attributes for topic %s" % self.topic_arn) if self.display_name and self.display_name != topic_attributes['DisplayName']: changed = True self.attributes_set.append('display_name') if not self.check_mode: try: self.connection.set_topic_attributes(TopicArn=self.topic_arn, AttributeName='DisplayName', AttributeValue=self.display_name) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't set display name") if self.policy and compare_policies(self.policy, json.loads(topic_attributes['Policy'])): changed = True self.attributes_set.append('policy') if not self.check_mode: try: self.connection.set_topic_attributes(TopicArn=self.topic_arn, AttributeName='Policy', AttributeValue=json.dumps(self.policy)) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't set topic policy") if self.delivery_policy and ('DeliveryPolicy' not in topic_attributes or self._compare_delivery_policies(self.delivery_policy, json.loads(topic_attributes['DeliveryPolicy']))): changed = True self.attributes_set.append('delivery_policy') if not self.check_mode: try: self.connection.set_topic_attributes(TopicArn=self.topic_arn, AttributeName='DeliveryPolicy', AttributeValue=json.dumps(self.delivery_policy)) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't set topic delivery policy") return changed def _canonicalize_endpoint(self, protocol, endpoint): if protocol == 'sms': return re.sub('[^0-9]*', '', endpoint) return endpoint def _set_topic_subs(self): changed = False subscriptions_existing_list = set() desired_subscriptions = [(sub['protocol'], self._canonicalize_endpoint(sub['protocol'], sub['endpoint'])) for sub in self.subscriptions] for sub in self._list_topic_subscriptions(): sub_key = (sub['Protocol'], sub['Endpoint']) subscriptions_existing_list.add(sub_key) if (self.purge_subscriptions and sub_key not in desired_subscriptions and sub['SubscriptionArn'] not in ('PendingConfirmation', 'Deleted')): changed = True self.subscriptions_deleted.append(sub_key) if not self.check_mode: try: self.connection.unsubscribe(SubscriptionArn=sub['SubscriptionArn']) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't unsubscribe from topic") for protocol, endpoint in set(desired_subscriptions).difference(subscriptions_existing_list): changed = True self.subscriptions_added.append((protocol, endpoint)) if not self.check_mode: try: self.connection.subscribe(TopicArn=self.topic_arn, Protocol=protocol, Endpoint=endpoint) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't subscribe to topic %s" % self.topic_arn) return changed def _list_topic_subscriptions(self): try: return self._list_topic_subscriptions_with_backoff() except is_boto3_error_code('AuthorizationError'): try: # potentially AuthorizationError when listing subscriptions for third party topic return [sub for sub in self._list_subscriptions_with_backoff() if sub['TopicArn'] == self.topic_arn] except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't get subscriptions list for topic %s" % self.topic_arn) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: # pylint: disable=duplicate-except self.module.fail_json_aws(e, msg="Couldn't get subscriptions list for topic %s" % self.topic_arn) def _delete_subscriptions(self): # NOTE: subscriptions in 'PendingConfirmation' timeout in 3 days # https://forums.aws.amazon.com/thread.jspa?threadID=85993 subscriptions = self._list_topic_subscriptions() if not subscriptions: return False for sub in subscriptions: if sub['SubscriptionArn'] not in ('PendingConfirmation', 'Deleted'): self.subscriptions_deleted.append(sub['SubscriptionArn']) if not self.check_mode: try: self.connection.unsubscribe(SubscriptionArn=sub['SubscriptionArn']) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't unsubscribe from topic") return True def _delete_topic(self): self.topic_deleted = True if not self.check_mode: try: self.connection.delete_topic(TopicArn=self.topic_arn) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: self.module.fail_json_aws(e, msg="Couldn't delete topic %s" % self.topic_arn) return True def _name_is_arn(self): return self.name.startswith('arn:') def ensure_ok(self): changed = False if self._name_is_arn(): self.topic_arn = self.name else: self.topic_arn = self._topic_arn_lookup() if not self.topic_arn: changed = self._create_topic() if self.topic_arn in self._list_topics(): changed |= self._set_topic_attrs() elif self.display_name or self.policy or self.delivery_policy: self.module.fail_json(msg="Cannot set display name, policy or delivery policy for SNS topics not owned by this account") changed |= self._set_topic_subs() return changed def ensure_gone(self): changed = False if self._name_is_arn(): self.topic_arn = self.name else: self.topic_arn = self._topic_arn_lookup() if self.topic_arn: if self.topic_arn not in self._list_topics(): self.module.fail_json(msg="Cannot use state=absent with third party ARN. Use subscribers=[] to unsubscribe") changed = self._delete_subscriptions() changed |= self._delete_topic() return changed def get_info(self): info = { 'name': self.name, 'state': self.state, 'subscriptions_new': self.subscriptions, 'subscriptions_existing': self.subscriptions_existing, 'subscriptions_deleted': self.subscriptions_deleted, 'subscriptions_added': self.subscriptions_added, 'subscriptions_purge': self.purge_subscriptions, 'check_mode': self.check_mode, 'topic_created': self.topic_created, 'topic_deleted': self.topic_deleted, 'attributes_set': self.attributes_set, } if self.state != 'absent': if self.topic_arn in self._list_topics(): info.update(camel_dict_to_snake_dict(self.connection.get_topic_attributes(TopicArn=self.topic_arn)['Attributes'])) info['delivery_policy'] = info.pop('effective_delivery_policy') info['subscriptions'] = [camel_dict_to_snake_dict(sub) for sub in self._list_topic_subscriptions()] return info def main(): argument_spec = dict( name=dict(required=True), state=dict(default='present', choices=['present', 'absent']), display_name=dict(), policy=dict(type='dict'), delivery_policy=dict(type='dict'), subscriptions=dict(default=[], type='list', elements='dict'), purge_subscriptions=dict(type='bool', default=True), ) module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True) name = module.params.get('name') state = module.params.get('state') display_name = module.params.get('display_name') policy = module.params.get('policy') delivery_policy = module.params.get('delivery_policy') subscriptions = module.params.get('subscriptions') purge_subscriptions = module.params.get('purge_subscriptions') check_mode = module.check_mode sns_topic = SnsTopicManager(module, name, state, display_name, policy, delivery_policy, subscriptions, purge_subscriptions, check_mode) if state == 'present': changed = sns_topic.ensure_ok() elif state == 'absent': changed = sns_topic.ensure_gone() sns_facts = dict(changed=changed, sns_arn=sns_topic.topic_arn, sns_topic=sns_topic.get_info()) module.exit_json(**sns_facts) if __name__ == '__main__': main()
39.256654
162
0.638239
[ "MIT" ]
DiptoChakrabarty/nexus
venv/lib/python3.7/site-packages/ansible_collections/community/aws/plugins/modules/sns_topic.py
20,649
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .partition_safety_check import PartitionSafetyCheck class WaitForPrimaryPlacementSafetyCheck(PartitionSafetyCheck): """Safety check that waits for the primary replica that was moved out of the node due to upgrade to be placed back again on that node. :param kind: Constant filled by server. :type kind: str :param partition_id: :type partition_id: str """ _validation = { 'kind': {'required': True}, } def __init__(self, partition_id=None): super(WaitForPrimaryPlacementSafetyCheck, self).__init__(partition_id=partition_id) self.kind = 'WaitForPrimaryPlacement'
34.71875
91
0.633663
[ "MIT" ]
v-Ajnava/azure-sdk-for-python
azure-servicefabric/azure/servicefabric/models/wait_for_primary_placement_safety_check.py
1,111
Python
#Shows data from the first 1000 blocks import random import os import subprocess import json #Set this to your raven-cli program cli = "raven-cli" #mode = "-testnet" mode = "" rpc_port = 8746 #Set this information in your raven.conf file (in datadir, not testnet3) rpc_user = 'rpcuser' rpc_pass = 'rpcpass555' def rpc_call(params): process = subprocess.Popen([cli, mode, params], stdout=subprocess.PIPE) out, err = process.communicate() return(out) def get_blockinfo(num): rpc_connection = get_rpc_connection() hash = rpc_connection.getblockhash(num) blockinfo = rpc_connection.getblock(hash) return(blockinfo) def get_rpc_connection(): from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException connection = "http://%s:%[email protected]:%s"%(rpc_user, rpc_pass, rpc_port) #print("Connection: " + connection) rpc_connection = AuthServiceProxy(connection) return(rpc_connection) for i in range(1,1000): dta = get_blockinfo(i) print("Block #" + str(i)) print(dta.get('hash')) print(dta.get('difficulty')) print(dta.get('time')) print("")
24.391304
75
0.703209
[ "MIT" ]
Clotonervo/TestCoin
assets/tools/blockfacts.py
1,122
Python
""" Distribution class """ # To do: # # - wrap bins for cyclic histograms # - check use of float() in count_mag() etc # - clarify comment about negative selectivity # # - function to return value in a range (like a real histogram) # - cache values # - assumes cyclic axes start at 0: include a shift based on range # # - is there a way to make this work for arrays without mentioning # "array" anywhere in here? # - should this be two classes: one for the core (which would be # small though) and another for statistics? import numpy as np import param import cmath import math unavailable_scipy_optimize = False try: from scipy import optimize except ImportError: param.Parameterized().debug("scipy.optimize not available, dummy von Mises fit") unavailable_scipy_optimize = True def wrap(lower, upper, x): """ Circularly alias the numeric value x into the range [lower,upper). Valid for cyclic quantities like orientations or hues. """ #I have no idea how I came up with this algorithm; it should be simplified. # # Note that Python's % operator works on floats and arrays; # usually one can simply use that instead. E.g. to wrap array or # scalar x into 0,2*pi, just use "x % (2*pi)". axis_range = upper - lower return lower + (x - lower + 2.0 * axis_range * (1.0 - math.floor(x / (2.0 * axis_range)))) % axis_range def calc_theta(bins, axis_range): """ Convert a bin number to a direction in radians. Works for NumPy arrays of bin numbers, returning an array of directions. """ return np.exp( (2.0 * np.pi) * bins / axis_range * 1.0j ) class Distribution(object): """ Holds a distribution of the values f(x) associated with a variable x. A Distribution is a histogram-like object that is a dictionary of samples. Each sample is an x:f(x) pair, where x is called the feature_bin and f(x) is called the value(). Each feature_bin's value is typically maintained as the sum of all the values that have been placed into it. The feature_bin axis is continuous, and can represent a continuous quantity without discretization. Alternatively, this class can be used as a traditional histogram by either discretizing the feature_bin number before adding each sample, or by binning the values in the final Distribution. Distributions are bounded by the specified axis_bounds, and can either be cyclic (like directions or hues) or non-cyclic. For cyclic distributions, samples provided outside the axis_bounds will be wrapped back into the bound range, as is appropriate for quantities like directions. For non-cyclic distributions, providing samples outside the axis_bounds will result in a ValueError. In addition to the values, can also return the counts, i.e., the number of times that a sample has been added with the given feature_bin. Not all instances of this class will be a true distribution in the mathematical sense; e.g. the values will have to be normalized before they can be considered a probability distribution. If keep_peak=True, the value stored in each feature_bin will be the maximum of all values ever added, instead of the sum. The distribution will thus be a record of the maximum value seen at each feature_bin, also known as an envelope. """ # Holds the number of times that undefined values have been # returned from calculations for any instance of this class, # e.g. calls to vector_direction() or vector_selectivity() when no # value is non-zero. Useful for warning users when the values are # not meaningful. undefined_vals = 0 def __init__(self, axis_bounds, axis_range, cyclic, data, counts, total_count, total_value, theta): self._data = data self._counts = counts # total_count and total_value hold the total number and sum # (respectively) of values that have ever been provided for # each feature_bin. For a simple distribution these will be the same as # sum_counts() and sum_values(). self.total_count = total_count self.total_value = total_value self.axis_bounds = axis_bounds self.axis_range = axis_range self.cyclic = cyclic self._pop_store = None # Cache busy data self._keys = list(data.keys()) self._values = list(data.values()) self._theta = theta if self.cyclic: # Cache the vector sum self._vector_sum = self._fast_vector_sum(self._values, theta) else: self._vector_sum = None def data(self): """ Answer a dictionary with bins as keys. """ return self._data def pop(self, feature_bin): """ Remove the entry with bin from the distribution. """ if self._pop_store is not None: raise Exception("Distribution: attempt to pop value before outstanding restore") self._pop_store = self._data.pop(feature_bin) self._keys = list(self._data.keys()) self._values = list(self._data.values()) def restore(self, feature_bin): """ Restore the entry with bin from the distribution. Only valid if called after a pop. """ if self._pop_store is None: raise Exception("Distribution: attempt to restore value before pop") self._data[feature_bin] = self._pop_store self._pop_store = None self._keys = list(self._data.keys()) self._values = list(self._data.values()) def vector_sum(self): """ Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). Each feature_bin contributes a vector of length equal to its value, at a direction corresponding to the feature_bin number. Specifically, the total feature_bin number range is mapped into a direction range [0,2pi]. For a cyclic distribution, the avgbinnum will be a continuous measure analogous to the max_value_bin() of the distribution. But this quantity has more precision than max_value_bin() because it is computed from the entire distribution instead of just the peak feature_bin. However, it is likely to be useful only for uniform or very dense sampling; with sparse, non-uniform sampling the estimates will be biased significantly by the particular samples chosen. The avgbinnum is not meaningful when the magnitude is 0, because a zero-length vector has no direction. To find out whether such cases occurred, you can compare the value of undefined_vals before and after a series of calls to this function. This tries to use cached values of this. """ if self._vector_sum is None: # There is a non cyclic distribution that is using this. # Calculate and then cache it # First check if there is a cached theta. If not derive it. if self._theta is None: self._theta = calc_theta(np.array(self._keys), self.axis_range) self._vector_sum = self._fast_vector_sum(self._values, self._theta) return self._vector_sum def _fast_vector_sum(self, values, theta): """ Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). This implementation assumes that the values of the distribution needed for the vector sum will not be changed and depends on cached values. """ # vectors are represented in polar form as complex numbers v_sum = np.inner(values, theta) magnitude = abs(v_sum) direction = cmath.phase(v_sum) if v_sum == 0: self.undefined_vals += 1 direction_radians = self._radians_to_bins(direction) # wrap the direction because arctan2 returns principal values wrapped_direction = wrap(self.axis_bounds[0], self.axis_bounds[1], direction_radians) return (magnitude, wrapped_direction) def get_value(self, feature_bin): """ Return the value of the specified feature_bin. (Return None if there is no such feature_bin.) """ return self._data.get(feature_bin) def get_count(self, feature_bin): """ Return the count from the specified feature_bin. (Return None if there is no such feature_bin.) """ return self._counts.get(feature_bin) def values(self): """ Return a list of values. Various statistics can then be calculated if desired: sum(vals) (total of all values) max(vals) (highest value in any feature_bin) Note that the feature_bin-order of values returned does not necessarily match that returned by counts(). """ return self._values def counts(self): """ Return a list of values. Various statistics can then be calculated if desired: sum(counts) (total of all counts) max(counts) (highest count in any feature_bin) Note that the feature_bin-order of values returned does not necessarily match that returned by values(). """ return list(self._counts.values()) def bins(self): """ Return a list of bins that have been populated. """ return self._keys def sub_distr( self, distr ): """ Subtract the given distribution from the current one. Only existing bins are modified, new bins in the given distribution are discarded without raising errors. Note that total_value and total_count are not affected, and keep_peak is ignored, therefore analysis relying on these values should not call this method. """ for b in distr.bins(): if b in self.bins(): v = distr._data.get(b) if v is not None: self._data[b] -= v def max_value_bin(self): """ Return the feature_bin with the largest value. Note that uses cached values so that pop and restore need to be used if want with altered distribution. """ return self._keys[np.argmax(self._values)] def weighted_sum(self): """Return the sum of each value times its feature_bin.""" return np.inner(self._keys, self._values) def value_mag(self, feature_bin): """Return the value of a single feature_bin as a proportion of total_value.""" return self._safe_divide(self._data.get(feature_bin), self.total_value) def count_mag(self, feature_bin): """Return the count of a single feature_bin as a proportion of total_count.""" return self._safe_divide(float(self._counts.get(feature_bin)), float(self.total_count)) # use of float() def _bins_to_radians(self, bin): """ Convert a bin number to a direction in radians. Works for NumPy arrays of bin numbers, returning an array of directions. """ return (2*np.pi)*bin/self.axis_range def _radians_to_bins(self, direction): """ Convert a direction in radians into a feature_bin number. Works for NumPy arrays of direction, returning an array of feature_bin numbers. """ return direction * self.axis_range / (2 * np.pi) def _safe_divide(self, numerator, denominator): """ Division routine that avoids division-by-zero errors (returning zero in such cases) but keeps track of them for undefined_values(). """ if denominator == 0: self.undefined_vals += 1 return 0 else: return numerator/denominator class Pref(dict): """ This class simply collects named arguments into a dictionary the main purpose is to make pretty readable the output of DistributionStatisticFn functions. In addition, trap missing keys """ def __init__(self, **args): dict.__init__(self, **args) def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return None class DistributionStatisticFn(param.Parameterized): """ Base class for various functions performing statistics on a distribution. """ value_scale = param.NumericTuple((0.0, 1.0), doc=""" Scaling of the resulting value of the distribution statistics, typically the preference of a unit to feature values. The tuple specifies (offset, multiplier) of the output scaling""") # APNOTE: previously selectivity_scale[ 1 ] used to be 17, a value suitable # for combining preference and selectivity in HSV plots. Users wishing to keep # this value should now set it when creating SheetViews, in commands like that # in command/analysis.py selectivity_scale = param.NumericTuple((0.0, 1.0), doc=""" Scaling of the resulting measure of the distribution peakedness, typically the selectivity of a unit to its preferred feature value. The tuple specifies (offset, multiplier) of the output scaling""") __abstract = True def __call__(self, distribution): """ Apply the distribution statistic function; must be implemented by subclasses. Subclasses sould be called with a Distribution as argument, return will be a dictionary, with Pref objects as values """ raise NotImplementedError class DescriptiveStatisticFn(DistributionStatisticFn): """ Abstract class for basic descriptive statistics """ def vector_sum(self, d): """ Return the vector sum of the distribution as a tuple (magnitude, avgbinnum). Each bin contributes a vector of length equal to its value, at a direction corresponding to the bin number. Specifically, the total bin number range is mapped into a direction range [0,2pi]. For a cyclic distribution, the avgbinnum will be a continuous measure analogous to the max_value_bin() of the distribution. But this quantity has more precision than max_value_bin() because it is computed from the entire distribution instead of just the peak bin. However, it is likely to be useful only for uniform or very dense sampling; with sparse, non-uniform sampling the estimates will be biased significantly by the particular samples chosen. The avgbinnum is not meaningful when the magnitude is 0, because a zero-length vector has no direction. To find out whether such cases occurred, you can compare the value of undefined_vals before and after a series of calls to this function. This is a slow algorithm and should only be used if the contents of the distribution have been changed by the statistical function. If not, then the cached value in the distribution should be used. """ # vectors are represented in polar form as complex numbers h = d.data() theta = calc_theta(np.array(list(h.keys())), d.axis_range) return d._fast_vector_sum(list(h.values()), theta) def _weighted_average(self, d ): """ Return the weighted_sum divided by the sum of the values """ return d._safe_divide(d.weighted_sum(), sum(d.values())) def selectivity(self, d): """ Return a measure of the peakedness of the distribution. The calculation differs depending on whether this is a cyclic variable. For a cyclic variable, returns the magnitude of the vector_sum() divided by the sum_value() (see _vector_selectivity for more details). For a non-cyclic variable, returns the max_value_bin()) as a proportion of the sum_value() (see _relative_selectivity for more details). """ if d.cyclic == True: return self._vector_selectivity(d) else: return self._relative_selectivity(d) # CEBHACKALERT: the definition of selectivity for non-cyclic # quantities probably needs some more thought. # Additionally, this fails the test in testfeaturemap # (see the comment there). def _relative_selectivity(self, d): """ Return max_value_bin()) as a proportion of the sum_value(). This quantity is a measure of how strongly the distribution is biased towards the max_value_bin(). For a smooth, single-lobed distribution with an inclusive, non-cyclic range, this quantity is an analog to vector_selectivity. To be a precise analog for arbitrary distributions, it would need to compute some measure of the selectivity that works like the weighted_average() instead of the max_value_bin(). The result is scaled such that if all bins are identical, the selectivity is 0.0, and if all bins but one are zero, the selectivity is 1.0. """ # A single feature_bin is considered fully selective (but could also # arguably be considered fully unselective) if len(d.data()) <= 1: return 1.0 proportion = d._safe_divide(max(d.values()), sum(d.values())) offset = 1.0/len(d.values()) scaled = (proportion-offset) / (1.0-offset) # negative scaled is possible # e.g. 2 bins, with values that sum to less than 0.5 # this probably isn't what should be done in those cases if scaled >= 0.0: return scaled else: return 0.0 def _vector_selectivity(self, d): """ Return the magnitude of the vector_sum() divided by the sum_value(). This quantity is a vector-based measure of the peakedness of the distribution. If only a single feature_bin has a non-zero value(), the selectivity will be 1.0, and if all bins have the same value() then the selectivity will be 0.0. Other distributions will result in intermediate values. For a distribution with a sum_value() of zero (i.e. all bins empty), the selectivity is undefined. Assuming that one will usually be looking for high selectivity, we return zero in such a case so that high selectivity will not mistakenly be claimed. To find out whether such cases occurred, you can compare the value of undefined_values() before and after a series of calls to this function. """ return d._safe_divide(d.vector_sum()[0], sum(d.values())) __abstract = True class DescriptiveBimodalStatisticFn(DescriptiveStatisticFn): """ Abstract class for descriptive statistics of two-modes distributions """ def second_max_value_bin(self, d): """ Return the feature_bin with the second largest value. If there is one feature_bin only, return it. This is not a correct result, however it is practical for plotting compatibility, and it will not mistakenly be claimed as secondary maximum, by forcing its selectivity to 0.0 """ if len(d.bins()) <= 1: return d.bins()[0] k = d.max_value_bin() d.pop(k) m = d.max_value_bin() d.restore(k) return m def second_selectivity(self, d): """ Return the selectivity of the second largest value in the distribution. If there is one feature_bin only, the selectivity is 0, since there is no second peack at all, and this value is also used to discriminate the validity of second_max_value_bin() Selectivity is computed in two ways depending on whether the variable is a cyclic, as in selectivity() """ if len( d._data ) <= 1: return 0.0 if d.cyclic == True: return self._vector_second_selectivity(d) else: return self._relative_second_selectivity(d) def _relative_second_selectivity(self, d): """ Return the value of the second maximum as a proportion of the sum_value() see _relative_selectivity() for further details """ k = d.max_value_bin() d.pop(k) m = max(d.values()) d.restore(k) proportion = d._safe_divide(m, sum(d.values())) offset = 1.0 / len(d.data()) scaled = (proportion - offset) / (1.0 - offset) return max(scaled, 0.0) def _vector_second_selectivity(self, d): """ Return the magnitude of the vector_sum() of all bins excluding the maximum one, divided by the sum_value(). see _vector_selectivity() for further details """ k = d.max_value_bin() d.pop(k) s = self.vector_sum(d)[0] d.restore(k) return self._safe_divide(s, sum(d.values())) def second_peak_bin(self, d): """ Return the feature_bin with the second peak in the distribution. Unlike second_max_value_bin(), it does not return a feature_bin which is the second largest value, if laying on a wing of the first peak, the second peak is returned only if the distribution is truly multimodal. If it isn't, return the first peak (for compatibility with numpy array type, and plotting compatibility), however the corresponding selectivity will be forced to 0.0 """ h = d.data() l = len(h) if l <= 1: return d.keys()[0] ks = list(h.keys()) ks.sort() ik0 = ks.index(d.keys()[np.argmax(d.values())]) k0 = ks[ik0] v0 = h[k0] v = v0 k = k0 ik = ik0 while h[k] <= v: ik += 1 if ik >= l: ik = 0 if ik == ik0: return k0 v = h[k] k = ks[ik] ik1 = ik v = v0 k = k0 ik = ik0 while h[k] <= v: ik -= 1 if ik < 0: ik = l - 1 if ik == ik0: return k0 v = h[k] k = ks[ik] ik2 = ik if ik1 == ik2: return ks[ik1] ik = ik1 m = 0 while ik != ik2: k = ks[ik] if h[k] > m: m = h[k] im = ik ik += 1 if ik >= l: ik = 0 return ks[im] def second_peak_selectivity(self, d): """ Return the selectivity of the second peak in the distribution. If the distribution has only one peak, return 0.0, and this value is also usefl to discriminate the validity of second_peak_bin() """ l = len(d.keys()) if l <= 1: return 0.0 p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if p1 == p2: return 0.0 m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = 1.0 / l scaled = (proportion - offset) / (1.0 - offset) return max(scaled, 0.0) def second_peak(self, d): """ Return preference and selectivity of the second peak in the distribution. It is just the combination of second_peak_bin() and second_peak_selectivity(), with the advantage of avoiding a duplicate call of second_peak_bin(), if the user is interested in both preference and selectivity, as often is the case. """ l = len(d.keys()) if l <= 1: return (d.keys()[0], 0.0) p1 = d.max_value_bin() p2 = self.second_peak_bin(d) if p1 == p2: return (p1, 0.0) m = d.get_value(p2) proportion = d._safe_divide(m, sum(d.values())) offset = 1.0 / l scaled = (proportion - offset) / (1.0 - offset) return (p2, max(scaled, 0.0)) __abstract = True class DSF_MaxValue(DescriptiveStatisticFn): """ Return the peak value of the given distribution """ def __call__(self, d): p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0]) s = self.selectivity_scale[1] * (self.selectivity(d)+self.selectivity_scale[0]) return {"": Pref(preference=p, selectivity=s)} class DSF_WeightedAverage(DescriptiveStatisticFn): """ Return the main mode of the given distribution The prefence value ia a continuous, interpolated equivalent of the max_value_bin(). For a cyclic distribution, this is the direction of the vector sum (see vector_sum()). For a non-cyclic distribution, this is the arithmetic average of the data on the bin_axis, where each feature_bin is weighted by its value. Such a computation will generally produce much more precise maps using fewer test stimuli than the discrete method. However, weighted_average methods generally require uniform and full-range sampling, which is not always feasible. For measurements at evenly-spaced intervals over the full range of possible parameter values, weighted_averages are a good measure of the underlying continuous-valued parameter preference, assuming that neurons are tuned broadly enough (and/or sampled finely enough) that they respond to at least two of the tested parameter values. This method will not usually give good results when those criteria are not met, i.e. if the sampling is too sparse, not at evenly-spaced intervals, or does not cover the full range of possible values. In such cases max_value_bin should be used, and the number of test patterns will usually need to be increased instead. """ def __call__(self, d): p = d.vector_sum()[1] if d.cyclic else self._weighted_average(d) p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0]) return {"": Pref(preference=p, selectivity=s)} class DSF_TopTwoValues(DescriptiveBimodalStatisticFn): """ Return the two max values of distributions in the given matrix """ def __call__(self, d): r = {} p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0]) s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0]) r[""] = Pref(preference=p, selectivity=s) p = self.second_max_value_bin(d) s = self.second_selectivity(d) p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (s + self.selectivity_scale[0]) r["Mode2"] = Pref(preference=p, selectivity=s) return r class DSF_BimodalPeaks(DescriptiveBimodalStatisticFn): """ Return the two peak values of distributions in the given matrix """ def __call__(self, d): r = {} p = self.value_scale[1] * (d.max_value_bin() + self.value_scale[0]) s = self.selectivity_scale[1] * (self.selectivity(d) + self.selectivity_scale[0]) r[""] = Pref(preference=p, selectivity=s) p, s = self.second_peak(d) p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (s + self.selectivity_scale[0]) r["Mode2"] = Pref(preference=p, selectivity=s) return r class VonMisesStatisticFn(DistributionStatisticFn): """ Base class for von Mises statistics """ # values to fit the maximum value of k parameter in von Mises distribution, # as a function of the number of bins in the distribution. Useful for # keeping selectivity in range 0..1. Values derived offline from distribution # with a single active feature_bin, and total bins from 8 to 32 vm_kappa_fit = (0.206, 0.614) # level of activity in units confoundable with noise. Used in von Mises fit, # for two purposes: if the standard deviation of a distribution is below this # value, the distribution is assumed to lack any mode; it is the maximum level # of random noise added to a distribution before the fit optimization, for # stability reasons noise_level = 0.001 # exit code of the distribution fit function. Codes are function-specific and # each fit function, if provide exit codes, should have corresponding string translation fit_exit_code = 0 user_warned_if_unavailable = False __abstract = True def _orth(self, t): """ Return the orthogonal orientation """ if t < 0.5 * np.pi: return t + 0.5 * np.pi return t - 0.5 * np.pi def _in_pi(self, t): """ Reduce orientation from -pi..2pi to 0..pi """ if t > np.pi: return t - np.pi if t < 0: return t + np.pi return t def von_mises(self, pars, x): """ Compute a simplified von Mises function. Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung und ihre Anwendungen in der Statistik und theoretischen Physik", 1931, Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional Statistics", 1999, J. Wiley, p.36; http://en.wikipedia.org/wiki/Von_Mises_distribution The two differences are that this function is a continuous probability distribution on a semi-circle, while von Mises is on the full circle, and that the normalization factor, which is the inverse of the modified Bessel function of first kind and 0 degree in the original, is here a fit parameter. """ a, k, t = pars return a * np.exp(k * (np.cos(2 * (x - t)) - 1)) def von2_mises(self, pars, x): """ Compute a simplified bimodal von Mises function Two superposed von Mises functions, with different peak and bandwith values """ p1 = pars[: 3] p2 = pars[3:] return self.von_mises(p1, x) + self.von_mises(p2, x) def von_mises_res(self, pars, x, y): return y - self.von_mises(pars, x) def von2_mises_res(self, pars, x, y): return y - self.von2_mises(pars, x) def norm_sel(self, k, n): m = (self.vm_kappa_fit[0] + n * self.vm_kappa_fit[1])**2 return np.log(1 + k) / np.log(1 + m) def fit_vm(self, distribution): """ computes the best fit of the monovariate von Mises function in the semi-circle. Return a tuple with the orientation preference, in the same range of axis_bounds, the orientation selectivity, and an estimate of the goodness-of-fit, as the variance of the predicted orientation preference. The selectivity is given by the bandwith parameter of the von Mises function, modified for compatibility with other selectivity computations in this class. The bandwith parameter is transposed in logaritmic scale, and is normalized by the maximum value for the number of bins in the distribution, in order to give roughly 1.0 for a distribution with one feature_bin at 1.0 an all the other at 0.0, and 0.0 for uniform distributions. The normalizing factor of the selectivity is fit for the total number of bins, using fit parameters computed offline. There are conditions that prevents apriori the possibility to fit the distribution: * not enough bins, at least 4 are necessary * the distribution is too flat, below the noise level and conditions of aposteriori failures: * "ier" flag returned by leastsq out of ( 1, 2, 3, 4 ) * no estimated Jacobian around the solution * negative bandwith (the peak of the distribution is convex) Note that these are the minimal conditions, their fulfillment does not warrant unimodality, is up to the user to check the goodness-of-fit value for an accurate acceptance of the fit. """ if unavailable_scipy_optimize: if not VonMisesStatisticFn.user_warned_if_unavailable: param.Parameterized().warning("scipy.optimize not available, dummy von Mises fit") VonMisesStatisticFn.user_warned_if_unavailable=True self.fit_exit_code = 3 return 0, 0, 0 to_pi = np.pi / distribution.axis_range x = to_pi * np.array(distribution.bins()) n = len(x) if n < 5: param.Parameterized().warning("No von Mises fit possible with less than 4 bins") self.fit_exit_code = -1 return 0, 0, 0 y = np.array(distribution.values()) if y.std() < self.noise_level: self.fit_exit_code = 1 return 0, 0, 0 rn = self.noise_level * np.random.random_sample(y.shape) p0 = (1.0, 1.0, distribution.max_value_bin()) r = optimize.leastsq(self.von_mises_res, p0, args=(x, y + rn), full_output=True) if not r[-1] in ( 1, 2, 3, 4 ): self.fit_exit_code = 100 + r[-1] return 0, 0, 0 residuals = r[2]['fvec'] jacobian = r[1] bandwith = r[0][1] tuning = r[0][2] if bandwith < 0: self.fit_exit_code = 1 return 0, 0, 0 if jacobian is None: self.fit_exit_code = 2 return 0, 0, 0 error = (residuals**2).sum() / (n - len(p0)) covariance = jacobian * error g = covariance[2, 2] p = self._in_pi(tuning) / to_pi s = self.norm_sel(bandwith, n) self.fit_exit_code = 0 return p, s, g def vm_fit_exit_codes(self): if self.fit_exit_code == 0: return "succesfull exit" if self.fit_exit_code == -1: return "not enough bins for this fit" if self.fit_exit_code == 1: return "flat distribution" if self.fit_exit_code == 2: return "flat distribution" if self.fit_exit_code == 3: return "missing scipy.optimize import" if self.fit_exit_code > 110: return "unknown exit code" if self.fit_exit_code > 100: return "error " + str(self.fit_exit_code - 100) + " in scipy.optimize.leastsq" return "unknown exit code" def fit_v2m(self, distribution): """ computes the best fit of the bivariate von Mises function in the semi-circle. Return the tuple: ( orientation1_preference, orientation1_selectivity, goodness_of_fit1, orientation2_preference, orientation2_selectivity, goodness_of_fit2 ) See fit_vm() for considerations about selectivity and goodness_of_fit """ null = 0, 0, 0, 0, 0, 0 if unavailable_scipy_optimize: if not VonMisesStatisticFn.user_warned_if_unavailable: param.Parameterized().warning("scipy.optimize not available, dummy von Mises fit") VonMisesStatisticFn.user_warned_if_unavailable=True self.fit_exit_code = 3 return null to_pi = np.pi / distribution.axis_range x = to_pi * np.array(distribution.bins()) n = len(x) if n < 9: param.Parameterized().warning( "no bimodal von Mises fit possible with less than 8 bins" ) self.fit_exit_code = -1 return null y = np.array(distribution.values()) if y.std() < self.noise_level: self.fit_exit_code = 1 return null rn = self.noise_level * np.random.random_sample(y.shape) t0 = distribution.max_value_bin() p0 = (1.0, 1.0, t0, 1.0, 1.0, self._orth(t0)) r = optimize.leastsq(self.von2_mises_res, p0, args=(x, y + rn), full_output=True) if not r[-1] in ( 1, 2, 3, 4 ): self.fit_exit_code = 100 + r[-1] return null residuals = r[2]['fvec'] jacobian = r[1] bandwith_1 = r[0][1] tuning_1 = r[0][2] bandwith_2 = r[0][4] tuning_2 = r[0][5] if jacobian is None: self.fit_exit_code = 2 return null if bandwith_1 < 0: self.fit_exit_code = 1 return null if bandwith_2 < 0: self.fit_exit_code = 1 return null error = (residuals ** 2).sum() / (n - len(p0)) covariance = jacobian * error g1 = covariance[2, 2] g2 = covariance[5, 5] p1 = self._in_pi(tuning_1) / to_pi p2 = self._in_pi(tuning_2) / to_pi s1 = self.norm_sel(bandwith_1, n) s2 = self.norm_sel(bandwith_2, n) self.fit_exit_code = 0 return p1, s1, g1, p2, s2, g2 def __call__(self, distribution): """ Apply the distribution statistic function; must be implemented by subclasses. """ raise NotImplementedError class DSF_VonMisesFit(VonMisesStatisticFn): """ Return the main mode of distribution in the given matrix, by fit with von Mises function. """ worst_fit = param.Number(default=0.5, bounds=(0.0, None), softbounds=(0.0, 1.0), doc=""" worst good-of-fitness value for accepting the distribution as monomodal""") # default result in case of failure of the fit null_result = {"": Pref(preference=0, selectivity=0, goodness_of_fit=0), "Modes": Pref(number=0)} def __call__(self, distribution): f = self.fit_vm(distribution) if self.fit_exit_code != 0 or f[-1] > self.worst_fit: return self.null_result results = {} p, s, g = f p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (s + self.selectivity_scale[0]) results[""] = Pref(preference=p, selectivity=s, goodness_of_fit=g) results["Modes"] = Pref(number=1) return results class DSF_BimodalVonMisesFit(VonMisesStatisticFn): """ Return the two modes of distributions in the given matrix, by fit with von Mises function The results of the main mode are available in self.{preference,selectivity,good_of_fit}, while the second mode results are in the first element of the self.more_modes list, as a dictionary with keys preference,selectivity,good_of_fit. """ worst_fit = param.Number(default=0.5, bounds=(0.0, None), softbounds=(0.0, 1.0), doc=""" Worst good-of-fitness value for accepting the distribution as mono- or bi-modal""") # default result in case of failure of the fit null_result = { "": Pref(preference=0, selectivity=0, goodness_of_fit=0), "Mode2": Pref(preference=0, selectivity=0, goodness_of_fit=0), "Modes": Pref(number=0) } def _analyze_distr(self, d): """ Analyze the given distribution with von Mises bimodal fit. The distribution is analyzed with both unimodal and bimodal fits, and a decision about the number of modes is made by comparing the goodness of fit. It is a quick but inaccurate way of estimating the number of modes. Return preference, selectivity, goodness of fit for both modes, and the estimated numer of modes, None if even the unimodal fit failed. If the distribution is unimodal, values of the second mode are set to 0. The main mode is always the one with the largest selectivity (von Mises bandwith). """ no1 = False f = self.fit_vm(d) if self.fit_exit_code != 0: no1 = True p, s, g = f f2 = self.fit_v2m(d) if self.fit_exit_code != 0 or f2[2] > self.worst_fit: if no1 or f[-1] > self.worst_fit: return None return p, s, g, 0, 0, 0, 1 p1, s1, g1, p2, s2, g2 = f2 if g1 > g: return p, s, g, 0, 0, 0, 1 if s2 > s1: return p2, s2, g2, p1, s1, g1, 2 return p1, s1, g1, p2, s2, g2, 2 def __call__(self, distribution): f = self._analyze_distr(distribution) if f is None: return self.null_result results = {} p, s, g = f[: 3] p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (s + self.selectivity_scale[0]) results[""] = Pref(preference=p, selectivity=s, goodness_of_fit=g) p, s, g, n = f[3:] p = self.value_scale[1] * (p + self.value_scale[0]) s = self.selectivity_scale[1] * (s + self.selectivity_scale[0]) results["Mode2"] = Pref(preference=p, selectivity=s, goodness_of_fit=g) results["Modes"] = Pref(number=n) return results
35.28449
107
0.624888
[ "BSD-3-Clause" ]
fcr/featuremapper
featuremapper/distribution.py
41,177
Python
import logging import sys import re import time import random import utils logger = utils.loggerMaster('slack.lexicon') def response(type): phrases={'greetings':[", welcome back", "Hi there", "Good to see you again", "Hello again", "hi"], 'farewells':['bye'] } try: length=len(phrases[type]) return phrases[type][(random.randint(0,length-1))] except KeyError: logger.error('lexicon read error') return ('There is an error in the lexicon file you idiot') def main(): print "This is a module designed to be used with RaspiSlack" if __name__ == "__main__": main()
18.617647
102
0.649289
[ "MIT" ]
philipok-1/raspberry-slack
lexicon.py
633
Python
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: Shijie Qin @license: Apache Licence @contact: [email protected] @site: https://shijieqin.github.io @software: PyCharm @file: __init__.py.py @time: 2018/11/8 3:13 PM """
17.928571
35
0.669323
[ "Apache-2.0" ]
shijieqin/flatfish
core/__init__.py
251
Python
""" Bilinear Attention Networks Jin-Hwa Kim, Jaehyun Jun, Byoung-Tak Zhang https://arxiv.org/abs/1805.07932 This code is written by Jin-Hwa Kim. """ import sys sys.path.append('./ban') import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.weight_norm import weight_norm from attention import BiAttention from language_model import WordEmbedding, QuestionEmbedding from classifier import SimpleClassifier from fc import FCNet from bc import BCNet from counting import Counter from torch.autograd import Variable class GRU(nn.Module): """ Gated Recurrent Unit without long-term memory """ def __init__(self,embed_size=512): super(GRU,self).__init__() self.update_x = nn.Linear(embed_size,embed_size,bias=True) self.update_h = nn.Linear(embed_size,embed_size,bias=True) self.reset_x = nn.Linear(embed_size,embed_size,bias=True) self.reset_h = nn.Linear(embed_size,embed_size,bias=True) self.memory_x = nn.Linear(embed_size,embed_size,bias=True) self.memory_h = nn.Linear(embed_size,embed_size,bias=True) def forward(self,x,state): z = F.sigmoid(self.update_x(x) + self.update_h(state)) r = F.sigmoid(self.reset_x(x) + self.reset_h(state)) mem = F.tanh(self.memory_x(x) + self.memory_h(torch.mul(r,state))) state = torch.mul(1-z,state) + torch.mul(z,mem) return state def process_lengths(input): """ Computing the lengths of sentences in current batchs """ max_length = input.size(1) lengths = list(max_length - input.data.eq(0).sum(1).squeeze()) return lengths def select_last(x, lengths): """ Adaptively select the hidden state at the end of sentences """ batch_size = x.size(0) seq_length = x.size(1) mask = x.data.new().resize_as_(x.data).fill_(0) for i in range(batch_size): mask[i][lengths[i]-1].fill_(1) mask = Variable(mask) x = x.mul(mask) x = x.sum(1).view(batch_size, x.size(2), x.size(3)) return x class BanModel(nn.Module): def __init__(self, w_emb, q_emb, v_att, b_net, q_prj, c_prj, classifier, counter, op, glimpse,num_hid): super(BanModel, self).__init__() self.op = op self.glimpse = glimpse self.w_emb = w_emb self.q_emb = q_emb self.v_att = v_att self.b_net = nn.ModuleList(b_net) self.q_prj = nn.ModuleList(q_prj) self.c_prj = nn.ModuleList(c_prj) self.classifier = classifier self.counter = counter self.drop = nn.Dropout(.5) self.tanh = nn.Tanh() def forward(self, v, b, q): """Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs """ w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) # [batch, q_len, q_dim] boxes = b[:,:,:4].transpose(1,2) b_emb = [0] * self.glimpse att, logits = self.v_att.forward_all(v, q_emb) # b x g x v x q for g in range(self.glimpse): b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att[:,g,:,:]) # b x l x h atten, _ = logits[:,g,:,:].max(2) embed = self.counter(boxes, atten) q_emb = self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb q_emb = q_emb + self.c_prj[g](embed).unsqueeze(1) logits = self.classifier(q_emb.sum(1)) return F.softmax(logits,dim=-1), att def build_ban(num_token, v_dim, num_hid, num_ans, op='', gamma=4, reasoning=False): w_emb = WordEmbedding(num_token, 300, .0, op) q_emb = QuestionEmbedding(300 if 'c' not in op else 600, num_hid, 1, False, .0) if not reasoning: v_att = BiAttention(v_dim, num_hid, num_hid, gamma) else: v_att = BiAttention(v_dim, num_hid, num_hid, 1) # constructing the model b_net = [] q_prj = [] c_prj = [] objects = 36 # minimum number of boxes, originally 10 for i in range(gamma): b_net.append(BCNet(v_dim, num_hid, num_hid, None, k=1)) q_prj.append(FCNet([num_hid, num_hid], '', .2)) c_prj.append(FCNet([objects + 1, num_hid], 'ReLU', .0)) classifier = SimpleClassifier( num_hid, num_hid * 2, num_ans, .5) counter = Counter(objects) if not reasoning: return BanModel(w_emb, q_emb, v_att, b_net, q_prj, c_prj, classifier, counter, op, gamma, num_hid) else: return BanModel_Reasoning(w_emb, q_emb, v_att, b_net, q_prj, c_prj, classifier, counter, op, gamma, num_hid) class BanModel_Reasoning(nn.Module): def __init__(self, w_emb, q_emb, v_att, b_net, q_prj, c_prj, classifier, counter, op, glimpse,num_hid): super(BanModel_Reasoning, self).__init__() self.op = op self.glimpse = glimpse self.w_emb = w_emb self.q_emb = q_emb self.v_att = v_att self.b_net = nn.ModuleList(b_net) self.q_prj = nn.ModuleList(q_prj) self.c_prj = nn.ModuleList(c_prj) self.classifier = classifier self.counter = counter self.drop = nn.Dropout(.5) self.tanh = nn.Tanh() self.semantic_rnn = GRU(256) self.semantic_q = nn.Linear(num_hid,256) self.semantic_pred = nn.Linear(256,9) self.semantic_embed = nn.Embedding(num_embeddings=9,embedding_dim=256) # embedding layer for the semantic operations self.att_p = nn.Linear(num_hid,num_hid) self.att = nn.Linear(num_hid,1) self.att_s = nn.Linear(256,num_hid) self.att_v = nn.Linear(2048,num_hid) def init_hidden_state(self,batch,s_embed=256): init_s = torch.zeros(batch,s_embed).cuda() return init_s def forward(self, v, b, q): """Forward v: [batch, num_objs, obj_dim] b: [batch, num_objs, b_dim] q: [batch_size, seq_length] return: logits, not probs """ w_emb = self.w_emb(q) q_emb = self.q_emb.forward_all(w_emb) # [batch, q_len, q_dim] ori_q_emb = q_emb boxes = b[:,:,:4].transpose(1,2) b_emb = [0] * self.glimpse s_x = self.init_hidden_state(len(q),256) s_h = torch.tanh(self.semantic_q(ori_q_emb.mean(1))) v_att = torch.tanh(self.att_v(F.dropout(v,0.25))) op = [] att_mask = [] q_emb_pool = [] for g in range(self.glimpse): # reasoning attention s_h = self.semantic_rnn(s_x,s_h) s_x = F.softmax(self.semantic_pred(s_h),dim=-1) op.append(s_x) s_x = torch.max(s_x,dim=-1)[1] s_x = self.semantic_embed(s_x) s_att = torch.tanh(self.att_s(s_h)).unsqueeze(1).expand_as(v_att) fuse_feat = torch.tanh(self.att_p(torch.mul(s_att,v_att))) reason_att = self.att(fuse_feat) reason_att = F.softmax(reason_att.view(reason_att.size(0),-1),dim=-1) # reason_att = torch.sigmoid(reason_att.view(reason_att.size(0),-1),dim=-1) # cur_v = v + torch.mul(v,reason_att.unsqueeze(-1).expand_as(v)) cur_v = torch.mul(v,reason_att.unsqueeze(-1).expand_as(v)) # original ban att, logits = self.v_att(cur_v, ori_q_emb) # b x g x v x q att, logits = att.squeeze(), logits.squeeze() b_emb[g] = self.b_net[g].forward_with_weights(v, q_emb, att) # b x l x h atten, _ = logits.max(2) embed = self.counter(boxes, atten) q_emb = self.q_prj[g](b_emb[g].unsqueeze(1)) + q_emb q_emb = q_emb + self.c_prj[g](embed).unsqueeze(1) q_emb_pool.append(q_emb) att_mask.append(reason_att) op = torch.cat([_.unsqueeze(1) for _ in op],dim=1) att_mask = torch.cat([_.unsqueeze(1) for _ in att_mask],dim=1) valid_op = process_lengths(torch.max(op,dim=-1)[1]) q_emb_pool = torch.cat([_.unsqueeze(1) for _ in q_emb_pool],dim=1) q_emb = select_last(q_emb_pool,valid_op) logits = self.classifier(q_emb.sum(1)) return F.softmax(logits,dim=-1), op, att_mask
36.00885
124
0.617842
[ "MIT" ]
szzexpoi/AiR
AiR-M/ban/base_model.py
8,138
Python
import versioneer commands = versioneer.get_cmdclass().copy() try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup, find_packages setup( name='ngenix-test', version=versioneer.get_version(), packages=find_packages(), url='https://github.com/adalekin/ngenix-test', license='MIT', author='Aleksey Dalekin', author_email='[email protected]', description='A te.', long_description=open('README.md', 'rt').read(), package_dir={'ngenix_test': 'ngenix_test'}, include_package_data=True, install_requires=[ ], cmdclass=commands, entry_points=''' [console_scripts] nginx-test=nginx_test.run:main ''' )
26.241379
53
0.65703
[ "MIT" ]
adalekin/ngenix-test
setup.py
761
Python
"""Tag the sandbox for release, make source and doc tarballs. Requires Python 2.6 Example of invocation (use to test the script): python makerelease.py --force --retag --platform=msvc6,msvc71,msvc80,mingw -ublep 0.5.0 0.6.0-dev Example of invocation when doing a release: python makerelease.py 0.5.0 0.6.0-dev """ import os.path import subprocess import sys import doxybuild import subprocess import xml.etree.ElementTree as ElementTree import shutil import urllib2 import tempfile import os import time from devtools import antglob, fixeol, tarball SVN_ROOT = 'https://jsoncpp.svn.sourceforge.net/svnroot/jsoncpp/' SVN_TAG_ROOT = SVN_ROOT + 'tags/jsoncpp' SCONS_LOCAL_URL = 'http://sourceforge.net/projects/scons/files/scons-local/1.2.0/scons-local-1.2.0.tar.gz/download' SOURCEFORGE_PROJECT = 'jsoncpp' def set_version( version ): with open('version','wb') as f: f.write( version.strip() ) def rmdir_if_exist( dir_path ): if os.path.isdir( dir_path ): shutil.rmtree( dir_path ) class SVNError(Exception): pass def svn_command( command, *args ): cmd = ['svn', '--non-interactive', command] + list(args) print 'Running:', ' '.join( cmd ) process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) stdout = process.communicate()[0] if process.returncode: error = SVNError( 'SVN command failed:\n' + stdout ) error.returncode = process.returncode raise error return stdout def check_no_pending_commit(): """Checks that there is no pending commit in the sandbox.""" stdout = svn_command( 'status', '--xml' ) etree = ElementTree.fromstring( stdout ) msg = [] for entry in etree.getiterator( 'entry' ): path = entry.get('path') status = entry.find('wc-status').get('item') if status != 'unversioned' and path != 'version': msg.append( 'File "%s" has pending change (status="%s")' % (path, status) ) if msg: msg.insert(0, 'Pending change to commit found in sandbox. Commit them first!' ) return '\n'.join( msg ) def svn_join_url( base_url, suffix ): if not base_url.endswith('/'): base_url += '/' if suffix.startswith('/'): suffix = suffix[1:] return base_url + suffix def svn_check_if_tag_exist( tag_url ): """Checks if a tag exist. Returns: True if the tag exist, False otherwise. """ try: list_stdout = svn_command( 'list', tag_url ) except SVNError, e: if e.returncode != 1 or not str(e).find('tag_url'): raise e # otherwise ignore error, meaning tag does not exist return False return True def svn_commit( message ): """Commit the sandbox, providing the specified comment. """ svn_command( 'ci', '-m', message ) def svn_tag_sandbox( tag_url, message ): """Makes a tag based on the sandbox revisions. """ svn_command( 'copy', '-m', message, '.', tag_url ) def svn_remove_tag( tag_url, message ): """Removes an existing tag. """ svn_command( 'delete', '-m', message, tag_url ) def svn_export( tag_url, export_dir ): """Exports the tag_url revision to export_dir. Target directory, including its parent is created if it does not exist. If the directory export_dir exist, it is deleted before export proceed. """ rmdir_if_exist( export_dir ) svn_command( 'export', tag_url, export_dir ) def fix_sources_eol( dist_dir ): """Set file EOL for tarball distribution. """ print 'Preparing exported source file EOL for distribution...' prune_dirs = antglob.prune_dirs + 'scons-local* ./build* ./libs ./dist' win_sources = antglob.glob( dist_dir, includes = '**/*.sln **/*.vcproj', prune_dirs = prune_dirs ) unix_sources = antglob.glob( dist_dir, includes = '''**/*.h **/*.cpp **/*.inl **/*.txt **/*.dox **/*.py **/*.html **/*.in sconscript *.json *.expected AUTHORS LICENSE''', excludes = antglob.default_excludes + 'scons.py sconsign.py scons-*', prune_dirs = prune_dirs ) for path in win_sources: fixeol.fix_source_eol( path, is_dry_run = False, verbose = True, eol = '\r\n' ) for path in unix_sources: fixeol.fix_source_eol( path, is_dry_run = False, verbose = True, eol = '\n' ) def download( url, target_path ): """Download file represented by url to target_path. """ f = urllib2.urlopen( url ) try: data = f.read() finally: f.close() fout = open( target_path, 'wb' ) try: fout.write( data ) finally: fout.close() def check_compile( distcheck_top_dir, platform ): cmd = [sys.executable, 'scons.py', 'platform=%s' % platform, 'check'] print 'Running:', ' '.join( cmd ) log_path = os.path.join( distcheck_top_dir, 'build-%s.log' % platform ) flog = open( log_path, 'wb' ) try: process = subprocess.Popen( cmd, stdout=flog, stderr=subprocess.STDOUT, cwd=distcheck_top_dir ) stdout = process.communicate()[0] status = (process.returncode == 0) finally: flog.close() return (status, log_path) def write_tempfile( content, **kwargs ): fd, path = tempfile.mkstemp( **kwargs ) f = os.fdopen( fd, 'wt' ) try: f.write( content ) finally: f.close() return path class SFTPError(Exception): pass def run_sftp_batch( userhost, sftp, batch, retry=0 ): path = write_tempfile( batch, suffix='.sftp', text=True ) # psftp -agent -C blep,[email protected] -batch -b batch.sftp -bc cmd = [sftp, '-agent', '-C', '-batch', '-b', path, '-bc', userhost] error = None for retry_index in xrange(0, max(1,retry)): heading = retry_index == 0 and 'Running:' or 'Retrying:' print heading, ' '.join( cmd ) process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) stdout = process.communicate()[0] if process.returncode != 0: error = SFTPError( 'SFTP batch failed:\n' + stdout ) else: break if error: raise error return stdout def sourceforge_web_synchro( sourceforge_project, doc_dir, user=None, sftp='sftp' ): """Notes: does not synchronize sub-directory of doc-dir. """ userhost = '%s,%[email protected]' % (user, sourceforge_project) stdout = run_sftp_batch( userhost, sftp, """ cd htdocs dir exit """ ) existing_paths = set() collect = 0 for line in stdout.split('\n'): line = line.strip() if not collect and line.endswith('> dir'): collect = True elif collect and line.endswith('> exit'): break elif collect == 1: collect = 2 elif collect == 2: path = line.strip().split()[-1:] if path and path[0] not in ('.', '..'): existing_paths.add( path[0] ) upload_paths = set( [os.path.basename(p) for p in antglob.glob( doc_dir )] ) paths_to_remove = existing_paths - upload_paths if paths_to_remove: print 'Removing the following file from web:' print '\n'.join( paths_to_remove ) stdout = run_sftp_batch( userhost, sftp, """cd htdocs rm %s exit""" % ' '.join(paths_to_remove) ) print 'Uploading %d files:' % len(upload_paths) batch_size = 10 upload_paths = list(upload_paths) start_time = time.time() for index in xrange(0,len(upload_paths),batch_size): paths = upload_paths[index:index+batch_size] file_per_sec = (time.time() - start_time) / (index+1) remaining_files = len(upload_paths) - index remaining_sec = file_per_sec * remaining_files print '%d/%d, ETA=%.1fs' % (index+1, len(upload_paths), remaining_sec) run_sftp_batch( userhost, sftp, """cd htdocs lcd %s mput %s exit""" % (doc_dir, ' '.join(paths) ), retry=3 ) def sourceforge_release_tarball( sourceforge_project, paths, user=None, sftp='sftp' ): userhost = '%s,%[email protected]' % (user, sourceforge_project) run_sftp_batch( userhost, sftp, """ mput %s exit """ % (' '.join(paths),) ) def main(): usage = """%prog release_version next_dev_version Update 'version' file to release_version and commit. Generates the document tarball. Tags the sandbox revision with release_version. Update 'version' file to next_dev_version and commit. Performs an svn export of tag release version, and build a source tarball. Must be started in the project top directory. Warning: --force should only be used when developping/testing the release script. """ from optparse import OptionParser parser = OptionParser(usage=usage) parser.allow_interspersed_args = False parser.add_option('--dot', dest="dot_path", action='store', default=doxybuild.find_program('dot'), help="""Path to GraphViz dot tool. Must be full qualified path. [Default: %default]""") parser.add_option('--doxygen', dest="doxygen_path", action='store', default=doxybuild.find_program('doxygen'), help="""Path to Doxygen tool. [Default: %default]""") parser.add_option('--force', dest="ignore_pending_commit", action='store_true', default=False, help="""Ignore pending commit. [Default: %default]""") parser.add_option('--retag', dest="retag_release", action='store_true', default=False, help="""Overwrite release existing tag if it exist. [Default: %default]""") parser.add_option('-p', '--platforms', dest="platforms", action='store', default='', help="""Comma separated list of platform passed to scons for build check.""") parser.add_option('--no-test', dest="no_test", action='store_true', default=False, help="""Skips build check.""") parser.add_option('--no-web', dest="no_web", action='store_true', default=False, help="""Do not update web site.""") parser.add_option('-u', '--upload-user', dest="user", action='store', help="""Sourceforge user for SFTP documentation upload.""") parser.add_option('--sftp', dest='sftp', action='store', default=doxybuild.find_program('psftp', 'sftp'), help="""Path of the SFTP compatible binary used to upload the documentation.""") parser.enable_interspersed_args() options, args = parser.parse_args() if len(args) != 2: parser.error( 'release_version missing on command-line.' ) release_version = args[0] next_version = args[1] if not options.platforms and not options.no_test: parser.error( 'You must specify either --platform or --no-test option.' ) if options.ignore_pending_commit: msg = '' else: msg = check_no_pending_commit() if not msg: print 'Setting version to', release_version set_version( release_version ) svn_commit( 'Release ' + release_version ) tag_url = svn_join_url( SVN_TAG_ROOT, release_version ) if svn_check_if_tag_exist( tag_url ): if options.retag_release: svn_remove_tag( tag_url, 'Overwriting previous tag' ) else: print 'Aborting, tag %s already exist. Use --retag to overwrite it!' % tag_url sys.exit( 1 ) svn_tag_sandbox( tag_url, 'Release ' + release_version ) print 'Generated doxygen document...' ## doc_dirname = r'jsoncpp-api-html-0.5.0' ## doc_tarball_path = r'e:\prg\vc\Lib\jsoncpp-trunk\dist\jsoncpp-api-html-0.5.0.tar.gz' doc_tarball_path, doc_dirname = doxybuild.build_doc( options, make_release=True ) doc_distcheck_dir = 'dist/doccheck' tarball.decompress( doc_tarball_path, doc_distcheck_dir ) doc_distcheck_top_dir = os.path.join( doc_distcheck_dir, doc_dirname ) export_dir = 'dist/export' svn_export( tag_url, export_dir ) fix_sources_eol( export_dir ) source_dir = 'jsoncpp-src-' + release_version source_tarball_path = 'dist/%s.tar.gz' % source_dir print 'Generating source tarball to', source_tarball_path tarball.make_tarball( source_tarball_path, [export_dir], export_dir, prefix_dir=source_dir ) # Decompress source tarball, download and install scons-local distcheck_dir = 'dist/distcheck' distcheck_top_dir = distcheck_dir + '/' + source_dir print 'Decompressing source tarball to', distcheck_dir rmdir_if_exist( distcheck_dir ) tarball.decompress( source_tarball_path, distcheck_dir ) scons_local_path = 'dist/scons-local.tar.gz' print 'Downloading scons-local to', scons_local_path download( SCONS_LOCAL_URL, scons_local_path ) print 'Decompressing scons-local to', distcheck_top_dir tarball.decompress( scons_local_path, distcheck_top_dir ) # Run compilation print 'Compiling decompressed tarball' all_build_status = True for platform in options.platforms.split(','): print 'Testing platform:', platform build_status, log_path = check_compile( distcheck_top_dir, platform ) print 'see build log:', log_path print build_status and '=> ok' or '=> FAILED' all_build_status = all_build_status and build_status if not build_status: print 'Testing failed on at least one platform, aborting...' svn_remove_tag( tag_url, 'Removing tag due to failed testing' ) sys.exit(1) if options.user: if not options.no_web: print 'Uploading documentation using user', options.user sourceforge_web_synchro( SOURCEFORGE_PROJECT, doc_distcheck_top_dir, user=options.user, sftp=options.sftp ) print 'Completed documentation upload' print 'Uploading source and documentation tarballs for release using user', options.user sourceforge_release_tarball( SOURCEFORGE_PROJECT, [source_tarball_path, doc_tarball_path], user=options.user, sftp=options.sftp ) print 'Source and doc release tarballs uploaded' else: print 'No upload user specified. Web site and download tarbal were not uploaded.' print 'Tarball can be found at:', doc_tarball_path # Set next version number and commit set_version( next_version ) svn_commit( 'Released ' + release_version ) else: sys.stderr.write( msg + '\n' ) if __name__ == '__main__': main()
41.059621
124
0.620883
[ "MIT" ]
csyzzkdcz/WrinkledTensionFields
external/jsoncppWrapper/makerelease.py
15,151
Python
""" Getting started tutorial ======================== In this introductory example, you will see how to use the :code:`spikeinterface` to perform a full electrophysiology analysis. We will first create some simulated data, and we will then perform some pre-processing, run a couple of spike sorting algorithms, inspect and validate the results, export to Phy, and compare spike sorters. """ import matplotlib.pyplot as plt ############################################################################## # The spikeinterface module by itself import only the spikeinterface.core submodule # which is not useful for end user import spikeinterface ############################################################################## # We need to import one by one different submodules separately (preferred). # There are 5 modules: # # - :code:`extractors` : file IO # - :code:`toolkit` : processing toolkit for pre-, post-processing, validation, and automatic curation # - :code:`sorters` : Python wrappers of spike sorters # - :code:`comparison` : comparison of spike sorting output # - :code:`widgets` : visualization import spikeinterface as si # import core only import spikeinterface.extractors as se import spikeinterface.toolkit as st import spikeinterface.sorters as ss import spikeinterface.comparison as sc import spikeinterface.widgets as sw ############################################################################## # We can also import all submodules at once with this #   this internally import core+extractors+toolkit+sorters+comparison+widgets+exporters # # This is useful for notebooks but this is a more heavy import because internally many more dependency # are imported (scipy/sklearn/networkx/matplotlib/h5py...) import spikeinterface.full as si ############################################################################## # First, let's download a simulated dataset from the # 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' repo # # Then we can open it. Note that `MEArec <https://mearec.readthedocs.io>`_ simulated file # contains both "recording" and a "sorting" object. local_path = si.download_dataset(remote_path='mearec/mearec_test_10s.h5') recording, sorting_true = se.read_mearec(local_path) print(recording) print(sorting_true) ############################################################################## # :code:`recording` is a :code:`RecordingExtractor` object, which extracts information about channel ids, channel locations # (if present), the sampling frequency of the recording, and the extracellular traces. :code:`sorting_true` is a # :code:`SortingExtractor` object, which contains information about spike-sorting related information, including unit ids, # spike trains, etc. Since the data are simulated, :code:`sorting_true` has ground-truth information of the spiking # activity of each unit. # # Let's use the :code:`widgets` module to visualize the traces and the raster plots. w_ts = sw.plot_timeseries(recording, time_range=(0, 5)) w_rs = sw.plot_rasters(sorting_true, time_range=(0, 5)) ############################################################################## # This is how you retrieve info from a :code:`RecordingExtractor`... channel_ids = recording.get_channel_ids() fs = recording.get_sampling_frequency() num_chan = recording.get_num_channels() num_seg = recording.get_num_segments() print('Channel ids:', channel_ids) print('Sampling frequency:', fs) print('Number of channels:', num_chan) print('Number of segments:', num_seg) ############################################################################## # ...and a :code:`SortingExtractor` num_seg = recording.get_num_segments() unit_ids = sorting_true.get_unit_ids() spike_train = sorting_true.get_unit_spike_train(unit_id=unit_ids[0]) print('Number of segments:', num_seg) print('Unit ids:', unit_ids) print('Spike train of first unit:', spike_train) ################################################################## #  :code:`spikeinterface` internally uses the :code:`probeinterface` # to handle Probe and ProbeGroup. #  So any probe in the probeinterface collections can be download # and set to a Recording object. # In this case, the MEArec dataset already handles a Probe and we don't need to set it. probe = recording.get_probe() print(probe) from probeinterface.plotting import plot_probe plot_probe(probe) ############################################################################## # Using the :code:`toolkit`, you can perform preprocessing on the recordings. # Each pre-processing function also returns a :code:`RecordingExtractor`, # which makes it easy to build pipelines. Here, we filter the recording and # apply common median reference (CMR). # All theses preprocessing steps are "lazy". The computation is done on demand when we call # `recording.get_traces(...)` or when we save the object to disk. recording_cmr = recording recording_f = st.bandpass_filter(recording, freq_min=300, freq_max=6000) print(recording_f) recording_cmr = st.common_reference(recording_f, reference='global', operator='median') print(recording_cmr) # this computes and saves the recording after applying the preprocessing chain recording_preprocessed = recording_cmr.save(format='binary') print(recording_preprocessed) ############################################################################## # Now you are ready to spike sort using the :code:`sorters` module! # Let's first check which sorters are implemented and which are installed print('Available sorters', ss.available_sorters()) print('Installed sorters', ss.installed_sorters()) ############################################################################## # The :code:`ss.installed_sorters()` will list the sorters installed in the machine. # We can see we have HerdingSpikes and Tridesclous installed. # Spike sorters come with a set of parameters that users can change. # The available parameters are dictionaries and can be accessed with: print(ss.get_default_params('herdingspikes')) print(ss.get_default_params('tridesclous')) ############################################################################## # Let's run herdingspikes and change one of the parameter, say, the detect_threshold: sorting_HS = ss.run_herdingspikes(recording=recording_preprocessed, detect_threshold=4) print(sorting_HS) ############################################################################## # Alternatively we can pass full dictionary containing the parameters: other_params = ss.get_default_params('herdingspikes') other_params['detect_threshold'] = 5 # parameters set by params dictionary sorting_HS_2 = ss.run_herdingspikes(recording=recording_preprocessed, output_folder="redringspikes_output2", **other_params) print(sorting_HS_2) ############################################################################## # Let's run tridesclous as well, with default parameters: sorting_TDC = ss.run_tridesclous(recording=recording_preprocessed) ############################################################################## # The :code:`sorting_HS` and :code:`sorting_TDC` are :code:`SortingExtractor` # objects. We can print the units found using: print('Units found by herdingspikes:', sorting_HS.get_unit_ids()) print('Units found by tridesclous:', sorting_TDC.get_unit_ids()) ############################################################################## # :code:`spikeinterface` provides a efficient way to extractor waveform snippets from paired recording/sorting objects. # The :code:`WaveformExtractor` class samples some spikes (:code:`max_spikes_per_unit=500`) for each cluster and stores # them on disk. These waveforms per cluster are helpful to compute the average waveform, or "template", for each unit # and then to compute, for example, quality metrics. we_TDC = si.WaveformExtractor.create(recording_preprocessed, sorting_TDC, 'waveforms', remove_if_exists=True) we_TDC.set_params(ms_before=3., ms_after=4., max_spikes_per_unit=500) we_TDC.run(n_jobs=-1, chunk_size=30000) print(we_TDC) unit_id0 = sorting_TDC.unit_ids[0] wavefroms = we_TDC.get_waveforms(unit_id0) print(wavefroms.shape) template = we_TDC.get_template(unit_id0) print(template.shape) ############################################################################## # Once we have the `WaveformExtractor` object # we can post-process, validate, and curate the results. With # the :code:`toolkit.postprocessing` submodule, one can, for example, # get waveforms, templates, maximum channels, PCA scores, or export the data # to Phy. `Phy <https://github.com/cortex-lab/phy>`_ is a GUI for manual # curation of the spike sorting output. To export to phy you can run: from spikeinterface.exporters import export_to_phy export_to_phy(we_TDC, './phy_folder_for_TDC', compute_pc_features=False, compute_amplitudes=True) ############################################################################## # Then you can run the template-gui with: :code:`phy template-gui phy/params.py` # and manually curate the results. ############################################################################## # Quality metrics for the spike sorting output are very important to asses the spike sorting performance. # The :code:`spikeinterface.toolkit.qualitymetrics` module implements several quality metrics # to assess the goodness of sorted units. Among those, for example, # are signal-to-noise ratio, ISI violation ratio, isolation distance, and many more. # Theses metrics are built on top of WaveformExtractor class and return a dictionary with the unit ids as keys: snrs = st.compute_snrs(we_TDC) print(snrs) isi_violations_rate, isi_violations_count = st.compute_isi_violations(we_TDC, isi_threshold_ms=1.5) print(isi_violations_rate) print(isi_violations_count) ############################################################################## # All theses quality metrics can be computed in one shot and returned as # a :code:`pandas.Dataframe` metrics = st.compute_quality_metrics(we_TDC, metric_names=['snr', 'isi_violation', 'amplitude_cutoff']) print(metrics) ############################################################################## # Quality metrics can be also used to automatically curate the spike sorting # output. For example, you can select sorted units with a SNR above a # certain threshold: keep_mask = (metrics['snr'] > 7.5) & (metrics['isi_violations_rate'] < 0.01) print(keep_mask) keep_unit_ids = keep_mask[keep_mask].index.values print(keep_unit_ids) curated_sorting = sorting_TDC.select_units(keep_unit_ids) print(curated_sorting) ############################################################################## # The final part of this tutorial deals with comparing spike sorting outputs. # We can either (1) compare the spike sorting results with the ground-truth # sorting :code:`sorting_true`, (2) compare the output of two (HerdingSpikes # and Tridesclous), or (3) compare the output of multiple sorters: comp_gt_TDC = sc.compare_sorter_to_ground_truth(gt_sorting=sorting_true, tested_sorting=sorting_TDC) comp_TDC_HS = sc.compare_two_sorters(sorting1=sorting_TDC, sorting2=sorting_HS) comp_multi = sc.compare_multiple_sorters(sorting_list=[sorting_TDC, sorting_HS], name_list=['tdc', 'hs']) ############################################################################## # When comparing with a ground-truth sorting extractor (1), you can get the sorting performance and plot a confusion # matrix comp_gt_TDC.get_performance() w_conf = sw.plot_confusion_matrix(comp_gt_TDC) w_agr = sw.plot_agreement_matrix(comp_gt_TDC) ############################################################################## # When comparing two sorters (2), we can see the matching of units between sorters. # Units which are not matched has -1 as unit id: comp_TDC_HS.hungarian_match_12 ############################################################################## # or the reverse: comp_TDC_HS.hungarian_match_21 ############################################################################## # When comparing multiple sorters (3), you can extract a :code:`SortingExtractor` object with units in agreement # between sorters. You can also plot a graph showing how the units are matched between the sorters. sorting_agreement = comp_multi.get_agreement_sorting(minimum_agreement_count=2) print('Units in agreement between Klusta and Mountainsort4:', sorting_agreement.get_unit_ids()) w_multi = sw.plot_multicomp_graph(comp_multi) plt.show()
44.669039
126
0.654557
[ "MIT" ]
Dradeliomecus/spikeinterface
examples/getting_started/plot_getting_started.py
12,555
Python
########################################################### # # Copyright (c) 2005, Southpaw Technology # All Rights Reserved # # PROPRIETARY INFORMATION. This software is proprietary to # Southpaw Technology, and is not to be reproduced, transmitted, # or disclosed in any way without written permission. # # __all__ = [ 'BaseFilterElementWdg', 'SelectFilterElementWdg', 'TextFilterElementWdg', 'KeywordFilterElementWdg', 'DateFilterElementWdg', 'DateRangeFilterElementWdg', 'LoginFilterElementWdg', 'MultiSelectFilterElementWdg', 'MultiFieldFilterElementWdg', 'CompoundValueFilterElementWdg', 'ExpressionFilterElementWdg', 'ReplaceWithValueExpressionFilterElementWdg', 'ButtonFilterElementWdg', 'CheckboxFilterElementWdg' ] import re import datetime import sys from dateutil.relativedelta import relativedelta from dateutil import parser from pyasm.common import Common, TacticException, SetupException, Date from pyasm.biz import Project from pyasm.web import DivWdg, SpanWdg, Table, WebContainer from pyasm.widget import CheckboxWdg, SelectWdg, TextWdg, HiddenWdg from pyasm.search import Search, SearchException, SearchType from tactic.ui.common import BaseRefreshWdg from tactic.ui.input import TextInputWdg, LookAheadTextInputWdg from .filter_data import FilterData import six basestring = six.string_types class BaseFilterElementWdg(BaseRefreshWdg): '''represents the base filter''' def __init__(self, **kwargs): super(BaseFilterElementWdg, self).__init__(**kwargs) self.values = {} self.show_title = False self.set_flag = False self.title = None def is_visible(self): return True def set_show_title(self, flag): self.show_title = flag def get_title_wdg(self): title_div = DivWdg() name = self.get_name() title = self.get_title() if not title: title = name title = Common.get_display_title(title) title_div.add("%s " % title ) title_div.add_style("font-weight: bold") return title_div """ def is_set(self): '''indicates whether this filter has values set that will oontribute to the search''' return self.set_flag """ def is_set(self): value = self.values.get("value") if value: return True else: return False def get_set_js_action(self): return r''' var top = bvr.src_el.getParent(".spt_filter_top"); if (!top) return; var set_icons = top.getElements(".spt_filter_set"); for (var i = 0; i < set_icons.length; i++) { icon_name = set_icons[i].getAttribute("spt_element_name"); if (icon_name == bvr.element_name) { var set_icon = set_icons[i]; if (bvr.src_el.value == '') { set_icon.setStyle("display", "none"); } else { set_icon.setStyle("display", ""); } break; } } ''' def set_value(self, name, value): self.values[name] = value def set_values(self, values): self.values = values def alter_search(self, search): pass def get_display(self): pass def set_title(self, title): self.title = title def get_title(self): return self.title class SelectFilterElementWdg(BaseFilterElementWdg): def init(self): expression = self.kwargs.get("column") self.multi_search_types = False if not expression: return parts = expression.split(".") search_types = parts[:-1] self.multi_search_types = False if len(search_types) > 1: self.multi_search_types = True def is_set(self): value = self.values.get("value") if value: return True else: if not self.values and self.kwargs.get('default'): return True else: return False def alter_search(self, search): expression = self.kwargs.get("column") if not expression: return parts = expression.split(".") search_types = parts[:-1] column = parts[-1] value = self.values.get("value") if not Common.is_python3: if isinstance(value, unicode): value = value.encode('utf-8','ignore') elif isinstance(value, basestring): value = unicode(value, errors='ignore').encode('utf-8') #print "value: ", value, type(value) if not value: default = self.kwargs.get('default') if not self.values and default: value = default else: return # op should come from self.values op = self.values.get("op") if not op: op = '=' # go through the hierarchy search2 = None sobjects = None sub_search = None if len(search_types) > 1: """ #TODO: replace the for loop below with this @SEARCH code which should be more efficient search_types.reverse() top_search_type = search_types[0] search_type_str = '.'.join(search_types[1:]) expr = '''@SEARCH(%s["%s","%s"].%s)'''%(top_search_type, column, value, search_type_str) search2 = Search.eval(expr) sobjects = search2.get_sobjects() if not sobjects: # if the trail ends, then set the null filter search2.set_null_filter() """ search_types.reverse() top_search_type = search_types[0] search_type_str = '.'.join(search_types[1:]) if search_type_str: expr = '''@SEARCH(%s["%s","%s"].%s)'''%(top_search_type, column, value, search_type_str) sub_search = Search.eval(expr) ''' for search_type in search_types: if sobjects == None: search2 = Search(search_type) search2.add_filter(column, value, "=") sobjects = search2.get_sobjects() else: if search_type == 'connect': related_sobjects = [] from pyasm.biz import SObjectConnection connections = SObjectConnection.get_connections(sobjects) related_sobjects = SObjectConnection.get_sobjects(connections) """ for sobject in sobjects: connections, sobjects = SObjectConnection.get_connected_sobjects(sobject) related_sobjects.extend(sobjects) """ sobjects = related_sobjects[:] else: search2 = Search(search_type) search2.add_relationship_filters(sobjects) sobjects = search2.get_sobjects() if not sobjects: # if the trail ends, then set the null filter and exit search.set_null_filter() return ''' elif not search_types: if op == '!=': search.add_op('begin') search.add_filter(column, value, op) search.add_filter(column, None) search.add_op('or') elif op in ['~','EQI']: filters = [[column,'EQI',value]] search.add_op_filters(filters) elif op == 'is on': search.add_day_filter(column, value) else: search.add_filter(column, value, op) return else: search_type = search_types[0] # get all the sobjects at the appropriate hierarchy try: search2 = Search(search_type) if value: if op == 'exists': search.add_relationship_search_filter(search2, op=value) return else: #search2.add_filter(column, value, op) if op == '!=': search2.add_op('begin') search2.add_filter(column, value, op) search2.add_filter(column, None) search2.add_op('or') elif op in ['~','EQI']: filters = [[column,'EQI',value]] search2.add_op_filters(filters) elif op == 'is on': search2.add_day_filter(column, value) else: search2.add_filter(column, value, op) use_multidb = False search.add_relationship_search_filter(search2, op="in", use_multidb=use_multidb) except SearchException as e: raise SearchException('[%s] in simple search definition may have syntax error. %s ' %(expression, e.__str__())) return if op == '=': op = 'in' else: op = 'not in' if sobjects: search.add_relationship_filters(sobjects, op=op) elif sub_search: # column starts with connect if search_types[-1] =='connect': search.add_search_filter('id', sub_search, op=op) else: search.add_relationship_search_filter(sub_search, op=op) else: search.set_null_filter() def get_display(self): div = DivWdg() #div.add_style("width: 350px") select = SelectWdg("value") select.add_style("width: 190px") default_value = self.kwargs.get("default") # TODO: this is needed for multiple selection, but it is ugly #select.set_attr("multiple", "1") #select.add_attr("spt_is_multiple", "true") # if there is a link search already, don't use default if self.values and self.kwargs.get('default'): self.kwargs.pop('default') select.set_options(self.kwargs) select.add_empty_option("-- Select --") name = self.get_name() select.add_behavior( { 'type': 'change', 'element_name': name, 'cbjs_action': self.get_set_js_action() } ) # this is needed so they don't cross contaminate # FIXME: this is probably a bug in SelectWdg select.set_value('') value = self.values.get("value") if not value: value = default_value if value: select.set_value(value) if self.show_title: title_div = DivWdg() div.add(title_div) title_div.add_style("float: left") name = self.get_name() title = self.get_title() if not title: title = name title = Common.get_display_title(title) title_div.add("%s:" % title ) title_div.add_style("width: 80px") title_div.add_style("font-weight: bold") title_div.add_style("margin-left: 15px") title_div.add_style("padding-top: 2px") op = self.kwargs.get("op") if op == 'exists': div.add("&nbsp;&nbsp;&nbsp;is&nbsp;&nbsp;&nbsp;") div.add(HiddenWdg("op", "exists")) elif op == 'is on': div.add("&nbsp;&nbsp;&nbsp;is on&nbsp;&nbsp;&nbsp;") div.add(HiddenWdg("op", "is on")) elif op in ['~', 'contains']: div.add("&nbsp;&nbsp;&nbsp;contains&nbsp;&nbsp;&nbsp;") div.add(HiddenWdg("op", "~")) elif op == 'is': #TODO: have this style apply to everything else and get rid of &nbsps op_div = DivWdg('is') op_div.add_styles('margin-top: 8px; margin-right: 15px') div.add(op_div) div.add(HiddenWdg("op", "=")) div.add_style("display: flex") else: op_select = SelectWdg("op") op_select.add_style("width: 100px") # only support in or not in for multi stypes column if self.multi_search_types: op_select.set_option("labels", "is|is not") op_select.set_option("values", "=|!=") else: op_select.set_option("labels", "is|is not|contains") op_select.set_option("values", "=|!=|~") value = self.values.get("op") if value: op_select.set_value(value) div.add(op_select) op_select.add_style("float: left") op_select.add_style("margin-right: 3px") div.add(select) # TEST Dynamic loading of select widget # Disabling: delay is too long. """ parent_div = DivWdg() div.add(parent_div) select = SelectWdg("value") parent_div.add(select) select.add_style("width: 150px") select.add_color("background", "background") value = self.values.get("value") if value: select.set_option("values", [value]) select.set_value(value) select.add_empty_option("-- Select --") select.add_behavior( { 'type': 'mouseover', 'kwargs': self.kwargs, 'cbjs_action': ''' var top = bvr.src_el.getParent(); var class_name = 'tactic.ui.filter.ReplaceSelectWdg'; spt.panel.load( top, class_name, bvr.kwargs); ''' } ) """ return div class TextFilterElementWdg(SelectFilterElementWdg): ''' derives from SelectFilterElementWdg but with a text box''' def get_display(self): div = DivWdg() text = TextWdg("value") if not self.kwargs.get('column'): text.set_attr('readonly','readonly') text.set_value('Warning: column option not defined') text.add_class('disabled') text.add_style("width: 170px") # if there is a link search already, don't use default if self.values and self.kwargs.get('default'): self.kwargs.pop('default') text.set_options(self.kwargs) name = self.get_name() text.add_behavior( { 'type': 'blur', 'element_name': name, 'cbjs_action': self.get_set_js_action() } ) text.add_behavior( { 'type': 'keyup', 'cbjs_action': ''' var key = evt.key; if (key == 'enter') { spt.dg_table.search_cbk( {}, {src_el: bvr.src_el} ); } ''' } ) value = self.values.get("value") if value: text.set_value(value) if self.show_title: title_div = DivWdg() div.add(title_div) title_div.add_style("float: left") name = self.get_name() title = self.get_title() if not title: title = name # only do this filtering to the name title = Common.get_display_title(title) title_div.add("%s:" % title ) title_div.add_style("width: 80px") title_div.add_style("font-weight: bold") title_div.add_style("margin-left: 15px") title_div.add_style("padding-top: 2px") op = self.kwargs.get("op") if op == 'exists': div.add("&nbsp;&nbsp;&nbsp;is&nbsp;&nbsp;&nbsp;") div.add(HiddenWdg("op", "exists")) elif op in ['~', 'contains']: div.add("&nbsp;&nbsp;&nbsp;contains&nbsp;&nbsp;&nbsp;") div.add(HiddenWdg("op", "~")) else: op_select = SelectWdg("op") op_select.set_option("labels", "is|is not|contains") op_select.set_option("values", "=|!=|~") value = self.values.get("op") if value: op_select.set_value(value) op_select.add_style("margin-right: 3px") op_select.add_style("float: left") div.add(op_select) div.add(text) return div __all__.append("ReplaceSelectWdg") class ReplaceSelectWdg(BaseRefreshWdg): def get_display(self): select = SelectWdg("value") select.add_style("width: 150px") # TODO: this is needed for multiple selection, but it is ugly #select.set_attr("multiple", "1") #select.add_attr("spt_is_multiple", "true") # if there is a link search already, don't use default #if self.values and self.kwargs.get('default'): # self.kwargs.pop('default') select.set_options(self.kwargs) select.add_empty_option("-- Select --") """ select.add_behavior( { 'type': 'load', 'cbjs_action': ''' bvr.src_el.focus(); ''' } ) """ select.add_behavior( { 'type': 'change', 'cbjs_action': self.get_set_js_action() } ) # this is needed so they don't cross contaminate # FIXME: this is probably a bug in SelectWdg select.set_value('') #value = self.values.get("value") #if value: # select.set_value(value) return select class KeywordFilterElementWdg(BaseFilterElementWdg): def init(self): self.overall_search_type = '' self.columns = [] self.look_ahead_columns = [] self.relevant = self.get_option("relevant") self.mode = self.get_option("mode") self.keyword_search_type = '' self.keyword_map_search_type = '' if self.mode == 'keyword_tree': self.keyword_search_type = self.get_option("keyword_search_type") or 'workflow/base_keyword' self.keyword_map_search_type = self.get_option("keyword_map_search_type") or 'workflow/keyword_map' self.cross_db = self.get_option("cross_db") =='true' column = self.get_option("column") full_text_column = self.get_option("full_text_column") if column: if self.mode=='global': raise SetupException('You are advised to use [keyword] mode since you have specified the column option.') self.columns = column.split('|') self.look_ahead_columns = self.columns[:] if full_text_column: self.columns = [full_text_column] self.case_sensitive = self.kwargs.get("case_sensitive") in ['true',True] self.do_search = self.kwargs.get("do_search") self.script_path = self.kwargs.get("script_path") if not self.mode: self.mode = "keyword" # TODO: this is dependent on the default database and not # on the database that may actually be searched on from pyasm.search import Sql database_type = Sql.get_default_database_type() has_index = False if database_type == 'PostgreSQL': database_version = Sql.get_default_database_version() major = database_version[0] minor = database_version[1] if major >= 9: has_index = True elif major < 8: has_index = False else: if minor >= 4: has_index = True else: has_index = False self.has_index = has_index def alter_search(self, search): overall_search = search self.overall_search_type = overall_search.get_search_type() search_type = self.overall_search_type search = Search(self.overall_search_type) value = self.values.get("value") if not value: return name = self.get_name() if not self.columns: self.columns = [name] partial = self.values.get("partial") == 'on' try: value.encode('ascii') except UnicodeEncodeError: is_ascii = False else: is_ascii = True # keywords in a list is treated with AND in full-text search # which is usually preferred in global search, it may be reassigned as a string in keyword mode tmp_keywords = value.split(" ") keywords = [] for keyword in tmp_keywords: if not keyword or len(keyword) == 1: continue keywords.append(keyword) if search_type == 'sthpw/sobject_list': column = "keywords" project_code = Project.get_project_code() overall_search.add_filter("project_code", project_code) if self.has_index and is_ascii: if partial: overall_search.add_op("begin") overall_search.add_text_search_filter(column, keywords) overall_search.add_keyword_filter(column, keywords) overall_search.add_op("or") else: overall_search.add_text_search_filter(column, keywords) else: overall_search.add_keyword_filter(column, keywords) # this is the default when the xml is just <element name='keywords'/> elif self.mode == 'global': column = "keywords" search2 = Search("sthpw/sobject_list") project_code = Project.get_project_code() search2.add_filter("project_code", project_code) search2.add_filter("search_type", search_type) if self.has_index and is_ascii: if partial: search2.add_op("begin") search2.add_text_search_filter(column, keywords) search2.add_keyword_filter(column, keywords) search2.add_op("or") else: search2.add_text_search_filter(column, keywords) else: search2.add_keyword_filter(column, keywords) refs = search2.get_sobjects() overall_search.add_filters("id", [x.get_value("search_id") for x in refs]) elif self.mode == 'keyword_tree': if self.cross_db: sub_search_list = [] else: overall_search.add_op('begin') # single col does not matter # we should just use the AND logic for single_col or multi keywords column. # Drawback is that multiple columns defined for the same sType may cause a return of 0 result # if words from multi columns are used in the search. This is in line with partial_op = 'and' for # db not supporting full text search partial_op = 'or' # in keyword_tree mode where there could be multi column # keywords is kept as a string to maintain OR full-text search value = value.replace(",", " ") # find self parent tree value project = Project.get() sql = project.get_sql() stmts = [] value_idx = [] impl = project.get_database_impl() op = self.values.get("cte_op") if not op: op = "keyword" # this is the hardcoded filter exact match of name # or partial match with alias column if op == 'child': tbl = "p1" elif op == 'both': tbl = "p1" filter_expr1 = [["begin"],["%s.name"%tbl,"%s"%value],["%s.alias"%tbl,"like","%%%s%%"%value],["or"]] tbl = "p2" filter_expr2 = [["begin"],["%s.name"%tbl,"%s"%value],["%s.alias"%tbl,"like","%%%s%%"%value],["or"]] else: tbl = "p2" filter_expr = [["begin"],["%s.name"%tbl,"%s"%value],["%s.alias"%tbl,"like","%%%s%%"%value],["or"]] if op == 'parent': stmts.append(impl.get_parent_cte(filter_expr)) value_idx.append(1) elif op == 'child': stmts.append(impl.get_child_cte(filter_expr)) value_idx.append(3) elif op == 'both': stmts.append(impl.get_parent_cte(filter_expr2)) value_idx.append(1) stmts.append(impl.get_child_cte(filter_expr1)) value_idx.append(3) elif op == 'keyword': pass original_search = Search(self.keyword_search_type) original_search.add_op('begin') original_search.add_filter('name', value) original_search.add_regex_filter('alias', value, op='EQI') original_search.add_op('or') original = original_search.get_sobject() if original: value = original.get('name') # include the original value keywords_list = [value] for idx, stmt in enumerate(stmts): results = sql.do_query(stmt) for res in results: if res[value_idx[idx]] not in keywords_list: keywords_list.append(res[value_idx[idx]]) keywords = keywords_list for column in self.columns: if self.cross_db: search2 = None sub_search = None search_type_obj = overall_search.get_search_type_obj() table = search_type_obj.get_table() column_type = None search = Search(overall_search.get_search_type()) local_table = True if column.find(".") != -1: parts = column.split(".") search_types = parts[:-1] column = parts[-1] local_table = False """ if self.cross_db: search_types.reverse() top_search_type = search_types[0] search_type_str = '.'.join(search_types[1:]) if search_type_str: expr = '''@SEARCH(%s)'''%(search_type_str) sub_search = Search.eval(expr) search2 = Search(top_search_type) table = SearchType.get(top_search_type).get_table() column_types = SearchType.get_column_types(top_search_type) column_type = column_types.get(column) else: """ prev_stype = search_type for next_stype in search_types: path = None # support for path if ':' in next_stype: path, next_stype = next_stype.split(':') search.add_join(next_stype, prev_stype, path=path) prev_stype = next_stype table = SearchType.get(next_stype).get_table() column_types = SearchType.get_column_types(next_stype) column_type = column_types.get(column) if self.cross_db: search2.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) # sub_search is not present if it only traverses thru 1 sType if sub_search: sub_search.add_relationship_search_filter(search2, op="in") else: sub_search = search2 else: if local_table: overall_search.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) else: search.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) overall_search.add_relationship_search_filter(search, op="in") if self.cross_db: sub_search_list.append(sub_search) if self.cross_db: rtn_history = False overall_search.add_op('begin') for sub_search in sub_search_list: rtn = overall_search.add_relationship_search_filter(sub_search, op="in", delay_null=True) if rtn_history == False: rtn_history = rtn # if all the sub_search return false, set null filter if not rtn_history: overall_search.set_null_filter() overall_search.add_op('or') else: overall_search.add_op('or') elif self.mode == 'keyword': if self.cross_db: sub_search_list = [] else: overall_search.add_op('begin') #search.add_op('begin') # single col does not matter # we should just use the AND logic for single_col or multi keywords column. # Drawback is that multiple columns defined for the same sType may cause a return of 0 result # if words from multi columns are used in the search. This is in line with partial_op = 'and' for # db not supporting full text search single_col = len(self.columns) == 1 partial_op = 'and' # in keyword mode where there could be multi column # keywords is kept as a string to maintain OR full-text search value = value.replace(",", " ") value = re.sub(' +', ' ', value) keywords = value.strip() if not keywords: return # keywords_list is used for add_keyword_filter() keywords_list = keywords.split(" ") single_keyword = len(keywords_list) == 1 if single_col: if single_keyword: multi_col_op = 'or' # this doesn't really matter op = '|' # this doesn't really matter else: # multi_keyword, single column multi_col_op = 'or' # this doesn't really matter op = '&' else: if single_keyword: multi_col_op = 'or' op = '|' # this doesn't really matter else: multi_col_op = 'or' op = '&' for column in self.columns: if self.cross_db: search2 = None sub_search = None # AND logic in full text search will be adopted if keywords # is a list as opposed to string if single_col: keywords = keywords_list if self.has_index and is_ascii: search_type_obj = SearchType.get(search_type) table = search_type_obj.get_table() search = Search(overall_search.get_search_type()) local_table = True if column.find(".") != -1: parts = column.split(".") search_types = parts[:-1] column = parts[-1] local_table = False if self.cross_db: search_types.reverse() top_search_type = search_types[0] search_type_str = '.'.join(search_types[1:]) if search_type_str: expr = '''@SEARCH(%s)'''%(search_type_str) sub_search = Search.eval(expr) search2 = Search(top_search_type) table = SearchType.get(top_search_type).get_table() else: prev_stype = search_type for next_stype in search_types: path = None # support for path if ':' in next_stype: path, next_stype = next_stype.split(':') search.add_join(next_stype, prev_stype, path=path) prev_stype = next_stype table = SearchType.get(next_stype).get_table() if partial: if self.cross_db: search2.add_op("begin") search2.add_text_search_filter(column, keywords, table=table, op=op) search2.add_keyword_filter(column, keywords_list, table=table, op=partial_op) search2.add_op("or") if sub_search: sub_search.add_relationship_search_filter(search2, op="in") else: sub_search = search2 else: search.add_op("begin") search.add_text_search_filter(column, keywords, table=table, op=op) search.add_keyword_filter(column, keywords_list, table=table, op=partial_op) search.add_op("or") overall_search.add_relationship_search_filter(search, op="in") else: if self.cross_db: if not search2: raise TacticException('If cross_db is set to true, all the columns should be formatted in expression-like format with one or more sTypes: sthpw/task.description') search2.add_text_search_filter(column, keywords, table=table, op=op) if sub_search: sub_search.add_relationship_search_filter(search2, op="in") else: sub_search = search2 else: if local_table: overall_search.add_text_search_filter(column, keywords, table=table, op=op) else: search.add_text_search_filter(column, keywords, table=table, op=op) overall_search.add_relationship_search_filter(search, op="in") else: #value = value.replace(",", " ") search_type_obj = overall_search.get_search_type_obj() table = search_type_obj.get_table() column_type = None search = Search(overall_search.get_search_type()) local_table = True if column.find(".") != -1: parts = column.split(".") search_types = parts[:-1] column = parts[-1] local_table = False if self.cross_db: search_types.reverse() top_search_type = search_types[0] search_type_str = '.'.join(search_types[1:]) if search_type_str: expr = '''@SEARCH(%s)'''%(search_type_str) sub_search = Search.eval(expr) search2 = Search(top_search_type) table = SearchType.get(top_search_type).get_table() column_types = SearchType.get_column_types(top_search_type) column_type = column_types.get(column) else: prev_stype = search_type for next_stype in search_types: path = None # support for path if ':' in next_stype: path, next_stype = next_stype.split(':') search.add_join(next_stype, prev_stype, path=path) prev_stype = next_stype table = SearchType.get(next_stype).get_table() column_types = SearchType.get_column_types(next_stype) column_type = column_types.get(column) if self.cross_db: search2.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) # sub_search is not present if it only traverses thru 1 sType if sub_search: sub_search.add_relationship_search_filter(search2, op="in") else: sub_search = search2 else: if local_table: overall_search.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) else: search.add_keyword_filter(column, keywords_list, table=table, column_type=column_type, op=partial_op) overall_search.add_relationship_search_filter(search, op="in") if self.cross_db: sub_search_list.append(sub_search) #if not self.cross_db: # search.add_op('or') #self.search_type = search.get_search_type() if self.cross_db: rtn_history = False overall_search.add_op('begin') for sub_search in sub_search_list: rtn = overall_search.add_relationship_search_filter(sub_search, op="in", delay_null=True) if rtn_history == False: rtn_history = rtn # if all the sub_search return false, set null filter if not rtn_history: overall_search.set_null_filter() overall_search.add_op(multi_col_op) else: overall_search.add_op(multi_col_op) else: raise TacticException('Mode [%s] in keyword search not support' % self.mode) def get_display(self): # can predefine a filter_search_type for the look ahead search self.filter_search_type = self.get_option("filter_search_type") if not self.filter_search_type: self.filter_search_type = self.overall_search_type div = DivWdg() div.add_style("position: relative") if self.show_title: name = self.get_name() title = self.get_title() if title == None: title = name title = Common.get_display_title(title) if title: div.add("<b>%s: &nbsp;</b>" % title ) if self.show_title: title_div = DivWdg() div.add(title_div) title_div.add_style("float: left") name = self.get_name() title = self.get_title() if not title: title = name title = Common.get_display_title(title) title_div.add("%s:" % title ) title_div.add_style("width: 80px") title_div.add_style("font-weight: bold") title_div.add_style("margin-left: 15px") title_div.add_style("padding-top: 2px") column = None hint_text = 'any keywords' search_type = 'sthpw/sobject_list' if not self.columns and self.mode in ['keyword','keyword_tree']: name = self.get_name() self.columns = [name] # check if column exists if self.filter_search_type: exists = SearchType.column_exists(self.filter_search_type, name) if not exists: name = "name" exists = SearchType.column_exists(self.filter_search_type, name) if not exists: name = "description" exists = SearchType.column_exists(self.filter_search_type, name) if not exists: raise SetupException("Keyword Filter column [%s] does not exist"%name) self.columns = [name] if self.mode in ['keyword','keyword_tree']: search_type = self.filter_search_type # clean up the hint text and find the last search_type hints = [] for column in self.columns: if column.find(".") != -1: parts = column.split(".") hint = parts[-1] #NOTE: no need to determine sType #tmp_search_type = parts[-2] else: hint = column hints.append(hint) hint_text = ', '.join(hints) if len(hint_text) > 30: hint_text = '%s...'%hint_text[0:29] if self.kwargs.get("hint_text"): hint_text = self.kwargs.get("hint_text") # search_type is a list matching the column for potential join width = self.kwargs.get("width") if not width: width = "230px" show_toggle = self.get_option("show_toggle") if show_toggle in ['true', True]: #icon = "BS_MENU_DOWN" icon = "FA_FILTER" icon_pos = "left" else: icon = "" icon_pos = "" # NOTE: This calls the refresh twice for some reason """ custom_cbk = { 'enter': ''' spt.dg_table.search_cbk( {}, {src_el: bvr.src_el} ); ''' } """ text = LookAheadTextInputWdg( name="value", do_search=self.do_search, script_path=self.script_path, #custom_cbk=custom_cbk, filter_search_type=self.filter_search_type, search_type=search_type, column=self.look_ahead_columns, relevant = self.relevant, width = width, height = "30px", hint_text=hint_text, case_sensitive = self.case_sensitive, icon=icon, icon_pos=icon_pos, ) value = self.values.get("value") if value: text.set_value(value) text.set_hidden_value(value) text.add_behavior( { 'type': 'keyup', 'cbjs_action': ''' var key = evt.key; if (key == 'enter') { var top = bvr.src_el.getParent(".spt_input_text_top"); var hidden_el = top.getElement(".spt_text_value"); if (bvr.src_el.value) hidden_el.value = bvr.src_el.value; spt.dg_table.search_cbk( {}, {src_el: bvr.src_el} ); } ''' } ) name = self.get_name() text.add_behavior( { 'type': 'change', 'element_name': name, 'cbjs_action': self.get_set_js_action() } ) div.add(text) if self.mode == 'keyword_tree': text.add_style('float','left') op_select = SelectWdg("cte_op") op_select.add_style("width: 100px") # only support in or not in for multi stypes column op_select.set_option("labels", "keyword|parent|child|both") op_select.set_option("values", "keyword|parent|child|both") value = self.values.get("cte_op") if value: op_select.set_value(value) div.add(op_select) op_select.add_style("float: left") op_select.add_style("margin-left: 10px") show_toggle = self.get_option("show_toggle") if show_toggle in ['true', True]: icon_wdg = text.get_icon_wdg() if icon_wdg: icon_wdg.add_class("spt_search_toggle") icon_wdg.add_class("hand") """ from pyasm.widget import IconWdg icon_div = DivWdg() icon = IconWdg("toggle", "BS_CHEVRON_DOWN") icon_div.add(icon) icon_div.add_class("hand spt_search_toggle") icon_div.add_style("position: absolute") icon_div.add_style("top: 6px") icon_div.add_style("right: 4px") div.add(icon_div) """ show_partial = self.get_option("show_partial") if show_partial in ['true', True]: from pyasm.widget import IconWdg icon_div = DivWdg() icon = IconWdg("Match", IconWdg.ARROWHEAD_DARK_DOWN) icon_div.add(icon) icon_div.add_class("hand") icon_div.add_style("position: absolute") icon_div.add_style("top: 5px") icon_div.add_style("right: 0") from tactic.ui.container import DialogWdg dialog = DialogWdg(show_title=False, show_pointer=True) dialog.set_as_activator(icon_div, {'x': -150, 'y': 10}) div.add(dialog) match_div = DivWdg() match_div.add_style("width: 175px") dialog.add(match_div) checkbox = CheckboxWdg("partial") match_div.add(checkbox) checkbox.add_attr("title", "Use partial word match (slower)") match_div.add_style("padding: 10px") match_div.add_color("color", "color") match_div.add_color("background", "background") match_div.add(" Use partial word match") if self.mode == 'keyword' and self.has_index: div.add(icon_div) elif self.mode =='global' and self.has_index: div.add(icon_div) else: # partial is implied otherwise hidden = HiddenWdg("partial") div.add(hidden) hidden.set_value("on") return div class DateFilterElementWdg(BaseFilterElementWdg): '''This filter uses a subselect so that it can look for dates that are on another table than the main serach''' def alter_search(self, search): expression = self.kwargs.get("column") if not expression: expression = self.get_name() search_types = [] if expression.find(".") != -1: #search_type, date_col = expression.split(".") parts = expression.split(".") search_types = parts[:-1] if search_types: search_type = '.'.join(search_types) date_col = parts[-1] else: search_type = search.get_search_type() date_col = expression start_date = self.values.get("start_date") end_date = self.values.get("end_date") if not start_date and not end_date: return if isinstance(start_date, six.string_types) and start_date.startswith("$"): start_date = parser.parse( Search.eval(start_date) ) if isinstance(end_date, six.string_types) and end_date.startswith("$"): end_date = parser.parse( Search.eval(end_date) ) from pyasm.common import SPTDate start_date = SPTDate.add_local_timezone(start_date) start_date = SPTDate.convert(start_date) end_date = SPTDate.add_local_timezone(end_date) end_date = SPTDate.convert(end_date) # use the expression only if 1 or more search_types defined in column if search_types: expr = "@SEARCH(%s)"%search_type search2 = Search.eval(expr) else: search2 = Search(search_type) search2.add_date_range_filter(date_col, start_date, end_date) search.add_relationship_search_filter(search2) def get_display(self): div = DivWdg() table = Table() div.add(table) table.add_row() if self.show_title: title_div = DivWdg() table.add_cell(title_div) name = self.get_name() title = self.get_title() if not title: title = name title = Common.get_display_title(title) title_div.add("%s:" % title ) title_div.add_style("width: 80px") title_div.add_style("font-weight: bold") title_div.add_style("margin-left: 15px") title_div.add_style("padding-top: 2px") td = table.add_cell() op = DivWdg("is") td.add(op) td = table.add_cell() op = DivWdg(" between&nbsp;&nbsp;&nbsp;") op.add_style("margin-left: 5px") td.add(op) start_date = self.values.get("start_date") end_date = self.values.get("end_date") from tactic.ui.widget import CalendarInputWdg td = table.add_cell() cal1 = CalendarInputWdg("start_date") if start_date: cal1.set_value(start_date) td.add(cal1) td = table.add_cell() spacing = DivWdg("&nbsp;and&nbsp;") td.add(spacing) td = table.add_cell() cal2 = CalendarInputWdg("end_date") if end_date: cal2.set_value(end_date) td.add(cal2) return div class DateRangeFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): start_col = self.kwargs.get("start_date_col") end_col = self.kwargs.get("end_date_col") name = self.get_name() if not start_col: start_col = "%s_start_date" % name if not end_col: end_col = "%s_end_date" % name # find a relative search type if needed parts = start_col.split(".") search_types = parts[:-1] start_col = parts[-1] # find a relative search type if needed parts = end_col.split(".") search_types2 = parts[:-1] end_col = parts[-1] if search_types != search_types2: raise SearchException('Search types for start and end column must match') # just take the first one if search_types: #search_type = search_types[0] search_type = '.'.join(search_types) else: search_type = search.get_search_type() start_date = self.values.get("start_date") end_date = self.values.get("end_date") if not start_date and not end_date: return from pyasm.common import SPTDate start_date = SPTDate.add_local_timezone(start_date) start_date = SPTDate.convert(start_date) end_date = SPTDate.add_local_timezone(end_date) end_date = SPTDate.convert(end_date) operator = self.get_option("op") if operator != 'not in': operator = 'in' # use the expression only if 1 or more search_types defined in column if search_types: expr = "@SEARCH(%s)"%search_type search2 = Search.eval(expr) else: search2 = Search(search_type) search2.add_dates_overlap_filter(start_col, end_col, start_date, end_date, op="in") search.add_relationship_search_filter(search2, op=operator) return """ # Add in the ability to do something like ... #select * from sequence where code not in (select distinct sequence_code from shot); relationship = None if relationship == 'search_type': where = '''id not in (select distinct search_id from task where search_type like 'prod/asset?project=%')''' else: where = '''id not in (select distinct sequence_code from shot)''' #search.add_empty_related_filter("sthpw/task", op='not in') """ def get_display(self): div = DivWdg() name = self.get_name() title = Common.get_display_title(name) operator = self.get_option("op") if operator != 'not in': operator = 'in' table = Table() div.add(table) table.add_row() table.add_color("color", "color") name_div = DivWdg() #name_div.add("%s " % title) table.add_cell(name_div) #div.add_style("border: solid blue 1px") if operator == 'in': op = DivWdg("overlap &nbsp;") else: op = DivWdg("does not overlap ") table.add_cell(op) from tactic.ui.widget import CalendarInputWdg cal1 = CalendarInputWdg("start_date") table.add_cell(cal1) start_date = self.values.get("start_date") if start_date: cal1.set_value(start_date) table.add_cell(" and &nbsp;") cal2 = CalendarInputWdg("end_date") table.add_cell(cal2) end_date = self.values.get("end_date") if end_date: cal2.set_value(end_date) return div class ExpressionFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): #prefix = self.values.get("prefix") #column = self.values.get("%s_column" % prefix) if not self.values.get('option'): return expr = self.get_option("expression") # e.g. @SEARCH(vfx/asset['code','EQ','002']) from pyasm.biz import ExpressionParser parser = ExpressionParser() expr_search = parser.eval(expr) search.add_relationship_search_filter(expr_search) def get_display(self): title = self.get_option("title") if not title: title = '' div = SpanWdg() div.add("%s" % title) checkbox = CheckboxWdg("option") checkbox.set_attr("value", "expr_items") checkbox.set_checked() cbjs_action = self.get_option("cbjs_action") if cbjs_action: checkbox.add_behavior( { 'type': 'click_up', 'propogate_evt': 'true', 'cbjs_action': cbjs_action }) div.add(checkbox) return div # -------------------------------------------------------------------------------------------------------------------- # ReplaceWithValueExpressionFilterElementWdg ... # # This is really just the ExpressionFilterElementWdg but with the ability to have a text field entry # for a value to replace within your expression. Where-ever you place $REPLACE in your expression string # will be replaced with the value you enter in the text field entry. Below is some example configuration # XML for this widget ... # # <element name='has_subtask_with_lead'> # <display class='tactic.ui.filter.ReplaceWithValueExpressionFilterElementWdg'> # <expression>@GET(MMS/subtask['lead_name','$REPLACE'].job_id)</expression> # <column>id</column> # <field_size>22</field_size> # <field_label>matching:</field_label> # </display> # </element> # class ReplaceWithValueExpressionFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): expr = self.get_option("expression") column = self.get_option("column") field_value = self.values.get("field") or "" from pyasm.biz import ExpressionParser parser = ExpressionParser() if field_value or field_value == 0: results = parser.eval(expr, vars={ "REPLACE": field_value, "VALUE": field_value }) if results: search.add_filters(column, results) else: search.set_null_filter() def get_display(self): # mode "text" uses a textbox to search, while "select" uses a select dropdown. mode = self.get_option("mode") if not mode: mode = "text" if mode not in ["select", "text"]: class_name = self.__class__.__name__ raise TacticException("%s mode option can only be 'select' or 'text'." %class_name) field_size = self.get_option("field_size") #if not field_size: # field_size = "32" #else: # field_size = "%s" % field_size div = SpanWdg() if mode == "text": kwargs = { "name": "field", "search_type": self.get_option("search_type"), "column": self.get_option("display_column"), "value_column": self.get_option("value_column"), } if self.get_option("search_type"): text = LookAheadTextInputWdg(**kwargs) text.set_name("field") else: text = TextInputWdg(name="field") if field_size: text.add_attr("size", field_size) div.add(text) text.add_behavior( { 'type': 'keyup', 'cbjs_action': ''' var key = evt.key; if (key == 'enter') { spt.dg_table.search_cbk( {}, {src_el: bvr.src_el} ); } ''' } ) elif mode == "select": values = self.get_option("select_values") labels = self.get_option("select_labels") select = SelectWdg("field") select.add_empty_option("-- Select --") select.set_option("values", values) select.set_option("labels", labels) div.add(select) mod_value = self.get_option('last_modified_days') if mod_value: select = SelectWdg("last_modified", label='modified in: ') #select.add_style("width: 10px") if mod_value =='true': mod_value = '10|20|30|60|90' mod_values = mod_value.split('|') mod_values = [x.strip() for x in mod_values] mod_labels = ["last %s Days"%x for x in mod_values] select.add_empty_option("-- Select --") select.set_option("values", mod_values) select.set_option("labels", mod_labels) div.add(select) return div __all__.append("TaskConnectFilterElementWdg") class TaskConnectFilterElementWdg(ReplaceWithValueExpressionFilterElementWdg): def alter_search(self, search): field_value = self.values.get("field") last_mod_value = None last_mod_option = self.get_option("last_modified_days") if last_mod_option: last_mod_value = self.values.get('last_modified') search_type = self.get_option("search_type") if search_type: search_type = Project.get_full_search_type(search_type) # This controls what to filter at the end other than id filter_column = self.get_option("filter_column") do_search = self.get_option("do_search") if not field_value: if do_search =='true': pass else: return column = self.get_option("column") assert column search2 = Search("sthpw/connection") select = search2.get_select() from_table = "connection" to_table = "task" from_col = "src_search_id" to_col = "id" select.add_join(from_table, to_table, from_col, to_col, join="INNER") prefix = "src_" prefix2 = "dst_" search2.add_filter("%ssearch_type" % prefix, "sthpw/task") # one can supply a search type for searching in the connection table if not search_type: search_type = search.get_search_type() search2.add_filter("%ssearch_type" % prefix2, search_type) search2.add_column("%ssearch_id" % prefix2) # use field value if field_value: search2.add_filter(column, field_value, table="task") filters = self.get_option("filters") if filters: search2.add_op_filters(filters) if last_mod_value: last_mod_value = int(last_mod_value) today = datetime.datetime.today() date = today + relativedelta(days=-last_mod_value) setting = "%Y-%m-%d" date_value = date.strftime(setting) search2.add_where( "task.id in (SELECT search_id from status_log where timestamp > '%s')"%date_value ) statement = search2.get_statement() sql = search2.get_sql() values = sql.do_query(statement) values = [x[0] for x in values] if not filter_column: filter_column = 'id' search.add_filters(filter_column, values) class LoginFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): prefix = self.values.get("prefix") column = self.values.get("%s_column" % prefix) option = self.values.get("option") if option == 'my_items': search.add_user_filter() elif option == 'all_items': pass def get_display(self): # FIXME title = "Jobs" div = SpanWdg() div.add("My %s: " % title) checkbox = CheckboxWdg("option") checkbox.set_attr("value", "self_items") checkbox.set_checked() div.add(checkbox) div.add("&nbsp;&nbsp;") div.add("All User %s: " % title) checkbox = CheckboxWdg("option") checkbox.set_attr("value", "all_items") div.add(checkbox) return div # # FIXME: hardcoded for MMS # class MultiSelectFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): filters = ['MMS/job.job_number_prefix', 'MMS/job.job_number_year', 'MMS/job.job_number'] for filter in filters: value = self.values.get(filter) if value: #search.add_relationship_filter(filter) search_type, column = filter.split('.') search.add_filter(column, value) def get_display(self): top = SpanWdg() top.add("&nbsp; matches &nbsp;") filters = ['MMS/job.job_number_prefix', 'MMS/job.job_number_year', 'MMS/job.job_number'] for filter in filters: text = TextWdg(filter) text.add_attr("size", "5") top.add(text) top.add("&nbsp;-&nbsp;") return top # This is a generalized version of the MultiSelectFilterElementWdg # class MultiFieldFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): field_list_option = self.get_option("field_list") if not field_list_option: return stmt = 'field_info_list = %s' % field_list_option.replace("\n"," ") try: exec(stmt) except: return for field_info in field_info_list: field = field_info.get('field') op = field_info.get('op') if not op: op = '=' if field: value = self.values.get(field) to = field_info.get('to') if to: if to.endswith('()'): stmt = 'value = value.%s' % to else: # assume casting to other value besides string ... stmt = 'value = %s(value)' % to try: exec(stmt) except: # TODO ... proper error message here? continue if value: # print "field is [%s] ... op is [%s] ... to is [%s] ... value is [%s]" % (field, op, to, value) search.add_filter(field, value, op) def set_configuration_error(self, top_el, error_message): top_el.add("Error in Configuration -- %s" % error_message) top_el.add_styles("color: orange; font-style: italic; font-weight: bold;") def get_display(self): top = SpanWdg() field_list_option = self.get_option("field_list") if not field_list_option: self.set_configuration_error( top, "No 'field_list' option provided" ) return top top.add("&nbsp; matches &nbsp;") stmt = 'field_info_list = %s' % field_list_option.replace("\n"," ") try: exec(stmt) except: self.set_configuration_error( top, "badly formed 'field_list' option" ) return top # field_list option should look like this: # [ {'field': 'job_number_prefix', 'size': '1', 'maxlength': '1', 'label': 'Prefix', 'to': 'upper()' }, # {'field': 'job_number_year', 'size': '2', 'maxlength': '2', 'label': 'Year (2 digits)', 'to': 'int' }, # {'field': 'job_number', 'size': '5', 'maxlength': '5', 'label': 'Number', 'to': 'int' }, # ] # # ... you can also specify a specific op in each of the above ... defaults to 'op': '=' default_size = 10 done_first = False for field_info in field_info_list: field = field_info.get('field') if field: text = TextWdg(field) size = field_info.get('size') if not size: size = default_size text.add_attr("size", "%s" % size) maxlength = field_info.get('maxlength') if maxlength: text.add_attr("maxlength", "%s" % maxlength) label = field_info.get('label') if label: if done_first: top.add("&nbsp;&nbsp;&nbsp;%s: " % label) else: top.add("%s: " % label) top.add(text) done_first = True return top # -------------------------------------------------------------------------------------------------------------------- # CompoundValueFilterElemenetWdg ... # # This is used to set up multiple text field entries to build a single value up to compare to a specific # column ... example is for MMS job number. Below is some example configuration XML for this widget ... # # <display class='tactic.ui.filter.CompoundValueFilterElementWdg'> # <field_list> [ # { 'field': 'job_number_prefix', 'label': 'Prefix', 'size': '1', 'maxlength': '1', 'to': 'upper()' }, # { 'field': 'job_number_year', 'label': 'Year (2 digit)', 'size': '2', 'maxlength': '2', 'to': 'zfill(2)' }, # { 'field': 'job_number', 'label': 'Number', 'size': '5', 'maxlength': '5', 'to': 'zfill(5)' } # ] </field_list> # <column>job_number_full</column> # <compound_value_expr>{job_number_prefix}{job_number_year}-{job_number}</compound_value_expr> # <op>=</op> # </display> # class CompoundValueFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): field_list_option = self.get_option("field_list") if not field_list_option: return stmt = 'field_info_list = %s' % field_list_option.replace("\n"," ") try: exec(stmt) except: return column = self.get_option("column") if not column: print("\n") print("\n") print("*** ERROR: no column specified for CompoundValueFilterElementWdg") print("\n") print("\n") return field_map = {} for field_info in field_info_list: field = field_info.get('field') if field: value = self.values.get(field) to = field_info.get('to') if to: if to.endswith(')'): stmt = 'value = value.%s' % to else: # assume casting to other value besides string ... stmt = 'value = %s(value)' % to try: exec(stmt) except: # TODO ... proper error message here? continue if value: field_map[field] = value compound_value = self.get_option("compound_value_expr") if not compound_value: return for f,v in field_map.iteritems(): compound_value = compound_value.replace( "{%s}" % f, v ) op = self.get_option("op") if not op: op = "=" search.add_filter( column, compound_value, op) def set_configuration_error(self, top_el, error_message): top_el.add("Error in Configuration -- %s" % error_message) top_el.add_styles("color: orange; font-style: italic; font-weight: bold;") def get_display(self): top = SpanWdg() field_list_option = self.get_option("field_list") if not field_list_option: self.set_configuration_error( top, "No 'field_list' option provided" ) return top top.add("&nbsp; matches") stmt = 'field_info_list = %s' % field_list_option.replace("\n"," ") try: exec(stmt) except: self.set_configuration_error( top, "badly formed 'field_list' option" ) return top # field_list option should look like this: # [ {'field': 'job_number_prefix', 'size': '1', 'maxlength': '1', 'label': 'Prefix', 'to': 'upper()' }, # {'field': 'job_number_year', 'size': '2', 'maxlength': '2', 'label': 'Year (2 digits)', 'to': 'int' }, # {'field': 'job_number', 'size': '5', 'maxlength': '5', 'label': 'Number', 'to': 'int' }, # ] default_size = 10 for field_info in field_info_list: field = field_info.get('field') if field: text = TextWdg(field) size = field_info.get('size') if not size: size = default_size text.add_attr("size", "%s" % size) maxlength = field_info.get('maxlength') if maxlength: text.add_attr("maxlength", "%s" % maxlength) label = field_info.get('label') if label: top.add("&nbsp;&nbsp;&nbsp;%s: " % label) top.add(text) return top class CheckboxFilterElementWdg(BaseFilterElementWdg): def alter_search(self, search): keys = [] for key, value in self.values.items(): if not key.startswith("button"): continue if value != "on": continue keys.append(key) #if not keys: # search.set_null_filter() search.add_op("begin") for key in keys: button = self.values.get("button_%s" % key) option = key.replace("button_", "") expression = self.get_option(option) if expression: sobjects = Search.eval(expression) ids = [x.get_id() for x in sobjects] search.add_filters("id", ids) search.add_op("or") def get_display(self): from tactic.ui.widget import ActionButtonWdg top = self.top mode = 'checkbox' titles = self.get_option("options") actual_titles = [] if titles: titles = titles.split("|") actual_titles = self.get_option("titles") if actual_titles: actual_titles = actual_titles.split("|") if len(actual_titles) != len(titles): raise TacticException('titles count have to match the options count in the Checkbox Filter Element in Simple Search.') else: actual_titles = titles[:] else: titles = [] table = Table() table.add_color("color", "color") top.add(table) table.add_row() if mode == 'button': text = HiddenWdg("button") top.add(text) text.add_class("spt_text") for title in titles: button = ActionButtonWdg(title=title) table.add_cell(button) button.add_behavior( { 'type': 'click_up', 'title': title, 'cbjs_action': self.get_set_js_action() } ) else: for i, title in enumerate(titles): td = table.add_cell() if i != 0: div = DivWdg() div.add_style("float: left") td.add(div) div.add_style("height: 30px") #div.add("&nbsp;") div.add_style("border-style: solid") div.add_style("border-width: 0px 1px 0px 0px") div.add_style("margin-right: 15px") div.add_style("border-color: %s" % div.get_color("border")) button_title = "button_%s" % title checkbox = CheckboxWdg(button_title) td.add(checkbox) actual_title = actual_titles[i] td.add(actual_title) if self.values.get(button_title): checkbox.set_checked() return top class ButtonFilterElementWdg(CheckboxFilterElementWdg): pass
33.705856
194
0.522472
[ "EPL-1.0" ]
arunpillaii/TACTIC
src/tactic/ui/filter/filter_element_wdg.py
74,827
Python
"""This module contains the general information for BiosVfExecuteDisableBit ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class BiosVfExecuteDisableBitConsts: SUPPORTED_BY_DEFAULT_NO = "no" SUPPORTED_BY_DEFAULT_YES = "yes" VP_EXECUTE_DISABLE_BIT_DISABLED = "disabled" VP_EXECUTE_DISABLE_BIT_ENABLED = "enabled" VP_EXECUTE_DISABLE_BIT_PLATFORM_DEFAULT = "platform-default" VP_EXECUTE_DISABLE_BIT_PLATFORM_RECOMMENDED = "platform-recommended" class BiosVfExecuteDisableBit(ManagedObject): """This is BiosVfExecuteDisableBit class.""" consts = BiosVfExecuteDisableBitConsts() naming_props = set([]) mo_meta = MoMeta("BiosVfExecuteDisableBit", "biosVfExecuteDisableBit", "Execute-Disable-Bit", VersionMeta.Version111j, "InputOutput", 0x3f, [], ["admin", "ls-compute", "ls-config", "ls-server", "ls-server-policy", "pn-policy"], [u'biosSettings', u'biosVProfile'], [], ["Get", "Set"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version111j, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "prop_acl": MoPropertyMeta("prop_acl", "propAcl", "ulong", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "supported_by_default": MoPropertyMeta("supported_by_default", "supportedByDefault", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, None, ["no", "yes"], []), "vp_execute_disable_bit": MoPropertyMeta("vp_execute_disable_bit", "vpExecuteDisableBit", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x20, None, None, None, ["disabled", "enabled", "platform-default", "platform-recommended"], []), } prop_map = { "childAction": "child_action", "dn": "dn", "propAcl": "prop_acl", "rn": "rn", "sacl": "sacl", "status": "status", "supportedByDefault": "supported_by_default", "vpExecuteDisableBit": "vp_execute_disable_bit", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.prop_acl = None self.sacl = None self.status = None self.supported_by_default = None self.vp_execute_disable_bit = None ManagedObject.__init__(self, "BiosVfExecuteDisableBit", parent_mo_or_dn, **kwargs)
57.789474
287
0.687007
[ "Apache-2.0" ]
Curlyfingers/ucsmsdk
ucsmsdk/mometa/bios/BiosVfExecuteDisableBit.py
3,294
Python
""" MIT License Copyright (c) 2021 TheHamkerCat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from pyrogram import filters from wbb import app from wbb.core.decorators.errors import capture_err __MODULE__ = "WebSS" __HELP__ = "/webss | .webss [URL] - Take A Screenshot Of A Webpage" @app.on_message(filters.command("webss")) @capture_err async def take_ss(_, message): try: if len(message.command) != 2: return await message.reply_text( "Give A Url To Fetch Screenshot." ) url = message.text.split(None, 1)[1] m = await message.reply_text("**Taking Screenshot**") await m.edit("**Uploading**") try: await app.send_photo( message.chat.id, photo=f"https://webshot.amanoteam.com/print?q={url}", ) except TypeError: return await m.edit("No Such Website.") await m.delete() except Exception as e: await message.reply_text(str(e))
36.888889
78
0.705823
[ "MIT" ]
TAMILVIP007/WilliamButcherBot
wbb/modules/webss.py
1,992
Python
import tweepy from .config import Config def update_twitter_banner(api: tweepy.API) -> None: """Update the twitter banner of the current profile using the image specified in config.""" api.update_profile_banner(Config.IMAGE_PATH)
26.777778
95
0.767635
[ "MIT" ]
janaSunrise/Spotify-Twitter-Banner
app/twitter.py
241
Python
from torch.optim.lr_scheduler import LambdaLR from transformers import get_linear_schedule_with_warmup from exp import ex def get_no_scheduler(optimizer, num_warmup_steps, num_training_steps): def lr_lambda(current_step): return 1 return LambdaLR(optimizer, lr_lambda) sched_dict = { 'linear': get_linear_schedule_with_warmup, 'none': get_no_scheduler } @ex.capture() def get_scheduler(optimizer, t_total, warmup, scheduler_name, grad_acc_steps): warmup_steps = int(t_total * warmup) scheduler = sched_dict[scheduler_name](optimizer, warmup_steps, t_total) scheduler.accumulated = 0 scheduler.grad_acc_steps = grad_acc_steps return scheduler
27.615385
79
0.747911
[ "MIT" ]
HS-YN/PanoAVQA
code/optimizer/schedulers.py
718
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['PrivateEndpointConnectionArgs', 'PrivateEndpointConnection'] @pulumi.input_type class PrivateEndpointConnectionArgs: def __init__(__self__, *, account_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], group_id: Optional[pulumi.Input[str]] = None, private_endpoint: Optional[pulumi.Input['PrivateEndpointPropertyArgs']] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']] = None, provisioning_state: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a PrivateEndpointConnection resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] group_id: Group id of the private endpoint. :param pulumi.Input['PrivateEndpointPropertyArgs'] private_endpoint: Private endpoint which the connection belongs to. :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection. :param pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs'] private_link_service_connection_state: Connection State of the Private Endpoint Connection. :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint. """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "resource_group_name", resource_group_name) if group_id is not None: pulumi.set(__self__, "group_id", group_id) if private_endpoint is not None: pulumi.set(__self__, "private_endpoint", private_endpoint) if private_endpoint_connection_name is not None: pulumi.set(__self__, "private_endpoint_connection_name", private_endpoint_connection_name) if private_link_service_connection_state is not None: pulumi.set(__self__, "private_link_service_connection_state", private_link_service_connection_state) if provisioning_state is not None: pulumi.set(__self__, "provisioning_state", provisioning_state) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ Cosmos DB database account name. """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="groupId") def group_id(self) -> Optional[pulumi.Input[str]]: """ Group id of the private endpoint. """ return pulumi.get(self, "group_id") @group_id.setter def group_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "group_id", value) @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> Optional[pulumi.Input['PrivateEndpointPropertyArgs']]: """ Private endpoint which the connection belongs to. """ return pulumi.get(self, "private_endpoint") @private_endpoint.setter def private_endpoint(self, value: Optional[pulumi.Input['PrivateEndpointPropertyArgs']]): pulumi.set(self, "private_endpoint", value) @property @pulumi.getter(name="privateEndpointConnectionName") def private_endpoint_connection_name(self) -> Optional[pulumi.Input[str]]: """ The name of the private endpoint connection. """ return pulumi.get(self, "private_endpoint_connection_name") @private_endpoint_connection_name.setter def private_endpoint_connection_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_endpoint_connection_name", value) @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]: """ Connection State of the Private Endpoint Connection. """ return pulumi.get(self, "private_link_service_connection_state") @private_link_service_connection_state.setter def private_link_service_connection_state(self, value: Optional[pulumi.Input['PrivateLinkServiceConnectionStatePropertyArgs']]): pulumi.set(self, "private_link_service_connection_state", value) @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[pulumi.Input[str]]: """ Provisioning state of the private endpoint. """ return pulumi.get(self, "provisioning_state") @provisioning_state.setter def provisioning_state(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "provisioning_state", value) class PrivateEndpointConnection(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, group_id: Optional[pulumi.Input[str]] = None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ A private endpoint connection :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[str] group_id: Group id of the private endpoint. :param pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']] private_endpoint: Private endpoint which the connection belongs to. :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection. :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']] private_link_service_connection_state: Connection State of the Private Endpoint Connection. :param pulumi.Input[str] provisioning_state: Provisioning state of the private endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. """ ... @overload def __init__(__self__, resource_name: str, args: PrivateEndpointConnectionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A private endpoint connection :param str resource_name: The name of the resource. :param PrivateEndpointConnectionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PrivateEndpointConnectionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, group_id: Optional[pulumi.Input[str]] = None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointPropertyArgs']]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStatePropertyArgs']]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PrivateEndpointConnectionArgs.__new__(PrivateEndpointConnectionArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["group_id"] = group_id __props__.__dict__["private_endpoint"] = private_endpoint __props__.__dict__["private_endpoint_connection_name"] = private_endpoint_connection_name __props__.__dict__["private_link_service_connection_state"] = private_link_service_connection_state __props__.__dict__["provisioning_state"] = provisioning_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["name"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:documentdb/v20210615:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20190801preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20190801preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210115:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210115:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210301preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210301preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210315:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210315:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210401preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210401preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210415:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210415:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210515:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210515:PrivateEndpointConnection"), pulumi.Alias(type_="azure-native:documentdb/v20210701preview:PrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210701preview:PrivateEndpointConnection")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateEndpointConnection, __self__).__init__( 'azure-native:documentdb/v20210615:PrivateEndpointConnection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateEndpointConnection': """ Get an existing PrivateEndpointConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateEndpointConnectionArgs.__new__(PrivateEndpointConnectionArgs) __props__.__dict__["group_id"] = None __props__.__dict__["name"] = None __props__.__dict__["private_endpoint"] = None __props__.__dict__["private_link_service_connection_state"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None return PrivateEndpointConnection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="groupId") def group_id(self) -> pulumi.Output[Optional[str]]: """ Group id of the private endpoint. """ return pulumi.get(self, "group_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> pulumi.Output[Optional['outputs.PrivateEndpointPropertyResponse']]: """ Private endpoint which the connection belongs to. """ return pulumi.get(self, "private_endpoint") @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> pulumi.Output[Optional['outputs.PrivateLinkServiceConnectionStatePropertyResponse']]: """ Connection State of the Private Endpoint Connection. """ return pulumi.get(self, "private_link_service_connection_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ Provisioning state of the private endpoint. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
53.00678
1,676
0.703716
[ "Apache-2.0" ]
polivbr/pulumi-azure-native
sdk/python/pulumi_azure_native/documentdb/v20210615/private_endpoint_connection.py
15,637
Python
# Copyright (c) 2017 Rocky Bernstein """ Parsing for a trepan2/trepan3k debugger "breakpoint', "list", or "disasm" command arguments This is a debugger location along with: - an optional condition parsing for breakpoints commands - a range or count for "list" commands """ from __future__ import print_function import sys from spark_parser.ast import AST from gdbloc.scanner import LocationScanner, ScannerError from spark_parser import GenericASTBuilder, DEFAULT_DEBUG class LocationError(Exception): def __init__(self, text, text_cursor): self.text = text self.text_cursor = text_cursor def __str__(self): return self.text + "\n" + self.text_cursor class LocationParser(GenericASTBuilder): """Location parsing as used in trepan2 and trepan3k for list, breakpoint, and assembly commands Note: function parse() comes from GenericASTBuilder """ def __init__(self, start_nt, text, debug=DEFAULT_DEBUG): super(LocationParser, self).__init__(AST, start_nt, debug=debug) self.debug = debug self.text = text def error(self, tokens, index): token = tokens[index] if self.debug.get('local_print', False): print(self.text) print(' ' * (token.offset + len(str(token.value))) + '^') print("Syntax error at or near token '%s'" % token.value) if 'context' in self.debug and self.debug['context']: super(LocationParser, self).error(tokens, index) raise LocationError(self.text, ' ' * (token.offset + len(str(token.value))) + '^') def nonterminal(self, nt, args): has_len = hasattr(args, '__len__') collect = ('tokens',) if nt in collect: # # Collect iterated thingies together. # rv = args[0] for arg in args[1:]: rv.append(arg) if (has_len and len(args) == 1 and hasattr(args[0], '__len__') and len(args[0]) == 1): # Remove singleton derivations rv = GenericASTBuilder.nonterminal(self, nt, args[0]) del args[0] # save memory else: rv = GenericASTBuilder.nonterminal(self, nt, args) return rv ########################################################## # Expression grammar rules. Grammar rule functions # start with the name p_ and are collected automatically ########################################################## def p_bp_location(self, args): ''' bp_start ::= opt_space location_if opt_space ''' # "disasm" command range which might refer to locations, ranges, and addresses def p_asm_range(self, args): ''' arange_start ::= opt_space arange arange ::= range arange ::= addr_location opt_space COMMA opt_space NUMBER arange ::= addr_location opt_space COMMA opt_space OFFSET arange ::= addr_location opt_space COMMA opt_space ADDRESS arange ::= location opt_space COMMA opt_space ADDRESS arange ::= addr_location opt_space COMMA arange ::= addr_location # Unlike ranges, We don't allow ending at an address # arange ::= COMMA opt_space addr_location addr_location ::= location addr_location ::= ADDRESS ''' # "list" command range which may refer to locations def p_list_range(self, args): ''' range_start ::= opt_space range range ::= location opt_space COMMA opt_space NUMBER range ::= location opt_space COMMA opt_space OFFSET range ::= COMMA opt_space location range ::= location opt_space COMMA range ::= location range ::= DIRECTION ''' # location that is used in breakpoints, list commands, and disassembly def p_location(self, args): ''' opt_space ::= SPACE? location_if ::= location location_if ::= location SPACE IF tokens # Note no space is allowed between FILENAME and NUMBER location ::= FILENAME COLON NUMBER location ::= FUNCNAME # If just a number is given, the the filename is implied location ::= NUMBER location ::= METHOD location ::= OFFSET # For tokens we accept anything. Were really just # going to use the underlying string from the part # after "if". So below we all of the possible tokens tokens ::= token+ token ::= COLON token ::= COMMA token ::= DIRECTION token ::= FILENAME token ::= FUNCNAME token ::= NUMBER token ::= OFFSET token ::= SPACE ''' def parse_location(start_symbol, text, out=sys.stdout, show_tokens=False, parser_debug=DEFAULT_DEBUG): assert isinstance(text, str) tokens = LocationScanner().tokenize(text) if show_tokens: for t in tokens: print(t) # For heavy grammar debugging # parser_debug = {'rules': True, 'transition': True, 'reduce': True, # 'errorstack': True, 'dups': True} # parser_debug = {'rules': False, 'transition': False, 'reduce': True, # 'errorstack': 'full', 'dups': False} parser = LocationParser(start_symbol, text, parser_debug) parser.check_grammar(frozenset(('bp_start', 'range_start', 'arange_start'))) return parser.parse(tokens) def parse_bp_location(*args, **kwargs): return parse_location('bp_start', *args, **kwargs) def parse_range(*args, **kwargs): return parse_location('range_start', *args, **kwargs) def parse_arange(*args, **kwargs): return parse_location('arange_start', *args, **kwargs) if __name__ == '__main__': def doit(fn, line): try: ast = fn(line, show_tokens=True) print(ast) except ScannerError as e: print("Scanner error") print(e.text) print(e.text_cursor) except LocationError as e: print("Parser error at or near") print(e.text) print(e.text_cursor) # FIXME: we should make sure all of the below is in a unit test. lines = """ /tmp/foo.py:12 12 ../foo.py:5 gcd() foo.py:5 if x > 1 """.splitlines() for line in lines: if not line.strip(): continue print("=" * 30) print(line) print("+" * 30) doit(parse_bp_location, line) # bad_lines = """ # /tmp/foo.py # '''/tmp/foo.py''' # /tmp/foo.py 12 # gcd() # foo.py if x > 1 # """.splitlines() # for line in bad_lines: # if not line.strip(): # continue # print("=" * 30) # print(line) # print("+" * 30) # doit(parse_bp_location, line) # lines = """ # 1 # 2, # ,3 # 4,10 # """.splitlines() # for line in lines: # if not line.strip(): # continue # print("=" * 30) # print(line) # print("+" * 30) # doit(parse_range, line) # print(ast) lines = ( "*0", "*1 ,", "2 , *10", "2, 10", "*3, 10", "sys.exit() , *20" ) for line in lines: line = line.strip() if not line: continue print("=" * 30) print(line) print("+" * 30) doit(parse_arange, line)
29.98008
82
0.562791
[ "MIT" ]
rocky/python-spark
example/gdb-loc/gdbloc/parser.py
7,525
Python
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module is deprecated. Please use `airflow.providers.google.cloud.hooks.cloud_build`.""" import warnings # pylint: disable=unused-import from airflow.providers.google.cloud.hooks.cloud_build import CloudBuildHook # noqa warnings.warn( "This module is deprecated. Please use `airflow.providers.google.cloud.hooks.cloud_build`.", DeprecationWarning, stacklevel=2 )
40.310345
96
0.775021
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
312day/airflow
airflow/contrib/hooks/gcp_cloud_build_hook.py
1,169
Python
"""woqlClient.py WOQLClient is the Python public API for TerminusDB""" import copy import gzip import json import os import urllib.parse as urlparse import warnings from collections.abc import Iterable from datetime import datetime from enum import Enum from typing import Any, Dict, List, Optional, Union import requests from ..__version__ import __version__ from ..errors import DatabaseError, InterfaceError from ..woql_utils import ( _clean_dict, _dt_dict, _dt_list, _finish_response, _result2stream, ) from ..woqlquery.woql_query import WOQLQuery # WOQL client object # license Apache Version 2 # summary Python module for accessing the Terminus DB API class JWTAuth(requests.auth.AuthBase): """Class for JWT Authentication in requests""" def __init__(self, token): self._token = token def __call__(self, r): r.headers["Authorization"] = f"Bearer {self._token}" return r class APITokenAuth(requests.auth.AuthBase): """Class for API Token Authentication in requests""" def __init__(self, token): self._token = token def __call__(self, r): r.headers["API_TOKEN"] = f"{self._token}" return r class ResourceType(Enum): """Enum for the different TerminusDB resources""" DB = 1 META = 2 REPO = 3 COMMITS = 4 REF = 5 BRANCH = 6 class Patch: def __init__(self, json=None): if json: self.from_json(json) else: self.content = None @property def update(self): def swap_value(swap_item): result_dict = {} for key, item in swap_item.items(): if isinstance(item, dict): operation = item.get("@op") if operation is not None and operation == "SwapValue": result_dict[key] = item.get("@after") elif operation is None: result_dict[key] = swap_value(item) return result_dict return swap_value(self.content) @update.setter def update(self): raise Exception("Cannot set update for patch") @update.deleter def update(self): raise Exception("Cannot delete update for patch") @property def before(self): def extract_before(extract_item): before_dict = {} for key, item in extract_item.items(): if isinstance(item, dict): value = item.get("@before") if value is not None: before_dict[key] = value else: before_dict[key] = extract_before(item) else: before_dict[key] = item return before_dict return extract_before(self.content) @before.setter def before(self): raise Exception("Cannot set before for patch") @before.deleter def before(self): raise Exception("Cannot delete before for patch") def from_json(self, json_str): content = json.loads(json_str) if isinstance(content, dict): self.content = _dt_dict(content) else: self.content = _dt_list(content) def to_json(self): return json.dumps(_clean_dict(self.content)) def copy(self): return copy.deepcopy(self) class WOQLClient: """Client for querying a TerminusDB server using WOQL queries. Attributes ---------- server_url: str URL of the server that this client connected. api: str API endpoint for this client. team: str Team that this client is using. "admin" for local dbs. db: str Database that this client is connected to. user: str TerminiusDB user that this client is using. "admin" for local dbs. branch: str Branch of the database that this client is connected to. Default to "main". ref: str, None Ref setting for the client. Default to None. repo: str Repo identifier of the database that this client is connected to. Default to "local". """ def __init__(self, server_url: str, **kwargs) -> None: r"""The WOQLClient constructor. Parameters ---------- server_url : str URL of the server that this client will connect to. \**kwargs Extra configuration options """ self.server_url = server_url.strip("/") self.api = f"{self.server_url}/api" self._connected = False # properties with get/setters self._team = None self._db = None self._user = None self._branch = None self._ref = None self._repo = None @property def team(self): if isinstance(self._team, str): return urlparse.unquote(self._team) else: return self._team @team.setter def team(self, value): if isinstance(value, str): self._team = urlparse.quote(value) else: self._team = value @property def db(self): if isinstance(self._db, str): return urlparse.unquote(self._db) else: return self._db @db.setter def db(self, value): if isinstance(value, str): self._db = urlparse.quote(value) else: self._db = value @property def user(self): if isinstance(self._user, str): return urlparse.unquote(self._user) else: return self._user @user.setter def user(self, value): if isinstance(value, str): self._user = urlparse.quote(value) else: self._user = value @property def branch(self): if isinstance(self._branch, str): return urlparse.unquote(self._branch) else: return self._branch @branch.setter def branch(self, value): if isinstance(value, str): self._branch = urlparse.quote(value) else: self._branch = value @property def repo(self): if isinstance(self._repo, str): return urlparse.unquote(self._repo) else: self._repo @repo.setter def repo(self, value): if isinstance(value, str): self._repo = urlparse.quote(value) else: self._repo = value @property def ref(self): return self._ref @ref.setter def ref(self, value): if isinstance(value, str): value = value.lower() if value in ["local", "remote", None]: self._ref = value else: raise ValueError("ref can only be 'local' or 'remote'") def connect( self, team: str = "admin", db: Optional[str] = None, remote_auth: str = None, use_token: bool = False, jwt_token: Optional[str] = None, api_token: Optional[str] = None, key: str = "root", user: str = "admin", branch: str = "main", ref: Optional[str] = None, repo: str = "local", **kwargs, ) -> None: r"""Connect to a Terminus server at the given URI with an API key. Stores the connection settings and necessary meta-data for the connected server. You need to connect before most database operations. Parameters ---------- team: str Name of the team, default to be "admin" db: optional, str Name of the database connected remote_auth: optional, str Remote Auth setting key: optional, str API key for connecting, default to be "root" user: optional, str Name of the user, default to be "admin" use_token: bool Use token to connect. If both `jwt_token` and `api_token` is not provided (None), then it will use the ENV variable TERMINUSDB_ACCESS_TOKEN to connect as the API token jwt_token: optional, str The Bearer JWT token to connect. Default to be None. api_token: optional, strs The API token to connect. Default to be None. branch: optional, str Branch to be connected, default to be "main" ref: optional, str Ref setting repo: optional, str Local or remote repo, default to be "local" \**kwargs Extra configuration options. Examples ------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.connect(key="root", team="admin", user="admin", db="example_db") """ self.team = team self.db = db self._remote_auth = remote_auth self._key = key self.user = user self._use_token = use_token self._jwt_token = jwt_token self._api_token = api_token self.branch = branch self.ref = ref self.repo = repo self._connected = True try: self._db_info = json.loads( _finish_response( requests.get( self.api + "/info", headers={ "user-agent": f"terminusdb-client-python/{__version__}" }, auth=self._auth(), ) ) ) except Exception as error: raise InterfaceError( f"Cannot connect to server, please make sure TerminusDB is running at {self.server_url} and the authentication details are correct. Details: {str(error)}" ) from None if self.db is not None: try: _finish_response( requests.head( self._db_url(), headers={ "user-agent": f"terminusdb-client-python/{__version__}" }, params={"exists": "true"}, auth=self._auth(), ) ) except DatabaseError: raise InterfaceError(f"Connection fail, {self.db} does not exist.") self._author = self.user def close(self) -> None: """Undo connect and close the connection. The connection will be unusable from this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the connection, unless connect is call again.""" self._connected = False def _check_connection(self, check_db=True) -> None: """Raise connection InterfaceError if not connected Defaults to check if a db is connected""" if not self._connected: raise InterfaceError("Client is not connected to a TerminusDB server.") if check_db and self.db is None: raise InterfaceError( "No database is connected. Please either connect to a database or create a new database." ) def get_commit_history(self, max_history: int = 500) -> list: """Get the whole commit history. Commit history - Commit id, author of the commit, commit message and the commit time, in the current branch from the current commit, ordered backwards in time, will be returned in a dictionary in the follow format: {"commit_id": {"author": "commit_author", "message": "commit_message", "timestamp: <datetime object of the timestamp>" } } Parameters ---------- max_history: int, optional maximum number of commit that would return, counting backwards from your current commit. Default is set to 500. It need to be nop-negitive, if input is 0 it will still give the last commit. Example ------- >>> from terminusdb_client import WOQLClient >>> client = WOQLClient("https://127.0.0.1:6363" >>> client.connect(db="bank_balance_example") >>> client.get_commit_history() [{'commit': 's90wike9v5xibmrb661emxjs8k7ynwc', 'author': 'admin', 'message': 'Adding Jane', 'timestamp': datetime.da tetime(2020, 9, 3, 15, 29, 34)}, {'commit': '1qhge8qlodajx93ovj67kvkrkxsw3pg', 'author': '[email protected]', 'm essage': 'Adding Jim', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': 'rciy1rfu5foj67ch00ow6f6n njjxe3i', 'author': '[email protected]', 'message': 'Update mike', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': 'n4d86u8juzx852r2ekrega5hl838ovh', 'author': '[email protected]', 'message': 'Add mike', ' timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': '1vk2i8k8xce26p9jpi4zmq1h5vdqyuj', 'author': 'gav [email protected]', 'message': 'Label for balance was wrong', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33) }, {'commit': '9si4na9zv2qol9b189y92fia7ac3hbg', 'author': '[email protected]', 'message': 'Adding bank account object to schema', 'timestamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}, {'commit': '9egc4h0m36l5rbq1alr1fki6jbfu kuv', 'author': 'TerminusDB', 'message': 'internal system operation', 'timstamp': datetime.datetime(2020, 9, 3, 15, 29, 33)}] Returns ------- list """ if max_history < 0: raise ValueError("max_history needs to be non-negative.") if max_history > 1: limit_history = max_history - 1 else: limit_history = 1 woql_query = ( WOQLQuery() .using("_commits") .limit(limit_history) .triple("v:branch", "name", WOQLQuery().string(self.branch)) .triple("v:branch", "head", "v:commit") .path("v:commit", "parent*", "v:target_commit") .triple("v:target_commit", "identifier", "v:cid") .triple("v:target_commit", "author", "v:author") .triple("v:target_commit", "message", "v:message") .triple("v:target_commit", "timestamp", "v:timestamp") ) result = self.query(woql_query).get("bindings") if not result: return result else: result_list = [] for result_item in result: result_list.append( { "commit": result_item["cid"]["@value"], "author": result_item["author"]["@value"], "message": result_item["message"]["@value"], "timestamp": datetime.fromtimestamp( int(result_item["timestamp"]["@value"]) ), } ) return result_list def _get_current_commit(self): woql_query = ( WOQLQuery() .using("_commits") .triple("v:branch", "name", WOQLQuery().string(self.branch)) .triple("v:branch", "head", "v:commit") .triple("v:commit", "identifier", "v:cid") ) result = self.query(woql_query) if not result: return None current_commit = result.get("bindings")[0].get("cid").get("@value") return current_commit def _get_target_commit(self, step): woql_query = ( WOQLQuery() .using("_commits") .path( "v:commit", f"parent{{{step},{step}}}", "v:target_commit", ) .triple("v:branch", "name", WOQLQuery().string(self.branch)) .triple("v:branch", "head", "v:commit") .triple("v:target_commit", "identifier", "v:cid") ) result = self.query(woql_query) target_commit = result.get("bindings")[0].get("cid").get("@value") return target_commit def get_all_branches(self, get_data_version=False): """Get all the branches available in the database.""" self._check_connection() api_url = self._documents_url().split("/") api_url = api_url[:-2] api_url = "/".join(api_url) + "/_commits" result = requests.get( api_url, headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params={"type": "Branch"}, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) return list(_result2stream(result)), version return list(_result2stream(_finish_response(result))) def rollback(self, steps=1) -> None: """Curently not implementated. Please check back later. Raises ---------- NotImplementedError Since TerminusDB currently does not support open transactions. This method is not applicable to it's usage. To reset commit head, use WOQLClient.reset """ raise NotImplementedError( "Open transactions are currently not supported. To reset commit head, check WOQLClient.reset" ) def copy(self) -> "WOQLClient": """Create a deep copy of this client. Returns ------- WOQLClient The copied client instance. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> clone = client.copy() >>> assert client is not clone """ return copy.deepcopy(self) def set_db(self, dbid: str, team: Optional[str] = None) -> str: """Set the connection to another database. This will reset the connection. Parameters ---------- dbid : str Database identifer to set in the config. team : str Team identifer to set in the config. If not passed in, it will use the current one. Returns ------- str The current database identifier. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.set_db("database1") 'database1' """ self._check_connection(check_db=False) if team is None: team = self.team return self.connect( team=team, db=dbid, remote_auth=self._remote_auth, key=self._key, user=self.user, branch=self.branch, ref=self.ref, repo=self.repo, ) def resource(self, ttype: ResourceType, val: Optional[str] = None) -> str: """Create a resource identifier string based on the current config. Parameters ---------- ttype : ResourceType Type of resource. val : str, optional Branch or commit identifier. Returns ------- str The constructed resource string. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363") >>> client.resource(ResourceType.DB) '<team>/<db>/' >>> client.resource(ResourceType.META) '<team>/<db>/_meta' >>> client.resource(ResourceType.COMMITS) '<team>/<db>/<repo>/_commits' >>> client.resource(ResourceType.REF, "<reference>") '<team>/<db>/<repo>/commit/<reference>' >>> client.resource(ResourceType.BRANCH, "<branch>") '<team>/<db>/<repo>/branch/<branch>' """ base = self.team + "/" + self.db + "/" ref_value = val if val else self.ref branch_value = val if val else self.branch urls = { ResourceType.DB: base, ResourceType.META: f"{base}_meta", ResourceType.REPO: f"{base}{self.repo}/_meta", ResourceType.COMMITS: f"{base}{self.repo}/_commits", ResourceType.REF: f"{base}{self.repo}/commit/{ref_value}", ResourceType.BRANCH: f"{base}{self.repo}/{branch_value}", } return urls[ttype] def _get_prefixes(self): """Get the prefixes for a given database""" self._check_connection() result = requests.get( self._db_base("prefixes"), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) return json.loads(_finish_response(result)) def create_database( self, dbid: str, team: Optional[str] = None, label: Optional[str] = None, description: Optional[str] = None, prefixes: Optional[dict] = None, include_schema: bool = True, ) -> None: """Create a TerminusDB database by posting a terminus:Database document to the Terminus Server. Parameters ---------- dbid : str Unique identifier of the database. team : str, optional ID of the Team in which to create the DB (defaults to 'admin') label : str, optional Database name. description : str, optional Database description. prefixes : dict, optional Optional dict containing ``"@base"`` and ``"@schema"`` keys. @base (str) IRI to use when ``doc:`` prefixes are expanded. Defaults to ``terminusdb:///data``. @schema (str) IRI to use when ``scm:`` prefixes are expanded. Defaults to ``terminusdb:///schema``. include_schema : bool If ``True``, a main schema graph will be created, otherwise only a main instance graph will be created. Raises ------ InterfaceError if the client does not connect to a server Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.create_database("someDB", "admin", "Database Label", "My Description") """ self._check_connection(check_db=False) details: Dict[str, Any] = {} if label: details["label"] = label else: details["label"] = dbid if description: details["comment"] = description else: details["comment"] = "" if include_schema: details["schema"] = True if prefixes: details["prefixes"] = prefixes if team is None: team = self.team self.team = team self._connected = True self.db = dbid _finish_response( requests.post( self._db_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=details, auth=self._auth(), ) ) def delete_database( self, dbid: Optional[str] = None, team: Optional[str] = None, force: bool = False, ) -> None: """Delete a TerminusDB database. If ``team`` is provided, then the team in the config will be updated and the new value will be used in future requests to the server. Parameters ---------- dbid : str ID of the database to delete team : str, optional the team in which the database resides (defaults to "admin") force: bool Raises ------ UserWarning If the value of dbid is None. InterfaceError if the client does not connect to a server. Examples ------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.delete_database("<database>", "<team>") """ self._check_connection(check_db=False) if dbid is None: raise UserWarning( f"You are currently using the database: {self.team}/{self.db}. If you want to delete it, please do 'delete_database({self.db},{self.team})' instead." ) self.db = dbid if team is None: warnings.warn( f"Delete Database Warning: You have not specify the team, assuming {self.team}/{self.db}" ) else: self.team = team payload = {"force": force} _finish_response( requests.delete( self._db_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), params=payload, ) ) self.db = None def _validate_graph_type(self, graph_type): if graph_type not in ["instance", "schema"]: raise ValueError("graph_type can only be 'instance' or 'schema'") def get_triples(self, graph_type: str) -> str: """Retrieves the contents of the specified graph as triples encoded in turtle format Parameters ---------- graph_type : str Graph type, either "instance" or "schema". Raises ------ InterfaceError if the client does not connect to a database Returns ------- str """ ### TODO: make triples works again raise InterfaceError("get_triples is temporary not avaliable in this version") self._check_connection() self._validate_graph_type(graph_type) result = requests.get( self._triples_url(graph_type), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) return json.loads(_finish_response(result)) def update_triples(self, graph_type: str, turtle, commit_msg: str) -> None: """Updates the contents of the specified graph with the triples encoded in turtle format Replaces the entire graph contents Parameters ---------- graph_type : str Graph type, either "instance" or "schema". turtle Valid set of triples in Turtle format. commit_msg : str Commit message. Raises ------ InterfaceError if the client does not connect to a database """ ### TODO: make triples works again raise InterfaceError( "update_triples is temporary not avaliable in this version" ) self._check_connection() self._validate_graph_type(graph_type) params = {"commit_info": self._generate_commit(commit_msg)} params["turtle"] = turtle result = requests.post( self._triples_url(graph_type), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=params, auth=self._auth(), ) return json.loads(_finish_response(result)) def insert_triples( self, graph_type: str, turtle, commit_msg: Optional[str] = None ) -> None: """Inserts into the specified graph with the triples encoded in turtle format. Parameters ---------- graph_type : str Graph type, either "instance" or "schema". turtle Valid set of triples in Turtle format. commit_msg : str Commit message. Raises ------ InterfaceError if the client does not connect to a database """ ### TODO: make triples works again raise InterfaceError( "insert_triples is temporary not avaliable in this version" ) self._check_connection() self._validate_graph_type(graph_type) params = {"commit_info": self._generate_commit(commit_msg)} params["turtle"] = turtle result = requests.put( self._triples_url(graph_type), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=params, auth=self._auth(), ) return json.loads(_finish_response(result)) def query_document( self, document_template: dict, graph_type: str = "instance", skip: int = 0, count: Optional[int] = None, as_list: bool = False, get_data_version: bool = False, **kwargs, ) -> Union[Iterable, list]: """Retrieves all documents that match a given document template Parameters ---------- document_template : dict Template for the document that is being retrived graph_type : str, optional Graph type, either "instance" or "schema". as_list: bool If the result returned as list rather than an iterator. get_data_version: bool If the data version of the document(s) should be obtained. If True, the method return the result and the version as a tuple. Raises ------ InterfaceError if the client does not connect to a database Returns ------- Iterable """ self._validate_graph_type(graph_type) self._check_connection() payload = {"query": document_template, "graph_type": graph_type} payload["skip"] = skip if count is not None: payload["count"] = count add_args = ["prefixed", "minimized", "unfold"] for the_arg in add_args: if the_arg in kwargs: payload[the_arg] = kwargs[the_arg] result = requests.post( self._documents_url(), headers={ "user-agent": f"terminusdb-client-python/{__version__}", "X-HTTP-Method-Override": "GET", }, json=payload, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) return_obj = _result2stream(result) if as_list: return list(return_obj), version else: return return_obj, version return_obj = _result2stream(_finish_response(result)) if as_list: return list(return_obj) else: return return_obj def get_document( self, iri_id: str, graph_type: str = "instance", get_data_version: bool = False, **kwargs, ) -> dict: """Retrieves the document of the iri_id Parameters ---------- iri_id : str Iri id for the docuemnt that is retriving graph_type : str, optional Graph type, either "instance" or "schema". get_data_version: bool If the data version of the document(s) should be obtained. If True, the method return the result and the version as a tuple. kwargs: Additional boolean flags for retriving. Currently avaliable: "prefixed", "minimized", "unfold" Raises ------ InterfaceError if the client does not connect to a database Returns ------- dict """ self._validate_graph_type(graph_type) add_args = ["prefixed", "minimized", "unfold"] self._check_connection() payload = {"id": iri_id, "graph_type": graph_type} for the_arg in add_args: if the_arg in kwargs: payload[the_arg] = kwargs[the_arg] result = requests.get( self._documents_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=payload, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) return json.loads(result), version return json.loads(_finish_response(result)) def get_documents_by_type( self, doc_type: str, graph_type: str = "instance", skip: int = 0, count: Optional[int] = None, as_list: bool = False, get_data_version=False, **kwargs, ) -> Union[Iterable, list]: """Retrieves the documents by type Parameters ---------- doc_type : str Specific type for the docuemnts that is retriving graph_type : str, optional Graph type, either "instance" or "schema". skip: int The starting posiion of the returning results, default to be 0 count: int or None The maximum number of returned result, if None (default) it will return all of the avalible result. as_list: bool If the result returned as list rather than an iterator. get_data_version: bool If the version of the document(s) should be obtained. If True, the method return the result and the version as a tuple. kwargs: Additional boolean flags for retriving. Currently avaliable: "prefixed", "unfold" Raises ------ InterfaceError if the client does not connect to a database Returns ------- iterable Stream of dictionaries """ self._validate_graph_type(graph_type) add_args = ["prefixed", "unfold"] self._check_connection() payload = {"type": doc_type, "graph_type": graph_type} payload["skip"] = skip if count is not None: payload["count"] = count for the_arg in add_args: if the_arg in kwargs: payload[the_arg] = kwargs[the_arg] result = requests.get( self._documents_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=payload, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) return_obj = _result2stream(result) if as_list: return list(return_obj), version else: return return_obj, version return_obj = _result2stream(_finish_response(result)) if as_list: return list(return_obj) else: return return_obj def get_all_documents( self, graph_type: str = "instance", skip: int = 0, count: Optional[int] = None, as_list: bool = False, get_data_version: bool = False, **kwargs, ) -> Union[Iterable, list, tuple]: """Retrieves all avalibale the documents Parameters ---------- graph_type : str, optional Graph type, either "instance" or "schema". skip: int The starting posiion of the returning results, default to be 0 count: int or None The maximum number of returned result, if None (default) it will return all of the avalible result. as_list: bool If the result returned as list rather than an iterator. get_data_version: bool If the version of the document(s) should be obtained. If True, the method return the result and the version as a tuple. kwargs: Additional boolean flags for retriving. Currently avaliable: "prefixed", "unfold" Raises ------ InterfaceError if the client does not connect to a database Returns ------- iterable Stream of dictionaries """ self._validate_graph_type(graph_type) add_args = ["prefixed", "unfold"] self._check_connection() payload = {"graph_type": graph_type} payload["skip"] = skip if count is not None: payload["count"] = count for the_arg in add_args: if the_arg in kwargs: payload[the_arg] = kwargs[the_arg] result = requests.get( self._documents_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=payload, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) return_obj = _result2stream(result) if as_list: return list(return_obj), version else: return return_obj, version return_obj = _result2stream(_finish_response(result)) if as_list: return list(return_obj) else: return return_obj def get_existing_classes(self): """Get all the existing classes (only ids) in a database.""" all_existing_obj = self.get_all_documents(graph_type="schema") all_existing_class = {} for item in all_existing_obj: if item.get("@id"): all_existing_class[item["@id"]] = item return all_existing_class def _conv_to_dict(self, obj): if isinstance(obj, dict): return _clean_dict(obj) elif hasattr(obj, "to_dict"): return obj.to_dict() elif hasattr(obj, "_to_dict"): if hasattr(obj, "_isinstance") and obj._isinstance: if hasattr(obj.__class__, "_subdocument"): raise ValueError("Subdocument cannot be added directly") return obj._obj_to_dict() else: return obj._to_dict() else: raise ValueError("Object cannot convert to dictionary") def _ref_extract(self, target_key, search_item): if hasattr(search_item, "items"): for key, value in search_item.items(): if key == target_key: yield value if isinstance(value, dict): yield from self._ref_extract(target_key, value) elif isinstance(value, list): for item in value: yield from self._ref_extract(target_key, item) def _convert_dcoument(self, document, graph_type): if isinstance(document, list): new_doc = [] captured = [] referenced = [] for item in document: item_dict = self._conv_to_dict(item) new_doc.append(item_dict) item_capture = item_dict.get("@capture") if item_capture: captured.append(item_capture) referenced += list(self._ref_extract("@ref", item_dict)) referenced = list(set(referenced)) for item in referenced: if item not in captured: raise ValueError( f"{item} is referenced but not captured. Seems you forgot to submit one or more object(s)." ) else: if hasattr(document, "to_dict") and graph_type != "schema": raise InterfaceError( "Inserting WOQLSchema object into non-schema graph." ) new_doc = self._conv_to_dict(document) if isinstance(new_doc, dict) and list(self._ref_extract("@ref", new_doc)): raise ValueError( "There are uncaptured references. Seems you forgot to submit one or more object(s)." ) return new_doc def insert_document( self, document: Union[ dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], graph_type: str = "instance", full_replace: bool = False, commit_msg: Optional[str] = None, last_data_version: Optional[str] = None, compress: Union[str, int] = 1024, ) -> None: """Inserts the specified document(s) Parameters ---------- document: dict or list of dict Document(s) to be inserted. graph_type : str Graph type, either "inference", "instance" or "schema". full_replace:: bool If True then the whole graph will be replaced. WARNING: you should also supply the context object as the first element in the list of documents if using this option. commit_msg : str Commit message. last_data_version : str Last version before the update, used to check if the document has been changed unknowingly compress : str or int If it is an integer, size of the data larger than this (in bytes) will be compress with gzip in the request (assume encoding as UTF-8, 0 = always compress). If it is `never` it will never compress the data. Raises ------ InterfaceError if the client does not connect to a database Returns ------- list list of ids of the inseted docuemnts """ self._validate_graph_type(graph_type) self._check_connection() params = self._generate_commit(commit_msg) params["graph_type"] = graph_type if full_replace: params["full_replace"] = "true" else: params["full_replace"] = "false" headers = {"user-agent": f"terminusdb-client-python/{__version__}"} if last_data_version is not None: headers["TerminusDB-Data-Version"] = last_data_version new_doc = self._convert_dcoument(document, graph_type) if len(new_doc) == 0: return elif not isinstance(new_doc, list): new_doc = [new_doc] if full_replace: if new_doc[0].get("@type") != "@context": raise ValueError( "The first item in docuemnt need to be dictionary representing the context object." ) else: if new_doc[0].get("@type") == "@context": warnings.warn( "To replace context, need to use `full_replace` or `replace_document`, skipping context object now." ) new_doc.pop(0) json_string = json.dumps(new_doc).encode("utf-8") if compress != "never" and len(json_string) > compress: headers.update( {"Content-Encoding": "gzip", "Content-Type": "application/json"} ) result = requests.post( self._documents_url(), headers=headers, params=params, data=gzip.compress(json_string), auth=self._auth(), ) else: result = requests.post( self._documents_url(), headers=headers, params=params, json=new_doc, auth=self._auth(), ) result = json.loads(_finish_response(result)) if isinstance(document, list): for idx, item in enumerate(document): if hasattr(item, "_obj_to_dict") and not hasattr(item, "_backend_id"): item._backend_id = result[idx][len("terminusdb:///data/") :] return result def replace_document( self, document: Union[ dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], graph_type: str = "instance", commit_msg: Optional[str] = None, last_data_version: Optional[str] = None, compress: Union[str, int] = 1024, create: bool = False, ) -> None: """Updates the specified document(s) Parameters ---------- document: dict or list of dict Document(s) to be updated. graph_type : str Graph type, either "instance" or "schema". commit_msg : str Commit message. last_data_version : str Last version before the update, used to check if the document has been changed unknowingly compress : str or int If it is an integer, size of the data larger than this (in bytes) will be compress with gzip in the request (assume encoding as UTF-8, 0 = always compress). If it is `never` it will never compress the data. create : bool Create the document if it does not yet exist. Raises ------ InterfaceError if the client does not connect to a database """ self._validate_graph_type(graph_type) self._check_connection() params = self._generate_commit(commit_msg) params["graph_type"] = graph_type params["create"] = "true" if create else "false" headers = {"user-agent": f"terminusdb-client-python/{__version__}"} if last_data_version is not None: headers["TerminusDB-Data-Version"] = last_data_version new_doc = self._convert_dcoument(document, graph_type) json_string = json.dumps(new_doc).encode("utf-8") if compress != "never" and len(json_string) > compress: headers.update( {"Content-Encoding": "gzip", "Content-Type": "application/json"} ) result = requests.put( self._documents_url(), headers=headers, params=params, data=gzip.compress(json_string), auth=self._auth(), ) else: result = requests.put( self._documents_url(), headers=headers, params=params, json=new_doc, auth=self._auth(), ) result = json.loads(_finish_response(result)) if isinstance(document, list): for idx, item in enumerate(document): if hasattr(item, "_obj_to_dict") and not hasattr(item, "_backend_id"): item._backend_id = result[idx][len("terminusdb:///data/") :] return result def update_document( self, document: Union[ dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], graph_type: str = "instance", commit_msg: Optional[str] = None, last_data_version: Optional[str] = None, compress: Union[str, int] = 1024, ) -> None: """Updates the specified document(s). Add the document if not existed. Parameters ---------- document: dict or list of dict Document(s) to be updated. graph_type : str Graph type, either "instance" or "schema". commit_msg : str Commit message. last_data_version : str Last version before the update, used to check if the document has been changed unknowingly compress : str or int If it is an integer, size of the data larger than this (in bytes) will be compress with gzip in the request (assume encoding as UTF-8, 0 = always compress). If it is `never` it will never compress the data. Raises ------ InterfaceError if the client does not connect to a database """ self.replace_document( document, graph_type, commit_msg, last_data_version, compress, True ) def delete_document( self, document: Union[str, list, dict, Iterable], graph_type: str = "instance", commit_msg: Optional[str] = None, last_data_version: Optional[str] = None, ) -> None: """Delete the specified document(s) Parameters ---------- document: str or list of str Document(s) (as dictionary or DocumentTemplate objects) or id(s) of document(s) to be updated. graph_type : str Graph type, either "instance" or "schema". commit_msg : str Commit message. last_data_version : str Last version before the update, used to check if the document has been changed unknowingly Raises ------ InterfaceError if the client does not connect to a database """ self._validate_graph_type(graph_type) self._check_connection() doc_id = [] if not isinstance(document, (str, list, dict)) and hasattr( document, "__iter__" ): document = list(document) if not isinstance(document, list): document = [document] for doc in document: if hasattr(doc, "_obj_to_dict"): doc = doc._obj_to_dict() if isinstance(doc, dict) and doc.get("@id"): doc_id.append(doc.get("@id")) elif isinstance(doc, str): doc_id.append(doc) params = self._generate_commit(commit_msg) params["graph_type"] = graph_type headers = {"user-agent": f"terminusdb-client-python/{__version__}"} if last_data_version is not None: headers["TerminusDB-Data-Version"] = last_data_version _finish_response( requests.delete( self._documents_url(), headers=headers, params=params, json=doc_id, auth=self._auth(), ) ) def has_doc(self, doc_id: str, graph_type: str = "instance") -> bool: """Check if a certain document exist in a database Parameters ---------- doc_id: str Id of document to be checked. graph_type : str Graph type, either "instance" or "schema". returns ------- Bool if the document exist """ self._validate_graph_type(graph_type) self._check_connection() all_existing_obj = self.get_all_documents(graph_type=graph_type) all_existing_id = list(map(lambda x: x.get("@id"), all_existing_obj)) return doc_id in all_existing_id def get_class_frame(self, class_name): """Get the frame of the class of class_name. Provide information about all the avaliable properties of that class. Parameters ---------- class_name: str Name of the class returns ------- dict Dictionary containing information """ self._check_connection() opts = {"type": class_name} result = requests.get( self._class_frame_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, params=opts, auth=self._auth(), ) return json.loads(_finish_response(result)) def commit(self): """Not implementated: open transactions currently not suportted. Please check back later.""" def query( self, woql_query: Union[dict, WOQLQuery], commit_msg: Optional[str] = None, get_data_version: bool = False, last_data_version: Optional[str] = None, # file_dict: Optional[dict] = None, ) -> Union[dict, str]: """Updates the contents of the specified graph with the triples encoded in turtle format Replaces the entire graph contents Parameters ---------- woql_query : dict or WOQLQuery object A woql query as an object or dict commit_mg : str A message that will be written to the commit log to describe the change get_data_version: bool If the data version of the query result(s) should be obtained. If True, the method return the result and the version as a tuple. last_data_version : str Last version before the update, used to check if the document has been changed unknowingly file_dict: **deprecated** File dictionary to be associated with post name => filename, for multipart POST Raises ------ InterfaceError if the client does not connect to a database Examples ------- >>> WOQLClient(server="http://localhost:6363").query(woql, "updating graph") Returns ------- dict """ self._check_connection() query_obj = {"commit_info": self._generate_commit(commit_msg)} if isinstance(woql_query, WOQLQuery): request_woql_query = woql_query.to_dict() else: request_woql_query = woql_query query_obj["query"] = request_woql_query headers = {"user-agent": f"terminusdb-client-python/{__version__}"} if last_data_version is not None: headers["TerminusDB-Data-Version"] = last_data_version result = requests.post( self._query_url(), headers=headers, json=query_obj, auth=self._auth(), ) if get_data_version: result, version = _finish_response(result, get_data_version) result = json.loads(result) else: result = json.loads(_finish_response(result)) if result.get("inserts") or result.get("deletes"): return "Commit successfully made." elif get_data_version: return result, version else: return result def create_branch(self, new_branch_id: str, empty: bool = False) -> None: """Create a branch starting from the current branch. Parameters ---------- new_branch_id : str New branch identifier. empty : bool Create an empty branch if true (no starting commit) Raises ------ InterfaceError if the client does not connect to a database """ self._check_connection() if empty: source = {} elif self.ref: source = {"origin": f"{self.team}/{self.db}/{self.repo}/commit/{self.ref}"} else: source = { "origin": f"{self.team}/{self.db}/{self.repo}/branch/{self.branch}" } _finish_response( requests.post( self._branch_url(new_branch_id), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=source, auth=self._auth(), ) ) def delete_branch(self, branch_id: str) -> None: """Delete a branch Parameters ---------- branch_id : str Branch to delete Raises ------ InterfaceError if the client does not connect to a database """ self._check_connection() _finish_response( requests.delete( self._branch_url(branch_id), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) ) def pull( self, remote: str = "origin", remote_branch: Optional[str] = None, message: Optional[str] = None, author: Optional[str] = None, ) -> dict: """Pull updates from a remote repository to the current database. Parameters ---------- remote: str remote to pull from, default "origin" remote_branch: str, optional remote branch to pull from, default to be your current barnch message: str, optional optional commit message author: str, optional option to overide the author of the operation Raises ------ InterfaceError if the client does not connect to a database Returns ------- dict Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.pull() """ self._check_connection() if remote_branch is None: remote_branch = self.branch if author is None: author = self.author if message is None: message = ( f"Pulling from {remote}/{remote_branch} by Python client {__version__}" ) rc_args = { "remote": remote, "remote_branch": remote_branch, "author": author, "message": message, } result = requests.post( self._pull_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=rc_args, auth=self._auth(), ) return json.loads(_finish_response(result)) def fetch(self, remote_id: str) -> dict: """Fatch the brach from a remote Parameters ---------- remote_id: str id of the remote Raises ------ InterfaceError if the client does not connect to a database""" self._check_connection() result = requests.post( self._fetch_url(remote_id), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) return json.loads(_finish_response(result)) def push( self, remote: str = "origin", remote_branch: Optional[str] = None, message: Optional[str] = None, author: Optional[str] = None, ) -> dict: """Push changes from a branch to a remote repo Parameters ---------- remote: str remote to push to, default "origin" remote_branch: str, optional remote branch to push to, default to be your current barnch message: str, optional optional commit message author: str, optional option to overide the author of the operation Raises ------ InterfaceError if the client does not connect to a database Examples ------- >>> WOQLClient(server="http://localhost:6363").push(remote="origin", remote_branch = "main", author = "admin", message = "commit message"}) Returns ------- dict """ self._check_connection() if remote_branch is None: remote_branch = self.branch if author is None: author = self._author if message is None: message = ( f"Pushing to {remote}/{remote_branch} by Python client {__version__}" ) rc_args = { "remote": remote, "remote_branch": remote_branch, "author": author, "message": message, } result = requests.post( self._push_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=rc_args, auth=self._auth(), ) return json.loads(_finish_response(result)) def rebase( self, branch: Optional[str] = None, commit: Optional[str] = None, rebase_source: Optional[str] = None, message: Optional[str] = None, author: Optional[str] = None, ) -> dict: """Rebase the current branch onto the specified remote branch. Need to specify one of 'branch','commit' or the 'rebase_source'. Notes ----- The "remote" repo can live in the local database. Parameters ---------- branch : str, optional the branch for the rebase rebase_source : str, optional the source branch for the rebase message : str, optional the commit message author : str, optional the commit author Raises ------ InterfaceError if the client does not connect to a database Returns ------- dict Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.rebase("the_branch") """ self._check_connection() if branch is not None and commit is None: rebase_source = "/".join([self.team, self.db, self.repo, "branch", branch]) elif branch is None and commit is not None: rebase_source = "/".join([self.team, self.db, self.repo, "commit", commit]) elif branch is not None or commit is not None: raise RuntimeError("Cannot specify both branch and commit.") elif rebase_source is None: raise RuntimeError( "Need to specify one of 'branch', 'commit' or the 'rebase_source'" ) if author is None: author = self._author if message is None: message = f"Rebase from {rebase_source} by Python client {__version__}" rc_args = {"rebase_from": rebase_source, "author": author, "message": message} result = requests.post( self._rebase_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=rc_args, auth=self._auth(), ) return json.loads(_finish_response(result)) def reset( self, commit: Optional[str] = None, soft: bool = False, use_path: bool = False ) -> None: """Reset the current branch HEAD to the specified commit path. If `soft` is not True, it will be a hard reset, meaning reset to that commit in the backend and newer commit will be wipped out. If `soft` is True, the client will only reference to that commit and can be reset to the newest commit when done. Raises ------ InterfaceError if the client does not connect to a database Notes ----- The "remote" repo can live in the local database. Parameters ---------- commit: string Commit id or path to the commit (if use_path is True), for instance '234980523ffaf93' or 'admin/database/local/commit/234980523ffaf93'. If not provided, it will reset to the newest commit (useful when need to go back after a soft reset). soft: bool Flag indicating if the reset if soft, that is referencing to a previous commit instead of resetting to a previous commit in the backend and wipping newer commits. use_path : bool Wheather or not the commit given is an id or path. Default using id and use_path is False. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.reset('234980523ffaf93') >>> client.reset('admin/database/local/commit/234980523ffaf93', use_path=True) """ self._check_connection() if soft: if use_path: self._ref = commit.split("/")[-1] else: self._ref = commit return None else: self._ref = None if commit is None: return None if use_path: commit_path = commit else: commit_path = f"{self.team}/{self.db}/{self.repo}/commit/{commit}" _finish_response( requests.post( self._reset_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json={"commit_descriptor": commit_path}, auth=self._auth(), ) ) def optimize(self, path: str) -> None: """Optimize the specified path. Raises ------ InterfaceError if the client does not connect to a database Notes ----- The "remote" repo can live in the local database. Parameters ---------- path : string Path to optimize, for instance admin/database/_meta for the repo graph. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.optimize('admin/database') # optimise database branch (here main) >>> client.optimize('admin/database/_meta') # optimise the repository graph (actually creates a squashed flat layer) >>> client.optimize('admin/database/local/_commits') # commit graph is optimised """ self._check_connection() _finish_response( requests.post( self._optimize_url(path), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) ) def squash( self, message: Optional[str] = None, author: Optional[str] = None, reset: bool = False, ) -> str: """Squash the current branch HEAD into a commit Raises ------ InterfaceError if the client does not connect to a database Notes ----- The "remote" repo can live in the local database. Parameters ---------- message : string Message for the newly created squash commit author : string Author of the commit reset : bool Perform reset after squash Returns ------- str commit id to be reset Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.connect(user="admin", key="root", team="admin", db="some_db") >>> client.squash('This is a squash commit message!') """ self._check_connection() result = requests.post( self._squash_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json={"commit_info": self._generate_commit(message, author)}, auth=self._auth(), ) # API response: # {'@type' : 'api:SquashResponse', # 'api:commit' : Commit, # 'api:old_commit' : Old_Commit, # 'api:status' : "api:success"} commit_id = json.loads(_finish_response(result)).get("api:commit") if reset: self.reset(commit_id) return commit_id def _convert_diff_dcoument(self, document): if isinstance(document, list): new_doc = [] for item in document: item_dict = self._conv_to_dict(item) new_doc.append(item_dict) else: new_doc = self._conv_to_dict(document) return new_doc def diff( self, before: Union[ str, dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], after: Union[ str, dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], document_id: Union[str, None] = None ): """Perform diff on 2 set of document(s), result in a Patch object. Do not connect when using public API. Returns ------- obj Patch object Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.connect(user="admin", key="root", team="admin", db="some_db") >>> result = client.diff({ "@id" : "Person/Jane", "@type" : "Person", "name" : "Jane"}, { "@id" : "Person/Jane", "@type" : "Person", "name" : "Janine"}) >>> result.to_json = '{ "name" : { "@op" : "SwapValue", "@before" : "Jane", "@after": "Janine" }}'""" request_dict = {} for key, item in {"before": before, "after": after}.items(): if isinstance(item, str): request_dict[f"{key}_data_version"] = item else: request_dict[key] = self._convert_diff_dcoument(item) if document_id is not None: if "before_data_version" in request_dict: if document_id[:len("terminusdb:///data")] == "terminusdb:///data": request_dict["document_id"] = document_id else: raise ValueError(f"Valid document id starts with `terminusdb:///data`, but got {document_id}") else: raise ValueError("`document_id` can only be used in conjusction with a data version or commit ID as `before`, not a document object") if self._connected: result = _finish_response( requests.post( self._diff_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=request_dict, auth=self._auth(), ) ) else: result = _finish_response( requests.post( self.server_url, headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=request_dict, ) ) return Patch(json=result) def patch( self, before: Union[ dict, List[dict], "WOQLSchema", # noqa:F821 "DocumentTemplate", # noqa:F821 List["DocumentTemplate"], # noqa:F821 ], patch: Patch, ): """Apply the patch object to the before object and return an after object. Note that this change does not commit changes to the graph. Do not connect when using public API. Returns ------- dict After object Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.connect(user="admin", key="root", team="admin", db="some_db") >>> patch_obj = Patch(json='{"name" : { "@op" : "ValueSwap", "@before" : "Jane", "@after": "Janine" }}') >>> result = client.patch({ "@id" : "Person/Jane", "@type" : Person", "name" : "Jane"}, patch_obj) >>> print(result) '{ "@id" : "Person/Jane", "@type" : Person", "name" : "Janine"}'""" request_dict = { "before": self._convert_diff_dcoument(before), "patch": patch.content, } if self._connected: result = _finish_response( requests.post( self._patch_url(), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=request_dict, auth=self._auth(), ) ) else: result = _finish_response( requests.post( self.server_url, headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=request_dict, ) ) return json.loads(result) def clonedb( self, clone_source: str, newid: str, description: Optional[str] = None ) -> None: """Clone a remote repository and create a local copy. Parameters ---------- clone_source : str The source url of the repo to be cloned. newid : str Identifier of the new repository to create. Description : str, optional Optional description about the cloned database. Raises ------ InterfaceError if the client does not connect to a database Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client.clonedb("http://terminusdb.com/some_user/test_db", "my_test_db") """ self._check_connection() if description is None: description = f"New database {newid}" rc_args = {"remote_url": clone_source, "label": newid, "comment": description} _finish_response( requests.post( self._clone_url(newid), headers={"user-agent": f"terminusdb-client-python/{__version__}"}, json=rc_args, auth=self._auth(), ) ) def _generate_commit( self, msg: Optional[str] = None, author: Optional[str] = None ) -> dict: """Pack the specified commit info into a dict format expected by the server. Parameters ---------- msg : str Commit message. author : str Commit author. Returns ------- dict Formatted commit info. Examples -------- >>> client = WOQLClient("https://127.0.0.1:6363/") >>> client._generate_commit("<message>", "<author>") {'author': '<author>', 'message': '<message>'} """ if author: mes_author = author else: mes_author = self._author if not msg: msg = f"Commit via python client {__version__}" return {"author": mes_author, "message": msg} def _auth(self): # if https basic if not self._use_token and self._connected and self._key and self.user: return (self.user, self._key) elif self._connected and self._jwt_token is not None: return JWTAuth(self._jwt_token) elif self._connected and self._api_token is not None: return APITokenAuth(self._api_token) elif self._connected: return APITokenAuth(os.environ["TERMINUSDB_ACCESS_TOKEN"]) else: raise RuntimeError("Client not connected.") # TODO: remote_auth def get_database(self, dbid: str) -> Optional[dict]: """ Returns metadata (id, organization, label, comment) about the requested database Parameters ---------- dbid : str The id of the database Raises ------ InterfaceError if the client does not connect to a server Returns ------- dict or None if not found """ self._check_connection(check_db=False) for this_db in self.get_databases(): if this_db["name"] == dbid: return this_db return None def get_databases(self) -> List[dict]: """ Returns a list of database metadata records for all databases the user has access to Raises ------ InterfaceError if the client does not connect to a server Returns ------- list of dicts """ self._check_connection(check_db=False) result = requests.get( self.api + "/", headers={"user-agent": f"terminusdb-client-python/{__version__}"}, auth=self._auth(), ) return json.loads(_finish_response(result)) def list_databases(self) -> List[Dict]: """ Returns a list of database ids for all databases the user has access to Raises ------ InterfaceError if the client does not connect to a server Returns ------- list of dicts """ self._check_connection(check_db=False) all_dbs = [] for data in self.get_databases(): all_dbs.append(data["name"]) return all_dbs def _db_url_fragment(self): if self._db == "_system": return self._db return f"{self._team}/{self._db}" def _db_base(self, action: str): return f"{self.api}/{action}/{self._db_url_fragment()}" def _branch_url(self, branch_id: str): base_url = self._repo_base("branch") branch_id = urlparse.quote(branch_id) return f"{base_url}/branch/{branch_id}" def _repo_base(self, action: str): return self._db_base(action) + f"/{self._repo}" def _branch_base(self, action: str): base = self._repo_base(action) if self._repo == "_meta": return base if self._branch == "_commits": return base + f"/{self._branch}" elif self.ref: return base + f"/commit/{self._ref}" else: return base + f"/branch/{self._branch}" return base def _query_url(self): if self._db == "_system": return self._db_base("woql") return self._branch_base("woql") def _class_frame_url(self): if self._db == "_system": return self._db_base("schema") return self._branch_base("schema") def _documents_url(self): if self._db == "_system": base_url = self._db_base("document") else: base_url = self._branch_base("document") return base_url def _triples_url(self, graph_type="instance"): if self._db == "_system": base_url = self._db_base("triples") else: base_url = self._branch_base("triples") return f"{base_url}/{graph_type}" def _clone_url(self, new_repo_id: str): new_repo_id = urlparse.quote(new_repo_id) return f"{self.api}/clone/{self._team}/{new_repo_id}" def _cloneable_url(self): crl = f"{self.server_url}/{self._team}/{self._db}" return crl def _pull_url(self): return self._branch_base("pull") def _fetch_url(self, remote_name: str): furl = self._branch_base("fetch") remote_name = urlparse.quote(remote_name) return furl + "/" + remote_name + "/_commits" def _rebase_url(self): return self._branch_base("rebase") def _reset_url(self): return self._branch_base("reset") def _optimize_url(self, path: str): path = urlparse.quote(path) return f"{self.api}/optimize/{path}" def _squash_url(self): return self._branch_base("squash") def _diff_url(self): return self._branch_base("diff") def _patch_url(self): return self._branch_base("patch") def _push_url(self): return self._branch_base("push") def _db_url(self): return self._db_base("db")
33.241262
313
0.552408
[ "Apache-2.0" ]
terminusdb/woql-client-p
terminusdb_client/woqlclient/woqlClient.py
77,984
Python
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys from pyspark import since, keyword_only from pyspark.ml.param.shared import * from pyspark.ml.tree import _DecisionTreeModel, _DecisionTreeParams, \ _TreeEnsembleModel, _TreeEnsembleParams, _RandomForestParams, _GBTParams, \ _HasVarianceImpurity, _TreeRegressorParams from pyspark.ml.util import * from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaParams, \ JavaPredictor, JavaPredictionModel, _JavaPredictorParams, JavaWrapper from pyspark.ml.common import inherit_doc from pyspark.sql import DataFrame __all__ = ['AFTSurvivalRegression', 'AFTSurvivalRegressionModel', 'DecisionTreeRegressor', 'DecisionTreeRegressionModel', 'GBTRegressor', 'GBTRegressionModel', 'GeneralizedLinearRegression', 'GeneralizedLinearRegressionModel', 'GeneralizedLinearRegressionSummary', 'GeneralizedLinearRegressionTrainingSummary', 'IsotonicRegression', 'IsotonicRegressionModel', 'LinearRegression', 'LinearRegressionModel', 'LinearRegressionSummary', 'LinearRegressionTrainingSummary', 'RandomForestRegressor', 'RandomForestRegressionModel', 'FMRegressor', 'FMRegressionModel'] class _LinearRegressionParams(_JavaPredictorParams, HasRegParam, HasElasticNetParam, HasMaxIter, HasTol, HasFitIntercept, HasStandardization, HasWeightCol, HasSolver, HasAggregationDepth, HasLoss): """ Params for :py:class:`LinearRegression` and :py:class:`LinearRegressionModel`. .. versionadded:: 3.0.0 """ solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + "options: auto, normal, l-bfgs.", typeConverter=TypeConverters.toString) loss = Param(Params._dummy(), "loss", "The loss function to be optimized. Supported " + "options: squaredError, huber.", typeConverter=TypeConverters.toString) epsilon = Param(Params._dummy(), "epsilon", "The shape parameter to control the amount of " + "robustness. Must be > 1.0. Only valid when loss is huber", typeConverter=TypeConverters.toFloat) @since("2.3.0") def getEpsilon(self): """ Gets the value of epsilon or its default value. """ return self.getOrDefault(self.epsilon) @inherit_doc class LinearRegression(JavaPredictor, _LinearRegressionParams, JavaMLWritable, JavaMLReadable): """ Linear regression. The learning objective is to minimize the specified loss function, with regularization. This supports two kinds of loss: * squaredError (a.k.a squared loss) * huber (a hybrid of squared error for relatively small errors and absolute error for \ relatively large ones, and we estimate the scale parameter from training data) This supports multiple types of regularization: * none (a.k.a. ordinary least squares) * L2 (ridge regression) * L1 (Lasso) * L2 + L1 (elastic net) Note: Fitting with huber loss only supports none and L2 regularization. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, 2.0, Vectors.dense(1.0)), ... (0.0, 2.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) >>> lr = LinearRegression(regParam=0.0, solver="normal", weightCol="weight") >>> lr.setMaxIter(5) LinearRegression... >>> lr.getMaxIter() 5 >>> lr.setRegParam(0.1) LinearRegression... >>> lr.getRegParam() 0.1 >>> lr.setRegParam(0.0) LinearRegression... >>> model = lr.fit(df) >>> model.setFeaturesCol("features") LinearRegressionModel... >>> model.setPredictionCol("newPrediction") LinearRegressionModel... >>> model.getMaxIter() 5 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> abs(model.predict(test0.head().features) - (-1.0)) < 0.001 True >>> abs(model.transform(test0).head().newPrediction - (-1.0)) < 0.001 True >>> abs(model.coefficients[0] - 1.0) < 0.001 True >>> abs(model.intercept - 0.0) < 0.001 True >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> abs(model.transform(test1).head().newPrediction - 1.0) < 0.001 True >>> lr.setParams("vector") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> lr_path = temp_path + "/lr" >>> lr.save(lr_path) >>> lr2 = LinearRegression.load(lr_path) >>> lr2.getMaxIter() 5 >>> model_path = temp_path + "/lr_model" >>> model.save(model_path) >>> model2 = LinearRegressionModel.load(model_path) >>> model.coefficients[0] == model2.coefficients[0] True >>> model.intercept == model2.intercept True >>> model.numFeatures 1 >>> model.write().format("pmml").save(model_path + "_2") .. versionadded:: 1.4.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, standardization=True, solver="auto", weightCol=None, aggregationDepth=2, loss="squaredError", epsilon=1.35): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ standardization=True, solver="auto", weightCol=None, aggregationDepth=2, \ loss="squaredError", epsilon=1.35) """ super(LinearRegression, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.LinearRegression", self.uid) self._setDefault(maxIter=100, regParam=0.0, tol=1e-6, loss="squaredError", epsilon=1.35) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, standardization=True, solver="auto", weightCol=None, aggregationDepth=2, loss="squaredError", epsilon=1.35): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ standardization=True, solver="auto", weightCol=None, aggregationDepth=2, \ loss="squaredError", epsilon=1.35) Sets params for linear regression. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return LinearRegressionModel(java_model) @since("2.3.0") def setEpsilon(self, value): """ Sets the value of :py:attr:`epsilon`. """ return self._set(epsilon=value) def setMaxIter(self, value): """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) def setRegParam(self, value): """ Sets the value of :py:attr:`regParam`. """ return self._set(regParam=value) def setTol(self, value): """ Sets the value of :py:attr:`tol`. """ return self._set(tol=value) def setElasticNetParam(self, value): """ Sets the value of :py:attr:`elasticNetParam`. """ return self._set(elasticNetParam=value) def setFitIntercept(self, value): """ Sets the value of :py:attr:`fitIntercept`. """ return self._set(fitIntercept=value) def setStandardization(self, value): """ Sets the value of :py:attr:`standardization`. """ return self._set(standardization=value) def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) def setSolver(self, value): """ Sets the value of :py:attr:`solver`. """ return self._set(solver=value) def setAggregationDepth(self, value): """ Sets the value of :py:attr:`aggregationDepth`. """ return self._set(aggregationDepth=value) def setLoss(self, value): """ Sets the value of :py:attr:`loss`. """ return self._set(lossType=value) class LinearRegressionModel(JavaPredictionModel, _LinearRegressionParams, GeneralJavaMLWritable, JavaMLReadable, HasTrainingSummary): """ Model fitted by :class:`LinearRegression`. .. versionadded:: 1.4.0 """ @property @since("2.0.0") def coefficients(self): """ Model coefficients. """ return self._call_java("coefficients") @property @since("1.4.0") def intercept(self): """ Model intercept. """ return self._call_java("intercept") @property @since("2.3.0") def scale(self): r""" The value by which :math:`\|y - X'w\|` is scaled down when loss is "huber", otherwise 1.0. """ return self._call_java("scale") @property @since("2.0.0") def summary(self): """ Gets summary (e.g. residuals, mse, r-squared ) of model on training set. An exception is thrown if `trainingSummary is None`. """ if self.hasSummary: return LinearRegressionTrainingSummary(super(LinearRegressionModel, self).summary) else: raise RuntimeError("No training summary available for this %s" % self.__class__.__name__) @since("2.0.0") def evaluate(self, dataset): """ Evaluates the model on a test dataset. :param dataset: Test dataset to evaluate model on, where dataset is an instance of :py:class:`pyspark.sql.DataFrame` """ if not isinstance(dataset, DataFrame): raise ValueError("dataset must be a DataFrame but got %s." % type(dataset)) java_lr_summary = self._call_java("evaluate", dataset) return LinearRegressionSummary(java_lr_summary) class LinearRegressionSummary(JavaWrapper): """ Linear regression results evaluated on a dataset. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def predictions(self): """ Dataframe outputted by the model's `transform` method. """ return self._call_java("predictions") @property @since("2.0.0") def predictionCol(self): """ Field in "predictions" which gives the predicted value of the label at each instance. """ return self._call_java("predictionCol") @property @since("2.0.0") def labelCol(self): """ Field in "predictions" which gives the true label of each instance. """ return self._call_java("labelCol") @property @since("2.0.0") def featuresCol(self): """ Field in "predictions" which gives the features of each instance as a vector. """ return self._call_java("featuresCol") @property @since("2.0.0") def explainedVariance(self): r""" Returns the explained variance regression score. explainedVariance = :math:`1 - \frac{variance(y - \hat{y})}{variance(y)}` .. seealso:: `Wikipedia explain variation <http://en.wikipedia.org/wiki/Explained_variation>`_ .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("explainedVariance") @property @since("2.0.0") def meanAbsoluteError(self): """ Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss. .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("meanAbsoluteError") @property @since("2.0.0") def meanSquaredError(self): """ Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss. .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("meanSquaredError") @property @since("2.0.0") def rootMeanSquaredError(self): """ Returns the root mean squared error, which is defined as the square root of the mean squared error. .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("rootMeanSquaredError") @property @since("2.0.0") def r2(self): """ Returns R^2, the coefficient of determination. .. seealso:: `Wikipedia coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("r2") @property @since("2.4.0") def r2adj(self): """ Returns Adjusted R^2, the adjusted coefficient of determination. .. seealso:: `Wikipedia coefficient of determination, Adjusted R^2 <https://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2>`_ .. note:: This ignores instance weights (setting all to 1.0) from `LinearRegression.weightCol`. This will change in later Spark versions. """ return self._call_java("r2adj") @property @since("2.0.0") def residuals(self): """ Residuals (label - predicted value) """ return self._call_java("residuals") @property @since("2.0.0") def numInstances(self): """ Number of instances in DataFrame predictions """ return self._call_java("numInstances") @property @since("2.2.0") def degreesOfFreedom(self): """ Degrees of freedom. """ return self._call_java("degreesOfFreedom") @property @since("2.0.0") def devianceResiduals(self): """ The weighted residuals, the usual residuals rescaled by the square root of the instance weights. """ return self._call_java("devianceResiduals") @property @since("2.0.0") def coefficientStandardErrors(self): """ Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver. If :py:attr:`LinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. .. seealso:: :py:attr:`LinearRegression.solver` """ return self._call_java("coefficientStandardErrors") @property @since("2.0.0") def tValues(self): """ T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver. If :py:attr:`LinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. .. seealso:: :py:attr:`LinearRegression.solver` """ return self._call_java("tValues") @property @since("2.0.0") def pValues(self): """ Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver. If :py:attr:`LinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. .. seealso:: :py:attr:`LinearRegression.solver` """ return self._call_java("pValues") @inherit_doc class LinearRegressionTrainingSummary(LinearRegressionSummary): """ Linear regression training results. Currently, the training summary ignores the training weights except for the objective trace. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def objectiveHistory(self): """ Objective function (scaled loss + regularization) at each iteration. This value is only available when using the "l-bfgs" solver. .. seealso:: :py:attr:`LinearRegression.solver` """ return self._call_java("objectiveHistory") @property @since("2.0.0") def totalIterations(self): """ Number of training iterations until termination. This value is only available when using the "l-bfgs" solver. .. seealso:: :py:attr:`LinearRegression.solver` """ return self._call_java("totalIterations") class _IsotonicRegressionParams(HasFeaturesCol, HasLabelCol, HasPredictionCol, HasWeightCol): """ Params for :py:class:`IsotonicRegression` and :py:class:`IsotonicRegressionModel`. .. versionadded:: 3.0.0 """ isotonic = Param( Params._dummy(), "isotonic", "whether the output sequence should be isotonic/increasing (true) or" + "antitonic/decreasing (false).", typeConverter=TypeConverters.toBoolean) featureIndex = Param( Params._dummy(), "featureIndex", "The index of the feature if featuresCol is a vector column, no effect otherwise.", typeConverter=TypeConverters.toInt) def getIsotonic(self): """ Gets the value of isotonic or its default value. """ return self.getOrDefault(self.isotonic) def getFeatureIndex(self): """ Gets the value of featureIndex or its default value. """ return self.getOrDefault(self.featureIndex) @inherit_doc class IsotonicRegression(JavaEstimator, _IsotonicRegressionParams, HasWeightCol, JavaMLWritable, JavaMLReadable): """ Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> ir = IsotonicRegression() >>> model = ir.fit(df) >>> model.setFeaturesCol("features") IsotonicRegressionModel... >>> model.numFeatures() 1 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> model.predict(test0.head().features[model.getFeatureIndex()]) 0.0 >>> model.boundaries DenseVector([0.0, 1.0]) >>> ir_path = temp_path + "/ir" >>> ir.save(ir_path) >>> ir2 = IsotonicRegression.load(ir_path) >>> ir2.getIsotonic() True >>> model_path = temp_path + "/ir_model" >>> model.save(model_path) >>> model2 = IsotonicRegressionModel.load(model_path) >>> model.boundaries == model2.boundaries True >>> model.predictions == model2.predictions True .. versionadded:: 1.6.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", weightCol=None, isotonic=True, featureIndex=0): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ weightCol=None, isotonic=True, featureIndex=0): """ super(IsotonicRegression, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.IsotonicRegression", self.uid) self._setDefault(isotonic=True, featureIndex=0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", weightCol=None, isotonic=True, featureIndex=0): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ weightCol=None, isotonic=True, featureIndex=0): Set the params for IsotonicRegression. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return IsotonicRegressionModel(java_model) def setIsotonic(self, value): """ Sets the value of :py:attr:`isotonic`. """ return self._set(isotonic=value) def setFeatureIndex(self, value): """ Sets the value of :py:attr:`featureIndex`. """ return self._set(featureIndex=value) @since("1.6.0") def setFeaturesCol(self, value): """ Sets the value of :py:attr:`featuresCol`. """ return self._set(featuresCol=value) @since("1.6.0") def setPredictionCol(self, value): """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) @since("1.6.0") def setLabelCol(self, value): """ Sets the value of :py:attr:`labelCol`. """ return self._set(labelCol=value) @since("1.6.0") def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) class IsotonicRegressionModel(JavaModel, _IsotonicRegressionParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`IsotonicRegression`. .. versionadded:: 1.6.0 """ @since("3.0.0") def setFeaturesCol(self, value): """ Sets the value of :py:attr:`featuresCol`. """ return self._set(featuresCol=value) @since("3.0.0") def setPredictionCol(self, value): """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) def setFeatureIndex(self, value): """ Sets the value of :py:attr:`featureIndex`. """ return self._set(featureIndex=value) @property @since("1.6.0") def boundaries(self): """ Boundaries in increasing order for which predictions are known. """ return self._call_java("boundaries") @property @since("1.6.0") def predictions(self): """ Predictions associated with the boundaries at the same index, monotone because of isotonic regression. """ return self._call_java("predictions") @since("3.0.0") def numFeatures(self): """ Returns the number of features the model was trained on. If unknown, returns -1 """ return self._call_java("numFeatures") @since("3.0.0") def predict(self, value): """ Predict label for the given features. """ return self._call_java("predict", value) class _DecisionTreeRegressorParams(_DecisionTreeParams, _TreeRegressorParams, HasVarianceCol): """ Params for :py:class:`DecisionTreeRegressor` and :py:class:`DecisionTreeRegressionModel`. .. versionadded:: 3.0.0 """ pass @inherit_doc class DecisionTreeRegressor(JavaPredictor, _DecisionTreeRegressorParams, JavaMLWritable, JavaMLReadable): """ `Decision tree <http://en.wikipedia.org/wiki/Decision_tree_learning>`_ learning algorithm for regression. It supports both continuous and categorical features. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> dt = DecisionTreeRegressor(maxDepth=2) >>> dt.setVarianceCol("variance") DecisionTreeRegressor... >>> model = dt.fit(df) >>> model.getVarianceCol() 'variance' >>> model.setLeafCol("leafId") DecisionTreeRegressionModel... >>> model.depth 1 >>> model.numNodes 3 >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> model.numFeatures 1 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.predict(test0.head().features) 0.0 >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> model.predictLeaf(test0.head().features) 0.0 >>> result.leafId 0.0 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> dtr_path = temp_path + "/dtr" >>> dt.save(dtr_path) >>> dt2 = DecisionTreeRegressor.load(dtr_path) >>> dt2.getMaxDepth() 2 >>> model_path = temp_path + "/dtr_model" >>> model.save(model_path) >>> model2 = DecisionTreeRegressionModel.load(model_path) >>> model.numNodes == model2.numNodes True >>> model.depth == model2.depth True >>> model.transform(test1).head().variance 0.0 >>> df3 = spark.createDataFrame([ ... (1.0, 0.2, Vectors.dense(1.0)), ... (1.0, 0.8, Vectors.dense(1.0)), ... (0.0, 1.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) >>> dt3 = DecisionTreeRegressor(maxDepth=2, weightCol="weight", varianceCol="variance") >>> model3 = dt3.fit(df3) >>> print(model3.toDebugString) DecisionTreeRegressionModel...depth=1, numNodes=3... .. versionadded:: 1.4.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", seed=None, varianceCol=None, weightCol=None, leafCol="", minWeightFractionPerNode=0.0): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ impurity="variance", seed=None, varianceCol=None, weightCol=None, \ leafCol="", minWeightFractionPerNode=0.0) """ super(DecisionTreeRegressor, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.DecisionTreeRegressor", self.uid) self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", leafCol="", minWeightFractionPerNode=0.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", seed=None, varianceCol=None, weightCol=None, leafCol="", minWeightFractionPerNode=0.0): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ impurity="variance", seed=None, varianceCol=None, weightCol=None, \ leafCol="", minWeightFractionPerNode=0.0) Sets params for the DecisionTreeRegressor. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return DecisionTreeRegressionModel(java_model) @since("1.4.0") def setMaxDepth(self, value): """ Sets the value of :py:attr:`maxDepth`. """ return self._set(maxDepth=value) @since("1.4.0") def setMaxBins(self, value): """ Sets the value of :py:attr:`maxBins`. """ return self._set(maxBins=value) @since("1.4.0") def setMinInstancesPerNode(self, value): """ Sets the value of :py:attr:`minInstancesPerNode`. """ return self._set(minInstancesPerNode=value) @since("3.0.0") def setMinWeightFractionPerNode(self, value): """ Sets the value of :py:attr:`minWeightFractionPerNode`. """ return self._set(minWeightFractionPerNode=value) @since("1.4.0") def setMinInfoGain(self, value): """ Sets the value of :py:attr:`minInfoGain`. """ return self._set(minInfoGain=value) @since("1.4.0") def setMaxMemoryInMB(self, value): """ Sets the value of :py:attr:`maxMemoryInMB`. """ return self._set(maxMemoryInMB=value) @since("1.4.0") def setCacheNodeIds(self, value): """ Sets the value of :py:attr:`cacheNodeIds`. """ return self._set(cacheNodeIds=value) @since("1.4.0") def setImpurity(self, value): """ Sets the value of :py:attr:`impurity`. """ return self._set(impurity=value) @since("1.4.0") def setCheckpointInterval(self, value): """ Sets the value of :py:attr:`checkpointInterval`. """ return self._set(checkpointInterval=value) def setSeed(self, value): """ Sets the value of :py:attr:`seed`. """ return self._set(seed=value) @since("3.0.0") def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) @since("2.0.0") def setVarianceCol(self, value): """ Sets the value of :py:attr:`varianceCol`. """ return self._set(varianceCol=value) @inherit_doc class DecisionTreeRegressionModel(_DecisionTreeModel, _DecisionTreeRegressorParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`DecisionTreeRegressor`. .. versionadded:: 1.4.0 """ @since("3.0.0") def setVarianceCol(self, value): """ Sets the value of :py:attr:`varianceCol`. """ return self._set(varianceCol=value) @property @since("2.0.0") def featureImportances(self): """ Estimate of the importance of each feature. This generalizes the idea of "Gini" importance to other losses, following the explanation of Gini importance from "Random Forests" documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn. This feature importance is calculated as follows: - importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node - Normalize importances for tree to sum to 1. .. note:: Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a :py:class:`RandomForestRegressor` to determine feature importance instead. """ return self._call_java("featureImportances") class _RandomForestRegressorParams(_RandomForestParams, _TreeRegressorParams): """ Params for :py:class:`RandomForestRegressor` and :py:class:`RandomForestRegressionModel`. .. versionadded:: 3.0.0 """ pass @inherit_doc class RandomForestRegressor(JavaPredictor, _RandomForestRegressorParams, JavaMLWritable, JavaMLReadable): """ `Random Forest <http://en.wikipedia.org/wiki/Random_forest>`_ learning algorithm for regression. It supports both continuous and categorical features. >>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> rf = RandomForestRegressor(numTrees=2, maxDepth=2) >>> rf.getMinWeightFractionPerNode() 0.0 >>> rf.setSeed(42) RandomForestRegressor... >>> model = rf.fit(df) >>> model.getSeed() 42 >>> model.setLeafCol("leafId") RandomForestRegressionModel... >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 1.0]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.predict(test0.head().features) 0.0 >>> model.predictLeaf(test0.head().features) DenseVector([0.0, 0.0]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.leafId DenseVector([0.0, 0.0]) >>> model.numFeatures 1 >>> model.trees [DecisionTreeRegressionModel...depth=..., DecisionTreeRegressionModel...] >>> model.getNumTrees 2 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 0.5 >>> rfr_path = temp_path + "/rfr" >>> rf.save(rfr_path) >>> rf2 = RandomForestRegressor.load(rfr_path) >>> rf2.getNumTrees() 2 >>> model_path = temp_path + "/rfr_model" >>> model.save(model_path) >>> model2 = RandomForestRegressionModel.load(model_path) >>> model.featureImportances == model2.featureImportances True .. versionadded:: 1.4.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, weightCol=None): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, \ featureSubsetStrategy="auto", leafCol=", minWeightFractionPerNode=0.0", \ weightCol=None) """ super(RandomForestRegressor, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.RandomForestRegressor", self.uid) self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", subsamplingRate=1.0, numTrees=20, featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, weightCol=None): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, \ featureSubsetStrategy="auto", leafCol="", minWeightFractionPerNode=0.0, \ weightCol=None) Sets params for linear regression. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return RandomForestRegressionModel(java_model) def setMaxDepth(self, value): """ Sets the value of :py:attr:`maxDepth`. """ return self._set(maxDepth=value) def setMaxBins(self, value): """ Sets the value of :py:attr:`maxBins`. """ return self._set(maxBins=value) def setMinInstancesPerNode(self, value): """ Sets the value of :py:attr:`minInstancesPerNode`. """ return self._set(minInstancesPerNode=value) def setMinInfoGain(self, value): """ Sets the value of :py:attr:`minInfoGain`. """ return self._set(minInfoGain=value) def setMaxMemoryInMB(self, value): """ Sets the value of :py:attr:`maxMemoryInMB`. """ return self._set(maxMemoryInMB=value) def setCacheNodeIds(self, value): """ Sets the value of :py:attr:`cacheNodeIds`. """ return self._set(cacheNodeIds=value) @since("1.4.0") def setImpurity(self, value): """ Sets the value of :py:attr:`impurity`. """ return self._set(impurity=value) @since("1.4.0") def setNumTrees(self, value): """ Sets the value of :py:attr:`numTrees`. """ return self._set(numTrees=value) @since("1.4.0") def setSubsamplingRate(self, value): """ Sets the value of :py:attr:`subsamplingRate`. """ return self._set(subsamplingRate=value) @since("2.4.0") def setFeatureSubsetStrategy(self, value): """ Sets the value of :py:attr:`featureSubsetStrategy`. """ return self._set(featureSubsetStrategy=value) def setCheckpointInterval(self, value): """ Sets the value of :py:attr:`checkpointInterval`. """ return self._set(checkpointInterval=value) def setSeed(self, value): """ Sets the value of :py:attr:`seed`. """ return self._set(seed=value) @since("3.0.0") def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) @since("3.0.0") def setMinWeightFractionPerNode(self, value): """ Sets the value of :py:attr:`minWeightFractionPerNode`. """ return self._set(minWeightFractionPerNode=value) class RandomForestRegressionModel(_TreeEnsembleModel, _RandomForestRegressorParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`RandomForestRegressor`. .. versionadded:: 1.4.0 """ @property @since("2.0.0") def trees(self): """Trees in this ensemble. Warning: These have null parent Estimators.""" return [DecisionTreeRegressionModel(m) for m in list(self._call_java("trees"))] @property @since("2.0.0") def featureImportances(self): """ Estimate of the importance of each feature. Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn. .. seealso:: :py:attr:`DecisionTreeRegressionModel.featureImportances` """ return self._call_java("featureImportances") class _GBTRegressorParams(_GBTParams, _TreeRegressorParams): """ Params for :py:class:`GBTRegressor` and :py:class:`GBTRegressorModel`. .. versionadded:: 3.0.0 """ supportedLossTypes = ["squared", "absolute"] lossType = Param(Params._dummy(), "lossType", "Loss function which GBT tries to minimize (case-insensitive). " + "Supported options: " + ", ".join(supportedLossTypes), typeConverter=TypeConverters.toString) @since("1.4.0") def getLossType(self): """ Gets the value of lossType or its default value. """ return self.getOrDefault(self.lossType) @inherit_doc class GBTRegressor(JavaPredictor, _GBTRegressorParams, JavaMLWritable, JavaMLReadable): """ `Gradient-Boosted Trees (GBTs) <http://en.wikipedia.org/wiki/Gradient_boosting>`_ learning algorithm for regression. It supports both continuous and categorical features. >>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> gbt = GBTRegressor(maxDepth=2, seed=42, leafCol="leafId") >>> gbt.setMaxIter(5) GBTRegressor... >>> gbt.setMinWeightFractionPerNode(0.049) GBTRegressor... >>> gbt.getMaxIter() 5 >>> print(gbt.getImpurity()) variance >>> print(gbt.getFeatureSubsetStrategy()) all >>> model = gbt.fit(df) >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> model.numFeatures 1 >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.predict(test0.head().features) 0.0 >>> model.predictLeaf(test0.head().features) DenseVector([0.0, 0.0, 0.0, 0.0, 0.0]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.leafId DenseVector([0.0, 0.0, 0.0, 0.0, 0.0]) >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> gbtr_path = temp_path + "gbtr" >>> gbt.save(gbtr_path) >>> gbt2 = GBTRegressor.load(gbtr_path) >>> gbt2.getMaxDepth() 2 >>> model_path = temp_path + "gbtr_model" >>> model.save(model_path) >>> model2 = GBTRegressionModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.treeWeights == model2.treeWeights True >>> model.trees [DecisionTreeRegressionModel...depth=..., DecisionTreeRegressionModel...] >>> validation = spark.createDataFrame([(0.0, Vectors.dense(-1.0))], ... ["label", "features"]) >>> model.evaluateEachIteration(validation, "squared") [0.0, 0.0, 0.0, 0.0, 0.0] >>> gbt = gbt.setValidationIndicatorCol("validationIndicator") >>> gbt.getValidationIndicatorCol() 'validationIndicator' >>> gbt.getValidationTol() 0.01 .. versionadded:: 1.4.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, impurity="variance", featureSubsetStrategy="all", validationTol=0.01, validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, weightCol=None): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \ checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \ impurity="variance", featureSubsetStrategy="all", validationTol=0.01, \ validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, weightCol=None) """ super(GBTRegressor, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.regression.GBTRegressor", self.uid) self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, impurity="variance", featureSubsetStrategy="all", validationTol=0.01, leafCol="", minWeightFractionPerNode=0.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, impuriy="variance", featureSubsetStrategy="all", validationTol=0.01, validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, weightCol=None): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \ checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, \ impurity="variance", featureSubsetStrategy="all", validationTol=0.01, \ validationIndicatorCol=None, leafCol="", minWeightFractionPerNode=0.0, \ weightCol=None) Sets params for Gradient Boosted Tree Regression. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return GBTRegressionModel(java_model) @since("1.4.0") def setMaxDepth(self, value): """ Sets the value of :py:attr:`maxDepth`. """ return self._set(maxDepth=value) @since("1.4.0") def setMaxBins(self, value): """ Sets the value of :py:attr:`maxBins`. """ return self._set(maxBins=value) @since("1.4.0") def setMinInstancesPerNode(self, value): """ Sets the value of :py:attr:`minInstancesPerNode`. """ return self._set(minInstancesPerNode=value) @since("1.4.0") def setMinInfoGain(self, value): """ Sets the value of :py:attr:`minInfoGain`. """ return self._set(minInfoGain=value) @since("1.4.0") def setMaxMemoryInMB(self, value): """ Sets the value of :py:attr:`maxMemoryInMB`. """ return self._set(maxMemoryInMB=value) @since("1.4.0") def setCacheNodeIds(self, value): """ Sets the value of :py:attr:`cacheNodeIds`. """ return self._set(cacheNodeIds=value) @since("1.4.0") def setImpurity(self, value): """ Sets the value of :py:attr:`impurity`. """ return self._set(impurity=value) @since("1.4.0") def setLossType(self, value): """ Sets the value of :py:attr:`lossType`. """ return self._set(lossType=value) @since("1.4.0") def setSubsamplingRate(self, value): """ Sets the value of :py:attr:`subsamplingRate`. """ return self._set(subsamplingRate=value) @since("2.4.0") def setFeatureSubsetStrategy(self, value): """ Sets the value of :py:attr:`featureSubsetStrategy`. """ return self._set(featureSubsetStrategy=value) @since("3.0.0") def setValidationIndicatorCol(self, value): """ Sets the value of :py:attr:`validationIndicatorCol`. """ return self._set(validationIndicatorCol=value) @since("1.4.0") def setMaxIter(self, value): """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) @since("1.4.0") def setCheckpointInterval(self, value): """ Sets the value of :py:attr:`checkpointInterval`. """ return self._set(checkpointInterval=value) @since("1.4.0") def setSeed(self, value): """ Sets the value of :py:attr:`seed`. """ return self._set(seed=value) @since("1.4.0") def setStepSize(self, value): """ Sets the value of :py:attr:`stepSize`. """ return self._set(stepSize=value) @since("3.0.0") def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) @since("3.0.0") def setMinWeightFractionPerNode(self, value): """ Sets the value of :py:attr:`minWeightFractionPerNode`. """ return self._set(minWeightFractionPerNode=value) class GBTRegressionModel(_TreeEnsembleModel, _GBTRegressorParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`GBTRegressor`. .. versionadded:: 1.4.0 """ @property @since("2.0.0") def featureImportances(self): """ Estimate of the importance of each feature. Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn. .. seealso:: :py:attr:`DecisionTreeRegressionModel.featureImportances` """ return self._call_java("featureImportances") @property @since("2.0.0") def trees(self): """Trees in this ensemble. Warning: These have null parent Estimators.""" return [DecisionTreeRegressionModel(m) for m in list(self._call_java("trees"))] @since("2.4.0") def evaluateEachIteration(self, dataset, loss): """ Method to compute error or loss for every iteration of gradient boosting. :param dataset: Test dataset to evaluate model on, where dataset is an instance of :py:class:`pyspark.sql.DataFrame` :param loss: The loss function used to compute error. Supported options: squared, absolute """ return self._call_java("evaluateEachIteration", dataset, loss) class _AFTSurvivalRegressionParams(_JavaPredictorParams, HasMaxIter, HasTol, HasFitIntercept, HasAggregationDepth): """ Params for :py:class:`AFTSurvivalRegression` and :py:class:`AFTSurvivalRegressionModel`. .. versionadded:: 3.0.0 """ censorCol = Param( Params._dummy(), "censorCol", "censor column name. The value of this column could be 0 or 1. " + "If the value is 1, it means the event has occurred i.e. " + "uncensored; otherwise censored.", typeConverter=TypeConverters.toString) quantileProbabilities = Param( Params._dummy(), "quantileProbabilities", "quantile probabilities array. Values of the quantile probabilities array " + "should be in the range (0, 1) and the array should be non-empty.", typeConverter=TypeConverters.toListFloat) quantilesCol = Param( Params._dummy(), "quantilesCol", "quantiles column name. This column will output quantiles of " + "corresponding quantileProbabilities if it is set.", typeConverter=TypeConverters.toString) @since("1.6.0") def getCensorCol(self): """ Gets the value of censorCol or its default value. """ return self.getOrDefault(self.censorCol) @since("1.6.0") def getQuantileProbabilities(self): """ Gets the value of quantileProbabilities or its default value. """ return self.getOrDefault(self.quantileProbabilities) @since("1.6.0") def getQuantilesCol(self): """ Gets the value of quantilesCol or its default value. """ return self.getOrDefault(self.quantilesCol) @inherit_doc class AFTSurvivalRegression(JavaPredictor, _AFTSurvivalRegressionParams, JavaMLWritable, JavaMLReadable): """ Accelerated Failure Time (AFT) Model Survival Regression Fit a parametric AFT survival regression model based on the Weibull distribution of the survival time. .. seealso:: `AFT Model <https://en.wikipedia.org/wiki/Accelerated_failure_time_model>`_ >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0), 1.0), ... (1e-40, Vectors.sparse(1, [], []), 0.0)], ["label", "features", "censor"]) >>> aftsr = AFTSurvivalRegression() >>> aftsr.setMaxIter(10) AFTSurvivalRegression... >>> aftsr.getMaxIter() 10 >>> aftsr.clear(aftsr.maxIter) >>> model = aftsr.fit(df) >>> model.setFeaturesCol("features") AFTSurvivalRegressionModel... >>> model.predict(Vectors.dense(6.3)) 1.0 >>> model.predictQuantiles(Vectors.dense(6.3)) DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.9957, 4.6052]) >>> model.transform(df).show() +-------+---------+------+----------+ | label| features|censor|prediction| +-------+---------+------+----------+ | 1.0| [1.0]| 1.0| 1.0| |1.0E-40|(1,[],[])| 0.0| 1.0| +-------+---------+------+----------+ ... >>> aftsr_path = temp_path + "/aftsr" >>> aftsr.save(aftsr_path) >>> aftsr2 = AFTSurvivalRegression.load(aftsr_path) >>> aftsr2.getMaxIter() 100 >>> model_path = temp_path + "/aftsr_model" >>> model.save(model_path) >>> model2 = AFTSurvivalRegressionModel.load(model_path) >>> model.coefficients == model2.coefficients True >>> model.intercept == model2.intercept True >>> model.scale == model2.scale True .. versionadded:: 1.6.0 """ @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", quantileProbabilities=list([0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]), quantilesCol=None, aggregationDepth=2): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", \ quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], \ quantilesCol=None, aggregationDepth=2) """ super(AFTSurvivalRegression, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.AFTSurvivalRegression", self.uid) self._setDefault(censorCol="censor", quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], maxIter=100, tol=1E-6) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", quantileProbabilities=list([0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]), quantilesCol=None, aggregationDepth=2): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ fitIntercept=True, maxIter=100, tol=1E-6, censorCol="censor", \ quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], \ quantilesCol=None, aggregationDepth=2): """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return AFTSurvivalRegressionModel(java_model) @since("1.6.0") def setCensorCol(self, value): """ Sets the value of :py:attr:`censorCol`. """ return self._set(censorCol=value) @since("1.6.0") def setQuantileProbabilities(self, value): """ Sets the value of :py:attr:`quantileProbabilities`. """ return self._set(quantileProbabilities=value) @since("1.6.0") def setQuantilesCol(self, value): """ Sets the value of :py:attr:`quantilesCol`. """ return self._set(quantilesCol=value) @since("1.6.0") def setMaxIter(self, value): """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) @since("1.6.0") def setTol(self, value): """ Sets the value of :py:attr:`tol`. """ return self._set(tol=value) @since("1.6.0") def setFitIntercept(self, value): """ Sets the value of :py:attr:`fitIntercept`. """ return self._set(fitIntercept=value) @since("2.1.0") def setAggregationDepth(self, value): """ Sets the value of :py:attr:`aggregationDepth`. """ return self._set(aggregationDepth=value) class AFTSurvivalRegressionModel(JavaPredictionModel, _AFTSurvivalRegressionParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`AFTSurvivalRegression`. .. versionadded:: 1.6.0 """ @since("3.0.0") def setQuantileProbabilities(self, value): """ Sets the value of :py:attr:`quantileProbabilities`. """ return self._set(quantileProbabilities=value) @since("3.0.0") def setQuantilesCol(self, value): """ Sets the value of :py:attr:`quantilesCol`. """ return self._set(quantilesCol=value) @property @since("2.0.0") def coefficients(self): """ Model coefficients. """ return self._call_java("coefficients") @property @since("1.6.0") def intercept(self): """ Model intercept. """ return self._call_java("intercept") @property @since("1.6.0") def scale(self): """ Model scale parameter. """ return self._call_java("scale") @since("2.0.0") def predictQuantiles(self, features): """ Predicted Quantiles """ return self._call_java("predictQuantiles", features) class _GeneralizedLinearRegressionParams(_JavaPredictorParams, HasFitIntercept, HasMaxIter, HasTol, HasRegParam, HasWeightCol, HasSolver, HasAggregationDepth): """ Params for :py:class:`GeneralizedLinearRegression` and :py:class:`GeneralizedLinearRegressionModel`. .. versionadded:: 3.0.0 """ family = Param(Params._dummy(), "family", "The name of family which is a description of " + "the error distribution to be used in the model. Supported options: " + "gaussian (default), binomial, poisson, gamma and tweedie.", typeConverter=TypeConverters.toString) link = Param(Params._dummy(), "link", "The name of link function which provides the " + "relationship between the linear predictor and the mean of the distribution " + "function. Supported options: identity, log, inverse, logit, probit, cloglog " + "and sqrt.", typeConverter=TypeConverters.toString) linkPredictionCol = Param(Params._dummy(), "linkPredictionCol", "link prediction (linear " + "predictor) column name", typeConverter=TypeConverters.toString) variancePower = Param(Params._dummy(), "variancePower", "The power in the variance function " + "of the Tweedie distribution which characterizes the relationship " + "between the variance and mean of the distribution. Only applicable " + "for the Tweedie family. Supported values: 0 and [1, Inf).", typeConverter=TypeConverters.toFloat) linkPower = Param(Params._dummy(), "linkPower", "The index in the power link function. " + "Only applicable to the Tweedie family.", typeConverter=TypeConverters.toFloat) solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + "options: irls.", typeConverter=TypeConverters.toString) offsetCol = Param(Params._dummy(), "offsetCol", "The offset column name. If this is not set " + "or empty, we treat all instance offsets as 0.0", typeConverter=TypeConverters.toString) @since("2.0.0") def getFamily(self): """ Gets the value of family or its default value. """ return self.getOrDefault(self.family) @since("2.0.0") def getLinkPredictionCol(self): """ Gets the value of linkPredictionCol or its default value. """ return self.getOrDefault(self.linkPredictionCol) @since("2.0.0") def getLink(self): """ Gets the value of link or its default value. """ return self.getOrDefault(self.link) @since("2.2.0") def getVariancePower(self): """ Gets the value of variancePower or its default value. """ return self.getOrDefault(self.variancePower) @since("2.2.0") def getLinkPower(self): """ Gets the value of linkPower or its default value. """ return self.getOrDefault(self.linkPower) @since("2.3.0") def getOffsetCol(self): """ Gets the value of offsetCol or its default value. """ return self.getOrDefault(self.offsetCol) @inherit_doc class GeneralizedLinearRegression(JavaPredictor, _GeneralizedLinearRegressionParams, JavaMLWritable, JavaMLReadable): """ Generalized Linear Regression. Fit a Generalized Linear Model specified by giving a symbolic description of the linear predictor (link function) and a description of the error distribution (family). It supports "gaussian", "binomial", "poisson", "gamma" and "tweedie" as family. Valid link functions for each family is listed below. The first link function of each family is the default one. * "gaussian" -> "identity", "log", "inverse" * "binomial" -> "logit", "probit", "cloglog" * "poisson" -> "log", "identity", "sqrt" * "gamma" -> "inverse", "identity", "log" * "tweedie" -> power link function specified through "linkPower". \ The default link power in the tweedie family is 1 - variancePower. .. seealso:: `GLM <https://en.wikipedia.org/wiki/Generalized_linear_model>`_ >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(0.0, 0.0)), ... (1.0, Vectors.dense(1.0, 2.0)), ... (2.0, Vectors.dense(0.0, 0.0)), ... (2.0, Vectors.dense(1.0, 1.0)),], ["label", "features"]) >>> glr = GeneralizedLinearRegression(family="gaussian", link="identity", linkPredictionCol="p") >>> glr.setRegParam(0.1) GeneralizedLinearRegression... >>> glr.getRegParam() 0.1 >>> glr.clear(glr.regParam) >>> glr.setMaxIter(10) GeneralizedLinearRegression... >>> glr.getMaxIter() 10 >>> glr.clear(glr.maxIter) >>> model = glr.fit(df) >>> model.setFeaturesCol("features") GeneralizedLinearRegressionModel... >>> model.getMaxIter() 25 >>> model.getAggregationDepth() 2 >>> transformed = model.transform(df) >>> abs(transformed.head().prediction - 1.5) < 0.001 True >>> abs(transformed.head().p - 1.5) < 0.001 True >>> model.coefficients DenseVector([1.5..., -1.0...]) >>> model.numFeatures 2 >>> abs(model.intercept - 1.5) < 0.001 True >>> glr_path = temp_path + "/glr" >>> glr.save(glr_path) >>> glr2 = GeneralizedLinearRegression.load(glr_path) >>> glr.getFamily() == glr2.getFamily() True >>> model_path = temp_path + "/glr_model" >>> model.save(model_path) >>> model2 = GeneralizedLinearRegressionModel.load(model_path) >>> model.intercept == model2.intercept True >>> model.coefficients[0] == model2.coefficients[0] True .. versionadded:: 2.0.0 """ @keyword_only def __init__(self, labelCol="label", featuresCol="features", predictionCol="prediction", family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2): """ __init__(self, labelCol="label", featuresCol="features", predictionCol="prediction", \ family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2) """ super(GeneralizedLinearRegression, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.GeneralizedLinearRegression", self.uid) self._setDefault(family="gaussian", maxIter=25, tol=1e-6, regParam=0.0, solver="irls", variancePower=0.0, aggregationDepth=2) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.0.0") def setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction", family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2): """ setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction", \ family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ variancePower=0.0, linkPower=None, offsetCol=None, aggregationDepth=2) Sets params for generalized linear regression. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return GeneralizedLinearRegressionModel(java_model) @since("2.0.0") def setFamily(self, value): """ Sets the value of :py:attr:`family`. """ return self._set(family=value) @since("2.0.0") def setLinkPredictionCol(self, value): """ Sets the value of :py:attr:`linkPredictionCol`. """ return self._set(linkPredictionCol=value) @since("2.0.0") def setLink(self, value): """ Sets the value of :py:attr:`link`. """ return self._set(link=value) @since("2.2.0") def setVariancePower(self, value): """ Sets the value of :py:attr:`variancePower`. """ return self._set(variancePower=value) @since("2.2.0") def setLinkPower(self, value): """ Sets the value of :py:attr:`linkPower`. """ return self._set(linkPower=value) @since("2.3.0") def setOffsetCol(self, value): """ Sets the value of :py:attr:`offsetCol`. """ return self._set(offsetCol=value) @since("2.0.0") def setMaxIter(self, value): """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) @since("2.0.0") def setRegParam(self, value): """ Sets the value of :py:attr:`regParam`. """ return self._set(regParam=value) @since("2.0.0") def setTol(self, value): """ Sets the value of :py:attr:`tol`. """ return self._set(tol=value) @since("2.2.0") def setFitIntercept(self, value): """ Sets the value of :py:attr:`fitIntercept`. """ return self._set(fitIntercept=value) @since("2.0.0") def setWeightCol(self, value): """ Sets the value of :py:attr:`weightCol`. """ return self._set(weightCol=value) @since("2.0.0") def setSolver(self, value): """ Sets the value of :py:attr:`solver`. """ return self._set(solver=value) @since("3.0.0") def setAggregationDepth(self, value): """ Sets the value of :py:attr:`aggregationDepth`. """ return self._set(aggregationDepth=value) class GeneralizedLinearRegressionModel(JavaPredictionModel, _GeneralizedLinearRegressionParams, JavaMLWritable, JavaMLReadable, HasTrainingSummary): """ Model fitted by :class:`GeneralizedLinearRegression`. .. versionadded:: 2.0.0 """ @since("3.0.0") def setLinkPredictionCol(self, value): """ Sets the value of :py:attr:`linkPredictionCol`. """ return self._set(linkPredictionCol=value) @property @since("2.0.0") def coefficients(self): """ Model coefficients. """ return self._call_java("coefficients") @property @since("2.0.0") def intercept(self): """ Model intercept. """ return self._call_java("intercept") @property @since("2.0.0") def summary(self): """ Gets summary (e.g. residuals, deviance, pValues) of model on training set. An exception is thrown if `trainingSummary is None`. """ if self.hasSummary: return GeneralizedLinearRegressionTrainingSummary( super(GeneralizedLinearRegressionModel, self).summary) else: raise RuntimeError("No training summary available for this %s" % self.__class__.__name__) @since("2.0.0") def evaluate(self, dataset): """ Evaluates the model on a test dataset. :param dataset: Test dataset to evaluate model on, where dataset is an instance of :py:class:`pyspark.sql.DataFrame` """ if not isinstance(dataset, DataFrame): raise ValueError("dataset must be a DataFrame but got %s." % type(dataset)) java_glr_summary = self._call_java("evaluate", dataset) return GeneralizedLinearRegressionSummary(java_glr_summary) class GeneralizedLinearRegressionSummary(JavaWrapper): """ Generalized linear regression results evaluated on a dataset. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def predictions(self): """ Predictions output by the model's `transform` method. """ return self._call_java("predictions") @property @since("2.0.0") def predictionCol(self): """ Field in :py:attr:`predictions` which gives the predicted value of each instance. This is set to a new column name if the original model's `predictionCol` is not set. """ return self._call_java("predictionCol") @property @since("2.2.0") def numInstances(self): """ Number of instances in DataFrame predictions. """ return self._call_java("numInstances") @property @since("2.0.0") def rank(self): """ The numeric rank of the fitted linear model. """ return self._call_java("rank") @property @since("2.0.0") def degreesOfFreedom(self): """ Degrees of freedom. """ return self._call_java("degreesOfFreedom") @property @since("2.0.0") def residualDegreeOfFreedom(self): """ The residual degrees of freedom. """ return self._call_java("residualDegreeOfFreedom") @property @since("2.0.0") def residualDegreeOfFreedomNull(self): """ The residual degrees of freedom for the null model. """ return self._call_java("residualDegreeOfFreedomNull") @since("2.0.0") def residuals(self, residualsType="deviance"): """ Get the residuals of the fitted model by type. :param residualsType: The type of residuals which should be returned. Supported options: deviance (default), pearson, working, and response. """ return self._call_java("residuals", residualsType) @property @since("2.0.0") def nullDeviance(self): """ The deviance for the null model. """ return self._call_java("nullDeviance") @property @since("2.0.0") def deviance(self): """ The deviance for the fitted model. """ return self._call_java("deviance") @property @since("2.0.0") def dispersion(self): """ The dispersion of the fitted model. It is taken as 1.0 for the "binomial" and "poisson" families, and otherwise estimated by the residual Pearson's Chi-Squared statistic (which is defined as sum of the squares of the Pearson residuals) divided by the residual degrees of freedom. """ return self._call_java("dispersion") @property @since("2.0.0") def aic(self): """ Akaike's "An Information Criterion"(AIC) for the fitted model. """ return self._call_java("aic") @inherit_doc class GeneralizedLinearRegressionTrainingSummary(GeneralizedLinearRegressionSummary): """ Generalized linear regression training results. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def numIterations(self): """ Number of training iterations. """ return self._call_java("numIterations") @property @since("2.0.0") def solver(self): """ The numeric solver used for training. """ return self._call_java("solver") @property @since("2.0.0") def coefficientStandardErrors(self): """ Standard error of estimated coefficients and intercept. If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. """ return self._call_java("coefficientStandardErrors") @property @since("2.0.0") def tValues(self): """ T-statistic of estimated coefficients and intercept. If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. """ return self._call_java("tValues") @property @since("2.0.0") def pValues(self): """ Two-sided p-value of estimated coefficients and intercept. If :py:attr:`GeneralizedLinearRegression.fitIntercept` is set to True, then the last element returned corresponds to the intercept. """ return self._call_java("pValues") def __repr__(self): return self._call_java("toString") class _FactorizationMachinesParams(_JavaPredictorParams, HasMaxIter, HasStepSize, HasTol, HasSolver, HasSeed, HasFitIntercept, HasRegParam): """ Params for :py:class:`FMRegressor`, :py:class:`FMRegressionModel`, :py:class:`FMClassifier` and :py:class:`FMClassifierModel`. .. versionadded:: 3.0.0 """ factorSize = Param(Params._dummy(), "factorSize", "Dimensionality of the factor vectors, " + "which are used to get pairwise interactions between variables", typeConverter=TypeConverters.toInt) fitLinear = Param(Params._dummy(), "fitLinear", "whether to fit linear term (aka 1-way term)", typeConverter=TypeConverters.toBoolean) miniBatchFraction = Param(Params._dummy(), "miniBatchFraction", "fraction of the input data " + "set that should be used for one iteration of gradient descent", typeConverter=TypeConverters.toFloat) initStd = Param(Params._dummy(), "initStd", "standard deviation of initial coefficients", typeConverter=TypeConverters.toFloat) solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + "options: gd, adamW. (Default adamW)", typeConverter=TypeConverters.toString) @since("3.0.0") def getFactorSize(self): """ Gets the value of factorSize or its default value. """ return self.getOrDefault(self.factorSize) @since("3.0.0") def getFitLinear(self): """ Gets the value of fitLinear or its default value. """ return self.getOrDefault(self.fitLinear) @since("3.0.0") def getMiniBatchFraction(self): """ Gets the value of miniBatchFraction or its default value. """ return self.getOrDefault(self.miniBatchFraction) @since("3.0.0") def getInitStd(self): """ Gets the value of initStd or its default value. """ return self.getOrDefault(self.initStd) @inherit_doc class FMRegressor(JavaPredictor, _FactorizationMachinesParams, JavaMLWritable, JavaMLReadable): """ Factorization Machines learning algorithm for regression. solver Supports: * gd (normal mini-batch gradient descent) * adamW (default) >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.regression import FMRegressor >>> df = spark.createDataFrame([ ... (2.0, Vectors.dense(2.0)), ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> >>> fm = FMRegressor(factorSize=2) >>> fm.setSeed(16) FMRegressor... >>> model = fm.fit(df) >>> model.getMaxIter() 100 >>> test0 = spark.createDataFrame([ ... (Vectors.dense(-2.0),), ... (Vectors.dense(0.5),), ... (Vectors.dense(1.0),), ... (Vectors.dense(4.0),)], ["features"]) >>> model.transform(test0).show(10, False) +--------+-------------------+ |features|prediction | +--------+-------------------+ |[-2.0] |-1.9989237712341565| |[0.5] |0.4956682219523814 | |[1.0] |0.994586620589689 | |[4.0] |3.9880970124135344 | +--------+-------------------+ ... >>> model.intercept -0.0032501766849261557 >>> model.linear DenseVector([0.9978]) >>> model.factors DenseMatrix(1, 2, [0.0173, 0.0021], 1) .. versionadded:: 3.0.0 """ factorSize = Param(Params._dummy(), "factorSize", "Dimensionality of the factor vectors, " + "which are used to get pairwise interactions between variables", typeConverter=TypeConverters.toInt) fitLinear = Param(Params._dummy(), "fitLinear", "whether to fit linear term (aka 1-way term)", typeConverter=TypeConverters.toBoolean) miniBatchFraction = Param(Params._dummy(), "miniBatchFraction", "fraction of the input data " + "set that should be used for one iteration of gradient descent", typeConverter=TypeConverters.toFloat) initStd = Param(Params._dummy(), "initStd", "standard deviation of initial coefficients", typeConverter=TypeConverters.toFloat) solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + "options: gd, adamW. (Default adamW)", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-6, solver="adamW", seed=None): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, \ miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, \ tol=1e-6, solver="adamW", seed=None) """ super(FMRegressor, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.regression.FMRegressor", self.uid) self._setDefault(factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-6, solver="adamW") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("3.0.0") def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, tol=1e-6, solver="adamW", seed=None): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ factorSize=8, fitIntercept=True, fitLinear=True, regParam=0.0, \ miniBatchFraction=1.0, initStd=0.01, maxIter=100, stepSize=1.0, \ tol=1e-6, solver="adamW", seed=None) Sets Params for FMRegressor. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return FMRegressionModel(java_model) @since("3.0.0") def setFactorSize(self, value): """ Sets the value of :py:attr:`factorSize`. """ return self._set(factorSize=value) @since("3.0.0") def setFitLinear(self, value): """ Sets the value of :py:attr:`fitLinear`. """ return self._set(fitLinear=value) @since("3.0.0") def setMiniBatchFraction(self, value): """ Sets the value of :py:attr:`miniBatchFraction`. """ return self._set(miniBatchFraction=value) @since("3.0.0") def setInitStd(self, value): """ Sets the value of :py:attr:`initStd`. """ return self._set(initStd=value) @since("3.0.0") def setMaxIter(self, value): """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) @since("3.0.0") def setStepSize(self, value): """ Sets the value of :py:attr:`stepSize`. """ return self._set(stepSize=value) @since("3.0.0") def setTol(self, value): """ Sets the value of :py:attr:`tol`. """ return self._set(tol=value) @since("3.0.0") def setSolver(self, value): """ Sets the value of :py:attr:`solver`. """ return self._set(solver=value) @since("3.0.0") def setSeed(self, value): """ Sets the value of :py:attr:`seed`. """ return self._set(seed=value) @since("3.0.0") def setFitIntercept(self, value): """ Sets the value of :py:attr:`fitIntercept`. """ return self._set(fitIntercept=value) @since("3.0.0") def setRegParam(self, value): """ Sets the value of :py:attr:`regParam`. """ return self._set(regParam=value) class FMRegressionModel(JavaPredictionModel, _FactorizationMachinesParams, JavaMLWritable, JavaMLReadable): """ Model fitted by :class:`FMRegressor`. .. versionadded:: 3.0.0 """ @property @since("3.0.0") def intercept(self): """ Model intercept. """ return self._call_java("intercept") @property @since("3.0.0") def linear(self): """ Model linear term. """ return self._call_java("linear") @property @since("3.0.0") def factors(self): """ Model factor term. """ return self._call_java("factors") if __name__ == "__main__": import doctest import pyspark.ml.regression from pyspark.sql import SparkSession globs = pyspark.ml.regression.__dict__.copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder\ .master("local[2]")\ .appName("ml.regression tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark import tempfile temp_path = tempfile.mkdtemp() globs['temp_path'] = temp_path try: (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() finally: from shutil import rmtree try: rmtree(temp_path) except OSError: pass if failure_count: sys.exit(-1)
33.820216
100
0.605371
[ "BSD-2-Clause", "Apache-2.0", "CC0-1.0", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
AjithShetty2489/spark
python/pyspark/ml/regression.py
87,662
Python
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import testtools from glanceclient.tests import utils from glanceclient.v2 import image_tags IMAGE = '3a4560a1-e585-443e-9b39-553b46ec92d1' TAG = 'tag01' data_fixtures = { '/v2/images/{image}/tags/{tag_value}'.format(image=IMAGE, tag_value=TAG): { 'DELETE': ( {}, None, ), 'PUT': ( {}, { 'image_id': IMAGE, 'tag_value': TAG } ), } } schema_fixtures = { 'tag': { 'GET': ( {}, {'name': 'image', 'properties': {'image_id': {}, 'tags': {}}} ) } } class TestController(testtools.TestCase): def setUp(self): super(TestController, self).setUp() self.api = utils.FakeAPI(data_fixtures) self.schema_api = utils.FakeSchemaAPI(schema_fixtures) self.controller = image_tags.Controller(self.api, self.schema_api) def test_update_image_tag(self): image_id = IMAGE tag_value = TAG self.controller.update(image_id, tag_value) expect = [ ('PUT', '/v2/images/{image}/tags/{tag_value}'.format(image=IMAGE, tag_value=TAG), {}, None)] self.assertEqual(expect, self.api.calls) def test_delete_image_tag(self): image_id = IMAGE tag_value = TAG self.controller.delete(image_id, tag_value) expect = [ ('DELETE', '/v2/images/{image}/tags/{tag_value}'.format(image=IMAGE, tag_value=TAG), {}, None)] self.assertEqual(expect, self.api.calls)
29.036585
79
0.563209
[ "MIT" ]
sjsucohort6/openstack
python/venv/lib/python2.7/site-packages/glanceclient/tests/unit/v2/test_tags.py
2,381
Python
from .impl.cloud.rest_api import RestApi from .impl.decorators import with_project from a2ml.api.utils.decorators import error_handler, authenticated from .impl.model import Model from .credentials import Credentials class AugerModel(object): def __init__(self, ctx): self.ctx = ctx self.credentials = Credentials(ctx).load() self.ctx.rest_api = RestApi( self.credentials.api_url, self.credentials.token) @error_handler @authenticated @with_project(autocreate=False) def deploy(self, project, model_id, locally, review, name, algorithm, score, data_path, metadata=None): model_id = Model(self.ctx, project).deploy(model_id, locally, review, name, algorithm, score, data_path, metadata) return {'model_id': model_id} @error_handler @authenticated #@with_project(autocreate=False) def predict(self, filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result, score, score_true_data): if locally: self.deploy(model_id, locally, review=False, name=None, algorithm=None, score=None, data_path=None) predicted = Model(self.ctx, project=None).predict( filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result, score, score_true_data) if filename: self.ctx.log('Predictions stored in %s' % predicted) if isinstance(predicted, dict) and 'predicted' in predicted: return predicted return {'predicted': predicted} @error_handler @authenticated @with_project(autocreate=False) def actuals(self, project, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False): return Model(self.ctx, project).actuals(model_id, filename, data, columns, actuals_at, actual_date_column, locally) @error_handler @authenticated @with_project(autocreate=False) def delete_actuals(self, project, model_id, with_predictions=False, begin_date=None, end_date=None, locally=False): return Model(self.ctx, project).delete_actuals(model_id, with_predictions, begin_date, end_date, locally) @error_handler @authenticated @with_project(autocreate=False) def review_alert(self, project, model_id, parameters, name): return Model(self.ctx, project).review_alert(model_id, parameters, name) @error_handler @authenticated @with_project(autocreate=False) def build_review_data(self, project, model_id, locally, output): return Model(self.ctx, project).build_review_data(model_id, locally, output) @error_handler @authenticated @with_project(autocreate=False) def review(self, project, model_id): return Model(self.ctx, project).review(model_id) @error_handler @authenticated @with_project(autocreate=False) def undeploy(self, project, model_id, locally): Model(self.ctx, project).undeploy(model_id, locally) return {'model_id': model_id} @error_handler @authenticated #@with_project(autocreate=False) def get_info(self, model_id, locally): return Model(self.ctx, project=None).get_info(model_id, locally) @error_handler @authenticated #@with_project(autocreate=False) def update(self, model_id, metadata, locally): return Model(self.ctx, project=None).update(model_id, metadata, locally)
38.32967
138
0.711869
[ "Apache-2.0" ]
augerai/a2ml
a2ml/api/auger/model.py
3,488
Python
# Generated by Django 2.0.2 on 2018-03-25 23:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('course', '0004_course_tag'), ] operations = [ migrations.AddField( model_name='video', name='url', field=models.CharField(default='', max_length=200, verbose_name='访问地址'), ), ]
21.315789
84
0.592593
[ "Apache-2.0" ]
LinXueyuanStdio/TimeCat-Backend-Python
timecat/apps/course/migrations/0005_video_url.py
413
Python
import itertools import math import string import sys from bisect import bisect_left as bi_l from bisect import bisect_right as bi_r from collections import Counter, defaultdict, deque from heapq import heappop, heappush from operator import or_, xor inf = float("inf") from functools import lru_cache, reduce sys.setrecursionlimit(10**6) MOD = 10**9 + 7 # MOD = 998244353 global using_numpy using_numpy = False import networkx as nx import numpy as np from numba import jit from scipy import optimize from scipy.ndimage import distance_transform_cdt from scipy.sparse import csr_matrix from scipy.sparse.csgraph import ( csgraph_to_dense, maximum_flow, minimum_spanning_tree, shortest_path, ) from scipy.spatial import ConvexHull from scipy.special import comb class Algebra: class Mint(int): def __init__(self, n, mod=MOD): self.value = n self.mod = mod def __str__(self): return f"{self.value}" def __add__(self, x): return self.__class__((self.value + x.value) % self.mod) def __sub__(self, x): return self.__class__((self.value - x.value) % self.mod) def __mul__(self, x): return self.__class__((self.value * x.value) % self.mod) def __pow__(self, x): return self.__class__(pow(self.value, x.value, self.mod)) def __lt__(self, x): return self.value < x.value def __le__(self, x): return self.value <= x.value def __eq__(self, x): return self.value == x.value def __ne__(self, x): return self.value != x.value def __gt__(self, x): return self.value > x.value def __ge__(self, x): return self.value >= x.value class SemiGroup: pass class Monoid: pass class Group: pass class SemiRing: pass class Ring: pass @staticmethod def identity(n): if using_numpy: return np.identity(n, dtype=np.int64) else: a = [[0] * n for _ in range(n)] for i in range(n): a[i][i] = 1 return a @staticmethod def dot(a, b): if using_numpy: return np.dot(a, b) else: assert len(a[0]) == len(b) c = [[0] * len(b[0]) for _ in range(len(a))] for i in range(len(a)): for j in range(len(b[0])): for k in range(len(b)): c[i][j] += a[i][k] * b[k][j] return c @classmethod def matrix_pow(cls, a, n, mod=10**9 + 7): m = len(a) b = cls.identity(m) while n: if n & 1: b = cls.dot(b, a) n >>= 1 a = cls.dot(a, a) if using_numpy: a %= mod b %= mod else: for i in range(m): for j in range(m): a[i][j] %= mod b[i][j] %= mod return b @staticmethod def bitwise_dot(a, b): if using_numpy: return np.bitwise_xor.reduce( a[:, None, :] & b.T[None, :, :], axis=-1 ) else: assert len(a[0]) == len(b) c = [[0] * len(b[0]) for _ in range(len(a))] for i in range(len(a)): for j in range(len(b[0])): for k in range(len(b)): c[i][j] ^= a[i][k] & b[k][j] return c @classmethod def bitwise_mat_pow(cls, a, n): if n == 0: return np.eye(len(a), dtype=np.uint32) * ((1 << 32) - 1) res = cls.bitwise_mat_pow(a, n // 2) res = cls.bitwise_dot(res, res) return cls.bitwise_dot(res, a) if n & 1 else res class NumberTheory: def __init__(self, n=2 * 10**6): self.n = n self.is_prime_number, self.prime_numbers = self.sieve_of_eratosthenes( n ) def sieve_of_eratosthenes(self, n): if using_numpy: sieve = np.ones(n + 1, dtype=np.int32) sieve[:2] = 0 for i in range(2, int(n**0.5) + 1): if sieve[i]: sieve[i * 2 :: i] = 0 prime_numbers = np.flatnonzero(sieve) else: sieve = [1] * (n + 1) sieve[0] = sieve[1] = 0 for i in range(2, int(n**0.5) + 1): if not sieve[i]: continue for j in range(i * 2, n + 1, i): sieve[j] = 0 prime_numbers = [i for i in range(2, n + 1) if sieve[i]] return sieve, prime_numbers def prime_factorize(self, n): res = dict() if n < 2: return res border = int(n**0.5) for p in self.prime_numbers: if p > border: break while n % p == 0: res[p] = res.get(p, 0) + 1 n //= p if n == 1: return res res[n] = 1 return res def prime_factorize_factorial(self, n): res = dict() for i in range(2, n + 1): for p, c in self.prime_factorize(i).items(): res[p] = res.get(p, 0) + c return res @classmethod @lru_cache(maxsize=None) def gcd(cls, a, b): return cls.gcd(b, a % b) if b else abs(a) @classmethod def lcm(cls, a, b): return abs(a // cls.gcd(a, b) * b) @staticmethod def find_divisors(n): divisors = [] for i in range(1, int(n**0.5) + 1): if n % i: continue divisors.append(i) j = n // i if j != i: divisors.append(j) return sorted(divisors) @staticmethod def base_convert(n, b): if not n: return [0] res = [] while n: n, r = divmod(n, b) if r < 0: n += 1 r -= b res.append(r) return res mint = Algebra.Mint class Combinatorics: def __init__(self, N=10**9, n=10**6, mod=10**9 + 7): self.mod = mod self.make_mod_tables(N, n) @classmethod @lru_cache(maxsize=None) def choose(cls, n, r, mod=None): # no mod, or mod ≠ prime if r > n or r < 0: return 0 if r == 0: return 1 res = cls.choose(n - 1, r, mod) + cls.choose(n - 1, r - 1, mod) if mod: res %= mod return res def cumprod(self, a): p = self.mod l = len(a) sql = int(np.sqrt(l) + 1) a = np.resize(a, sql**2).reshape(sql, sql) for i in range(sql - 1): a[:, i + 1] *= a[:, i] a[:, i + 1] %= p for i in range(sql - 1): a[i + 1] *= a[i, -1] a[i + 1] %= p return np.ravel(a)[:l] def make_mod_tables(self, N, n): p = self.mod if using_numpy: fac = np.arange(n + 1) fac[0] = 1 fac = self.cumprod(fac) ifac = np.arange(n + 1, 0, -1) ifac[0] = pow(int(fac[-1]), p - 2, p) ifac = self.cumprod(ifac)[n::-1] n_choose = np.arange(N + 1, N - n, -1) n_choose[0] = 1 n_choose[1:] = self.cumprod(n_choose[1:]) * ifac[1 : n + 1] % p else: fac = [None] * (n + 1) fac[0] = 1 for i in range(n): fac[i + 1] = fac[i] * (i + 1) % p ifac = [None] * (n + 1) ifac[n] = pow(fac[n], p - 2, p) for i in range(n, 0, -1): ifac[i - 1] = ifac[i] * i % p n_choose = [None] * (n + 1) n_choose[0] = 1 for i in range(n): n_choose[i + 1] = n_choose[i] * (N - i) % p for i in range(n + 1): n_choose[i] = n_choose[i] * ifac[i] % p self.fac, self.ifac, self.mod_n_choose = fac, ifac, n_choose def mod_choose(self, n, r): p = self.mod return self.fac[n] * self.ifac[r] % p * self.ifac[n - r] % p @classmethod def permutations(cls, a, r=None, i=0): a = list(a) n = len(a) if r is None: r = n res = [] if r > n or i > r: return res if i == r: return [tuple(a[:r])] for j in range(i, n): a[i], a[j] = a[j], a[i] res += cls.permutations(a, r, i + 1) return res @staticmethod def combinations(a, r): a = tuple(a) n = len(a) if r > n: return indices = list(range(r)) yield a[:r] while True: for i in range(r - 1, -1, -1): if indices[i] != i + n - r: break else: return indices[i] += 1 for j in range(i + 1, r): indices[j] = indices[j - 1] + 1 yield tuple(a[i] for i in indices) class String: @staticmethod def z_algorithm(s): n = len(s) a = [0] * n a[0] = n l = r = -1 for i in range(1, n): if r >= i: a[i] = min(a[i - l], r - i) while i + a[i] < n and s[i + a[i]] == s[a[i]]: a[i] += 1 if i + a[i] >= r: l, r = i, i + a[i] return a class GeometryTopology: class Graph: def __init__(self, nodes={}, edges={}): self.nodes = nodes self.edges = edges def add_node(self, v, **info): if not v in self.edges: self.edges[v] = {} if v in self.nodes: return self.nodes[v] = info def add_edge(self, u, v, **info): self.add_node(u) self.add_node(v) self.edges[u][v] = info def get_size(self): return len(self.nodes) def dinic(self, src, sink): def bfs(): lv = {src: 0} q = deque([src]) while q: u = q.popleft() for v, e in self.edges[u].items(): if e["capacity"] == 0 or v in lv: continue lv[v] = lv[u] + 1 q.append(v) return lv def flow_to_sink(u, flow_in): if u == sink: return flow_in flow = 0 for v, e in self.edges[u].items(): cap = e["capacity"] if cap == 0 or lv[v] <= lv[u]: continue f = flow_to_sink(v, min(flow_in, cap)) if not f: continue self.edges[u][v]["capacity"] -= f if v in self.edges and u in self.edges[v]: self.edges[v][u]["capacity"] += f else: self.add_edge(v, u, capacity=f) flow_in -= f flow += f return flow flow = 0 while True: lv = bfs() if not sink in lv: return flow flow += flow_to_sink(src, inf) def ford_fulkerson(self): pass def push_relabel(self): pass def floyd_warshall(self): d = {u: {v: inf for v in self.nodes} for u in self.nodes} for v in self.nodes: d[v][v] = 0 for u in self.edges: for v in self.edges[u]: d[u][v] = self.edges[u][v]["weight"] for w in self.nodes: for u in self.nodes: for v in self.nodes: d[u][v] = min(d[u][v], d[u][w] + d[w][v]) return d def dijkstra(self, src, paths_cnt=False, mod=None): dist = {v: inf for v in self.nodes} dist[src] = 0 visited = set() paths = {v: 0 for v in self.nodes} paths[src] = 1 q = [(0, src)] while q: d, u = heappop(q) if u in visited: continue visited.add(u) for v, e in self.edges[u].items(): dv = d + e["weight"] if dv > dist[v]: continue elif dv == dist[v]: paths[v] += paths[u] if mod: paths[v] %= mod continue paths[v] = paths[u] dist[v] = dv heappush(q, (dv, v)) if paths_cnt: return dist, paths else: return dist def astar(self, src, tgt, heuristic_func): cost = {v: inf for v in self.nodes} q = [(heuristic_func(src, tgt), 0, src)] while q: s, c, u = heappop(q) if u == tgt: return c if cost[u] != inf: continue cost[u] = c for v, e in self.edges[u].items(): if cost[v] != inf: continue h = heuristic_func(v, tgt) nc = c + e["weight"] heappush(q, (h + nc, nc, v)) return inf def init_tree(self, root=0): self.depth = {root: 0} self.dist = {root: 0} self.ancestors = [{root: root}] stack = [root] while stack: u = stack.pop() for v, e in self.edges[u].items(): if v == self.ancestors[0][u]: continue self.dist[v] = self.dist[u] + e["weight"] self.depth[v] = self.depth[u] + 1 self.ancestors[0][v] = u stack.append(v) # tree doubling for _ in range(max(self.depth).bit_length()): ancestor = self.ancestors[-1] nxt_ancestor = {v: ancestor[ancestor[v]] for v in self.nodes} self.ancestors.append(nxt_ancestor) def find_dist(self, u, v): return ( self.dist[u] + self.dist[v] - 2 * self.dist[self.find_lca(u, v)] ) def find_lca(self, u, v): du, dv = self.depth[u], self.depth[v] if du > dv: u, v = v, u du, dv = dv, du d = dv - du for i in range((d).bit_length()): # up-stream if d >> i & 1: v = self.ancestors[i][v] if v == u: return v for i in range( du.bit_length() - 1, -1, -1 ): # find direct child of LCA. nu, nv = self.ancestors[i][u], self.ancestors[i][v] if nu == nv: continue u, v = nu, nv return self.ancestors[0][u] @staticmethod def triangle_area(p0, p1, p2, signed=False): x1, y1, x2, y2 = ( p1[0] - p0[0], p1[1] - p0[1], p2[0] - p0[0], p2[1] - p0[1], ) return ( (x1 * y2 - x2 * y1) / 2 if signed else abs(x1 * y2 - x2 * y1) / 2 ) @classmethod def intersect(cls, seg1, seg2): (p1, p2), (p3, p4) = seg1, seg2 t1 = cls.triangle_area(p1, p2, p3, signed=True) t2 = cls.triangle_area(p1, p2, p4, signed=True) t3 = cls.triangle_area(p3, p4, p1, signed=True) t4 = cls.triangle_area(p3, p4, p2, signed=True) return (t1 * t2 < 0) & (t3 * t4 < 0) class UnionFind: def __init__(self, n=10**6): self.root = list(range(n)) self.height = [0] * n self.size = [1] * n def find_root(self, u): if self.root[u] == u: return u self.root[u] = self.find_root(self.root[u]) return self.root[u] def unite(self, u, v): ru = self.find_root(u) rv = self.find_root(v) if ru == rv: return hu = self.height[ru] hv = self.height[rv] if hu >= hv: self.root[rv] = ru self.size[ru] += self.size[rv] self.height[ru] = max(hu, hv + 1) else: self.root[ru] = rv self.size[rv] += self.size[ru] def cumxor(a): return reduce(xor, a, 0) def cumor(a): return reduce(or_, a, 0) def bit_count(n): cnt = 0 while n: cnt += n & 1 n >>= 1 return cnt class AtCoder: class ABC001: @staticmethod def a(): h1, h2 = map(int, sys.stdin.read().split()) print(h1 - h2) @staticmethod def d(): def to_minuites(x): q, r = divmod(x, 100) return 60 * q + r def to_hmform(x): q, r = divmod(x, 60) return 100 * q + r n = int(sys.stdin.readline().rstrip()) term = [0] * 2001 for _ in range(n): s, e = map( to_minuites, map(int, sys.stdin.readline().rstrip().split("-")), ) s = s // 5 * 5 e = (e + 4) // 5 * 5 term[s] += 1 term[e + 1] -= 1 for i in range(2000): term[i + 1] += term[i] res = [] raining = False for i in range(2001): if term[i]: if not raining: s = i raining = True elif raining: res.append((s, i - 1)) raining = False for s, e in res: print(f"{to_hmform(s):04}-{to_hmform(e):04}") class ABC002: @staticmethod def a(): print(max(map(int, sys.stdin.readline().split()))) @staticmethod def b(): vowels = set("aeiou") print( "".join( [ c for c in sys.stdin.readline().rstrip() if c not in vowels ] ) ) @staticmethod def c(): print( GeometryTopology.triangle_area( *map(int, sys.stdin.readline().split()) ) ) @staticmethod def d(): n, m = map(int, sys.stdin.readline().split()) edges = set( (x - 1, y - 1) for x, y in zip(*[map(int, sys.stdin.read().split())] * 2) ) print( max( len(s) for i in range(1, 1 << n) for s in [[j for j in range(n) if i >> j & 1]] if all( (x, y) in edges for x, y in itertools.combinations(s, 2) ) ) ) @staticmethod def d_2(): n, m = map(int, sys.stdin.readline().split()) relations = [1 << i for i in range(n)] for x, y in zip(*[map(int, sys.stdin.read().split())] * 2): x -= 1 y -= 1 relations[x] |= 1 << y relations[y] |= 1 << x res = 0 for i in range(1 << n): cnt = 0 s = 0 t = (1 << n) - 1 for j in range(n): if i >> j & 1: s |= 1 << j t &= relations[j] cnt += 1 if t & s == s: res = max(res, cnt) print(res) class ABC003: @staticmethod def a(): print((int(sys.stdin.readline().rstrip()) + 1) * 5000) @staticmethod def b(): atcoder = set("atcoder") s, t = sys.stdin.read().split() print( all( s[i] == t[i] or s[i] == "@" and t[i] in atcoder or t[i] == "@" and s[i] in atcoder for i in range(len(s)) ) and "You can win" or "You will lose" ) @staticmethod def c(): n, k, *r = map(int, sys.stdin.read().split()) print(reduce(lambda x, y: (x + y) / 2, sorted(r)[-k:], 0)) class ABC004: @staticmethod def a(): print(int(sys.stdin.readline().rstrip()) * 2) @staticmethod def b(): for l in [sys.stdin.readline().rstrip() for _ in range(4)][::-1]: print(l[::-1]) @staticmethod def c(): n = int(sys.stdin.readline().rstrip()) % 30 res = list(range(1, 7)) for i in range(n): i %= 5 res[i], res[i + 1] = res[i + 1], res[i] print(*res, sep="") class ABC005: @staticmethod def a(): x, y = map(int, sys.stdin.readline().split()) print(y // x) @staticmethod def b(): n, *t = map(int, sys.stdin.read().split()) print(min(t)) @staticmethod def c(): t = int(sys.stdin.readline().rstrip()) n = int(sys.stdin.readline().rstrip()) a = [int(x) for x in sys.stdin.readline().split()] m = int(sys.stdin.readline().rstrip()) b = [int(x) for x in sys.stdin.readline().split()] i = 0 for p in b: if i == n: print("no") return while p - a[i] > t: i += 1 if i == n: print("no") return if a[i] > p: print("no") return i += 1 print("yes") @staticmethod def d(): n = int(sys.stdin.readline().rstrip()) d = np.array( [sys.stdin.readline().split() for _ in range(n)], np.int64 ) s = d.cumsum(axis=0).cumsum(axis=1) s = np.pad(s, 1) max_del = np.zeros((n + 1, n + 1), dtype=np.int64) for y in range(1, n + 1): for x in range(1, n + 1): max_del[y, x] = np.amax( s[y : n + 1, x : n + 1] - s[0 : n - y + 1, x : n + 1] - s[y : n + 1, 0 : n - x + 1] + s[0 : n - y + 1, 0 : n - x + 1] ) res = np.arange(n**2 + 1)[:, None] i = np.arange(1, n + 1) res = max_del[i, np.minimum(res // i, n)].max(axis=1) q = int(sys.stdin.readline().rstrip()) p = np.array(sys.stdin.read().split(), dtype=np.int64) print(*res[p], sep="\n") class ABC006: @staticmethod def a(): n = sys.stdin.readline().rstrip() if "3" in n: print("YES") elif int(n) % 3 == 0: print("YES") else: print("NO") @staticmethod def b(): mod = 10007 a = np.eye(N=3, k=-1, dtype=np.int64) a[0] = 1 n = int(sys.stdin.readline().rstrip()) a = Algebra.matrix_pow(a, n - 1, mod) print(a[2][0]) @staticmethod def c(): n, m = map(int, sys.stdin.readline().split()) cnt = [0, 0, 0] if m == 1: cnt = [-1, -1, -1] else: if m & 1: m -= 3 cnt[1] += 1 n -= 1 cnt[2] = m // 2 - n cnt[0] = n - cnt[2] if cnt[0] < 0 or cnt[1] < 0 or cnt[2] < 0: print(-1, -1, -1) else: print(*cnt, sep=" ") @staticmethod def d(): n, *c = map(int, sys.stdin.read().split()) lis = [inf] * n for x in c: lis[bi_l(lis, x)] = x print(n - bi_l(lis, inf)) class ABC007: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) print(n - 1) @staticmethod def b(): s = sys.stdin.readline().rstrip() if s == "a": print(-1) else: print("a") @staticmethod def c(): r, c = map(int, sys.stdin.readline().split()) sy, sx = map(int, sys.stdin.readline().split()) gy, gx = map(int, sys.stdin.readline().split()) sy -= 1 sx -= 1 gy -= 1 gx -= 1 maze = [sys.stdin.readline().rstrip() for _ in range(r)] queue = deque([(sy, sx)]) dist = np.full((r, c), np.inf) dist[sy, sx] = 0 while queue: y, x = queue.popleft() for i, j in [(-1, 0), (1, 0), (0, -1), (0, 1)]: i += y j += x if maze[i][j] == "#" or dist[i, j] != np.inf: continue dist[i, j] = dist[y, x] + 1 queue.append((i, j)) print(int(dist[gy, gx])) @staticmethod def d(): ng = set([4, 9]) def count(d): return d if d <= 4 else d - 1 def f(n): x = [int(d) for d in str(n)] flg = True dp = 0 for d in x: dp = dp * 8 + flg * count(d) if d in ng: flg = False return n - (dp + flg) a, b = map(int, sys.stdin.readline().split()) print(f(b) - f(a - 1)) class ABC008: @staticmethod def a(): s, t = map(int, sys.stdin.readline().split()) print(t - s + 1) @staticmethod def b(): n, *s = sys.stdin.read().split() res = defaultdict(int) for name in s: res[name] += 1 print(sorted(res.items(), key=lambda x: x[1])[-1][0]) @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) a = np.array(a) c = n - np.count_nonzero(a[:, None] % a, axis=1) print(np.sum((c + 1) // 2 / c)) @staticmethod def d(): w, h, n, *xy = map(int, sys.stdin.read().split()) (*xy,) = zip(*([iter(xy)] * 2)) @lru_cache(maxsize=None) def count(x1, y1, x2, y2): res = 0 for x, y in xy: if not (x1 <= x <= x2 and y1 <= y <= y2): continue cnt = (x2 - x1) + (y2 - y1) + 1 cnt += count(x1, y1, x - 1, y - 1) cnt += count(x1, y + 1, x - 1, y2) cnt += count(x + 1, y1, x2, y - 1) cnt += count(x + 1, y + 1, x2, y2) res = max(res, cnt) return res print(count(1, 1, w, h)) class ABC009: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) print((n + 1) // 2) @staticmethod def b(): n, *a = map(int, sys.stdin.read().split()) print(sorted(set(a))[-2]) @staticmethod def c(): n, k = map(int, sys.stdin.readline().split()) s = list(sys.stdin.readline().rstrip()) cost = [1] * n r = k for i in range(n - 1): q = [] for j in range(i + 1, n): if s[j] < s[i] and cost[i] + cost[j] <= r: heappush(q, (s[j], cost[i] + cost[j], -j)) if not q: continue _, c, j = heappop(q) j = -j s[i], s[j] = s[j], s[i] r -= c cost[i] = cost[j] = 0 print("".join(s)) @staticmethod def d(): k, m = map(int, sys.stdin.readline().split()) a = np.array([int(x) for x in sys.stdin.readline().split()]) c = np.array([int(x) for x in sys.stdin.readline().split()]) mask = (1 << 32) - 1 d = np.eye(k, k, -1, dtype=np.uint32) * mask d[0] = c if m <= k: print(a[m - 1]) return # print(Algebra.bitwise_mat_pow(d, m-k)) # print(Algebra.bitwise_dot(Algebra.bitwise_mat_pow(d, m-k), a[::-1].reshape(-1, 1))[0].item()) print( Algebra.bitwise_dot( Algebra.bitwise_mat_pow(d, m - k), a[::-1].reshape(-1, 1) )[0][0] ) class ABC010: @staticmethod def a(): print(sys.stdin.readline().rstrip() + "pp") @staticmethod def b(): n, *a = map(int, sys.stdin.read().split()) tot = 0 for x in a: c = 0 while x % 2 == 0 or x % 3 == 2: x -= 1 c += 1 tot += c print(tot) @staticmethod def c(): sx, sy, gx, gy, t, v, n, *xy = map(int, sys.stdin.read().split()) x, y = np.array(xy).reshape(-1, 2).T def dist(x1, y1, x2, y2): return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) ans = ( "YES" if (dist(sx, sy, x, y) + dist(x, y, gx, gy) <= v * t).any() else "NO" ) print(ans) @staticmethod def d(): n, g, e = map(int, sys.stdin.readline().split()) p = [int(x) for x in sys.stdin.readline().split()] x, y = [], [] for _ in range(e): a, b = map(int, sys.stdin.readline().split()) x.append(a) y.append(b) x.append(b) y.append(a) for a in p: x.append(a) y.append(n) if not x: print(0) return c = [1] * len(x) min_cut = maximum_flow( csr_matrix((c, (x, y)), (n + 1, n + 1)), source=0, sink=n ).flow_value print(min_cut) @staticmethod def d_2(): n, g, e = map(int, sys.stdin.readline().split()) graph = nx.DiGraph() graph.add_nodes_from(range(n + 1)) for p in [int(x) for x in sys.stdin.readline().split()]: graph.add_edge(p, n, capacity=1) for _ in range(e): a, b = map(int, sys.stdin.readline().split()) graph.add_edge(a, b, capacity=1) graph.add_edge(b, a, capacity=1) print(nx.minimum_cut_value(graph, 0, n)) @staticmethod def d_3(): n, g, e = map(int, sys.stdin.readline().split()) graph = GeometryTopology.Graph() for i in range(n + 1): graph.add_node(i) for p in [int(x) for x in sys.stdin.readline().split()]: graph.add_edge(p, n, capacity=1) for a, b in zip(*[map(int, sys.stdin.read().split())] * 2): graph.add_edge(a, b, capacity=1) graph.add_edge(b, a, capacity=1) print(graph.dinic(0, n)) class ABC011: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) print(n % 12 + 1) @staticmethod def b(): s = sys.stdin.readline().rstrip() print(s[0].upper() + s[1:].lower()) @staticmethod def c(): n, *ng = map(int, sys.stdin.read().split()) ng = set(ng) if n in ng: print("NO") else: r = 100 while n > 0: if r == 0: print("NO") return for i in range(3, 0, -1): if (n - i) in ng: continue n -= i r -= 1 break else: print("NO") return print("YES") @staticmethod def d(): n, d, x, y = map(int, sys.stdin.read().split()) x, y = abs(x), abs(y) if x % d or y % d: print(0) return x, y = x // d, y // d r = n - (x + y) if r < 0 or r & 1: print(0) return res = 0 half_p = pow(1 / 2, n) for d in range(r // 2 + 1): # 0 <= d <= r//2, south south, north = d, y + d west = (r - 2 * d) // 2 res += ( half_p * comb(n, south, exact=True) * comb(n - south, north, exact=True) * comb(n - south - north, west, exact=True) * half_p ) print(res) class ABC012: @staticmethod def a(): a, b = map(int, sys.stdin.readline().split()) print(b, a) @staticmethod def b(): n = int(sys.stdin.readline().rstrip()) h, n = divmod(n, 3600) m, s = divmod(n, 60) print(f"{h:02}:{m:02}:{s:02}") @staticmethod def c(): n = 2025 - int(sys.stdin.readline().rstrip()) res = [] for i in range(1, 10): if n % i != 0 or n // i > 9: continue res.append(f"{i} x {n//i}") print(*sorted(res), sep="\n") @staticmethod def d(): n, m, *abt = map(int, sys.stdin.read().split()) a, b, t = np.array(abt).reshape(m, 3).T res = shortest_path( csr_matrix((t, (a - 1, b - 1)), (n, n)), method="FW", directed=False, ) print(res.max(axis=-1).min().astype(np.int64)) @staticmethod def d_2(): n, m, *abt = map(int, sys.stdin.read().split()) graph = GeometryTopology.Graph() for a, b, t in zip(*[iter(abt)] * 3): a -= 1 b -= 1 graph.add_edge(a, b, weight=t) graph.add_edge(b, a, weight=t) dist = graph.floyd_warshall() res = min([max(tmp.values()) for tmp in dist.values()]) print(res) class ABC013: @staticmethod def a(): print(ord(sys.stdin.readline().rstrip()) - ord("A") + 1) @staticmethod def b(): a, b = map(int, sys.stdin.read().split()) d = abs(a - b) print(min(d, 10 - d)) @staticmethod def c(): n, h, a, b, c, d, e = map(int, sys.stdin.read().split()) y = np.arange(n + 1) x = (n * e - h - (d + e) * y) // (b + e) + 1 np.maximum(x, 0, out=x) np.minimum(x, n - y, out=x) print(np.amin(a * x + c * y)) @staticmethod def d(): n, m, d, *a = map(int, sys.stdin.read().split()) res = list(range(n)) def swap(i, j): res[i], res[j] = res[j], res[i] for i in a[::-1]: swap(i - 1, i) group = [None] * n root = [None] * n index_in_group = [None] * n for i in range(n): if root[i] is not None: continue group[i] = [] j = i for cnt in range(1, n + 1): index_in_group[j] = cnt - 1 group[i].append(j) j = res[j] root[j] = i if j == i: break for i in range(n): g = group[root[i]] print(g[(index_in_group[i] + d) % len(g)] + 1) class ABC014: @staticmethod def a(): a, b = map(int, sys.stdin.read().split()) print((a + b - 1) // b * b - a) @staticmethod def b(): n, x, *a = map(int, sys.stdin.read().split()) print(sum(a[i] for i in range(n) if x >> i & 1)) @staticmethod def c(): n, *ab = map(int, sys.stdin.read().split()) a, b = np.array(ab).reshape(n, 2).T res = np.zeros(10**6 + 2, dtype=np.int64) np.add.at(res, a, 1) np.subtract.at(res, b + 1, 1) np.cumsum(res, out=res) print(res.max()) @staticmethod def d(): n = int(sys.stdin.readline().rstrip()) # edges = [[] for _ in range(n)] g = GeometryTopology.Graph() for _ in range(n - 1): x, y = map(int, sys.stdin.readline().split()) x -= 1 y -= 1 g.add_edge(x, y, weight=1) g.add_edge(y, x, weight=1) g.init_tree() # tree = GeometryTopology.TreeGraph(n, edges, 0) q, *ab = map(int, sys.stdin.read().split()) for a, b in zip(*[iter(ab)] * 2): a -= 1 b -= 1 print(g.find_dist(a, b) + 1) class ABC015: @staticmethod def a(): a, b = sys.stdin.read().split() print(a if len(a) > len(b) else b) @staticmethod def b(): n, *a = map(int, sys.stdin.read().split()) a = np.array(a) print( np.ceil( a[np.nonzero(a)[0]].sum() / np.count_nonzero(a) ).astype(np.int8) ) @staticmethod def c(): n, k, *t = map(int, sys.stdin.read().split()) t = np.array(t).reshape(n, k) x = np.zeros((1, 1), dtype=np.int8) for i in range(n): x = x.reshape(-1, 1) ^ t[i] print("Found" if np.count_nonzero(x == 0) > 0 else "Nothing") @staticmethod def d(): w, n, k, *ab = map(int, sys.stdin.read().split()) dp = np.zeros((k + 1, w + 1), dtype=np.int32) for a, b in zip(*[iter(ab)] * 2): prev = dp.copy() np.maximum(dp[1:, a:], prev[:-1, :-a] + b, out=dp[1:, a:]) print(dp[k][w]) class ABC016: @staticmethod def a(): m, d = map(int, sys.stdin.readline().split()) print("YES" if m % d == 0 else "NO") @staticmethod def b(): a, b, c = map(int, sys.stdin.readline().split()) f1, f2 = a + b == c, a - b == c if f1 & f2: print("?") elif f1 & (~f2): print("+") elif (~f1) & f2: print("-") else: print("!") @staticmethod def c(): n, _, *ab = map(int, sys.stdin.read().split()) friends = [0] * n for a, b in zip(*[iter(ab)] * 2): a -= 1 b -= 1 friends[a] |= 1 << b friends[b] |= 1 << a res = [ bit_count( cumor(friends[j] for j in range(n) if friends[i] >> j & 1) & ~(friends[i] | 1 << i) ) for i in range(n) ] print(*res, sep="\n") @staticmethod def d(): sx, sy, gx, gy = map(int, sys.stdin.readline().split()) seg1 = ((sx, sy), (gx, gy)) n = int(sys.stdin.readline().rstrip()) p1 = ( np.array(sys.stdin.read().split(), dtype=np.int64) .reshape(n, 2) .T ) p2 = np.hstack((p1[:, 1:], p1[:, :1])) seg2 = (p1, p2) print( np.count_nonzero(GeometryTopology.intersect(seg1, seg2)) // 2 + 1 ) class ABC017: @staticmethod def a(): s, e = ( np.array(sys.stdin.read().split(), dtype=np.int16) .reshape(3, 2) .T ) print((s // 10 * e).sum()) @staticmethod def b(): choku_tail = set("ch, o, k, u".split(", ")) def is_choku(s): if s == "": return True if len(s) >= 1 and (s[-1] in choku_tail) and is_choku(s[:-1]): return True if len(s) >= 2 and (s[-2:] in choku_tail) and is_choku(s[:-2]): return True return False print("YES" if is_choku(sys.stdin.readline().rstrip()) else "NO") @staticmethod def c(): n, m, *lrs = map(int, sys.stdin.read().split()) l, r, s = np.array(lrs).reshape(n, 3).T score = np.zeros((m + 1,), dtype=np.int32) np.add.at(score, l - 1, s) np.subtract.at(score, r, s) np.cumsum(score, out=score) print(s.sum() - score[:m].min()) @staticmethod def d(): n, m, *f = map(int, sys.stdin.read().split()) prev = [0] * (n + 1) tmp = defaultdict(int) for i in range(n): prev[i + 1] = tmp[f[i]] tmp[f[i]] = i + 1 dp = [0] * (n + 1) dp[0] = 1 l, s = 0, dp[0] for i in range(1, n + 1): while l < prev[i]: s = (s - dp[l]) % MOD l += 1 dp[i] = s s = (s + dp[i]) % MOD print(dp[n]) class ABC018: @staticmethod def a(): (*a,) = map(int, sys.stdin.read().split()) a = sorted(enumerate(a), key=lambda x: -x[1]) res = [None] * 3 for i in range(3): res[a[i][0]] = i + 1 print(*res, sep="\n") @staticmethod def b(): s = sys.stdin.readline().rstrip() n, *lr = map(int, sys.stdin.read().split()) for l, r in zip(*[iter(lr)] * 2): l -= 1 r -= 1 s = s[:l] + s[l : r + 1][::-1] + s[r + 1 :] print(s) @staticmethod def c(): r, c, k = map(int, sys.stdin.readline().split()) s = np.array([list(s) for s in sys.stdin.read().split()]) s = np.pad(s, 1, constant_values="x") a = np.zeros_like(s, dtype=np.float64) a[s == "o"] = np.inf for i in range(1, r + 1): np.minimum(a[i - 1, :] + 1, a[i, :], out=a[i, :]) for i in range(r, 0, -1): np.minimum(a[i + 1, :] + 1, a[i, :], out=a[i, :]) for j in range(1, c + 1): np.minimum(a[:, j - 1] + 1, a[:, j], out=a[:, j]) for j in range(c, 0, -1): np.minimum(a[:, j + 1] + 1, a[:, j], out=a[:, j]) print(np.count_nonzero(a >= k)) @staticmethod def c_2(): r, c, k = map(int, sys.stdin.readline().split()) s = np.array([list(s) for s in sys.stdin.read().split()]) s = np.pad(s, 1, constant_values="x") a = (s == "o").astype(np.int16) a = distance_transform_cdt(a, metric="taxicab") print(np.count_nonzero(a >= k)) @staticmethod def d(): n, m, p, q, r, *xyz = map(int, sys.stdin.read().split()) x, y, z = np.array(xyz).reshape(r, 3).T h = np.zeros((n, m), dtype=np.int32) h[x - 1, y - 1] = z g = np.array([*itertools.combinations(range(n), p)]) print(np.sort(h[g].sum(axis=1), axis=1)[:, -q:].sum(axis=1).max()) class ABC019: @staticmethod def a(): (*a,) = map(int, sys.stdin.readline().split()) print(sorted(a)[1]) @staticmethod def b(): s = sys.stdin.readline().rstrip() + "$" cnt = 0 prev = "$" t = "" for c in s: if c == prev: cnt += 1 continue t += prev + str(cnt) prev = c cnt = 1 print(t[2:]) @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) res = set() for x in a: while not x & 1: x >>= 1 res.add(x) print(len(res)) @staticmethod def d(): def inquire(u, v): print(f"? {u} {v}".format(u, v), flush=True) return int(sys.stdin.readline().rstrip()) n = int(sys.stdin.readline().rstrip()) u = sorted([(inquire(1, v), v) for v in range(2, n + 1)])[-1][1] d = max((inquire(u, v)) for v in range(1, n + 1) if u != v) print(f"! {d}") class ABC020: @staticmethod def a(): print( "ABC" if int(sys.stdin.readline().rstrip()) == 1 else "chokudai" ) @staticmethod def b(): a, b = sys.stdin.readline().split() print(int(a + b) * 2) @staticmethod def c(): h, w, t = map(int, sys.stdin.readline().split()) s = [list(s) for s in sys.stdin.read().split()] for i in range(h): for j in range(w): if s[i][j] == "S": sy, sx = i, j if s[i][j] == "G": gy, gx = i, j s[sy][sx] = s[gy][gx] = "." source, target = (sy, sx), (gy, gx) def heuristic_function(u, v=target): return abs(v[0] - u[0]) + abs(v[1] - u[0]) def min_time(x): """my lib""" graph = GeometryTopology.Graph() for i in range(h): for j in range(w): graph.add_node((i, j)) for i in range(h): for j in range(w): if i > 0: graph.add_edge( (i, j), (i - 1, j), weight=(1 if s[i - 1][j] == "." else x), ) if i < h - 1: graph.add_edge( (i, j), (i + 1, j), weight=(1 if s[i + 1][j] == "." else x), ) if j > 0: graph.add_edge( (i, j), (i, j - 1), weight=(1 if s[i][j - 1] == "." else x), ) if j < w - 1: graph.add_edge( (i, j), (i, j + 1), weight=(1 if s[i][j + 1] == "." else x), ) return graph.dijkstra(source)[target] # return graph.astar(source, target, heuristic_function) """networkx""" graph = nx.DiGraph() for i in range(h): for j in range(w): if i > 0: graph.add_edge( (i, j), (i - 1, j), weight=(1 if s[i - 1][j] == "." else x), ) if i < h - 1: graph.add_edge( (i, j), (i + 1, j), weight=(1 if s[i + 1][j] == "." else x), ) if j > 0: graph.add_edge( (i, j), (i, j - 1), weight=(1 if s[i][j - 1] == "." else x), ) if j < w - 1: graph.add_edge( (i, j), (i, j + 1), weight=(1 if s[i][j + 1] == "." else x), ) return nx.dijkstra_path_length(graph, source, target) return nx.astar_path_length( graph, source, target, heuristic_function ) def binary_search(): lo, hi = 1, t + 1 while lo + 1 < hi: x = (lo + hi) // 2 if min_time(x) > t: hi = x else: lo = x return lo print(binary_search()) @staticmethod def d(): n, k = map(int, sys.stdin.readline().split()) div = sorted(NumberTheory.find_divisors(k)) l = len(div) s = [0] * l for i, d in enumerate(div): s[i] = (1 + n // d) * (n // d) // 2 * d % MOD for i in range(l - 1, -1, -1): for j in range(i + 1, l): if div[j] % div[i]: continue s[i] = (s[i] - s[j]) % MOD print( sum(s[i] * k // div[i] % MOD for i in range(l)) % MOD ) # ans is LCM. class ABC021: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) s = [1 << i for i in range(5) if n >> i & 1] print(len(s), *s, sep="\n") @staticmethod def b(): n, a, b, k, *p = map(int, sys.stdin.read().split()) print("YES" if len(set(p) | set([a, b])) == k + 2 else "NO") @staticmethod def c(): n, a, b, m, *xy = map(int, sys.stdin.read().split()) x, y = np.array(xy).reshape(m, 2).T - 1 a -= 1 b -= 1 g = csgraph_to_dense( csr_matrix((np.ones(m), (x, y)), (n, n), dtype=np.int8) ) g = np.logical_or(g, g.T) paths = np.zeros(n, dtype=np.int64).reshape(-1, 1) paths[a, 0] = 1 while not paths[b, 0]: paths = np.dot(g, paths) % MOD print(paths[b, 0]) @staticmethod def c_2(): n, a, b, m, *xy = map(int, sys.stdin.read().split()) a -= 1 b -= 1 g = GeometryTopology.Graph() for x, y in zip(*[iter(xy)] * 2): x -= 1 y -= 1 g.add_edge(x, y, weight=1) g.add_edge(y, x, weight=1) dist, paths = g.dijkstra(a, paths_cnt=True, mod=MOD) print(paths[b]) @staticmethod def d(): n, k = map(int, sys.stdin.read().split()) combinatorics = Combinatorics() print(combinatorics.mod_choose(n + k - 1, k)) class ABC022: @staticmethod def a(): n, s, t, *a = map(int, sys.stdin.read().split()) a = np.array(a) np.cumsum(a, out=a) print(((s <= a) & (a <= t)).sum()) @staticmethod def b(): n, *a = map(int, sys.stdin.read().split()) c = Counter(a) print(sum(c.values()) - len(c)) @staticmethod def c(): n, m, *uvl = map(int, sys.stdin.read().split()) u, v, l = np.array(uvl).reshape(m, 3).T u -= 1 v -= 1 g = csgraph_to_dense(csr_matrix((l, (u, v)), (n, n))) g += g.T g[g == 0] = np.inf dist0 = g[0].copy() g[0] = 0 g[:, 0] = 0 dist = shortest_path(g, method="FW", directed=False) u, v = np.array([*itertools.combinations(range(1, n), 2)]).T res = (dist0[u] + dist[u, v] + dist0[v]).min() print(-1 if res == np.inf else int(res)) @staticmethod def d(): n, *ab = map(int, sys.stdin.read().split()) c = np.array(ab).reshape(2, n, 2) g = c.mean(axis=1) d = np.sqrt(((c - g[:, None, :]) ** 2).sum(axis=-1)).sum(axis=1) print(d[1] / d[0]) class ABC023: @staticmethod def a(): print(sum(divmod(int(sys.stdin.readline().rstrip()), 10))) @staticmethod def b(): n, s = sys.stdin.read().split() n = int(n) t = "b" for i in range(n // 2): if i % 3 == 0: t = "a" + t + "c" elif i % 3 == 1: t = "c" + t + "a" else: t = "b" + t + "b" print(n // 2 if t == s else -1) @staticmethod def b_2(): n, s = sys.stdin.read().split() n = int(n) if n & 1 ^ 1: print(-1) return a = list("abc") i = (1 - n // 2) % 3 for c in s: if c != a[i]: print(-1) return i = (i + 1) % 3 print(n // 2) @staticmethod def c(): h, w, k, n, *rc = map(int, sys.stdin.read().split()) r, c = np.array(rc).reshape(n, 2).T - 1 rb = np.bincount(r, minlength=h) cb = np.bincount(c, minlength=w) rbb = np.bincount(rb, minlength=k + 1) cbb = np.bincount(cb, minlength=k + 1) tot = (rbb[: k + 1] * cbb[k::-1]).sum() real = np.bincount(rb[r] + cb[c] - 1, minlength=k + 1) print(tot - real[k - 1] + real[k]) @staticmethod def d(): n, *hs = map(int, sys.stdin.read().split()) h, s = np.array(hs).reshape(n, 2).T t = np.arange(n) def is_ok(x): t_lim = (x - h) // s t_lim.sort() return np.all(t_lim >= t) def binary_search(): lo, hi = 0, 10**14 while lo + 1 < hi: x = (lo + hi) // 2 if is_ok(x): hi = x else: lo = x return hi print(binary_search()) class ABC024: @staticmethod def a(): a, b, c, k, s, t = map(int, sys.stdin.read().split()) print(a * s + b * t - c * (s + t) * (s + t >= k)) @staticmethod def b(): n, t, *a = map(int, sys.stdin.read().split()) a = np.array(a) print(np.minimum(a[1:] - a[:-1], t).sum() + t) @staticmethod def c(): n, d, k, *lrst = map(int, sys.stdin.read().split()) lrst = np.array(lrst) lr = lrst[: 2 * d].reshape(d, 2) s, t = lrst[2 * d :].reshape(k, 2).T day = np.zeros((k,), dtype=np.int32) for i in range(d): l, r = lr[i] move = (l <= s) & (s <= r) & (s != t) reach = move & (l <= t) & (t <= r) s[move & (s < t)] = r s[move & (s > t)] = l s[reach] = t[reach] day[reach] = i + 1 print(*day, sep="\n") @staticmethod def d(): a, b, c = map(int, sys.stdin.read().split()) p = MOD denom = pow(a * b % p - b * c % p + c * a % p, p - 2, p) w = (b * c - a * b) % p * denom % p h = (b * c - a * c) % p * denom % p print(h, w) class ABC025: @staticmethod def a(): s, n = sys.stdin.read().split() n = int(n) i, j = divmod(n - 1, 5) print(s[i] + s[j]) @staticmethod def b(): n, a, b = map(int, sys.stdin.readline().split()) res = defaultdict(int) for _ in range(n): s, d = sys.stdin.readline().split() d = int(d) res[s] += min(max(d, a), b) res = res["East"] - res["West"] if res == 0: ans = 0 elif res > 0: ans = f"East {res}" else: ans = f"West {-res}" print(ans) @staticmethod def c(): b = [0] * 6 for i in range(2): (*row,) = map(int, sys.stdin.readline().split()) for j in range(3): b[i * 3 + j] = row[j] c = [0] * 8 for i in range(3): (*row,) = map(int, sys.stdin.readline().split()) for j in range(2): c[i * 3 + j] = row[j] tot = sum(b) + sum(c) @lru_cache(maxsize=None) def f(s=tuple(0 for _ in range(9))): if all(s): res = 0 for i in range(6): res += (s[i] == s[i + 3]) * b[i] for i in range(8): res += (s[i] == s[i + 1]) * c[i] return res cand = [i for i in range(9) if not s[i]] flg = len(cand) & 1 s = list(s) res = [] for i in cand: s[i] = (flg ^ 1) + 1 res.append(f(tuple(s))) s[i] = 0 return sorted(res, reverse=flg)[0] a = f() b = tot - a print(a) print(b) class ABC026: @staticmethod def a(): a = int(sys.stdin.readline().rstrip()) print(a // 2 * (a - a // 2)) @staticmethod def b(): n, *r = map(int, sys.stdin.read().split()) s = np.pi * np.array([0] + r) ** 2 s.sort() res = s[n::-2].sum() - s[n - 1 :: -2].sum() print(res) @staticmethod def c(): n, *b = map(int, sys.stdin.read().split()) g = GeometryTopology.Graph() for i in range(1, n): g.add_edge(b[i - 1] - 1, i, weight=1) def f(u=0): if not g.edges[u]: return 1 s = [f(v) for v in g.edges[u]] return max(s) + min(s) + 1 print(f()) @staticmethod def d(): a, b, c = map(int, sys.stdin.readline().split()) def f(t): return a * t + b * np.sin(c * t * np.pi) - 100 print(optimize.brenth(f, 0, 200)) class ABC027: @staticmethod def a(): l = [int(l) for l in sys.stdin.readline().split()] l.sort() print(l[2] if l[0] == l[1] else l[0]) @staticmethod def b(): n, *a = map(int, sys.stdin.read().split()) m, r = divmod(sum(a), n) if r: print(-1) return population = 0 towns = 0 cnt = 0 for x in a: population += x towns += 1 if population / towns != m: cnt += 1 continue population, towns = 0, 0 print(cnt) @staticmethod def c(): n = int(sys.stdin.readline().rstrip()) flg = n.bit_length() & 1 ^ 1 t = 0 x = 1 while x <= n: t += 1 x = 2 * x + 1 if t & 1 ^ flg else 2 * x print("Aoki" if t & 1 else "Takahashi") class ABC032: @staticmethod def a(): a, b, n = map(int, sys.stdin.read().split()) l = NumberTheory.lcm(a, b) print((n + l - 1) // l * l) @staticmethod def b(): s, k = sys.stdin.read().split() k = int(k) res = set() for i in range(len(s) - k + 1): res.add(s[i : i + k]) print(len(res)) @staticmethod def c(): n, k, *s = map(int, sys.stdin.read().split()) if 0 in s: print(n) return s += [inf] res = 0 l = r = 0 tmp = 1 while r <= n: tmp *= s[r] while tmp > k: res = max(res, r - l) tmp //= s[l] l += 1 r += 1 print(res) class ABC033: @staticmethod def a(): n = set(sys.stdin.readline().rstrip()) print("SAME" if len(n) == 1 else "DIFFERENT") @staticmethod def b(): n = int(sys.stdin.readline().rstrip()) res = dict() for _ in range(n): s, p = sys.stdin.readline().split() p = int(p) res[s] = p tot = sum(res.values()) for s, p in res.items(): if p > tot / 2: print(s) return print("atcoder") @staticmethod def c(): s = sys.stdin.readline().rstrip() res = sum(not "0" in f for f in s.split("+")) print(res) class ABC034: @staticmethod def a(): x, y = map(int, sys.stdin.readline().split()) print("Better" if y > x else "Worse") @staticmethod def b(): n = int(sys.stdin.readline().rstrip()) print(n + 1 if n & 1 else n - 1) @staticmethod def c(): h, w = map(int, sys.stdin.read().split()) combinatorics = Combinatorics(n=2 * 10**5, mod=MOD) print(combinatorics.mod_choose(h + w - 2, h - 1)) @staticmethod def d(): n, k, *wp = map(int, sys.stdin.read().split()) w, p = np.array(wp).reshape(-1, 2).T def f(x): return np.sort(w * (p - x))[-k:].sum() print(optimize.bisect(f, 0, 100)) class ABC035: @staticmethod def a(): w, h = map(int, sys.stdin.readline().split()) print("4:3" if 4 * h == 3 * w else "16:9") @staticmethod def b(): s, t = sys.stdin.read().split() y = 0 x = 0 z = 0 for c in s: if c == "?": z += 1 elif c == "L": x -= 1 elif c == "R": x += 1 elif c == "D": y -= 1 elif c == "U": y += 1 d = abs(y) + abs(x) if t == "1": print(d + z) else: print(max(d - z, (d - z) & 1)) @staticmethod def c(): n, q, *lr = map(int, sys.stdin.read().split()) l, r = np.array(lr).reshape(q, 2).T res = np.zeros(n + 1, dtype=int) np.add.at(res, l - 1, 1) np.subtract.at(res, r, 1) np.cumsum(res, out=res) res = res & 1 print("".join(map(str, res[:-1]))) @staticmethod def d(): n, m, t = map(int, sys.stdin.readline().split()) point = np.array(sys.stdin.readline().split(), dtype=int) a, b, c = ( np.array(sys.stdin.read().split(), dtype=np.int64) .reshape(m, 3) .T ) a -= 1 b -= 1 d_1 = shortest_path( csr_matrix((c, (a, b)), (n, n)), method="D", directed=True, indices=0, ) d_2 = shortest_path( csr_matrix((c, (b, a)), (n, n)), method="D", directed=True, indices=0, ) print(int(np.amax((t - (d_1 + d_2)) * point))) class ABC036: @staticmethod def a(): a, b = map(int, sys.stdin.readline().split()) print((b + a - 1) // a) @staticmethod def b(): n, *s = sys.stdin.read().split() n = int(n) for j in range(n): row = "" for i in range(n - 1, -1, -1): row += s[i][j] print(row) @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) b = [None] * n prev = None j = -1 for i, x in sorted(enumerate(a), key=lambda x: x[1]): if x != prev: j += 1 b[i] = j prev = x print(*b, sep="\n") @staticmethod def d(): n, *ab = map(int, sys.stdin.read().split()) edges = [[] for _ in range(n)] for a, b in zip(*[iter(ab)] * 2): a -= 1 b -= 1 edges[a].append(b) edges[b].append(a) parent = [None] * n def count(u): black, white = 1, 1 for v in edges[u]: if v == parent[u]: continue parent[v] = u b, w = count(v) black *= w black %= MOD white *= (b + w) % MOD white %= MOD return black, white print(sum(count(0)) % MOD) class ABC037: @staticmethod def a(): a, b, c = map(int, sys.stdin.readline().split()) print(c // min(a, b)) @staticmethod def b(): n, q, *lrt = map(int, sys.stdin.read().split()) a = np.zeros(n, dtype=int) for l, r, t in zip(*[iter(lrt)] * 3): a[l - 1 : r] = t print(*a, sep="\n") @staticmethod def c(): n, k, *a = map(int, sys.stdin.read().split()) a = np.array([0] + a) np.cumsum(a, out=a) s = (a[k:] - a[:-k]).sum() print(s) @staticmethod def d(): h, w = map(int, sys.stdin.readline().split()) a = [ [int(x) for x in sys.stdin.readline().split()] for _ in range(h) ] dyx = [(-1, 0), (0, -1), (1, 0), (0, 1)] path = [[None] * w for _ in range(h)] def paths(i, j): if path[i][j]: return path[i][j] val = a[i][j] cnt = 1 for dy, dx in dyx: y = i + dy x = j + dx if 0 <= y < h and 0 <= x < w and a[y][x] < val: cnt += paths(y, x) cnt %= MOD path[i][j] = cnt return cnt tot = 0 for i in range(h): for j in range(w): tot += paths(i, j) tot %= MOD print(tot) class ABC038: @staticmethod def a(): s = sys.stdin.readline().rstrip() print("YES" if s[-1] == "T" else "NO") @staticmethod def b(): a, b, c, d = map(int, sys.stdin.read().split()) print("YES" if a == c or b == c or a == d or b == d else "NO") @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) a += [-1] cnt = n tmp = 1 for i in range(n): if a[i + 1] > a[i]: tmp += 1 else: cnt += tmp * (tmp - 1) // 2 tmp = 1 print(cnt) @staticmethod def d(): n, *wh = map(int, sys.stdin.read().split()) wh = sorted(zip(*[iter(wh)] * 2), key=lambda x: (-x[0], x[1])) w = [x[1] for x in wh][::-1] res = [inf] * n for x in w: res[bi_l(res, x)] = x print(bi_l(res, inf)) class ABC039: @staticmethod def a(): a, b, c = map(int, sys.stdin.readline().split()) print((a * b + b * c + c * a) * 2) @staticmethod def b(): x = int(sys.stdin.readline().rstrip()) for n in range(1, int(x**0.5) + 1): if pow(n, 4) == x: print(n) return @staticmethod def c(): board = "WBWBWWBWBWBW" * 3 convert = "Do, *, Re, *, Mi, Fa, *, So, *, La, *, Si".split(", ") s = sys.stdin.readline().rstrip() print(convert[board.index(s)]) @staticmethod def d(): h, w = map(int, sys.stdin.readline().split()) s = sys.stdin.read().split() dyx = list(itertools.product((-1, 0, 1), repeat=2)) black_certain = set() black_before = set() for i in range(h): for j in range(w): black_cand = set() for dy, dx in dyx: y = i + dy x = j + dx if y < 0 or y >= h or x < 0 or x >= w: continue if s[y][x] == ".": break black_cand.add((y, x)) else: black_before.add((i, j)) black_certain |= black_cand for i in range(h): for j in range(w): if s[i][j] == "#" and not (i, j) in black_certain: print("impossible") return print("possible") for i in range(h): row = "" for j in range(w): row += "#" if (i, j) in black_before else "." print("".join(row)) class ABC040: @staticmethod def a(): n, x = map(int, sys.stdin.readline().split()) print(min(x - 1, n - x)) @staticmethod def b(): n = int(sys.stdin.readline().rstrip()) res = inf for i in range(1, int(n**0.5) + 1): res = min(res, n // i - i + n % i) print(res) @staticmethod def c(): n, *h = map(int, sys.stdin.read().split()) h = [h[0]] + h cost = [None] * (n + 1) cost[0] = cost[1] = 0 for i in range(2, n + 1): cost[i] = min( cost[i - 2] + abs(h[i] - h[i - 2]), cost[i - 1] + abs(h[i] - h[i - 1]), ) print(cost[n]) @staticmethod def d(): n, m = map(int, sys.stdin.readline().split()) uf = GeometryTopology.UnionFind(n=n) queue = [] for _ in range(m): a, b, y = map(int, sys.stdin.readline().split()) heappush(queue, (-(2 * y), a - 1, b - 1)) q = int(sys.stdin.readline().rstrip()) for i in range(q): v, y = map(int, sys.stdin.readline().split()) heappush(queue, (-(2 * y + 1), v - 1, i)) res = [None] * q while queue: y, i, j = heappop(queue) if y & 1: res[j] = uf.size[uf.find_root(i)] else: uf.unite(i, j) print(*res, sep="\n") class ABC041: @staticmethod def a(): s, i = sys.stdin.read().split() i = int(i) print(s[i - 1]) @staticmethod def b(): a, b, c = map(int, sys.stdin.readline().split()) ans = a * b % MOD * c % MOD print(ans) @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) for i, h in sorted(enumerate(a), key=lambda x: -x[1]): print(i + 1) @staticmethod def d(): n, m, *xy = map(int, sys.stdin.read().split()) (*xy,) = zip(*[iter(xy)] * 2) edges = [0] * n for x, y in xy: x -= 1 y -= 1 edges[x] |= 1 << y comb = [None] * (1 << n) comb[0] = 1 def count(edges, bit): if comb[bit] is not None: return comb[bit] comb[bit] = 0 for i in range(n): if (bit >> i) & 1 and not edges[i]: nxt_bit = bit & ~(1 << i) nxt_edges = edges.copy() for j in range(n): nxt_edges[j] &= ~(1 << i) cnt = count(nxt_edges, nxt_bit) comb[bit] += cnt return comb[bit] print(count(edges, (1 << n) - 1)) class ABC042: @staticmethod def a(): a = [int(x) for x in sys.stdin.readline().split()] c = Counter(a) print("YES" if c[5] == 2 and c[7] == 1 else "NO") @staticmethod def b(): n, l, *s = sys.stdin.read().split() print("".join(sorted(s))) @staticmethod def c(): n, k, *d = sys.stdin.read().split() l = len(n) ok = sorted(set(string.digits) - set(d)) cand = [ int("".join(p)) for p in itertools.product(ok, repeat=l) ] + [int(min(x for x in ok if x > "0") + min(ok) * l)] print(cand[bi_l(cand, int(n))]) @staticmethod def d(): h, w, a, b = map(int, sys.stdin.read().split()) combinatorics = Combinatorics(n=2 * 10**5, mod=MOD) tot = combinatorics.mod_choose(h + w - 2, h - 1) i = np.arange(h - a, h) ng = np.sum( combinatorics.mod_choose(i + b - 1, i) * combinatorics.mod_choose(h - i + w - b - 2, h - 1 - i) % MOD ) tot -= ng tot %= MOD print(tot) class ABC043: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) print((1 + n) * n // 2) @staticmethod def b(): s = sys.stdin.readline().rstrip() t = "" for c in s: if c == "B": t = t[:-1] else: t += c print(t) @staticmethod def c(): n, *a = map(int, sys.stdin.read().split()) a = np.array(a) x = np.around(a.sum() / n).astype(int) print(np.sum((a - x) ** 2)) @staticmethod def d(): s = sys.stdin.readline().rstrip() n = len(s) for i in range(n - 1): if s[i] == s[i + 1]: print(i + 1, i + 2) return for i in range(n - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) class ABC170: @staticmethod def a(): x = [int(x) for x in sys.stdin.readline().split()] for i in range(5): if x[i] != i + 1: print(i + 1) break @staticmethod def b(): x, y = map(int, sys.stdin.readline().split()) print("Yes" if 2 * x <= y <= 4 * x and y % 2 == 0 else "No") @staticmethod def c(): x, n, *p = map(int, sys.stdin.read().split()) a = list(set(range(102)) - set(p)) a = [(abs(y - x), y) for y in a] print(sorted(a)[0][1]) @staticmethod def d(): n, *a = map(int, sys.stdin.read().split()) cand = set(a) cnt = 0 for x, c in sorted(Counter(a).items()): cnt += c == 1 and x in cand cand -= set(range(x * 2, 10**6 + 1, x)) print(cnt) @staticmethod def e(): n, q = map(int, sys.stdin.readline().split()) queue = [] m = 2 * 10**5 infants = [[] for _ in range(m)] highest_rate = [None] * m where = [None] * n rate = [None] * n def entry(i, k): where[i] = k while infants[k]: r, j = heappop(infants[k]) if where[j] != k or j == i: continue if rate[i] >= -r: highest_rate[k] = rate[i] heappush(queue, (rate[i], k, i)) heappush(infants[k], (r, j)) break else: highest_rate[k] = rate[i] heappush(queue, (rate[i], k, i)) heappush(infants[k], (-rate[i], i)) def transfer(i, k): now = where[i] while infants[now]: r, j = heappop(infants[now]) if where[j] != now or j == i: continue if highest_rate[now] != -r: highest_rate[now] = -r heappush(queue, (-r, now, j)) heappush(infants[now], (r, j)) break else: highest_rate[now] = None entry(i, k) def inquire(): while True: r, k, i = heappop(queue) if where[i] != k or r != highest_rate[k]: continue heappush(queue, (r, k, i)) return r for i in range(n): a, b = map(int, sys.stdin.readline().split()) rate[i] = a entry(i, b - 1) for _ in range(q): c, d = map(int, sys.stdin.readline().split()) transfer(c - 1, d - 1) print(inquire()) class ABC171: @staticmethod def a(): c = sys.stdin.readline().rstrip() print("A" if c < "a" else "a") @staticmethod def b(): n, k, *p = map(int, sys.stdin.read().split()) print(sum(sorted(p)[:k])) @staticmethod def c(): n = int(sys.stdin.readline().rstrip()) n -= 1 l = 1 while True: if n < pow(26, l): break n -= pow(26, l) l += 1 res = "".join( [chr(ord("a") + d) for d in NumberTheory.base_convert(n, 26)][ ::-1 ] ) res = "a" * (l - len(res)) + res print(res) @staticmethod def d(): n = int(sys.stdin.readline().rstrip()) a = [int(x) for x in sys.stdin.readline().split()] s = sum(a) cnt = Counter(a) q = int(sys.stdin.readline().rstrip()) for _ in range(q): b, c = map(int, sys.stdin.readline().split()) s += (c - b) * cnt[b] print(s) cnt[c] += cnt[b] cnt[b] = 0 @staticmethod def e(): n, *a = map(int, sys.stdin.read().split()) s = 0 for x in a: s ^= x b = map(lambda x: x ^ s, a) print(*b, sep=" ") class ABC172: @staticmethod def a(): a = int(sys.stdin.readline().rstrip()) print(a * (1 + a + a**2)) @staticmethod def b(): s, t = sys.stdin.read().split() print(sum(s[i] != t[i] for i in range(len(s)))) @staticmethod def c(): n, m, k = map(int, sys.stdin.readline().split()) a = [0] + [int(x) for x in sys.stdin.readline().split()] b = [int(x) for x in sys.stdin.readline().split()] (*sa,) = itertools.accumulate(a) (*sb,) = itertools.accumulate(b) res = 0 for i in range(n + 1): r = k - sa[i] if r < 0: break res = max(res, i + bi_r(sb, r)) print(res) @staticmethod def d(): n = int(sys.stdin.readline().rstrip()) f = np.zeros(n + 1, dtype=np.int64) for i in range(1, n + 1): f[i::i] += 1 print((np.arange(1, n + 1) * f[1:]).sum()) class ABC173: @staticmethod def a(): n = int(sys.stdin.readline().rstrip()) charge = (n + 999) // 1000 * 1000 - n print(charge) @staticmethod def b(): n, *s = sys.stdin.read().split() c = Counter(s) for v in "AC, WA, TLE, RE".split(", "): print(f"{v} x {c[v]}") @staticmethod def c(): h, w, k = map(int, sys.stdin.readline().split()) c = [sys.stdin.readline().rstrip() for _ in range(h)] tot = 0 for i in range(1 << h): for j in range(1 << w): cnt = 0 for y in range(h): for x in range(w): if i >> y & 1 or j >> x & 1: continue cnt += c[y][x] == "#" tot += cnt == k print(tot) @staticmethod def d(): n, *a = map(int, sys.stdin.read().split()) a.sort(reverse=True) res = ( a[0] + sum(a[1 : 1 + (n - 2) // 2]) * 2 + a[1 + (n - 2) // 2] * (n & 1) ) print(res) @staticmethod def e(): MOD = 10**9 + 7 n, k, *a = map(int, sys.stdin.read().split()) minus = [x for x in a if x < 0] plus = [x for x in a if x > 0] if len(plus) + len(minus) // 2 * 2 >= k: # plus (*minus,) = map(abs, minus) minus.sort(reverse=True) plus.sort(reverse=True) cand = [] if len(minus) & 1: minus = minus[:-1] for i in range(0, len(minus) - 1, 2): cand.append(minus[i] * minus[i + 1] % MOD) if k & 1: res = plus[0] plus = plus[1:] else: res = 1 if len(plus) & 1: plus = plus[:-1] for i in range(0, len(plus) - 1, 2): cand.append(plus[i] * plus[i + 1] % MOD) cand.sort(reverse=True) for x in cand[: k // 2]: res *= x res %= MOD print(res) elif 0 in a: print(0) else: cand = sorted(map(abs, a)) res = 1 for i in range(k): res *= cand[i] res %= MOD res = MOD - res print(res) pass class ABC174: @staticmethod def a(): print("Yes" if int(sys.stdin.readline().rstrip()) >= 30 else "No") class ACL001: @staticmethod def a(): n, *xy = map(int, sys.stdin.read().split()) (*xy,) = zip(*[iter(xy)] * 2) print(xy) pass class MSolutions2020: @staticmethod def a(): x = int(sys.stdin.readline().rstrip()) x -= 400 print(8 - x // 200) @staticmethod def b(): r, g, b, k = map(int, sys.stdin.read().split()) while k and g <= r: g *= 2 k -= 1 while k and b <= g: b *= 2 k -= 1 print("Yes" if r < g < b else "No") @staticmethod def c(): n, k, *a = map(int, sys.stdin.read().split()) for i in range(k, n): print("Yes" if a[i] > a[i - k] else "No") @staticmethod def d(): n, *a = map(int, sys.stdin.read().split()) a += [-1] m = 1000 s = 0 for i in range(n): if a[i + 1] == a[i]: continue elif a[i + 1] > a[i]: cnt = m // a[i] m -= a[i] * cnt s += cnt else: m += a[i] * s s = 0 print(m) class Codeforces: pass class ProjectEuler: @staticmethod def p1(): def f(n, x): return (x + n // x * x) * (n // x) // 2 n = 1000 ans = f(n - 1, 3) + f(n - 1, 5) - f(n - 1, 15) print(ans) @staticmethod def p2(): fib = [1, 2] while fib[-1] < 4 * 10**6: fib.append(fib[-1] + fib[-2]) print(sum(fib[1:-1:3])) @staticmethod def p3(): number_theory = NumberTheory() res = number_theory.prime_factorize(600851475143) print(max(res.keys())) @staticmethod def p4(): def is_palindrome(n): n = str(n) return n == n[::-1] cand = [] for a in range(100, 1000): for b in range(a, 1000): n = a * b if is_palindrome(n): cand.append(n) print(max(cand)) @staticmethod def p5(): number_theory = NumberTheory() res = defaultdict(int) for i in range(1, 21): for p, c in number_theory.prime_factorize(i).items(): res[p] = max(res[p], c) ans = 1 for p, c in res.items(): ans *= pow(p, c) print(ans) @staticmethod def p6(): a = np.arange(101) b = np.cumsum(a**2) a = a.cumsum() print(a[100] ** 2 - b[100]) @staticmethod def p7(): number_theory = NumberTheory() print(sorted(number_theory.prime_numbers)[10000]) @staticmethod def p8(): n = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450" n = [int(d) for d in list(n)] res = 0 for i in range(988): x = 1 for j in range(13): x *= n[i + j] res = max(res, x) print(res) @staticmethod def p9(): for a in range(1, 997): for b in range(a, 998 - a): c = 1000 - a - b if a**2 + b**2 == c**2: print(a * b * c) return @staticmethod def p10(): number_theory = NumberTheory(2 * 10**6 - 1) print(sum(number_theory.prime_numbers)) @staticmethod def p11(): grid = "08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48" # grid = np.array(grid.split(), dtype=np.int64).reshape(20, -1) # cand = [] # for i in range(20): # bl1 = i+3 < 20 # for j in range(20): # bl2 = j+3 < 20 # if bl1: # np.prod # tmp = 1 # for d in range(4): # tmp *= grid[i+d, j] print(grid) pass class Yukicoder: pass if __name__ == "__main__": AtCoder.ABC009.d()
32.195939
1,217
0.368661
[ "MIT" ]
kagemeka/atcoder-submissions
jp.atcoder/abc009/abc009_4/17183548.py
95,141
Python
import libtcodpy libtcodpy.say_hello()
8.2
21
0.804878
[ "Unlicense" ]
Rosuav/libtcodpy
tcodtest.py
41
Python
# -*- coding: utf-8 -*- """hw06_training.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1bjAeUIVjt9W8mASk8vw1y2SbuBYuQdlG """ !pip install reports import PIL.Image as Image, requests, urllib, random import argparse, json, PIL.Image, reports, os, pickle from requests.exceptions import ConnectionError, ReadTimeout, TooManyRedirects, MissingSchema, InvalidURL import numpy, torch, cv2, skimage import skimage.io as io from torch import nn import torch.nn.functional as F from pycocotools.coco import COCO import glob from torch.utils.data import DataLoader,Dataset import torchvision.transforms as tvt import matplotlib.pyplot as plt from torchsummary import summary import pandas as pd # Mount google drive to run on Colab #from google.colab import drive #drive.mount('/content/drive') #%cd "/content/drive/My Drive/Colab Notebooks/DeepLearning/hw06/" #!pwd #!ls root_path = "/content/drive/My Drive/Colab Notebooks/DeepLearning/hw06/" coco_json_path = "annotations/instances_train2017.json" class_list = ["person", "dog", "hot dog"] coco = COCO(coco_json_path) class build_annotations: # Structure of the all_annotations file: # indexed by the image filepath, removing the '.jpg' or the string version (with zeros) of the imageID # For each image: # 'imageID': corresponds to the integer image ID assigned within COCO. # 'num_objects': integer number of objects in the image (at most 5) # 'bbox': a dictionary of the bounding box array for each instance within the image. The dictionary key is the string 0-5 of each instance in order of decreasing area # 'labels': a dictionary of the labels of each instance within the image. The key is the same as bbox but the value is the integer category ID assigned within COCO. def __init__(self, root_path, class_list, max_instances = 5): self.root_path = root_path self.image_dir = root_path + '*.jpg' self.cat_IDs = coco.getCatIds(catNms=class_list) self.max_instances = max_instances def __call__(self): all_annotations = {} g = glob.glob(self.image_dir) for i, filename in enumerate(g): filename = filename.split('/')[-1] img_ID = int(filename.split('.')[0]) ann_Ids = coco.getAnnIds(imgIds=img_ID, catIds = self.cat_IDs, iscrowd = False) num_objects = min(len(ann_Ids), self.max_instances) # cap at a max of 5 images anns = coco.loadAnns(ann_Ids) indices = sort_by_area(anns, self.max_instances) bbox = {} label = {} i = 0 for n in indices: instance = anns[n] bbox[str(i)] = instance['bbox'] label[str(i)] = instance['category_id'] i+=1 annotation= {"imageID":img_ID, "num_objects":i, 'bbox': bbox, 'labels':label} all_annotations[filename.split('.')[0]] = annotation ann_path = self.root_path + "image_annotations.p" pickle.dump( all_annotations, open(ann_path, "wb" ) ) print('Annotations saved in:', ann_path) def sort_by_area(anns, num): areas = numpy.zeros(len(anns)) for i, instance in enumerate(anns): areas[i] = instance['area'] indices = numpy.argsort(areas)[-num:] return indices[::-1] class your_dataset_class(Dataset): def __init__(self, path, class_list, coco): self.class_list = class_list self.folder = path self.coco = coco self.catIds = coco.getCatIds(catNms = class_list) self.imgIds = coco.getImgIds(catIds = self.catIds) self.categories = coco.loadCats(self.catIds) #create label dictionary labeldict = {} for idx, in_class in enumerate(self.class_list): for c in self.categories: if c["name"] == in_class: labeldict[c['id']] = idx self.coco_labeldict = labeldict #if first time running, index the image dataset to make annotation .p file annotation_path = path + 'image_annotations.p' if os.path.exists(annotation_path) ==False: print("Indexing dataset to compile annotations...") dataset_annotations = build_annotations(path, class_list) dataset_annotations() self.data_anns = pickle.load(open(annotation_path, "rb" )) def __len__(self): g = glob.glob(self.folder + '*.jpg') # ,'*.jpg') return (len(g)) def get_imagelabel(self, img_path, sc, max_objects = 5): #img_path = file location, sc = scale [0]: width, [1]: height saved_filename = os.path.basename(img_path) filename = saved_filename.split('.jpg')[0] image_id = int(filename)#.split('_')[-1]) bbox_tensor = torch.zeros(max_objects, 4, dtype=torch.uint8) label_tensor = torch.zeros(max_objects+1, dtype=torch.uint8) + len(self.class_list) target_obj = self.data_anns[filename] num_objects = target_obj['num_objects'] for n in range(num_objects): [x,y,w,h] = target_obj['bbox'][str(n)] bbox = [sc[1]*y, x*sc[0], sc[1]*(h), sc[0]*(w)] bbox_tensor[n,:] = torch.tensor(numpy.array(bbox)) cat_label = target_obj['labels'][str(n)] data_label = self.coco_labeldict[cat_label] label_tensor[n] = torch.tensor(data_label) return bbox_tensor, label_tensor def __getitem__(self, item): g = glob.glob(self.folder + '*.jpg') #'**/*.jpg') # , '*.jpg') im = PIL.Image.open(g[item]) im, scale_fac = rescale_factor(im, 128) #overwrite old image with new resized image of size 256 W, H = im.size transformer = tvt.Compose([tvt.ToTensor(), tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) im_array = torch.randint(0, 256, (3, H, W)).type(torch.uint8) for i in range(H): for j in range(W): im_array[:, j, i] = torch.tensor(im.getpixel((i, j))) im_scaled = im_array / im_array.max() # scaled from 0-1 im_tf = transformer(numpy.transpose(im_scaled.numpy())) num_classes = len(self.class_list) bbox, label = self.get_imagelabel(g[item], scale_fac) sample = {'im_ID': g[item], 'scale':scale_fac, 'image': im_tf, 'bbox' : bbox, 'label': label} return sample def rescale_factor(im_original, std_size): raw_width, raw_height = im_original.size im = im_original.resize((std_size, std_size), Image.BOX) w_factor = std_size/raw_width h_factor = std_size/raw_height return (im, [w_factor, h_factor]) #train_path = os.path.join(root_path, "Train/") train_path = root_path + "Train/" val_path = os.path.join(root_path, "Val/") batch_size = 64 train_dataset = your_dataset_class(train_path, class_list, coco) #train_dataset.__getitem__(32) train_data_loader = torch.utils.data.DataLoader(dataset = train_dataset, batch_size = batch_size, shuffle = True, num_workers= 2, drop_last=True) #val_dataset = your_dataset_class(val_path, class_list) #val_data_loader = torch.utils.data.DataLoader(dataset = val_dataset, # batch_size = batch_size, # shuffle = True, # num_workers = 4, # drop_last=True) class SkipBlock(nn.Module): def __init__(self,in_ch, out_ch, downsample = False): super().__init__() self.in_ch = in_ch self.out_ch = out_ch self.conv1 = nn.Conv2d(in_ch, out_ch, 3, stride = 1, padding = 1) self.conv2 = nn.Conv2d(in_ch, out_ch, 3, padding = 1) self.bnorm1 = nn.BatchNorm2d(out_ch) self.bnorm2 = nn.BatchNorm2d(out_ch) self.downsample_tf = downsample self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride= 2) def forward(self, x): identity = x out = self.conv1(x) out = self.bnorm1(out) out = F.relu(out) if self.downsample_tf == True: identity = self.downsampler(identity) out = self.downsampler(out) out += identity else: out = self.conv2(out) out = self.bnorm2(out) out = F.relu(out) out += identity return out class MechEnet(nn.Module): def __init__(self, num_classes, depth): super().__init__() self.depth = depth // 8 self.conv_initial = nn.Conv2d( 3, 64, 3, padding = 1) self.pool = nn.MaxPool2d(2,2) ## assume all layers are 64 channels deep self.skipblock64_1 = nn.ModuleList() for i in range(self.depth): #print("adding layer", i) self.skipblock64_1.append( SkipBlock(64,64, downsample = False) ) #append a 64 in/out ch layer - depth*2/4 convolutions self.skip_downsample = SkipBlock(64,64, downsample= True) self.skipblock64_2 = nn.ModuleList() for i in range(self.depth): #print("adding layer", i + self.depth) self.skipblock64_2.append( SkipBlock(64,64, downsample = False) ) #append a 64 in/out layer - depth*2/4 convolutions self.fc_seqn = nn.Sequential( nn.Linear(64*4*4, 3000), nn.ReLU(inplace =True), nn.Linear(3000,3000), nn.ReLU(inplace =True), nn.Linear(3000,8*8*(5*(5+3))) #5 anchor boxes*(1+ bbox(4) + classes (3)) ) def forward(self, x): # x1 is the output of classification x = self.pool(F.relu(self.conv_initial(x))) x1 = self.skip_downsample(x) for i, skips in enumerate(self.skipblock64_1[self.depth//4 :]): x1 = skips(x1) x1 = self.skip_downsample(x1) for i, skips in enumerate(self.skipblock64_1[:self.depth//4]): x1 = skips(x1) x1 = self.skip_downsample(x1) for i, skips in enumerate(self.skipblock64_2[self.depth//4:]): x1 = skips(x1) x1 = self.skip_downsample(x1) for i, skips in enumerate(self.skipblock64_2[:self.depth//4]): x1 = skips(x1) #x1 = self.skip_downsample(x) x1 = x1.view(x1.size(0),-1) x1 = self.fc_seqn(x1) return x1 class IoULoss(torch.nn.Module): def __init__(self, weight=None, size_average=True): super(IoULoss, self).__init__() def forward(self, inputs, targets, smooth=1): #flatten label and prediction tensors # tensor shape = [b, yolo_cell, anch, yolovector] # flattened tensor = [b, numcells*numanch*8] b_size = inputs.shape[0] pred_unscrm = inputs.view(b_size, 8**2, 5, -1) targ_unscrm = targets.view(b_size, 8**2, 5, -1) pred_bbox = pred_unscrm[:,:,:,1:5] targ_bbox = targ_unscrm[:,:,:,1:5] intersection = targ_bbox*pred_bbox union = targ_bbox + pred_bbox J_idx = torch.div(intersection, union) #print(J_idx) J_dist = 1.0-J_idx return torch.sum(J_dist) ## significant code is adapted from Prof. Kak's Multi-instance detector def run_code_for_training(net, lrate, mom, epochs, im_size, max_objects, yolo_interval = 16): print('Beginning training for', epochs,'epochs...') #criterion1 = torch.nn.CrossEntropyLoss() criterion = torch.nn.MSELoss() #criterion = IoULoss() optimizer = torch.optim.SGD(net.parameters(), lr = lrate, momentum = mom) loss_tracker = [] num_cells_image_height = im_size//yolo_interval num_cells_image_width = im_size//yolo_interval num_yolo_cells = num_cells_image_height*num_cells_image_width print_iteration = 3 num_anchor_boxes = 5 yolo_tensor = torch.zeros(batch_size, num_yolo_cells, num_anchor_boxes, 1*5+3) #batch size, 8*8, 1*5+3 classes class AnchorBox: def __init__(self, AR, topleft, abox_h, abox_w, abox_idx): self.AR = AR self.topleft = topleft self.abox_h = abox_h self.abox_w = abox_w self.abox_idx= abox_idx device = torch.device("cuda:0") for epoch in range(epochs): print('\nEpoch %d training...' %(epoch + 1)) running_loss = 0.0 for i, data in enumerate(train_data_loader): sample_batch = data['im_ID'] im_tensor = data["image"] target_reg = data["bbox"].type(torch.FloatTensor) target_clf = data["label"].type(torch.LongTensor) optimizer.zero_grad() im_tensor = im_tensor.to(device) target_reg = target_reg.to(device) target_clf = target_clf.to(device) yolo_tensor = yolo_tensor.to(device) obj_centers = {ibx : {idx : None for idx in range(max_objects)} for ibx in range(im_tensor.shape[0])} anchor_boxes_1_1 = [[AnchorBox(1/1, (i*yolo_interval,j*yolo_interval), yolo_interval, yolo_interval, 0) for i in range(0,num_cells_image_height)] for j in range(0,num_cells_image_width)] anchor_boxes_1_3 = [[AnchorBox(1/3, (i*yolo_interval,j*yolo_interval), yolo_interval, 3*yolo_interval, 1) for i in range(0,num_cells_image_height)] for j in range(0,num_cells_image_width)] anchor_boxes_3_1 = [[AnchorBox(3/1, (i*yolo_interval,j*yolo_interval), 3*yolo_interval, yolo_interval, 2) for i in range(0,num_cells_image_height)] for j in range(0,num_cells_image_width)] anchor_boxes_1_5 = [[AnchorBox(1/5, (i*yolo_interval,j*yolo_interval), yolo_interval, 5*yolo_interval, 3) for i in range(0,num_cells_image_height)] for j in range(0,num_cells_image_width)] anchor_boxes_5_1 = [[AnchorBox(5/1, (i*yolo_interval,j*yolo_interval), 5*yolo_interval, yolo_interval, 4) for i in range(0,num_cells_image_height)] for j in range(0,num_cells_image_width)] #Build the yolo tensor based on the bounding box and label tensors from the target/dataset for b in range(im_tensor.shape[0]): # Loop through batch index for idx in range(max_objects): # Loop through each object in the target tensor height_center_bb = (target_reg[b][idx][1].item() + target_reg[b][idx][3].item()) // 2 width_center_bb = (target_reg[b][idx][0].item() + target_reg[b][idx][2].item()) // 2 obj_bb_height = target_reg[b][idx][3].item() - target_reg[b][idx][1].item() obj_bb_width = target_reg[b][idx][2].item() - target_reg[b][idx][0].item() obj_label = target_clf[b][idx].item() if obj_label == 13: obj_label = 4 eps = 1e-8 AR = float(obj_bb_height + eps) / float(obj_bb_width + eps) cell_row_idx = int(height_center_bb // yolo_interval) ## for the i coordinate cell_col_idx = int(width_center_bb // yolo_interval) ## for the j coordinates if AR <= 0.2: ## (F) anchbox = anchor_boxes_1_5[cell_row_idx][cell_col_idx] elif AR <= 0.5: anchbox = anchor_boxes_1_3[cell_row_idx][cell_col_idx] elif AR <= 1.5: anchbox = anchor_boxes_1_1[cell_row_idx][cell_col_idx] elif AR <= 4: anchbox = anchor_boxes_3_1[cell_row_idx][cell_col_idx] elif AR > 4: anchbox = anchor_boxes_5_1[cell_row_idx][cell_col_idx] bh = float(obj_bb_height) / float(yolo_interval) ## (G) bw = float(obj_bb_width) / float(yolo_interval) obj_center_x = float(target_reg[b][idx][2].item() + target_reg[b][idx][0].item()) / 2.0 obj_center_y = float(target_reg[b][idx][3].item() + target_reg[b][idx][1].item()) / 2.0 yolocell_center_i = cell_row_idx*yolo_interval + float(yolo_interval) / 2.0 yolocell_center_j = cell_col_idx*yolo_interval + float(yolo_interval) / 2.0 del_x = float(obj_center_x - yolocell_center_j) / yolo_interval del_y = float(obj_center_y - yolocell_center_i) / yolo_interval yolo_vector = [0, del_x, del_y, bh, bw, 0, 0, 0] if obj_label<4: yolo_vector[4 + obj_label] = 1 yolo_vector[0] = 1 yolo_cell_index = cell_row_idx * num_cells_image_width + cell_col_idx yolo_tensor[b, yolo_cell_index, anchbox.abox_idx] = torch.FloatTensor( yolo_vector ) yolo_tensor_flattened = yolo_tensor.view(im_tensor.shape[0], -1) ## Foward Pass pred_yolo = net(im_tensor) #pred_yolo = filter_yolo_tensor(pred_yolo, im_tensor.shape[0], num_yolo_cells, num_anchor_boxes) loss = criterion(pred_yolo, yolo_tensor_flattened) loss.backward(retain_graph = True) pred_unscrm = pred_yolo.view(im_tensor.shape[0], 8**2, 5, -1) sample_yolo_tensor = pred_unscrm optimizer.step() running_loss += loss.item() if (i+1)%print_iteration ==0: average_loss = running_loss/float(print_iteration) print("[epoch: %d, batch: %5d] Avg Batch loss: %.4f" %(epoch + 1, i+1, average_loss)) loss_tracker = numpy.append(loss_tracker, average_loss) running_loss = 0.0 return loss_tracker, sample_yolo_tensor, sample_batch def filter_yolo_tensor(yolo_tensor, batch_size, num_yolo_cells, aboxes): #loop through each yolo_cell_index in the in the prediction tensor # if idx[0] of the yolo vector is less than 0.5, make the whole vector zero zero_vec = torch.zeros(8) print(yolo_tensor.shape) for b in range(batch_size): for num in range(num_yolo_cells): for an in range(aboxes): if yolo_tensor[b,num][an][0] < 0.5: yolo_tensor[b,num][an][:] = torch.zeros(8) return yolo_tensor model = MechEnet(len(class_list), depth = 64) lrate = 5e-3 mom = 0.5 epochs = 1 yolo_int = 16 im_size = 128 max_objects = 5 savepath = "MechEnet.pth" model.load_state_dict(torch.load(savepath)) if torch.cuda.is_available(): device = torch.device("cuda:0") model.cuda() summary(model, (3, im_size, im_size)) training_loss, yolo_sample, batches = run_code_for_training(model, lrate, mom, epochs, im_size, max_objects, yolo_interval = yolo_int) #savepath = "/content/drive/My Drive/Colab Notebooks/DeepLearning/hw06/MechEnet.pth" #torch.save(model.state_dict(), savepath) #pd.DataFrame(training_loss).to_csv("/content/drive/My Drive/Colab Notebooks/DeepLearning/hw06/loss.csv") fig, ax = plt.subplots() ax.plot(training_loss) ax.set_title('Training loss') ax.set_ylabel('Loss') ax.set_xlabel('Iterations') ## Visualize prediction on training set annotation_path = root_path + 'Train/'+ 'image_annotations.p' data_anns = pickle.load(open(annotation_path, "rb" )) def show_image(image_anns): img = coco.loadImgs(rand_img['imageID'])[0] I = io.imread(img['coco_url']) if len(I.shape) == 2: I = skimage.color.gray2rgb(I) catIds = coco.getCatIds(catNms= class_list) annIds = coco.getAnnIds(imgIds=rand_img['imageID'], catIds= catIds, iscrowd=False) anns = coco.loadAnns(annIds) image = numpy.uint8(I) for i in range(rand_img['num_objects']): [x,y,w,h] = rand_img['bbox'][str(i)] label = rand_img['labels'][str(i)] image = cv2.rectangle(image, (int(x), int(y)), (int(x +w), int(y + h)), (36,255,12), 2) class_label = coco_labels_inverse[label] image = cv2.putText(image, 'True ' + class_list[class_label], (int(x), int(y-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (36,255,12), 2) return image bdx =37 #numpy.random.randint(0,64) #55 #18 #5 img_loc = batches[bdx].split('/')[-1].split('.')[0] rand_img = data_anns[img_loc] image = show_image(rand_img) scale = train_dataset.__getitem__(sdx)['scale'] g = glob.glob(root_path + 'Train/*.jpg') for i in range(len(g)): if img_loc in g[i]: sdx = i import math im_considered = yolo_sample[bdx,:,:,:] im_pred_anch = torch.zeros(64,8) cell_pred = [] num_cell_width = 8 yolo_interval = 16 for i in range(im_considered.shape[0]): AR = torch.argmax(im_considered[i,:,0]) im_pred_anch[i,:] = im_considered[i,AR,:] if im_pred_anch[i,0] > 0.75: if AR == 0: w,h = 1,1 elif AR == 1: w,h = 1,3 elif AR == 2: w,h = 3,1 elif AR == 3: w,h = 1,5 elif AR == 4: w,h = 5,1 row_idx = math.floor(i/num_cell_width) col_idx = i%num_cell_width yolo_box = im_pred_anch[i,1:5].cpu().detach().numpy() x1 = ((row_idx + 0.5)*yolo_interval)/scale[0] x2 = x1 + (w*yolo_interval)/scale[0] y1 = (col_idx + 0.5)*yolo_interval/scale[1] y2 = y1+ (h*yolo_interval)/scale[1] label = torch.argmax(im_pred_anch[i,5:]).cpu().detach().numpy() pred_label = str('Predicted ' + class_list[label]) temp = [pred_label, x1,y1, x2,y2] cell_pred = numpy.append(cell_pred, temp) image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (255,0,0), 2) image = cv2.putText(image, pred_label, (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,0,0), 2) fig, ax = plt.subplots(1,1, dpi = 150) ax.imshow(image) ax.set_axis_off() plt.axis('tight') plt.show()
39.083485
168
0.622661
[ "MIT" ]
arao53/BME695-object-detection
hw06_train.py
21,535
Python
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : spanish.py @Time : 2020/08/21 @Author : JavierSC @Version : 1.0 @Contact : @Desc : ''' class LangSpanish(object): SETTING = "AJUSTES" VALUE = "VALORES" SETTING_DOWNLOAD_PATH = "Ruta de descarga" SETTING_ONLY_M4A = "Convertir mp4 a m4a" SETTING_ADD_EXPLICIT_TAG = "Añadir tag de 'Contenido explícito'" SETTING_ADD_HYPHEN = "Agregar guión" SETTING_ADD_YEAR = "Agregar año en la carpeta del álbum" SETTING_USE_TRACK_NUM = "Agregar número de la pista" SETTING_AUDIO_QUALITY = "Calidad de audio" SETTING_VIDEO_QUALITY = "Calidad de video" SETTING_CHECK_EXIST = "Verificar si existe" SETTING_ARTIST_BEFORE_TITLE = "Nombre del artista en el título de la pista" SETTING_ALBUMID_BEFORE_FOLDER = "Añadir ID de la carpeta del álbum" SETTING_INCLUDE_EP = "Incluir Sencillos y EPs" SETTING_SAVE_COVERS = "Guardar carátulas" SETTING_LANGUAGE = "Idioma" SETTING_USE_PLAYLIST_FOLDER = "Usar directorio de la lista de reproducción" SETTING_MULITHREAD_DOWNLOAD = "Descarga Multi-hilo" SETTING_ALBUM_FOLDER_FORMAT = "Formato del nombre de carpeta del álbum" SETTING_TRACK_FILE_FORMAT = "Formato del nombre de archivo de la pista" SETTING_SHOW_PROGRESS = "Mostrar progreso" CHOICE = "SELECCIÓN" FUNCTION = "FUNCIÓN" CHOICE_ENTER = "Ingresar" CHOICE_ENTER_URLID = "Ingresar 'Url/ID':" CHOICE_EXIT = "Salir" CHOICE_LOGIN = "Login" CHOICE_SETTINGS = "Ajustes" CHOICE_SET_ACCESS_TOKEN = "Establecer AccessToken" CHOICE_DOWNLOAD_BY_URL = "Descargar por Url o ID" PRINT_ERR = "[ERR]" PRINT_INFO = "[INFO]" PRINT_SUCCESS = "[EXITO]" PRINT_ENTER_CHOICE = "Ingresar Selección:" PRINT_LATEST_VERSION = "Ultima versión:" PRINT_USERNAME = "nombre de usuario:" PRINT_PASSWORD = "contraseña:" CHANGE_START_SETTINGS = "Iniciar ajustes('0'-Volver,'1'-Si):" CHANGE_DOWNLOAD_PATH = "Ruta de descarga('0' No modificar):" CHANGE_AUDIO_QUALITY = "Calidad de audio('0'-Normal,'1'-High,'2'-HiFi,'3'-Master):" CHANGE_VIDEO_QUALITY = "Calidad de video('0'-1080,'1'-720,'2'-480,'3'-360):" CHANGE_ONLYM4A = "Convertir mp4 a m4a('0'-No,'1'-Si):" CHANGE_ADD_EXPLICIT_TAG = "Agregar tag de contenido explícito a los nombres de archivo('0'-No,'1'-Si):" CHANGE_ADD_HYPHEN = "Usar guiones en lugar de espacios en el nombre de los archivos('0'-No,'1'-Si):" CHANGE_ADD_YEAR = "Agregar año a el nombre de las carpetas del álbum('0'-No,'1'-Si):" CHANGE_USE_TRACK_NUM = "Agregar número de la pista('0'-No,'1'-Si):" CHANGE_CHECK_EXIST = "Verificar si el archivo existe antes de descargar la pista('0'-No,'1'-Si):" CHANGE_ARTIST_BEFORE_TITLE = "Añadir el nombre del artista en el título de la pista('0'-No,'1'-Si):" CHANGE_INCLUDE_EP = "Incluir Sencillos y EPs al descargar el álbum del artista('0'-No,'1'-Si):" CHANGE_ALBUMID_BEFORE_FOLDER = "Añadir ID de la carpeta del álbum('0'-No,'1'-Si):" CHANGE_SAVE_COVERS = "Guardar carátulas('0'-No,'1'-Si):" CHANGE_LANGUAGE = "Seleccione el idioma" CHANGE_ALBUM_FOLDER_FORMAT = "Formato del nombre de carpeta del álbum('0' No modificar):" CHANGE_TRACK_FILE_FORMAT = "Formato del nombre de archivo de la pista('0' No modificar):" CHANGE_SHOW_PROGRESS = "Mostrar progreso('0'-No,'1'-Yes):" MSG_INVAILD_ACCESSTOKEN = "AccessToken invalido! Por favor reinicie" MSG_PATH_ERR = "La ruta no es correcta!" MSG_INPUT_ERR = "Error de entrada!" MODEL_ALBUM_PROPERTY = "PROPIEDAD-DE-ÁLBUM" MODEL_TRACK_PROPERTY = "PROPIEDAD-DE-PISTA" MODEL_VIDEO_PROPERTY = "PROPIEDAD-DE-VIDEO" MODEL_ARTIST_PROPERTY = "PROPIEDAD-DE-ARTISTA" MODEL_PLAYLIST_PROPERTY = "PROPIEDAD-DE-PLAYLIST" MODEL_TITLE = 'Título' MODEL_TRACK_NUMBER = 'Numero de pista' MODEL_VIDEO_NUMBER = 'Numero de video' MODEL_RELEASE_DATE = 'Fecha de lanzamiento' MODEL_VERSION = 'Versión' MODEL_EXPLICIT = 'Explícito' MODEL_ALBUM = 'Álbum' MODEL_ID = 'ID' MODEL_NAME = 'Nombre' MODEL_TYPE = 'Tipo'
45.129032
108
0.688825
[ "Apache-2.0" ]
joyel24/Tidal-Media-Downloader
TIDALDL-PY/tidal_dl/lang/spanish.py
4,230
Python
# -*- coding: utf-8 -*- """ ruobr.ru/api ~~~~~~~~~~~~ Библиотека для доступа к API электронного дневника. Пример: >>> from ruobr_api import Ruobr >>> r = Ruobr('username', 'password') >>> r.getUser() User(id=7592904, status='child', first_name='Иван', last_name='Иванов', middle_name='Иванович', school='69-МБОУ "СОШ №69"', school_is_tourniquet=False, readonly=False, school_is_food=True, group='10А', gps_tracker=False) :authors: raitonoberu :license: Apache License, Version 2.0, see LICENSE file :copyright: (c) 2021 raitonoberu """ from .__main__ import ( Ruobr, AsyncRuobr, AuthenticationException, NoSuccessException, NoChildrenException, ) __author__ = "raitonoberu" __version__ = "1.2.1" __email__ = "[email protected]"
25.566667
223
0.694915
[ "Apache-2.0" ]
raitonoberu/ruobr_api
ruobr_api/__init__.py
842
Python
#coding:utf-8 import urllib2 import sys,socket def elasticburp(ip,port): addr = (ip,int(port)) url = "http://" + ip + ":" + str(port) + "/_cat" sock_9200 = socket.socket(socket.AF_INET,socket.SOCK_STREAM) try: sock_9200.settimeout(1) sock_9200.connect(addr) print '%s 9200 open!' try: data = urllib2.urlopen(url).read() if '/_cat/master' in data: sys.stdout.write('%s:%d is ElasticSearch Unauthorized\n' % (ip, port)) except: pass except: sock_9200.close()
20.892857
86
0.555556
[ "MIT" ]
webvul/Allscanner
elasticsearch/elasticsearch.py
585
Python
"""grouping module""" from __future__ import absolute_import, division, print_function, unicode_literals from builtins import * import itertools import numpy as np from numpy_indexed.index import as_index import numpy_indexed as npi __author__ = "Eelco Hoogendoorn" __license__ = "LGPL" __email__ = "[email protected]" class GroupBy(object): """ GroupBy class contains an index of keys, and extends the index functionality with grouping-specific functionality """ def __init__(self, keys, axis=0): """ Parameters ---------- keys : indexable object sequence of keys to group by axis : int, optional axis to regard as the key-sequence, in case keys is multi-dimensional See Also -------- numpy_indexed.as_index : for information regarding the casting rules to a valid Index object """ self.index = as_index(keys, axis) #forward interesting/'public' index properties @property def unique(self): """unique keys""" return self.index.unique @property def count(self): """count of each unique key""" return self.index.count @property def inverse(self): """mapping such that unique[inverse]==keys""" return self.index.inverse @property def groups(self): """int, number of groups formed by the keys""" return self.index.groups #some different methods of chopping up a set of values by key def split_iterable_as_iterable(self, values): """Group iterable into iterables, in the order of the keys Parameters ---------- values : iterable of length equal to keys iterable of values to be grouped Yields ------ iterable of items in values Notes ----- Memory consumption depends on the amount of sorting required Worst case, if index.sorter[-1] = 0, we need to consume the entire value iterable, before we can start yielding any output But to the extent that the keys are already sorted, the grouping is lazy """ values = iter(enumerate(values)) cache = dict() def get_value(ti): try: return cache.pop(ti) except: while True: i, v = next(values) if i==ti: return v cache[i] = v s = iter(self.index.sorter) for c in self.count: yield (get_value(i) for i in itertools.islice(s, int(c))) def split_iterable_as_unordered_iterable(self, values): """Group iterable into iterables, without regard for the ordering of self.index.unique key-group tuples are yielded as soon as they are complete Parameters ---------- values : iterable of length equal to keys iterable of values to be grouped Yields ------ tuple of key, and a list of corresponding items in values Notes ----- This approach is lazy, insofar as grouped values are close in their iterable """ from collections import defaultdict cache = defaultdict(list) count = self.count unique = self.unique key = (lambda i: unique[i]) if isinstance(unique, np.ndarray) else (lambda i: tuple(c[i] for c in unique)) for i,v in zip(self.inverse, values): cache[i].append(v) if len(cache[i]) == count[i]: yield key(i), cache.pop(i) def split_sequence_as_iterable(self, values): """Group sequence into iterables Parameters ---------- values : iterable of length equal to keys iterable of values to be grouped Yields ------ iterable of items in values Notes ----- This is the preferred method if values has random access, but we dont want it completely in memory. Like a big memory mapped file, for instance """ print(self.count) s = iter(self.index.sorter) for c in self.count: yield (values[i] for i in itertools.islice(s, int(c))) def split_array_as_array(self, values): """Group ndarray into ndarray by means of reshaping Parameters ---------- values : ndarray_like, [index.size, ...] Returns ------- ndarray, [groups, group_size, ...] values grouped by key Raises ------ AssertionError This operation is only possible if index.uniform==True """ if not self.index.uniform: raise ValueError("Array can only be split as array if all groups have the same size") values = np.asarray(values) values = values[self.index.sorter] return values.reshape(self.groups, -1, *values.shape[1:]) def split_array_as_list(self, values): """Group values as a list of arrays, or a jagged-array Parameters ---------- values : ndarray, [keys, ...] Returns ------- list of length self.groups of ndarray, [key_count, ...] """ values = np.asarray(values) values = values[self.index.sorter] return np.split(values, self.index.slices[1:-1], axis=0) def split(self, values): """some sensible defaults""" try: return self.split_array_as_array(values) except: # FIXME: change to iter in python 3? return self.split_array_as_list(values) def __call__(self, values): """not sure how i feel about this. explicit is better than implict?""" return self.unique, self.split(values) # ufunc based reduction methods. should they return unique keys by default? def reduce(self, values, operator=np.add, axis=0, dtype=None): """Reduce the values over identical key groups, using the given ufunc reduction is over the first axis, which should have elements corresponding to the keys all other axes are treated indepenently for the sake of this reduction Parameters ---------- values : ndarray, [keys, ...] values to perform reduction over operator : numpy.ufunc a numpy ufunc, such as np.add or np.sum axis : int, optional the axis to reduce over dtype : output dtype Returns ------- ndarray, [groups, ...] values reduced by operator over the key-groups """ values = np.take(values, self.index.sorter, axis=axis) return operator.reduceat(values, self.index.start, axis=axis, dtype=dtype) def sum(self, values, axis=0, dtype=None): """compute the sum over each group Parameters ---------- values : array_like, [keys, ...] values to sum per group axis : int, optional alternative reduction axis for values dtype : output dtype Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, axis=axis, dtype=dtype) def prod(self, values, axis=0, dtype=None): """compute the product over each group Parameters ---------- values : array_like, [keys, ...] values to multiply per group axis : int, optional alternative reduction axis for values dtype : output dtype Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, axis=axis, dtype=dtype, operator=np.multiply) def mean(self, values, axis=0, weights=None, dtype=None): """compute the mean over each group Parameters ---------- values : array_like, [keys, ...] values to take average of per group axis : int, optional alternative reduction axis for values weights : ndarray, [keys, ...], optional weight to use for each value dtype : output dtype Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) if weights is None: result = self.reduce(values, axis=axis, dtype=dtype) shape = [1] * values.ndim shape[axis] = self.groups weights = self.count.reshape(shape) else: weights = np.asarray(weights) result = self.reduce(values * weights, axis=axis, dtype=dtype) weights = self.reduce(weights, axis=axis, dtype=dtype) return self.unique, result / weights def var(self, values, axis=0, weights=None, dtype=None): """compute the variance over each group Parameters ---------- values : array_like, [keys, ...] values to take variance of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) unique, mean = self.mean(values, axis, weights, dtype) err = values - mean.take(self.inverse, axis) if weights is None: shape = [1] * values.ndim shape[axis] = self.groups group_weights = self.count.reshape(shape) var = self.reduce(err ** 2, axis=axis, dtype=dtype) else: weights = np.asarray(weights) group_weights = self.reduce(weights, axis=axis, dtype=dtype) var = self.reduce(weights * err ** 2, axis=axis, dtype=dtype) return unique, var / group_weights def std(self, values, axis=0, weights=None, dtype=None): """standard deviation over each group Parameters ---------- values : array_like, [keys, ...] values to take standard deviation of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ unique, var = self.var(values, axis, weights, dtype) return unique, np.sqrt(var) def median(self, values, axis=0, average=True): """compute the median value over each group. Parameters ---------- values : array_like, [keys, ...] values to compute the median of per group axis : int, optional alternative reduction axis for values average : bool, optional when average is true, the average of the two central values is taken for groups with an even key-count Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ mid_2 = self.index.start + self.index.stop hi = (mid_2 ) // 2 lo = (mid_2 - 1) // 2 #need this indirection for lex-index compatibility sorted_group_rank_per_key = self.index.sorted_group_rank_per_key def median1d(slc): #place values at correct keys; preconditions the upcoming lexsort slc = slc[self.index.sorter] #refine value sorting within each keygroup sorter = np.lexsort((slc, sorted_group_rank_per_key)) slc = slc[sorter] return (slc[lo]+slc[hi]) / 2 if average else slc[hi] values = np.asarray(values) if values.ndim>1: #is trying to skip apply_along_axis somewhat premature optimization? values = np.apply_along_axis(median1d, axis, values) else: values = median1d(values) return self.unique, values def mode(self, values, weights=None): """compute the mode within each group. Parameters ---------- values : array_like, [keys, ...] values to compute the mode of per group weights : array_like, [keys], float, optional optional weight associated with each entry in values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ if weights is None: unique, weights = npi.count((self.index.sorted_group_rank_per_key, values)) else: unique, weights = npi.group_by((self.index.sorted_group_rank_per_key, values)).sum(weights) x, bin = npi.group_by(unique[0]).argmax(weights) return x, unique[1][bin] def min(self, values, axis=0): """return the minimum within each group Parameters ---------- values : array_like, [keys, ...] values to take minimum of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, np.minimum, axis) def max(self, values, axis=0): """return the maximum within each group Parameters ---------- values : array_like, [keys, ...] values to take maximum of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, np.maximum, axis) def first(self, values, axis=0): """return values at first occurance of its associated key Parameters ---------- values : array_like, [keys, ...] values to pick the first value of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, np.take(values, self.index.sorter[self.index.start], axis) def last(self, values, axis=0): """return values at last occurance of its associated key Parameters ---------- values : array_like, [keys, ...] values to pick the last value of per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...] value array, reduced over groups """ values = np.asarray(values) return self.unique, np.take(values, self.index.sorter[self.index.stop-1], axis) def any(self, values, axis=0): """compute if any item evaluates to true in each group Parameters ---------- values : array_like, [keys, ...] values to take boolean predicate over per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...], np.bool value array, reduced over groups """ values = np.asarray(values) if not values.dtype == np.bool: values = values != 0 return self.unique, self.reduce(values, axis=axis) > 0 def all(self, values, axis=0): """compute if all items evaluates to true in each group Parameters ---------- values : array_like, [keys, ...] values to take boolean predicate over per group axis : int, optional alternative reduction axis for values Returns ------- unique: ndarray, [groups] unique keys reduced : ndarray, [groups, ...], np.bool value array, reduced over groups """ values = np.asarray(values) return self.unique, self.reduce(values, axis=axis, operator=np.multiply) != 0 def argmin(self, values): """return the index into values corresponding to the minimum value of the group Parameters ---------- values : array_like, [keys] values to pick the argmin of per group Returns ------- unique: ndarray, [groups] unique keys argmin : ndarray, [groups] index into value array, representing the argmin per group """ keys, minima = self.min(values) minima = minima[self.inverse] # select the first occurence of the minimum in each group index = as_index((self.inverse, values == minima)) return keys, index.sorter[index.start[-self.groups:]] def argmax(self, values): """return the index into values corresponding to the maximum value of the group Parameters ---------- values : array_like, [keys] values to pick the argmax of per group Returns ------- unique: ndarray, [groups] unique keys argmax : ndarray, [groups] index into value array, representing the argmax per group """ keys, maxima = self.max(values) maxima = maxima[self.inverse] # select the first occurence of the maximum in each group index = as_index((self.inverse, values == maxima)) return keys, index.sorter[index.start[-self.groups:]] #implement iter interface? could simply do zip( group_by(keys)(values)), no? def group_by(keys, values=None, reduction=None, axis=0): """construct a grouping object on the given keys, optionally performing the given reduction on the given values Parameters ---------- keys : indexable object keys to group by values : array_like, optional sequence of values, of the same length as keys if a reduction function is provided, the given values are reduced by key if no reduction is provided, the given values are grouped and split by key reduction : lambda, optional reduction function to apply to the values in each group axis : int, optional axis to regard as the key-sequence, in case keys is multi-dimensional Returns ------- iterable if values is None, a GroupBy object of the given keys object if reduction is None, an tuple of a sequence of unique keys and a sequence of grouped values else, a sequence of tuples of unique keys and reductions of values over that key-group See Also -------- numpy_indexed.as_index : for information regarding the casting rules to a valid Index object """ g = GroupBy(keys, axis) if values is None: return g groups = g.split(values) if reduction is None: return g.unique, groups return [(key, reduction(group)) for key, group in zip(g.unique, groups)] __all__ = ['group_by']
32.655791
115
0.575082
[ "MIT" ]
EelcoHoogendoorn/Numpy_arraysetops_EP
numpy_indexed/grouping.py
20,018
Python
import argparse import os from multiprocessing import Process, Queue import time import logging log = logging.getLogger(__name__) from scipy import linalg import cooler import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from sklearn.cluster import KMeans, SpectralClustering from sklearn.neighbors import NearestNeighbors from sklearn.decomposition import PCA from hicmatrix import HiCMatrix as hm import numpy as np from scipy.sparse import csr_matrix from holoviews.plotting.util import process_cmap from schicexplorer._version import __version__ from schicexplorer.utilities import cell_name_list, create_csr_matrix_all_cells def parse_arguments(args=None): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False, description='scHicCluster uses kmeans or spectral clustering to associate each cell to a cluster and therefore to its cell cycle. ' 'The clustering can be run on the raw data, on a kNN computed via the exact euclidean distance or via PCA. ' 'Please consider also the other clustering and dimension reduction approaches of the scHicExplorer suite. They can give you better results, ' 'can be faster or less memory demanding.' ) parserRequired = parser.add_argument_group('Required arguments') # define the arguments parserRequired.add_argument('--matrix', '-m', help='The single cell Hi-C interaction matrices to cluster. Needs to be in scool format', metavar='scool scHi-C matrix', required=True) parserRequired.add_argument('--numberOfClusters', '-c', help='Number of to be computed clusters', required=False, default=12, type=int) parserRequired.add_argument('--clusterMethod', '-cm', help='Algorithm to cluster the Hi-C matrices', choices=['spectral', 'kmeans'], default='spectral') parserOpt = parser.add_argument_group('Optional arguments') parserOpt.add_argument('--chromosomes', help='List of to be plotted chromosomes', nargs='+') parserOpt.add_argument('--intraChromosomalContactsOnly', '-ic', help='This option loads only the intra-chromosomal contacts. Can improve the cluster result if data is very noisy.', action='store_true') parserOpt.add_argument('--additionalPCA', '-pca', help='Computes PCA on top of a k-nn. Can improve the cluster result.', action='store_true') parserOpt.add_argument('--dimensionsPCA', '-dim_pca', help='The number of dimensions from the PCA matrix that should be considered for clustering. Can improve the cluster result.', default=20, type=int) parserOpt.add_argument('--dimensionReductionMethod', '-drm', help='Dimension reduction methods, knn with euclidean distance, pca', choices=['none', 'knn', 'pca'], default='none') parserOpt.add_argument('--createScatterPlot', '-csp', help='Create a scatter plot for the clustering, the x and y are the first and second principal component of the computed k-nn graph.', required=False, default=None) parserOpt.add_argument('--numberOfNearestNeighbors', '-k', help='Number of to be used computed nearest neighbors for the knn graph. Default is either the default value or the number of the provided cells, whatever is smaller.', required=False, default=100, type=int) parserOpt.add_argument('--dpi', '-d', help='The dpi of the scatter plot.', required=False, default=300, type=int) parserOpt.add_argument('--outFileName', '-o', help='File name to save the resulting clusters', required=True, default='clusters.txt') parserOpt.add_argument('--cell_coloring_type', '-cct', help='A two column list, first colum the cell names as stored in the scool file, second column the associated coloring for the scatter plot', required=False) parserOpt.add_argument('--cell_coloring_batch', '-ccb', help='A two column list, first colum the cell names as stored in the scool file, second column the associated coloring for the scatter plot', required=False) parserOpt.add_argument('--latexTable', '-lt', help='Return the overlap statistics if --cell_coloring_type is given as a latex table.') parserOpt.add_argument('--figuresize', help='Fontsize in the plot for x and y axis.', type=float, nargs=2, default=(15, 6), metavar=('x-size', 'y-size')) parserOpt.add_argument('--colorMap', help='Color map to use for the heatmap, supported are the categorical colormaps from holoviews: ' 'http://holoviews.org/user_guide/Colormaps.html', default='glasbey_dark') parserOpt.add_argument('--fontsize', help='Fontsize in the plot for x and y axis.', type=float, default=15) parserOpt.add_argument('--threads', '-t', help='Number of threads. Using the python multiprocessing module.', required=False, default=8, type=int) parserOpt.add_argument('--help', '-h', action='help', help='show this help message and exit') parserOpt.add_argument('--version', action='version', version='%(prog)s {}'.format(__version__)) return parser def main(args=None): args = parse_arguments().parse_args(args) outputFolder = os.path.dirname(os.path.abspath(args.outFileName)) + '/' log.debug('outputFolder {}'.format(outputFolder)) if args.cell_coloring_type: cell_name_cell_type_dict = {} cell_type_color_dict = {} color_cell_type_dict = {} cell_type_counter = 0 with open(args.cell_coloring_type, 'r') as file: for i, line in enumerate(file.readlines()): line = line.strip() try: cell_name, cell_type = line.split('\t') except Exception: cell_name, cell_type = line.split(' ') cell_name_cell_type_dict[cell_name] = cell_type if cell_type not in cell_type_color_dict: cell_type_color_dict[cell_type] = cell_type_counter color_cell_type_dict[cell_type_counter] = cell_type cell_type_counter += 1 if args.cell_coloring_batch: cell_name_cell_type_dict_batch = {} cell_type_color_dict_batch = {} color_cell_type_dict_batch = {} cell_type_counter_batch = 0 with open(args.cell_coloring_batch, 'r') as file: for i, line in enumerate(file.readlines()): line = line.strip() try: cell_name, cell_type = line.split('\t') except Exception: cell_name, cell_type = line.split(' ') cell_name_cell_type_dict_batch[cell_name] = cell_type if cell_type not in cell_type_color_dict_batch: cell_type_color_dict_batch[cell_type] = cell_type_counter_batch color_cell_type_dict_batch[cell_type_counter_batch] = cell_type cell_type_counter_batch += 1 raw_file_name = os.path.splitext(os.path.basename(args.outFileName))[0] neighborhood_matrix, matrices_list = create_csr_matrix_all_cells(args.matrix, args.threads, args.chromosomes, outputFolder, raw_file_name, args.intraChromosomalContactsOnly) reduce_to_dimension = neighborhood_matrix.shape[0] - 1 if args.dimensionReductionMethod == 'knn': if args.numberOfNearestNeighbors > reduce_to_dimension: args.numberOfNearestNeighbors = reduce_to_dimension nbrs = NearestNeighbors(n_neighbors=args.numberOfNearestNeighbors, algorithm='ball_tree', n_jobs=args.threads).fit(neighborhood_matrix) neighborhood_matrix = nbrs.kneighbors_graph(mode='distance') if args.additionalPCA: pca = PCA(n_components=min(neighborhood_matrix.shape) - 1) neighborhood_matrix = pca.fit_transform(neighborhood_matrix.todense()) if args.dimensionsPCA: args.dimensionsPCA = min(args.dimensionsPCA, neighborhood_matrix.shape[0]) neighborhood_matrix = neighborhood_matrix[:, :args.dimensionsPCA] elif args.dimensionReductionMethod == 'pca': corrmatrix = np.cov(neighborhood_matrix.todense()) evals, eigs = linalg.eig(corrmatrix) neighborhood_matrix = eigs[:, :reduce_to_dimension].transpose() if args.clusterMethod == 'spectral': spectralClustering_object = SpectralClustering(n_clusters=args.numberOfClusters, n_jobs=args.threads, n_neighbors=reduce_to_dimension, affinity='nearest_neighbors', random_state=0, eigen_solver="arpack") labels_clustering = spectralClustering_object.fit_predict(neighborhood_matrix) elif args.clusterMethod == 'kmeans': kmeans_object = KMeans(n_clusters=args.numberOfClusters, random_state=0, n_jobs=args.threads, precompute_distances=True) labels_clustering = kmeans_object.fit_predict(neighborhood_matrix) if args.colorMap: colors = process_cmap(args.colorMap) if args.cell_coloring_type: if len(colors) < len(cell_type_color_dict): log.error('The chosen colormap offers too less values for the number of clusters.') exit(1) labels_clustering_cell_type = [] for cell_name in matrices_list: labels_clustering_cell_type.append(cell_type_color_dict[cell_name_cell_type_dict[cell_name]]) labels_clustering_cell_type = np.array(labels_clustering_cell_type) log.debug('labels_clustering_cell_type: {}'.format(len(labels_clustering_cell_type))) log.debug('matrices_list: {}'.format(len(matrices_list))) label_x = 'PC1' label_y = 'PC2' if args.createScatterPlot: if args.dimensionReductionMethod == 'none': log.warning('Raw matrix clustering scatter plot needs to compute a PCA and can request large amount (> 100 GB) of memory.') log.debug('args.additionalPCA {}'.format(args.additionalPCA)) log.debug('args.dimensionReductionMethod {}'.format(args.dimensionReductionMethod)) if args.dimensionReductionMethod == 'none' or (args.dimensionReductionMethod == 'knn' and not args.additionalPCA): log.debug('compute pca') pca = PCA(n_components=min(neighborhood_matrix.shape) - 1) neighborhood_matrix_knn = pca.fit_transform(neighborhood_matrix.todense()) log.debug('compute pca') else: log.debug('already computed pca') neighborhood_matrix_knn = neighborhood_matrix if args.cell_coloring_type: plt.figure(figsize=(args.figuresize[0], args.figuresize[1])) for i, color in enumerate(colors[:len(cell_type_color_dict)]): mask = labels_clustering_cell_type == i log.debug('plot cluster: {} {}'.format(color_cell_type_dict[i], np.sum(mask))) plt.scatter(neighborhood_matrix_knn[:, 0].T[mask], neighborhood_matrix_knn[:, 1].T[mask], color=color, label=str(color_cell_type_dict[i]), s=20, alpha=0.7) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=args.fontsize) plt.xticks([]) plt.yticks([]) plt.xlabel(label_x, fontsize=args.fontsize) plt.ylabel(label_y, fontsize=args.fontsize) if '.' not in args.createScatterPlot: args.createScatterPlot += '.png' scatter_plot_name = '.'.join(args.createScatterPlot.split('.')[:-1]) + '_cell_color.' + args.createScatterPlot.split('.')[-1] plt.tight_layout() plt.savefig(scatter_plot_name, dpi=args.dpi) plt.close() if args.cell_coloring_batch: if len(colors) < len(cell_type_color_dict_batch): log.error('The chosen colormap offers too less values for the number of clusters.') exit(1) labels_clustering_cell_type_batch = [] for cell_name in matrices_list: labels_clustering_cell_type_batch.append(cell_type_color_dict_batch[cell_name_cell_type_dict_batch[cell_name]]) labels_clustering_cell_type_batch = np.array(labels_clustering_cell_type_batch) log.debug('labels_clustering_cell_type: {}'.format(len(labels_clustering_cell_type_batch))) log.debug('matrices_list: {}'.format(len(matrices_list))) plt.figure(figsize=(args.figuresize[0], args.figuresize[1])) for i, color in enumerate(colors[:len(cell_type_color_dict_batch)]): mask = labels_clustering_cell_type_batch == i log.debug('plot cluster: {} {}'.format(color_cell_type_dict_batch[i], np.sum(mask))) plt.scatter(neighborhood_matrix_knn[:, 0].T[mask], neighborhood_matrix_knn[:, 1].T[mask], color=color, label=str(color_cell_type_dict_batch[i]), s=20, alpha=0.7) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=args.fontsize) plt.xticks([]) plt.yticks([]) plt.xlabel(label_x, fontsize=args.fontsize) plt.ylabel(label_y, fontsize=args.fontsize) if '.' not in args.createScatterPlot: args.createScatterPlot += '.png' scatter_plot_name = '.'.join(args.createScatterPlot.split('.')[:-1]) + '_cell_color_batch.' + args.createScatterPlot.split('.')[-1] plt.tight_layout() plt.savefig(scatter_plot_name, dpi=args.dpi) plt.close() plt.figure(figsize=(args.figuresize[0], args.figuresize[1])) for i, color in enumerate(colors[:args.numberOfClusters]): mask = labels_clustering == i plt.scatter(neighborhood_matrix_knn[:, 0].T[mask], neighborhood_matrix_knn[:, 1].T[mask], color=color, label=str(i), s=20, alpha=0.7) plt.legend(fontsize=args.fontsize) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=args.fontsize) plt.xticks([]) plt.yticks([]) plt.xlabel(label_x, fontsize=args.fontsize) plt.ylabel(label_y, fontsize=args.fontsize) if '.' not in args.createScatterPlot: args.createScatterPlot += '.png' scatter_plot_name = '.'.join(args.createScatterPlot.split('.')[:-1]) + '.' + args.createScatterPlot.split('.')[-1] plt.tight_layout() plt.savefig(scatter_plot_name, dpi=args.dpi) plt.close() if args.latexTable and args.cell_coloring_type: # compute overlap of cell_type find found clusters computed_clusters = set(labels_clustering) cell_type_amounts_dict = {} # percentage_threshold = 0.8 for threshold in [0.7, 0.8, 0.9]: cell_type_amounts_dict[threshold] = {} with open(args.latexTable, 'w') as matches_file: header = '\\begin{table}[!htb]\n\\footnotesize\n\\begin{tabular}{|l' body = '\\hline Cluster ' for i in range(len(color_cell_type_dict)): mask_cell_type = labels_clustering_cell_type == i header += '|c' body += '& ' + str(color_cell_type_dict[i]) + ' (' + str(np.sum(mask_cell_type)) + ' cells)' header += '|}\n' body += '\\\\\n' # body = '' for i in computed_clusters: body += '\\hline Cluster ' + str(i) mask_computed_clusters = labels_clustering == i body += ' (' + str(np.sum(mask_computed_clusters)) + ' cells)' for j in range(len(cell_type_color_dict)): mask_cell_type = labels_clustering_cell_type == j mask = mask_computed_clusters & mask_cell_type number_of_matches = np.sum(mask) body += '& ' + str(number_of_matches) if number_of_matches != 1: body += ' cells / ' else: body += ' cell / ' body += '{:.2f}'.format((number_of_matches / np.sum(mask_computed_clusters)) * 100) + ' \\% ' for threshold in [0.7, 0.8, 0.9]: if number_of_matches / np.sum(mask_computed_clusters) >= threshold: if color_cell_type_dict[j] in cell_type_amounts_dict[threshold]: cell_type_amounts_dict[threshold][color_cell_type_dict[j]] += number_of_matches else: cell_type_amounts_dict[threshold][color_cell_type_dict[j]] = number_of_matches else: if color_cell_type_dict[j] in cell_type_amounts_dict[threshold]: continue else: cell_type_amounts_dict[threshold][color_cell_type_dict[j]] = 0 body += '\\\\\n' body += '\\hline ' + '&' * len(cell_type_color_dict) + '\\\\\n' for threshold in [0.7, 0.8, 0.9]: body += '\\hline Correct identified $>{}\\%$'.format(int(threshold * 100)) for i in range(len(cell_type_color_dict)): mask_cell_type = labels_clustering_cell_type == i if color_cell_type_dict[i] in cell_type_amounts_dict[threshold]: body += '& ' + str(cell_type_amounts_dict[threshold][color_cell_type_dict[i]]) + ' / ' + str(np.sum(mask_cell_type)) + ' (' body += '{:.2f}'.format((cell_type_amounts_dict[threshold][color_cell_type_dict[i]] / np.sum(mask_cell_type)) * 100) else: body += '& ' + str(0) + ' / ' + str(np.sum(mask_cell_type)) + ' (' body += '{:.2f}'.format(0 / np.sum(mask_cell_type)) body += ' \\%)' body += '\\\\\n' body += '\\hline \n' body += '\\end{tabular}\n\\caption{}\n\\end{table}' matches_file.write(header) matches_file.write(body) matrices_cluster = list(zip(matrices_list, labels_clustering)) np.savetxt(args.outFileName, matrices_cluster, fmt="%s")
52.491979
195
0.596781
[ "MIT" ]
joachimwolff/scHiCExplorer
schicexplorer/scHicCluster.py
19,632
Python
from PySide import QtGui, QtCore import os, subprocess, shutil, re class animQt(QtGui.QMainWindow): def __init__(self): super(animQt, self).__init__() self.setGeometry(250,250,360,100) style = """ QMainWindow, QMessageBox{ background-color: qradialgradient(spread:pad, cx:0.5, cy:0.5, radius:0.5, fx:0.5, fy:0.5, stop:0.264865 rgba(121, 185, 255, 255), stop:1 rgba(0, 126, 255, 255)); } QPushButton{ background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:1, y2:0, stop:0.448649 rgba(255, 255, 255, 107), stop:0.464865 rgba(0, 0, 0, 15)); border:1px solid rgb(0, 170, 255); padding:5px; color:#FFF; border-radius:5px; } QPushButton:hover{ background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:1, y2:0, stop:0.448649 rgba(0, 0, 0, 15), stop:0.47 rgba(255, 255, 255, 107)); } QCheckBox{ color:#FFF; } QLineEdit{ background-color:rgba(255, 255, 255, 100); color:#FFF; border:1px solid rgb(0,170,255); border-radius:5px; padding:3px; } QLabel{ color:#FFF; } QComboBox{ background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:1, y2:0, stop:0.448649 rgba(255, 255, 255, 107), stop:0.464865 rgba(0, 0, 0, 15)); color:#FFF; padding:5px; border:1px solid rgb(0, 170, 255); border-radius:5px; } QComboBox:hover{ background-color: qlineargradient(spread:pad, x1:1, y1:1, x2:1, y2:0, stop:0.448649 rgba(0, 0, 0, 15), stop:0.47 rgba(255, 255, 255, 107)); } QComboBox::drop-down{ subcontrol-origin: padding; subcontrol-position: top right; width:25px; border-left-width: 1px; border-left-style: solid; border-top-right-radius: 5px; border-bottom-right-radius: 5px; border-left-color: rgb(0, 170, 255); } QComboBox::down-arrow{ border-image: url("./down-arrow.png"); height:30px; width:30px; } """ effect = QtGui.QGraphicsDropShadowEffect(self) effect.setBlurRadius(5) effect.setOffset(2,2) self.setStyleSheet(style) self.setWindowTitle("Exe Generator(py2exe)") centralWidget = QtGui.QWidget() layout = QtGui.QGridLayout(centralWidget) self.foldPath = QtGui.QLineEdit(self) openBtn = QtGui.QPushButton(self) openBtn.setGraphicsEffect(effect) openBtn.setText("Select File") openBtn.clicked.connect(self.fileBrowser) pyPathInit = QtGui.QLabel(self) pyPathInit.setText("Select Python Version") self.pyPath = QtGui.QComboBox(self) self.pyPath.activated.connect(self.changePyPath) effect = QtGui.QGraphicsDropShadowEffect(self) effect.setBlurRadius(5) effect.setOffset(2, 2) self.pyPath.setGraphicsEffect(effect) self.checkBox = QtGui.QCheckBox(self) self.checkBox.setText("Window Mode") checkBtn = QtGui.QPushButton(self) checkBtn.clicked.connect(self.createSetup) checkBtn.setText("Process") effect = QtGui.QGraphicsDropShadowEffect(self) effect.setBlurRadius(5) effect.setOffset(2, 2) checkBtn.setGraphicsEffect(effect) layout.addWidget(self.foldPath, 0, 0, 1, 2) layout.addWidget(openBtn, 0, 2, 1, 1) layout.addWidget(pyPathInit, 1, 0, 1, 1) layout.addWidget(self.pyPath, 1, 1, 1, 2) layout.addWidget(self.checkBox, 2, 0, 1, 2) layout.addWidget(checkBtn, 2, 2, 1, 1) self.setCentralWidget(centralWidget) self.getInstalledPy() def fileBrowser(self): browse = QtGui.QFileDialog.getOpenFileName(self, "Select File") self.foldPath.setText(browse[0]) self.foldName = os.path.dirname(browse[0]) self.filePath = browse[0] # self.createSetup() def changePyPath(self, index): self.setPath = self.pyPath.itemText(index) def getInstalledPy(self): path = "c:/" self.pyPath.addItem("Select") for each in os.listdir(path): if os.path.isdir(path+each): if re.search("Python\d", each, re.I): if os.path.exists(path+each+"/python.exe"): # print path+each+"/python.exe" self.pyPath.addItem(path+each+"/python.exe") # self.pyPath.addItem("Z:/workspace_mel/dqepy/py27/Scripts/python.exe") def createSetup(self): try: setupFile = self.foldName.replace('\\','/')+"/setup.py" with open(setupFile, 'w') as fd: if not self.checkBox.isChecked(): fd.write("from distutils.core import setup\n") fd.write("import py2exe\n") fd.write("setup(console =['%s'])"%os.path.basename(self.filePath)) else: fd.write("from distutils.core import setup\n") fd.write("import py2exe\n") fd.write("setup(windows =['%s'])" % os.path.basename(self.filePath)) self.cmdProcess() shutil.rmtree('%s/build'%self.foldName.replace('\\','/')) os.rename("dist",os.path.basename(self.filePath).split('.')[0]) self.displayError(parent=self, m="Process done successfully!!!", t="Process Done") except Exception as e: self.displayError(parent=self, m="Please Enter all the values\nbefore clicking process button", t="Invalid Values", type=QtGui.QMessageBox.Critical) def cmdProcess(self): with open("runBatch.bat", 'w') as fd: fd.write("@echo off\n") fd.write("cd %s\n" % self.foldName) fd.write("%s\n"%self.foldName.replace('\\','/').split("/")[0]) fd.write('%s setup.py py2exe'%self.setPath) try: subprocess.call("runBatch.bat", 0, None, None, None, None) except: self.displayError(parent=self, m="Python modules were missing in the Python Interpreter\nPlease make sure you had py2exe module", t="Invalid Python Version", type=QtGui.QMessageBox.Critical) os.remove("runBatch.bat") def displayError(self, parent, m=None, t="Error found", type=QtGui.QMessageBox.Information, details = ""): dError = QtGui.QMessageBox(parent) dError.setText(m) dError.setWindowTitle(t) dError.setIcon(type) dError.setStandardButtons(QtGui.QMessageBox.Ok) dError.setEscapeButton(QtGui.QMessageBox.Ok) if details != "": dError.setDetailedText(details) dError.show() if __name__ == '__main__': import sys app = QtGui.QApplication(sys.argv) gui = animQt() gui.show() sys.exit(app.exec_())
39.959538
202
0.592362
[ "Unlicense" ]
sunil1239/FuelEfficiencyInfo
testing.py
6,913
Python
from .snowflake import Snowflake
16.5
32
0.848485
[ "MIT" ]
ronmorgen1/snowflake
snowflake/__init__.py
33
Python
# -*- coding: utf-8 -*- import codecs import re from os import path from distutils.core import setup from setuptools import find_packages def read(*parts): return codecs.open(path.join(path.dirname(__file__), *parts), encoding='utf-8').read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return str(version_match.group(1)) raise RuntimeError("Unable to find version string.") setup( name='django-floppyforms', version=find_version('floppyforms', '__init__.py'), author='Bruno Renié', author_email='[email protected]', packages=find_packages(exclude=["tests.*", "tests"]), include_package_data=True, url='https://github.com/gregmuellegger/django-floppyforms', license='BSD licence, see LICENSE file', description='Full control of form rendering in the templates', long_description='\n\n'.join(( read('README.rst'), read('CHANGES.rst'))), classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 3', ], zip_safe=False, )
31.145833
68
0.628094
[ "BSD-3-Clause" ]
greyside/django-floppyforms
setup.py
1,496
Python
from PauliInteraction import PauliInteraction from Ising import Ising from CoefficientGenerator import CoefficientGenerator from Evaluator import Evaluator #from DataVisualizer import DataVisualizer #from DataLogger import DataLogger import Driver as Driver_H from MasterEquation import MasterEquation from QuantumAnnealer import QuantumAnnealer from Test import test #from mpi4py import MPI import qutip as qp import numpy as np import time as time import sys X_HAT = "X" Y_HAT = "Y" Z_HAT = "Z" #NUM_TESTS = 1 #N = 7 T = 100 #NUM_INTERACTIONS = int((N * (N - 1)) / 2) RAND_COEF = False MASTER_RANK = 0 # MAIN TEST CASES FROM SAMPLE CODE # THIS IS NOT USED! def main(): print(argv) COMM = MPI.COMM_WORLD NUM_PROC = COMM.Get_size() M_RANK = COMM.Get_rank() N = 100 m_N = (int) (N / NUM_PROC) if M_RANK == MASTER_RANK: A = np.arange(N, dtype = np.float64) start_time = MPI.Wtime() else: A = np.empty(N, dtype = np.float64) m_A = np.empty(m_N, dtype = np.float64) # Scatter COMM.Scatter([A, MPI.DOUBLE], [m_A, MPI.DOUBLE]) for i in range(m_N): m_A[i] = M_RANK COMM.Barrier() COMM.Allgather([m_A, MPI.DOUBLE], [A, MPI.DOUBLE]) COMM.Barrier() if M_RANK == MASTER_RANK: print(A) #for i in range(10): #test(RAND_COEF, i) # THIS IS USED! def parallel_main(NUM_TESTS, NUM_QUBITS): # MPI Initialization COMM = MPI.COMM_WORLD NUM_PROC = COMM.Get_size() M_RANK = COMM.Get_rank() # If process is master rank, allocate array of overlap probabilities if M_RANK == MASTER_RANK: overlap_probabilities = np.zeros(NUM_TESTS, dtype = np.float64) start_time = MPI.Wtime() else: overlap_probabilities = np.empty(NUM_TESTS, dtype = np.float64); # Calculate the local number of tests to perform M_TESTS = (int) (NUM_TESTS / NUM_PROC) # Allocate local overlap probablity arrays m_overlap_probabilities = np.empty(M_TESTS, dtype = np.float64) # Scatter the global overlap probabilities COMM.Scatter([overlap_probabilities, MPI.DOUBLE], [m_overlap_probabilities, MPI.DOUBLE]) # And for each process, perform its local tests and save overlap probability for i in range(M_TESTS): m_overlap_probabilities[i] = test(RAND_COEF, 0, NUM_QUBITS) # Enforce synchronization COMM.Barrier() # Gather the local overlap probabilities in master rank COMM.Allgather([m_overlap_probabilities, MPI.DOUBLE], [overlap_probabilities, MPI.DOUBLE]) # Enforce synchronization COMM.Barrier() # When tests are done, master rank will process data and print if M_RANK == MASTER_RANK: stop_time = MPI.Wtime() total_time = stop_time - start_time # Print probabilities - TODO(Log this to a file, not just print to screen) #for i in range(len(overlap_probabilities)): #print("ITERATION %d, OVERLAP PROBABILITY = %f" % (i, overlap_probabilities[i])) # Print run statistics print("---------- NUMBER OF QUBITS = %d ----------" % NUM_QUBITS) print("\tNUMBER OF PROCESSES = %d" % NUM_PROC) print("\tNUMBER OF TESTS = %d" % NUM_TESTS) print("\tTOTAL TIME = %f sec" % total_time) print("------------------------------------------") # Initial script if __name__ == "__main__": NUM_TESTS = int(sys.argv[1]) NUM_QUBITS = int(sys.argv[2]) parallel_main(NUM_TESTS, NUM_QUBITS)
26.007519
94
0.665799
[ "MIT" ]
nicksacco17/Quantum_Information
main.py
3,459
Python
from app.api.database.connect import user_information_collection from app.api.database.execute.base_execute import BaseExecute from app.api.helpers.convert_model2dict import user_information_helper class ExerciseTrainerExecute(BaseExecute): def __init__(self, data_collection, data_helper): super().__init__(data_collection, data_helper) user_information_execute = ExerciseTrainerExecute(user_information_collection, user_information_helper)
35.307692
103
0.849673
[ "MIT" ]
dhuynguyen94/base-code-fastapi-mongodb
{{cookiecutter.project_slug}}/app/api/database/execute/user_information.py
459
Python
# # run this command # $ FLASK_APP=rest.py flask run # # request like this # curl -X POST -H 'Accept:application/json' -H 'Content-Type:application/json' -d '{"start-time":"2019-05-08 09:15", "end-time":"2019-05-08 09:30", "match":"error", "user":"syslog", "password":"mvEPMNThq94LQuys68gR", "count":"true", "sum":"false", "exact":"false"}' localhost:5000/ # import os import sys import tempfile sys.path.append(os.path.join(os.path.dirname(__file__), '../../lib')) import logging from logging.handlers import SysLogHandler from hayabusa import HayabusaBase from hayabusa.errors import HayabusaError, CLIClientError from hayabusa.rest_client import RESTClient from flask import Flask, request, jsonify app = Flask(__name__) def print_result(stderr, stdout, count, sum): if stderr: return eys.stderr.write(stderr.rstrip() + '\n') if stdout: if count and sum: return sys.stdout.write(stdout + '\n') else: with tempfile.TemporaryFile() as f: f.write(stdout.encode('utf-8')) f.seek(0) max_lines = 100 lines = f.readlines(max_lines) while lines: for line in lines: if line == b'\n': continue sys.stdout.write(line.decode('utf-8')) lines = f.readlines(max_lines) @app.route('/', methods=['POST']) def post_json(): json = request.get_json() start_time = json['start-time'] end_time = json['end-time'] match = json['match'] user = json['user'] password = json['password'] count = True if json['count'].lower() == 'true' else False sum = True if json['sum'].lower() == 'true' else False exact = True if json['exact'].lower() == 'true' else False stdout = '' stderr = '' exit_status = None data = None request_id = None HB = HayabusaBase() config = HB.load_config() print(config) logger = HB.set_logger('hayabusa-restapi', logging.DEBUG, False) try: client = RESTClient(config, logger) request_id, data = client.search(user, password, match, start_time, end_time, count, sum, exact) try: stdout = data['stdout'] stderr = data['stderr'] exit_status = data['exit_status'] except KeyError as e: raise CLIClientError('Not Found %s in Received Data' % e) if type(exit_status) != int: err = 'Invalid exit status (not int) Received: %s (type: %s)' raise CLIClientError(err % (exit_status, type(exit_status))) except HayabusaError as e: sys.stderr.write('%s: %s\n' % (e.__class__.__name__, e)) exit(1) except Exception as e: sys.stderr.write('Unexpected Error: %s, %s\n\n' % (e.__class__.__name__, e)) raise result = {} result['result'] = data['stdout'] result['error'] = data['stderr'] return jsonify(result)
32.257732
282
0.569191
[ "MIT" ]
hirolovesbeer/hayabusa2
webui/rest/rest.py
3,129
Python
""" Gadget class """ # Standard Library Imports # Third Party Imports # Local Imports from static_analyzer.Instruction import Instruction class Gadget(object): """ The Gadget class represents a single gadget. """ def __init__(self, raw_gadget): """ Gadget constructor :param str raw_gadget: raw line output from ROPgadget """ # Parse the raw line self.offset = raw_gadget[:raw_gadget.find(":")] self.instruction_string = raw_gadget[raw_gadget.find(":") + 2:] # Parse instruction objects self.instructions = [] for instr in self.instruction_string.split(" ; "): self.instructions.append(Instruction(instr)) # Initialize score self.score = 0.0 def is_useless_op(self): """ :return boolean: Returns True if the first instruction opcode is in the "useless" list, False otherwise Default behavior is to consider opcodes useful unless otherwise observed. """ first_opcode = self.instructions[0].opcode # Bulk catch for all "jump" opcodes: No reason to include the instruction, just use the suffix directly if first_opcode.startswith("j"): return True # Bulk catch for bounds checked jumps, same reason as above if first_opcode.startswith("bnd"): return True # Bulk catch for all "ret" opcodes: Bug in ROP gadget finds some gadgets that start with this GPI if first_opcode.startswith("ret"): return True # Bulk catch for all "iret" opcodes: Bug in ROP gadget finds some gadgets that start with this GPI if first_opcode.startswith("iret"): return True # Bulk catch for all "call" opcodes: Bug in ROP gadget finds some gadgets that start with this GPI if first_opcode.startswith("call"): return True # Useless opcodes: # NOP - No reason to include the instruction, just use the suffix directly # LJMP - Same reason as "jump" opcodes above useless = ["nop", "fnop", "ljmp"] return first_opcode in useless def contains_unusable_op(self): """ :return boolean: Returns True if any instruction opcode is unusable. False otherwise unusable instructions are Ring-0 opcodes that trap in user mode and some other exceptional ops. """ for instr in self.instructions: # Bulk catch for all "invalidate" opcodes: Ring-0 instructions if instr.opcode.startswith("inv"): return True # Bulk catch for all "Virtual-Machine" opcodes: Ring-0 instructions if instr.opcode.startswith("vm") and instr.opcode != "vminsd" and instr.opcode != "vminpd": return True # Bulk catch for all "undefined" opcodes if instr.opcode.startswith("ud"): return True # Other Ring-0 opcodes and RSM, LOCK prefix unusable = ["clts", "hlt", "lgdt", "lidt", "lldt", "lmsw", "ltr", "monitor", "mwait", "swapgs", "sysexit", "sysreturn", "wbinvd", "wrmsr", "xsetbv", "rsm", "lock"] if instr.opcode in unusable: return True # Check for ring-0 operands (control, debug, and test registers) if instr.op1 is not None: if instr.op1.startswith("cr") or instr.op1.startswith("tr") or instr.op1.startswith("db"): return True if instr.op2 is not None: if instr.op2.startswith("cr") or instr.op2.startswith("tr") or instr.op2.startswith("db"): return True return False def is_gpi_only(self): """ :return boolean: Returns True if the gadget is a single instruction and starts with 'ret', 'jmp', or 'call', False otherwise """ if len(self.instructions) == 1: opcode = self.instructions[0].opcode if opcode.startswith("ret") or opcode.startswith("jmp") or opcode.startswith("call"): return True return False def is_invalid_branch(self): """ :return boolean: Returns True if the gadget is 'jmp' or 'call' ending and the call target is a constant offset or does not target a recognized register family. False otherwise """ last_instr = self.instructions[len(self.instructions)-1] if last_instr.opcode.startswith("call") or last_instr.opcode.startswith("jmp"): if Instruction.get_operand_register_family(last_instr.op1) is None: return True return False def has_invalid_ret_offset(self): """ :return boolean: Returns True if the gadget is 'ret' ending and contains a constant offset that is not byte aligned or is greater than 32 bytes, False otherwise """ last_instr = self.instructions[len(self.instructions)-1] if last_instr.opcode.startswith("ret") and last_instr.op1 is not None: offset = Instruction.get_operand_as_constant(last_instr.op1) if (offset % 2 != 0) or (offset > 32): return True return False def clobbers_created_value(self): """ :return boolean: Returns True if the gadget completely overwrites the value created in the first instruction, False otherwise. """ first_instr = self.instructions[0] # Check if the first instruction creates a value or is an xchg operand (excluded as an edge case) if not first_instr.creates_value() or "xchg" in first_instr.opcode: return False # Check op1 to find the register family to protect first_family = Instruction.get_operand_register_family(first_instr.op1) # Most likely means first operand is a constant, exclude from analysis if first_family is None: return False # Iterate through intermediate instructions, determine if it overwrites protected value (or part of it) for i in range(1, len(self.instructions)-1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value() or "xchg" in cur_instr.opcode: continue # Check for non-static modification of the register family if first_family == Instruction.get_operand_register_family(cur_instr.op1): if (cur_instr.op2 is None and cur_instr.opcode not in ["inc", "dec", "neg", "not"]) or \ (cur_instr.op2 is not None and not Instruction.is_constant(cur_instr.op2)): return True return False def creates_unusable_value(self): """ :return boolean: Returns True if the gadget creates a value in segment or extension registers, or are RIP-relative, or are constant memory locations; False otherwise. """ # Check if the first instruction creates a value (or may potentially set a flag first_instr = self.instructions[0] if first_instr.opcode in ["cmp", "test", "push"] or first_instr.op1 is None: return False # Check if first operand is not a constant and it does not belong to a recognized register family if not Instruction.is_constant(first_instr.op1) and \ Instruction.get_operand_register_family(first_instr.op1) is None: return True return False def contains_intermediate_GPI(self): """ :return boolean: Returns True if the gadget's intermediate instructions contain a GPI (or a generic interrupt), False otherwise. """ for i in range(len(self.instructions)-1): cur_opcode = self.instructions[i].opcode cur_target = self.instructions[i].op1 if cur_opcode.startswith("ret") or \ cur_opcode == "syscall" or cur_opcode == "sysenter" or cur_opcode.startswith("int") or \ ("jmp" in cur_opcode and not Instruction.is_constant(cur_target)) or \ ("call" in cur_opcode and not Instruction.is_constant(cur_target)): return True return False def clobbers_stack_pointer(self): """ :return boolean: Returns True if the ROP gadget's instructions assign a non-static value to the stack pointer register, False otherwise. """ # Only check ROP gadgets last_instr = self.instructions[len(self.instructions) - 1] if last_instr.opcode.startswith("ret"): for i in range(len(self.instructions) - 1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # Check for non-static modification of the stack pointer register family if Instruction.get_operand_register_family(cur_instr.op1) == 7: # RSP, ESP family number if (cur_instr.op2 is None and cur_instr.opcode not in ["inc", "dec", "pop"]) or \ (cur_instr.op2 is not None and not Instruction.is_constant(cur_instr.op2)): return True return False def clobbers_indirect_target(self): """ :return boolean: Returns True if the JOP/COP gadget's instructions modify the indirect branch register in certain ways, False otherwise. """ # Get the register family of the indirect jump / call last_instr = self.instructions[len(self.instructions)-1] if last_instr.opcode.startswith("jmp") or last_instr.opcode.startswith("call"): family = Instruction.get_operand_register_family(last_instr.op1) # Check each instruction to see if it clobbers the value for i in range(len(self.instructions)-1): cur_instr = self.instructions[i] # First check if the instruction modifies the target if cur_instr.op1 in Instruction.register_families[family]: # Does the instruction zeroize out the target? if cur_instr.opcode == "xor" and cur_instr.op1 == cur_instr.op2: return True # Does the instruction perform a RIP-relative LEA into the target? if cur_instr.opcode == "lea" and ("rip" in cur_instr.op2 or "eip" in cur_instr.op2): return True # Does the instruction load a string or a value of an input port into the target? if cur_instr.opcode.startswith("lods") or cur_instr.opcode == "in": return True # Does the instruction overwrite the target with a static value or segment register value? if "mov" in cur_instr.opcode and (Instruction.is_constant(cur_instr.op2) or Instruction.get_operand_register_family(cur_instr.op2) is None): return True return False def has_invalid_int_handler(self): """ :return boolean: Returns True if the gadget's instructions assign a non-static value to the stack pointer register, False otherwise. """ last_instr = self.instructions[len(self.instructions) - 1] if last_instr.opcode.startswith("int") and last_instr.op1 != "0x80": return True return False def is_rip_relative_indirect_branch(self): """ :return boolean: Returns True if the gadget is a JOP/COP gadget relying on a RIP relative indirect branch, False otherwise. """ last_instr = self.instructions[len(self.instructions) - 1] if last_instr.opcode.startswith("jmp") or last_instr.opcode.startswith("call"): if "rip" in last_instr.op1 or "eip" in last_instr.op1: return True return False def contains_static_call(self): for i in range(1, len(self.instructions)-1): cur_instr = self.instructions[i] if cur_instr.opcode.startswith("call") and Instruction.is_constant(cur_instr.op1): return True return False def is_equal(self, rhs): """ :return boolean: Returns True if the gadgets are an exact match, including offset. Used for gadget locality. """ return self.offset == rhs.offset and self.instruction_string == rhs.instruction_string def is_duplicate(self, rhs): """ :return boolean: Returns True if the gadgets are a semantic match. Used for non-locality gadget metrics. Semantic match is defined as the exact same sequence of equivalent instructions. """ if len(self.instructions) != len(rhs.instructions): return False for i in range(len(self.instructions)): if not self.instructions[i].is_equivalent(rhs.instructions[i]): return False return True def is_JOP_COP_dispatcher(self): """ :return boolean: Returns True if the gadget is a JOP or COP dispatcher. Defined as a gadget that begins with a arithmetic operation on a register and ends with a branch to a deference of that register. Used to iterate through instructions in payload. Only restrictions on the arithmetic operation is that it doesn't use the same register as both operands. """ first_instr = self.instructions[0] last_instr = self.instructions[len(self.instructions) - 1] # Only consider gadgets that end in dereference of a register and start with opcodes of interest if "[" in last_instr.op1 and \ first_instr.opcode in ["inc", "dec", "add", "adc", "sub", "sbb"] and "[" not in first_instr.op1: gpi_target = Instruction.get_operand_register_family(last_instr.op1) arith_target_1 = Instruction.get_operand_register_family(first_instr.op1) # Secondary check: if the second op is a constant ensure it is in range [1, 32] if Instruction.is_constant(first_instr.op2): additive_value = Instruction.get_operand_as_constant(first_instr.op2) if additive_value < 1 or additive_value > 32: return False arith_target_2 = Instruction.get_operand_register_family(first_instr.op2) return gpi_target == arith_target_1 and arith_target_1 != arith_target_2 return False def is_JOP_COP_dataloader(self): """ :return boolean: Returns True if the gadget is a JOP or COP data loader. Defined as a gadget that begins with a pop opcode to a non-memory location, that is also not the target of the GPI. Used to pop a necessary value off stack en masse before redirecting to the dispatcher. """ first_instr = self.instructions[0] if first_instr.opcode == "pop" and "[" not in first_instr.op1: gpi_target = Instruction.get_operand_register_family(self.instructions[len(self.instructions) - 1].op1) pop_target = Instruction.get_operand_register_family(first_instr.op1) return gpi_target != pop_target return False def is_JOP_initializer(self): """ :return boolean: Returns True if the gadget is a JOP Initializer. Defined as a gadget that begins with a "pop all" opcode, used to pop necessary values off stack en masse before redirecting to the dispatcher. """ return self.instructions[0].opcode.startswith("popa") def is_JOP_trampoline(self): """ :return boolean: Returns True if the gadget is a JOP trampoline. Defined as a gadget that begins with a pop opcode to a non-memory location, and that ends in a dereference of that value. Used to redirect execution to value stored in memory. """ first_instr = self.instructions[0] gpi_target_op = self.instructions[len(self.instructions) - 1].op1 if first_instr.opcode == "pop" and "[" not in first_instr.op1: gpi_target = Instruction.get_operand_register_family(gpi_target_op) pop_target = Instruction.get_operand_register_family(first_instr.op1) return gpi_target == pop_target and "[" in gpi_target_op return False def is_COP_initializer(self): """ :return boolean: Returns True if the gadget is a COP initializer. Defined as a gadget that begins with a "pop all" opcode, does not use register bx/cx/dx/di as the call target, and does not clobber bx/cx/dx or the call target in an intermediate instruction """ first_instr = self.instructions[0] last_instr = self.instructions[len(self.instructions)-1] call_target = Instruction.get_operand_register_family(last_instr.op1) if first_instr.opcode.startswith("popa") and call_target not in [1, 2, 3, 5]: # BX, CX, DX, DI families # Build collective list of register families to protect from being clobbered protected_families = [1, 2, 3, call_target] protected_registers = [] for family in protected_families: for register in Instruction.register_families[family]: protected_registers.append(register) # Scan intermediate instructions to ensure they do not clobber a protected register for i in range(1, len(self.instructions)-1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # Check for non-static modification of the register family if cur_instr.op1 in protected_registers: if (cur_instr.op2 is None and cur_instr.opcode not in ["inc", "dec", "neg", "not"]) or \ (cur_instr.op2 is not None and not Instruction.is_constant(cur_instr.op2)): return False return True return False def is_COP_strong_trampoline(self): """ :return boolean: Returns True if the gadget is a COP strong trampoline. Defined as a gadget that begins with a pop opcode, and contains at least one other pop operation. The last non-pop all operation must target the call target. """ first_instr = self.instructions[0] last_instr = self.instructions[len(self.instructions) - 1] call_target = Instruction.get_operand_register_family(last_instr.op1) # Only consider instructions that start with a pop if first_instr.opcode == "pop" and "[" not in first_instr.op1: cnt_pops = 1 last_pop_target = first_instr.op1 # Scan intermediate instructions for pops for i in range(1, len(self.instructions)-1): cur_instr = self.instructions[i] if cur_instr.opcode.startswith("popa"): cnt_pops += 1 if cur_instr.opcode == "pop" and "[" not in cur_instr.op1: cnt_pops += 1 last_pop_target = cur_instr.op1 # Check that at least two pops occurred and the last pop target is the call target if cnt_pops > 1 and last_pop_target in Instruction.register_families[call_target]: return True return False def is_COP_intrastack_pivot(self): """ :return boolean: Returns True if the gadget is a COP Intra-stack pivot gadget. Defined as a gadget that begins with an additive operation on the stack pointer register. Used to move around in shellcode during COP exploits. Only restriction on the arithmetic operation is that the second operand is not a pointer. """ first_instr = self.instructions[0] if first_instr.opcode in ["inc", "add", "adc", "sub", "sbb"] and "[" not in first_instr.op1: arith_target = Instruction.get_operand_register_family(first_instr.op1) if arith_target == 7: # RSP, ESP family number if first_instr.op2 is None or "[" not in first_instr.op2: return True return False def check_contains_leave(self): """ :return void: Increases gadget's score if the gadget has an intermediate "leave" instruction. """ for i in range(1, len(self.instructions)-1): if self.instructions[i].opcode == "leave": self.score += 2.0 return # Only penalize gadget once def check_sp_target_of_operation(self): """ :return void: Increases gadget's score if the gadget has an intermediate instruction that performs certain operations on the stack pointer register family. """ # Scan instructions to determine if they modify the stack pointer register family for i in range(len(self.instructions)-1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # Increase score by 4 for move, load address, and exchange ops, 3 for shift/rotate ops, and 2 for others if Instruction.get_operand_register_family(cur_instr.op1) == 7: # RSP, ESP family number if "xchg" in cur_instr.opcode or "mov" in cur_instr.opcode or cur_instr.opcode in ["lea"]: self.score += 4.0 elif cur_instr.opcode in ["shl", "shr", "sar", "sal", "ror", "rol", "rcr", "rcl"]: self.score += 3.0 elif cur_instr.opcode == "pop": self.score += 1.0 else: self.score += 2.0 # Will be a static modification, otherwise it would have been rejected earlier def check_negative_sp_offsets(self): """ :return void: Increases gadget's score if its cumulative register offsets are negative. """ sp_offset = 0 # Scan instructions to determine if they modify the stack pointer for i in range(len(self.instructions)): cur_instr = self.instructions[i] if cur_instr.opcode == "push": sp_offset -= 8 elif cur_instr.opcode == "pop" and cur_instr.op1 not in Instruction.register_families[7]: sp_offset += 8 elif cur_instr.opcode in ["add", "adc"] and cur_instr.op1 in Instruction.register_families[7] and \ Instruction.is_constant(cur_instr.op2): sp_offset += Instruction.get_operand_as_constant(cur_instr.op2) elif cur_instr.opcode in ["sub", "sbb"] and cur_instr.op1 in Instruction.register_families[7] and \ Instruction.is_constant(cur_instr.op2): sp_offset -= Instruction.get_operand_as_constant(cur_instr.op2) elif cur_instr.opcode == "inc" and cur_instr.op1 in Instruction.register_families[7]: sp_offset += 1 elif cur_instr.opcode == "dec" and cur_instr.op1 in Instruction.register_families[7]: sp_offset -= 1 elif cur_instr.opcode.startswith("ret") and cur_instr.op1 is not None: sp_offset += Instruction.get_operand_as_constant(cur_instr.op1) if sp_offset < 0: self.score += 2.0 def check_contains_conditional_op(self): """ :return void: Increases gadget's score if it contains conditional instructions like jumps, sets, and moves. """ # Scan instructions to determine if they modify the stack pointer for i in range(len(self.instructions)-1): cur_instr = self.instructions[i] if cur_instr.opcode.startswith("j") and cur_instr.opcode != "jmp": self.score += 3.0 elif "cmov" in cur_instr.opcode or "cmpxchg" in cur_instr.opcode: self.score += 2.0 elif "set" in cur_instr.opcode: self.score += 1.0 def check_register_ops(self): """ :return void: Increases gadget's score if it contains operations on a value carrying or a bystander register """ first_instr = self.instructions[0] # Check if the first instruction creates a value or is an xchg operand (excluded as an edge case) if not first_instr.creates_value() or "xchg" in first_instr.opcode: first_family = None else: # Check op1 to find the register family to protect first_family = Instruction.get_operand_register_family(first_instr.op1) for i in range(1, len(self.instructions)-1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # If the new value is a modification of the value-carrying register if first_family is not None and first_family == Instruction.get_operand_register_family(cur_instr.op1): if cur_instr.opcode in ["shl", "shr", "sar", "sal", "ror", "rol", "rcr", "rcl"]: self.score += 1.5 else: self.score += 1.0 # Will be a static modification, otherwise it would have been rejected earlier elif "xchg" not in cur_instr.opcode and cur_instr.opcode != "pop": # The modification is to a "bystander register". static mods +0.5, non-static +1.0 if cur_instr.op2 is not None and Instruction.get_operand_register_family(cur_instr.op2) is not None: self.score += 1.0 else: self.score += 0.5 def check_branch_target_of_operation(self): """ :return void: Increases gadget's score if the gadget has an intermediate instruction that performs certain operations on the indirect branch target register family. """ last_instr = self.instructions[len(self.instructions)-1] target_family = Instruction.get_operand_register_family(last_instr.op1) # Scan instructions to determine if they modify the target register family for i in range(len(self.instructions) - 1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # Increase score by 3 for shift/rotate ops, and 2 for others if Instruction.get_operand_register_family(cur_instr.op1) == target_family: if cur_instr.opcode in ["shl", "shr", "sar", "sal", "ror", "rol", "rcr", "rcl"]: self.score += 3.0 else: # All other modifications to target register self.score += 2.0 def check_memory_writes(self): """ :return void: Increases gadget's score if the gadget has an instruction that writes to memory. """ # Iterate through instructions except GPI for i in range(len(self.instructions)-1): cur_instr = self.instructions[i] # Ignore instructions that do not create values if not cur_instr.creates_value(): continue # Have to check both operands for xchg instrucitons if "xchg" in cur_instr.opcode and ("[" in cur_instr.op1 or "[" in cur_instr.op2): self.score += 1.0 elif cur_instr.op1 is not None and "[" in cur_instr.op1: self.score += 1.0
46.326264
120
0.610501
[ "MIT" ]
michaelbrownuc/GadgetSetAnalyzer
src/static_analyzer/Gadget.py
28,398
Python
import hashlib import requests import sys def valid_proof(last_proof, proof): guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:6] == "000000" def proof_of_work(last_proof): """ Simple Proof of Work Algorithm - Find a number p' such that hash(pp') contains 6 leading zeroes, where p is the previous p' - p is the previous proof, and p' is the new proof """ print(f'\nSearch for proof initialized.\n') proof = 0 while valid_proof(last_proof, proof) is False: proof += 1 print(f'\nSearch for proof complete, proof is {proof}\n') return proof if __name__ == '__main__': # What node are we interacting with? if len(sys.argv) > 1: node = sys.argv[1] else: node = "http://localhost:5000" coins_mined = 0 # Run forever until interrupted while True: # Get the last proof from the server and look for a new one proof = requests.get(url=node + '/last_proof') new_proof = proof_of_work(proof.json()['proof']) # When found, POST it to the server {"proof": new_proof} data = {'proof': new_proof} attempt = requests.post(url=node + '/mine',json=data) # If the server responds with 'New Block Forged' if attempt.json()['message'] == 'New Block Forged': # add 1 to the number of coins mined and print it. coins_mined += 1 print("TOTAL COINS MINED:", coins_mined) else: # else print the message from the server. print(attempt.json()['message'])
29.303571
67
0.61365
[ "MIT" ]
lambda-projects-lafriedel/Blockchain
client_mining_p/miner.py
1,641
Python
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers from collections.abc import Iterable from typing import Any, Union import numpy as np from typing_extensions import Protocol from cirq import linalg from cirq._doc import doc_private from cirq.protocols.approximate_equality_protocol import approx_eq class SupportsEqualUpToGlobalPhase(Protocol): """Object which can be compared for equality mod global phase.""" @doc_private def _equal_up_to_global_phase_(self, other: Any, *, atol: Union[int, float]) -> bool: """Approximate comparator. Types implementing this protocol define their own logic for comparison with other types. Args: other: Target object for comparison of equality up to global phase. atol: The minimum absolute tolerance. See `np.isclose()` documentation for details. Returns: True if objects are equal up to a global phase, False otherwise. Returns NotImplemented when checking equality up to a global phase is not implemented for given types. """ def equal_up_to_global_phase(val: Any, other: Any, *, atol: Union[int, float] = 1e-8) -> bool: """Determine whether two objects are equal up to global phase. If `val` implements a `_equal_up_to_global_phase_` method then it is invoked and takes precedence over all other checks: - For complex primitive type the magnitudes of the values are compared. - For `val` and `other` both iterable of the same length, consecutive elements are compared recursively. Types of `val` and `other` does not necessarily needs to match each other. They just need to be iterable and have the same structure. - For all other types, fall back to `_approx_eq_` Args: val: Source object for approximate comparison. other: Target object for approximate comparison. atol: The minimum absolute tolerance. This places an upper bound on the differences in *magnitudes* of two compared complex numbers. Returns: True if objects are approximately equal up to phase, False otherwise. """ # Attempt _equal_up_to_global_phase_ for val. eq_up_to_phase_getter = getattr(val, '_equal_up_to_global_phase_', None) if eq_up_to_phase_getter is not None: result = eq_up_to_phase_getter(other, atol) if result is not NotImplemented: return result # Fall back to _equal_up_to_global_phase_ for other. other_eq_up_to_phase_getter = getattr(other, '_equal_up_to_global_phase_', None) if other_eq_up_to_phase_getter is not None: result = other_eq_up_to_phase_getter(val, atol) if result is not NotImplemented: return result # Fall back to special check for numeric arrays. # Defer to numpy automatic type casting to determine numeric type. if isinstance(val, Iterable) and isinstance(other, Iterable): a = np.asarray(val) b = np.asarray(other) if a.dtype.kind in 'uifc' and b.dtype.kind in 'uifc': return linalg.allclose_up_to_global_phase(a, b, atol=atol) # Fall back to approx_eq for compare the magnitude of two numbers. if isinstance(val, numbers.Number) and isinstance(other, numbers.Number): result = approx_eq(abs(val), abs(other), atol=atol) # type: ignore if result is not NotImplemented: return result # Fall back to cirq approx_eq for remaining types. return approx_eq(val, other, atol=atol)
40.60396
94
0.710802
[ "Apache-2.0" ]
95-martin-orion/Cirq
cirq-core/cirq/protocols/equal_up_to_global_phase_protocol.py
4,101
Python
import os import tempfile import pytest import mlagents.trainers.tensorflow_to_barracuda as tf2bc from mlagents.trainers.tests.test_nn_policy import create_policy_mock from mlagents.trainers.settings import TrainerSettings from mlagents.tf_utils import tf from mlagents.model_serialization import SerializationSettings, export_policy_model def test_barracuda_converter(): path_prefix = os.path.dirname(os.path.abspath(__file__)) tmpfile = os.path.join( tempfile._get_default_tempdir(), next(tempfile._get_candidate_names()) + ".nn" ) # make sure there are no left-over files if os.path.isfile(tmpfile): os.remove(tmpfile) tf2bc.convert(path_prefix + "/BasicLearning.pb", tmpfile) # test if file exists after conversion assert os.path.isfile(tmpfile) # currently converter produces small output file even if input file is empty # 100 bytes is high enough to prove that conversion was successful assert os.path.getsize(tmpfile) > 100 # cleanup os.remove(tmpfile) @pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) @pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) @pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) def test_policy_conversion(tmpdir, rnn, visual, discrete): tf.reset_default_graph() dummy_config = TrainerSettings(output_path=os.path.join(tmpdir, "test")) policy = create_policy_mock( dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual ) policy.save_model(1000) settings = SerializationSettings( policy.model_path, os.path.join(tmpdir, policy.brain.brain_name) ) export_policy_model(settings, policy.graph, policy.sess) # These checks taken from test_barracuda_converter assert os.path.isfile(os.path.join(tmpdir, "test.nn")) assert os.path.getsize(os.path.join(tmpdir, "test.nn")) > 100
37.211538
86
0.740052
[ "Apache-2.0" ]
TPihko/ml-agents
ml-agents/mlagents/trainers/tests/test_barracuda_converter.py
1,935
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to work with checkpoints.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import six from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.framework import ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_management from tensorflow.python.training import py_checkpoint_reader from tensorflow.python.training.saving import saveable_object_util from tensorflow.python.util.tf_export import tf_export __all__ = [ "load_checkpoint", "load_variable", "list_variables", "checkpoints_iterator", "init_from_checkpoint" ] @tf_export("train.load_checkpoint") def load_checkpoint(ckpt_dir_or_file): """Returns `CheckpointReader` for checkpoint found in `ckpt_dir_or_file`. If `ckpt_dir_or_file` resolves to a directory with multiple checkpoints, reader for the latest checkpoint is returned. Args: ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint file. Returns: `CheckpointReader` object. Raises: ValueError: If `ckpt_dir_or_file` resolves to a directory with no checkpoints. """ filename = _get_checkpoint_filename(ckpt_dir_or_file) if filename is None: raise ValueError("Couldn't find 'checkpoint' file or checkpoints in " "given directory %s" % ckpt_dir_or_file) return py_checkpoint_reader.NewCheckpointReader(filename) @tf_export("train.load_variable") def load_variable(ckpt_dir_or_file, name): """Returns the tensor value of the given variable in the checkpoint. Args: ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint. name: Name of the variable to return. Returns: A numpy `ndarray` with a copy of the value of this variable. """ # TODO(b/29227106): Fix this in the right place and remove this. if name.endswith(":0"): name = name[:-2] reader = load_checkpoint(ckpt_dir_or_file) return reader.get_tensor(name) @tf_export("train.list_variables") def list_variables(ckpt_dir_or_file): """Returns list of all variables in the checkpoint. Args: ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint. Returns: List of tuples `(name, shape)`. """ reader = load_checkpoint(ckpt_dir_or_file) variable_map = reader.get_variable_to_shape_map() names = sorted(variable_map.keys()) result = [] for name in names: result.append((name, variable_map[name])) return result def wait_for_new_checkpoint(checkpoint_dir, last_checkpoint=None, seconds_to_sleep=1, timeout=None): """Waits until a new checkpoint file is found. Args: checkpoint_dir: The directory in which checkpoints are saved. last_checkpoint: The last checkpoint path used or `None` if we're expecting a checkpoint for the first time. seconds_to_sleep: The number of seconds to sleep for before looking for a new checkpoint. timeout: The maximum number of seconds to wait. If left as `None`, then the process will wait indefinitely. Returns: a new checkpoint path, or None if the timeout was reached. """ logging.info("Waiting for new checkpoint at %s", checkpoint_dir) stop_time = time.time() + timeout if timeout is not None else None while True: checkpoint_path = checkpoint_management.latest_checkpoint(checkpoint_dir) if checkpoint_path is None or checkpoint_path == last_checkpoint: if stop_time is not None and time.time() + seconds_to_sleep > stop_time: return None time.sleep(seconds_to_sleep) else: logging.info("Found new checkpoint at %s", checkpoint_path) return checkpoint_path @tf_export("train.checkpoints_iterator") def checkpoints_iterator(checkpoint_dir, min_interval_secs=0, timeout=None, timeout_fn=None): """Continuously yield new checkpoint files as they appear. The iterator only checks for new checkpoints when control flow has been reverted to it. This means it can miss checkpoints if your code takes longer to run between iterations than `min_interval_secs` or the interval at which new checkpoints are written. The `timeout` argument is the maximum number of seconds to block waiting for a new checkpoint. It is used in combination with the `timeout_fn` as follows: * If the timeout expires and no `timeout_fn` was specified, the iterator stops yielding. * If a `timeout_fn` was specified, that function is called and if it returns a true boolean value the iterator stops yielding. * If the function returns a false boolean value then the iterator resumes the wait for new checkpoints. At this point the timeout logic applies again. This behavior gives control to callers on what to do if checkpoints do not come fast enough or stop being generated. For example, if callers have a way to detect that the training has stopped and know that no new checkpoints will be generated, they can provide a `timeout_fn` that returns `True` when the training has stopped. If they know that the training is still going on they return `False` instead. Args: checkpoint_dir: The directory in which checkpoints are saved. min_interval_secs: The minimum number of seconds between yielding checkpoints. timeout: The maximum number of seconds to wait between checkpoints. If left as `None`, then the process will wait indefinitely. timeout_fn: Optional function to call after a timeout. If the function returns True, then it means that no new checkpoints will be generated and the iterator will exit. The function is called with no arguments. Yields: String paths to latest checkpoint files as they arrive. """ checkpoint_path = None while True: new_checkpoint_path = wait_for_new_checkpoint( checkpoint_dir, checkpoint_path, timeout=timeout) if new_checkpoint_path is None: if not timeout_fn: # timed out logging.info("Timed-out waiting for a checkpoint.") return if timeout_fn(): # The timeout_fn indicated that we are truly done. return else: # The timeout_fn indicated that more checkpoints may come. continue start = time.time() checkpoint_path = new_checkpoint_path yield checkpoint_path time_to_next_eval = start + min_interval_secs - time.time() if time_to_next_eval > 0: time.sleep(time_to_next_eval) @tf_export(v1=["train.init_from_checkpoint"]) def init_from_checkpoint(ckpt_dir_or_file, assignment_map): """Replaces `tf.Variable` initializers so they load from a checkpoint file. Values are not loaded immediately, but when the initializer is run (typically by running a `tf.compat.v1.global_variables_initializer` op). Note: This overrides default initialization ops of specified variables and redefines dtype. Assignment map supports following syntax: * `'checkpoint_scope_name/': 'scope_name/'` - will load all variables in current `scope_name` from `checkpoint_scope_name` with matching tensor names. * `'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name'` - will initialize `scope_name/variable_name` variable from `checkpoint_scope_name/some_other_variable`. * `'scope_variable_name': variable` - will initialize given `tf.Variable` object with tensor 'scope_variable_name' from the checkpoint. * `'scope_variable_name': list(variable)` - will initialize list of partitioned variables with tensor 'scope_variable_name' from the checkpoint. * `'/': 'scope_name/'` - will load all variables in current `scope_name` from checkpoint's root (e.g. no scope). Supports loading into partitioned variables, which are represented as `'<variable>/part_<part #>'`. Example: ```python # Say, '/tmp/model.ckpt' has the following tensors: # -- name='old_scope_1/var1', shape=[20, 2] # -- name='old_scope_1/var2', shape=[50, 4] # -- name='old_scope_2/var3', shape=[100, 100] # Create new model's variables with tf.compat.v1.variable_scope('new_scope_1'): var1 = tf.compat.v1.get_variable('var1', shape=[20, 2], initializer=tf.compat.v1.zeros_initializer()) with tf.compat.v1.variable_scope('new_scope_2'): var2 = tf.compat.v1.get_variable('var2', shape=[50, 4], initializer=tf.compat.v1.zeros_initializer()) # Partition into 5 variables along the first axis. var3 = tf.compat.v1.get_variable(name='var3', shape=[100, 100], initializer=tf.compat.v1.zeros_initializer(), partitioner=lambda shape, dtype: [5, 1]) # Initialize all variables in `new_scope_1` from `old_scope_1`. init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/': 'new_scope_1'}) # Use names to specify which variables to initialize from checkpoint. init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/var1': 'new_scope_1/var1', 'old_scope_1/var2': 'new_scope_2/var2'}) # Or use tf.Variable objects to identify what to initialize. init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/var1': var1, 'old_scope_1/var2': var2}) # Initialize partitioned variables using variable's name init_from_checkpoint('/tmp/model.ckpt', {'old_scope_2/var3': 'new_scope_2/var3'}) # Or specify the list of tf.Variable objects. init_from_checkpoint('/tmp/model.ckpt', {'old_scope_2/var3': var3._get_variable_list()}) ``` Args: ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint. assignment_map: Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph). Raises: ValueError: If missing variables in current graph, or if missing checkpoints or tensors in checkpoints. """ init_from_checkpoint_fn = lambda _: _init_from_checkpoint( ckpt_dir_or_file, assignment_map) if distribution_strategy_context.get_cross_replica_context(): init_from_checkpoint_fn(None) else: distribution_strategy_context.get_replica_context().merge_call( init_from_checkpoint_fn) def _init_from_checkpoint(ckpt_dir_or_file, assignment_map): """See `init_from_checkpoint` for documentation.""" ckpt_file = _get_checkpoint_filename(ckpt_dir_or_file) reader = load_checkpoint(ckpt_dir_or_file) variable_map = reader.get_variable_to_shape_map() for tensor_name_in_ckpt, current_var_or_name in sorted( six.iteritems(assignment_map)): var = None # Check if this is Variable object or list of Variable objects (in case of # partitioned variables). if _is_variable(current_var_or_name) or ( isinstance(current_var_or_name, list) and all(_is_variable(v) for v in current_var_or_name)): var = current_var_or_name else: store_vars = vs._get_default_variable_store()._vars # pylint:disable=protected-access # Check if this variable is in var_store. var = store_vars.get(current_var_or_name, None) # Also check if variable is partitioned as list. if var is None: var = _collect_partitioned_variable(current_var_or_name, store_vars) if var is not None: # If 1 to 1 mapping was provided, find variable in the checkpoint. if tensor_name_in_ckpt not in variable_map: raise ValueError("Tensor %s is not found in %s checkpoint %s" % ( tensor_name_in_ckpt, ckpt_dir_or_file, variable_map )) if _is_variable(var): # Additional at-call-time checks. if not var.get_shape().is_compatible_with( variable_map[tensor_name_in_ckpt]): raise ValueError( "Shape of variable %s (%s) doesn't match with shape of " "tensor %s (%s) from checkpoint reader." % ( var.name, str(var.get_shape()), tensor_name_in_ckpt, str(variable_map[tensor_name_in_ckpt]) )) var_name = var.name else: var_name = ",".join([v.name for v in var]) _set_variable_or_list_initializer(var, ckpt_file, tensor_name_in_ckpt) logging.debug("Initialize variable %s from checkpoint %s with %s", var_name, ckpt_dir_or_file, tensor_name_in_ckpt) else: scopes = "" # TODO(vihanjain): Support list of 'current_var_or_name' here. if "/" in current_var_or_name: scopes = current_var_or_name[:current_var_or_name.rindex("/")] if not tensor_name_in_ckpt.endswith("/"): raise ValueError( "Assignment map with scope only name {} should map to scope only " "{}. Should be 'scope/': 'other_scope/'.".format( scopes, tensor_name_in_ckpt)) # If scope to scope mapping was provided, find all variables in the scope # and create variable to variable mapping. scope_variables = set() for var_name in store_vars: if not scopes or var_name.startswith(scopes + "/"): # Consume /part_ if partitioned variable. if "/part_" in var_name: var_name = var_name[:var_name.index("/part_")] scope_variables.add(var_name) for var_name in sorted(scope_variables): # Lookup name with specified prefix and suffix from current variable. # If tensor_name given is '/' (root), don't use it for full name. full_tensor_name = var_name[len(scopes):] if current_var_or_name != "/": full_tensor_name = full_tensor_name[1:] if tensor_name_in_ckpt != "/": full_tensor_name = tensor_name_in_ckpt + full_tensor_name # Remove trailing '/', if any, in the full_tensor_name if full_tensor_name.endswith("/"): full_tensor_name = full_tensor_name[:-1] if full_tensor_name not in variable_map: raise ValueError( "Tensor %s (%s in %s) is not found in %s checkpoint" % ( full_tensor_name, var_name[len(scopes) + 1:], tensor_name_in_ckpt, ckpt_dir_or_file )) var = store_vars.get(var_name, None) if var is None: var = _collect_partitioned_variable(var_name, store_vars) _set_variable_or_list_initializer(var, ckpt_file, full_tensor_name) logging.debug("Initialize variable %s from checkpoint %s with %s", var_name, ckpt_dir_or_file, full_tensor_name) def _get_checkpoint_filename(ckpt_dir_or_file): """Returns checkpoint filename given directory or specific checkpoint file.""" if gfile.IsDirectory(ckpt_dir_or_file): return checkpoint_management.latest_checkpoint(ckpt_dir_or_file) return ckpt_dir_or_file def _set_checkpoint_initializer(variable, ckpt_file, tensor_name, slice_spec, name="checkpoint_initializer", # +++ DIT: default write_version=saver_pb2.SaverDef.DIT write_version=saver_pb2.SaverDef.DIT): # --- DIT: default write_version=saver_pb2.SaverDef.DIT """Overrides given variable's initialization op. Sets variable initializer to assign op that initializes variable from tensor's value in the checkpoint. Args: variable: `tf.Variable` object. ckpt_file: string, full path of the checkpoint. tensor_name: Name of the tensor to load from the checkpoint. slice_spec: Slice specification for loading partitioned tensors. name: Name of the operation. """ base_type = variable.dtype.base_dtype # Do not colocate with variable since RestoreV2 op only runs on CPU and # colocation will force variable (and other ops that colocate with variable) # to be on CPU as well. It is okay to place the variable's initializer op on # CPU since it will only be run once at the start. with ops.device(variable.device), ops.device("/cpu:0"): #restore_op = io_ops.restore_v2( # ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0] # +++ DIT: check for restore_dit if self._write_version == saver_pb2.SaverDef.V1 or self._write_version == saver_pb2.SaverDef.V2: restore_op = io_ops.restore_v2(ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0] elif self._write_version == saver_pb2.SaverDef.DIT: restore_op = io_ops.restore_dit(ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0] else: raise RuntimeError("Unexpected write_version: " + self._write_version) # --- DIT: check for restore_dit names_to_saveables = saveable_object_util.op_list_to_dict([variable]) saveable_objects = [] for name, op in names_to_saveables.items(): for s in saveable_object_util.saveable_objects_for_op(op, name): saveable_objects.append(s) assert len(saveable_objects) == 1 # Should be only one variable. init_op = saveable_objects[0].restore([restore_op], restored_shapes=None) # pylint:disable=protected-access variable._initializer_op = init_op restore_op.set_shape(variable.shape) variable._initial_value = restore_op # pylint:enable=protected-access def _set_variable_or_list_initializer(variable_or_list, ckpt_file, tensor_name): """Overrides initialization op of given variable or list of variables. Calls `_set_checkpoint_initializer` for each variable in the given list of variables. Args: variable_or_list: `tf.Variable` object or a list of `tf.Variable` objects. ckpt_file: string, full path of the checkpoint. tensor_name: Name of the tensor to load from the checkpoint. Raises: ValueError: if all objects in `variable_or_list` are not partitions of the same large variable. """ if isinstance(variable_or_list, (list, tuple)): # A set of slices. slice_name = None for v in variable_or_list: slice_info = v._save_slice_info # pylint:disable=protected-access if slice_name is None: slice_name = slice_info.full_name elif slice_name != slice_info.full_name: raise ValueError("Slices must all be from the same tensor: %s != %s" % (slice_name, slice_info.full_name)) _set_checkpoint_initializer(v, ckpt_file, tensor_name, slice_info.spec) else: _set_checkpoint_initializer(variable_or_list, ckpt_file, tensor_name, "") def _is_variable(x): return (isinstance(x, variables.Variable) or resource_variable_ops.is_resource_variable(x)) def _collect_partitioned_variable(name, all_vars): """Returns list of `tf.Variable` that comprise the partitioned variable.""" if name + "/part_0" in all_vars: var = [] i = 0 while name + "/part_%d" % i in all_vars: var.append(all_vars[name + "/part_%d" % i]) i += 1 return var return None
41.516393
104
0.699161
[ "Apache-2.0" ]
KodeWorker/tensorflow
tensorflow/python/training/checkpoint_utils.py
20,260
Python
from typing import Dict from handler import Context, Arguments, CommandResult from rpg.items import Item from utils.formatting import codeblock from utils.command_helpers import get_author_player async def run(ctx: Context, args: Arguments) -> CommandResult: player = await get_author_player(ctx) if player.inventory.size: counts: Dict[Item, int] = {} for item in player.inventory: counts[item] = counts.get(item, 0) + 1 inventory = "\n".join( f"{item}{' x ' + str(count) if count > 1 else ''}" for item, count in counts.items() ) else: inventory = "Ваш инвентарь пуст" equipment_item_map = [ (slot, getattr(player.equipment, slot)) for slot in player.equipment._slots ] equipment = "\n".join(f"{slot:>10}: {item}" for (slot, item) in equipment_item_map) return codeblock(f"Экипировка:\n\n{equipment}\n\nИнвентарь:\n\n{inventory}")
30.709677
87
0.652311
[ "MIT" ]
Tarakania/discord-bot
tarakania_rpg/commands/rpg/inventory/inventory.py
987
Python
from collections import namedtuple import contextlib import pickle import hashlib from llvmlite import ir from llvmlite.llvmpy.core import Type, Constant import llvmlite.llvmpy.core as lc import ctypes from numba import _helperlib from numba.core import ( types, utils, config, lowering, cgutils, imputils, serialize, ) PY_UNICODE_1BYTE_KIND = _helperlib.py_unicode_1byte_kind PY_UNICODE_2BYTE_KIND = _helperlib.py_unicode_2byte_kind PY_UNICODE_4BYTE_KIND = _helperlib.py_unicode_4byte_kind PY_UNICODE_WCHAR_KIND = _helperlib.py_unicode_wchar_kind class _Registry(object): def __init__(self): self.functions = {} def register(self, typeclass): assert issubclass(typeclass, types.Type) def decorator(func): if typeclass in self.functions: raise KeyError("duplicate registration for %s" % (typeclass,)) self.functions[typeclass] = func return func return decorator def lookup(self, typeclass, default=None): assert issubclass(typeclass, types.Type) for cls in typeclass.__mro__: func = self.functions.get(cls) if func is not None: return func return default # Registries of boxing / unboxing implementations _boxers = _Registry() _unboxers = _Registry() _reflectors = _Registry() box = _boxers.register unbox = _unboxers.register reflect = _reflectors.register class _BoxContext(namedtuple("_BoxContext", ("context", "builder", "pyapi", "env_manager"))): """ The facilities required by boxing implementations. """ __slots__ = () def box(self, typ, val): return self.pyapi.from_native_value(typ, val, self.env_manager) class _UnboxContext(namedtuple("_UnboxContext", ("context", "builder", "pyapi"))): """ The facilities required by unboxing implementations. """ __slots__ = () def unbox(self, typ, obj): return self.pyapi.to_native_value(typ, obj) class _ReflectContext(namedtuple("_ReflectContext", ("context", "builder", "pyapi", "env_manager", "is_error"))): """ The facilities required by reflection implementations. """ __slots__ = () # XXX the error bit is currently unused by consumers (e.g. PyCallWrapper) def set_error(self): self.builder.store(self.is_error, cgutils.true_bit) def box(self, typ, val): return self.pyapi.from_native_value(typ, val, self.env_manager) def reflect(self, typ, val): return self.pyapi.reflect_native_value(typ, val, self.env_manager) class NativeValue(object): """ Encapsulate the result of converting a Python object to a native value, recording whether the conversion was successful and how to cleanup. """ def __init__(self, value, is_error=None, cleanup=None): self.value = value self.is_error = is_error if is_error is not None else cgutils.false_bit self.cleanup = cleanup class EnvironmentManager(object): def __init__(self, pyapi, env, env_body, env_ptr): assert isinstance(env, lowering.Environment) self.pyapi = pyapi self.env = env self.env_body = env_body self.env_ptr = env_ptr def add_const(self, const): """ Add a constant to the environment, return its index. """ # All constants are frozen inside the environment if isinstance(const, str): const = utils.intern(const) for index, val in enumerate(self.env.consts): if val is const: break else: index = len(self.env.consts) self.env.consts.append(const) return index def read_const(self, index): """ Look up constant number *index* inside the environment body. A borrowed reference is returned. The returned LLVM value may have NULL value at runtime which indicates an error at runtime. """ assert index < len(self.env.consts) builder = self.pyapi.builder consts = self.env_body.consts ret = cgutils.alloca_once(builder, self.pyapi.pyobj, zfill=True) with builder.if_else(cgutils.is_not_null(builder, consts)) as \ (br_not_null, br_null): with br_not_null: getitem = self.pyapi.list_getitem(consts, index) builder.store(getitem, ret) with br_null: # This can happen when the Environment is accidentally released # and has subsequently been garbage collected. self.pyapi.err_set_string( "PyExc_RuntimeError", "`env.consts` is NULL in `read_const`", ) return builder.load(ret) _IteratorLoop = namedtuple('_IteratorLoop', ('value', 'do_break')) class PythonAPI(object): """ Code generation facilities to call into the CPython C API (and related helpers). """ def __init__(self, context, builder): """ Note: Maybe called multiple times when lowering a function """ from numba.core import boxing self.context = context self.builder = builder self.module = builder.basic_block.function.module # A unique mapping of serialized objects in this module try: self.module.__serialized except AttributeError: self.module.__serialized = {} # Initialize types self.pyobj = self.context.get_argument_type(types.pyobject) self.pyobjptr = self.pyobj.as_pointer() self.voidptr = Type.pointer(Type.int(8)) self.long = Type.int(ctypes.sizeof(ctypes.c_long) * 8) self.ulong = self.long self.longlong = Type.int(ctypes.sizeof(ctypes.c_ulonglong) * 8) self.ulonglong = self.longlong self.double = Type.double() self.py_ssize_t = self.context.get_value_type(types.intp) self.cstring = Type.pointer(Type.int(8)) self.gil_state = Type.int(_helperlib.py_gil_state_size * 8) self.py_buffer_t = ir.ArrayType(ir.IntType(8), _helperlib.py_buffer_size) self.py_hash_t = self.py_ssize_t self.py_unicode_1byte_kind = _helperlib.py_unicode_1byte_kind self.py_unicode_2byte_kind = _helperlib.py_unicode_2byte_kind self.py_unicode_4byte_kind = _helperlib.py_unicode_4byte_kind self.py_unicode_wchar_kind = _helperlib.py_unicode_wchar_kind def get_env_manager(self, env, env_body, env_ptr): return EnvironmentManager(self, env, env_body, env_ptr) def emit_environment_sentry(self, envptr, return_pyobject=False, debug_msg=''): """Emits LLVM code to ensure the `envptr` is not NULL """ is_null = cgutils.is_null(self.builder, envptr) with cgutils.if_unlikely(self.builder, is_null): if return_pyobject: fnty = self.builder.function.type.pointee assert fnty.return_type == self.pyobj self.err_set_string( "PyExc_RuntimeError", f"missing Environment: {debug_msg}", ) self.builder.ret(self.get_null_object()) else: self.context.call_conv.return_user_exc( self.builder, RuntimeError, (f"missing Environment: {debug_msg}",), ) # ------ Python API ----- # # Basic object API # def incref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_IncRef") self.builder.call(fn, [obj]) def decref(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="Py_DecRef") self.builder.call(fn, [obj]) def get_type(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="numba_py_type") return self.builder.call(fn, [obj]) # # Argument unpacking # def parse_tuple_and_keywords(self, args, kws, fmt, keywords, *objs): charptr = Type.pointer(Type.int(8)) charptrary = Type.pointer(charptr) argtypes = [self.pyobj, self.pyobj, charptr, charptrary] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTupleAndKeywords") return self.builder.call(fn, [args, kws, fmt, keywords] + list(objs)) def parse_tuple(self, args, fmt, *objs): charptr = Type.pointer(Type.int(8)) argtypes = [self.pyobj, charptr] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_ParseTuple") return self.builder.call(fn, [args, fmt] + list(objs)) def unpack_tuple(self, args, name, n_min, n_max, *objs): charptr = Type.pointer(Type.int(8)) argtypes = [self.pyobj, charptr, self.py_ssize_t, self.py_ssize_t] fnty = Type.function(Type.int(), argtypes, var_arg=True) fn = self._get_function(fnty, name="PyArg_UnpackTuple") n_min = Constant.int(self.py_ssize_t, n_min) n_max = Constant.int(self.py_ssize_t, n_max) if isinstance(name, str): name = self.context.insert_const_string(self.builder.module, name) return self.builder.call(fn, [args, name, n_min, n_max] + list(objs)) # # Exception and errors # def err_occurred(self): fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyErr_Occurred") return self.builder.call(fn, ()) def err_clear(self): fnty = Type.function(Type.void(), ()) fn = self._get_function(fnty, name="PyErr_Clear") return self.builder.call(fn, ()) def err_set_string(self, exctype, msg): fnty = Type.function(Type.void(), [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyErr_SetString") if isinstance(exctype, str): exctype = self.get_c_object(exctype) if isinstance(msg, str): msg = self.context.insert_const_string(self.module, msg) return self.builder.call(fn, (exctype, msg)) def err_format(self, exctype, msg, *format_args): fnty = Type.function(Type.void(), [self.pyobj, self.cstring], var_arg=True) fn = self._get_function(fnty, name="PyErr_Format") if isinstance(exctype, str): exctype = self.get_c_object(exctype) if isinstance(msg, str): msg = self.context.insert_const_string(self.module, msg) return self.builder.call(fn, (exctype, msg) + tuple(format_args)) def raise_object(self, exc=None): """ Raise an arbitrary exception (type or value or (type, args) or None - if reraising). A reference to the argument is consumed. """ fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="numba_do_raise") if exc is None: exc = self.make_none() return self.builder.call(fn, (exc,)) def err_set_object(self, exctype, excval): fnty = Type.function(Type.void(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyErr_SetObject") if isinstance(exctype, str): exctype = self.get_c_object(exctype) return self.builder.call(fn, (exctype, excval)) def err_set_none(self, exctype): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="PyErr_SetNone") if isinstance(exctype, str): exctype = self.get_c_object(exctype) return self.builder.call(fn, (exctype,)) def err_write_unraisable(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="PyErr_WriteUnraisable") return self.builder.call(fn, (obj,)) def err_fetch(self, pty, pval, ptb): fnty = Type.function(Type.void(), [self.pyobjptr] * 3) fn = self._get_function(fnty, name="PyErr_Fetch") return self.builder.call(fn, (pty, pval, ptb)) def err_restore(self, ty, val, tb): fnty = Type.function(Type.void(), [self.pyobj] * 3) fn = self._get_function(fnty, name="PyErr_Restore") return self.builder.call(fn, (ty, val, tb)) @contextlib.contextmanager def err_push(self, keep_new=False): """ Temporarily push the current error indicator while the code block is executed. If *keep_new* is True and the code block raises a new error, the new error is kept, otherwise the old error indicator is restored at the end of the block. """ pty, pval, ptb = [cgutils.alloca_once(self.builder, self.pyobj) for i in range(3)] self.err_fetch(pty, pval, ptb) yield ty = self.builder.load(pty) val = self.builder.load(pval) tb = self.builder.load(ptb) if keep_new: new_error = cgutils.is_not_null(self.builder, self.err_occurred()) with self.builder.if_else(new_error, likely=False) as (if_error, if_ok): with if_error: # Code block raised an error, keep it self.decref(ty) self.decref(val) self.decref(tb) with if_ok: # Restore previous error self.err_restore(ty, val, tb) else: self.err_restore(ty, val, tb) def get_c_object(self, name): """ Get a Python object through its C-accessible *name* (e.g. "PyExc_ValueError"). The underlying variable must be a `PyObject *`, and the value of that pointer is returned. """ # A LLVM global variable is implicitly a pointer to the declared # type, so fix up by using pyobj.pointee. return self.context.get_c_value(self.builder, self.pyobj.pointee, name, dllimport=True) def raise_missing_global_error(self, name): msg = "global name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) def raise_missing_name_error(self, name): msg = "name '%s' is not defined" % name cstr = self.context.insert_const_string(self.module, msg) self.err_set_string("PyExc_NameError", cstr) def fatal_error(self, msg): fnty = Type.function(Type.void(), [self.cstring]) fn = self._get_function(fnty, name="Py_FatalError") fn.attributes.add("noreturn") cstr = self.context.insert_const_string(self.module, msg) self.builder.call(fn, (cstr,)) # # Concrete dict API # def dict_getitem_string(self, dic, name): """Lookup name inside dict Returns a borrowed reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyDict_GetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, [dic, cstr]) def dict_getitem(self, dic, name): """Lookup name inside dict Returns a borrowed reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyDict_GetItem") return self.builder.call(fn, [dic, name]) def dict_new(self, presize=0): if presize == 0: fnty = Type.function(self.pyobj, ()) fn = self._get_function(fnty, name="PyDict_New") return self.builder.call(fn, ()) else: fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="_PyDict_NewPresized") return self.builder.call(fn, [Constant.int(self.py_ssize_t, presize)]) def dict_setitem(self, dictobj, nameobj, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.pyobj, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItem") return self.builder.call(fn, (dictobj, nameobj, valobj)) def dict_setitem_string(self, dictobj, name, valobj): fnty = Type.function(Type.int(), (self.pyobj, self.cstring, self.pyobj)) fn = self._get_function(fnty, name="PyDict_SetItemString") cstr = self.context.insert_const_string(self.module, name) return self.builder.call(fn, (dictobj, cstr, valobj)) def dict_pack(self, keyvalues): """ Args ----- keyvalues: iterable of (str, llvm.Value of PyObject*) """ dictobj = self.dict_new() with self.if_object_ok(dictobj): for k, v in keyvalues: self.dict_setitem_string(dictobj, k, v) return dictobj # # Concrete number APIs # def float_from_double(self, fval): fnty = Type.function(self.pyobj, [self.double]) fn = self._get_function(fnty, name="PyFloat_FromDouble") return self.builder.call(fn, [fval]) def number_as_ssize_t(self, numobj): fnty = Type.function(self.py_ssize_t, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyNumber_AsSsize_t") # We don't want any clipping, so pass OverflowError as the 2nd arg exc_class = self.get_c_object("PyExc_OverflowError") return self.builder.call(fn, [numobj, exc_class]) def number_long(self, numobj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Long") return self.builder.call(fn, [numobj]) def long_as_ulonglong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsUnsignedLongLong") return self.builder.call(fn, [numobj]) def long_as_longlong(self, numobj): fnty = Type.function(self.ulonglong, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsLongLong") return self.builder.call(fn, [numobj]) def long_as_voidptr(self, numobj): """ Convert the given Python integer to a void*. This is recommended over number_as_ssize_t as it isn't affected by signedness. """ fnty = Type.function(self.voidptr, [self.pyobj]) fn = self._get_function(fnty, name="PyLong_AsVoidPtr") return self.builder.call(fn, [numobj]) def _long_from_native_int(self, ival, func_name, native_int_type, signed): fnty = Type.function(self.pyobj, [native_int_type]) fn = self._get_function(fnty, name=func_name) resptr = cgutils.alloca_once(self.builder, self.pyobj) fn = self._get_function(fnty, name=func_name) self.builder.store(self.builder.call(fn, [ival]), resptr) return self.builder.load(resptr) def long_from_long(self, ival): func_name = "PyLong_FromLong" fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name=func_name) return self.builder.call(fn, [ival]) def long_from_ulong(self, ival): return self._long_from_native_int(ival, "PyLong_FromUnsignedLong", self.long, signed=False) def long_from_ssize_t(self, ival): return self._long_from_native_int(ival, "PyLong_FromSsize_t", self.py_ssize_t, signed=True) def long_from_longlong(self, ival): return self._long_from_native_int(ival, "PyLong_FromLongLong", self.longlong, signed=True) def long_from_ulonglong(self, ival): return self._long_from_native_int(ival, "PyLong_FromUnsignedLongLong", self.ulonglong, signed=False) def long_from_signed_int(self, ival): """ Return a Python integer from any native integer value. """ bits = ival.type.width if bits <= self.long.width: return self.long_from_long(self.builder.sext(ival, self.long)) elif bits <= self.longlong.width: return self.long_from_longlong(self.builder.sext(ival, self.longlong)) else: raise OverflowError("integer too big (%d bits)" % (bits)) def long_from_unsigned_int(self, ival): """ Same as long_from_signed_int, but for unsigned values. """ bits = ival.type.width if bits <= self.ulong.width: return self.long_from_ulong(self.builder.zext(ival, self.ulong)) elif bits <= self.ulonglong.width: return self.long_from_ulonglong(self.builder.zext(ival, self.ulonglong)) else: raise OverflowError("integer too big (%d bits)" % (bits)) def _get_number_operator(self, name): fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyNumber_%s" % name) return fn def _call_number_operator(self, name, lhs, rhs, inplace=False): if inplace: name = "InPlace" + name fn = self._get_number_operator(name) return self.builder.call(fn, [lhs, rhs]) def number_add(self, lhs, rhs, inplace=False): return self._call_number_operator("Add", lhs, rhs, inplace=inplace) def number_subtract(self, lhs, rhs, inplace=False): return self._call_number_operator("Subtract", lhs, rhs, inplace=inplace) def number_multiply(self, lhs, rhs, inplace=False): return self._call_number_operator("Multiply", lhs, rhs, inplace=inplace) def number_truedivide(self, lhs, rhs, inplace=False): return self._call_number_operator("TrueDivide", lhs, rhs, inplace=inplace) def number_floordivide(self, lhs, rhs, inplace=False): return self._call_number_operator("FloorDivide", lhs, rhs, inplace=inplace) def number_remainder(self, lhs, rhs, inplace=False): return self._call_number_operator("Remainder", lhs, rhs, inplace=inplace) def number_matrix_multiply(self, lhs, rhs, inplace=False): return self._call_number_operator("MatrixMultiply", lhs, rhs, inplace=inplace) def number_lshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Lshift", lhs, rhs, inplace=inplace) def number_rshift(self, lhs, rhs, inplace=False): return self._call_number_operator("Rshift", lhs, rhs, inplace=inplace) def number_and(self, lhs, rhs, inplace=False): return self._call_number_operator("And", lhs, rhs, inplace=inplace) def number_or(self, lhs, rhs, inplace=False): return self._call_number_operator("Or", lhs, rhs, inplace=inplace) def number_xor(self, lhs, rhs, inplace=False): return self._call_number_operator("Xor", lhs, rhs, inplace=inplace) def number_power(self, lhs, rhs, inplace=False): fnty = Type.function(self.pyobj, [self.pyobj] * 3) fname = "PyNumber_InPlacePower" if inplace else "PyNumber_Power" fn = self._get_function(fnty, fname) return self.builder.call(fn, [lhs, rhs, self.borrow_none()]) def number_negative(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Negative") return self.builder.call(fn, (obj,)) def number_positive(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Positive") return self.builder.call(fn, (obj,)) def number_float(self, val): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Float") return self.builder.call(fn, [val]) def number_invert(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyNumber_Invert") return self.builder.call(fn, (obj,)) def float_as_double(self, fobj): fnty = Type.function(self.double, [self.pyobj]) fn = self._get_function(fnty, name="PyFloat_AsDouble") return self.builder.call(fn, [fobj]) def bool_from_bool(self, bval): """ Get a Python bool from a LLVM boolean. """ longval = self.builder.zext(bval, self.long) return self.bool_from_long(longval) def bool_from_long(self, ival): fnty = Type.function(self.pyobj, [self.long]) fn = self._get_function(fnty, name="PyBool_FromLong") return self.builder.call(fn, [ival]) def complex_from_doubles(self, realval, imagval): fnty = Type.function(self.pyobj, [Type.double(), Type.double()]) fn = self._get_function(fnty, name="PyComplex_FromDoubles") return self.builder.call(fn, [realval, imagval]) def complex_real_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_RealAsDouble") return self.builder.call(fn, [cobj]) def complex_imag_as_double(self, cobj): fnty = Type.function(Type.double(), [self.pyobj]) fn = self._get_function(fnty, name="PyComplex_ImagAsDouble") return self.builder.call(fn, [cobj]) # # Concrete slice API # def slice_as_ints(self, obj): """ Read the members of a slice of integers. Returns a (ok, start, stop, step) tuple where ok is a boolean and the following members are pointer-sized ints. """ pstart = cgutils.alloca_once(self.builder, self.py_ssize_t) pstop = cgutils.alloca_once(self.builder, self.py_ssize_t) pstep = cgutils.alloca_once(self.builder, self.py_ssize_t) fnty = Type.function(Type.int(), [self.pyobj] + [self.py_ssize_t.as_pointer()] * 3) fn = self._get_function(fnty, name="numba_unpack_slice") res = self.builder.call(fn, (obj, pstart, pstop, pstep)) start = self.builder.load(pstart) stop = self.builder.load(pstop) step = self.builder.load(pstep) return cgutils.is_null(self.builder, res), start, stop, step # # List and sequence APIs # def sequence_getslice(self, obj, start, stop): fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t, self.py_ssize_t]) fn = self._get_function(fnty, name="PySequence_GetSlice") return self.builder.call(fn, (obj, start, stop)) def sequence_tuple(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PySequence_Tuple") return self.builder.call(fn, [obj]) def list_new(self, szval): fnty = Type.function(self.pyobj, [self.py_ssize_t]) fn = self._get_function(fnty, name="PyList_New") return self.builder.call(fn, [szval]) def list_size(self, lst): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PyList_Size") return self.builder.call(fn, [lst]) def list_append(self, lst, val): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyList_Append") return self.builder.call(fn, [lst, val]) def list_setitem(self, lst, idx, val): """ Warning: Steals reference to ``val`` """ fnty = Type.function(Type.int(), [self.pyobj, self.py_ssize_t, self.pyobj]) fn = self._get_function(fnty, name="PyList_SetItem") return self.builder.call(fn, [lst, idx, val]) def list_getitem(self, lst, idx): """ Returns a borrowed reference. """ fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t]) fn = self._get_function(fnty, name="PyList_GetItem") if isinstance(idx, int): idx = self.context.get_constant(types.intp, idx) return self.builder.call(fn, [lst, idx]) def list_setslice(self, lst, start, stop, obj): if obj is None: obj = self.get_null_object() fnty = Type.function(Type.int(), [self.pyobj, self.py_ssize_t, self.py_ssize_t, self.pyobj]) fn = self._get_function(fnty, name="PyList_SetSlice") return self.builder.call(fn, (lst, start, stop, obj)) # # Concrete tuple API # def tuple_getitem(self, tup, idx): """ Borrow reference """ fnty = Type.function(self.pyobj, [self.pyobj, self.py_ssize_t]) fn = self._get_function(fnty, name="PyTuple_GetItem") idx = self.context.get_constant(types.intp, idx) return self.builder.call(fn, [tup, idx]) def tuple_pack(self, items): fnty = Type.function(self.pyobj, [self.py_ssize_t], var_arg=True) fn = self._get_function(fnty, name="PyTuple_Pack") n = self.context.get_constant(types.intp, len(items)) args = [n] args.extend(items) return self.builder.call(fn, args) def tuple_size(self, tup): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PyTuple_Size") return self.builder.call(fn, [tup]) def tuple_new(self, count): fnty = Type.function(self.pyobj, [Type.int()]) fn = self._get_function(fnty, name='PyTuple_New') return self.builder.call(fn, [self.context.get_constant(types.int32, count)]) def tuple_setitem(self, tuple_val, index, item): """ Steals a reference to `item`. """ fnty = Type.function(Type.int(), [self.pyobj, Type.int(), self.pyobj]) setitem_fn = self._get_function(fnty, name='PyTuple_SetItem') index = self.context.get_constant(types.int32, index) self.builder.call(setitem_fn, [tuple_val, index, item]) # # Concrete set API # def set_new(self, iterable=None): if iterable is None: iterable = self.get_null_object() fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PySet_New") return self.builder.call(fn, [iterable]) def set_add(self, set, value): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PySet_Add") return self.builder.call(fn, [set, value]) def set_clear(self, set): fnty = Type.function(Type.int(), [self.pyobj]) fn = self._get_function(fnty, name="PySet_Clear") return self.builder.call(fn, [set]) def set_size(self, set): fnty = Type.function(self.py_ssize_t, [self.pyobj]) fn = self._get_function(fnty, name="PySet_Size") return self.builder.call(fn, [set]) def set_update(self, set, iterable): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="_PySet_Update") return self.builder.call(fn, [set, iterable]) def set_next_entry(self, set, posptr, keyptr, hashptr): fnty = Type.function(Type.int(), [self.pyobj, self.py_ssize_t.as_pointer(), self.pyobj.as_pointer(), self.py_hash_t.as_pointer()]) fn = self._get_function(fnty, name="_PySet_NextEntry") return self.builder.call(fn, (set, posptr, keyptr, hashptr)) @contextlib.contextmanager def set_iterate(self, set): builder = self.builder hashptr = cgutils.alloca_once(builder, self.py_hash_t, name="hashptr") keyptr = cgutils.alloca_once(builder, self.pyobj, name="keyptr") posptr = cgutils.alloca_once_value(builder, ir.Constant(self.py_ssize_t, 0), name="posptr") bb_body = builder.append_basic_block("bb_body") bb_end = builder.append_basic_block("bb_end") builder.branch(bb_body) def do_break(): builder.branch(bb_end) with builder.goto_block(bb_body): r = self.set_next_entry(set, posptr, keyptr, hashptr) finished = cgutils.is_null(builder, r) with builder.if_then(finished, likely=False): builder.branch(bb_end) yield _IteratorLoop(builder.load(keyptr), do_break) builder.branch(bb_body) builder.position_at_end(bb_end) # # GIL APIs # def gil_ensure(self): """ Ensure the GIL is acquired. The returned value must be consumed by gil_release(). """ gilptrty = Type.pointer(self.gil_state) fnty = Type.function(Type.void(), [gilptrty]) fn = self._get_function(fnty, "numba_gil_ensure") gilptr = cgutils.alloca_once(self.builder, self.gil_state) self.builder.call(fn, [gilptr]) return gilptr def gil_release(self, gil): """ Release the acquired GIL by gil_ensure(). Must be paired with a gil_ensure(). """ gilptrty = Type.pointer(self.gil_state) fnty = Type.function(Type.void(), [gilptrty]) fn = self._get_function(fnty, "numba_gil_release") return self.builder.call(fn, [gil]) def save_thread(self): """ Release the GIL and return the former thread state (an opaque non-NULL pointer). """ fnty = Type.function(self.voidptr, []) fn = self._get_function(fnty, name="PyEval_SaveThread") return self.builder.call(fn, []) def restore_thread(self, thread_state): """ Restore the given thread state by reacquiring the GIL. """ fnty = Type.function(Type.void(), [self.voidptr]) fn = self._get_function(fnty, name="PyEval_RestoreThread") self.builder.call(fn, [thread_state]) # # Generic object private data (a way of associating an arbitrary void * # pointer to an arbitrary Python object). # def object_get_private_data(self, obj): fnty = Type.function(self.voidptr, [self.pyobj]) fn = self._get_function(fnty, name="numba_get_pyobject_private_data") return self.builder.call(fn, (obj,)) def object_set_private_data(self, obj, ptr): fnty = Type.function(Type.void(), [self.pyobj, self.voidptr]) fn = self._get_function(fnty, name="numba_set_pyobject_private_data") return self.builder.call(fn, (obj, ptr)) def object_reset_private_data(self, obj): fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="numba_reset_pyobject_private_data") return self.builder.call(fn, (obj,)) # # Other APIs (organize them better!) # def import_module_noblock(self, modname): fnty = Type.function(self.pyobj, [self.cstring]) fn = self._get_function(fnty, name="PyImport_ImportModuleNoBlock") return self.builder.call(fn, [modname]) def call_function_objargs(self, callee, objargs): fnty = Type.function(self.pyobj, [self.pyobj], var_arg=True) fn = self._get_function(fnty, name="PyObject_CallFunctionObjArgs") args = [callee] + list(objargs) args.append(self.context.get_constant_null(types.pyobject)) return self.builder.call(fn, args) def call_method(self, callee, method, objargs=()): cname = self.context.insert_const_string(self.module, method) fnty = Type.function(self.pyobj, [self.pyobj, self.cstring, self.cstring], var_arg=True) fn = self._get_function(fnty, name="PyObject_CallMethod") fmt = 'O' * len(objargs) cfmt = self.context.insert_const_string(self.module, fmt) args = [callee, cname, cfmt] if objargs: args.extend(objargs) args.append(self.context.get_constant_null(types.pyobject)) return self.builder.call(fn, args) def call(self, callee, args=None, kws=None): if args is None: args = self.get_null_object() if kws is None: kws = self.get_null_object() fnty = Type.function(self.pyobj, [self.pyobj] * 3) fn = self._get_function(fnty, name="PyObject_Call") return self.builder.call(fn, (callee, args, kws)) def object_istrue(self, obj): fnty = Type.function(Type.int(), [self.pyobj]) fn = self._get_function(fnty, name="PyObject_IsTrue") return self.builder.call(fn, [obj]) def object_not(self, obj): fnty = Type.function(Type.int(), [self.pyobj]) fn = self._get_function(fnty, name="PyObject_Not") return self.builder.call(fn, [obj]) def object_richcompare(self, lhs, rhs, opstr): """ Refer to Python source Include/object.h for macros definition of the opid. """ ops = ['<', '<=', '==', '!=', '>', '>='] if opstr in ops: opid = ops.index(opstr) fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj, Type.int()]) fn = self._get_function(fnty, name="PyObject_RichCompare") lopid = self.context.get_constant(types.int32, opid) return self.builder.call(fn, (lhs, rhs, lopid)) elif opstr == 'is': bitflag = self.builder.icmp(lc.ICMP_EQ, lhs, rhs) return self.bool_from_bool(bitflag) elif opstr == 'is not': bitflag = self.builder.icmp(lc.ICMP_NE, lhs, rhs) return self.bool_from_bool(bitflag) elif opstr in ('in', 'not in'): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PySequence_Contains") status = self.builder.call(fn, (rhs, lhs)) negone = self.context.get_constant(types.int32, -1) is_good = self.builder.icmp(lc.ICMP_NE, status, negone) # Stack allocate output and initialize to Null outptr = cgutils.alloca_once_value(self.builder, Constant.null(self.pyobj)) # If PySequence_Contains returns non-error value with cgutils.if_likely(self.builder, is_good): if opstr == 'not in': status = self.builder.not_(status) # Store the status as a boolean object truncated = self.builder.trunc(status, Type.int(1)) self.builder.store(self.bool_from_bool(truncated), outptr) return self.builder.load(outptr) else: raise NotImplementedError("Unknown operator {op!r}".format( op=opstr)) def iter_next(self, iterobj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyIter_Next") return self.builder.call(fn, [iterobj]) def object_getiter(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyObject_GetIter") return self.builder.call(fn, [obj]) def object_getattr_string(self, obj, attr): cstr = self.context.insert_const_string(self.module, attr) fnty = Type.function(self.pyobj, [self.pyobj, self.cstring]) fn = self._get_function(fnty, name="PyObject_GetAttrString") return self.builder.call(fn, [obj, cstr]) def object_getattr(self, obj, attr): fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_GetAttr") return self.builder.call(fn, [obj, attr]) def object_setattr_string(self, obj, attr, val): cstr = self.context.insert_const_string(self.module, attr) fnty = Type.function(Type.int(), [self.pyobj, self.cstring, self.pyobj]) fn = self._get_function(fnty, name="PyObject_SetAttrString") return self.builder.call(fn, [obj, cstr, val]) def object_setattr(self, obj, attr, val): fnty = Type.function(Type.int(), [self.pyobj, self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_SetAttr") return self.builder.call(fn, [obj, attr, val]) def object_delattr_string(self, obj, attr): # PyObject_DelAttrString() is actually a C macro calling # PyObject_SetAttrString() with value == NULL. return self.object_setattr_string(obj, attr, self.get_null_object()) def object_delattr(self, obj, attr): # PyObject_DelAttr() is actually a C macro calling # PyObject_SetAttr() with value == NULL. return self.object_setattr(obj, attr, self.get_null_object()) def object_getitem(self, obj, key): """ Return obj[key] """ fnty = Type.function(self.pyobj, [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_GetItem") return self.builder.call(fn, (obj, key)) def object_setitem(self, obj, key, val): """ obj[key] = val """ fnty = Type.function(Type.int(), [self.pyobj, self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_SetItem") return self.builder.call(fn, (obj, key, val)) def object_delitem(self, obj, key): """ del obj[key] """ fnty = Type.function(Type.int(), [self.pyobj, self.pyobj]) fn = self._get_function(fnty, name="PyObject_DelItem") return self.builder.call(fn, (obj, key)) def string_as_string(self, strobj): fnty = Type.function(self.cstring, [self.pyobj]) fname = "PyUnicode_AsUTF8" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [strobj]) def string_as_string_and_size(self, strobj): """ Returns a tuple of ``(ok, buffer, length)``. The ``ok`` is i1 value that is set if ok. The ``buffer`` is a i8* of the output buffer. The ``length`` is a i32/i64 (py_ssize_t) of the length of the buffer. """ p_length = cgutils.alloca_once(self.builder, self.py_ssize_t) fnty = Type.function(self.cstring, [self.pyobj, self.py_ssize_t.as_pointer()]) fname = "PyUnicode_AsUTF8AndSize" fn = self._get_function(fnty, name=fname) buffer = self.builder.call(fn, [strobj, p_length]) ok = self.builder.icmp_unsigned('!=', ir.Constant(buffer.type, None), buffer) return (ok, buffer, self.builder.load(p_length)) def string_as_string_size_and_kind(self, strobj): """ Returns a tuple of ``(ok, buffer, length, kind)``. The ``ok`` is i1 value that is set if ok. The ``buffer`` is a i8* of the output buffer. The ``length`` is a i32/i64 (py_ssize_t) of the length of the buffer. The ``kind`` is a i32 (int32) of the Unicode kind constant The ``hash`` is a long/uint64_t (py_hash_t) of the Unicode constant hash """ p_length = cgutils.alloca_once(self.builder, self.py_ssize_t) p_kind = cgutils.alloca_once(self.builder, Type.int()) p_ascii = cgutils.alloca_once(self.builder, Type.int()) p_hash = cgutils.alloca_once(self.builder, self.py_hash_t) fnty = Type.function(self.cstring, [self.pyobj, self.py_ssize_t.as_pointer(), Type.int().as_pointer(), Type.int().as_pointer(), self.py_hash_t.as_pointer()]) fname = "numba_extract_unicode" fn = self._get_function(fnty, name=fname) buffer = self.builder.call( fn, [strobj, p_length, p_kind, p_ascii, p_hash]) ok = self.builder.icmp_unsigned('!=', ir.Constant(buffer.type, None), buffer) return (ok, buffer, self.builder.load(p_length), self.builder.load(p_kind), self.builder.load(p_ascii), self.builder.load(p_hash)) def string_from_string_and_size(self, string, size): fnty = Type.function(self.pyobj, [self.cstring, self.py_ssize_t]) fname = "PyString_FromStringAndSize" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [string, size]) def string_from_string(self, string): fnty = Type.function(self.pyobj, [self.cstring]) fname = "PyUnicode_FromString" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [string]) def string_from_kind_and_data(self, kind, string, size): fnty = Type.function(self.pyobj, [Type.int(), self.cstring, self.py_ssize_t]) fname = "PyUnicode_FromKindAndData" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [kind, string, size]) def bytes_from_string_and_size(self, string, size): fnty = Type.function(self.pyobj, [self.cstring, self.py_ssize_t]) fname = "PyBytes_FromStringAndSize" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [string, size]) def object_hash(self, obj): fnty = Type.function(self.py_hash_t, [self.pyobj,]) fname = "PyObject_Hash" fn = self._get_function(fnty, name=fname) return self.builder.call(fn, [obj,]) def object_str(self, obj): fnty = Type.function(self.pyobj, [self.pyobj]) fn = self._get_function(fnty, name="PyObject_Str") return self.builder.call(fn, [obj]) def make_none(self): obj = self.borrow_none() self.incref(obj) return obj def borrow_none(self): return self.get_c_object("_Py_NoneStruct") def sys_write_stdout(self, fmt, *args): fnty = Type.function(Type.void(), [self.cstring], var_arg=True) fn = self._get_function(fnty, name="PySys_FormatStdout") return self.builder.call(fn, (fmt,) + args) def object_dump(self, obj): """ Dump a Python object on C stderr. For debugging purposes. """ fnty = Type.function(Type.void(), [self.pyobj]) fn = self._get_function(fnty, name="_PyObject_Dump") return self.builder.call(fn, (obj,)) # # NRT (Numba runtime) APIs # def nrt_adapt_ndarray_to_python(self, aryty, ary, dtypeptr): assert self.context.enable_nrt, "NRT required" intty = ir.IntType(32) fnty = Type.function(self.pyobj, [self.voidptr, intty, intty, self.pyobj]) fn = self._get_function(fnty, name="NRT_adapt_ndarray_to_python") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) ndim = self.context.get_constant(types.int32, aryty.ndim) writable = self.context.get_constant(types.int32, int(aryty.mutable)) aryptr = cgutils.alloca_once_value(self.builder, ary) return self.builder.call(fn, [self.builder.bitcast(aryptr, self.voidptr), ndim, writable, dtypeptr]) def nrt_meminfo_new_from_pyobject(self, data, pyobj): """ Allocate a new MemInfo with data payload borrowed from a python object. """ mod = self.builder.module fnty = ir.FunctionType( cgutils.voidptr_t, [cgutils.voidptr_t, cgutils.voidptr_t], ) fn = mod.get_or_insert_function( fnty, name="NRT_meminfo_new_from_pyobject", ) fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) fn.return_value.add_attribute("noalias") return self.builder.call(fn, [data, pyobj]) def nrt_meminfo_as_pyobject(self, miptr): mod = self.builder.module fnty = ir.FunctionType( self.pyobj, [cgutils.voidptr_t] ) fn = mod.get_or_insert_function( fnty, name='NRT_meminfo_as_pyobject', ) fn.return_value.add_attribute("noalias") return self.builder.call(fn, [miptr]) def nrt_meminfo_from_pyobject(self, miobj): mod = self.builder.module fnty = ir.FunctionType( cgutils.voidptr_t, [self.pyobj] ) fn = mod.get_or_insert_function( fnty, name='NRT_meminfo_from_pyobject', ) fn.return_value.add_attribute("noalias") return self.builder.call(fn, [miobj]) def nrt_adapt_ndarray_from_python(self, ary, ptr): assert self.context.enable_nrt fnty = Type.function(Type.int(), [self.pyobj, self.voidptr]) fn = self._get_function(fnty, name="NRT_adapt_ndarray_from_python") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) return self.builder.call(fn, (ary, ptr)) def nrt_adapt_buffer_from_python(self, buf, ptr): assert self.context.enable_nrt fnty = Type.function(Type.void(), [Type.pointer(self.py_buffer_t), self.voidptr]) fn = self._get_function(fnty, name="NRT_adapt_buffer_from_python") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) return self.builder.call(fn, (buf, ptr)) # ------ utils ----- def _get_function(self, fnty, name): return self.module.get_or_insert_function(fnty, name=name) def alloca_obj(self): return self.builder.alloca(self.pyobj) def alloca_buffer(self): """ Return a pointer to a stack-allocated, zero-initialized Py_buffer. """ # Treat the buffer as an opaque array of bytes ptr = cgutils.alloca_once_value(self.builder, lc.Constant.null(self.py_buffer_t)) return ptr @contextlib.contextmanager def if_object_ok(self, obj): with cgutils.if_likely(self.builder, cgutils.is_not_null(self.builder, obj)): yield def print_object(self, obj): strobj = self.object_str(obj) cstr = self.string_as_string(strobj) fmt = self.context.insert_const_string(self.module, "%s") self.sys_write_stdout(fmt, cstr) self.decref(strobj) def print_string(self, text): fmt = self.context.insert_const_string(self.module, text) self.sys_write_stdout(fmt) def get_null_object(self): return Constant.null(self.pyobj) def return_none(self): none = self.make_none() self.builder.ret(none) def list_pack(self, items): n = len(items) seq = self.list_new(self.context.get_constant(types.intp, n)) with self.if_object_ok(seq): for i in range(n): idx = self.context.get_constant(types.intp, i) self.incref(items[i]) self.list_setitem(seq, idx, items[i]) return seq def unserialize(self, structptr): """ Unserialize some data. *structptr* should be a pointer to a {i8* data, i32 length} structure. """ fnty = Type.function(self.pyobj, (self.voidptr, ir.IntType(32), self.voidptr)) fn = self._get_function(fnty, name="numba_unpickle") ptr = self.builder.extract_value(self.builder.load(structptr), 0) n = self.builder.extract_value(self.builder.load(structptr), 1) hashed = self.builder.extract_value(self.builder.load(structptr), 2) return self.builder.call(fn, (ptr, n, hashed)) def serialize_uncached(self, obj): """ Same as serialize_object(), but don't create a global variable, simply return a literal {i8* data, i32 length, i8* hashbuf} structure. """ # First make the array constant data = serialize.dumps(obj) assert len(data) < 2**31 name = ".const.pickledata.%s" % (id(obj) if config.DIFF_IR == 0 else "DIFF_IR") bdata = cgutils.make_bytearray(data) # Make SHA1 hash on the pickled content # NOTE: update buffer size in numba_unpickle() when changing the # hash algorithm. hashed = cgutils.make_bytearray(hashlib.sha1(data).digest()) arr = self.context.insert_unique_const(self.module, name, bdata) hasharr = self.context.insert_unique_const( self.module, f"{name}.sha1", hashed, ) # Then populate the structure constant struct = ir.Constant.literal_struct([ arr.bitcast(self.voidptr), ir.Constant(ir.IntType(32), arr.type.pointee.count), hasharr.bitcast(self.voidptr), ]) return struct def serialize_object(self, obj): """ Serialize the given object in the bitcode, and return it as a pointer to a {i8* data, i32 length}, structure constant (suitable for passing to unserialize()). """ try: gv = self.module.__serialized[obj] except KeyError: struct = self.serialize_uncached(obj) name = ".const.picklebuf.%s" % (id(obj) if config.DIFF_IR == 0 else "DIFF_IR") gv = self.context.insert_unique_const(self.module, name, struct) # Make the id() (and hence the name) unique while populating the module. self.module.__serialized[obj] = gv return gv def c_api_error(self): return cgutils.is_not_null(self.builder, self.err_occurred()) def to_native_value(self, typ, obj): """ Unbox the Python object as the given Numba type. A NativeValue instance is returned. """ from numba.core.boxing import unbox_unsupported impl = _unboxers.lookup(typ.__class__, unbox_unsupported) c = _UnboxContext(self.context, self.builder, self) return impl(typ, obj, c) def from_native_return(self, typ, val, env_manager): assert not isinstance(typ, types.Optional), "callconv should have " \ "prevented the return of " \ "optional value" out = self.from_native_value(typ, val, env_manager) return out def from_native_value(self, typ, val, env_manager=None): """ Box the native value of the given Numba type. A Python object pointer is returned (NULL if an error occurred). This method steals any native (NRT) reference embedded in *val*. """ from numba.core.boxing import box_unsupported impl = _boxers.lookup(typ.__class__, box_unsupported) c = _BoxContext(self.context, self.builder, self, env_manager) return impl(typ, val, c) def reflect_native_value(self, typ, val, env_manager=None): """ Reflect the native value onto its Python original, if any. An error bit (as an LLVM value) is returned. """ impl = _reflectors.lookup(typ.__class__) if impl is None: # Reflection isn't needed for most types return cgutils.false_bit is_error = cgutils.alloca_once_value(self.builder, cgutils.false_bit) c = _ReflectContext(self.context, self.builder, self, env_manager, is_error) impl(typ, val, c) return self.builder.load(c.is_error) def to_native_generator(self, obj, typ): """ Extract the generator structure pointer from a generator *obj* (a _dynfunc.Generator instance). """ gen_ptr_ty = Type.pointer(self.context.get_data_type(typ)) value = self.context.get_generator_state(self.builder, obj, gen_ptr_ty) return NativeValue(value) def from_native_generator(self, val, typ, env=None): """ Make a Numba generator (a _dynfunc.Generator instance) from a generator structure pointer *val*. *env* is an optional _dynfunc.Environment instance to be wrapped in the generator. """ llty = self.context.get_data_type(typ) assert not llty.is_pointer gen_struct_size = self.context.get_abi_sizeof(llty) gendesc = self.context.get_generator_desc(typ) # This is the PyCFunctionWithKeywords generated by PyCallWrapper genfnty = Type.function(self.pyobj, [self.pyobj, self.pyobj, self.pyobj]) genfn = self._get_function(genfnty, name=gendesc.llvm_cpython_wrapper_name) # This is the raw finalizer generated by _lower_generator_finalize_func() finalizerty = Type.function(Type.void(), [self.voidptr]) if typ.has_finalizer: finalizer = self._get_function(finalizerty, name=gendesc.llvm_finalizer_name) else: finalizer = Constant.null(Type.pointer(finalizerty)) # PyObject *numba_make_generator(state_size, initial_state, nextfunc, finalizer, env) fnty = Type.function(self.pyobj, [self.py_ssize_t, self.voidptr, Type.pointer(genfnty), Type.pointer(finalizerty), self.voidptr]) fn = self._get_function(fnty, name="numba_make_generator") state_size = ir.Constant(self.py_ssize_t, gen_struct_size) initial_state = self.builder.bitcast(val, self.voidptr) if env is None: env = self.get_null_object() env = self.builder.bitcast(env, self.voidptr) return self.builder.call(fn, (state_size, initial_state, genfn, finalizer, env)) def numba_array_adaptor(self, ary, ptr): assert not self.context.enable_nrt fnty = Type.function(Type.int(), [self.pyobj, self.voidptr]) fn = self._get_function(fnty, name="numba_adapt_ndarray") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) return self.builder.call(fn, (ary, ptr)) def numba_buffer_adaptor(self, buf, ptr): fnty = Type.function(Type.void(), [ir.PointerType(self.py_buffer_t), self.voidptr]) fn = self._get_function(fnty, name="numba_adapt_buffer") fn.args[0].add_attribute(lc.ATTR_NO_CAPTURE) fn.args[1].add_attribute(lc.ATTR_NO_CAPTURE) return self.builder.call(fn, (buf, ptr)) def complex_adaptor(self, cobj, cmplx): fnty = Type.function(Type.int(), [self.pyobj, cmplx.type]) fn = self._get_function(fnty, name="numba_complex_adaptor") return self.builder.call(fn, [cobj, cmplx]) def extract_record_data(self, obj, pbuf): fnty = Type.function(self.voidptr, [self.pyobj, ir.PointerType(self.py_buffer_t)]) fn = self._get_function(fnty, name="numba_extract_record_data") return self.builder.call(fn, [obj, pbuf]) def get_buffer(self, obj, pbuf): fnty = Type.function(Type.int(), [self.pyobj, ir.PointerType(self.py_buffer_t)]) fn = self._get_function(fnty, name="numba_get_buffer") return self.builder.call(fn, [obj, pbuf]) def release_buffer(self, pbuf): fnty = Type.function(Type.void(), [ir.PointerType(self.py_buffer_t)]) fn = self._get_function(fnty, name="numba_release_buffer") return self.builder.call(fn, [pbuf]) def extract_np_datetime(self, obj): fnty = Type.function(Type.int(64), [self.pyobj]) fn = self._get_function(fnty, name="numba_extract_np_datetime") return self.builder.call(fn, [obj]) def extract_np_timedelta(self, obj): fnty = Type.function(Type.int(64), [self.pyobj]) fn = self._get_function(fnty, name="numba_extract_np_timedelta") return self.builder.call(fn, [obj]) def create_np_datetime(self, val, unit_code): unit_code = Constant.int(Type.int(), unit_code) fnty = Type.function(self.pyobj, [Type.int(64), Type.int()]) fn = self._get_function(fnty, name="numba_create_np_datetime") return self.builder.call(fn, [val, unit_code]) def create_np_timedelta(self, val, unit_code): unit_code = Constant.int(Type.int(), unit_code) fnty = Type.function(self.pyobj, [Type.int(64), Type.int()]) fn = self._get_function(fnty, name="numba_create_np_timedelta") return self.builder.call(fn, [val, unit_code]) def recreate_record(self, pdata, size, dtype, env_manager): fnty = Type.function(self.pyobj, [Type.pointer(Type.int(8)), Type.int(), self.pyobj]) fn = self._get_function(fnty, name="numba_recreate_record") dtypeaddr = env_manager.read_const(env_manager.add_const(dtype)) return self.builder.call(fn, [pdata, size, dtypeaddr]) def string_from_constant_string(self, string): cstr = self.context.insert_const_string(self.module, string) sz = self.context.get_constant(types.intp, len(string)) return self.string_from_string_and_size(cstr, sz) def call_jit_code(self, func, sig, args): """Calls into Numba jitted code and propagate error using the Python calling convention. Parameters ---------- func : function The Python function to be compiled. This function is compiled in nopython-mode. sig : numba.typing.Signature The function signature for *func*. args : Sequence[llvmlite.binding.Value] LLVM values to use as arguments. Returns ------- (is_error, res) : 2-tuple of llvmlite.binding.Value. is_error : true iff *func* raised an exception. res : Returned value from *func* iff *is_error* is false. If *is_error* is true, this method will adapt the nopython exception into a Python exception. Caller should return NULL to Python to indicate an error. """ # Compile *func* builder = self.builder cres = self.context.compile_subroutine(builder, func, sig) got_retty = cres.signature.return_type retty = sig.return_type if got_retty != retty: # This error indicates an error in *func* or the caller of this # method. raise errors.LoweringError( f'mismatching signature {got_retty} != {retty}.\n' ) # Call into *func* status, res = self.context.call_internal_no_propagate( builder, cres.fndesc, sig, args, ) # Post-call handling for *func* is_error_ptr = cgutils.alloca_once(builder, cgutils.bool_t, zfill=True) res_type = self.context.get_value_type(sig.return_type) res_ptr = cgutils.alloca_once(builder, res_type, zfill=True) # Handle error and adapt the nopython exception into cpython exception with builder.if_else(status.is_error) as (has_err, no_err): with has_err: builder.store(status.is_error, is_error_ptr) # Set error state in the Python interpreter self.context.call_conv.raise_error(builder, self, status) with no_err: # Handle returned value res = imputils.fix_returning_optional( self.context, builder, sig, status, res, ) builder.store(res, res_ptr) is_error = builder.load(is_error_ptr) res = builder.load(res_ptr) return is_error, res class ObjModeUtils: """Internal utils for calling objmode dispatcher from within NPM code. """ def __init__(self, pyapi): self.pyapi = pyapi def load_dispatcher(self, fnty, argtypes): builder = self.pyapi.builder tyctx = self.pyapi.context m = builder.module # Add a global variable to cache the objmode dispatcher gv = ir.GlobalVariable( m, self.pyapi.pyobj, name=m.get_unique_name("cached_objmode_dispatcher"), ) gv.initializer = gv.type.pointee(None) gv.linkage = 'internal' cached = builder.load(gv) with builder.if_then(cgutils.is_null(builder, cached)): if serialize.is_serialiable(fnty.dispatcher): cls = type(self) compiler = self.pyapi.unserialize( self.pyapi.serialize_object(cls._call_objmode_dispatcher) ) serialized_dispatcher = self.pyapi.serialize_object( (fnty.dispatcher, tuple(argtypes)), ) compile_args = self.pyapi.unserialize(serialized_dispatcher) callee = self.pyapi.call_function_objargs( compiler, [compile_args], ) # Clean up self.pyapi.decref(compiler) self.pyapi.decref(compile_args) else: entry_pt = fnty.dispatcher.compile(tuple(argtypes)) callee = tyctx.add_dynamic_addr( builder, id(entry_pt), info="with_objectmode", ) # Incref the dispatcher and cache it self.pyapi.incref(callee) builder.store(callee, gv) callee = builder.load(gv) return callee @staticmethod def _call_objmode_dispatcher(compile_args): dispatcher, argtypes = compile_args entrypt = dispatcher.compile(argtypes) return entrypt
40.028365
93
0.614591
[ "BSD-2-Clause" ]
DrTodd13/numba
numba/core/pythonapi.py
66,327
Python
from rest_framework import serializers from .models import Post, Comment, Friendship, Follow, Server, PostCategory, PostAuthorizedAuthor # REST API Serializer JSON https://www.youtube.com/watch?v=V4NjlXiu5WI from users.models import CustomUser class UserSerializer(serializers.ModelSerializer): class Meta: model = CustomUser fields = '__all__' #['id', 'username', 'password', 'last_login'] # "id", "last_login", "is_superuser", "first_name", "last_name", # "email", "is_staff", "is_active", "date_joined", "username", # "password", "admin", "timestamp", "groups", "user_permissions" class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = '__all__' class CommentSerializer(serializers.ModelSerializer): class Meta: model = Comment fields = '__all__' class PostCategorySerializer(serializers.ModelSerializer): class Meta: model = PostCategory fields = '__all__' class PostAuthorizedAuthorSerializer(serializers.ModelSerializer): class Meta: model = PostAuthorizedAuthor fields = '__all__' class FriendshipSerializer(serializers.ModelSerializer): class Meta: model = Friendship fields = '__all__' class FollowSerializer(serializers.ModelSerializer): class Meta: model = Follow fields = '__all__' class ServerSerializer(serializers.ModelSerializer): # id = serializers.ReadOnlyField() class Meta: model = Server fields = '__all__'
30.843137
97
0.682136
[ "MIT" ]
cjlee1/group-project-cmput404
backend/project404_t8/API/serializers.py
1,573
Python
Version = "5.6.5" if __name__ == "__main__": print (Version)
11.166667
26
0.597015
[ "BSD-3-Clause" ]
webpie/webpie
webpie/Version.py
67
Python
import csv from default_clf import DefaultNSL from itertools import chain from time import process_time import numpy as np import pandas as pd NUM_PASSES = 100 NUM_ACC_PASSES = 50 TRAIN_PATH = 'data/KDDTrain+.csv' TEST_PATH = 'data/KDDTest+.csv' ATTACKS = { 'normal': 'normal', 'back': 'DoS', 'land': 'DoS', 'neptune': 'DoS', 'pod': 'DoS', 'smurf': 'DoS', 'teardrop': 'DoS', 'mailbomb': 'DoS', 'apache2': 'DoS', 'processtable': 'DoS', 'udpstorm': 'DoS', 'ipsweep': 'Probe', 'nmap': 'Probe', 'portsweep': 'Probe', 'satan': 'Probe', 'mscan': 'Probe', 'saint': 'Probe', 'ftp_write': 'R2L', 'guess_passwd': 'R2L', 'imap': 'R2L', 'multihop': 'R2L', 'phf': 'R2L', 'spy': 'R2L', 'warezclient': 'R2L', 'warezmaster': 'R2L', 'sendmail': 'R2L', 'named': 'R2L', 'snmpgetattack': 'R2L', 'snmpguess': 'R2L', 'xlock': 'R2L', 'xsnoop': 'R2L', 'worm': 'R2L', 'buffer_overflow': 'U2R', 'loadmodule': 'U2R', 'perl': 'U2R', 'rootkit': 'U2R', 'httptunnel': 'U2R', 'ps': 'U2R', 'sqlattack': 'U2R', 'xterm': 'U2R' } def get_current_charge(): try: with open('/sys/class/power_supply/BAT0/charge_now') as f: return int(f.readline()) except IOError: print("Cannot find current battery charge.") return 0 def check_load_training(clf, path): start = process_time() clf.load_training_data(path) end = process_time() return end - start def check_load_testing(clf, path): start = process_time() clf.load_test_data(path) end = process_time() return end - start def check_training(clf): start = process_time() clf.train_clf() end = process_time() return end - start def check_testing_entire_dataset(clf, train=False): start = process_time() clf.test_clf(train) end = process_time() return end - start def check_predict_row(clf, row): start = process_time() clf.predict(row) end = process_time() return end - start def get_stats(arr, function, *args, **kwargs): charge_start = get_current_charge() for i in range(NUM_PASSES): arr[i] = function(*args, **kwargs) charge_end = get_current_charge() mean = arr.mean() std = arr.std() return [mean, std, (charge_start - charge_end)] def evaluate_power(clf): res = np.empty(shape=(NUM_PASSES, 1)) load_train = get_stats(res, check_load_training, clf, TRAIN_PATH) print('Loading Training: ', load_train) load_test = get_stats(res, check_load_testing, clf, TEST_PATH) print('Loading Testing: ', load_test) train = get_stats(res, check_training, clf) print('Training: ', train) test_dataset = get_stats(res, check_testing_entire_dataset, clf) print('Testing dataset: ', test_dataset) row = clf.testing[0].iloc[0].values.reshape(1, -1) test_row = get_stats(res, check_predict_row, clf, row) print('Testing one row: ', test_row) with open('results.csv', 'a', newline='') as csvf: csv_writer = csv.writer(csvf) csv_writer.writerow([clf.__class__.__name__, 'Number of Passes:', NUM_PASSES, 'Power']) csv_writer.writerow(['Function', 'Time (s) Mean', 'Time Std', 'Total Power (microwatt-hour)']) csv_writer.writerow(['Loading Training Data'] + load_train) csv_writer.writerow(['Loading Testing Data'] + load_test) csv_writer.writerow(['Training Classifier'] + train) csv_writer.writerow(['Testing Dataset'] + test_dataset) csv_writer.writerow(['Testing One Row'] + test_row) def evaluate_accuracy(clf): acc = np.empty(shape=(NUM_ACC_PASSES, 1)) clf.load_training_data(TRAIN_PATH) clf.load_test_data(TEST_PATH) cat_labels = clf.testing[1].apply(lambda x: ATTACKS[x]) cats = {'U2R':[np.zeros(shape=(NUM_ACC_PASSES, 1)), np.zeros(shape=(NUM_ACC_PASSES, 1))], 'DoS':[np.zeros(shape=(NUM_ACC_PASSES, 1)), np.zeros(shape=(NUM_ACC_PASSES, 1))], 'R2L':[np.zeros(shape=(NUM_ACC_PASSES, 1)), np.zeros(shape=(NUM_ACC_PASSES, 1))], 'Probe':[np.zeros(shape=(NUM_ACC_PASSES, 1)), np.zeros(shape=(NUM_ACC_PASSES, 1))], 'normal':[np.zeros(shape=(NUM_ACC_PASSES, 1)), np.zeros(shape=(NUM_ACC_PASSES, 1))]} for i in range(0, NUM_ACC_PASSES): clf.train_clf() preds, acc[i] = clf.test_clf() for cat, pred in zip(cat_labels, preds): cats[cat][pred == 'normal'][i] += 1 clf.shuffle_training_data() conf = calculate_category_accuracy(cats) mean = acc.mean() std = acc.std() write_acc_to_csv([mean, std], cats, conf, clf.__class__.__name__) return [mean, std] def calculate_category_accuracy(cats): conf = {'TN':np.zeros(shape=(NUM_ACC_PASSES, 1)), 'TP':np.zeros(shape=(NUM_ACC_PASSES, 1)), 'FN':np.zeros(shape=(NUM_ACC_PASSES, 1)), 'FP':np.zeros(shape=(NUM_ACC_PASSES, 1))} for key, values in cats.items(): correct = values[0] wrong = values[1] if key == 'normal': correct, wrong = wrong, correct conf['TN'] += correct conf['FP'] += wrong else: conf['TP'] += correct conf['FN'] += wrong avg = correct/(correct+wrong) cats[key] = [avg.mean(), avg.std()] return conf def write_acc_to_csv(acc, cats, conf, name): with open('results.csv', 'a', newline='') as csvf: csv_writer = csv.writer(csvf) csv_writer.writerow([name, 'Number of Passes:', NUM_ACC_PASSES, 'Accuracy']) csv_writer.writerow(['Statistic', 'Mean', 'STD']) csv_writer.writerow(['Accuracy'] + acc) for key, values in cats.items(): csv_writer.writerow([key] + values) for key, values in conf.items(): csv_writer.writerow([key, values.mean(), values.std()])
30.880208
96
0.611908
[ "MIT" ]
AnomalyIDSBenchmark/MLBenchmark
benchmark.py
5,929
Python
""" AKShare 是基于 Python 的开源财经数据接口库, 实现对股票, 期货, 期权, 基金, 债券, 外汇等金 融产品的量价数据, 基本面数据和另类数据从数据采集, 数据清洗到数据下载的工具, 满足金融数据科学 家, 数据科学爱好者在数据获取方面的需求. 它的特点是利用 AKShare 获取的是基于可信任数据源 发布的原始数据, 广大数据科学家可以利用原始数据进行再加工, 从而得出科学的结论. """ """ 版本更新记录: 0.1.13 更新所有基于 fushare 的接口 0.1.14 更新 requirements.txt 文件 0.1.15 自动安装所需要的 packages 0.1.16 修正部分函数命名 0.1.17 更新版本号自动管理 0.1.18 更新说明文档 0.1.19 修正 cot.py 中请求错误 0.1.20 修正 __doc__ 0.1.21 修复 __doc__ 0.1.22 修复命名和绘图 0.1.23 修复错误机制 0.1.24 增加奇货可查所有指数数据获取接口 0.1.25 修复 qhck 接口 0.1.26 修复代码格式问题 0.1.27 修复说明格式问题 0.1.28 更新说明文档 0.1.29 规范说明文档格式 0.1.30 规范说明文档格式 0.1.31 规范 cot.py 函数说明 0.1.32 update futures_basis.py 0.1.33 增加奇货可查数据三个接口: get_qhkc_index, get_qhkc_index_trend, get_qhkc_index_profit_loss 使用方法请 help(get_qhkc_index) 查看 0.1.34 增加奇货可查-资金数据三个接口: get_qhkc_fund_position_change, get_qhkc_fund_bs, get_qhkc_fund_position 使用方法请 help(get_qhkc_fund_position_change) 查看 0.1.35 增加奇货可查-工具-外盘比价接口: get_qhkc_tool_foreign 使用方法请 help(get_qhkc_tool_foreign) 查看 0.1.36 增加奇货可查-工具-各地区经济数据接口: get_qhkc_tool_gdp 使用方法请 help(get_qhkc_tool_gdp) 查看 0.1.37 增加中国银行间市场交易商协会-债券接口 get_bond_bank 使用方法请 help(get_bond_bank) 查看 0.1.38 修正 0.1.39 模块化处理 0.1.40 统一接口函数参数 start --> start_day; end --> end_day 0.1.41 更新大连商品交易所-苯乙烯-EB品种 0.1.42 更新上海期货交易所-上海国际能源交易中心-20号胶-NR品种 更新上海期货交易所-不锈钢-SS品种 0.1.43 修复 example --> test.py 函数调用 0.1.44 修复 example --> daily_run.py 函数调用 0.1.45 修复 akdocker.md 函数接口调用说明和感谢单位 0.1.46 修复 akdocker.md 图片显示 0.1.47 修复 akdocker.md 增加说明部分 0.1.48 更新大连商品交易所-粳米-RR品种 0.1.49 增加智道智科-私募指数数据接口 使用方法请 help(get_zdzk_fund_index) 查看 0.1.50 更新 akdocker.md 文件 0.1.51 更新官方文档: https://akshare.readthedocs.io 0.1.52 增加量化策略和量化平台板块 0.1.53 增加期货品种列表和名词解释 0.1.54 修改 AkShare的初衷, 增加管理期货策略指数 0.1.55 新增 99期货(http://www.99qh.com/d/store.aspx) 库存数据接口 0.1.56 修复 99期货(http://www.99qh.com/d/store.aspx) 库存数据接口 0.1.57 更新 md 文件数据接口 0.1.58 更新 md 文件数据接口 0.1.59 更新 md 文件数据接口 0.1.60 更新 致谢部分, 申明借鉴和引用的 package 0.1.61 更新说明文档 0.1.62 提供英为财情-股票指数-全球股指与期货指数数据接口 https://cn.investing.com/indices/ 0.1.63 更新说明文档-致谢英为财情 0.1.64 更新 get_country_index 返回格式为日期索引 0.1.65 更新 get_country_index 返回格式数据开盘, 收盘, 高, 低为浮点型 0.1.66 提供英为财情-股票指数-全球股指与期货指数数据接口 https://cn.investing.com/rates-bonds/ 新增 get_country_bond 返回格式数据开盘, 收盘, 高, 低为浮点型 0.1.67 更新说明文档-私募指数数据说明 0.1.68 更新说明文档-私募指数数据说明-增加图片 0.1.69 更新说明文档-债券说明格式调整 0.1.70 更新大商所, 郑商所商品期权数据接口 0.1.71 更新大商所, 郑商所, 上期所商品期权数据接口 0.1.72 修改大商所, 郑商所, 上期所商品期权数据接口 增加函数说明 更新说明文档-期权部分 0.1.73 更新说明文档-期权部分 0.1.74 更新说明文档格式调整 0.1.75 新增外汇接口, 银行间债券市场行情数据接口 0.1.76 更新说明文档 0.1.77 新增全球期货历史数据查询接口 0.1.78 新增全球宏观数据-中国宏观数据 年度、月度CPI数据, 年度M2数据 0.1.79 更新说明文档 0.1.80 更新说明文档-刷新 0.1.81 新增全球宏观数据-中国宏观数据 中国年度PPI数据 中国年度PMI数据 中国年度GDP数据 中国年度财新PMI数据 中国外汇储备数据 中国电力能源数据 中国年度非制造业PMI数据 人民币中间报价汇率 0.1.82 新增全球宏观数据-美国宏观数据 美联储利率决议报告 美国非农就业人数报告 美国失业率报告 美国EIA原油库存报告 0.1.83 更新说明文档 0.1.84 新增全球宏观数据-美国宏观数据 美国初请失业金人数报告 美国核心PCE物价指数年率报告 美国CPI月率报告 美联储劳动力市场状况指数报告 美国ADP就业人数报告 美国国内生产总值(GDP)报告 美国原油产量报告 新增全球宏观数据-欧洲宏观数据 欧洲央行决议报告 新增全球宏观数据-机构宏观数据 全球最大黄金ETF—SPDR Gold Trust持仓报告 全球最大白银ETF--iShares Silver Trust持仓报告 欧佩克报告 0.1.85 新增期货-仓单有效期接口 0.1.86 更新说明文档 0.1.87 新增和讯财经-企业社会责任数据接口 0.1.88 更新说明文档 0.1.89 更新requirements.txt 0.1.90 更新setup.py 0.1.91 新增和讯财经-中国概念股行情及日频历史数据接口 0.1.92 更新说明文档 0.1.93 新增交易法门-套利工具-跨期价差(自由价差)数据接口 0.1.94 新增生意社-商品与期货-现期图数据接口 新增西本新干线-指数数据 0.1.95 新增新浪财经-期货-实时数据接口 0.1.96 修正新浪财经-期货-实时数据接口-返回 current_price 字段为实时数据 0.1.97 修正新浪财经-期货-实时数据接口-返回 current_price 和 ask_price 字段为实时数据 0.1.98 修正版本更新错误 0.1.99 增加自动安装 pillow 0.2.1 增加港股当日(时点)行情数据和历史数据(前复权和后复权因子) 0.2.2 增加美股当日(时点)行情数据和历史数据(前复权因子) 0.2.3 增加金融期权 0.2.4 增加加密货币行情接口 0.2.5 增加 AKShare 接口导图 0.2.6 更新港股数据接口和说明文档 0.2.7 更新 qhkc_web 接口注释和说明文档 0.2.8 更新说明文档 0.2.9 更新A+H股数据实时行情数据和历史行情数据(后复权) 0.2.10 更新说明文档 0.2.11 更新说明文档 0.2.12 增加A股实时行情数据和历史行情数据 0.2.13 统一股票接口命名 0.2.14 统一股票接口命名, 去除 get 0.2.15 增加科创板实时行情数据和历史行情数据 0.2.16 增加银保监分局本级行政处罚数据 0.2.17 更新说明文档 0.2.18 修正银保监分局本级行政处罚数据接口字段命名 0.2.19 增加 Nodejs 安装说明 0.2.20 增加 Realized Library 接口 0.2.21 更新说明文档 0.2.22 更新说明文档 0.2.23 修正银保监分局本级行政处罚数据接口反扒升级-修改完成 0.2.24 增加FF多因子模型数据接口 0.2.25 更新说明文档 0.2.26 修正期货-实时行情: 接口命名, 字段补充及限制访问速度 0.2.27 增加新浪-外盘期货实时行情数据接口 0.2.28 修正新浪-外盘期货实时行情数据引入 更新文档 0.2.29 更新文档 0.2.30 监管-银保监: 反扒措施在变化, 更新接口 修正期货-国内-实时行情接口订阅问题 0.2.31 修正期货-国内-金融期货实时行情接口订阅问题 0.2.32 更新说明文档 0.2.33 更新说明文档-期货-外盘 0.2.34 新增新浪-指数实时行情和历史行情接口 0.2.35 新增新浪-指数和A股实时行情列表获取问题 0.2.36 新增腾讯财经-A股分笔行情历史数据 0.2.37 新增金十数据-实时监控接口 0.2.38 更新说明文档 0.2.39 更新说明文档目录结构 增加专题教程-pandas专题-连载 0.2.40 更新专题板块 0.2.41 更新说明文件 0.2.42 更新mindmap 0.2.43 重构说明文档-模块化处理, 将 github 说明文档和 docs 在线文档分开处理 重构私募指数接口 0.2.44 增加日出和日落模块 0.2.45 增加河北空气指数数据 0.2.46 更新 requirements.txt 0.2.47 添加初始化文件 0.2.48 添加 websocket-client 0.2.49 南华期货-南华商品指数 0.2.50 修正英为财情-指数板块的成交量显示问题 0.2.51 消除部分警告信息 0.2.52 基差数据缺失错误提示修正 0.2.53 统一南华期货-商品指数历史走势-收益率指数 新增南华期货-商品指数历史走势-价格指数 新增南华期货-商品指数历史走势-波动率指数 0.2.54 添加 numpy 依赖 0.2.55 更新已实现波动率的说明文档 统一 ff_crr --> article_ff_crr 0.2.56 新增经济政策不确定性(EPU)数据接口 更新说明文档 修改示例说明 0.2.57 修改 air_hebei 接口, 默认返回全部城市 0.2.58 新增微博指数 0.2.59 增加西本新干线说明文档 0.2.60 新增百度指数 0.2.61 修正河北空气数据代码 0.2.62 新增百度搜索指数 新增百度资讯指数 新增百度媒体指数 0.2.63 更新指数-legend代码 0.2.64 fix pillow>=6.2.0 0.2.65 新增谷歌指数 0.2.66 修正南华指数URL硬编码问题 0.2.67 修正 get_futures_index 函数中上海期货交易所 CU 出现 cuefp 数据导致指数合成异常的问题 0.2.68 降低 Python 版本要求 0.2.69 降低python版本要求到 Python3.7.1 0.2.70 适配 VNPY 使用 0.2.71 交易法门数据接口 0.2.72 申万行业一级指数-实时 0.2.73 更新纯碱期货数据接口 0.2.74 新增AQI空气质量数据接口 0.2.75 新增申万一级指数接口 0.2.76 统一交易法门登录和数据获取接口 0.2.77 清除冗余函数 0.2.78 Python 降级 0.2.79 Python 降级 0.2.80 Python 3.6 0.2.81 html5lib 0.2.82 websockets-8.1 0.2.83 修复 weibo_index 函数日期格式问题 0.2.84 修复 baidu_index 接口 0.2.85 临时修复 baidu_index 接口 0.2.86 lxml 降级 0.2.87 lxml 降级 更新安装时的错误处理 0.2.88 pypinyin 降级 0.2.89 全国空气质量数据数据格式规范为数值型 0.2.90 更新注册仓单的产品参数和异常错误 0.2.91 世界五百强公司排名接口 0.2.92 更新中国债券市场行情数据接口 0.2.93 增加自动测试模型 0.2.94 增加私募基金管理人信息公示接口 0.2.95 增加中国证券投资基金业协会-信息公示 0.2.96 修复交易法门登录验证码 由于交易法门-数据部分权限缘故, 需要注册后方可使用 0.2.97 更新说明文档 0.2.98 增加甲醇期权和PTA期权 0.2.99 更新外汇数据接口, 规范格式 0.3.0 猫眼电影实时票房 0.3.1 更新说明文档 0.3.2 更新说明文档 0.3.3 更新外盘期货行情订阅时, 统一字段名称与网页端一致 0.3.4 新增能源-碳排放权数据 0.3.5 新增世界各大城市生活成本数据 0.3.6 商品现货价格指数 0.3.7 修复百度指数日期问题 0.3.8 新增中国宏观数据接口和文档说明 0.3.9 新增中国宏观杠杆率数据 0.3.10 修改金融期权数据接口 0.3.11 修复实时票房数据接口 0.3.12 新增新浪主力连续接口 0.3.13 新增新浪主力连续列表 0.3.14 中国倒闭公司名单 0.3.15 中国独角兽名单 中国千里马名单 0.3.16 东方财富-机构调研 0.3.17 东方财富网-数据中心-特色数据-机构调研 机构调研统计 机构调研详细 0.3.18 修复自动测试接口 0.3.19 修复融资融券字段名匹配问题 增加东方财富网-数据中心-特色数据-股票质押 0.3.20 东方财富网-数据中心-特色数据-股权质押 东方财富网-数据中心-特色数据-股权质押-股权质押市场概况: http://data.eastmoney.com/gpzy/marketProfile.aspx 东方财富网-数据中心-特色数据-股权质押-上市公司质押比例: http://data.eastmoney.com/gpzy/pledgeRatio.aspx 东方财富网-数据中心-特色数据-股权质押-重要股东股权质押明细: http://data.eastmoney.com/gpzy/pledgeDetail.aspx 东方财富网-数据中心-特色数据-股权质押-质押机构分布统计-证券公司: http://data.eastmoney.com/gpzy/distributeStatistics.aspx 东方财富网-数据中心-特色数据-股权质押-质押机构分布统计-银行: http://data.eastmoney.com/gpzy/distributeStatistics.aspx 东方财富网-数据中心-特色数据-股权质押-行业数据: http://data.eastmoney.com/gpzy/industryData.aspx 0.3.21 东方财富网-数据中心-特色数据-商誉 东方财富网-数据中心-特色数据-商誉-A股商誉市场概况: http://data.eastmoney.com/sy/scgk.html 东方财富网-数据中心-特色数据-商誉-商誉减值预期明细: http://data.eastmoney.com/sy/yqlist.html 东方财富网-数据中心-特色数据-商誉-个股商誉减值明细: http://data.eastmoney.com/sy/jzlist.html 东方财富网-数据中心-特色数据-商誉-个股商誉明细: http://data.eastmoney.com/sy/list.html 东方财富网-数据中心-特色数据-商誉-行业商誉: http://data.eastmoney.com/sy/hylist.html 0.3.22 期货规则-交易日历数据表 更新2020交易日历数据 0.3.23 东方财富网-数据中心-特色数据-股票账户统计: http://data.eastmoney.com/cjsj/gpkhsj.html 0.3.24 移除-交易法门系列老函数 因为交易法门网站需要会员登录后访问数据 0.3.25 增加-交易法门-工具-套利分析接口 增加-交易法门-工具-交易规则接口 0.3.26 增加-交易法门-数据-农产品-豆油 增加-交易法门-数据-黑色系-焦煤 增加-交易法门-工具-持仓分析-期货分析 增加-交易法门-工具-持仓分析-持仓分析 0.3.27 交易法门-说明文档 0.3.28 增加-股票指数-股票指数成份股接口 0.3.29 增加-股票指数-股票指数成份股接口-代码注释 0.3.30 增加-义乌小商品指数 0.3.31 修复-银保监分局本级行政处罚数据接口 接口重命名为: bank_fjcf_table_detail 0.3.32 新增-中国电煤价格指数 0.3.33 修复-银保监分局本级行政处罚数据接口-20200108新增字段后适应 0.3.34 增加-交易法门-工具-期限分析-基差日报 增加-交易法门-工具-期限分析-基差分析 增加-交易法门-工具-期限分析-期限结构 增加-交易法门-工具-期限分析-价格季节性 0.3.35 更新说明文档 0.3.36 # 交易法门-工具-仓单分析 增加-交易法门-工具-仓单分析-仓单日报 增加-交易法门-工具-仓单分析-仓单查询 增加-交易法门-工具-仓单分析-虚实盘比查询 # 交易法门-工具-资讯汇总 增加-交易法门-工具-资讯汇总-研报查询 增加-交易法门-工具-资讯汇总-交易日历 # 交易法门-工具-资金分析 增加-交易法门-工具-资金分析-资金流向 0.3.37 更新说明文档 0.3.38 修改-交易法门-工具-资金分析-资金流向函数的字段和说明文档 0.3.39 金十数据中心-经济指标-央行利率-主要央行利率 美联储利率决议报告 欧洲央行决议报告 新西兰联储决议报告 中国央行决议报告 瑞士央行决议报告 英国央行决议报告 澳洲联储决议报告 日本央行决议报告 俄罗斯央行决议报告 印度央行决议报告 巴西央行决议报告 macro_euro_gdp_yoy # 金十数据中心-经济指标-欧元区-国民经济运行状况-经济状况-欧元区季度GDP年率报告 macro_euro_cpi_mom # 金十数据中心-经济指标-欧元区-国民经济运行状况-物价水平-欧元区CPI月率报告 macro_euro_cpi_yoy # 金十数据中心-经济指标-欧元区-国民经济运行状况-物价水平-欧元区CPI年率报告 macro_euro_ppi_mom # 金十数据中心-经济指标-欧元区-国民经济运行状况-物价水平-欧元区PPI月率报告 macro_euro_retail_sales_mom # 金十数据中心-经济指标-欧元区-国民经济运行状况-物价水平-欧元区零售销售月率报告 macro_euro_employment_change_qoq # 金十数据中心-经济指标-欧元区-国民经济运行状况-劳动力市场-欧元区季调后就业人数季率报告 macro_euro_unemployment_rate_mom # 金十数据中心-经济指标-欧元区-国民经济运行状况-劳动力市场-欧元区失业率报告 macro_euro_trade_balance # 金十数据中心-经济指标-欧元区-贸易状况-欧元区未季调贸易帐报告 macro_euro_current_account_mom # 金十数据中心-经济指标-欧元区-贸易状况-欧元区经常帐报告 macro_euro_industrial_production_mom # 金十数据中心-经济指标-欧元区-产业指标-欧元区工业产出月率报告 macro_euro_manufacturing_pmi # 金十数据中心-经济指标-欧元区-产业指标-欧元区制造业PMI初值报告 macro_euro_services_pmi # 金十数据中心-经济指标-欧元区-产业指标-欧元区服务业PMI终值报告 macro_euro_zew_economic_sentiment # 金十数据中心-经济指标-欧元区-领先指标-欧元区ZEW经济景气指数报告 macro_euro_sentix_investor_confidence # 金十数据中心-经济指标-欧元区-领先指标-欧元区Sentix投资者信心指数报告 0.3.40 修复-欧洲央行决议报告 0.3.41 增加-东方财富网-经济数据-银行间拆借利率 0.3.42 # 中国 macro_china_gdp_yearly # 金十数据中心-经济指标-中国-国民经济运行状况-经济状况-中国GDP年率报告 macro_china_cpi_yearly # 金十数据中心-经济指标-中国-国民经济运行状况-物价水平-中国CPI年率报告 macro_china_cpi_monthly # 金十数据中心-经济指标-中国-国民经济运行状况-物价水平-中国CPI月率报告 macro_china_ppi_yearly # 金十数据中心-经济指标-中国-国民经济运行状况-物价水平-中国PPI年率报告 macro_china_exports_yoy # 金十数据中心-经济指标-中国-贸易状况-以美元计算出口年率报告 macro_china_imports_yoy # 金十数据中心-经济指标-中国-贸易状况-以美元计算进口年率 macro_china_trade_balance # 金十数据中心-经济指标-中国-贸易状况-以美元计算贸易帐(亿美元) macro_china_industrial_production_yoy # 金十数据中心-经济指标-中国-产业指标-规模以上工业增加值年率 macro_china_pmi_yearly # 金十数据中心-经济指标-中国-产业指标-官方制造业PMI macro_china_cx_pmi_yearly # 金十数据中心-经济指标-中国-产业指标-财新制造业PMI终值 macro_china_cx_services_pmi_yearly # 金十数据中心-经济指标-中国-产业指标-财新服务业PMI macro_china_non_man_pmi # 金十数据中心-经济指标-中国-产业指标-中国官方非制造业PMI macro_china_fx_reserves_yearly # 金十数据中心-经济指标-中国-金融指标-外汇储备(亿美元) macro_china_m2_yearly # 金十数据中心-经济指标-中国-金融指标-M2货币供应年率 macro_china_shibor_all # 金十数据中心-经济指标-中国-金融指标-上海银行业同业拆借报告 macro_china_hk_market_info # 金十数据中心-经济指标-中国-金融指标-人民币香港银行同业拆息 macro_china_daily_energy # 金十数据中心-经济指标-中国-其他-中国日度沿海六大电库存数据 macro_china_rmb # 金十数据中心-经济指标-中国-其他-中国人民币汇率中间价报告 macro_china_market_margin_sz # 金十数据中心-经济指标-中国-其他-深圳融资融券报告 macro_china_market_margin_sh # 金十数据中心-经济指标-中国-其他-上海融资融券报告 macro_china_au_report # 金十数据中心-经济指标-中国-其他-上海黄金交易所报告 macro_china_ctci # 发改委-中国电煤价格指数-全国综合电煤价格指数 macro_china_ctci_detail # 发改委-中国电煤价格指数-各价区电煤价格指数 macro_china_ctci_detail_hist # 发改委-中国电煤价格指数-历史电煤价格指数 macro_china_money_supply # 中国货币供应量 # 美国 macro_usa_gdp_monthly # 金十数据中心-经济指标-美国-经济状况-美国GDP macro_usa_cpi_monthly # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 macro_usa_core_cpi_monthly # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 macro_usa_personal_spending # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 macro_usa_retail_sales # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 macro_usa_import_price # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 macro_usa_export_price # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 macro_usa_lmci # 金十数据中心-经济指标-美国-劳动力市场-LMCI macro_usa_unemployment_rate # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告 macro_usa_job_cuts # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告 macro_usa_non_farm # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国非农就业人数报告 macro_usa_adp_employment # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告 macro_usa_core_pce_price # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告 macro_usa_real_consumer_spending # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告 macro_usa_trade_balance # 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告 macro_usa_current_account # 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告 macro_usa_rig_count # 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告 # 金十数据中心-经济指标-美国-产业指标-制造业-美国个人支出月率报告 macro_usa_ppi # 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告 macro_usa_core_ppi # 金十数据中心-经济指标-美国-产业指标-制造业-美国核心生产者物价指数(PPI)报告 macro_usa_api_crude_stock # 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告 macro_usa_pmi # 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告 macro_usa_ism_pmi # 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告 macro_usa_nahb_house_market_index # 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告 macro_usa_house_starts # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告 macro_usa_new_home_sales # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告 macro_usa_building_permits # 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告 macro_usa_exist_home_sales # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告 macro_usa_house_price_index # 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告 macro_usa_spcs20 # 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告 macro_usa_pending_home_sales # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告 macro_usa_cb_consumer_confidence # 金十数据中心-经济指标-美国-领先指标-美国谘商会消费者信心指数报告 macro_usa_nfib_small_business # 金十数据中心-经济指标-美国-领先指标-美国NFIB小型企业信心指数报告 macro_usa_michigan_consumer_sentiment # 金十数据中心-经济指标-美国-领先指标-美国密歇根大学消费者信心指数初值报告 macro_usa_eia_crude_rate # 金十数据中心-经济指标-美国-其他-美国EIA原油库存报告 macro_usa_initial_jobless # 金十数据中心-经济指标-美国-其他-美国初请失业金人数报告 macro_usa_crude_inner # 金十数据中心-经济指标-美国-其他-美国原油产量报告 0.3.43 增加-交易法门-数据-黑色系-焦煤 0.3.44 更新宏观数据 macro_cons_gold_volume # 全球最大黄金ETF—SPDR Gold Trust持仓报告 macro_cons_gold_change # 全球最大黄金ETF—SPDR Gold Trust持仓报告 macro_cons_gold_amount # 全球最大黄金ETF—SPDR Gold Trust持仓报告 macro_cons_silver_volume # 全球最大白银ETF--iShares Silver Trust持仓报告 macro_cons_silver_change # 全球最大白银ETF--iShares Silver Trust持仓报告 macro_cons_silver_amount # 全球最大白银ETF--iShares Silver Trust持仓报告 macro_cons_opec_month # 欧佩克报告-月度 0.3.45 增加中国证券投资基金业协会-信息公示 # 中国证券投资基金业协会-信息公示-会员信息 amac_member_info # 中国证券投资基金业协会-信息公示-会员信息-会员机构综合查询 # 中国证券投资基金业协会-信息公示-从业人员信息 amac_person_org_list # 中国证券投资基金业协会-信息公示-从业人员信息-基金从业人员资格注册信息 # 中国证券投资基金业协会-信息公示-私募基金管理人公示 amac_manager_info # 中国证券投资基金业协会-信息公示-私募基金管理人公示-私募基金管理人综合查询 amac_manager_classify_info # 中国证券投资基金业协会-信息公示-私募基金管理人公示-私募基金管理人分类公示 amac_member_sub_info # 中国证券投资基金业协会-信息公示-私募基金管理人公示-证券公司私募基金子公司管理人信息公示 # 中国证券投资基金业协会-信息公示-基金产品 amac_fund_info # 中国证券投资基金业协会-信息公示-基金产品-私募基金管理人基金产品 amac_securities_info # 中国证券投资基金业协会-信息公示-基金产品-证券公司集合资管产品公示 amac_aoin_info # 中国证券投资基金业协会-信息公示-基金产品-证券公司直投基金 amac_fund_sub_info # 中国证券投资基金业协会-信息公示-基金产品公示-证券公司私募投资基金 amac_fund_account_info # 中国证券投资基金业协会-信息公示-基金产品公示-基金公司及子公司集合资管产品公示 amac_fund_abs # 中国证券投资基金业协会-信息公示-基金产品公示-资产支持专项计划 amac_futures_info # 中国证券投资基金业协会-信息公示-基金产品公示-期货公司集合资管产品公示 # 中国证券投资基金业协会-信息公示-诚信信息 amac_manager_cancelled_info # 中国证券投资基金业协会-信息公示-诚信信息-已注销私募基金管理人名单 0.3.46 更新-商品期权-菜籽粕期权接口 修复 get_sector_futures 字段名问题 0.3.47 增加-商品期权-郑州商品交易所-期权-历史数据 0.3.48 修复 macro_cons_opec_month 接口数据更新问题 0.3.49 新增-交易法门-工具-仓单分析-虚实盘比日报接口 0.3.50 更新-说明文档 0.3.51 修复 macro_cons_opec_month 接口数据更新问题, 统一数据接口跟网页端统一 修复-百度指数-由用户输入cookie来访问数据及说明文档 0.3.52 新增-英为财情-外汇-货币对历史数据 0.3.53 修复-macro_usa_rig_count-接口返回数据 修复-rate_interbank-文档注释 0.3.54 新增-事件接口 新增-事件接口新型冠状病毒-网易 新增-事件接口新型冠状病毒-丁香园 0.3.55 更新-事件接口新型冠状病毒 0.3.56 更新-事件接口新型冠状病毒-全国疫情趋势图 0.3.57 更新-事件接口新型冠状病毒-分省地区 一些细节修复 0.3.58 新增-财富排行榜(英文版) 0.3.59 新增-currency_name_code-接口 0.3.60 修复-财富排行榜(英文版)-索引乱序问题 0.3.61 修复-事件接口新型冠状病毒-hospital-接口 0.3.62 修复-20200203交易日问题 0.3.63 修复-事件接口新型冠状病毒-网易接口 0.3.64 修复-事件接口新型冠状病毒-丁香园接口 0.3.65 修复-calendar.json 问题, 感谢 fxt0706 0.3.66 修复-epu_index-加载问题 0.3.67 修复-option_commodity-json数据加载问题 0.3.68 更名函数 movie_board -> box_office_spot 0.3.69 新增-epidemic_baidu 百度-新型冠状病毒肺炎-疫情实时大数据报告 0.3.70 修复-epidemic_dxy-字段问题 0.3.71 修复-epidemic_dxy-具体省份字段问题 0.3.72 新增-百度迁徙地图接口 0.3.73 修复文字表述 0.3.74 修复-epidemic_163-数据更新问题 0.3.75 修复-epidemic_dxy-图片显示问题 0.3.76 新增-stock_zh_index_daily_tx-补充新浪指数的数据缺失问题 0.3.77 修复-epidemic_163-数据更新问题 0.3.78 新增-bond_china_yield-中国债券信息网-国债及其他债券收益率曲线 0.3.79 修改-bond_china_yield-参数 0.3.80 新增-基金数据接口 0.3.81 新增-基金数据接口-净值 0.3.82 新增-小区查询 新增-相同行程查询 0.3.83 新增-交易法门-工具-套利分析-FullCarry 修改-交易法门-工具-期限分析-基差分析 0.3.84 新增-货币对-投机情绪报告 0.3.85 修复-epidemic_area_detail-增加下载进度提示 0.3.86 修复-epidemic_dxy-完善图片获取 0.3.87 新增-债券质押式回购成交明细数据 新增-细化到地市的疫情历史数据20200123至今 0.3.88 新增-交易法门-工具-持仓分析-持仓季节性 修复-epidemic_163 0.3.89 新增-epidemic_163-数据说明接口 0.3.90 修复-epidemic_dxy 0.3.91 修复-get_receipt-MA数值问题 0.3.92 新增-奇货可查接口测试 0.3.93 新增-奇货可查接口测试-代码补全 0.3.94 修复-epidemic_dxy 0.3.95 新增-债券-沪深债券 新增-债券-沪深可转债 0.3.96 修复-baidu_search_index-异常 0.3.97 新增-特许经营数据 0.3.98 修复-get_receipt-MA数值问题条件判断 0.3.99 修复-air_hebei-代码格式 0.4.1 修复-pandas-版本降级 0.4.2 修复-epidemic_baidu 0.4.3 新增-慈善中国 0.4.4 新增-epidemic_history-疫情所有历史数据 0.4.5 完善-慈善中国-类型注解 0.4.6 修复-charity_china_report 0.4.7 新增-测试接口 0.4.8 修复-epidemic_hist_all 修复-epidemic_hist_city 修复-epidemic_hist_province 0.4.9 新增-option_sina_cffex_hs300_list 新增-option_sina_cffex_hs300_spot 新增-option_sina_cffex_hs300_daily 新增-option_sina_sse_list 新增-option_sina_sse_expire_day 新增-option_sina_sse_codes 新增-option_sina_sse_spot_price 新增-option_sina_sse_underlying_spot_price 新增-option_sina_sse_greeks 新增-option_sina_sse_minute 新增-option_sina_sse_daily 0.4.10 修复-金十数据websocket接口 0.4.11 新增-交易法门-工具-资金分析-资金流向 新增-交易法门-工具-资金分析-沉淀资金 新增-交易法门-工具-资金分析-资金季节性 新增-交易法门-工具-资金分析-成交排名 0.4.12 新增-微博舆情报告 0.4.13 新增-Python3.8.1支持 0.4.14 修复-get_receipt-CZCE问题 0.4.15 修复-hf_subscribe_exchange_symbol-在Linux Python 3.8.1 报错问题 0.4.16 修复-get_js_dc_current 0.4.17 新增-知识图谱 0.4.18: fix: use tqdm replace print hints 0.4.19: fix: use tqdm replace print hints in energy_carbon.py and charity_china.py 0.4.20: add: jyfm_tools_position_structure and jyfm_tools_symbol_handbook 0.4.21: fix: macro_cons_opec_month print hints 0.4.22: fix: add tqdm desc 0.4.23: fix: add tqdm stock_zh_a_spot desc 0.4.24: fix: add get_us_stock_name to get the u.s. stock name 0.4.25: fix: upload setup.py file and set automate release and deploy 0.4.26: fix: bond_spot_quote and docs 0.4.27: test: automate test 0.4.28: test: automate test 0.4.29: feats: add currency interface 0.4.30: fix: futures_roll_yield.py/get_roll_yield: CUefp error 0.4.31: format: format currency.py 0.4.32: fix: china_bond.py 0.4.33: add: jyfm_tools_futures_arbitrage_matrix for jyfm futures 0.4.34: fix: get_czce_rank_table history-20171228 format 0.4.35: fix: get_czce_rank_table history-20071228 format 0.4.36: fix: macro_cons_opec_month 0.4.37: add: get_ine_daily to fetch SC and NR data 0.4.38: add: futures_sgx_daily to fetch futures data from sgx 0.4.39: refactor: covid.py/covid_19_163 interface 0.4.40: refactor: covid.py interface 0.4.41: fix: cot.py get_rank_sum_daily interface 0.4.42: add: wdbank.py test 0.4.43: add: wdbank.py dependencies 0.4.44: add: tool github 0.4.45: add: fund_public file and docs 0.4.46: add: macro_china_lpr 0.4.47: add: stock_em_analyst 0.4.48: add: stock_em_comment 0.4.49: add: stock_em_hsgt 0.4.50: fix: stock_em_sy_yq_list 0.4.51: add: stock_tfp_em 0.4.52: fix: covid.py 0.4.53: fix: futures_hq_sina.py 0.4.54: add: futures_foreign 0.4.55: fix: macro_constitute.py 0.4.56: add: index_vix 0.4.57: fix: covid-19; desc: delete pic show 0.4.58: add: qhkc api 0.4.59: add: jyfm_tools 0.4.60: fix: covid_19_dxy and cot.py 0.4.61: fix: cot.py dict's keys use strip 0.4.62: fix: add PG into cons.py map_dict 0.4.63: add: energy_oil to add energy_oil_hist and energy_oil_detail 0.4.64: add: futures_em_spot_stock 0.4.65: add: futures_global_commodity_name_url_map 0.4.66: fix: fund_em.py timezone transfer 0.4.67: fix: covid covid_19_area_detail 0.4.68: fix: marco_usa 0.4.69: add: futures_cfmmc 0.4.70: add: covid_19 CSSE 数据接口 0.4.71: add: argus 0.4.72: add: stock_zh_tick_163 0.4.73: add: stock_zh_tick_tx_js 0.4.74: fix: stock_zh_tick_163 return tips 0.4.75: fix: nh_index 0.4.76: add: fred_md 0.4.77: fix: get_dce_option_daily 0.4.78: add: internal_flow_history 0.4.79: add: stock_em_dxsyl 0.4.80: fix: covid and docs 0.4.81: add: stock_em_yjyg and stock_em_yysj 0.4.82: fix: futures_xgx_index 0.4.83: fix: fortune_500.py 0.4.84: fix: a and kcb stock return format 0.4.85: fix: a and kcb stock field 0.4.86: add: hf_sp_500 0.4.87: fix: jinshi data update 0.4.88: fix: macro_china 0.4.89: fix: macro_other 0.4.90: fix: stock_zh_a and stock_zh_kcb return adjusted stock price 0.4.91: add: futures_inventory_em 0.4.92: fix: adjust hk_stock_sina, us_stock_sina 0.4.93: fix: air_quality 0.4.94: fix: air_quality path 0.4.95: add: js file 0.4.96: fix: format air interface 0.4.97: fix: interbank_rate_em.py add need_page parameter to control update content 0.4.98: add: mplfinance package 0.4.99: add: fund_em 0.5.1: fix: add PG to futures list 0.5.2: fix: air_zhenqi.py rename air_city_dict to air_city_list 0.5.3: add: add two fields into covid_163 0.5.4: fix: fix request_fun timeout and error type 0.5.5: fix: fund_em_graded_fund_daily return fields 0.5.6: fix: stock_us_sina.py rename columns 0.5.7: fix: import akshare only load functions 0.5.8: add: macro_china_money_supply 0.5.9: add: macro_china_new_house_price, macro_china_enterprise_boom_index, macro_china_national_tax_receipts 0.5.10: fix: zh_stock_ah_tx 0.5.11: fix: fund_em return fields 0.5.12: fix: add date to fund_em daily function 0.5.13: add: stock_fund 0.5.14: add: stock_market_fund_flow, stock_sector_fund_flow, stock_individual_fund_flow_rank 0.5.15: fix: baidu_index 0.5.16: add: fund_em_value_estimation 0.5.17: fix: delete macro_euro zero value 0.5.18: add: stock_financial_abstract, stock_financial_analysis_indicator 0.5.19: add: stock_add_stock, stock_ipo_info, stock_history_dividend_detail, stock_history_dividend 0.5.20: add: stock_restricted_shares, stock_circulate_stock_holder 0.5.21: add: futures_dce_position_rank 0.5.22: fix: fix futures_dce_position_rank return format 0.5.23: add: stock_sector_spot, stock_sector_detail 0.5.24: fix: futures_dce_position_rank 0.5.25: fix: futures_dce_position_rank return fields 0.5.26: add: stock_info 0.5.27: add: stock_em_hsgt_hold_stock 0.5.28: add: stock_fund_stock_holder, stock_main_stock_holder 0.5.29: fix: stock_em_sy 0.5.30: fix: air_zhenqi.py 0.5.31: fix: add futures_dce_position_rank_other to fix futures_dce_position_rank at 20160104 0.5.32: fix: futures_dce_position_rank_other return format 0.5.33: add: zh_bond_cov_sina and set pandas version 0.5.34: fix: set pandas version > 0.25 0.5.35: add: bond_cov_comparison and bond_zh_cov 0.5.36: fix: stock_info_sz_name_code return code format 0.5.37: add: stock_hold 0.5.38: fix: futures_dce_position_rank_other exchange symbol and variety 0.5.39: add: stock_recommend 0.5.40: fix: stock_recommend output format 0.5.41: fix: deprecated requests-html module 0.5.42: fix: reformat investing interface 0.5.43: fix: qhck interface 0.5.44: add: LME holding and stock report 0.5.45: fix: transform the data type of stock_zh_a_spot output 0.5.46: add: CFTC holding and stock 0.5.47: fix: fix index_investing_global interface 0.5.48: fix: fix stock_info_a_code_name interface 0.5.49: fix: fix stock_zh_a_daily interface 0.5.50: fix: fix get_roll_yield_bar interface 0.5.51: add: stock_summary 0.5.52: fix: fix get_roll_yield_bar interface 0.5.53: add: add watch_jinshi_quotes interface 0.5.54: add: add stock_js_price interface 0.5.55: add: add futures_czce_warehouse_receipt interface 0.5.56: add: add futures_dce_warehouse_receipt, futures_shfe_warehouse_receipt interface 0.5.57: fix: fix macro data interface 0.5.58: add: add stock_em_qsjy interface 0.5.59: fix: fix fund interface 0.5.60: fix: add index_bloomberg_billionaires interface 0.5.61: fix: fix futures_rule interface 0.5.62: add: add stock_a_pe, stock_a_pb interface 0.5.63: add: add stock_a_lg_indicator interface 0.5.64: add: add stock_a_high_low_statistics interface 0.5.65: add: add stock_a_below_net_asset_statistics interface 0.5.66: fix: fix stock_zh_a_daily default return unadjusted data 0.5.67: fix: fix R and MATLAB compatibility issues 0.5.68: add: add option_commodity_sina interface 0.5.69: fix: fix option_commodity_sina interface 0.5.70: merge: merge #4048 0.5.71: add: add tool_trade_date_hist interface 0.5.72: add: add fund_etf_category_sina, fund_etf_hist_sina interface 0.5.73: add: add stock_report_disclosure interface 0.5.74: add: add stock_zh_a_minute interface 0.5.75: add: add futures_zh_minute_sina interface 0.5.76: add: add option_sina_finance_minute interface 0.5.77: fix: fix currency_hist interface return data format 0.5.78: add: add hold field in futures_zh_minute_sina interface 0.5.79: add: add stock_report_fund_hold interface 0.5.80: fix: fix PG to futures cons file 0.5.81: add: add stock_zh_index_hist_csindex interface 0.5.82: fix: fix LU to futures cons file 0.5.83: fix: fix qhkc broker_positions_process interface 0.5.84: fix: fix tool_trade_date_hist_sina interface and update calendar.json 0.5.85: add: add index_stock_hist interface 0.5.86: fix: fix code format 0.5.87: fix: fix cot interface 0.5.88: fix: fix stock_em_account interface 0.5.89: add: add macro_china_new_financial_credit interface 0.5.90: add: add stock_sina_lhb interface 0.5.91: fix: fix covid for python3.8 0.5.92: fix: fix futures_daily_bar interface 0.5.93: add: add macro_china_fx_gold interface 0.5.94: add: add stock_zh_index_daily_em, bond_cov_jsl interface 0.5.95: fix: fix get_dce_option_daily interface 0.5.96: add: add stock_em_hsgt_hist interface 0.5.97: fix: fix remove mplfinance package in requirements.txt 0.5.98: add: add stock_hk_eniu_indicator interface 0.5.99: fix: fix stock_zh_ah_daily interface 0.6.1: fix: fix stock_zh_ah_daily interface set default value 0.6.2: fix: fix stock_zh_a_minute interface and add adjust parameter 0.6.3: fix: fix stock_zh_a_minute interface 0.6.4: add: add macro_china interface 0.6.5: add: add macro_china_wbck interface 0.6.6: fix: fix macro_china_wbck interface 0.6.7: add: add index_stock_cons_sina interface 0.6.8: fix: fix option_commodity interface 0.6.9: fix: fix stock_em_gpzy_pledge_ratio interface 0.6.10: add: add macro_china_hb, macro_china_gksccz, macro_china_bond_public interface 0.6.11: fix: fix python version should be 3.7 later 0.6.12: fix: fix stock_em_gpzy_distribute_statistics_company interface 0.6.13: add: add stock_us_fundamental interface 0.6.14: fix: fix stock_us_fundamental interface 0.6.15: fix: fix macro_china_market_margin_sh interface 0.6.16: fix: fix stock_us_daily time period and adjust for specific stock 0.6.17: fix: fix stock_js_weibo_report interface 0.6.18: fix: fix get_shfe_option_daily interface column name 0.6.19: fix: fix stock_hk_daily interface to process non-dividend stock 0.6.20: fix: fix covid_baidu interface 0.6.21: fix: fix futures_hf_spot interface 0.6.22: fix: fix stock_zh_index_daily_tx interface 0.6.23: fix: fix currency_hist interface 0.6.24: fix: fix stock_zh_kcb_spot interface 0.6.25: add: add stock_register_kcb interface 0.6.26: add: add stock_em_sy_list interface 0.6.27: fix: fix stock_sector_detail interface 0.6.28: add: add stock_register_cyb interface 0.6.29: fix: fix stock_zh_a_daily interface 0.6.30: add: add energy interface 0.6.31: fix: fix energy interface 0.6.32: fix: fix docs interface 0.6.33: fix: fix get_roll_yield_bar interface 0.6.34: fix: fix currency_investing and futures_inventory_em interface and add index_stock_cons_csindex interface 0.6.35: fix: fix get_futures_daily interface 0.6.36: fix: fix stock_info_a_code_name interface 0.6.37: fix: fix stock_sector_detail interface 0.6.38: fix: fix get_futures_daily interface 0.6.39: add: add stock_em_xgsglb interface 0.6.40: add: add stock_zh_a_new interface 0.6.41: fix: fix get_ine_daily interface 0.6.42: add: add bond_futures_deliverable_coupons interface 0.6.43: fix: fix bond_futures_deliverable_coupons interface 0.6.44: add: add futures_comex_inventory interface 0.6.45: add: add macro_china_xfzxx interface 0.6.46: add: add macro_china_reserve_requirement_ratio interface 0.6.47: fix: fix franchise_china interface 0.6.48: fix: fix get_rank_sum interface 0.6.49: fix: fix get_dce_rank_table interface 0.6.50: add: add macro_china_hgjck, macro_china_consumer_goods_retail interface 0.6.51: fix: fix macro_china_hgjck interface 0.6.52: add: add macro_china_society_electricity interface 0.6.53: add: add macro_china_society_traffic_volume interface 0.6.54: add: add macro_china_postal_telecommunicational interface 0.6.55: add: add macro_china_international_tourism_fx interface 0.6.56: add: add macro_china_swap_rate interface 0.6.57: fix: fix stock_sina_lhb_detail_daily interface 0.6.58: add: add bond_china_close_return interface 0.6.59: add: add macro_china_passenger_load_factor interface 0.6.60: fix: fix stock_sina_lhb_ggtj interface 0.6.61: fix: fix option_czce_hist interface 0.6.62: fix: fix sunrise_daily interface 0.6.63: fix: fix get_roll_yield_bar interface 0.6.64: add: add macro_china_insurance interface 0.6.65: add: add macro_china_supply_of_money interface 0.6.66: add: add support for python 3.9.0 0.6.67: add: add macro_china_foreign_exchange_gold interface 0.6.68: add: add macro_china_retail_price_index interface 0.6.69: fix: fix box_office_spot interface 0.6.70: fix: fix bond_investing_global interface 0.6.71: fix: fix nh_return_index interface 0.6.72: fix: fix get_receipt interface 0.6.73: add: add news_cctv interface 0.6.74: fix: fix macro and acm interface 0.6.75: add: add movie_boxoffice interface 0.6.76: fix: fix remove execjs dependence 0.6.77: add: add macro_china_real_estate interface 0.6.78: fix: fix movie_boxoffice interface 0.6.79: fix: split movie_boxoffice to single interface 0.6.80: fix: movie_boxoffice interface 0.6.81: fix: fix stock_report_fund_hold interface 0.6.82: fix: fix stock_em_comment interface 0.6.83: add: add crypto_hist and crypto_name_map interface 0.6.84: fix: fix crypto_hist interface 0.6.85: fix: fix stock_a_pb and stock_a_pe interface 0.6.86: fix: fix stock_zh_a_minute interface 0.6.87: fix: remove email interface 0.6.88: fix: fix get_dce_rank_table interface 0.6.89: fix: fix get_dce_rank_table interface 0.6.90: add: add fund_em_rank interface 0.6.91: fix: fix get_futures_daily interface 0.6.92: add: add repo_rate_hist interface 0.6.93: fix: fix stock_report_fund_hold interface 0.6.94: fix: fix docs interface 0.6.95: fix: fix macro_china_market_margin_sh interface 0.6.96: fix: fix stock_zh_a_daily interface 0.6.97: add: add stock_em_hsgt_board_rank interface 0.6.98: fix: fix fortune_rank interface 0.6.99: add: add forbes_rank interface 0.7.1: fix: fix futures_dce_position_rank interface 0.7.2: add: add xincaifu_rank interface 0.7.3: add: add hurun_rank interface 0.7.4: fix: fix hurun_rank interface 0.7.5: add: add currency_pair_map interface 0.7.6: fix: fix stock_em_jgdy_detail interface 0.7.7: fix: fix stock_info interface 0.7.8: fix: fix bond_cov_jsl interface 0.7.9: fix: fix stock_em_jgdy_detail interface 0.7.10: fix: fix match_main_contract interface 0.7.11: fix: fix stock_em_analyst_rank and stock_em_analyst_detail interface 0.7.12: add: add stock_zh_a_cdr_daily interface 0.7.13: fix: fix stock_zh_a_cdr_daily and stock_zh_a_daily interface 0.7.14: fix: fix get_receipt interface 0.7.15: add: add futures_contract_detail interface 0.7.16: fix: fix futures_zh_spot interface 0.7.17: del: del zdzk interface 0.7.18: fix: fix stock_zh_a_daily interface 0.7.19: fix: fix stock_zh_a_daily interface 0.7.20: fix: fix stock_em_jgdy_tj interface 0.7.21: fix: fix zh_stock_kcb_report interface 0.7.22: fix: fix zh_stock_kcb_report interface 0.7.23: fix: fix fund_em_open_fund_info interface 0.7.24: fix: fix futures_spot_price_daily interface 0.7.25: add: add option_current_em interface 0.7.26: fix: fix option_current_em interface 0.7.27: add: add js_news interface 0.7.28: fix: fix js_news interface 0.7.29: fix: fix macro_china_market_margin_sh interface 0.7.30: add: add nlp_answer interface 0.7.31: fix: fix index_sw interface 0.7.32: add: add index_cni interface 0.7.33: add: add more index_cni interface 0.7.34: add: add stock_dzjy_sctj interface 0.7.35: add: add stock_dzjy_mrmx interface 0.7.36: add: add stock_dzjy_mrtj interface 0.7.37: add: add stock_dzjy_hygtj interface 0.7.38: add: add stock_dzjy_hyyybtj interface 0.7.39: add: add stock_dzjy_yybph interface 0.7.40: fix: fix js_news interface 0.7.41: add: add stock_em_yzxdr interface 0.7.42: fix: fix fund_em_etf_fund_daily interface 0.7.43: fix: fix match_main_contract interface 0.7.44: fix: fix stock_hk_daily interface 0.7.45: fix: fix stock_em_yzxdr interface 0.7.46: fix: fix option_czce_hist interface 0.7.47: fix: fix bond_zh_cov interface 0.7.48: fix: fix futures_dce_position_rank interface 0.7.49: fix: fix stock_us_zh_spot interface 0.7.50: fix: fix stock_em_hsgt_stock_statistics interface 0.7.51: fix: fix stock_us_daily interface 0.7.52: fix: fix stock_sector_fund_flow_rank interface 0.7.53: fix: fix stock_em_yzxdr interface 0.7.54: add: add stock_a_code_to_symbol interface 0.7.55: add: add stock_news_em interface 0.7.56: fix: fix stock_news_em interface 0.7.57: fix: fix xlrd support 0.7.58: fix: fix stock_zh_a_tick_tx_js support 0.7.59: fix: fix read_excel support 0.7.60: fix: fix fund_em_open_fund_daily interface 0.7.61: fix: fix calendar.json interface 0.7.62: fix: fix QQ group interface 0.7.63: add: add bond_summary_sse interface 0.7.64: fix: fix macro_cons_gold_volume interface 0.7.65: fix: fix fund_em_value_estimation interface 0.7.66: fix: fix fund_em_value_estimation interface 0.7.67: fix: fix get_dce_daily interface 0.7.68: fix: fix stock_zh_index_spot interface 0.7.69: fix: fix covid_19 interface 0.7.70: fix: fix get_dce_rank_table interface 0.7.71: fix: fix stock_us_daily interface 0.7.72: fix: fix get_ine_daily interface 0.7.73: add: add macro_china_money_supply interface 0.7.74: fix: fix stock_zh_a_minute interface 0.7.75: add: add bond_cash_summary_sse interface 0.7.76: fix: fix get_rank_sum_daily interface 0.7.77: fix: fix get_inventory_data interface 0.7.78: fix: fix futures_inventory_99 interface 0.7.79: fix: fix stock_a_below_net_asset_statistics interface 0.7.80: add: add bank_rank_banker interface 0.7.81: add: add macro_china_stock_market_cap interface 0.7.82: fix: fix macro_china_stock_market_cap interface 0.7.83: fix: fix stock_news_em interface 0.7.84: fix: fix covid_19_dxy interface 0.7.85: add: add futures_spot_price_previous interface 0.7.86: add: add fund_em_hk_rank interface 0.7.87: add: add fund_em_lcx_rank interface 0.7.88: fix: fix bond_repo_zh_tick interface 0.7.89: fix: fix stock_hk_daily interface 0.7.90: fix: fix stock_em_gpzy_pledge_ratio interface 0.7.91: fix: fix stock_report_disclosure interface 0.7.92: add: add fund_em_hk_fund_hist interface 0.7.93: add: add fund_portfolio_hold_em interface 0.7.94: fix: fix futures_spot_price_previous interface 0.7.95: add: add covid_19_trace interface 0.7.96: fix: fix bond_spot_quote interface 0.7.97: fix: fix bond_spot_deal interface 0.7.98: fix: fix stock_report_fund_hold interface 0.7.99: fix: fix stock_zh_a_daily interface 0.8.1: add: add stock_report_fund_hold_detail interface 0.8.2: fix: fix option_finance_board interface 0.8.3: fix: fix stock_zh_a_daily interface 0.8.4: fix: fix option interface 0.8.5: fix: fix bond_investing_global interface 0.8.6: add: add macro_china_shrzgm interface 0.8.7: add: add stock_zh_a_tick_163_now interface 0.8.8: fix: fix add PK to CZCE 0.8.9: add: add futures delivery and spot interface 0.8.10: fix: fix fund_portfolio_hold_em interface 0.8.11: add: add futures_to_spot_dce interface 0.8.12: add: add futures_delivery_shfe interface 0.8.13: fix: fix stock_us_daily interface 0.8.14: fix: fix fund_em_open_fund_rank interface 0.8.15: fix: fix chinese_to_english interface 0.8.16: fix: fix stock_a_pe interface 0.8.17: add: add stock_financial_report_sina interface 0.8.18: fix: fix futures_spot_price_daily interface 0.8.19: add: add stock_margin_sse interface 0.8.20: add: add stock_margin_detail_sse interface 0.8.21: fix: fix stock_szse_summary interface 0.8.22: fix: fix stock_zh_a_daily interface 0.8.23: fix: fix covid_19_dxy interface 0.8.24: fix: fix fund_em_value_estimation interface 0.8.25: fix: fix stock_zh_index_daily_tx interface 0.8.26: fix: fix stock_hk_daily interface 0.8.27: fix: fix get_dce_rank_table interface 0.8.28: fix: fix stock_em_analyst_rank interface 0.8.29: add: add fund_rating interface 0.8.30: add: add fund_manager interface 0.8.31: fix: fix stock_zh_a_minute interface 0.8.32: fix: fix get_dce_rank_table interface 0.8.33: add: add stock_profit_forecast interface 0.8.34: fix: fix index_investing_global interface 0.8.35: add: add bond_zh_us_rate interface 0.8.36: add: add stock_em_fhps interface 0.8.37: add: add stock_em_yjkb interface 0.8.38: fix: fix get_czce_daily interface 0.8.39: add: add stock_board_concept_cons_ths interface 0.8.40: fix: fix stock_board_concept_cons_ths interface 0.8.41: fix: fix energy_carbon_bj interface 0.8.42: fix: fix stock_zh_a_daily interface 0.8.43: fix: fix stock_em_yjyg interface 0.8.44: fix: fix stock_em_comment interface 0.8.45: add: add stock_sse_deal_daily interface 0.8.46: fix: fix stock_board_concept_cons_ths interface 0.8.47: add: add stock_board_concept_info_ths interface 0.8.48: fix: fix fund_rating_sh fund_rating_zs fund_rating_ja interface 0.8.49: add: add stock_em_yjbb interface 0.8.50: fix: fix stock_zh_index_spot interface 0.8.51: fix: fix stock_zh_a_spot interface 0.8.52: add: add stock_em_zcfz, stock_em_lrb, stock_em_xjll interface 0.8.53: fix: fix stock_em_zcfz interface 0.8.54: fix: fix stock_register_kcb interface 0.8.55: add: add stock_ipo_declare interface 0.8.56: fix: fix index_bloomberg_billionaires interface 0.8.57: fix: fix hurun_rank interface 0.8.58: add: add hurun_rank interface 0.8.59: fix: fix get_sector_futures interface 0.8.60: fix: fix currency_hist interface 0.8.61: fix: fix stock_em_hsgt_hold_stock interface 0.8.62: fix: fix stock_zh_a_tick_163 interface 0.8.63: fix: fix futures_zh_daily_sina interface 0.8.64: fix: fix futures_inventory_em interface 0.8.65: fix: fix futures_hq_spot_df interface 0.8.66: fix: fix currency_hist interface 0.8.67: fix: fix requirements.txt interface 0.8.68: fix: fix bond_investing_global interface 0.8.69: fix: fix stock_board_concept_cons_ths interface 0.8.70: add: add stock_board_concept_index_ths interface 0.8.71: fix: fix remove obor fold 0.8.72: fix: fix stock_board_concept_index_ths interface 0.8.73: add: add stock_board_industry_index_ths interface 0.8.74: fix: fix test interface 0.8.75: fix: fix stock_board_industry_index_ths interface 0.8.76: add: add stock_notice_report interface 0.8.77: fix: fix rate_interbank interface 0.8.78: fix: fix stock_board_concept_index_ths interface 0.8.79: add: add stock_lh_yyb_most, stock_lh_yyb_capital, stock_lh_yyb_control interface 0.8.80: fix: fix stock_em_yjkb interface 0.8.81: add: add crypto_bitcoin_hold_report interface 0.8.82: fix: fix energy_carbon_hb interface 0.8.83: fix: fix get_czce_daily interface 0.8.84: fix: fix amac_fund_abs interface 0.8.85: fix: fix rename amac_person_org_list to amac_person_fund_org_list interface 0.8.86: add: add amac_person_bond_org_list interface 0.8.87: add: add stock_fund_flow_concept interface 0.8.88: add: add stock_fund_flow_industry interface 0.8.89: add: add stock_fund_flow_individual interface 0.8.90: add: add stock_fund_flow_big_deal interface 0.8.91: add: add stock_em_ggcg interface 0.8.92: fix: fix stock_zh_a_daily interface 0.8.93: fix: fix bond_spot_deal interface 0.8.94: fix: fix stock_us_daily interface 0.8.95: add: add fund_em_new_found interface 0.8.96: fix: fix get_czce_rank_table interface 0.8.97: add: add stock_wc_hot_top interface 0.8.98: add: add index_kq interface 0.8.99: fix: fix stock_individual_fund_flow_rank interface 0.9.1: fix: fix stock_profit_forecast interface 0.9.2: fix: fix get_futures_daily interface 0.9.3: fix: fix get_futures_daily interface 0.9.4: fix: fix get_shfe_daily interface 0.9.5: add: add stock_wc_hot_rank interface 0.9.6: fix: fix stock_wc_hot_rank interface 0.9.7: fix: fix stock_wc_hot_rank interface 0.9.8: fix: fix forbes_rank interface 0.9.9: fix: fix stock_a_below_net_asset_statistics interface 0.9.10: fix: fix stock_wc_hot_rank interface 0.9.11: add: add drewry_wci_index interface 0.9.12: fix: fix bond_investing_global interface 0.9.13: fix: fix currency_hist interface 0.9.14: fix: fix futures_global_commodity_hist interface 0.9.15: add: add index_kq_fashion interface 0.9.16: add: add index_eri interface 0.9.17: fix: fix futures_global_commodity_hist interface 0.9.18: fix: fix stock_em_dxsyl interface 0.9.19: add: add stock_market_activity_legu interface 0.9.20: fix: fix stock_individual_fund_flow_rank interface 0.9.21: add: add index_cflp_price interface 0.9.22: add: add index_cflp_volume interface 0.9.23: fix: fix index_cflp_volume interface 0.9.24: fix: fix stock_info_sz_name_code interface 0.9.25: add: add car_gasgoo_sale_rank interface 0.9.26: fix: fix stock_hk_daily interface 0.9.27: fix: fix stock_report_fund_hold interface 0.9.28: add: add stock_average_position_legu interface 0.9.29: add: add stock_em_qbzf interface 0.9.30: add: add stock_em_pg interface 0.9.31: fix: fix index_investing_global interface 0.9.32: fix: fix bond_investing_global interface 0.9.33: add: add marco_china_hk interface 0.9.34: fix: fix get_futures_daily interface 0.9.35: fix: fix stock_zh_a_daily interface 0.9.36: fix: fix stock_zh_a_daily hfq and qfq interface 0.9.37: fix: fix stock_wc_hot_rank interface 0.9.38: add: add stock_em_zt_pool interface 0.9.39: fix: fix stock_us_daily interface 0.9.40: fix: fix bond_cov_comparison interface 0.9.41: fix: fix stock_em_zt_pool_previous interface 0.9.42: add: add stock_em_zt_pool_strong interface 0.9.43: fix: fix stock_em_zt_pool_strong interface 0.9.44: fix: fix stock_em_zt_pool_sub_new interface 0.9.45: fix: fix stock_em_zt_pool interface 0.9.46: fix: fix spot_goods interface 0.9.47: fix: fix futures_comex_inventory interface 0.9.48: fix: fix stock_em_zcfz interface 0.9.49: fix: fix stock_hk_daily interface 0.9.50: fix: fix futures_spot_stock interface 0.9.51: fix: fix stock_hk_daily interface 0.9.52: fix: remove internal_flow_history interface 0.9.53: add: add stock_zh_a_alerts_cls interface 0.9.54: fix: fix bond_zh_us_rate interface 0.9.55: fix: fix index_vix interface 0.9.56: fix: fix macro_fx_sentiment interface 0.9.57: fix: fix stock_zh_a_alerts_cls interface 0.9.58: add: add stock_staq_net_stop interface 0.9.59: fix: fix covid_19_baidu interface 0.9.60: fix: fix currency_convert interface 0.9.61: fix: fix stock_info_sz_name_code interface 0.9.62: add: add stock_zh_a_gdhs interface 0.9.63: fix: fix stock_zh_a_gdhs interface 0.9.64: add: add futures_sina_hold_pos interface 0.9.65: fix: fix bond_zh_us_rate interface 0.9.66: fix: fix set urllib3==1.25.11 0.9.67: fix: fix stock_em_hsgt_hold_stock interface 0.9.68: fix: fix stock_zh_a_tick_tx interface 0.9.69: add: add currency_boc_sina interface 0.9.70: add: add stock_zh_a_hist interface 0.9.71: fix: fix stock_zh_a_hist interface 0.9.72: fix: fix stock_zh_a_hist interface 0.9.73: fix: fix stock_zh_a_tick_tx_js interface 0.9.74: add: add stock_changes_em interface 0.9.75: add: add stock_hk_spot_em, stock_hk_hist interface 0.9.76: add: add stock_us_spot_em, stock_us_hist interface 0.9.77: fix: fix stock_us_hist interface 0.9.78: fix: fix rename python file name interface 0.9.79: add: add crypto_bitcoin_cme interface 0.9.80: fix: fix futures_display_main_sina interface 0.9.81: add: add crypto_crix interface 0.9.82: fix: fix crypto_crix interface 0.9.83: fix: fix crypto_crix interface 0.9.84: fix: fix rename futures_hq_spot to futures_foreign_commodity_realtime interface 0.9.85: fix: fix rate_interbank interface 0.9.86: add: add fund_em_aum interface 0.9.87: fix: fix death_company interface 0.9.88: fix: fix stock_financial_analysis_indicator interface 0.9.89: fix: fix fund_manager interface 0.9.90: fix: fix stock_a_below_net_asset_statistics interface 0.9.91: fix: fix stock_em_yjbb interface 0.9.92: fix: fix stock_tfp_em interface 0.9.93: fix: fix stock_zh_a_gdhs interface 0.9.94: add: add macro_china_qyspjg, macro_china_fdi interface 0.9.95: fix: fix stock_board_concept_index_ths interface 0.9.96: fix: fix stock_info_sz_name_code interface 0.9.97: fix: fix urllib3 version at 1.25.8 0.9.98: fix: fix js_news interface 0.9.99: fix: fix news_cctv interface 1.0.1: add: add macro_usa_phs interface 1.0.2: fix: fix macro_usa_phs interface 1.0.3: add: add macro_germany interface 1.0.4: fix: fix macro_china interface 1.0.5: add: add macro_china_gyzjz interface 1.0.6: fix: fix get_receipt interface 1.0.7: fix: fix get_ine_daily interface 1.0.8: fix: fix macro_china_cpi interface 1.0.9: fix: fix stock_zh_a_gdhs interface 1.0.10: fix: fix stock_zh_a_spot_em interface 1.0.11: fix: fix stock_board_industry_name_ths interface 1.0.12: fix: fix macro_china_money_supply interface 1.0.13: fix: fix rename stock_board_concept_index_ths to stock_board_concept_hist_ths interface 1.0.14: add: add stock_board_concept_cons_em and stock_board_concept_hist_em interface 1.0.15: fix: fix stock_hk_hist interface 1.0.16: fix: fix tool_trade_date_hist_sina interface 1.0.17: fix: fix calendar.json interface 1.0.18: fix: fix reformat macro_china_national_tax_receipts, macro_china_hgjck, macro_china_stock_market_cap interface 1.0.19: fix: fix marco_china_hk interface 1.0.20: fix: fix bond_zh_hs_cov_daily interface 1.0.21: fix: fix charity_china interface 1.0.22: fix: fix stock_em_xgsglb interface 1.0.23: fix: fix stock_em_dxsyl interface 1.0.24: fix: fix stock_board_concept_hist_em interface 1.0.25: fix: fix get_receipt interface 1.0.26: add: add energy_carbon_domestic interface 1.0.27: fix: fix get_roll_yield_bar interface 1.0.28: add: add covid_19_baidu interface 1.0.29: fix: fix covid_19_baidu interface 1.0.30: fix: fix option_czce_hist interface 1.0.31: fix: fix futures_foreign_commodity_realtime interface 1.0.32: fix: fix covid_19_baidu interface 1.0.33: fix: fix bond_china_close_return interface 1.0.34: fix: fix bond_china_close_return interface 1.0.35: fix: fix bond_cov_jsl interface 1.0.36: fix: fix stock_em_hsgt_north_net_flow_in interface 1.0.37: add: add macro_swiss interface 1.0.38: add: add macro_japan interface 1.0.39: add: add macro_uk interface 1.0.40: add: add stock_szse_margin interface 1.0.41: add: add macro_australia interface 1.0.42: fix: fix index_stock_hist interface 1.0.43: fix: fix stock_margin_detail_szse interface 1.0.44: fix: fix stock_margin_detail_szse interface 1.0.45: fix: fix option_dce_daily interface and rename interface in option_commodity 1.0.46: add: add futures_pig_info interface 1.0.47: fix: fix futures_pig_info interface 1.0.48: add: add macro_canada interface 1.0.49: fix: fix stock_individual_fund_flow interface 1.0.50: fix: fix stock_em_jgdy_tj interface 1.0.51: add: add sport_olympic_hist interface 1.0.52: add: add stock_financial_hk interface 1.0.53: fix: fix tool_trade_date_hist_sina interface 1.0.54: fix: fix macro_china_gdp_yearly interface 1.0.55: fix: fix macro_china_freight_index interface 1.0.56: add: add stock_a_ttm_lyr interface 1.0.57: add: add stock_a_all_pb interface 1.0.58: add: add futures_pig_rank interface 1.0.59: fix: fix futures_zh_daily_sina interface 1.0.60: fix: fix futures_main_sina interface 1.0.61: fix: fix stock_a_all_pb interface 1.0.62: add: add futures_egg_price interface 1.0.63: fix: fix remove jyfm interface 1.0.64: fix: fix rename zh_stock_kcb_report to stock_zh_kcb_report_em interface 1.0.65: fix: fix stock_em_gpzy_pledge_ratio_detail interface 1.0.66: fix: fix macro_cons_opec_month interface 1.0.67: fix: fix futures_sgx_daily interface 1.0.68: fix: remove agoyal_stock_return interface 1.0.69: fix: remove bank_rank_banker interface 1.0.70: fix: remove watch_jinshi_quotes interface 1.0.71: fix: remove watch_argus interface 1.0.72: fix: fix amac_fund_abs interface 1.0.73: add: add bond_cash_summary_sse interface 1.0.74: fix: fix bond_zh_hs_cov_spot interface 1.0.75: fix: fix bond_futures_deliverable_coupons interface 1.0.76: fix: fix stock_financial_hk_analysis_indicator_em interface 1.0.77: fix: fix macro_china_m2_yearly interface 1.0.78: add: add reits_realtime_em, reits_info_jsl interface 1.0.79: fix: fix news_cctv interface 1.0.80: add: add stock_zh_a_hist_min_em, stock_zh_a_hist_pre_min_em interface 1.0.81: add: add stock_us_hist_min_em, stock_hk_hist_min_em interface 1.0.82: fix: fix bond_zh_cov interface 1.0.83: fix: fix macro_china interface 1.0.84: add: add bond_zh_cov_info interface 1.0.85: fix: fix stock_report_fund_hold interface 1.0.86: fix: fix stock_em_zt_pool_dtgc interface 1.0.87: fix: fix macro_china_swap_rate interface 1.0.88: fix: fix stock_zh_a_hist_min_em interface 1.0.89: fix: fix stock_hk_hist_min_em interface 1.0.90: fix: fix stock_us_hist_min_em interface 1.0.91: fix: fix stock_zh_a_hist_min_em interface 1.0.92: fix: fix stock_zh_a_hist interface 1.0.93: fix: fix stock_hk_hist_min_em interface 1.0.94: fix: fix stock_zh_a_new interface 1.0.95: fix: fix stock_zh_a_daily interface 1.0.96: add: add stock_zh_a_st_em interface 1.0.97: fix: fix futures_spot_stock interface 1.0.98: add: add stock_zh_a_new_em interface 1.0.99: fix: fix stock_wc_hot_rank interface 1.1.1: add: add index_investing_global_from_url interface 1.1.2: add: add stock_us_pink_spot_em interface 1.1.3: add: add stock_us_famous_spot_em interface 1.1.4: fix: fix stock_average_position_legu interface 1.1.5: add: add stock_rank_forecast_cninfo interface 1.1.6: fix: fix futures_zh_minute_sina interface 1.1.7: fix: fix covid_19_trace interface 1.1.8: add: add stock_industry_pe_ratio_cninfo interface 1.1.9: fix: fix stock_js_price interface 1.1.10: fix: fix stock_em_hsgt_hold_stock interface 1.1.11: fix: fix stock_fund_flow_concept interface 1.1.12: fix: fix stock_fund_flow_industry interface 1.1.13: add: add stock_dividents_cninfo interface 1.1.14: fix: fix stock_fund_flow_concept interface 1.1.15: add: add stock_new_gh_cninfo interface 1.1.16: fix: fix stock_em_jgdy_detail interface 1.1.17: fix: fix stock_em_jgdy_tj interface 1.1.18: fix: fix stock_fund_flow_concept and stock_fund_flow_industry interface 1.1.19: add: add stock_new_ipo_cninfo interface 1.1.20: fix: fix stock_a_pe interface 1.1.21 fix: fix setuptools==57.5.0 package 1.1.22 fix: fix remove demjson package 1.1.23 fix: fix update urllib3 package 1.1.24 fix: fix email address 1.1.25 add: add stock_hold_num_cninfo interface 1.1.26 fix: fix stock_fund_flow_concept interface 1.1.27 add: add stock_hold_control_cninfo interface 1.1.28 fix: fix move project to AKFamily interface 1.1.29 fix: fix urllib3>=1.25.8 package 1.1.30 fix: fix stock_zh_index_hist_csindex interface 1.1.31 add: add stock_hold_management_detail_cninfo interface 1.1.32 add: add sw_index_representation_spot interface 1.1.33 fix: fix sw_index_xxx interface 1.1.34 fix: fix drewry_wci_index interface 1.1.35 fix: fix fund_etf_category_sina interface 1.1.36 fix: fix sw_index_daily_indicator interface 1.1.37 fix: fix drewry_wci_index interface 1.1.38 add: add futures_comm_info interface 1.1.39 fix: fix futures_comm_info interface 1.1.40 fix: fix remove covid_19_history interface 1.1.41 add: add stock_zh_b_sina interface 1.1.42 fix: fix stock_zh_a_minute interface 1.1.43 add: add stock_cg_guarantee_cninfo interface 1.1.44 fix: fix stock_zh_index_daily interface 1.1.45 fix: fix stock_zh_index_daily_tx interface 1.1.46 fix: fix remove watch_jinshi_fx interface 1.1.47 fix: fix stock_em_jgdy_tj and stock_em_jgdy_detail interface 1.1.48 fix: fix rename fund_em_portfolio_hold to fund_portfolio_hold_em interface 1.1.49 fix: fix stock_em_jgdy_tj and stock_em_jgdy_detail interface 1.1.50 add: add stock_cg_lawsuit_cninfo interface 1.1.51 fix: fix stock_wc_hot_rank interface 1.1.52 add: add stock_cg_equity_mortgage_cninfo interface 1.1.53 fix: fix index_cni_detail_hist_adjust interface 1.1.54 fix: fix stock_board_concept_hist_ths interface 1.1.55 fix: fix stock_sina_lhb_ggtj and stock_sina_lhb_jgzz interface 1.1.56 add: add fund_em_aum_hist interface 1.1.57 fix: fix stock_sina_lhb_ggtj and stock_sina_lhb_jgzz interface 1.1.58 add: add bond_treasure_issue_cninfo interface 1.1.59 add: add bond_local_government_issue_cninfo interface 1.1.60 add: add bond_corporate_issue_cninfo interface 1.1.61 add: add bond_cov_issue_cninfo interface 1.1.62 fix: fix bond_zh_us_rate interface 1.1.63 add: add bond_cov_stock_issue_cninfo interface 1.1.64 add: add fund_report_stock_cninfo interface 1.1.65 fix: fix stock_notice_report interface 1.1.66 add: add fund_report_industry_allocation_cninfo interface 1.1.67 fix: fix stock_zh_index_hist_csindex interface 1.1.68 fix: fix index_stock_cons_csindex interface 1.1.69 add: add fund_scale_open_sina interface 1.1.70 add: add fund_scale_close_sina interface 1.1.71 add: add fund_scale_structured_sina interface 1.1.72 add: add fund_report_asset_allocation_cninfo interface 1.1.73 add: add stock_zh_index_value_csindex interface 1.1.74 fix: fix fund_em_etf_fund_info interface 1.1.75 add: add index_value_hist_funddb interface 1.1.76 fix: fix amac_fund_info interface 1.1.77 fix: fix stock_zh_a_tick_163_now interface 1.1.78 add: add stock_hsgt_individual_em interface 1.1.79 fix: fix stock_em_jgdy_tj interface 1.1.80 add: add support for Python 3.10 interface 1.1.81 add: add stock_hsgt_individual_detail_em interface 1.1.82 fix: fix stock_tfp_em interface 1. rename stock_em_tfp to stock_tfp_em 2. reformat output data type 1.1.83 add: add stock_ipo_benefit_ths interface 1.1.84 fix: fix stock_board_industry_index_ths interface 1. add start_date and end_date parameters 1.1.85 fix: fix stock_em_hsgt_stock_statistics interface 1.1.86 fix: fix stock_em_hsgt_stock_statistics interface 1.1.87 fix: fix stock_em_hsgt_hist interface 1.1.88 fix: fix stock_sector_spot interface 1.1.89 fix: fix stock_sector_detail interface 1.1.90 fix: fix stock_board_concept_name_ths interface 1.1.91 fix: fix stock_hsgt_individual_detail_em interface 1.1.92 add: add stock_rank_cxg_ths interface 1.1.93 add: add stock_rank_cxd_ths interface 1.1.94 fix: fix fund_portfolio_hold_em interface 1.1.95 fix: fix stock_board_concept_hist_ths interface 1.1.96 add: add bond_zh_hs_cov_min interface 1.1.97 add: add stock_rank_lxsz_ths interface 1.1.98 add: add stock_rank_lxxd_ths interface 1.1.99 add: add stock_rank_cxfl_ths interface 1.2.1 add: add stock_rank_cxsl_ths interface 1.2.2 fix: fix zh_subscribe_exchange_symbol interface 1.2.3 add: add stock_rank_xstp_ths interface 1.2.4 fix: fix fund_portfolio_hold_em interface 1.2.5 fix: fix index_stock_hist interface 1.2.6 add: add stock_rank_xxtp_ths interface 1.2.7 add: add stock_rank_ljqd_ths interface 1.2.8 add: add stock_rank_ljqs_ths interface 1.2.9 fix: fix stock_zh_a_gdhs interface 1.2.10 fix: fix bond_zh_hs_daily interface 1.2.11 add: add stock_zh_a_gdhs_detail_em interface 1.2.12 fix: fix stock_zh_a_gdhs interface 1.2.13 add: add stock_rank_xzjp_ths interface 1.2.14 add: add sw_index_second_spot interface 1.2.15 fix: fix stock_board_industry_name_ths interface 1.2.16 add: add stock_board_cons_ths interface 1.2.17 fix: fix amac_fund_info interface 1.2.18 fix: fix amac interface 1.2.19 fix: fix amac cons.py interface 1.2.20 fix: fix stock_zh_a_spot_em interface 1.2.21 fix: fix stock_zh_a_hist interface 1.2.22 fix: fix amac_fund_info interface 1.2.23 add: add video_tv interface 1.2.24 fix: fix car_gasgoo_sale_rank interface 1.2.25 fix: fix amac_manager_classify_info interface 1.2.26 fix: fix amac interface 1.2.27 add: add online_value_artist interface 1.2.28 add: add club_rank_game interface 1.2.29 add: add player_rank_game interface 1.2.30 add: add business_value_artist interface 1.2.31 fix: fix stock_em_zt_pool interface 1.2.32 add: add video_variety_show interface 1.2.33 add: add fund_fh_em interface """ __version__ = "1.2.33" __author__ = "Albert King" import sys if sys.version_info < (3, 7): print(f"AKShare {__version__} requires Python 3.7+ and 64 bit OS") sys.exit(1) del sys """ 天天基金网-基金数据-分红送配 """ from akshare.fund.fund_fhsp_em import fund_cf_em, fund_fh_rank_em, fund_fh_em """ 中国电竞价值排行榜 """ from akshare.other.other_game import club_rank_game, player_rank_game """ 艺恩-艺人 """ from akshare.movie.artist_yien import online_value_artist, business_value_artist """ 艺恩-视频放映 """ from akshare.movie.video_yien import video_variety_show, video_tv """ 同花顺-数据中心-技术选股 """ from akshare.stock_feature.stock_technology_ths import ( stock_rank_cxg_ths, stock_rank_cxd_ths, stock_rank_lxsz_ths, stock_rank_lxxd_ths, stock_rank_cxfl_ths, stock_rank_cxsl_ths, stock_rank_xstp_ths, stock_rank_xxtp_ths, stock_rank_ljqd_ths, stock_rank_ljqs_ths, stock_rank_xzjp_ths, ) """ 沪深港通持股 """ from akshare.stock_feature.stock_em_hsgt import ( stock_hsgt_individual_em, stock_hsgt_individual_detail_em, ) """ 指数估值 """ from akshare.index.zh_stock_index_csindex import ( index_value_hist_funddb, index_value_name_funddb, ) """ 基金规模 """ from akshare.fund.fund_scale_sina import ( fund_scale_open_sina, fund_scale_close_sina, fund_scale_structured_sina, ) """ 巨潮资讯-数据中心-专题统计-基金报表 """ from akshare.fund.fund_report_cninfo import ( fund_report_stock_cninfo, fund_report_industry_allocation_cninfo, fund_report_asset_allocation_cninfo, ) """ 巨潮资讯-数据中心-专题统计-债券报表-债券发行 """ from akshare.bond.bond_issue_cninfo import ( bond_treasure_issue_cninfo, bond_local_government_issue_cninfo, bond_corporate_issue_cninfo, bond_cov_issue_cninfo, bond_cov_stock_issue_cninfo, ) """ 巨潮资讯-数据中心-专题统计-公司治理-股权质押 """ from akshare.stock.stock_cg_equity_mortgage import stock_cg_equity_mortgage_cninfo """ 巨潮资讯-数据中心-专题统计-公司治理-公司诉讼 """ from akshare.stock.stock_cg_lawsuit import stock_cg_lawsuit_cninfo """ 巨潮资讯-数据中心-专题统计-公司治理-对外担保 """ from akshare.stock.stock_cg_guarantee import stock_cg_guarantee_cninfo """ B 股 """ from akshare.stock.stock_zh_b_sina import ( stock_zh_b_spot, stock_zh_b_daily, stock_zh_b_minute, ) """ 期货手续费 """ from akshare.futures.futures_comm_qihuo import futures_comm_info """ 实际控制人持股变动 """ from akshare.stock.stock_hold_control_cninfo import ( stock_hold_control_cninfo, stock_hold_management_detail_cninfo, ) """ 股东人数及持股集中度 """ from akshare.stock.stock_hold_num_cninfo import stock_hold_num_cninfo """ 新股过会 """ from akshare.stock.stock_new_cninfo import stock_new_gh_cninfo, stock_new_ipo_cninfo """ 个股分红 """ from akshare.stock.stock_dividents_cninfo import stock_dividents_cninfo """ 行业市盈率 """ from akshare.stock.stock_industry_pe_cninfo import stock_industry_pe_ratio_cninfo """ 投资评级 """ from akshare.stock.stock_rank_forecast import stock_rank_forecast_cninfo """ 美股-知名美股 """ from akshare.stock.stock_us_famous import stock_us_famous_spot_em """ 美股-粉单市场 """ from akshare.stock.stock_us_pink import stock_us_pink_spot_em """ REITs """ from akshare.reits.reits_basic import reits_info_jsl, reits_realtime_em """ 鸡蛋价格数据 """ from akshare.futures_derivative.futures_egg import ( futures_egg_price_yearly, futures_egg_price_area, futures_egg_price, ) """ 全部 A 股-等权重市盈率、中位数市盈率 全部 A 股-等权重、中位数市净率 """ from akshare.stock_feature.stock_ttm_lyr import stock_a_ttm_lyr from akshare.stock_feature.stock_all_pb import stock_a_all_pb """ 奥运奖牌 """ from akshare.sport.sport_olympic import sport_olympic_hist """ 宏观-加拿大 """ from akshare.economic.macro_canada import ( macro_canada_cpi_monthly, macro_canada_core_cpi_monthly, macro_canada_bank_rate, macro_canada_core_cpi_yearly, macro_canada_cpi_yearly, macro_canada_gdp_monthly, macro_canada_new_house_rate, macro_canada_retail_rate_monthly, macro_canada_trade, macro_canada_unemployment_rate, ) """ 猪肉价格信息 """ from akshare.futures_derivative.futures_pig import futures_pig_info, futures_pig_rank """ 宏观-澳大利亚 """ from akshare.economic.macro_australia import ( macro_australia_bank_rate, macro_australia_unemployment_rate, macro_australia_trade, macro_australia_cpi_quarterly, macro_australia_cpi_yearly, macro_australia_ppi_quarterly, macro_australia_retail_rate_monthly, ) """ 融资融券-深圳 """ from akshare.stock_feature.stock_szse_margin import ( stock_margin_underlying_info_szse, stock_margin_detail_szse, stock_margin_szse, ) """ 英国-宏观 """ from akshare.economic.macro_uk import ( macro_uk_gdp_yearly, macro_uk_gdp_quarterly, macro_uk_retail_yearly, macro_uk_rightmove_monthly, macro_uk_rightmove_yearly, macro_uk_unemployment_rate, macro_uk_halifax_monthly, macro_uk_bank_rate, macro_uk_core_cpi_monthly, macro_uk_core_cpi_yearly, macro_uk_cpi_monthly, macro_uk_cpi_yearly, macro_uk_halifax_yearly, macro_uk_retail_monthly, macro_uk_trade, ) """ 日本-宏观 """ from akshare.economic.macro_japan import ( macro_japan_bank_rate, macro_japan_core_cpi_yearly, macro_japan_cpi_yearly, macro_japan_head_indicator, macro_japan_unemployment_rate, ) """ 瑞士-宏观 """ from akshare.economic.macro_swiss import ( macro_swiss_trade, macro_swiss_svme, macro_swiss_cpi_yearly, macro_swiss_gbd_yearly, macro_swiss_gbd_bank_rate, macro_swiss_gdp_quarterly, ) """ 东方财富-概念板块 """ from akshare.stock.stock_board_concept_em import ( stock_board_concept_cons_em, stock_board_concept_hist_em, stock_board_concept_name_em, ) """ 德国-经济指标 """ from akshare.economic.macro_germany import ( macro_germany_gdp, macro_germany_ifo, macro_germany_cpi_monthly, macro_germany_retail_sale_monthly, macro_germany_trade_adjusted, macro_germany_retail_sale_yearly, macro_germany_cpi_yearly, macro_germany_zew, ) """ 基金规模和规模趋势 """ from akshare.fund.fund_em_aum import fund_em_aum, fund_em_aum_trend, fund_em_aum_hist """ CRIX 数据 """ from akshare.crypto.crypto_crix import crypto_crix """ CME 比特币成交量 """ from akshare.crypto.crypto_bitcoin_cme import crypto_bitcoin_cme """ 盘口异动 """ from akshare.stock_feature.stock_pankou import stock_changes_em """ A 股东方财富 """ from akshare.stock_feature.stock_em_hist import ( stock_zh_a_spot_em, stock_zh_a_hist, stock_hk_spot_em, stock_hk_hist, stock_us_spot_em, stock_us_hist, stock_zh_a_hist_min_em, stock_zh_a_hist_pre_min_em, stock_hk_hist_min_em, stock_us_hist_min_em, stock_zh_b_spot_em, ) """ 中行人民币牌价历史数据查询 """ from akshare.currency.currency_sina_china_bank import currency_boc_sina """ 期货持仓 """ from akshare.futures_derivative.futures_sina_cot import futures_sina_hold_pos """ 股东户数 """ from akshare.stock_feature.stock_gdhs import stock_zh_a_gdhs, stock_zh_a_gdhs_detail_em """ 两网及退市 """ from akshare.stock.stock_stop import stock_staq_net_stop """ 每日快讯数据 """ from akshare.stock_feature.stock_cls_alerts import stock_zh_a_alerts_cls """ 涨停板行情 """ from akshare.stock_feature.stock_em_ztb import ( stock_em_zt_pool, stock_em_zt_pool_previous, stock_em_zt_pool_dtgc, stock_em_zt_pool_zbgc, stock_em_zt_pool_strong, stock_em_zt_pool_sub_new, ) """ 中国-香港-宏观 """ from akshare.economic.macro_china_hk import ( marco_china_hk_cpi, marco_china_hk_cpi_ratio, marco_china_hk_trade_diff_ratio, marco_china_hk_gbp_ratio, marco_china_hk_building_amount, marco_china_hk_building_volume, marco_china_hk_gbp, marco_china_hk_ppi, marco_china_hk_rate_of_unemployment, ) """ 增发和配股 """ from akshare.stock_feature.stock_zf_pg import stock_em_qbzf, stock_em_pg """ 平均持仓 """ from akshare.stock_feature.stock_legu_average_position import ( stock_average_position_legu, ) """ 汽车销量 """ from akshare.other.other_car import car_gasgoo_sale_rank, car_cpca_energy_sale """ 中国公路物流运价、运量指数 """ from akshare.index.index_cflp import index_cflp_price, index_cflp_volume """ 赚钱效应分析 """ from akshare.stock_feature.stock_legu_market import stock_market_activity_legu """ 浙江省排污权交易指数 """ from akshare.index.index_eri import index_eri """ Drewry 集装箱指数 """ from akshare.index.drewry_index import drewry_wci_index """ 柯桥指数 """ from akshare.index.index_kq_fz import index_kq_fz from akshare.index.index_kq_ss import index_kq_fashion """ 问财-热门股票 """ from akshare.stock_feature.stock_wencai import stock_wc_hot_rank """ 新发基金 """ from akshare.fund.fund_em_init import fund_em_new_found """ 高管持股 """ from akshare.stock_feature.stock_em_gdzjc import stock_em_ggcg """ 同花顺-数据中心-资金流向-概念资金流 """ from akshare.stock_feature.stock_fund_flow import ( stock_fund_flow_concept, stock_fund_flow_industry, stock_fund_flow_big_deal, stock_fund_flow_individual, ) """ 比特币持仓 """ from akshare.crypto.crypto_hold import crypto_bitcoin_hold_report """ 证券交易营业部排行 """ from akshare.stock_feature.stock_lh_yybpm import ( stock_lh_yyb_capital, stock_lh_yyb_most, stock_lh_yyb_control, ) """ 沪深 A 股公告 """ from akshare.stock_fundamental.stock_notice import stock_notice_report """ 首发企业申报 """ from akshare.stock_fundamental.stock_ipo_declare import stock_ipo_declare """ 三大报表 """ from akshare.stock_feature.stock_em_report import ( stock_em_zcfz, stock_em_lrb, stock_em_xjll, ) """ 业绩报告 """ from akshare.stock_feature.stock_em_yjbb import stock_em_yjbb """ 同花顺-行业板块 """ from akshare.stock_feature.stock_board_industry_ths import ( stock_board_industry_cons_ths, stock_board_industry_name_ths, stock_board_industry_info_ths, stock_board_industry_index_ths, stock_ipo_benefit_ths, ) """ 同花顺-概念板块 """ from akshare.stock_feature.stock_board_concept_ths import ( stock_board_concept_cons_ths, stock_board_concept_name_ths, stock_board_concept_info_ths, stock_board_concept_hist_ths, stock_board_cons_ths, ) """ 分红配送 """ from akshare.stock_feature.stock_em_fhps import stock_em_fhps """ 中美国债收益率 """ from akshare.bond.bond_em import bond_zh_us_rate """ 盈利预测 """ from akshare.stock_fundamental.stock_profit_forecast import stock_profit_forecast """ 基金经理 """ from akshare.fund.fund_manager import fund_manager """ 基金评级 """ from akshare.fund.fund_rating import ( fund_rating_sh, fund_rating_zs, fund_rating_ja, fund_rating_all, ) """ 融资融券数据 """ from akshare.stock_feature.stock_sse_margin import ( stock_margin_detail_sse, stock_margin_sse, ) """ 期货交割和期转现 """ from akshare.futures.futures_to_spot import ( futures_to_spot_czce, futures_to_spot_shfe, futures_to_spot_dce, futures_delivery_dce, futures_delivery_shfe, futures_delivery_czce, futures_delivery_match_dce, futures_delivery_match_czce, ) """ 基金持仓 """ from akshare.fund.fund_em_portfolio import fund_portfolio_hold_em """ 债券概览 """ from akshare.bond.bond_summary import bond_deal_summary_sse, bond_cash_summary_sse """ 新闻-个股新闻 """ from akshare.news.news_stock import stock_news_em """ 股票数据-一致行动人 """ from akshare.stock_feature.stock_em_yzxdr import stock_em_yzxdr """ 大宗交易 """ from akshare.stock.stock_dzjy import ( stock_dzjy_sctj, stock_dzjy_mrmx, stock_dzjy_mrtj, stock_dzjy_hygtj, stock_dzjy_yybph, stock_dzjy_hyyybtj, ) """ 国证指数 """ from akshare.index.index_cni import ( index_cni_hist, index_cni_all, index_cni_detail, index_cni_detail_hist, index_cni_detail_hist_adjust, ) """ 金十数据-新闻资讯 """ from akshare.ws.js_ws_news import js_news """ 东方财富-期权 """ from akshare.option.option_em import option_current_em """ 科创板报告 """ from akshare.stock.stock_zh_kcb_report import stock_zh_kcb_report_em """ 期货合约详情 """ from akshare.futures.futures_contract_detail import futures_contract_detail """ 胡润排行榜 """ from akshare.fortune.fortune_hurun import hurun_rank """ 新财富富豪榜 """ from akshare.fortune.fortune_xincaifu_500 import xincaifu_rank """ 福布斯中国榜单 """ from akshare.fortune.fortune_forbes_500 import forbes_rank """ 回购定盘利率 """ from akshare.rate.repo_rate import repo_rate_hist """ 公募基金排行 """ from akshare.fund.fund_em_rank import ( fund_em_exchange_rank, fund_em_money_rank, fund_em_open_fund_rank, fund_em_hk_rank, fund_em_lcx_rank, ) """ 英为财情-加密货币 """ from akshare.crypto.crypto_hist_investing import crypto_hist, crypto_name_map """ 电影票房 """ from akshare.movie.movie_yien import ( movie_boxoffice_cinema_daily, movie_boxoffice_cinema_weekly, movie_boxoffice_weekly, movie_boxoffice_daily, movie_boxoffice_monthly, movie_boxoffice_realtime, movie_boxoffice_yearly, movie_boxoffice_yearly_first_week, ) """ 新闻联播文字稿 """ from akshare.news.news_cctv import news_cctv """ 债券收盘收益率曲线历史数据 """ from akshare.bond.bond_china_money import ( bond_china_close_return, bond_china_close_return_map, ) """ COMEX黄金-白银库存 """ from akshare.futures.futures_comex import futures_comex_inventory """ 国债期货可交割券相关指标 """ from akshare.bond.bond_futures import bond_futures_deliverable_coupons """ A 股-特别标的 """ from akshare.stock.stock_zh_a_special import ( stock_zh_a_new, stock_zh_a_st_em, stock_zh_a_new_em, stock_zh_a_stop_em, ) """ 东方财富-注册制审核 """ from akshare.stock_fundamental.stock_register import ( stock_register_kcb, stock_register_cyb, stock_register_db, ) """ 新浪财经-龙虎榜 """ from akshare.stock_feature.stock_sina_lhb import ( stock_sina_lhb_detail_daily, stock_sina_lhb_ggtj, stock_sina_lhb_jgmx, stock_sina_lhb_jgzz, stock_sina_lhb_yytj, ) """ 中证指数 """ from akshare.index.zh_stock_index_csindex import ( stock_zh_index_hist_csindex, stock_zh_index_value_csindex, ) """ 股票基金持仓数据 """ from akshare.stock.stock_fund_hold import ( stock_report_fund_hold, stock_report_fund_hold_detail, ) """ 期货分钟数据 """ from akshare.futures.futures_zh_sina import ( futures_zh_minute_sina, futures_zh_daily_sina, ) """ 股票财务报告预约披露 """ from akshare.stock_feature.stock_cninfo_yjyg import stock_report_disclosure """ 基金行情 """ from akshare.fund.fund_etf import fund_etf_hist_sina, fund_etf_category_sina """ 交易日历 """ from akshare.tool.trade_date_hist import tool_trade_date_hist_sina """ commodity option """ from akshare.option.option_commodity_sina import ( option_sina_commodity_contract_list, option_sina_commodity_dict, option_sina_commodity_hist, ) """ A 股PE和PB """ from akshare.stock_feature.stock_a_pb import stock_a_pb from akshare.stock_feature.stock_a_pe import stock_a_pe from akshare.stock_feature.stock_a_indicator import ( stock_a_lg_indicator, stock_hk_eniu_indicator, ) from akshare.stock_feature.stock_a_high_low import stock_a_high_low_statistics from akshare.stock_feature.stock_a_below_net_asset_statistics import ( stock_a_below_net_asset_statistics, ) """ 彭博亿万富豪指数 """ from akshare.fortune.fortune_bloomberg import index_bloomberg_billionaires """ stock-券商业绩月报 """ from akshare.stock_feature.stock_em_qsjy import stock_em_qsjy """ futures-warehouse-receipt """ from akshare.futures.futures_warehouse_receipt import ( futures_czce_warehouse_receipt, futures_dce_warehouse_receipt, futures_shfe_warehouse_receipt, ) """ stock-js """ from akshare.stock.stock_js_us import stock_js_price """ stock-summary """ from akshare.stock.stock_summary import ( stock_sse_summary, stock_szse_summary, stock_sse_deal_daily, ) """ 股票-机构推荐池 """ from akshare.stock_fundamental.stock_recommend import ( stock_institute_recommend, stock_institute_recommend_detail, ) """ 股票-机构持股 """ from akshare.stock_fundamental.stock_hold import ( stock_institute_hold_detail, stock_institute_hold, ) """ stock-info """ from akshare.stock.stock_info import ( stock_info_sh_delist, stock_info_sz_delist, stock_info_a_code_name, stock_info_sh_name_code, stock_info_sz_name_code, stock_info_sz_change_name, stock_info_change_name, ) """ stock-sector """ from akshare.stock.stock_industry import stock_sector_spot, stock_sector_detail """ stock-fundamental """ from akshare.stock_fundamental.stock_finance import ( stock_financial_abstract, stock_financial_report_sina, stock_financial_analysis_indicator, stock_add_stock, stock_ipo_info, stock_history_dividend_detail, stock_history_dividend, stock_circulate_stock_holder, stock_restricted_shares, stock_fund_stock_holder, stock_main_stock_holder, ) """ stock-HK-fundamental """ from akshare.stock_fundamental.stock_finance_hk import ( stock_financial_hk_analysis_indicator_em, stock_financial_hk_report_em, ) """ stock_fund """ from akshare.stock.stock_fund import ( stock_individual_fund_flow, stock_market_fund_flow, stock_sector_fund_flow_rank, stock_individual_fund_flow_rank, ) """ air-quality """ from akshare.air.air_zhenqi import ( air_quality_hist, air_quality_rank, air_quality_watch_point, air_city_list, ) """ hf """ from akshare.hf.hf_sp500 import hf_sp_500 """ stock_em_yjyg """ from akshare.stock_feature.stock_em_yjyg import ( stock_em_yjyg, stock_em_yysj, stock_em_yjkb, ) """ stock """ from akshare.stock_feature.stock_em_dxsyl import stock_em_dxsyl, stock_em_xgsglb """ article """ from akshare.article.fred_md import fred_md, fred_qd """ covid_19 CSSE """ from akshare.event.covid import ( covid_19_csse_daily, covid_19_csse_global_confirmed, covid_19_csse_global_death, covid_19_csse_global_recovered, covid_19_csse_us_death, covid_19_csse_us_confirmed, ) """ futures_cfmmc """ from akshare.futures.futures_cfmmc import futures_index_cscidx_map, futures_index_cscidx """ futures_em_spot_stock """ from akshare.futures.futures_em_spot_stock import futures_spot_stock """ energy_oil """ from akshare.energy.energy_oil import energy_oil_detail, energy_oil_hist """ index-vix """ from akshare.economic.macro_other import index_vix """ futures-foreign """ from akshare.futures.futures_foreign import futures_foreign_detail, futures_foreign_hist """ stock-em-tfp """ from akshare.stock_feature.stock_em_tfp import stock_tfp_em """ stock-em-hsgt """ from akshare.stock_feature.stock_em_hsgt import ( stock_em_hsgt_north_acc_flow_in, stock_em_hsgt_north_cash, stock_em_hsgt_north_net_flow_in, stock_em_hsgt_south_acc_flow_in, stock_em_hsgt_south_cash, stock_em_hsgt_south_net_flow_in, stock_em_hsgt_hold_stock, stock_em_hsgt_hist, stock_em_hsgt_institution_statistics, stock_em_hsgt_stock_statistics, stock_em_hsgt_board_rank, ) """ stock-em-comment """ from akshare.stock_feature.stock_em_comment import stock_em_comment """ stock-em-analyst """ from akshare.stock_feature.stock_em_analyst import ( stock_em_analyst_detail, stock_em_analyst_rank, ) """ tool-github """ from akshare.tool.tool_github import tool_github_star_list, tool_github_email_address """ sgx futures data """ from akshare.futures.futures_sgx_daily import futures_sgx_daily """ currency interface """ from akshare.currency.currency import ( currency_convert, currency_currencies, currency_history, currency_latest, currency_time_series, ) """ 知识图谱 """ from akshare.nlp.nlp_interface import nlp_ownthink, nlp_answer """ 微博舆情报告 """ from akshare.stock.stock_weibo_nlp import stock_js_weibo_nlp_time, stock_js_weibo_report """ 金融期权-新浪 """ from akshare.option.option_finance_sina import ( option_sina_cffex_hs300_list, option_sina_cffex_hs300_spot, option_sina_cffex_hs300_daily, option_sina_sse_list, option_sina_sse_expire_day, option_sina_sse_codes, option_sina_sse_spot_price, option_sina_sse_underlying_spot_price, option_sina_sse_greeks, option_sina_sse_minute, option_sina_sse_daily, option_sina_finance_minute, ) """ 中国-慈善 """ from akshare.charity.charity_china import ( charity_china_organization, charity_china_plan, charity_china_platform, charity_china_progress, charity_china_report, charity_china_trust, ) """ 中国-特许经营数据 """ from akshare.event.franchise import franchise_china """ 债券-沪深债券 """ from akshare.bond.bond_zh_sina import bond_zh_hs_daily, bond_zh_hs_spot from akshare.bond.bond_zh_cov_sina import ( bond_zh_hs_cov_daily, bond_zh_hs_cov_spot, bond_cov_comparison, bond_zh_cov, bond_zh_cov_info, bond_zh_hs_cov_min, ) from akshare.bond.bond_convert import bond_cov_jsl """ for pro api """ from akshare.pro.data_pro import pro_api """ for pro api token set """ from akshare.utils.token_process import set_token """ 债券质押式回购成交明细数据 """ from akshare.bond.china_repo import bond_repo_zh_tick """ 新型肺炎 """ from akshare.event.covid import ( covid_19_trip, covid_19_trace, ) """ 基金数据接口 """ from akshare.fund.fund_em import ( fund_em_open_fund_daily, fund_em_open_fund_info, fund_em_etf_fund_daily, fund_em_etf_fund_info, fund_em_financial_fund_daily, fund_em_financial_fund_info, fund_em_fund_name, fund_em_graded_fund_daily, fund_em_graded_fund_info, fund_em_money_fund_daily, fund_em_money_fund_info, fund_em_value_estimation, fund_em_hk_fund_hist, ) """ 百度迁徙地图接口 """ from akshare.event.covid import ( migration_area_baidu, migration_scale_baidu, ) """ 新增-事件接口新型冠状病毒接口 """ from akshare.event.covid import ( covid_19_163, covid_19_dxy, covid_19_baidu, covid_19_hist_city, covid_19_hist_province, ) """ 英为财情-外汇-货币对历史数据 """ from akshare.fx.currency_investing import ( currency_hist, currency_name_code, currency_pair_map, ) """ 商品期权-郑州商品交易所-期权-历史数据 """ from akshare.option.option_czce import option_czce_hist """ 宏观-经济数据-银行间拆借利率 """ from akshare.interest_rate.interbank_rate_em import rate_interbank """ 东方财富网-经济数据-银行间拆借利率 """ from akshare.interest_rate.interbank_rate_em import rate_interbank """ 金十数据中心-外汇情绪 """ from akshare.economic.macro_other import macro_fx_sentiment """ 金十数据中心-经济指标-欧元区 """ from akshare.economic.macro_euro import ( macro_euro_gdp_yoy, macro_euro_cpi_mom, macro_euro_cpi_yoy, macro_euro_current_account_mom, macro_euro_employment_change_qoq, macro_euro_industrial_production_mom, macro_euro_manufacturing_pmi, macro_euro_ppi_mom, macro_euro_retail_sales_mom, macro_euro_sentix_investor_confidence, macro_euro_services_pmi, macro_euro_trade_balance, macro_euro_unemployment_rate_mom, macro_euro_zew_economic_sentiment, macro_euro_lme_holding, macro_euro_lme_stock, ) """ 金十数据中心-经济指标-央行利率-主要央行利率 """ from akshare.economic.macro_bank import ( macro_bank_australia_interest_rate, macro_bank_brazil_interest_rate, macro_bank_china_interest_rate, macro_bank_brazil_interest_rate, macro_bank_english_interest_rate, macro_bank_euro_interest_rate, macro_bank_india_interest_rate, macro_bank_japan_interest_rate, macro_bank_newzealand_interest_rate, macro_bank_russia_interest_rate, macro_bank_switzerland_interest_rate, macro_bank_usa_interest_rate, ) """ 义乌小商品指数 """ from akshare.index.index_yw import index_yw """ 股票指数-股票指数-成份股 """ from akshare.index.index_cons import ( index_stock_info, index_stock_cons, index_stock_hist, index_stock_cons_sina, index_stock_cons_csindex, stock_a_code_to_symbol, ) """ 东方财富-股票账户 """ from akshare.stock_feature.stock_em_account import stock_em_account """ 期货规则 """ from akshare.futures.futures_rule import futures_rule """ 东方财富-商誉专题 """ from akshare.stock_feature.stock_em_sy import ( stock_em_sy_profile, stock_em_sy_yq_list, stock_em_sy_jz_list, stock_em_sy_list, stock_em_sy_hy_list, ) """ 东方财富-股票质押 """ from akshare.stock_feature.stock_em_gpzy import ( stock_em_gpzy_pledge_ratio, stock_em_gpzy_profile, stock_em_gpzy_distribute_statistics_bank, stock_em_gpzy_distribute_statistics_company, stock_em_gpzy_industry_data, stock_em_gpzy_pledge_ratio_detail, ) """ 东方财富-机构调研 """ from akshare.stock_feature.stock_em_jgdy import stock_em_jgdy_tj, stock_em_jgdy_detail """ IT桔子 """ from akshare.fortune.fortune_it_juzi import ( death_company, maxima_company, nicorn_company, ) """ 新浪主力连续接口 """ from akshare.futures_derivative.sina_futures_index import ( futures_main_sina, futures_display_main_sina, ) """ 中国宏观杠杆率数据 """ from akshare.economic.marco_cnbs import macro_cnbs """ 大宗商品-现货价格指数 """ from akshare.index.index_spot import spot_goods """ 成本-世界各大城市生活成本 """ from akshare.cost.cost_living import cost_living """ 能源-碳排放权 """ from akshare.energy.energy_carbon import ( energy_carbon_domestic, energy_carbon_bj, energy_carbon_eu, energy_carbon_gz, energy_carbon_hb, energy_carbon_sz, ) """ 中国证券投资基金业协会-信息公示 """ from akshare.fund.fund_amac import ( amac_manager_info, amac_member_info, amac_member_sub_info, amac_aoin_info, amac_fund_account_info, amac_fund_info, amac_fund_sub_info, amac_futures_info, amac_manager_cancelled_info, amac_securities_info, amac_fund_abs, amac_manager_classify_info, amac_person_fund_org_list, amac_person_bond_org_list, ) """ 世界五百强公司排名接口 """ from akshare.fortune.fortune_500 import fortune_rank, fortune_rank_eng """ 申万行业一级 """ from akshare.index.index_sw import ( sw_index_representation_spot, sw_index_spot, sw_index_second_spot, sw_index_cons, sw_index_daily, sw_index_daily_indicator, ) """ 谷歌指数 """ from akshare.index.index_google import google_index """ 百度指数 """ from akshare.index.index_baidu import ( baidu_search_index, baidu_info_index, baidu_media_index, ) """ 微博指数 """ from akshare.index.index_weibo import weibo_index """ 经济政策不确定性指数 """ from akshare.article.epu_index import article_epu_index """ 南华期货-南华指数 """ from akshare.futures_derivative.nh_index_return import ( nh_return_index, get_nh_list_table, ) from akshare.futures_derivative.nh_index_price import nh_price_index from akshare.futures_derivative.nh_index_volatility import nh_volatility_index """ 空气-河北 """ from akshare.air.air_hebei import air_quality_hebei """ timeanddate-日出和日落 """ from akshare.air.time_and_date import sunrise_daily, sunrise_monthly """ 新浪-指数实时行情和历史行情 """ from akshare.stock.stock_zh_a_tick_tx_163 import ( stock_zh_a_tick_tx, stock_zh_a_tick_tx_js, stock_zh_a_tick_163, stock_zh_a_tick_163_now, ) """ 新浪-指数实时行情和历史行情 """ from akshare.index.zh_stock_index_sina import ( stock_zh_index_daily, stock_zh_index_spot, stock_zh_index_daily_tx, stock_zh_index_daily_em, ) """ 外盘期货实时行情 """ from akshare.futures.futures_hq_sina import ( futures_foreign_commodity_realtime, futures_foreign_commodity_subscribe_exchange_symbol, ) """ FF多因子数据接口 """ from akshare.article.ff_factor import article_ff_crr """ Realized Library 接口 """ from akshare.article.risk_rv import ( article_oman_rv, article_oman_rv_short, article_rlab_rv, ) """ 银保监分局本级行政处罚数据 """ from akshare.bank.bank_cbirc_2020 import bank_fjcf_table_detail """ 科创板股票 """ from akshare.stock.stock_zh_kcb_sina import stock_zh_kcb_spot, stock_zh_kcb_daily """ A股 """ from akshare.stock.stock_zh_a_sina import ( stock_zh_a_spot, stock_zh_a_daily, stock_zh_a_minute, stock_zh_a_cdr_daily, ) """ A+H股 """ from akshare.stock.stock_zh_ah_tx import ( stock_zh_ah_spot, stock_zh_ah_daily, stock_zh_ah_name, ) """ 加密货币 """ from akshare.economic.macro_other import crypto_js_spot """ 金融期权 """ from akshare.option.option_finance import ( option_finance_board, option_finance_underlying, ) """ 新浪-美股实时行情数据和历史行情数据(前复权) """ from akshare.stock.stock_us_sina import ( stock_us_daily, stock_us_spot, get_us_stock_name, stock_us_fundamental, ) """ 新浪-港股实时行情数据和历史数据(前复权和后复权因子) """ from akshare.stock.stock_hk_sina import stock_hk_daily, stock_hk_spot """ 新浪-期货实时数据 """ from akshare.futures.futures_zh_sina import futures_zh_spot, match_main_contract """ 西本新干线-指数数据 """ from akshare.futures_derivative.futures_xgx import _get_code_pic, futures_xgx_index """ 生意社-商品与期货-现期图数据 """ from akshare.futures_derivative.sys_spot_futures import ( get_sys_spot_futures, get_sys_spot_futures_dict, ) """ 和讯财经-行情及历史数据 """ from akshare.stock.stock_us_zh_hx import stock_us_zh_spot, stock_us_zh_daily """ 和讯财经-企业社会责任 """ from akshare.stock.stock_zh_zrbg_hx import stock_zh_a_scr_report """ 全球宏观-机构宏观 """ from akshare.economic.macro_constitute import ( macro_cons_gold_amount, macro_cons_gold_change, macro_cons_gold_volume, macro_cons_opec_month, macro_cons_silver_amount, macro_cons_silver_change, macro_cons_silver_volume, ) """ 全球宏观-美国宏观 """ from akshare.economic.macro_usa import ( macro_usa_eia_crude_rate, macro_usa_non_farm, macro_usa_unemployment_rate, macro_usa_adp_employment, macro_usa_core_pce_price, macro_usa_cpi_monthly, macro_usa_crude_inner, macro_usa_gdp_monthly, macro_usa_initial_jobless, macro_usa_lmci, macro_usa_api_crude_stock, macro_usa_building_permits, macro_usa_business_inventories, macro_usa_cb_consumer_confidence, macro_usa_core_cpi_monthly, macro_usa_core_ppi, macro_usa_current_account, macro_usa_durable_goods_orders, macro_usa_trade_balance, macro_usa_spcs20, macro_usa_services_pmi, macro_usa_rig_count, macro_usa_retail_sales, macro_usa_real_consumer_spending, macro_usa_ppi, macro_usa_pmi, macro_usa_personal_spending, macro_usa_pending_home_sales, macro_usa_nfib_small_business, macro_usa_new_home_sales, macro_usa_nahb_house_market_index, macro_usa_michigan_consumer_sentiment, macro_usa_exist_home_sales, macro_usa_export_price, macro_usa_factory_orders, macro_usa_house_price_index, macro_usa_house_starts, macro_usa_import_price, macro_usa_industrial_production, macro_usa_ism_non_pmi, macro_usa_ism_pmi, macro_usa_job_cuts, macro_usa_cftc_nc_holding, macro_usa_cftc_c_holding, macro_usa_cftc_merchant_currency_holding, macro_usa_cftc_merchant_goods_holding, macro_usa_phs, ) """ 全球宏观-中国宏观 """ from akshare.economic.macro_china import ( macro_china_cpi_monthly, macro_china_cpi_yearly, macro_china_m2_yearly, macro_china_fx_reserves_yearly, macro_china_cx_pmi_yearly, macro_china_pmi_yearly, macro_china_daily_energy, macro_china_non_man_pmi, macro_china_rmb, macro_china_gdp_yearly, macro_china_shrzgm, macro_china_ppi_yearly, macro_china_cx_services_pmi_yearly, macro_china_market_margin_sh, macro_china_market_margin_sz, macro_china_au_report, macro_china_ctci_detail, macro_china_ctci_detail_hist, macro_china_ctci, macro_china_exports_yoy, macro_china_hk_market_info, macro_china_imports_yoy, macro_china_trade_balance, macro_china_shibor_all, macro_china_industrial_production_yoy, macro_china_gyzjz, macro_china_lpr, macro_china_new_house_price, macro_china_enterprise_boom_index, macro_china_national_tax_receipts, macro_china_new_financial_credit, macro_china_fx_gold, macro_china_money_supply, macro_china_stock_market_cap, macro_china_cpi, macro_china_gdp, macro_china_ppi, macro_china_pmi, macro_china_gdzctz, macro_china_hgjck, macro_china_czsr, macro_china_whxd, macro_china_wbck, macro_china_bond_public, macro_china_gksccz, macro_china_hb, macro_china_xfzxx, macro_china_reserve_requirement_ratio, macro_china_consumer_goods_retail, macro_china_society_electricity, macro_china_society_traffic_volume, macro_china_postal_telecommunicational, macro_china_international_tourism_fx, macro_china_passenger_load_factor, macro_china_freight_index, macro_china_central_bank_balance, macro_china_insurance, macro_china_supply_of_money, macro_china_swap_rate, macro_china_foreign_exchange_gold, macro_china_retail_price_index, macro_china_real_estate, macro_china_qyspjg, macro_china_fdi, ) """ 全球期货 """ from akshare.futures.futures_international import ( futures_global_commodity_hist, futures_global_commodity_name_url_map, ) """ 外汇 """ from akshare.fx.fx_quote import fx_pair_quote, fx_spot_quote, fx_swap_quote """ 债券行情 """ from akshare.bond.china_bond import bond_spot_quote, bond_spot_deal, bond_china_yield """ 商品期权 """ from akshare.option.option_commodity import ( option_dce_daily, option_czce_daily, option_shfe_daily, ) """ 英为财情-债券 """ from akshare.bond.bond_investing import ( bond_investing_global, bond_investing_global_country_name_url, ) """ 英为财情-指数 """ from akshare.index.index_investing import ( index_investing_global, index_investing_global_country_name_url, index_investing_global_from_url, ) """ 99期货-期货库存数据 """ from akshare.futures.futures_inventory import futures_inventory_99 """ 东方财富-期货库存数据 """ from akshare.futures.futures_inventory_em import futures_inventory_em """ 中国银行间市场交易商协会 """ from akshare.bond.bond_bank import get_bond_bank """ 奇货可查-工具模块 """ from akshare.qhkc_web.qhkc_tool import qhkc_tool_foreign, qhkc_tool_gdp """ 奇货可查-指数模块 """ from akshare.qhkc_web.qhkc_index import ( get_qhkc_index, get_qhkc_index_trend, get_qhkc_index_profit_loss, ) """ 奇货可查-资金模块 """ from akshare.qhkc_web.qhkc_fund import ( get_qhkc_fund_money_change, get_qhkc_fund_bs, get_qhkc_fund_position, ) """ 大宗商品现货价格及基差 """ from akshare.futures.futures_basis import ( futures_spot_price_daily, futures_spot_price, futures_spot_price_previous, ) """ 期货持仓成交排名数据 """ from akshare.futures.cot import ( get_rank_sum_daily, get_rank_sum, get_shfe_rank_table, get_czce_rank_table, get_dce_rank_table, get_cffex_rank_table, futures_dce_position_rank, futures_dce_position_rank_other, ) """ 大宗商品仓单数据 """ from akshare.futures.receipt import get_receipt """ 大宗商品展期收益率数据 """ from akshare.futures.futures_roll_yield import get_roll_yield_bar, get_roll_yield """ 交易所日线行情数据 """ from akshare.futures.futures_daily_bar import ( get_cffex_daily, get_czce_daily, get_shfe_v_wap, get_shfe_daily, get_dce_daily, get_futures_daily, )
25.871698
118
0.79617
[ "MIT" ]
LoveRabbit007/akshare
akshare/__init__.py
106,616
Python
from typing import Dict from flask_babel import _ from anyway.backend_constants import InjurySeverity from anyway.infographics_dictionaries import segment_dictionary from anyway.models import InvolvedMarkerView from anyway.request_params import RequestParams from anyway.widgets.suburban_widgets.sub_urban_widget import SubUrbanWidget from anyway.widgets.widget import register from anyway.widgets.widget_utils import ( get_accidents_stats, gen_entity_labels, get_injured_filters, format_2_level_items, sort_and_fill_gaps_for_stacked_bar, ) @register class InjuredCountByAccidentYearWidget(SubUrbanWidget): name: str = "injured_count_by_accident_year" def __init__(self, request_params: RequestParams): super().__init__(request_params, type(self).name) self.rank = 9 self.information = ( "Fatal, severe and light injured count in the specified years, split by injury severity" ) def generate_items(self) -> None: res1 = get_accidents_stats( table_obj=InvolvedMarkerView, filters=get_injured_filters(self.request_params.location_info), group_by=("accident_year", "injury_severity"), count="injury_severity", start_time=self.request_params.start_time, end_time=self.request_params.end_time, ) res2 = sort_and_fill_gaps_for_stacked_bar( res1, range(self.request_params.start_time.year, self.request_params.end_time.year + 1), { InjurySeverity.KILLED.value: 0, InjurySeverity.SEVERE_INJURED.value: 0, InjurySeverity.LIGHT_INJURED.value: 0, }, ) self.items = format_2_level_items(res2, None, InjurySeverity) @staticmethod def localize_items(request_params: RequestParams, items: Dict) -> Dict: items["data"]["text"] = { "title": _("Number of injured in accidents, per year, split by severity") + f" - {segment_dictionary[request_params.location_info['road_segment_name']]}", "labels_map": gen_entity_labels(InjurySeverity), } return items _("Fatal, severe and light injured count in the specified years, split by injury severity")
37.870968
101
0.677172
[ "MIT" ]
BusinessLanguage/anyway
anyway/widgets/suburban_widgets/injured_count_by_accident_year_widget.py
2,348
Python
import pytest from ml_api.api.app import create_app from ml_api.api.config import TestingConfig #Fixtures provide an easy way to setup and teardown resources @pytest.fixture def app(): app = create_app(config_object=TestingConfig) with app.app_context(): yield app @pytest.fixture def flask_test_client(app): with app.test_client() as test_client: yield test_client
22.111111
61
0.753769
[ "MIT" ]
iameminmammadov/bigmart
packages/ml_api/tests/conftest.py
398
Python
import scipy, copy import SloppyCell.Utility load = SloppyCell.Utility.load save = SloppyCell.Utility.save import SloppyCell.ReactionNetworks.Dynamics as Dynamics try: import SloppyCell.Plotting as Plotting except ImportError: pass def setup(paramfile,calcobject,senstrajfile,jtjfile) : """ Set up the quantities necessary to run the optimal design algorithms. NOTE: This function needs to be called first before any of the optimal design functions can be called. paramfile: the name of a pickled file containing the best fit parameters in KeyedList format calcobject: the calculation object for which we are doing the optimal design. (Note that in general, may be searching a design over many different calculations, but here we only consider one. Thus, we set design_sentraj equal to senstraj) senstrajfile: the name of the file containing the pickled sensitivity trajectory for the calculation, calcobject, for the set of parameters in paramfile. jtjfile: the name of the file containing the pickled Fisher Information Matrix (J^t J) for the current set of data and for the parameters in paramfile. NOTE: The derivatives computed for J^tJ need to be with respect to the *log* of the parameters """ import OptDesign as v v.curp = load(paramfile) v.jtj = load(jtjfile) v.clc = calcobject v.senstraj = load(senstrajfile) v.design_senstraj = v.senstraj v.p_names_ordered = v.curp.keys() v.jtjdict = {} for pindex1,pname1 in enumerate(v.p_names_ordered) : for pindex2,pname2 in enumerate(v.p_names_ordered) : v.jtjdict[(pname1,pname2)] = v.jtj[pindex1][pindex2] v.ovvarnames = v.clc.optimizableVars.keys() v.jtjtrunc = scipy.zeros((len(v.ovvarnames),len(v.ovvarnames)),scipy.float_) # The number of optimizable variables for the calculation we are # considering might be less than the number of parameters for the # whole model. We are only working with this calculation so we # need to trim down the J^t J (Fisher information) matrix # accordingly for pindex1,pname1 in enumerate(v.ovvarnames) : for pindex2,pname2 in enumerate(v.ovvarnames) : v.jtjtrunc[pindex1][pindex2] = v.jtjdict[(pname1,pname2)] def make_sens_traj(calcobject,params,times,senstrajfilename): """ Make the sensitivity trajectory for the calculation calcoject (same as in setup(...) above). params: parameters as a KeyedList, sensitivity traj is calculated at these parameters (should be same as in paramfile in setup(...) above) times: the timepoints in the sensitivity trajectory (1-d array) senstrajfilename: the file to save the sensitivity trajectory to Note that if times is very finely spaced, the sensitivity trajectory will need a lot of storage space """ senstraj = Dynamics.integrate_sensitivity(calcobject, times, params, 1.0e-6) save(senstraj,senstrajfilename) def design_over_chems(chemnames,designchemnames,logprior=1.0e20) : """ chemnames = list of unmeasurable chemicals designchemnames = list of measurable chemicals logprior = prior on params, e.g. logprior = log(1000.0) means parameter standard deviation will be less than a factor of 1000.0 Out of the list chemnames, find the best chemical and best time point, that most reduces the integrated variance over designchemnames """ times = design_senstraj.timepoints trunc_times = [times[i] for i in scipy.arange(0,len(times),1)] best_change = 0.0 # the change should always be negative best_chem = "None" best_time = "None" for dchemname in designchemnames : print "On design chemical ", dchemname for t in trunc_times : sensvect_design = get_sens_vect(dchemname,t) # NOTE: assuming a 10% error on the measurement --- use 10% of the # maximum value in the trajectory maxval = max(design_senstraj.get_var_traj(dchemname)) + 1.0 sensvect_design = sensvect_design/(.1*maxval) intvar_change = integrated_var_change(chemnames,sensvect_design,logprior) tot_change = 0.0 for id in chemnames : tot_change = tot_change + intvar_change[id] if tot_change < best_change : best_change = tot_change best_chem = dchemname best_time = t return best_change, best_chem, best_time def design_over_single_variance(sensvect,designchemnames,logprior=1.0e20) : """ sensvect : a sensitivity vector (length = # of params) of unmeasurable quantity of interest designchemnames : list of measurable chemicals sensvect could be the sensitivity of a single chemical at a single timepoint; then can use method get_sens_vect (see elsewhere in this file) to compute this sensitivity vector. In that case we are designing over the species variance at that single point """ times = senstraj.timepoints trunc_times = [times[i] for i in scipy.arange(0,len(times),5)] best_change = 0.0 # the change should always be negative best_chem = "None" best_time = "None" for dchemname in designchemnames : for t in trunc_times : sensvect_design = get_sens_vect(dchemname,t) var_change = single_variance_change(sensvect,sensvect_design,logprior) if var_change < best_change : best_change = var_change best_chem = dchemname best_time = t return best_change, best_chem, best_time def variances(chemnames,logprior=1.0e20) : """ chemnames : list of chemical names for which the variance at all timepoints will be computed logprior : prior on parameters. logprior = log(1000.0) means params allowed to vary by about a factor of 1000.0 return values : times: times of the trajectory bestfit: a dictionary of best fit trajectories (keys are entries in chemnames) var: a dictionary of variances (keys are entries in chemnames) """ #senstraj = load('EndogenousEGFR3T3sensNoPriors') times = senstraj.timepoints jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye( len(jtjtrunc),len(jtjtrunc))) var = {} bestfit = {} optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] for name in chemnames : var[name] = [] bestfit[name] = [] chemindex = senstraj.key_column.get(name) index1sens = senstraj.key_column.get((name,first)) index2sens = senstraj.key_column.get((name,last)) sensarray_this_chem = copy.copy(senstraj.values[:,index1sens:(index2sens+1)]) # Turn sensitivities into sensitivities with respect to log parameters for j, pname in enumerate(ovvarnames) : sensarray_this_chem[:,j] = sensarray_this_chem[:,j]*curp.get(pname) tmp = scipy.dot(sensarray_this_chem,jtjinv) for i in range(len(tmp[:,0])) : var[name].append(scipy.dot(tmp[i,:],sensarray_this_chem[i,:])) bestfit[name] = senstraj.values[:,chemindex] var[name] = scipy.asarray(var[name]) return times, bestfit, var def variances_log_chems(chemnames,logprior=1.0e20) : """ Same as above except the variances are now on the logs of the chemicals trajectories. """ #senstraj = load('EndogenousEGFR3T3sensNoPriors') times = senstraj.timepoints jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye( len(jtjtrunc),len(jtjtrunc))) var = {} bestfit = {} optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] for name in chemnames : var[name] = [] bestfit[name] = [] chemindex = senstraj.key_column.get(name) index1sens = senstraj.key_column.get((name,first)) index2sens = senstraj.key_column.get((name,last)) sensarray_this_chem = copy.copy(senstraj.values[:,index1sens:(index2sens+1)]) traj_this_chem = copy.copy(senstraj.values[:,chemindex]) for j, pname in enumerate(ovvarnames) : sensarray_this_chem[:,j] = sensarray_this_chem[:,j]*curp.get(pname) # need to scale each row by 1/chemvalue to mimic a derivative w.r.t. # log chemicals. Add a small value to chemvalue to avoid divide by zero for i in range(len(times)) : sensarray_this_chem[i,:] = sensarray_this_chem[i,:]/(traj_this_chem[i]+1.0e-6) tmp = scipy.dot(sensarray_this_chem,jtjinv) for i in range(len(tmp[:,0])) : var[name].append(scipy.dot(tmp[i,:],sensarray_this_chem[i,:])) bestfit[name] = senstraj.values[:,chemindex] var[name] = scipy.asarray(var[name]) return times,bestfit,var def single_variance(sensvect,logprior=1.0e20) : """ Get the variance for a single function of parameters that has a sensitivity vector sensvect. Useful for looking at variances in parameter combinations, or simple functions of parameters. Note that if we are concerned with ratios and products of parameters, it's often best to consider sensvect as a sensitivity w.r.t. log parameters """ jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye( len(jtjtrunc),len(jtjtrunc))) tmp = scipy.dot(jtjinv,sensvect) var = scipy.dot(sensvect,tmp) return var def variance_change(chemnames,sensvect_design,logprior=1.0e20) : """ chemnames : list of chemical names at which we will look at variance sensvect_design : the sensitivity vector (one by no. params array) at the new design point. returns : (times, varchange) the times and the change in variances at those times (should be negative) for each of the chemicals in chemnames, after the addition of the new timepoint. varchange is a dictionary indexed by entries in chemnames. """ times = senstraj.timepoints n = len(jtjtrunc) jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye(n,n)) #sensvect_design = scipy.resize(sensvect_design,(n,1)) jtjinv_design = scipy.dot(jtjinv,sensvect_design) #jtjinv_design = scipy.resize(jtjinv_design,(n,1)) # want a column vector denominator = 1.0 + scipy.dot(sensvect_design,jtjinv_design) varchange = {} optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] for name in chemnames : varchange[name] = [] chemindex = senstraj.key_column.get(name) index1sens = senstraj.key_column.get((name,first)) index2sens = senstraj.key_column.get((name,last)) sensarray_this_chem = copy.copy(senstraj.values[:,index1sens:(index2sens+1)]) for j, pname in enumerate(ovvarnames) : sensarray_this_chem[:,j] = sensarray_this_chem[:,j]*curp.get(pname) product = scipy.dot(sensarray_this_chem,jtjinv_design) # this product is a number of timepoints by one vector, we need to # square each element for the final formula varchange[name] = -scipy.asarray(product**2/denominator) return times, varchange def single_variance_change(sensvect,sensvect_design,logprior=1.0e20) : """ sensvect : given a single function f(p) of parameters, this is the derivative w.r.t. each of the parameters (in log parameters). For ratios or products of rate constants, f(p) is a linear function sensvect_design : the sensitivity vector of the new point in the design you wish to add returns: the variance change of the quantity f(p), given the addition of the new data point, with sensitivity vector sensvect_design. """ n = len(jtjtrunc) jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye(n,n)) jtjinv_design = scipy.dot(jtjinv,sensvect_design) denominator = 1.0 + scipy.dot(sensvect_design,jtjinv_design) product = scipy.dot(sensvect,jtjinv_design) return -product**2/denominator def get_sens_vect(chemname,time) : """ get a sensitivity vector for a chemical "chemname" at a time, time """ tindex = design_senstraj._get_time_index(time,1.0e-4) optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] index1sens = design_senstraj.key_column.get((chemname,first)) index2sens = design_senstraj.key_column.get((chemname,last)) sens_vect = copy.copy( design_senstraj.values[tindex,index1sens:(index2sens+1)]) for j, pname in enumerate(ovvarnames) : sens_vect[j] = sens_vect[j]*curp.get(pname) return sens_vect def get_sens_array(chemname) : """ get an array of sens_vects for all the times the chemical is defined and convert to log sensitivities """ optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] chemindex = design_senstraj.key_column.get(chemname) index1sens = design_senstraj.key_column.get((chemname,first)) index2sens = design_senstraj.key_column.get((chemname,last)) sensarray_this_chem = copy.copy( design_senstraj.values[:,index1sens:(index2sens+1)]) for j, pname in enumerate(ovvarnames) : sensarray_this_chem[:,j] = sensarray_this_chem[:,j]*curp.get(pname) return sensarray_this_chem def integrated_var_change(chemnames,sensvect_design,logprior=1.0e20) : times, varchange = variance_change(chemnames,sensvect_design,logprior) int_varchange = {} for name in varchange.keys() : int_varchange[name] = scipy.integrate.simps(varchange[name],times) return int_varchange def var_change_weighted(weights,chemnames,sensarray_design,logprior=1.0e20) : """ This is similar to var_change except now we pass in a sensarray instead of sensvect --- this is a matrix of sensvects aligned rowwise. Row i will be multiplied by sqrt(weights[i]) where sum(weights)=1 and each weight is a number between zero and one. We will return the change in variance for all the chemicals in chemnames """ # we use the formula (Sherman-Woodbury-Morrison) # (A+UV^t)^(-1) = A^(-1) - A^(-1)*U*(I + V^T*A^(-1)*U)^(-1)*V^t*A^(-1) # where U = V and V^t = W^(1/2)*sensarray_design times = senstraj.timepoints ntimes = len(times) k,n = sensarray_design.shape jtjinv = scipy.linalg.inv(jtjtrunc+1.0/logprior**2*scipy.eye(n,n)) Vt = scipy.zeros((k,n),scipy.float_) for i in range(k) : Vt[i,:] = scipy.sqrt(weights[i])*sensarray_design[i,:] design_jtjinv = scipy.dot(Vt,jtjinv) #jtjinv_design = scipy.resize(jtjinv_design,(n,1)) # want a column vector denominator = scipy.eye(k,k) + \ scipy.dot(design_jtjinv,scipy.transpose(Vt)) inv_denom = scipy.linalg.inv(denominator) varchange = {} optvarkeys = clc.optimizableVars.keys() first = optvarkeys[0] last = optvarkeys[-1] for name in chemnames : varchange[name] = [] chemindex = senstraj.key_column.get(name) index1sens = senstraj.key_column.get((name,first)) index2sens = senstraj.key_column.get((name,last)) sensarray_this_chem = copy.copy(senstraj.values[:,index1sens:(index2sens+1)]) for j, pname in enumerate(ovvarnames) : sensarray_this_chem[:,j] = sensarray_this_chem[:,j]*curp.get(pname) product = scipy.dot(design_jtjinv, scipy.transpose(sensarray_this_chem)) # each column vector of this matrix has to be dotted through the # denominator matrix --- each column is a different time point for j in range(ntimes) : quadprod = scipy.dot(product[:,j],inv_denom) quadprod = scipy.dot(quadprod,product[:,j]) varchange[name].append(-quadprod) varchange[name] = scipy.asarray(varchange[name]) return times, varchange def integrated_var_change_weighted(weights,chemnames,sensarray_design,logprior=1.0e20) : times, varchange = var_change_weighted(weights,chemnames,sensarray_design, logprior) intvarchange = {} for name in varchange.keys() : intvarchange[name] = scipy.integrate.simps(varchange[name],times) return intvarchange def weight_cost(weights,chemnames,sensarray_design,logprior=1.0e20) : """ For this cost function we're going to assume unconstrained variables are being passed in, so we need to convert them to a range between 0 and 1. The sum of the weights should also = 1 """ weights0to1 = weights_trans(weights) # now weights lie between 0 and 1 weights0to1 = weights0to1/scipy.sum(weights0to1) # this makes sure # weights sum up to 1. intvarchange = integrated_var_change_weighted(weights0to1,chemnames, sensarray_design,logprior) cost = 0.0 for n in intvarchange.keys() : cost = cost + intvarchange[n] return cost def weights_trans(weights) : wtrans = (scipy.sin(weights)+1.0)/2.0 return wtrans def weights_inv_trans(transweights) : w = scipy.arcsin(2.0*transweights-1.0) return w def minimize_weight_cost(weights,chemnames,sensarray_design,logprior=1.0e20) : """ weights : a vector of positive numbers with length the same as the number of rows of sensarray_design. The weights should sum to 1 chemnames: a list of unmeasurable chemical names over which we wish to design experiments sensarray_design: an array of sensitivities of measurable chemicals or just an array of sensitivity vectors, each row a different sensitivity vector logprior : prior on parameters. logprior = log(1000.0) allows parameters to fluctuate by a factor of 1000 """ weights_trans = scipy.arcsin(2.0*weights-1.0) # maxiter may need to be increased if convergence is not apparent # or if the number of weights is increased w = scipy.optimize.fmin(weight_cost,weights_trans,maxiter = 10000, args=(chemnames,sensarray_design,logprior)) woptnotnormed = (scipy.sin(w)+1.0)/2.0 wopt = woptnotnormed/scipy.sum(woptnotnormed) return woptnotnormed,wopt def plot_variances(chemnames,logprior,scale=1.0,return_var = False) : """ chemnames: list of chemical names logprior: prior on params. logprior = log(1000.0) means parameters allowed to fluctuate by a factor of 1000 """ times, bestfit, var = variances(chemnames,logprior) for key in bestfit.keys() : Plotting.figure() Plotting.plot(times,bestfit[key]/scale) Plotting.hold(True) Plotting.plot(times,bestfit[key]/scale + scipy.sqrt(var[key])/scale,'r--') Plotting.plot(times,bestfit[key]/scale - scipy.sqrt(var[key])/scale,'r--') Plotting.title(key,fontsize=16) Plotting.xlabel('time (minutes)',fontsize=16) Plotting.ylabel('number of molecules',fontsize=16) xtics = Plotting.gca().get_xticklabels() ytics = Plotting.gca().get_yticklabels() Plotting.setp(xtics,size=16) Plotting.setp(ytics,size=16) #Plotting.axis([0.0,40.0,-.01,1.2e4]) Plotting.show() if return_var : return times, bestfit, var def plot_variances_log_chems(chemnames,logprior) : """ chemnames: list of chemical names logprior: prior on params Plots the standard deviation of the chemicals when the variance is computed using logs of the chemical trajectories. This makes sure the final plots do not have best_fit+-stddev that do not become negative """ times, bestfit, var = variances_log_chems(chemnames,logprior) for key in bestfit.keys() : Plotting.figure() Plotting.plot(times,bestfit[key]) Plotting.hold(True) Plotting.plot(times,bestfit[key]*scipy.exp(scipy.sqrt(var[key])),'r-') Plotting.plot(times,bestfit[key]*scipy.exp(-scipy.sqrt(var[key])),'r-') Plotting.title(key,fontsize=14) Plotting.xlabel('time') Plotting.ylabel('arb. units') #Plotting.axis([0.0,40.0,-.01,1.2e4]) Plotting.show() def plot_variance_newpoint(chemnames,sensvect_design,logprior=1.0e20, return_data = True) : """ chemnames: list of chemical names sensvect_design: a sensivity vector of a quantity that is measurable This will plot the old and new variances of the chemicals in chemnames, given a new measurement that has sensitivity vector sensvect_design """ times,bestfit,var = variances(chemnames,logprior) times,varchange = variance_change(chemnames,sensvect_design,logprior) for key in bestfit.keys() : Plotting.figure() Plotting.plot(times,bestfit[key]) Plotting.hold(True) Plotting.plot(times,bestfit[key] + scipy.sqrt(var[key]),'r-') Plotting.plot(times,bestfit[key] - scipy.sqrt(var[key]),'r-') Plotting.plot(times,bestfit[key] + scipy.sqrt(var[key]+varchange[key]),'k--') Plotting.plot(times,bestfit[key] - scipy.sqrt(var[key]+varchange[key]),'k--') Plotting.title(key,fontsize=14) Plotting.xlabel('time') Plotting.ylabel('arb. units') Plotting.axis([0.0,40.0,-.01,1.2e4]) Plotting.show() if return_data : newvar = {} for ky in var.keys() : newvar[ky] = var[key] + varchange[key] return times,bestfit,newvar def plot_variance_newweights(weights,chemnames,sensarray_design,logprior=1.0e20,scale=1.0,return_data = True) : """ weights : a proposed set of weights for each of the row vectors in sensarray_design chemnames : a list of chemicals for which we will plot the variance logprior : as before This will plot the old and new variances on chemnames, similar to above. NOTE: the weights that are passed in do not necessarily have to sum to one. e.g. if the weights are normalized such that max(weights) = 1, then by scaling all the weights by 1/sigma, you are then assuming that the most accurate measurement has an error of size sigma. sigma for example could be 20% of the maximum value of a trajectory. """ times,bestfit,var = variances(chemnames,logprior) times,varchange = var_change_weighted(weights,chemnames,sensarray_design,logprior) for key in bestfit.keys() : Plotting.figure() Plotting.plot(times,scale*bestfit[key]) Plotting.hold(True) Plotting.plot(times,scale*bestfit[key] + scale*scipy.sqrt(var[key]),'r-') Plotting.plot(times,scale*bestfit[key] - scale*scipy.sqrt(var[key]),'r-') Plotting.plot(times,scale*bestfit[key] + scale*scipy.sqrt(var[key]+varchange[key]),'k--') Plotting.plot(times,scale*bestfit[key] - scale*scipy.sqrt(var[key]+varchange[key]),'k--') Plotting.title(key,fontsize=14) Plotting.xlabel('time') Plotting.ylabel('arb. units') Plotting.axis([0.0,40.0,-.01,1.2e4]) Plotting.show() if return_data : newvar = {} for ky in var.keys() : newvar[ky] = var[key] + varchange[key] return times,bestfit,newvar def plot_variances_subplot(chemnames,logprior) : times, bestfit, var = variances(chemnames,logprior) nallplots = len(chemnames) # 9 at a time nfigs = nallplots/9 # integer division -- no fractional part for figno in range(1,nfigs+1) : Plotting.figure() for i in range(0,9) : Plotting.subplot(3,3,i+1) chemind = i+(figno-1)*9 Plotting.plot(times,bestfit[chemnames[chemind]]) Plotting.hold(True) Plotting.plot(times,bestfit[chemnames[chemind]] + scipy.sqrt(var[chemnames[chemind]]),'r-') Plotting.plot(times,bestfit[chemnames[chemind]] - scipy.sqrt(var[chemnames[chemind]]),'r-') yt = Plotting.yticks() Plotting.axis([0,100.0,yt[0],yt[-1]]) Plotting.title(chemnames[chemind]) Plotting.xlabel('time') Plotting.ylabel('arb. units') xt = Plotting.xticks() Plotting.xticks([xt[0],xt[-1]]) Plotting.savefig('./figs/variance_wt_'+i.__str__()+'.ps') Plotting.show() #def fix_sf(): # make sure scale factors get computed --- easiest way is # to compute the cost # print "cost is ", m.cost(curp) # sfs = m.internalVars['scaleFactors'] # for exptname in sfs.keys() : # fixeddict = sfs[exptname] # m.exptColl[exptname].set_fixed_sf(fixeddict) # just check # print "cost is now", m.cost(curp) def reduce_size(array,skipsize) : """ reduce_size takes an array of dimension m,n and returns an array with every skipsize row sampled. """ size = array.shape newsize = len(scipy.arange(0,size[0],skipsize)) if len(size) == 1 : # a vector newvect = scipy.zeros((newsize,),scipy.float_) for iind,i in enumerate(scipy.arange(0,size[0],skipsize)) : newvect[iind] = array[i] return newvect elif len(size) == 2 : # an array newarray = scipy.zeros((newsize,size[1]),scipy.float_) for iind,i in enumerate(scipy.arange(0,size[0],skipsize)) : newarray[iind] = array[i] return newarray
43.487267
111
0.666979
[ "BSD-3-Clause" ]
jurquiza/SloppyCellUrquiza2019
SloppyCell/ReactionNetworks/OptDesign.py
25,614
Python
# from tensorflow.contrib.training import HParams # from aukit.audio_io import Dict2Obj from dotmap import DotMap import json class Dict2Obj(DotMap): """ 修正DotMap的get方法生成DotMap对象的bug。 Dict2Obj的get方法和dict的get功能相同。 """ def __getitem__(self, k): if k not in self._map: return None else: return self._map[k] def parse(self, json_string): if json_string.strip(): _hp = json.loads(json_string) for k, v in _hp.items(): self[k] = v return self one = 64 # Default hyperparameters hparams = Dict2Obj(dict( encoder_path=r"../models/encoder/saved_models/ge2e_pretrained.pt", # Comma-separated list of cleaners to run on text prior to training and eval. For non-English # text, you may want to use "basic_cleaners" or "transliteration_cleaners". cleaners="chinese_cleaners", center=True, # If you only have 1 GPU or want to use only one GPU, please set num_gpus=0 and specify the # GPU idx on run. example: # expample 1 GPU of index 2 (train on "/gpu2" only): CUDA_VISIBLE_DEVICES=2 python train.py # --model="Tacotron" --hparams="tacotron_gpu_start_idx=2" # If you want to train on multiple GPUs, simply specify the number of GPUs available, # and the idx of the first GPU to use. example: # example 4 GPUs starting from index 0 (train on "/gpu0"->"/gpu3"): python train.py # --model="Tacotron" --hparams="tacotron_num_gpus=4, tacotron_gpu_start_idx=0" # The hparams arguments can be directly modified on this hparams.py file instead of being # specified on run if preferred! # If one wants to train both Tacotron and WaveNet in parallel (provided WaveNet will be # trained on True mel spectrograms), one needs to specify different GPU idxes. # example Tacotron+WaveNet on a machine with 4 or plus GPUs. Two GPUs for each model: # CUDA_VISIBLE_DEVICES=0,1 python train.py --model="Tacotron" # --hparams="tacotron_gpu_start_idx=0, tacotron_num_gpus=2" # Cuda_VISIBLE_DEVICES=2,3 python train.py --model="WaveNet" # --hparams="wavenet_gpu_start_idx=2; wavenet_num_gpus=2" # IMPORTANT NOTE: If using N GPUs, please multiply the tacotron_batch_size by N below in the # hparams! (tacotron_batch_size = 32 * N) # Never use lower batch size than 32 on a single GPU! # Same applies for Wavenet: wavenet_batch_size = 8 * N (wavenet_batch_size can be smaller than # 8 if GPU is having OOM, minimum 2) # Please also apply the synthesis batch size modification likewise. (if N GPUs are used for # synthesis, minimal batch size must be N, minimum of 1 sample per GPU) # We did not add an automatic multi-GPU batch size computation to avoid confusion in the # user"s mind and to provide more control to the user for # resources related decisions. # Acknowledgement: # Many thanks to @MlWoo for his awesome work on multi-GPU Tacotron which showed to work a # little faster than the original # pipeline for a single GPU as well. Great work! # Hardware setup: Default supposes user has only one GPU: "/gpu:0" (Tacotron only for now! # WaveNet does not support multi GPU yet, WIP) # Synthesis also uses the following hardware parameters for multi-GPU parallel synthesis. tacotron_gpu_start_idx=0, # idx of the first GPU to be used for Tacotron training. tacotron_num_gpus=1, # Determines the number of gpus in use for Tacotron training. split_on_cpu=True, # Determines whether to split data on CPU or on first GPU. This is automatically True when # more than 1 GPU is used. ########################################################################################################################################### # Audio # Audio parameters are the most important parameters to tune when using this work on your # personal data. Below are the beginner steps to adapt # this work to your personal data: # 1- Determine my data sample rate: First you need to determine your audio sample_rate (how # many samples are in a second of audio). This can be done using sox: "sox --i <filename>" # (For this small tuto, I will consider 24kHz (24000 Hz), and defaults are 22050Hz, # so there are plenty of examples to refer to) # 2- set sample_rate parameter to your data correct sample rate # 3- Fix win_size and and hop_size accordingly: (Supposing you will follow our advice: 50ms # window_size, and 12.5ms frame_shift(hop_size)) # a- win_size = 0.05 * sample_rate. In the tuto example, 0.05 * 24000 = 1200 # b- hop_size = 0.25 * win_size. Also equal to 0.0125 * sample_rate. In the tuto # example, 0.25 * 1200 = 0.0125 * 24000 = 300 (Can set frame_shift_ms=12.5 instead) # 4- Fix n_fft, num_freq and upsample_scales parameters accordingly. # a- n_fft can be either equal to win_size or the first power of 2 that comes after # win_size. I usually recommend using the latter # to be more consistent with signal processing friends. No big difference to be seen # however. For the tuto example: n_fft = 2048 = 2**11 # b- num_freq = (n_fft / 2) + 1. For the tuto example: num_freq = 2048 / 2 + 1 = 1024 + # 1 = 1025. # c- For WaveNet, upsample_scales products must be equal to hop_size. For the tuto # example: upsample_scales=[15, 20] where 15 * 20 = 300 # it is also possible to use upsample_scales=[3, 4, 5, 5] instead. One must only # keep in mind that upsample_kernel_size[0] = 2*upsample_scales[0] # so the training segments should be long enough (2.8~3x upsample_scales[0] * # hop_size or longer) so that the first kernel size can see the middle # of the samples efficiently. The length of WaveNet training segments is under the # parameter "max_time_steps". # 5- Finally comes the silence trimming. This very much data dependent, so I suggest trying # preprocessing (or part of it, ctrl-C to stop), then use the # .ipynb provided in the repo to listen to some inverted mel/linear spectrograms. That # will first give you some idea about your above parameters, and # it will also give you an idea about trimming. If silences persist, try reducing # trim_top_db slowly. If samples are trimmed mid words, try increasing it. # 6- If audio quality is too metallic or fragmented (or if linear spectrogram plots are # showing black silent regions on top), then restart from step 2. inv_mel_basis=None, mel_basis=None, num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality # network rescale=True, # Whether to rescale audio prior to preprocessing rescaling_max=0.9, # Rescaling value # Whether to clip silence in Audio (at beginning and end of audio only, not the middle) # train samples of lengths between 3sec and 14sec are more than enough to make a model capable # of good parallelization. clip_mels_length=True, # For cases of OOM (Not really recommended, only use if facing unsolvable OOM errors, # also consider clipping your samples to smaller chunks) max_mel_frames=900, # Only relevant when clip_mels_length = True, please only use after trying output_per_steps=3 # and still getting OOM errors. # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder # Does not work if n_ffit is not multiple of hop_size!! use_lws=False, # Only used to set as True if using WaveNet, no difference in performance is observed in # either cases. silence_threshold=2, # silence threshold used for sound trimming for wavenet preprocessing # Mel spectrogram n_fft=800, # Extra window size is filled with 0 paddings to match this parameter hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>) frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) # M-AILABS (and other datasets) trim params (these parameters are usually correct for any # data, but definitely must be tuned for specific speakers) trim_fft_size=512, trim_hop_size=128, trim_top_db=23, # Mel and Linear spectrograms normalization/scaling and clipping signal_normalization=True, # Whether to normalize mel spectrograms to some predefined range (following below parameters) allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True symmetric_mels=True, # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, # faster and cleaner convergence) max_abs_value=4., # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not # be too big to avoid gradient explosion, # not too small for fast convergence) normalize_for_wavenet=True, # whether to rescale to [0, 1] for wavenet. (better audio quality) clip_for_wavenet=True, # whether to clip [-max, max] before training/synthesizing with wavenet (better audio quality) # Contribution by @begeekmyfriend # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude # levels. Also allows for better G&L phase reconstruction) preemphasize=True, # whether to apply filter preemphasis=0.97, # filter coefficient. # Limits min_level_db=-100, ref_level_db=20, fmin=55, # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) fmax=7600, # To be increased/reduced depending on data. # Griffin Lim power=1.5, # Only used in G&L inversion, usually values between 1.2 and 1.5 are a good choice. griffin_lim_iters=30, # 60, # Number of G&L iterations, typically 30 is enough but we use 60 to ensure convergence. ########################################################################################################################################### # Tacotron outputs_per_step=2, # Was 1 # number of frames to generate at each decoding step (increase to speed up computation and # allows for higher batch size, decreases G&L audio quality) stop_at_any=True, # Determines whether the decoder should stop when predicting <stop> to any frame or to all of # them (True works pretty well) embedding_dim=one * 4, # 512, # dimension of embedding space (these are NOT the speaker embeddings) # Encoder parameters enc_conv_num_layers=3, # number of encoder convolutional layers enc_conv_kernel_size=(5,), # size of encoder convolution filters for each layer enc_conv_channels=one * 4, # 512, # number of encoder convolutions filters for each layer encoder_lstm_units=one * 2, # 256, # number of lstm units for each direction (forward and backward) # Attention mechanism smoothing=False, # Whether to smooth the attention normalization function attention_dim=one * 1, # 128, # dimension of attention space attention_filters=32, # number of attention convolution filters attention_kernel=(31,), # kernel size of attention convolution cumulative_weights=True, # Whether to cumulate (sum) all previous attention weights or simply feed previous weights ( # Recommended: True) # Decoder prenet_layers=[one * 2, one * 2], # [256, 256], # number of layers and number of units of prenet decoder_layers=2, # number of decoder lstm layers decoder_lstm_units=one * 8, # 1024, # number of decoder lstm units on each layer max_iters=2000, # Max decoder steps during inference (Just for safety from infinite loop cases) # Residual postnet postnet_num_layers=5, # number of postnet convolutional layers postnet_kernel_size=(5,), # size of postnet convolution filters for each layer postnet_channels=one * 4, # 512, # number of postnet convolution filters for each layer # CBHG mel->linear postnet cbhg_kernels=8, # All kernel sizes from 1 to cbhg_kernels will be used in the convolution bank of CBHG to act # as "K-grams" cbhg_conv_channels=one * 1, # 128, # Channels of the convolution bank cbhg_pool_size=2, # pooling size of the CBHG cbhg_projection=one * 2, # 256, # projection channels of the CBHG (1st projection, 2nd is automatically set to num_mels) cbhg_projection_kernel_size=3, # kernel_size of the CBHG projections cbhg_highwaynet_layers=4, # Number of HighwayNet layers cbhg_highway_units=one * 1, # 128, # Number of units used in HighwayNet fully connected layers cbhg_rnn_units=one * 1, # 128, # Number of GRU units used in bidirectional RNN of CBHG block. CBHG output is 2x rnn_units in # shape # Loss params mask_encoder=True, # whether to mask encoder padding while computing attention. Set to True for better prosody # but slower convergence. mask_decoder=False, # Whether to use loss mask for padded sequences (if False, <stop_token> loss function will not # be weighted, else recommended pos_weight = 20) cross_entropy_pos_weight=20, # Use class weights to reduce the stop token classes imbalance (by adding more penalty on # False Negatives (FN)) (1 = disabled) predict_linear=False, # Whether to add a post-processing network to the Tacotron to predict linear spectrograms ( # True mode Not tested!!) ########################################################################################################################################### # Tacotron Training # Reproduction seeds tacotron_random_seed=5339, # Determines initial graph and operations (i.e: model) random state for reproducibility tacotron_data_random_state=1234, # random state for train test split repeatability # performance parameters tacotron_swap_with_cpu=False, # Whether to use cpu as support to gpu for decoder computation (Not recommended: may cause # major slowdowns! Only use when critical!) # train/test split ratios, mini-batches sizes tacotron_batch_size=64, # number of training samples on each training steps (was 32) # Tacotron Batch synthesis supports ~16x the training batch size (no gradients during # testing). # Training Tacotron with unmasked paddings makes it aware of them, which makes synthesis times # different from training. We thus recommend masking the encoder. tacotron_synthesis_batch_size=128, # DO NOT MAKE THIS BIGGER THAN 1 IF YOU DIDN"T TRAIN TACOTRON WITH "mask_encoder=True"!! tacotron_test_size=None, # 0.05 # % of data to keep as test data, if None, tacotron_test_batches must be not None. (5% is # enough to have a good idea about overfit) tacotron_test_batches=2, # number of test batches. # Learning rate schedule tacotron_decay_learning_rate=True, # boolean, determines if the learning rate will follow an exponential decay tacotron_start_decay=10000, # 50000, # Step at which learning decay starts tacotron_decay_steps=10000, # 50000, # Determines the learning rate decay slope (UNDER TEST) tacotron_decay_rate=0.5, # learning rate decay rate (UNDER TEST) tacotron_initial_learning_rate=1e-3, # starting learning rate tacotron_final_learning_rate=1e-5, # minimal learning rate # Optimization parameters tacotron_adam_beta1=0.9, # AdamOptimizer beta1 parameter tacotron_adam_beta2=0.999, # AdamOptimizer beta2 parameter tacotron_adam_epsilon=1e-6, # AdamOptimizer Epsilon parameter # Regularization parameters tacotron_reg_weight=1e-7, # regularization weight (for L2 regularization) tacotron_scale_regularization=False, # Whether to rescale regularization weight to adapt for outputs range (used when reg_weight is # high and biasing the model) tacotron_zoneout_rate=0.1, # zoneout rate for all LSTM cells in the network tacotron_dropout_rate=0.5, # dropout rate for all convolutional layers + prenet tacotron_clip_gradients=True, # whether to clip gradients # Evaluation parameters natural_eval=False, # Whether to use 100% natural eval (to evaluate Curriculum Learning performance) or with same # teacher-forcing ratio as in training (just for overfit) # Decoder RNN learning can take be done in one of two ways: # Teacher Forcing: vanilla teacher forcing (usually with ratio = 1). mode="constant" # Curriculum Learning Scheme: From Teacher-Forcing to sampling from previous outputs is # function of global step. (teacher forcing ratio decay) mode="scheduled" # The second approach is inspired by: # Bengio et al. 2015: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. # Can be found under: https://arxiv.org/pdf/1506.03099.pdf tacotron_teacher_forcing_mode="constant", # Can be ("constant" or "scheduled"). "scheduled" mode applies a cosine teacher forcing ratio # decay. (Preference: scheduled) tacotron_teacher_forcing_ratio=1., # Value from [0., 1.], 0.=0%, 1.=100%, determines the % of times we force next decoder # inputs, Only relevant if mode="constant" tacotron_teacher_forcing_init_ratio=1., # initial teacher forcing ratio. Relevant if mode="scheduled" tacotron_teacher_forcing_final_ratio=0., # final teacher forcing ratio. Relevant if mode="scheduled" tacotron_teacher_forcing_start_decay=10000, # starting point of teacher forcing ratio decay. Relevant if mode="scheduled" tacotron_teacher_forcing_decay_steps=280000, # Determines the teacher forcing ratio decay slope. Relevant if mode="scheduled" tacotron_teacher_forcing_decay_alpha=0., # teacher forcing ratio decay rate. Relevant if mode="scheduled" ########################################################################################################################################### # Tacotron-2 integration parameters train_with_GTA=False, # Whether to use GTA mels to train WaveNet instead of ground truth mels. ########################################################################################################################################### # Eval sentences (if no eval text file was specified during synthesis, these sentences are # used for eval) sentences=["你好语音克隆模型。"], ### SV2TTS ### speaker_embedding_size=256, silence_min_duration_split=0.4, # Duration in seconds of a silence for an utterance to be split utterance_min_duration=1., # Duration in seconds below which utterances are discarded )) def hparams_debug_string(): # values = hparams.values() hp = [" %s: %s" % (key, value) for key, value in hparams.items()] return "Hyperparameters:\n" + "\n".join(hp)
53.901685
143
0.691594
[ "MIT", "BSD-3-Clause" ]
kozzion/breaker_audio
breaker_audio/component_cmn/synthesizer/hparams.py
19,249
Python
class Doer(object): def __init__(self, frontend): self.__frontend = frontend async def do(self, action): return await self.__frontend.do(action)
24.285714
47
0.664706
[ "Apache-2.0" ]
maxwell-dev/maxwell-client-python
maxwell/doer.py
170
Python
# -*- coding: utf8 -*- # Copyright (c) 2017-2018 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.common.abstract_client import AbstractClient from tencentcloud.ims.v20200713 import models class ImsClient(AbstractClient): _apiVersion = '2020-07-13' _endpoint = 'ims.tencentcloudapi.com' _service = 'ims' def DescribeImageStat(self, request): """控制台识别统计 :param request: Request instance for DescribeImageStat. :type request: :class:`tencentcloud.ims.v20200713.models.DescribeImageStatRequest` :rtype: :class:`tencentcloud.ims.v20200713.models.DescribeImageStatResponse` """ try: params = request._serialize() body = self.call("DescribeImageStat", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeImageStatResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeImsList(self, request): """图片机器审核明细 :param request: Request instance for DescribeImsList. :type request: :class:`tencentcloud.ims.v20200713.models.DescribeImsListRequest` :rtype: :class:`tencentcloud.ims.v20200713.models.DescribeImsListResponse` """ try: params = request._serialize() body = self.call("DescribeImsList", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeImsListResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def ImageModeration(self, request): """图片内容检测服务(Image Moderation, IM)能自动扫描图片,识别可能令人反感、不安全或不适宜的内容,同时支持用户配置图片黑名单,打击自定义识别类型的图片。 <div class="rno-api-explorer" style="margin-bottom:20px"> <div class="rno-api-explorer-inner"> <div class="rno-api-explorer-hd"> <div class="rno-api-explorer-title"> 关于版本迭代的描述 </div> </div> <div class="rno-api-explorer-body"> <div class="rno-api-explorer-cont"> <p>当前页面版本为图片内容安全2020版本,2020.11.3日前接入的图片内容安全接口为2019版本,在此时间前接入的用户可直接访问以下链接进行维护操作:<a href="https://cloud.tencent.com/document/product/1125/38206" target="_blank">图片内容安全-2019版本</a></p> <p>2020版本相对2019版本进行了升级,支持更灵活的多场景业务策略配置以及更丰富的识别回调信息,满足不同业务的识别需求,建议按照2020版本接入指引进行接口升级;同时,2019版本也会持续维护直至用户不再使用为止。</p> </div> </div> </div> </div> :param request: Request instance for ImageModeration. :type request: :class:`tencentcloud.ims.v20200713.models.ImageModerationRequest` :rtype: :class:`tencentcloud.ims.v20200713.models.ImageModerationResponse` """ try: params = request._serialize() body = self.call("ImageModeration", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.ImageModerationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message)
42.087302
204
0.613426
[ "BSD-3-Clause" ]
HelloBarry/tencent_cloud_ops
tencentcloud/ims/v20200713/ims_client.py
5,797
Python
class HomonymException(Exception): def _init_ (self, *args): super()._init_(args) class Homonym(): def __init__(self): pass def CreateModel(self): pass def SgdScore(self, rounds): pass def FindErrors(self): pass
14.631579
34
0.579137
[ "MIT" ]
Biatris/Homonym
homonym.py
278
Python
# First create a Shuffle list my_shuffle_list = [1,2,3,4,5] # Now Import shuffle from random import shuffle shuffle(my_shuffle_list) print(my_shuffle_list) # check wether shuffle is working or not # Now let's create Guess Game. First create a list mylist = ['','o',''] # Define function which will used further def shuffle_list(mylist): shuffle(mylist) return mylist print(mylist) # First check your mylist without shuffle print(shuffle_list(mylist)) # Now check that function for shuffle worning or not # Now create function for user to take input as guess number def user_guess(): guess = '' while guess not in ['0','1','2']: guess = input("Pick a number : 0, 1 or 2 : ") return int(guess) print(user_guess()) def check_guess(mylist,guess): if mylist[guess] == 'o': print('Correct Guess') else: print('Wrong Better luck next Time') # Initial list mylist = ['','o',''] #shuffle list mixedup_list = shuffle_list(mylist) # Get user guess guess = user_guess() check_guess(mixedup_list,guess)
27.075
84
0.6759
[ "MIT" ]
alok-techqware/basic_python_practicse
python_basics/Method_ function/mixed_function_guess_game.py
1,083
Python
# qubit number=5 # total number=45 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(1): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[2]) # number=42 prog.cz(input_qubit[1],input_qubit[2]) # number=43 prog.h(input_qubit[2]) # number=44 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=39 prog.cz(input_qubit[1],input_qubit[0]) # number=40 prog.h(input_qubit[0]) # number=41 prog.h(input_qubit[0]) # number=31 prog.cz(input_qubit[1],input_qubit[0]) # number=32 prog.h(input_qubit[0]) # number=33 prog.x(input_qubit[0]) # number=29 prog.cx(input_qubit[1],input_qubit[0]) # number=30 prog.h(input_qubit[0]) # number=34 prog.cz(input_qubit[1],input_qubit[0]) # number=35 prog.h(input_qubit[0]) # number=36 prog.x(input_qubit[1]) # number=10 prog.cx(input_qubit[0],input_qubit[2]) # number=25 prog.x(input_qubit[2]) # number=26 prog.cx(input_qubit[0],input_qubit[2]) # number=27 prog.x(input_qubit[3]) # number=12 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.cx(input_qubit[2],input_qubit[4]) # number=37 prog.h(input_qubit[3]) # number=20 prog.h(input_qubit[0]) prog.h(input_qubit[1]) prog.h(input_qubit[2]) prog.h(input_qubit[3]) # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit953.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
30.878788
82
0.603042
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
benchmark/startQiskit953.py
4,076
Python
import numpy as np import pandas as pd X = np.load('preds.npy') img = pd.read_csv('test.csv') img['x1'] = X[:,0]*640 img['x2'] = X[:,1]*640 img['y1'] = X[:,2]*480 img['y2'] = X[:,3]*480 """ img['x1'] = 0.05*640 img['x2'] = 0.95*640 img['y1'] = 0.05*480 img['y2'] = 0.95*480 """ img.to_csv('subbigles.csv',index = False)
24.538462
41
0.567398
[ "MIT" ]
mukul54/Flipkart-Grid-Challenge
codes/write_csv.py
319
Python
from sources import Sources from stories import Stories class Bot(): def __init__(self, config): self.url = config.get_url() self.sources = None self.stories = None def load(self): self.sources = Sources(self.url) self.stories = Stories(self.sources) return self.stories.load() def start(self, url): message = 'Бот для сайта {0}'.format(url) return message def help(self): message = "/get - читать истории из: \n\t{0}\n"\ "/random - случайные истории\n"\ "/stop - прервать диалог с ботом".format( '\n\t'.join(['{0}'.format(y) for (x,y) in self.stories.get_description().items()])) return message def random(self, num=None, site_names=None): if site_names is None: site_names = list(self.stories.get_names().keys()) sites = list(self.stories.get_names().values()) messages = [] stories = self.stories.get(num=num, site_names=site_names, sites=sites, random=True) for s in stories: messages.append(s.get().get('story')) return messages def get(self, num=None, site_names=None): if site_names is None: site_names = list(self.stories.get_names().keys()) sites = list(self.stories.get_names().values()) messages = [] stories = self.stories.get(num=num, site_names=site_names, sites=sites) for s in stories: messages.append(s.get().get('story')) return messages def get_sources_sites(self): sites = set() for sites_list in self.sources.get(): for site in sites_list: sites.add(site.get('site')) return list(sites) def get_sources_names(self, site): names = set() for sites_list in self.sources.get(): for s in sites_list: if s.get('site') == site: names.add((s.get('name'), s.get('desc'))) return list(names)
34.403226
95
0.547586
[ "MIT" ]
sagol/umorilibot
bot.py
2,195
Python
from django.shortcuts import render from accounts import models from rest_framework import viewsets from rest_framework.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from accounts import serializers # Will use this to tell API what data to exect when making a POST PUT PATCH request to API from accounts import models from accounts import permissions class Injection_DetailsViewSet(viewsets.ModelViewSet): """Handles creating, reading and updating patient info readings""" authentication_classes = (TokenAuthentication,) serializer_class = serializers.Injection_DetailsSerializer # This points to the queryset = models.Injection_Details.objects.all() permission_classes = (permissions.UpdateOwnReading, IsAuthenticated,) # Validates that a user is authenticated to read or modify objects def get_queryset(self): user = self.request.user return models.Injection_Details.objects.get_queryset().filter(user_profile=user) def perform_create(self, serializer): # overriding this function so that when a user tries to create an object they are validated as the current user """Sets the patient profile to the logged in user""" serializer.save(user_profile=self.request.user) # This sets the user profile to the current user from the serializer passed in #def create(self, serializer): # overriding this function so that when a user #patient_info = models.PatientInfo.objects.filter(user_profile=self.request.user) #serializer.save = self.get_serializer(patient_info, many = True) # This sets the user profile to the current user from the serializer passed in #serializer.is_valid(raise_exceptions=True) #self.perform_create(serializer) #return Response(serializer.data)
54.25
153
0.777266
[ "MIT" ]
eliefrancois/project2-diabetesapplication-api
backend/accounts/views.py
1,953
Python
def now(): print('2017-05-31') now.__name__ f = now f.__name__ # 定义记录log的装饰器 def log(func): def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper @log def now1(): print('2017-05-31') # 如果 decorator 需要传入参数,需要编写一个返回 decorator 的高阶函数 def log1(text): def decorator(func): def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator import functools def log2(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper # 带参数 def log3(text): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator
17.618182
53
0.562436
[ "Apache-2.0" ]
zhayangtao/HelloPython
python01/PythonDecorator.py
1,035
Python
""" mbase module This module contains the base model class from which all of the other models inherit from. """ import abc import os import shutil import threading import warnings import queue as Queue from datetime import datetime from shutil import which from subprocess import Popen, PIPE, STDOUT import copy import numpy as np from flopy import utils, discretization from .version import __version__ from .discretization.grid import Grid ## Global variables # Multiplier for individual array elements in integer and real arrays read by # MODFLOW's U2DREL, U1DREL and U2DINT. iconst = 1 # Printout flag. If >= 0 then array values read are printed in listing file. iprn = -1 # external exceptions for users class PackageLoadException(Exception): """ FloPy package load exception. """ def __init__(self, error, location=""): """Initialize exception.""" self.message = error super().__init__(f"{error} ({location})") class FileDataEntry: def __init__(self, fname, unit, binflag=False, output=False, package=None): self.fname = fname self.unit = unit self.binflag = binflag self.output = output self.package = package class FileData: def __init__(self): self.file_data = [] return def add_file(self, fname, unit, binflag=False, output=False, package=None): ipop = [] for idx, file_data in enumerate(self.file_data): if file_data.fname == fname or file_data.unit == unit: ipop.append(idx) self.file_data.append( FileDataEntry( fname, unit, binflag=binflag, output=output, package=package ) ) return class ModelInterface: def __init__(self): self._mg_resync = True self._modelgrid = None def update_modelgrid(self): if self._modelgrid is not None: self._modelgrid = Grid( proj4=self._modelgrid.proj4, xoff=self._modelgrid.xoffset, yoff=self._modelgrid.yoffset, angrot=self._modelgrid.angrot, ) self._mg_resync = True @property @abc.abstractmethod def modelgrid(self): raise NotImplementedError( "must define modelgrid in child class to use this base class" ) @property @abc.abstractmethod def packagelist(self): raise NotImplementedError( "must define packagelist in child class to use this base class" ) @property @abc.abstractmethod def namefile(self): raise NotImplementedError( "must define namefile in child class to use this base class" ) @property @abc.abstractmethod def model_ws(self): raise NotImplementedError( "must define model_ws in child class to use this base class" ) @property @abc.abstractmethod def exename(self): raise NotImplementedError( "must define exename in child class to use this base class" ) @property @abc.abstractmethod def version(self): raise NotImplementedError( "must define version in child class to use this base class" ) @property @abc.abstractmethod def solver_tols(self): raise NotImplementedError( "must define version in child class to use this base class" ) @abc.abstractmethod def export(self, f, **kwargs): raise NotImplementedError( "must define export in child class to use this base class" ) @property @abc.abstractmethod def laytyp(self): raise NotImplementedError( "must define laytyp in child class to use this base class" ) @property @abc.abstractmethod def hdry(self): raise NotImplementedError( "must define hdry in child class to use this base class" ) @property @abc.abstractmethod def hnoflo(self): raise NotImplementedError( "must define hnoflo in child class to use this base class" ) @property @abc.abstractmethod def laycbd(self): raise NotImplementedError( "must define laycbd in child class to use this base class" ) @property @abc.abstractmethod def verbose(self): raise NotImplementedError( "must define verbose in child class to use this base class" ) @abc.abstractmethod def check(self, f=None, verbose=True, level=1): raise NotImplementedError( "must define check in child class to use this base class" ) def get_package_list(self, ftype=None): """ Get a list of all the package names. Parameters ---------- ftype : str Type of package, 'RIV', 'LPF', etc. Returns ------- val : list of strings Can be used to see what packages are in the model, and can then be used with get_package to pull out individual packages. """ val = [] for pp in self.packagelist: if ftype is None: val.append(pp.name[0].upper()) elif pp.package_type.lower() == ftype: val.append(pp.name[0].upper()) return val def _check(self, chk, level=1): """ Check model data for common errors. Parameters ---------- f : str or file handle String defining file name or file handle for summary file of check method output. If a string is passed a file handle is created. If f is None, check method does not write results to a summary file. (default is None) verbose : bool Boolean flag used to determine if check method results are written to the screen level : int Check method analysis level. If level=0, summary checks are performed. If level=1, full checks are performed. summarize : bool Boolean flag used to determine if summary of results is written to the screen Returns ------- None Examples -------- >>> import flopy >>> m = flopy.modflow.Modflow.load('model.nam') >>> m.check() """ # check instance for model-level check results = {} for p in self.packagelist: if chk.package_check_levels.get(p.name[0].lower(), 0) <= level: results[p.name[0]] = p.check( f=None, verbose=False, level=level - 1, checktype=chk.__class__, ) # model level checks # solver check if self.version in chk.solver_packages.keys(): solvers = set(chk.solver_packages[self.version]).intersection( set(self.get_package_list()) ) if not solvers: chk._add_to_summary( "Error", desc="\r No solver package", package="model" ) elif len(list(solvers)) > 1: for s in solvers: chk._add_to_summary( "Error", desc="\r Multiple solver packages", package=s, ) else: chk.passed.append("Compatible solver package") # add package check results to model level check summary for r in results.values(): if ( r is not None and r.summary_array is not None ): # currently SFR doesn't have one chk.summary_array = np.append( chk.summary_array, r.summary_array ).view(np.recarray) chk.passed += [ f"{r.package.name[0]} package: {psd}" for psd in r.passed ] chk.summarize() return chk class BaseModel(ModelInterface): """ MODFLOW-based models base class. Parameters ---------- modelname : str, default "modflowtest" Name of the model, which is also used for model file names. namefile_ext : str, default "nam" Name file extension, without "." exe_name : str, default "mf2k.exe" Name of the modflow executable. model_ws : str, optional Path to the model workspace. Model files will be created in this directory. Default is None, in which case model_ws is assigned to the current working directory. structured : bool, default True Specify if model grid is structured (default) or unstructured. verbose : bool, default False Print additional information to the screen. **kwargs : dict, optional Used to define: ``xll``/``yll`` for the x- and y-coordinates of the lower-left corner of the grid, ``xul``/``yul`` for the x- and y-coordinates of the upper-left corner of the grid (deprecated), ``rotation`` for the grid rotation (default 0.0), ``proj4_str`` for a PROJ string, and ``start_datetime`` for model start date (default "1-1-1970"). """ def __init__( self, modelname="modflowtest", namefile_ext="nam", exe_name="mf2k.exe", model_ws=None, structured=True, verbose=False, **kwargs, ): """Initialize BaseModel.""" super().__init__() self.__name = modelname self.namefile_ext = namefile_ext or "" self._namefile = self.__name + "." + self.namefile_ext self._packagelist = [] self.heading = "" self.exe_name = exe_name self._verbose = verbose self.external_path = None self.external_extension = "ref" if model_ws is None: model_ws = os.getcwd() if not os.path.exists(model_ws): try: os.makedirs(model_ws) except: print( f"\n{model_ws} not valid, " f"workspace-folder was changed to {os.getcwd()}\n" ) model_ws = os.getcwd() self._model_ws = model_ws self.structured = structured self.pop_key_list = [] self.cl_params = "" # check for reference info in kwargs # we are just carrying these until a dis package is added xll = kwargs.pop("xll", None) yll = kwargs.pop("yll", None) self._xul = kwargs.pop("xul", None) self._yul = kwargs.pop("yul", None) self._rotation = kwargs.pop("rotation", 0.0) self._proj4_str = kwargs.pop("proj4_str", None) self._start_datetime = kwargs.pop("start_datetime", "1-1-1970") # build model discretization objects self._modelgrid = Grid( proj4=self._proj4_str, xoff=xll, yoff=yll, angrot=self._rotation, ) self._modeltime = None # Model file information self.__onunit__ = 10 # external option stuff self.array_free_format = True self.free_format_input = True self.parameter_load = False self.array_format = None self.external_fnames = [] self.external_units = [] self.external_binflag = [] self.external_output = [] self.package_units = [] self._next_ext_unit = None # output files self.output_fnames = [] self.output_units = [] self.output_binflag = [] self.output_packages = [] return @property def modeltime(self): raise NotImplementedError( "must define modeltime in child class to use this base class" ) @property def modelgrid(self): raise NotImplementedError( "must define modelgrid in child class to use this base class" ) @property def packagelist(self): return self._packagelist @packagelist.setter def packagelist(self, packagelist): self._packagelist = packagelist @property def namefile(self): return self._namefile @namefile.setter def namefile(self, namefile): self._namefile = namefile @property def model_ws(self): return self._model_ws @model_ws.setter def model_ws(self, model_ws): self._model_ws = model_ws @property def exename(self): return self._exename @exename.setter def exename(self, exename): self._exename = exename @property def version(self): return self._version @version.setter def version(self, version): self._version = version @property def verbose(self): return self._verbose @verbose.setter def verbose(self, verbose): self._verbose = verbose @property def laytyp(self): if self.get_package("LPF") is not None: return self.get_package("LPF").laytyp.array if self.get_package("BCF6") is not None: return self.get_package("BCF6").laycon.array if self.get_package("UPW") is not None: return self.get_package("UPW").laytyp.array return None @property def hdry(self): if self.get_package("LPF") is not None: return self.get_package("LPF").hdry if self.get_package("BCF6") is not None: return self.get_package("BCF6").hdry if self.get_package("UPW") is not None: return self.get_package("UPW").hdry return None @property def hnoflo(self): try: bas6 = self.get_package("BAS6") return bas6.hnoflo except AttributeError: return None @property def laycbd(self): try: dis = self.get_package("DIS") return dis.laycbd.array except AttributeError: return None # we don't need these - no need for controlled access to array_free_format # def set_free_format(self, value=True): # """ # Set the free format flag for the model instance # # Parameters # ---------- # value : bool # Boolean value to set free format flag for model. (default is True) # # Returns # ------- # # """ # if not isinstance(value, bool): # print('Error: set_free_format passed value must be a boolean') # return False # self.array_free_format = value # # def get_free_format(self): # """ # Return the free format flag for the model # # Returns # ------- # out : bool # Free format flag for the model # # """ # return self.array_free_format def next_unit(self, i=None): if i is not None: self.__onunit__ = i - 1 else: self.__onunit__ += 1 return self.__onunit__ def next_ext_unit(self): """ Function to encapsulate next_ext_unit attribute """ next_unit = self._next_ext_unit + 1 self._next_ext_unit += 1 return next_unit def export(self, f, **kwargs): """ Method to export a model to netcdf or shapefile based on the extension of the file name (.shp for shapefile, .nc for netcdf) Parameters ---------- f : str filename kwargs : keyword arguments modelgrid : flopy.discretization.Grid instance user supplied modelgrid which can be used for exporting in lieu of the modelgrid associated with the model object Returns ------- None or Netcdf object """ from .export import utils return utils.model_export(f, self, **kwargs) def add_package(self, p): """ Add a package. Parameters ---------- p : Package object """ for idx, u in enumerate(p.unit_number): if u != 0: if u in self.package_units or u in self.external_units: try: pn = p.name[idx] except: pn = p.name if self.verbose: print( f"\nWARNING:\n unit {u} of package {pn} already in use." ) self.package_units.append(u) for i, pp in enumerate(self.packagelist): if pp.allowDuplicates: continue elif isinstance(p, type(pp)): if self.verbose: print( "\nWARNING:\n Two packages of the same type, " f"Replacing existing '{p.name[0]}' package." ) self.packagelist[i] = p return if self.verbose: print("adding Package: ", p.name[0]) self.packagelist.append(p) def remove_package(self, pname): """ Remove a package from this model Parameters ---------- pname : string Name of the package, such as 'RIV', 'BAS6', etc. """ for i, pp in enumerate(self.packagelist): if pname.upper() in pp.name: if self.verbose: print("removing Package: ", pp.name) # Remove the package object from the model's packagelist p = self.packagelist.pop(i) # Remove the package unit number from the list of package # units stored with the model for iu in p.unit_number: if iu in self.package_units: self.package_units.remove(iu) return raise StopIteration( "Package name " + pname + " not found in Package list" ) def __getattr__(self, item): """ __getattr__ - syntactic sugar Parameters ---------- item : str 3 character package name (case insensitive) or "sr" to access the SpatialReference instance of the ModflowDis object Returns ------- sr : SpatialReference instance pp : Package object Package object of type :class:`flopy.pakbase.Package` Note ---- if self.dis is not None, then the spatial reference instance is updated using self.dis.delr, self.dis.delc, and self.dis.lenuni before being returned """ if item == "output_packages" or not hasattr(self, "output_packages"): raise AttributeError(item) if item == "tr": if self.dis is not None: return self.dis.tr else: return None if item == "nper": if self.dis is not None: return self.dis.nper else: return 0 if item == "start_datetime": if self.dis is not None: return self.dis.start_datetime else: return None # return self.get_package(item) # to avoid infinite recursion if item == "_packagelist" or item == "packagelist": raise AttributeError(item) pckg = self.get_package(item) if pckg is not None or item in self.mfnam_packages: return pckg if item == "modelgrid": return raise AttributeError(item) def get_ext_dict_attr( self, ext_unit_dict=None, unit=None, filetype=None, pop_key=True ): iu = None fname = None if ext_unit_dict is not None: for key, value in ext_unit_dict.items(): if key == unit: iu = key fname = os.path.basename(value.filename) break elif value.filetype == filetype: iu = key fname = os.path.basename(value.filename) if pop_key: self.add_pop_key_list(iu) break return iu, fname def _output_msg(self, i, add=True): if add: txt1 = "Adding" txt2 = "to" else: txt1 = "Removing" txt2 = "from" print( f"{txt1} {self.output_fnames[i]} (unit={self.output_units[i]}) " f"{txt2} the output list." ) def add_output_file( self, unit, fname=None, extension="cbc", binflag=True, package=None ): """ Add an ascii or binary output file for a package Parameters ---------- unit : int unit number of external array fname : str filename of external array. (default is None) extension : str extension to use for the cell-by-cell file. Only used if fname is None. (default is cbc) binflag : bool boolean flag indicating if the output file is a binary file. Default is True package : str string that defines the package the output file is attached to. Default is None """ add_cbc = False if unit > 0: add_cbc = True # determine if the file is in external_units if abs(unit) in self.external_units: idx = self.external_units.index(abs(unit)) if fname is None: fname = os.path.basename(self.external_fnames[idx]) binflag = self.external_binflag[idx] self.remove_external(unit=abs(unit)) # determine if the unit exists in the output data if abs(unit) in self.output_units: add_cbc = False idx = self.output_units.index(abs(unit)) # determine if binflag has changed if binflag is not self.output_binflag[idx]: add_cbc = True if add_cbc: self.remove_output(unit=abs(unit)) else: if package is not None: self.output_packages[idx].append(package) if add_cbc: if fname is None: fname = f"{self.name}.{extension}" # check if this file name exists for a different unit number if fname in self.output_fnames: idx = self.output_fnames.index(fname) iut = self.output_units[idx] if iut != unit: # include unit number in fname if package has # not been passed if package is None: fname = f"{self.name}.{unit}.{extension}" # include package name in fname else: fname = f"{self.name}.{package}.{extension}" else: fname = os.path.basename(fname) self.add_output(fname, unit, binflag=binflag, package=package) return def add_output(self, fname, unit, binflag=False, package=None): """ Assign an external array so that it will be listed as a DATA or DATA(BINARY) entry in the name file. This will allow an outside file package to refer to it. Parameters ---------- fname : str filename of external array unit : int unit number of external array binflag : boolean binary or not. (default is False) """ if fname in self.output_fnames: if self.verbose: print( "BaseModel.add_output() warning: " f"replacing existing filename {fname}" ) idx = self.output_fnames.index(fname) if self.verbose: self._output_msg(idx, add=False) self.output_fnames.pop(idx) self.output_units.pop(idx) self.output_binflag.pop(idx) self.output_packages.pop(idx) self.output_fnames.append(fname) self.output_units.append(unit) self.output_binflag.append(binflag) if package is not None: self.output_packages.append([package]) else: self.output_packages.append([]) if self.verbose: self._output_msg(-1, add=True) return def remove_output(self, fname=None, unit=None): """ Remove an output file from the model by specifying either the file name or the unit number. Parameters ---------- fname : str filename of output array unit : int unit number of output array """ if fname is not None: for i, e in enumerate(self.output_fnames): if fname in e: if self.verbose: self._output_msg(i, add=False) self.output_fnames.pop(i) self.output_units.pop(i) self.output_binflag.pop(i) self.output_packages.pop(i) elif unit is not None: for i, u in enumerate(self.output_units): if u == unit: if self.verbose: self._output_msg(i, add=False) self.output_fnames.pop(i) self.output_units.pop(i) self.output_binflag.pop(i) self.output_packages.pop(i) else: msg = " either fname or unit must be passed to remove_output()" raise Exception(msg) return def get_output(self, fname=None, unit=None): """ Get an output file from the model by specifying either the file name or the unit number. Parameters ---------- fname : str filename of output array unit : int unit number of output array """ if fname is not None: for i, e in enumerate(self.output_fnames): if fname in e: return self.output_units[i] return None elif unit is not None: for i, u in enumerate(self.output_units): if u == unit: return self.output_fnames[i] return None else: msg = " either fname or unit must be passed to get_output()" raise Exception(msg) return def set_output_attribute(self, fname=None, unit=None, attr=None): """ Set a variable in an output file from the model by specifying either the file name or the unit number and a dictionary with attributes to change. Parameters ---------- fname : str filename of output array unit : int unit number of output array """ idx = None if fname is not None: for i, e in enumerate(self.output_fnames): if fname in e: idx = i break return None elif unit is not None: for i, u in enumerate(self.output_units): if u == unit: idx = i break else: msg = ( " either fname or unit must be passed " "to set_output_attribute()" ) raise Exception(msg) if attr is not None: if idx is not None: for key, value in attr.items: if key == "binflag": self.output_binflag[idx] = value elif key == "fname": self.output_fnames[idx] = value elif key == "unit": self.output_units[idx] = value return def get_output_attribute(self, fname=None, unit=None, attr=None): """ Get a attribute for an output file from the model by specifying either the file name or the unit number. Parameters ---------- fname : str filename of output array unit : int unit number of output array """ idx = None if fname is not None: for i, e in enumerate(self.output_fnames): if fname in e: idx = i break return None elif unit is not None: for i, u in enumerate(self.output_units): if u == unit: idx = i break else: raise Exception( " either fname or unit must be passed " "to set_output_attribute()" ) v = None if attr is not None: if idx is not None: if attr == "binflag": v = self.output_binflag[idx] elif attr == "fname": v = self.output_fnames[idx] elif attr == "unit": v = self.output_units[idx] return v def add_external(self, fname, unit, binflag=False, output=False): """ Assign an external array so that it will be listed as a DATA or DATA(BINARY) entry in the name file. This will allow an outside file package to refer to it. Parameters ---------- fname : str filename of external array unit : int unit number of external array binflag : boolean binary or not. (default is False) """ if fname in self.external_fnames: if self.verbose: print( "BaseModel.add_external() warning: " f"replacing existing filename {fname}" ) idx = self.external_fnames.index(fname) self.external_fnames.pop(idx) self.external_units.pop(idx) self.external_binflag.pop(idx) self.external_output.pop(idx) if unit in self.external_units: if self.verbose: msg = f"BaseModel.add_external() warning: replacing existing unit {unit}" print(msg) idx = self.external_units.index(unit) self.external_fnames.pop(idx) self.external_units.pop(idx) self.external_binflag.pop(idx) self.external_output.pop(idx) self.external_fnames.append(fname) self.external_units.append(unit) self.external_binflag.append(binflag) self.external_output.append(output) return def remove_external(self, fname=None, unit=None): """ Remove an external file from the model by specifying either the file name or the unit number. Parameters ---------- fname : str filename of external array unit : int unit number of external array """ plist = [] if fname is not None: for i, e in enumerate(self.external_fnames): if fname in e: plist.append(i) elif unit is not None: for i, u in enumerate(self.external_units): if u == unit: plist.append(i) else: msg = " either fname or unit must be passed to remove_external()" raise Exception(msg) # remove external file j = 0 for i in plist: ipos = i - j self.external_fnames.pop(ipos) self.external_units.pop(ipos) self.external_binflag.pop(ipos) self.external_output.pop(ipos) j += 1 return def add_existing_package( self, filename, ptype=None, copy_to_model_ws=True ): """ Add an existing package to a model instance. Parameters ---------- filename : str the name of the file to add as a package ptype : optional the model package type (e.g. "lpf", "wel", etc). If None, then the file extension of the filename arg is used copy_to_model_ws : bool flag to copy the package file into the model_ws directory. Returns ------- None """ if ptype is None: ptype = filename.split(".")[-1] ptype = str(ptype).upper() # for pak in self.packagelist: # if ptype in pak.name: # print("BaseModel.add_existing_package() warning: " +\ # "replacing existing package {0}".format(ptype)) class Obj: pass fake_package = Obj() fake_package.write_file = lambda: None fake_package.name = [ptype] fake_package.extension = [filename.split(".")[-1]] fake_package.unit_number = [self.next_ext_unit()] if copy_to_model_ws: base_filename = os.path.split(filename)[-1] fake_package.file_name = [base_filename] shutil.copy2(filename, os.path.join(self.model_ws, base_filename)) else: fake_package.file_name = [filename] fake_package.allowDuplicates = True self.add_package(fake_package) def get_name_file_entries(self): """ Get a string representation of the name file. Parameters ---------- """ lines = [] for p in self.packagelist: for i in range(len(p.name)): if p.unit_number[i] == 0: continue s = f"{p.name[i]:14s} {p.unit_number[i]:5d} {p.file_name[i]}" lines.append(s) return "\n".join(lines) + "\n" def has_package(self, name): """ Check if package name is in package list. Parameters ---------- name : str Name of the package, 'DIS', 'BAS6', etc. (case-insensitive). Returns ------- bool True if package name exists, otherwise False if not found. """ if not name: raise ValueError("invalid package name") name = name.upper() for p in self.packagelist: for pn in p.name: if pn.upper() == name: return True return False def get_package(self, name): """ Get a package. Parameters ---------- name : str Name of the package, 'RIV', 'LPF', etc. (case-insensitive). Returns ------- pp : Package object Package object of type :class:`flopy.pakbase.Package` """ if not name: raise ValueError("invalid package name") name = name.upper() for pp in self.packagelist: if pp.name[0].upper() == name: return pp return None def set_version(self, version): self.version = version.lower() # check that this is a valid model version if self.version not in list(self.version_types.keys()): err = ( f"Error: Unsupported model version ({self.version}). " "Valid model versions are:" ) for v in list(self.version_types.keys()): err += f" {v}" raise Exception(err) # set namefile heading self.heading = ( f"# Name file for {self.version_types[self.version]}, " f"generated by Flopy version {__version__}." ) # set heading for each package for p in self.get_package_list(): pak = self.get_package(p) if hasattr(pak, "heading"): pak._generate_heading() return None def change_model_ws(self, new_pth=None, reset_external=False): """ Change the model work space. Parameters ---------- new_pth : str Location of new model workspace. If this path does not exist, it will be created. (default is None, which will be assigned to the present working directory). Returns ------- val : list of strings Can be used to see what packages are in the model, and can then be used with get_package to pull out individual packages. """ if new_pth is None: new_pth = os.getcwd() if not os.path.exists(new_pth): try: print(f"\ncreating model workspace...\n {new_pth}") os.makedirs(new_pth) except: raise OSError(f"{new_pth} not valid, workspace-folder") # line = '\n{} not valid, workspace-folder '.format(new_pth) + \ # 'was changed to {}\n'.format(os.getcwd()) # print(line) # new_pth = os.getcwd() # --reset the model workspace old_pth = self._model_ws self._model_ws = new_pth if self.verbose: print(f"\nchanging model workspace...\n {new_pth}") # reset the paths for each package for pp in self.packagelist: pp.fn_path = os.path.join(self.model_ws, pp.file_name[0]) # create the external path (if needed) if ( hasattr(self, "external_path") and self.external_path is not None and not os.path.exists( os.path.join(self._model_ws, self.external_path) ) ): pth = os.path.join(self._model_ws, self.external_path) os.makedirs(pth) if reset_external: self._reset_external(pth, old_pth) elif reset_external: self._reset_external(self._model_ws, old_pth) return None def _reset_external(self, pth, old_pth): new_ext_fnames = [] for ext_file, output in zip( self.external_fnames, self.external_output ): # new_ext_file = os.path.join(pth, os.path.split(ext_file)[-1]) # this is a wicked mess if output: # new_ext_file = os.path.join(pth, os.path.split(ext_file)[-1]) new_ext_file = ext_file else: # fpth = os.path.abspath(os.path.join(old_pth, ext_file)) # new_ext_file = os.path.relpath(fpth, os.path.abspath(pth)) fdir = os.path.dirname(ext_file) if fdir == "": fpth = os.path.abspath(os.path.join(old_pth, ext_file)) else: fpth = ext_file ao = os.path.abspath(os.path.dirname(fpth)) ep = os.path.abspath(pth) relp = os.path.relpath(ao, ep) new_ext_file = os.path.join(relp, os.path.basename(ext_file)) new_ext_fnames.append(new_ext_file) self.external_fnames = new_ext_fnames @property def model_ws(self): return copy.deepcopy(self._model_ws) def _set_name(self, value): """ Set model name Parameters ---------- value : str Name to assign to model. """ self.__name = str(value) self.namefile = self.__name + "." + self.namefile_ext for p in self.packagelist: for i in range(len(p.extension)): p.file_name[i] = self.__name + "." + p.extension[i] p.fn_path = os.path.join(self.model_ws, p.file_name[0]) def __setattr__(self, key, value): if key == "free_format_input": # if self.bas6 is not None: # self.bas6.ifrefm = value super().__setattr__(key, value) elif key == "name": self._set_name(value) elif key == "model_ws": self.change_model_ws(value) elif key == "sr" and value.__class__.__name__ == "SpatialReference": warnings.warn( "SpatialReference has been deprecated.", category=DeprecationWarning, ) if self.dis is not None: self.dis.sr = value else: raise Exception( "cannot set SpatialReference - ModflowDis not found" ) elif key == "tr": assert isinstance( value, discretization.reference.TemporalReference ) if self.dis is not None: self.dis.tr = value else: raise Exception( "cannot set TemporalReference - ModflowDis not found" ) elif key == "start_datetime": if self.dis is not None: self.dis.start_datetime = value self.tr.start_datetime = value else: raise Exception( "cannot set start_datetime - ModflowDis not found" ) else: super().__setattr__(key, value) def run_model( self, silent=False, pause=False, report=False, normal_msg="normal termination", ): """ This method will run the model using subprocess.Popen. Parameters ---------- silent : boolean Echo run information to screen (default is True). pause : boolean, optional Pause upon completion (default is False). report : boolean, optional Save stdout lines to a list (buff) which is returned by the method . (default is False). normal_msg : str Normal termination message used to determine if the run terminated normally. (default is 'normal termination') Returns ------- (success, buff) success : boolean buff : list of lines of stdout """ return run_model( self.exe_name, self.namefile, model_ws=self.model_ws, silent=silent, pause=pause, report=report, normal_msg=normal_msg, ) def load_results(self): print("load_results not implemented") return None def write_input(self, SelPackList=False, check=False): """ Write the input. Parameters ---------- SelPackList : False or list of packages """ if check: # run check prior to writing input self.check(f=f"{self.name}.chk", verbose=self.verbose, level=1) # reset the model to free_format if parameter substitution was # performed on a model load if self.parameter_load and not self.free_format_input: if self.verbose: print( "\nResetting free_format_input to True to " "preserve the precision of the parameter data." ) self.free_format_input = True if self.verbose: print("\nWriting packages:") if SelPackList == False: for p in self.packagelist: if self.verbose: print(" Package: ", p.name[0]) # prevent individual package checks from running after # model-level package check above # otherwise checks are run twice # or the model level check procedure would have to be split up # or each package would need a check argument, # or default for package level check would have to be False try: p.write_file(check=False) except TypeError: p.write_file() else: for pon in SelPackList: for i, p in enumerate(self.packagelist): if pon in p.name: if self.verbose: print(" Package: ", p.name[0]) try: p.write_file(check=False) except TypeError: p.write_file() break if self.verbose: print(" ") # write name file self.write_name_file() # os.chdir(org_dir) return def write_name_file(self): """ Every Package needs its own writenamefile function """ raise Exception( "IMPLEMENTATION ERROR: writenamefile must be overloaded" ) def set_model_units(self): """ Every model needs its own set_model_units method """ raise Exception( "IMPLEMENTATION ERROR: set_model_units must be overloaded" ) @property def name(self): """ Get model name Returns ------- name : str name of model """ return copy.deepcopy(self.__name) def add_pop_key_list(self, key): """ Add a external file unit number to a list that will be used to remove model output (typically binary) files from ext_unit_dict. Parameters ---------- key : int file unit number Returns ------- Examples -------- """ if key not in self.pop_key_list: self.pop_key_list.append(key) def check(self, f=None, verbose=True, level=1): """ Check model data for common errors. Parameters ---------- f : str or file handle String defining file name or file handle for summary file of check method output. If a string is passed a file handle is created. If f is None, check method does not write results to a summary file. (default is None) verbose : bool Boolean flag used to determine if check method results are written to the screen level : int Check method analysis level. If level=0, summary checks are performed. If level=1, full checks are performed. Returns ------- None Examples -------- >>> import flopy >>> m = flopy.modflow.Modflow.load('model.nam') >>> m.check() """ # check instance for model-level check chk = utils.check(self, f=f, verbose=verbose, level=level) # check for unit number conflicts package_units = {} duplicate_units = {} for p in self.packagelist: for i in range(len(p.name)): if p.unit_number[i] != 0: if p.unit_number[i] in package_units.values(): duplicate_units[p.name[i]] = p.unit_number[i] otherpackage = [ k for k, v in package_units.items() if v == p.unit_number[i] ][0] duplicate_units[otherpackage] = p.unit_number[i] if len(duplicate_units) > 0: for k, v in duplicate_units.items(): chk._add_to_summary( "Error", package=k, value=v, desc="unit number conflict" ) else: chk.passed.append("Unit number conflicts") return self._check(chk, level) def plot(self, SelPackList=None, **kwargs): """ Plot 2-D, 3-D, transient 2-D, and stress period list (MfList) model input data Parameters ---------- SelPackList : bool or list List of of packages to plot. If SelPackList=None all packages are plotted. (default is None) **kwargs : dict filename_base : str Base file name that will be used to automatically generate file names for output image files. Plots will be exported as image files if file_name_base is not None. (default is None) file_extension : str Valid matplotlib.pyplot file extension for savefig(). Only used if filename_base is not None. (default is 'png') mflay : int MODFLOW zero-based layer number to return. If None, then all all layers will be included. (default is None) kper : int MODFLOW zero-based stress period number to return. (default is zero) key : str MfList dictionary key. (default is None) Returns ---------- axes : list Empty list is returned if filename_base is not None. Otherwise a list of matplotlib.pyplot.axis are returned. See Also -------- Notes ----- Examples -------- >>> import flopy >>> ml = flopy.modflow.Modflow.load('test.nam') >>> ml.plot() """ from flopy.plot import PlotUtilities axes = PlotUtilities._plot_model_helper( self, SelPackList=SelPackList, **kwargs ) return axes def to_shapefile(self, filename, package_names=None, **kwargs): """ Wrapper function for writing a shapefile for the model grid. If package_names is not None, then search through the requested packages looking for arrays that can be added to the shapefile as attributes Parameters ---------- filename : string name of the shapefile to write package_names : list of package names (e.g. ["dis","lpf"]) Packages to export data arrays to shapefile. (default is None) Returns ------- None Examples -------- >>> import flopy >>> m = flopy.modflow.Modflow() >>> m.to_shapefile('model.shp', SelPackList) """ warnings.warn("to_shapefile() is deprecated. use .export()") self.export(filename, package_names=package_names) return def run_model( exe_name, namefile, model_ws="./", silent=False, pause=False, report=False, normal_msg="normal termination", use_async=False, cargs=None, ): """ This function will run the model using subprocess.Popen. It communicates with the model's stdout asynchronously and reports progress to the screen with timestamps Parameters ---------- exe_name : str Executable name (with path, if necessary) to run. namefile : str Namefile of model to run. The namefile must be the filename of the namefile without the path. Namefile can be None to allow programs that do not require a control file (name file) to be passed as a command line argument. model_ws : str Path to the location of the namefile. (default is the current working directory - './') silent : boolean Echo run information to screen (default is True). pause : boolean, optional Pause upon completion (default is False). report : boolean, optional Save stdout lines to a list (buff) which is returned by the method . (default is False). normal_msg : str or list Normal termination message used to determine if the run terminated normally. More than one message can be provided using a list. (Default is 'normal termination') use_async : boolean asynchronously read model stdout and report with timestamps. good for models that take long time to run. not good for models that run really fast cargs : str or list of strings additional command line arguments to pass to the executable. Default is None Returns ------- (success, buff) success : boolean buff : list of lines of stdout """ success = False buff = [] # convert normal_msg to a list of lower case str for comparison if isinstance(normal_msg, str): normal_msg = [normal_msg] for idx, s in enumerate(normal_msg): normal_msg[idx] = s.lower() # Check to make sure that program and namefile exist exe = which(exe_name) if exe is None: import platform if platform.system() in "Windows": if not exe_name.lower().endswith(".exe"): exe = which(exe_name + ".exe") elif exe_name.lower().endswith(".exe"): exe = which(exe_name[:-4]) if exe is None: raise Exception( f"The program {exe_name} does not exist or is not executable." ) else: if not silent: print( f"FloPy is using the following executable to run the model: {exe}" ) if namefile is not None: if not os.path.isfile(os.path.join(model_ws, namefile)): raise Exception( f"The namefile for this model does not exists: {namefile}" ) # simple little function for the thread to target def q_output(output, q): for line in iter(output.readline, b""): q.put(line) # time.sleep(1) # output.close() # create a list of arguments to pass to Popen argv = [exe_name] if namefile is not None: argv.append(namefile) # add additional arguments to Popen arguments if cargs is not None: if isinstance(cargs, str): cargs = [cargs] for t in cargs: argv.append(t) # run the model with Popen proc = Popen(argv, stdout=PIPE, stderr=STDOUT, cwd=model_ws) if not use_async: while True: line = proc.stdout.readline().decode("utf-8") if line == "" and proc.poll() is not None: break if line: for msg in normal_msg: if msg in line.lower(): success = True break line = line.rstrip("\r\n") if not silent: print(line) if report: buff.append(line) else: break return success, buff # some tricks for the async stdout reading q = Queue.Queue() thread = threading.Thread(target=q_output, args=(proc.stdout, q)) thread.daemon = True thread.start() failed_words = ["fail", "error"] last = datetime.now() lastsec = 0.0 while True: try: line = q.get_nowait() except Queue.Empty: pass else: if line == "": break line = line.decode().lower().strip() if line != "": now = datetime.now() dt = now - last tsecs = dt.total_seconds() - lastsec line = f"(elapsed:{tsecs})-->{line}" lastsec = tsecs + lastsec buff.append(line) if not silent: print(line) for fword in failed_words: if fword in line: success = False break if proc.poll() is not None: break proc.wait() thread.join(timeout=1) buff.extend(proc.stdout.readlines()) proc.stdout.close() for line in buff: for msg in normal_msg: if msg in line.lower(): print("success") success = True break if pause: input("Press Enter to continue...") return success, buff
31.202778
89
0.531968
[ "CC0-1.0", "BSD-3-Clause" ]
andrewcalderwood/flopy
flopy/mbase.py
56,165
Python
df['A'] # A # --------- # -0.613035 # -1.265520 # 0.763851 # -1.248425 # 2.105805 # 1.763502 # -0.781973 # 1.400853 # -0.746025 # -1.120648 # # [100 rows x 1 column]
11.1875
23
0.497207
[ "Apache-2.0" ]
13927729580/h2o-3
h2o-docs/src/booklets/v2_2015/source/Python_Vignette_code_examples/python_select_column_name.py
179
Python
# -*- coding: utf-8 -*- """Docstring Parsers/Formatters""" # TODO: break this module up into smaller pieces import sys import re from textwrap import dedent from collections import OrderedDict from itertools import islice from .autodocstring_logging import logger PY3k = sys.version_info[0] == 3 if PY3k: string_types = str, else: string_types = basestring, # pylint: disable=undefined-variable def make_docstring_obj(docstr, default="google", template_order=False): """Detect docstring style and create a Docstring object Parameters: docstr (str): source docstring default (str, class): 'google', 'numpy' or subclass of Docstring template_order (bool, optional): iff True, reorder the sections to match the order they appear in the template Returns: subclass of Docstring """ typ = detect_style(docstr) logger.info("[make_docstring_obj] from {} to {}" "".format(typ.__name__ if typ is not None else None, default.__name__)) if typ is None: if issubclass(default, Docstring): typ = default else: typ = STYLE_LOOKUP[default.lower()] return typ(docstr, template_order=template_order) def detect_style(docstr): """Detect docstr style from existing docstring Parameters: docstr (str): docstring whose style we want to know Returns: class: one of [GoogleDocstring, NumpyDocstring, None]; None means no match """ docstr = dedent_docstr(docstr) for c in STYLE_LOOKUP.values(): if c.detect_style(docstr): return c return None def dedent_docstr(s, n=1): """Dedent all lines except first n lines Args: s (type): some text to dedent n (int): number of lines to skip, (n == 0 is a normal dedent, n == 1 is useful for whole docstrings) """ lines = s.splitlines(keepends=True) if lines: first_n_lines = "".join([l.lstrip(' \t') for l in lines[:n]]) dedented = dedent("".join(lines[n:])) return first_n_lines + dedented else: return "" def dedent_verbose(s, n=1): new = dedent_docstr(s, n=n) s_split = s.splitlines(keepends=True) new_split = new.splitlines(keepends=True) i, ind = 0, -1 for i in range(n, len(s_split)): if s_split[i].strip(): ind = s_split[i].find(new_split[i]) break if ind >= 0: indent = s_split[i][:ind] else: indent = "" return indent, new def indent_docstr(s, indent, n=1, trim=True): """Add common indentation to all lines except first Args: s (str): docstring starting at indentation level 0 indent (str): text used for indentation, in practice this will be the level of the declaration + 1 n (int): don't indent first n lines trim (bool): trim whitespace (' \t') out of blank lines Returns: s with common indentation applied """ lines = s.splitlines(keepends=True) for i in range(n, len(lines)): if lines[i].strip() or not trim: lines[i] = "{0}{1}".format(indent, lines[i]) else: lines[i] = lines[i].strip(' \t') return "".join(lines) def count_leading_newlines(s): """count number of leading newlines this includes newlines that are separated by other whitespace """ return s[:-len(s.lstrip())].count('\n') def count_trailing_newlines(s): """count number of trailing newlines this includes newlines that are separated by other whitespace """ return s[len(s.rstrip()):].count('\n') def with_bounding_newlines(s, nleading=0, ntrailing=0, nl='\n'): """return s with at least # leading and # trailing newlines this includes newlines that are separated by other whitespace """ return "{0}{1}{2}".format(nl * (nleading - count_leading_newlines(s)), s, nl * (ntrailing - count_trailing_newlines(s))) def strip_newlines(s, nleading=0, ntrailing=0): """strip at most nleading and ntrailing newlines from s""" for _ in range(nleading): if s.lstrip(' \t')[0] == '\n': s = s.lstrip(' \t')[1:] elif s.lstrip(' \t')[0] == '\r\n': s = s.lstrip(' \t')[2:] for _ in range(ntrailing): if s.rstrip(' \t')[-2:] == '\r\n': s = s.rstrip(' \t')[:-2] elif s.rstrip(' \t')[-1:] == '\n': s = s.rstrip(' \t')[:-1] return s class Parameter(object): """""" names = None types = None description = None tag = None descr_only = None meta = None def __init__(self, names, types, description, tag=None, descr_only=False, annotated=False, **kwargs): """ Args: names (list): list of names types (str): string describing data types description (str): description text tag (int): some meaningful index? not fleshed out yet descr_only (bool): only description is useful **kwargs: Description """ assert names is not None if description is None: description = "" self.names = names self.types = types self.description = description self.tag = tag self.descr_only = descr_only self.annotated = annotated self.meta = kwargs class Section(object): """""" ALIASES = {} PARSERS = {} is_formatted = None args = None args_parser = None args_formatter = None heading = None alias = None _text = None section_indent = "" indent = " " meta = None formatter_override = None def __init__(self, heading, text="", indent=None, **kwargs): """ Args: heading (str): heading of the section (should be title case) text (str, optional): section text indent (str, optional): used by some formatters """ self.heading = heading self.alias = self.resolve_alias(heading) if self.alias in self.PARSERS: parser, formatter = self.PARSERS[self.alias] self.args_parser = parser self.args_formatter = formatter self.is_formatted = True else: self.is_formatted = False if indent is not None: self.indent = indent self.text = text self.meta = kwargs logger.debug("create section '{}' ({}) with args : '{}'".format(self.heading, self.alias, self.args)) @classmethod def from_section(cls, sec): new_sec = cls(sec.alias) new_sec._text = sec._text # pylint: disable=protected-access # when changing styles, the indentation should change to better fit # the new style # new_sec.section_indent = sec.section_indent # new_sec.indent = sec.indent if hasattr(sec, "args"): new_sec.args = sec.args return new_sec @classmethod def resolve_alias(cls, heading): """""" titled_heading = heading.title() try: return cls.ALIASES[titled_heading] except KeyError: return heading @property def text(self): """""" if self.formatter_override is not None: s = self.formatter_override(self) # pylint: disable=not-callable elif self.args_formatter is not None: s = self.args_formatter(self) else: s = self._text return s @text.setter def text(self, val): """""" val = strip_newlines(val, ntrailing=1) if self.args_parser is not None: self.args = self.args_parser(self, val) else: section_indent, self._text = dedent_verbose(val, n=0) # don't overwrite section indent if val isn't indented if section_indent: self.section_indent = section_indent class NapoleonSection(Section): """""" ALIASES = {"Args": "Parameters", "Arguments": "Parameters", "Deleted Args": "Deleted Parameters", "Deleted Arguments": "Deleted Parameters", "Other Args": "Other Parameters", "Other Arguments": "Other Parameters", "Keyword Args": "Keyword Arguments", "Return": "Returns", "Yield": "Yields", "No Longer Returns": "No Longer Returned", "No Longer Yields": "No Longer Yielded", "Warnings": "Warning" } def is_return_section(self): return self.heading and self.heading.lower() in ('return', 'returns', 'yield', 'yields') def param_parser_common(self, text): # NOTE: there will be some tricky business if there is a # section break done by "resuming unindented text" param_list = [] param_dict = OrderedDict() text = dedent_docstr(text, 0) _r = r"^\S[^\r\n]*(?:\n[^\S\n]+\S[^\r\n]*|\n)*" param_blocks = re.findall(_r, text, re.MULTILINE) for i, block in enumerate(param_blocks): param = self.finalize_param(block, len(param_list)) param_list.append(param) if self.is_return_section(): param.names = [", ".join(param.names)] param_dict[i] = param else: for name in param.names: param_dict[name] = param return param_dict class GoogleSection(NapoleonSection): """""" section_indent = " " indent = " " @staticmethod def finalize_param(s, tag): """ Args: s (type): Description tag (int): index of param? not fleshed out yet """ meta = {} _r = r"([^,\s]+(?:\s*,\s*[^,\s]+)*\s*)(?:\((.*)\))?\s*:\s*(.*)" m = re.match(_r, s, re.DOTALL | re.MULTILINE) if m: names, typ, descr = m.groups() names = [n.strip() for n in names.split(',')] meta['indent'], descr = dedent_verbose(descr, n=1) descr_only = False else: names = ["{0}".format(tag)] typ = "" descr = s descr_only = True return Parameter(names, typ, descr, tag=tag, descr_only=descr_only, **meta) def param_parser(self, text): logger.info("[GoogleSection] section '{}' starts parsing".format(self.alias)) return self.param_parser_common(text) def param_formatter(self): """""" logger.info("[GoogleSection] section '{}' starts formatting".format(self.alias)) s = "" for param in self.args.values(): if param.descr_only: s += with_bounding_newlines(param.description, ntrailing=1) else: if len(param.names) > 1: logger.warn("section '{}' : Google docstrings don't allow > 1 " "parameter per description".format(self.alias)) p = "{0}".format(", ".join(param.names)) if param.types: types = param.types.strip() if types: p = "{0} ({1})".format(p, types) if param.description: desc = indent_docstr(param.description, param.meta.get("indent", self.indent)) p = "{0}: {1}".format(p, desc) s += with_bounding_newlines(p, ntrailing=1) return s PARSERS = {"Parameters": (param_parser, param_formatter), "Other Parameters": (param_parser, param_formatter), "Deleted Parameters": (param_parser, param_formatter), "Keyword Arguments": (param_parser, param_formatter), "Attributes": (param_parser, param_formatter), "Deleted Attributes": (param_parser, param_formatter), "Raises": (param_parser, param_formatter), "No Longer Raises": (param_parser, param_formatter), "Returns": (param_parser, param_formatter), "Yields": (param_parser, param_formatter), "No Longer Returned": (param_parser, param_formatter), "No Longer Yielded": (param_parser, param_formatter), } class NumpySection(NapoleonSection): """""" indent = " " @staticmethod def finalize_param(s, i): meta = {} _r = r"\s*([^,\s]+(?:\s*,\s*[^,\s]+)*)\s*(?::\s*(.*?))?[^\S\n]*?\n(\s+.*)" m = re.match(_r, s, re.DOTALL) if m: names, typ, desc = m.groups() # FIXME hack, name for numpy parameters is always a list of names # to support the multiple parameters per description option in # numpy docstrings names = [n.strip() for n in names.split(',')] meta['indent'], descr = dedent_verbose(desc, 0) descr_only = False else: names = ["{0}".format(i)] typ = "" descr = s descr_only = True return Parameter(names, typ, descr, tag=i, descr_only=descr_only, **meta) def param_parser(self, text): logger.info("[NumpySection] section '{}' starts parsing".format(self.alias)) return self.param_parser_common(text) def param_formatter(self): """""" # NOTE: there will be some tricky business if there is a # section break done by "resuming unindented text" logger.info("[NumpySection] section '{}' starts formatting".format(self.alias)) s = "" # already_seen = {} for param in self.args.values(): if param.descr_only: s += with_bounding_newlines(param.description, ntrailing=1) else: p = "{0}".format(", ".join(param.names)) if param.types: types = param.types.strip() if types: p = "{0} : {1}".format(p, param.types.strip()) p = with_bounding_newlines(p, ntrailing=1) if param.description: p += indent_docstr(param.description, param.meta.get("indent", self.indent), n=0) s += with_bounding_newlines(p, ntrailing=1) return s PARSERS = {"Parameters": (param_parser, param_formatter), "Other Parameters": (param_parser, param_formatter), "Deleted Parameters": (param_parser, param_formatter), "Keyword Arguments": (param_parser, param_formatter), "Attributes": (param_parser, param_formatter), "Deleted Attributes": (param_parser, param_formatter), "Raises": (param_parser, param_formatter), "No Longer Raises": (param_parser, param_formatter), "Returns": (param_parser, param_formatter), "Yields": (param_parser, param_formatter), "No Longer Returned": (param_parser, param_formatter), "No Longer Yielded": (param_parser, param_formatter), } class Docstring(object): """Handle parsing / modifying / writing docstrings""" STYLE_NAME = "none" SECTION_STYLE = Section TEMPLATE = OrderedDict([("Summary", None)]) PREFERRED_PARAMS_ALIAS = "Args" sections = None trailing_newlines = None def __init__(self, docstr, template_order=False): """ Parameters: docstr (Docstring or str): some existing docstring template_order (bool, optional): iff True, reorder the sections to match the order they appear in the template """ if isinstance(docstr, Docstring): self.sections = docstr.sections self.trailing_newlines = docstr.trailing_newlines if not isinstance(docstr, type(self)): # fixme, this is kinda hacky make_new_sec = self.SECTION_STYLE.from_section for sec_name, sec in docstr.sections.items(): # when the section should not exists # i.e. when a section was generated, but isn't needed anymore # e.g. when there isn't any exception raised if sec: docstr.sections[sec_name] = make_new_sec(sec) else: # deleting section that shouldn't be here # including those generated with template_order=True del docstr.sections[sec_name] # ok, this way of changing indentation is a thunder hack if "Parameters" in docstr.sections: self.get_section("Parameters").heading = self.PREFERRED_PARAMS_ALIAS for arg in self.get_section("Parameters").args.values(): arg.meta['indent'] = self.get_section("Parameters").indent if "Returns" in docstr.sections: for arg in self.get_section("Returns").args.values(): arg.meta['indent'] = self.get_section("Returns").indent if "Yields" in docstr.sections: for arg in self.get_section("Yields").args.values(): arg.meta['indent'] = self.get_section("Yields").indent elif isinstance(docstr, string_types): if template_order: self.sections = self.TEMPLATE.copy() else: self.sections = OrderedDict() self._parse(docstr) def _parse(self, s): """Parse docstring into meta data Parameters: s (str): docstring """ raise NotImplementedError("_parse is an abstract method") def format(self, top_indent): """Format docstring into a string Parameters: top_indent (str): indentation added to all but the first lines Returns: str: properly formatted """ raise NotImplementedError("format is an abstract method") def update_parameters(self, params): """""" raise NotImplementedError("update_parameters is an abstract method") def update_return_type(self, ret_name, ret_type, default_description="Description", keyword="return"): """""" raise NotImplementedError("update_return_type is an abstract method") def update_attributes(self, attribs, alpha_order=True): """ Args: params (OrderedDict): params objects keyed by their names """ raise NotImplementedError("update_attributes is an abstract method") def update_exceptions(self, attribs, alpha_order=True): """ Args: params (OrderedDict): params objects keyed by their names """ raise NotImplementedError("update_exceptions is an abstract method") def add_dummy_returns(self, name, typ, description): raise NotImplementedError("add_dummy_returns is an abstract method") def finalize_section(self, heading, text): """ Args: heading (type): Description text (type): Description """ section = self.SECTION_STYLE(heading, text) self.sections[section.alias] = section def get_section(self, section_name): if section_name in self.sections: return self.sections[section_name] elif section_name in self.SECTION_STYLE.ALIASES: alias = self.SECTION_STYLE.resolve_alias(section_name) if alias in self.sections: return self.sections[alias] raise KeyError("Section '{0}' not found".format(section_name)) def pop_section(self, section_name): if section_name in self.sections: return self.sections.pop(section_name) elif section_name in self.SECTION_STYLE.ALIASES: alias = self.SECTION_STYLE.resolve_alias(section_name) if alias in self.sections: return self.sections.pop(alias) raise KeyError("Section '{0}' not found".format(section_name)) def insert_section(self, section_name, section): if section.heading != section_name: section.heading = section_name self.sections[section_name] = section def section_exists(self, section_name): """returns True iff section exists, and was finalized""" sec = None if section_name in self.sections: sec = self.sections[section_name] elif section_name in self.SECTION_STYLE.ALIASES: alias = self.SECTION_STYLE.resolve_alias(section_name) if alias in self.sections: sec = self.sections[alias] if sec is not None: return True return False class NapoleonDocstring(Docstring): # pylint: disable=abstract-method """Styles understood by napoleon, aka. Google/Numpy""" STYLE_NAME = "napoleon" TEMPLATE = OrderedDict([("Summary", None), ("Parameters", None), ("Keyword Arguments", None), ("Returns", None), ("Yields", None), ("No Longer Returned", None), ("No Longer Yielded", None), ("Other Parameters", None), ("Deleted Parameters", None), ("Attributes", None), ("Deleted Attributes", None), ("Methods", None), ("Raises", None), ("No Longer Raises", None), ("Warns", None), ("See Also", None), ("Warning", None), ("Note", None), ("Notes", None), ("References", None), ("Example", None), ("Examples", None), ]) @staticmethod def _extract_section_name(sec_re_result): return sec_re_result.strip() def _parse(self, s): """ Args: s (type): Description """ logger.info("[NapoleonDocstring] starts parsing text") self.trailing_newlines = count_trailing_newlines(s) s = dedent_docstr(s) sec_starts = [(m.start(), m.end(), m.string[m.start():m.end()]) for m in re.finditer(self.SECTION_RE, s, re.MULTILINE)] sec_starts.insert(0, (0, 0, "Summary")) sec_starts.append((len(s), len(s), "")) for current_sec, next_sec in zip(sec_starts[:-1], sec_starts[1:]): sec_name = self._extract_section_name(current_sec[2]) sec_body = s[current_sec[1]:next_sec[0]] self.finalize_section(sec_name, sec_body) @staticmethod def _format_section_text(heading, body): raise NotImplementedError("This is an abstract method") def format(self, top_indent): """ Args: top_indent (type): Description """ logger.info("[NapoleonDocstring] starts formatting") s = "" if self.section_exists("Summary"): sec_text = self.get_section("Summary").text if sec_text.strip(): s += with_bounding_newlines(sec_text, nleading=0, ntrailing=1) for _, section in islice(self.sections.items(), 1, None): if section is None: continue sec_body = indent_docstr(section.text, section.section_indent, n=0) sec_text = self._format_section_text(section.heading, sec_body) s += with_bounding_newlines(sec_text, nleading=1, ntrailing=1) if self.trailing_newlines: s = with_bounding_newlines(s, ntrailing=self.trailing_newlines) s = indent_docstr(s, top_indent) return s def _update_section(self, params, sec_name, sec_alias=None, del_prefix="Deleted ", alpha_order=False, other_sections=()): """Update section to add / remove params As a failsafe, params that are removed are placed in a "Deleted ..." section Args: params (OrderedDict): dict of Parameter objects sec_name (str): generic section name sec_alias (str): section name that appears in teh docstring del_prefix (str): prefix for section that holds params that no longer exist. alpha_order (bool): whether or not to alphabetically sort the params """ if not sec_alias: sec_alias = sec_name if not self.section_exists(sec_name) and len(params) == 0: return None elif not self.section_exists(sec_name): self.finalize_section(sec_alias, "") # put together which other sections exist so we can use them to # exclude params that exist in them _other = [] for _secname in other_sections: if self.section_exists(_secname): _other.append(self.get_section(_secname)) other_sections = _other if alpha_order: sorted_params = OrderedDict() for k in sorted(list(params.keys()), key=str.lower): sorted_params[k] = params[k] params = sorted_params current_dict = self.get_section(sec_name).args # go through params in the order of the function declaration # and cherry-pick from current_dict if there's already a description # for that parameter tags_seen = dict() new = OrderedDict() for name, param in params.items(): if name in current_dict: def_param = param param = current_dict.pop(name) if param.tag in tags_seen: param = None else: tags_seen[param.tag] = True # update the type if annotated if def_param.annotated: param.types = def_param.types else: # if param is in one of the 'other sections', then don't # worry about it for sec in other_sections: if name in sec.args: # update the type if the annotated if param.annotated: sec.args[name].types = param.types # now ignore it param = None if param: new[name] = param # add description only parameters back in for key, param in current_dict.items(): if param.descr_only: # param.description = '\n' + param.description new[key] = current_dict.pop(key) # not sure when this guy gets created if '' in current_dict: del current_dict[''] # go through params that are no linger in the arguments list and # move them from the Parameters section of the docstring to the # deleted parameters section if len(current_dict): del_sec_name = del_prefix + sec_name del_sec_alias = del_prefix + sec_alias logger.warn("killing parameters named: {}".format(current_dict.keys())) # TODO: put a switch here for other bahavior? if not self.section_exists(self.SECTION_STYLE.resolve_alias(del_sec_name)): self.finalize_section(del_sec_name, "") deled_params = self.get_section(del_sec_name) deleted_tags = dict() for key, val in current_dict.items(): if key in deled_params.args: logger.warn("Stronger Warning: Killing old deleted param: " "'{0}'".format(key)) val.names.remove(key) if val.tag in deleted_tags: deleted_tags[val.tag].names.append(key) else: new_val = Parameter([key], val.types, val.description) deleted_tags[val.tag] = new_val deled_params.args[key] = new_val if len(new) == 0: self.sections[sec_name] = None else: self.sections[sec_name].args = new def update_parameters(self, params): """ Args: params (OrderedDict): params objects keyed by their names """ logger.info("[NapoleonDocstring] update parameters") other_sections = ['Other Parameters', 'Keyword Parameters'] self._update_section(params, "Parameters", self.PREFERRED_PARAMS_ALIAS, other_sections=other_sections) def update_return_type(self, ret_name, ret_type, default_description="Description", keyword="return", del_prefix="No Longer "): """""" logger.info("[NapoleonDocstring] update return type") if keyword == "yield": sec_name = "Yields" elif keyword == "return": sec_name = "Returns" else: logger.debug("Unknown return keyword: '{}'".format(keyword)) for std_ret_name in ("Yields", "Returns"): if self.section_exists(std_ret_name): del_sec_name = del_prefix + std_ret_name del_sec_alias = self.SECTION_STYLE.resolve_alias(del_sec_name) if not self.section_exists(del_sec_alias): self.finalize_section(del_sec_alias, "") del_sec = self.get_section(del_sec_alias) sec = self.pop_section(std_ret_name) del_sec.args = sec.args return if not self.section_exists(sec_name): # see if a section exists from another keyword, ie, maybe # this function used to return, but now it yields for std_ret_name in ("Yields", "Returns"): if self.section_exists(std_ret_name): # necessary to recreate completly the section # in order to use the right parser and formatter logger.debug("old return section exists : '{}'".format(std_ret_name)) old_sec = self.pop_section(std_ret_name) self.finalize_section(sec_name, "") new_sec = self.get_section(sec_name) new_sec.args = old_sec.args self.insert_section(sec_name, new_sec) break if self.section_exists(sec_name): sec = self.get_section(sec_name) if sec.args and ret_type: p0 = next(iter(sec.args.values())) if p0.descr_only: p0.description = ret_type elif p0.types: p0.types = ret_type elif p0.names: p0.names = [ret_type] elif ret_name or ret_type: description = default_description sec.args = OrderedDict() if ret_name: sec.args[ret_name] = Parameter([ret_name], ret_type, description) else: sec.args[ret_type] = Parameter([ret_type], "", description) else: # and i ask myself, how did i get here? pass else: self.finalize_section(sec_name, "") sec = self.get_section(sec_name) ret_type = ret_type if ret_type != "" else "${NUMBER:TYPE}" sec.args = OrderedDict() sec.args[ret_type] = Parameter([ret_type], "", default_description) def update_attributes(self, attribs, alpha_order=True): """ Args: params (OrderedDict): params objects keyed by their names """ logger.info("[NapoleonDocstring] update attributes") self._update_section(attribs, "Attributes", alpha_order=alpha_order) def update_exceptions(self, attribs, alpha_order=True): """ Args: params (OrderedDict): params objects keyed by their names """ logger.info("[NapoleonDocstring] update exceptions") self._update_section(attribs, "Raises", del_prefix="No Longer ", alpha_order=alpha_order) def add_dummy_returns(self, name, typ, description): # No longer used?? if not self.section_exists("Returns"): sec = self.SECTION_STYLE("Returns") if name: sec.args = {name: Parameter([name], typ, description)} else: sec.args = {typ: Parameter([typ], "", description)} self.sections["Returns"] = sec class GoogleDocstring(NapoleonDocstring): """""" STYLE_NAME = "google" SECTION_STYLE = GoogleSection SECTION_RE = r"^[A-Za-z0-9][A-Za-z0-9 \t]*:\s*$\r?\n?" PREFERRED_PARAMS_ALIAS = "Args" @classmethod def detect_style(cls, docstr): """""" m = re.search(cls.SECTION_RE, docstr, re.MULTILINE) return m is not None @staticmethod def _extract_section_name(sec_re_result): return sec_re_result.strip().rstrip(':').rstrip() @staticmethod def _format_section_text(heading, body): return "{0}:\n{1}".format(heading, body) class NumpyDocstring(NapoleonDocstring): """""" STYLE_NAME = "numpy" SECTION_STYLE = NumpySection SECTION_RE = r"^([A-Za-z0-9][A-Za-z0-9 \t]*)\s*\n-+\s*?$\r?\n?" PREFERRED_PARAMS_ALIAS = "Parameters" @classmethod def detect_style(cls, docstr): """""" m = re.search(cls.SECTION_RE, docstr, re.MULTILINE) return m is not None @staticmethod def _extract_section_name(sec_re_result): return sec_re_result.strip().rstrip('-').rstrip() @staticmethod def _format_section_text(heading, body): return "{0}\n{1}\n{2}".format(heading, "-" * len(heading), body) STYLE_LOOKUP = OrderedDict([('numpy', NumpyDocstring), ('google', GoogleDocstring)]) ## ## EOF ##
35.641717
89
0.540895
[ "MIT" ]
KristoforMaynard/SublimeAutoDocstring
docstring_styles.py
35,713
Python
from importlib.machinery import SourceFileLoader import io import os.path from setuptools import find_packages, setup sourcedml = SourceFileLoader("sourced-ml-core", "./sourced/ml/core/__init__.py").load_module() with io.open(os.path.join(os.path.dirname(__file__), "README.md"), encoding="utf-8") as f: long_description = f.read() include_tests = os.getenv("ML_CORE_SETUP_INCLUDE_TESTS", False) exclude_packages = (("sourced.ml.core.tests", "sourced.ml.core.tests.source") if not include_tests else ()) tf_requires = ["tensorflow>=1.0,<1.14"] tf_gpu_requires = ["tensorflow-gpu>=1.0,<1.14"] package_data = {"": ["LICENSE.md", "README.md"]} if include_tests: test_data_dirs = ["./asdf/*.asdf", "./swivel/*", "identifiers.csv.tar.gz"] package_data["sourced.ml.core.tests"] = test_data_dirs setup( name="sourced-ml-core", description="Library containing the core algorithms for machine learning on source code. " "Provides API and tools to train and use models based " "on source code features extracted from Babelfish's UASTs.", long_description=long_description, long_description_content_type="text/markdown", version=sourcedml.__version__, license="Apache 2.0", author="source{d}", author_email="[email protected]", url="https://github.com/src-d/ml-core", download_url="https://github.com/src-d/ml-core", packages=find_packages(exclude=exclude_packages), namespace_packages=["sourced", "sourced.ml"], keywords=[ "machine learning on source code", "word2vec", "id2vec", "github", "swivel", "bow", "bblfsh", "babelfish", ], install_requires=[ "PyStemmer>=1.3,<2.0", "bblfsh>=3.1.0,<4.0", "modelforge>=0.14.1", "pygments>=2.2.0,<3.0", "keras>=2.0,<3.0", "scikit-learn>=0.21.1,<1.0", "tqdm>=4.20,<5.0", ], extras_require={"tf": tf_requires, "tf_gpu": tf_gpu_requires}, tests_require=["docker>=3.6.0,<4.0"], package_data=package_data, python_requires=">=3.5", classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries", ], )
35.410959
94
0.629014
[ "Apache-2.0" ]
zurk/ml-core
setup.py
2,585
Python
# from binho.errors import DriverCapabilityError class binhoAccessory: """ Base class for objects representing accessory boards. """ # Optional: subclasses can set this variable to override their accessory name. # If not provided, their name will automatically be taken from their class names. # This typically doesn't need to be overridden. ACCESSORY_NAME = None @classmethod def get_name(cls): """ Default implementation of a function that returns a class's name. """ # If we have an overridden accessory name, return it. if cls.ACCESSORY_NAME: return cls.ACCESSORY_NAME # Otherwise, return the given class's name. return cls.__name__ @classmethod def available_accessories(cls): """ Returns a list of available neighbors. """ return [accessory.get_name() for accessory in cls.__subclasses__()] @classmethod def from_name(cls, name, board, *args, **kwargs): """ Creates a new binhoAccessory object from its name. """ target_name = name.lower() for subclass in cls.__subclasses__(): # Grab the class's name, and check to see if it matches ours. subclass_name = subclass.get_name() # If this class matches our target name, this is the class we're looking for! # Create an instance and return it. if target_name == subclass_name.lower(): return subclass(board, *args, **kwargs) raise DriverCapabilityError("No known driver for accessory '{}'.".format(name))
34.565217
89
0.657233
[ "BSD-3-Clause" ]
binhollc/binho-python-package
binho/accessory.py
1,590
Python
# coding: utf-8 """ flyteidl/service/admin.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: version not set Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import flyteadmin from flyteadmin.models.admin_pager_duty_notification import AdminPagerDutyNotification # noqa: E501 from flyteadmin.rest import ApiException class TestAdminPagerDutyNotification(unittest.TestCase): """AdminPagerDutyNotification unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAdminPagerDutyNotification(self): """Test AdminPagerDutyNotification""" # FIXME: construct object with mandatory attributes with example values # model = flyteadmin.models.admin_pager_duty_notification.AdminPagerDutyNotification() # noqa: E501 pass if __name__ == '__main__': unittest.main()
25.463415
119
0.737548
[ "Apache-2.0" ]
EngHabu/flyteidl
gen/pb_python/flyteidl/service/flyteadmin/test/test_admin_pager_duty_notification.py
1,044
Python
__author__ = 'Burgos, Agustin - Schelotto, Jorge' # -*- coding: utf-8 -*- # Copyright 2018 autors: Burgos Agustin, Schelotto Jorge # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED # TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import pygame class Palabras(pygame.sprite.Sprite): def __init__(self, ruta, nombre, x, y): super().__init__() self.__palabra = nombre self.__click = False self.image = pygame.image.load(ruta).convert_alpha() self.rect = self.image.get_rect() self.collide = False self.posX = x self.posY = y def getPosX(self): return self.posX def getPosY(self): return self.posY def getPalabra(self): return self.__palabra def getPalabraImagen(self): return self.image def setClick(self, bool): self.__click = bool def getClick(self): return self.__click def getRect(self): return self.rect def colli(self, x, y): if x > 20: # Achica la imagen center = self.rect.center x = x - 1 y = y - 1 self.image = pygame.transform.scale(self.image, (x, y)) self.rect = self.image.get_rect() self.rect.center = center self.image = pygame.transform.rotozoom(self.image, -90, 0.8) elif x <= 20: # Para que no de x < 0 center = self.rect.center self.image = pygame.transform.scale(self.image, (0, 0)) self.rect = self.image.get_rect() self.rect.center = center self.image = pygame.transform.rotozoom(self.image, -90, 0.5) def update(self,surface): """Controla los eventos y coliciones de los sprites Palabras""" if not self.getClick() and not self.collide: self.rect.center = (self.posX, self.posY) if self.getClick(): #Si se hace click en la imagen self.rect.center = pygame.mouse.get_pos() if self.collide: # Si hay colision x = self.image.get_rect().size[0] y = self.image.get_rect().size[1] self.colli(x,y) # Saca la imagen de la zona de colición. if self.image.get_rect().size[0] <= 20: self.rect.center = (0,0) surface.blit(self.getPalabraImagen(), self.getRect())
35.978495
128
0.633293
[ "MIT" ]
JorgeSchelotto/TrabajoFinalSeminarioPython
Clases/Palabras.py
3,347
Python
""" Configuration file for py.test """ import django def pytest_configure(): from django.conf import settings settings.configure( DEBUG=True, USE_TZ=True, USE_I18N=True, ROOT_URLCONF="tests.urls", DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": "test.sqlite3", } }, INSTALLED_APPS=[ "django.contrib.auth", "django.contrib.admin", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "simple_auth", ], MIDDLEWARE=[ "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "simple_auth.middleware.SimpleAuthMiddleware", ], TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, }, ], SITE_ID=1, ) django.setup()
27.111111
77
0.536066
[ "BSD-2-Clause" ]
bennylope/django-simple-auth
conftest.py
1,220
Python
import sys from subprocess import Popen import cx_Oracle root_directory = sys.argv[1] def main(directory): public_projects = get_public_project_accessions() for project_accession in public_projects: Popen(['./runAnnotator.sh', directory, str(project_accession)]) # get all the project references from pride archive def get_public_project_accessions(): accessions = list() archive_cursor = connect_archive() archive_cursor.execute( "select accession from project where (submission_type='PRIDE' or submission_type='COMPLETE') and is_public = 1") projects = archive_cursor.fetchall() for project in projects: accessions.append(project[0]) archive_cursor.close() return accessions # connect to pride archive database def connect_archive(): # connect to archive database archive_db = cx_Oracle.connect( "${pride.repo.db.user}/${pride.repo.db.password}@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ora-vm-032.ebi.ac.uk)(PORT=1531))(CONNECT_DATA=(SERVICE_NAME=PRIDEPRO)))") # Create an cursor object for archive database return archive_db.cursor() if __name__ == '__main__': main(root_directory)
28.261905
173
0.730413
[ "Apache-2.0" ]
PRIDE-Cluster/cluster-result-importer
scripts/batchAnnotator.py
1,187
Python
# Timing functionality from Python's built-in module from time import perf_counter from functools import lru_cache def timer(fn): def inner(*args): start = perf_counter() result = fn(*args) end = perf_counter() elapsed = end - start print(result) print('elapsed', elapsed) return inner @timer def calc_factorial(num): if num < 0: raise ValueError('Please use a number not smaller than 0') product = 1 for i in range(num): product = product * (i+1) return product # @timer # @lru_cache() # def fib(n): # if n < 2: # return n # return fib(n-1) + fib(n-2) if __name__ == '__main__': calc_factorial(88) # fib(25)
17.853659
66
0.592896
[ "MIT" ]
zubrik13/udacity_inter_py
lesson3-functional_programming/timing.py
732
Python
from echo import CallbackProperty, SelectionCallbackProperty, keep_in_sync, delay_callback from matplotlib.colors import to_rgba from glue.core.message import LayerArtistUpdatedMessage from glue.core.state_objects import State from glue.viewers.common.state import ViewerState, LayerState from glue.utils import defer_draw, avoid_circular __all__ = ['DeferredDrawSelectionCallbackProperty', 'DeferredDrawCallbackProperty', 'MatplotlibDataViewerState', 'MatplotlibLayerState'] class DeferredDrawCallbackProperty(CallbackProperty): """ A callback property where drawing is deferred until after notify has called all callback functions. """ @defer_draw def notify(self, *args, **kwargs): super(DeferredDrawCallbackProperty, self).notify(*args, **kwargs) class DeferredDrawSelectionCallbackProperty(SelectionCallbackProperty): """ A callback property where drawing is deferred until after notify has called all callback functions. """ @defer_draw def notify(self, *args, **kwargs): super(DeferredDrawSelectionCallbackProperty, self).notify(*args, **kwargs) VALID_WEIGHTS = ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 'black'] VALID_LOCATIONS = ['draggable', 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'center left', 'center right', 'lower center', 'upper center'] class MatplotlibLegendState(State): """The legend state""" visible = DeferredDrawCallbackProperty(False, docstring="Whether to show the legend") location = DeferredDrawSelectionCallbackProperty(0, docstring="The location of the legend in the axis") title = DeferredDrawCallbackProperty("", docstring='The title of the legend') fontsize = DeferredDrawCallbackProperty(10, docstring='The font size of the title') alpha = DeferredDrawCallbackProperty(0.6, docstring='Transparency of the legend frame') frame_color = DeferredDrawCallbackProperty("#ffffff", docstring='Frame color of the legend') show_edge = DeferredDrawCallbackProperty(True, docstring="Whether to show the edge of the frame ") text_color = DeferredDrawCallbackProperty("#000000", docstring='Text color of the legend') def __init__(self, *args, **kwargs): MatplotlibLegendState.location.set_choices(self, VALID_LOCATIONS) super().__init__(*args, **kwargs) self._set_color_choices() def _set_color_choices(self): from glue.config import settings self.frame_color = settings.BACKGROUND_COLOR self.text_color = settings.FOREGROUND_COLOR @property def edge_color(self): if self.show_edge: return to_rgba(self.text_color, self.alpha) else: return None @property def draggable(self): return self.location == 'draggable' @property def mpl_location(self): if self.location == 'draggable': return 'best' else: return self.location def update_axes_settings_from(self, state): self.visible = state.show_legend self.loc_and_drag = state.loc_and_drag self.alpha = state.alpha self.title = state.title self.fontsize = state.fontsize self.frame_color = state.frame_color self.show_edge = state.show_edge self.text_color = state.text_color class MatplotlibDataViewerState(ViewerState): """ A base class that includes common attributes for viewers based on Matplotlib. """ x_min = DeferredDrawCallbackProperty(docstring='Lower limit of the visible x range') x_max = DeferredDrawCallbackProperty(docstring='Upper limit of the visible x range') y_min = DeferredDrawCallbackProperty(docstring='Lower limit of the visible y range') y_max = DeferredDrawCallbackProperty(docstring='Upper limit of the visible y range') x_log = DeferredDrawCallbackProperty(False, docstring='Whether the x axis is logarithmic') y_log = DeferredDrawCallbackProperty(False, docstring='Whether the y axis is logarithmic') aspect = DeferredDrawCallbackProperty('auto', docstring='Aspect ratio for the axes') show_axes = DeferredDrawCallbackProperty(True, docstring='Whether the axes are shown') x_axislabel = DeferredDrawCallbackProperty('', docstring='Label for the x-axis') y_axislabel = DeferredDrawCallbackProperty('', docstring='Label for the y-axis') x_axislabel_size = DeferredDrawCallbackProperty(10, docstring='Size of the x-axis label') y_axislabel_size = DeferredDrawCallbackProperty(10, docstring='Size of the y-axis label') x_axislabel_weight = DeferredDrawSelectionCallbackProperty(1, docstring='Weight of the x-axis label') y_axislabel_weight = DeferredDrawSelectionCallbackProperty(1, docstring='Weight of the y-axis label') x_ticklabel_size = DeferredDrawCallbackProperty(8, docstring='Size of the x-axis tick labels') y_ticklabel_size = DeferredDrawCallbackProperty(8, docstring='Size of the y-axis tick labels') def __init__(self, *args, **kwargs): self._axes_aspect_ratio = None MatplotlibDataViewerState.x_axislabel_weight.set_choices(self, VALID_WEIGHTS) MatplotlibDataViewerState.y_axislabel_weight.set_choices(self, VALID_WEIGHTS) super(MatplotlibDataViewerState, self).__init__(*args, **kwargs) self.legend = MatplotlibLegendState(*args, **kwargs) self.add_callback('aspect', self._adjust_limits_aspect, priority=10000) self.add_callback('x_min', self._adjust_limits_aspect_x, priority=10000) self.add_callback('x_max', self._adjust_limits_aspect_x, priority=10000) self.add_callback('y_min', self._adjust_limits_aspect_y, priority=10000) self.add_callback('y_max', self._adjust_limits_aspect_y, priority=10000) def _set_axes_aspect_ratio(self, value): """ Set the aspect ratio of the axes in which the visualization is shown. This is a private method that is intended only for internal use, and it allows this viewer state class to adjust the limits accordingly when the aspect callback property is set to 'equal' """ self._axes_aspect_ratio = value self._adjust_limits_aspect(aspect_adjustable='both') def _adjust_limits_aspect_x(self, *args): self._adjust_limits_aspect(aspect_adjustable='y') def _adjust_limits_aspect_y(self, *args): self._adjust_limits_aspect(aspect_adjustable='x') @avoid_circular def _adjust_limits_aspect(self, *args, **kwargs): """ Adjust the limits of the visualization to take into account the aspect ratio. This only works if `_set_axes_aspect_ratio` has been called previously. """ if self.aspect == 'auto' or self._axes_aspect_ratio is None: return if self.x_min is None or self.x_max is None or self.y_min is None or self.y_max is None: return aspect_adjustable = kwargs.pop('aspect_adjustable', 'auto') changed = None # Find axes aspect ratio axes_ratio = self._axes_aspect_ratio # Put the limits in temporary variables so that we only actually change # them in one go at the end. x_min, x_max = self.x_min, self.x_max y_min, y_max = self.y_min, self.y_max # Find current data ratio data_ratio = abs(y_max - y_min) / abs(x_max - x_min) # Only do something if the data ratio is sufficiently different # from the axes ratio. if abs(data_ratio - axes_ratio) / (0.5 * (data_ratio + axes_ratio)) > 0.01: # We now adjust the limits - which ones we adjust depends on # the adjust keyword. We also make sure we preserve the # mid-point of the current coordinates. if aspect_adjustable == 'both': # We need to adjust both at the same time x_mid = 0.5 * (x_min + x_max) x_width = abs(x_max - x_min) * (data_ratio / axes_ratio) ** 0.5 y_mid = 0.5 * (y_min + y_max) y_width = abs(y_max - y_min) / (data_ratio / axes_ratio) ** 0.5 x_min = x_mid - x_width / 2. x_max = x_mid + x_width / 2. y_min = y_mid - y_width / 2. y_max = y_mid + y_width / 2. elif (aspect_adjustable == 'auto' and data_ratio > axes_ratio) or aspect_adjustable == 'x': x_mid = 0.5 * (x_min + x_max) x_width = abs(y_max - y_min) / axes_ratio x_min = x_mid - x_width / 2. x_max = x_mid + x_width / 2. else: y_mid = 0.5 * (y_min + y_max) y_width = abs(x_max - x_min) * axes_ratio y_min = y_mid - y_width / 2. y_max = y_mid + y_width / 2. with delay_callback(self, 'x_min', 'x_max', 'y_min', 'y_max'): self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max def update_axes_settings_from(self, state): # axis self.x_axislabel_size = state.x_axislabel_size self.y_axislabel_size = state.y_axislabel_size self.x_axislabel_weight = state.x_axislabel_weight self.y_axislabel_weight = state.y_axislabel_weight self.x_ticklabel_size = state.x_ticklabel_size self.y_ticklabel_size = state.y_ticklabel_size # legend self.legend.update_axes_settings_from(state.legend) @defer_draw def _notify_global(self, *args, **kwargs): super(MatplotlibDataViewerState, self)._notify_global(*args, **kwargs) def _update_priority(self, name): if name == 'layers': return 2 elif name.endswith('_log'): return 0.5 elif name.endswith(('_min', '_max')): return 0 else: return 1 class MatplotlibLayerState(LayerState): """ A base class that includes common attributes for all layers in viewers based on Matplotlib. """ color = DeferredDrawCallbackProperty(docstring='The color used to display ' 'the data') alpha = DeferredDrawCallbackProperty(docstring='The transparency used to ' 'display the data') def __init__(self, viewer_state=None, **kwargs): super(MatplotlibLayerState, self).__init__(viewer_state=viewer_state, **kwargs) self.color = self.layer.style.color self.alpha = self.layer.style.alpha self._sync_color = keep_in_sync(self, 'color', self.layer.style, 'color') self._sync_alpha = keep_in_sync(self, 'alpha', self.layer.style, 'alpha') self.add_global_callback(self._notify_layer_update) def _notify_layer_update(self, **kwargs): message = LayerArtistUpdatedMessage(self) if self.layer is not None and self.layer.hub is not None: self.layer.hub.broadcast(message) @defer_draw def _notify_global(self, *args, **kwargs): super(MatplotlibLayerState, self)._notify_global(*args, **kwargs)
38.404762
107
0.666726
[ "BSD-3-Clause" ]
cnheider/glue
glue/viewers/matplotlib/state.py
11,291
Python
#!/usr/bin/env python3 import os import platform import shutil import sys from urllib import request import bs4 import patoolib url = "http://bearware.dk/teamtalksdk" cd = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def get_url_suffix_from_platform() -> str: machine = platform.machine() if sys.platform == "win32": architecture = platform.architecture() if machine == "AMD64" or machine == "x86": if architecture[0] == "64bit": return "win64" else: return "win32" else: sys.exit("Native Windows on ARM is not suported") elif sys.platform == "darwin": sys.exit("Darwin is not supported") else: if machine == "AMD64" or machine == "x86_64": return "ubuntu18_x86_64" elif "arm" in machine: return "raspbian_armhf" else: sys.exit("Your architecture is not supported") def download() -> None: r = request.urlopen(url) html = r.read().decode("UTF-8") page = bs4.BeautifulSoup(html, features="html.parser") versions = page.find_all("li") last_version = versions[-1].a.get("href")[0:-1] download_url = ( url + "/" + last_version + "/" + "tt5sdk_{v}_{p}.7z".format(v=last_version, p=get_url_suffix_from_platform()) ) print("Downloading from " + download_url) request.urlretrieve(download_url, os.path.join(cd, "ttsdk.7z")) def extract() -> None: try: os.mkdir(os.path.join(cd, "ttsdk")) except FileExistsError: shutil.rmtree(os.path.join(cd, "ttsdk")) os.mkdir(os.path.join(cd, "ttsdk")) patoolib.extract_archive( os.path.join(cd, "ttsdk.7z"), outdir=os.path.join(cd, "ttsdk") ) def move() -> None: path = os.path.join(cd, "ttsdk", os.listdir(os.path.join(cd, "ttsdk"))[0]) try: if sys.platform == "win32": os.rename( os.path.join(path, "Library/TeamTalk_DLL/TeamTalk5.dll"), os.path.join(cd, "TeamTalk5.dll"), ) else: os.rename( os.path.join(path, "Library/TeamTalk_DLL/libTeamTalk5.so"), os.path.join(cd, "libTeamTalk5.so"), ) except FileExistsError: if sys.platform == "win32": os.remove(os.path.join(cd, "TeamTalk5.dll")) os.rename( os.path.join(path, "Library/TeamTalk_DLL/TeamTalk5.dll"), os.path.join(cd, "TeamTalk5.dll"), ) else: os.remove(os.path.join(cd, "libTeamTalk5.so")) os.rename( os.path.join(path, "Library/TeamTalk_DLL/libTeamTalk5.so"), os.path.join(cd, "libTeamTalk5.so"), ) try: os.rename( os.path.join(path, "Library/TeamTalkPy"), os.path.join(cd, "TeamTalkPy") ) except OSError: shutil.rmtree(os.path.join(cd, "TeamTalkPy")) os.rename( os.path.join(path, "Library/TeamTalkPy"), os.path.join(cd, "TeamTalkPy") ) try: os.rename( os.path.join(path, "License.txt"), os.path.join(cd, "TTSDK_license.txt") ) except FileExistsError: os.remove(os.path.join(cd, "TTSDK_license.txt")) os.rename( os.path.join(path, "License.txt"), os.path.join(cd, "TTSDK_license.txt") ) def clean() -> None: os.remove(os.path.join(cd, "ttsdk.7z")) shutil.rmtree(os.path.join(cd, "ttsdk")) def install() -> None: print("Installing TeamTalk sdk components") print("Downloading latest sdk version") download() print("Downloaded. extracting") extract() print("Extracted. moving") move() print("moved. cleaning") clean() print("cleaned.") print("Installed") if __name__ == "__main__": install()
28.933333
86
0.569636
[ "MIT" ]
ahmetecevitli/TTMediaBot
tools/ttsdk_downloader.py
3,906
Python
from . import ( yaw, layout, base_COE, optimization, layout_height, power_density, yaw_wind_rose, power_density_1D, yaw_wind_rose_parallel, )
14.833333
27
0.651685
[ "Apache-2.0" ]
ArnaudRobert/floris
floris/tools/optimization/scipy/__init__.py
178
Python
# Copyright (C) 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Auto-generated file for MCP4725 v0.1.0. # Generated from peripherals/MCP4725.yaml using Cyanobyte Codegen v0.1.0 """ Class for MCP4725 """ from machine import I2C DIGITALOUT_GND = 0 # Ground DIGITALOUT_VCC = 4095 # Vcc (full power) def _swap_endian(val, length): """ Swap the endianness of a number """ if length <= 8: return val if length <= 16: return (val & 0xFF00) >> 8 | (val & 0xFF) << 8 if length <= 32: return ((val & 0xFF000000) >> 24 | (val & 0x00FF0000) >> 8 | (val & 0x0000FF00) << 8 | (val & 0x000000FF) << 24) raise Exception('Cannot swap endianness for length ' + length) class MCP4725: """ Microchip 4725 Digital-to-Analog Converter """ device_address = 98 REGISTER_EEPROM = 96 REGISTER_VOUT = 64 def __init__(self, i2c): # Initialize connection to peripheral self.i2c = i2c def get_eeprom(self): """ If EEPROM is set, the saved voltage output will be loaded from power-on. """ byte_list = self.i2c.readfrom_mem( self.device_address, self.REGISTER_EEPROM, 1, addrsize=12 ) val = 0 val = val << 8 | byte_list[0] val = _swap_endian(val, 12) return val def set_eeprom(self, data): """ If EEPROM is set, the saved voltage output will be loaded from power-on. """ data = _swap_endian(data, 12) buffer = [] buffer[0] = (data >> 0) & 0xFF self.i2c.writeto_mem( self.device_address, self.REGISTER_EEPROM, buffer, addrsize=12 ) def get_vout(self): """ VOut = (Vcc * value) / 4096 The output is a range between 0 and Vcc with steps of Vcc/4096. In a 3.3v system, each step is 800 microvolts. """ byte_list = self.i2c.readfrom_mem( self.device_address, self.REGISTER_VOUT, 1, addrsize=12 ) val = 0 val = val << 8 | byte_list[0] val = _swap_endian(val, 12) return val def set_vout(self, data): """ VOut = (Vcc * value) / 4096 The output is a range between 0 and Vcc with steps of Vcc/4096. In a 3.3v system, each step is 800 microvolts. """ data = _swap_endian(data, 12) buffer = [] buffer[0] = (data >> 0) & 0xFF self.i2c.writeto_mem( self.device_address, self.REGISTER_VOUT, buffer, addrsize=12 ) def get_digitalout(self): """ Only allows you to send fully on or off """ # Read register data # '#/registers/EEPROM' > 'EEPROM' val = self.get_eeprom() # Mask register value val = val & 0b0001111111111111 return val def set_digitalout(self, data): """ Only allows you to send fully on or off """ # Read current register data # '#/registers/EEPROM' > 'EEPROM' register_data = self.get_eeprom() register_data = register_data | data self.set_eeprom(register_data) def getvout_asvoltage(self, vcc): """ get vout """ voltage = None # Variable declaration # Read value of register into a variable value = self.get_eeprom() voltage = value / 4096 * vcc return voltage def setvout_asvoltage(self, output, vcc): """ set vout """ output = output / vcc * 4096 self.set_eeprom(output)
25.597633
74
0.561258
[ "Apache-2.0" ]
google/cyanobyte
test/sampleData/micropython/MCP4725.py
4,326
Python
from drawy import * class Button: def __init__(self, text, click_handler, point, width, height, *, hide=False, do_highlight=True, background_color='gray', highlight_color='lightgray', text_color='black', border_color='black'): self.text = text self.click_handler = click_handler self.point = Point(*point) self.width = width self.height = height self.hide = hide self.do_highlight = do_highlight self.background_color = background_color self.highlight_color = highlight_color self.text_color = text_color self.border_color = border_color def is_point_inside(self, point: Point): return point.is_inside_rectangle(self.point, self.width, self.height) def draw(self): if self.hide: return background = self.background_color if self.do_highlight and self.is_point_inside(MOUSE_POSITION): background = self.highlight_color draw_rectangle(self.point, self.width, self.height, background) draw_rectangle(self.point, self.width, self.height, self.border_color, fill=False, border_thickness=4) draw_text(self.text, self.point + Point(self.width, self.height) / 2, self.text_color) def on_click(self): if self.is_point_inside(MOUSE_POSITION) and self.click_handler: self.click_handler() BUTTONS = [ Button("SCORE", lambda: print('score!'), (100, 100), 200, 60), Button("test", lambda: print("test!"), (100, 300), 200, 60), ] def init(): pass def draw(): for b in BUTTONS: b.draw() def on_click(): for b in BUTTONS: b.on_click() run(background_color='#ccc', title='Buttons test')
34.038462
197
0.640678
[ "MIT" ]
NextLight/drawy
examples/button.py
1,770
Python
# Charlie Conneely # Score Keeper from player import Player ranks_file = "rankings.txt" class ScoreKeeper: def __init__(self): self.ranks = [] """ Check if player score ranks against scores in rankings.txt """ def check_ranking(self, p): self.populate_ranks_array(ranks_file) # check score against rankings top5 = self.compare_score(p) if top5: print("Well Done! You ranked Top 5!") print("\nNew Rankings:") for i in self.ranks: print(i.name + " - " + str(i.score)) self.append_file(ranks_file) else: print("Sorry, your score didn't rank top 5!") print("\nCurrent Rankings:") for i in self.ranks: print(i.name + " - " + str(i.score)) # Clear ranks array self.ranks = [] """ Append ranks file with new score """ def append_file(self, rfile): with open(rfile, 'w') as file: for p in self.ranks: file.write(str(p.name) + " " + str(p.score) + "\n") """ Check if score beats that of any currently ranked players If true - Add player to rankings, resort array, pop last item from the end. returns Boolean """ def compare_score(self, player): does_rank = False for p in self.ranks: if (int(player.score) > int(p.score)): does_rank = True if does_rank: self.ranks.append(player) # sort ranks array by scores self.ranks.sort(key=lambda p: int(p.score), reverse=True) # remove the last item self.ranks.pop() return does_rank """ Populate local array with scores from txt file """ def populate_ranks_array(self, scores_file): with open(scores_file) as f: for line in f: (n, s) = line.split() self.ranks.append(Player(n,s))
28.428571
80
0.548241
[ "MIT" ]
charlieconneely/countdown
score_system.py
1,990
Python
import numpy as np import pandas as pd import scipy.stats from .utils_complexity_embedding import complexity_embedding from .entropy_shannon import entropy_shannon def entropy_distribution(signal=None, delay=1, dimension=3, bins="Sturges", base=2): """**Distribution Entropy (DistrEn)** Distribution Entropy (**DistrEn**, more commonly known as **DistEn**). Parameters ---------- signal : Union[list, np.array, pd.Series] The signal (i.e., a time series) in the form of a vector of values. delay : int Time delay (often denoted *Tau* :math:`\\tau`, sometimes referred to as *lag*) in samples. See :func:`complexity_delay` to estimate the optimal value for this parameter. dimension : int Embedding Dimension (*m*, sometimes referred to as *d* or *order*). See :func:`complexity_dimension` to estimate the optimal value for this parameter. bins : int or str Method to find the number of bins. Can be a number, or one of ``"Sturges"``, ``"Rice"``, ``"Doane"``, or ``"sqrt"``. base : int The logarithmic base to use for :func:`entropy_shannon`. Returns -------- distren : float The Distance Entropy entropy of the signal. info : dict A dictionary containing additional information regarding the parameters used. See Also -------- entropy_shannon Examples ---------- .. ipython:: python import neurokit2 as nk signal = nk.signal_simulate(duration=2, frequency=5) distren, info = nk.entropy_distribution(signal) distren References ----------- * Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2015). Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & biological engineering & computing, 53(1), 77-87. """ # Sanity checks if isinstance(signal, (np.ndarray, pd.DataFrame)) and signal.ndim > 1: raise ValueError( "Multidimensional inputs (e.g., matrices or multichannel data) are not supported yet." ) # Store parameters info = { "Dimension": dimension, "Delay": delay, "Bins": bins, } # Time-delay embedding embedded = complexity_embedding(signal, delay=delay, dimension=dimension) # Compute distance n = len(embedded) d = np.zeros(round(n * (n - 1) / 2)) for k in range(1, n): Ix = (int((k - 1) * (n - k / 2)), int(k * (n - ((k + 1) / 2)))) d[Ix[0] : Ix[1]] = np.max( abs(np.tile(embedded[k - 1, :], (n - k, 1)) - embedded[k:, :]), axis=1 ) # TODO: "D is symmetrical. Only the upper or lower triangular matrix will actually be adequate # for the estimation of the ePDF, which can be used to facilitate its fast calculation." n_d = len(d) # Number of bins if isinstance(bins, str): bins = bins.lower() if bins == "sturges": n_bins = np.ceil(np.log2(n_d) + 1) elif bins == "rice": n_bins = np.ceil(2 * (n_d ** (1 / 3))) elif bins == "sqrt": n_bins = np.ceil(np.sqrt(n_d)) elif bins == "doanes": sigma = np.sqrt(6 * (n_d - 2) / ((n_d + 1) * (n_d + 3))) n_bins = np.ceil(1 + np.log2(n_d) + np.log2(1 + abs(scipy.stats.skew(d) / sigma))) else: raise Exception("Please enter a valid binning method") else: n_bins = bins # Get probability freq, _ = np.histogram(d, int(n_bins)) freq = freq / freq.sum() # Compute Shannon Entropy distren, _ = entropy_shannon(freq=freq, base=base) # Normalize by number of bins (so that the range should be within [0, 1]) distren = distren / (np.log(n_bins) / np.log(base)) return distren, info
32.905172
98
0.596804
[ "MIT" ]
danibene/NeuroKit
neurokit2/complexity/entropy_distribution.py
3,817
Python
import numpy as np import pandas as pd import matlibplot.pyplot as plt ''' Simulating Solow-Swan model, which attempts to model the long-run economic growth by looking at capital accumulation (K), population growth (L) and technological progress, which results in increase in productivity. It models the total production of the economy using the constant-returns-to-scale Cobb-Douglas production function Y(t) = K(t)^{alpha} * (A(t)L(t))^{1-alpha}, where Y(t): a single good output at time t K(t): the amount of capital at time t L(t): population at time t A(t): total factor productivity at time t alpha: output elasticity of capital with a law of motion: I(t) = sY(t) C(t) = (1-s)Y(t) K(t+1) = (1-delta)K(t) + I(t) L(t+1) = (1+n)L(t) we can derive the law of motion for k(t) capital per capita: k(t+1) = K(t+1)/N(t+1) = ((1-delta)K(t) + I(t))/ (1+n)N(t) = (1-delta)/(1+n) * k(t) + s/(1+n) A*K_t^alpha as well as per capita output: y(t) = Y(t)/N(t) = Ak_t^alpha where, I(t): total investment at time t C(t): total consumption at time t K(t): total capital at time t L(t): total population at time t s: the saving rate delta: rate of capital depreciation n: rate of population growth This simulation allows user to take controls of those parameters and plot the simulated total output growth. The program also enables user to query data from the Federal Reserve Economic Data ''' class solow: ''' A: total factor productivity k0: the initial amount of capital delta: rate of depreciation of cpiatal s: the saving rate n: the population growth rate alpha: output elasticity of capital starting_year: ''' def __init__(self, A=2.87, k0=3.5, delta = 0.08, s = 0.1, n = 0.015, alpha = 0.36, t0 = 1956, tmax = 2060): self._A = A self._k0 = k0 self._k = k0 self._delta = delta self._s = s self._n = n self._alpha = alpha self._t0 = t0 self._tmax = tmax self._t = range(t0, tmax + 1) self._y = np.zeros(len(self._t)) self._y[0] = self._A * (self._k0 ** self._alpha) self._time_passed = 0 ''' this method returns all the variables in this model, which includes A, k0, delta, s, n, alpha, t0, tax, Y, and t as a dictionary ''' def get_variables(self): return { 'A' : self._A, 'k0': self._k0, 'delta': self._delta, 's' : self._s, 'n' : self._n, 'alpha': self._alpha, 't0' : self._t0, 'tmax': self._tmax, 'y' : self._y, 't' : self._t } ''' this method takes a list or dictionary as input and set the variables based on the user's input. If the user inputs a list, it will treats the entries of list as the values of A, k0, delta, s, n, alpha, t0, tmax, Y, t the user wants to change into. If the user inputs a dictionary, the fields will be set according to the keys. Example: set_variables({A: 2.87, k0: 3.5, delta:0.08, s:0.1, n:0.015, alpha:0.36, t0:1956, tmax:2060}) set_variables(2.87,3.5,0.08,0.1,0.015,0.36,1956,2060) both achieve the same output ''' def set_variables(self, vars): if (type(vars) != type([]) or type(vars) != type({})): raise ValueError('arguments must be either a dictionary or a list') if (type(vars) == type([])): if (len(vars) != 8): raise ValueError('You must enter the following arguments: A, k0, delta, s, n, alpha, t0, tmax') else: self.setA(vars[0]) self.setK0(vars[1]) self.setDelta(vars[2]) self.setS(vars[3]) self.setN(vars[4]) self.setAlpha(vars[5]) self.setTRange(vars[6], vars[7]) if (type(vars) == type({})): try: self.setA(vars['A']) self.setK0(vars['k0']) self.setDelta(vars['delta']) self.setS(vars['s']) self.setN(vars['n']) self.setAlpha(vars['alpha']) self.setTRange(vars['t0'], vars['tmax']) except KeyError: raise ValueError("Your dictionary must have the keys A, k0, delta, s, n, alpha, t0, and tmax") ''' setter for the field A (total factor productivity) ''' def setA(self, A): if (A < 0): raise ValueError("A must be positive") self._A = A ''' setter for the field k0 (the initial amount of capital) ''' def setK0(self,k0): if(k0 < 0): raise ValueError("k0 must be positive") ''' setter for Delta (rate of depreciation of cpiatal) ''' def setDelta(self, delta): if (delta > 1 or delta < 0): raise ValueError("depreciation rate must be in between 0 and 1") self._delta = delta ''' setter for S (saving rate) ''' def setS(self, s): if (s > 1 or s < 0): raise ValueError("saving rate must be in between 0 and 1") self.S = S ''' setter for N (population growth rate) ''' def setN(self,n): self._n = n ''' setter for alpha (output elasticity of capital) ''' def setAlpha(self, alpha): if (alpha < 0 or alpha > 1): raise ValueError("alpha must be in between 0 and 1") self._alpha = alpha ''' setter for the time range Example: setTRange(1956, 2060): set the time range starting from 1956 to 2060 ''' def setTRange(self, start, end): if (end < start): raise ValueError("tmax must be greater than t0") self._t0 = start self._tmax = end self._t = range(start, end+1) ''' Start the simulation, and return the predicted value of Y from the start period to the end period TO BE IMPLEMENTED ''' def simulate(self): for t in self._t: self._update() return [self._y, self._t] ''' Plot the prediction using matlibplot. x-axis would be year, y-axis would the predicted GDP TO BE IMPLEMENTED ''' def plot(self): pass ''' store the output as a pandas dataframe ''' def to_df(self): return pd.DataFrame({'year' : self._t, 'gdp_per_capita' : self._y}) ''' export the output as a csv file to the user-provided location TO BE IMPLEMENTED ''' def to_csv(self, dir): pass ''' lunch the GUI, that enables more user-friendly interaction with the software TO BE IMPLEMENTED ''' def gui(self): pass ''' update all the fields according to the law of motion TO BE IMPLEMENTED ''' def _update(self): #update k self._k = (1-self._delta)/(1+self._n) * self._k + (self._s)/(1+n) * self._A * (self._k ** self._alpha) # update t self._time_passed += 1 #update y self._y[self._time_passed] = self._A * (self._k ** self._alpha)
30.453782
111
0.560706
[ "Apache-2.0" ]
zhaoy17/Macro_lib
macro_lib/growth/solow.py
7,248
Python
#!/usr/local/bin/python # based on code by henryk ploetz # https://hackaday.io/project/5301-reverse-engineering-a-low-cost-usb-co-monitor/log/17909-all-your-base-are-belong-to-us # and the wooga office weather project # https://blog.wooga.com/woogas-office-weather-wow-67e24a5338 import os, sys, fcntl, time, socket from prometheus_client import start_http_server, Gauge, Summary, Counter import requests def callback_function(error, result): if error: print(error) return print(result) def hd(d): return " ".join("%02X" % e for e in d) def now(): return int(time.time()) # Create a metric to track time spent and requests made. decrypt_time = Summary('decrypt_time_seconds', 'Time spent decrypting') # Decorate function with metric. @decrypt_time.time() def decrypt(key, data): cstate = [0x48, 0x74, 0x65, 0x6D, 0x70, 0x39, 0x39, 0x65] shuffle = [2, 4, 0, 7, 1, 6, 5, 3] phase1 = [0] * 8 for i, o in enumerate(shuffle): phase1[o] = data[i] phase2 = [0] * 8 for i in range(8): phase2[i] = phase1[i] ^ key[i] phase3 = [0] * 8 for i in range(8): phase3[i] = ( (phase2[i] >> 3) | (phase2[ (i-1+8)%8 ] << 5) ) & 0xff ctmp = [0] * 8 for i in range(8): ctmp[i] = ( (cstate[i] >> 4) | (cstate[i]<<4) ) & 0xff out = [0] * 8 for i in range(8): out[i] = (0x100 + phase3[i] - ctmp[i]) & 0xff return out if __name__ == "__main__": """main""" # use lock on socket to indicate that script is already running try: s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) ## Create an abstract socket, by prefixing it with null. s.bind('\0postconnect_gateway_notify_lock') except socket.error, e: # if script is already running just exit silently sys.exit(0) key = [0xc4, 0xc6, 0xc0, 0x92, 0x40, 0x23, 0xdc, 0x96] fp = open(sys.argv[1], "a+b", 0) HIDIOCSFEATURE_9 = 0xC0094806 set_report = "\x00" + "".join(chr(e) for e in key) fcntl.ioctl(fp, HIDIOCSFEATURE_9, set_report) values = {} stamp = now() notified = False # define Gauge metrice for temp and co2 co2_metric = Gauge('co2_value', 'Current CO_2 Value from sensor') temperature_metric = Gauge('temperature_value', 'Current Temperature Value from sensor') # define loop counter loop_counter = Counter('loops_total', 'Number of loops to query the sensor for values') # Start up the server to expose the metrics. start_http_server(8000) while True: loop_counter.inc() data = list(ord(e) for e in fp.read(8)) decrypted = decrypt(key, data) if decrypted[4] != 0x0d or (sum(decrypted[:3]) & 0xff) != decrypted[3]: print hd(data), " => ", hd(decrypted), "Checksum error" else: op = decrypted[0] val = decrypted[1] << 8 | decrypted[2] values[op] = val if (0x50 in values) and (0x42 in values): co2 = values[0x50] tmp = (values[0x42]/16.0-273.15) # check if it's a sensible value # (i.e. within the measuring range plus some margin) if (co2 > 5000 or co2 < 0): continue if now() - stamp > 10: print "TMP %3.1f" % (tmp) temperature_metric.set(tmp) print "CO2 %4i" % (co2) co2_metric.set(co2) print ">>>" stamp = now()
30.452991
121
0.575639
[ "MIT" ]
mvelten/office-weather
monitor.py
3,563
Python
# -*- coding: utf-8 -*- import os.path as osp #import netCDF4 #from netcdf_helpers.reader import say_hello, get_time_series_from_location #from plot.plot import plot_time_series_for_locations #from sklearn.model_selection import train_test_split #from sklearn.preprocessing import MinMaxScaler import numpy as np import xarray as xr import pandas as pd #import cartopy.crs as ccrs import matplotlib.pyplot as plt import mglearn #say_hello() # set a path to the directory containing the data directory = "/Users/houben/phd/hackathons/hida_datathon/data/MyChallengePaleo" # set the file names filename_temp_data_r1 = "T2m_R1_ym_1stMill.nc" filename_temp_data_r2 = "T2m_R2_ym_1stMill.nc" filename_solar_data = "Solar_forcing_1st_mill.nc" filename_volc_data = "Volc_Forc_AOD_1st_mill.nc" # load netCDF #temp_data_r1 = netCDF4.Dataset(osp.join(directory, filename_temp_data_r1), "r") #temp_data_r2 = netCDF4.Dataset(osp.join(directory, filename_temp_data_r2), "r") temp_data_r1 = xr.open_dataset(osp.join(directory, filename_temp_data_r1)) temp_data_r2 = xr.open_dataset(osp.join(directory, filename_temp_data_r2)) #Understand the data more and see the levels of each column df = temp_data_r1.to_dataframe()["T2m"] print(df.index.get_level_values('time')) timelist = df.index.get_level_values('time') latlist = df.index.get_level_values('lat') lonlist = df.index.get_level_values('lon') #Reset the indices (I find it easier to work this way) df_r1 = temp_data_r1.to_dataframe().reset_index(level=['lat', 'lon', 'time'])#["T2m"] #Calculate a global annual mean temperature time series Globalmeantemp = df_r1.groupby('time').mean() #Calculate the mean of the time series to focus on the variation from the mean mean = np.mean(Globalmeantemp["T2m"]) Var_frommean = Globalmeantemp["T2m"] - mean plt.plot(Var_frommean) from sklearn.cluster import KMeans #Initialize the algorithm and fit it with the data kmeans = KMeans(n_clusters = 5) X = Var_frommean.to_numpy().reshape(-1,1) kmeans.fit(X) kmeans.cluster_centers_ print("Cluster memberships:\n{}".format(kmeans.labels_)) #Assign classes to each data point based on the model classes = kmeans.predict(X) #Inspect the centroids of the clusters print(kmeans.cluster_centers_) #Shortcut to see/visualize the datapoints and range of each cluster mglearn.discrete_scatter(X, X, kmeans.labels_, markers='o') #Volcanic activity is expected to have the maximum impact out of all forcings so look for the time points which are in the cluster associated with the lowest centroid dip = np.argwhere(classes==np.argmin(kmeans.cluster_centers_)) #look for the years which have the biggest dips dipinyear = list(int(timelist[i][0]/10000) for i in dip) len(dipinyear) # ----------------------------------------------------------------------------- # Apply a filter to the # ----------------------------------------------------------------------------- from # ----------------------------------------------------------------------------- shortlistedtimeseries = list(timelist[i][0] for i in dip) #fourth column to group locations: #df_r1['latlon'] = df_r1[['lat', 'lon']].apply(lambda x: ','.join(x.astype(str)), axis=1) #the above step takes too long. look for alternatives. ALternatively, go for the original dataset #locationmean = df_r1.groupby('latlon').mean() locationmean = df_r1.groupby(['lat','lon']).mean() #testing alternative to above, much shorter locationmean["mean"] = locationmean["T2m"] df_r1_locmean = pd.merge(df_r1, locationmean[['T2m']], on = ['lat','lon']).rename(columns={'T2m_y':'mean'}) #merging the two dataframes df_r1_locmean["Var"] = df_r1_locmean["T2m_x"] - df_r1_locmean["mean"] #calculating variation from mean of time series at respective location #Filter the dataset and look at only the years which have the biggest dips for the data analysis/image analysis #Also divide it into 6 zones as previously discussed: tropical, temperate and polar in northern and southern hemispheres df_r1_time = df_r1_locmean[df_r1_locmean.time.isin(shortlistedtimeseries)] df_North_trop = df_r1[(df_r1.lat>=0) & (df_r1.lat<30)] df_North_temp = df_r1[(df_r1.lat>=30) & (df_r1.lat<60)] df_North_polar = df_r1[df_r1.lat>=60] df_South_trop = df_r1[(df_r1.lat>=-30) & (df_r1.lat<0)] df_South_temp = df_r1[(df_r1.lat>=-60) & (df_r1.lat<-30)] df_South_polar = df_r1[df_r1.lat<-60] #Taking snapshots of years of interest: this needs to be broadened to consider the 5 year rolling window I think kmeans = KMeans(n_clusters = 3) for t in shortlistedtimeseries[:5]: Y = df_r1_time[df_r1_time['time']==t] series = Y["Var"] X = series.to_numpy().reshape(-1,1) # X = Var_frommean.to_numpy().reshape(-1,1) kmeans.fit(X) # print("Cluster memberships:\n{}".format(kmeans.labels_)) #Assign classes to each data point based on the model classes = kmeans.predict(X) Y["labels"] = classes Y["plotlabels"] = kmeans.cluster_centers_[Y["labels"]] #To label the location with the corresponding cluster centroid # print(kmeans.cluster_centers_) plt.figure() mglearn.discrete_scatter(Y['lon'], Y['lat'], Y["plotlabels"], markers='o') plt.title("Year: "+str(int(t/10000))) plt.legend()
46.734513
167
0.709903
[ "MIT" ]
NatalieBarbosa/hida-datathon-ufz
SK_Clustering_WIP.py
5,281
Python